
1. Introduction
Hydrometeorological droughts are complex hazards expressed through the relative deviation in water availability 
relative to long-term average conditions. They are typically slow onset, propagating through the water cycle to 
affect different social, economic, and environmental sectors at different temporal and spatial scales (Ayantobo 
et al., 2017; Gaitán et al., 2020; Quevauviller & Gemmer, 2015). Furthermore, flash droughts with rapid onset 
propagate through different spatial-temporal scales, from atmospheric to surface conditions (Shah et al., 2022). 
Although drought is predominantly caused by a lack of precipitation, soil moisture and streamflow, other factors, 
like prolonged abstraction and rising atmospheric evaporative demand (AED), can affect drought incidence and 
propagation. Moreover, the development and propagation of drought is governed by hydrological processes at 
different spatial scales including precipitation, evapotranspiration, overland flow, soil moisture, groundwater 
storage and discharge (Ganguli et al., 2022; Sutanto & Van Lanen, 2022). Detailed investigation is thus required 
to evaluate associated linkages among various types of hydrometeorological drought to understand the likely 
impacts of climate change on drought characteristics (magnitude, frequency, duration and propagation) at the 
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Plain Language Summary Climate change aggravates the impact of hydrometeorological 
droughts on water availability and distribution in Ireland. Rainfall, evaporation, overland flow, soil moisture, 
groundwater storage, and the size and strength of discharges are the main factors that cause drought extent and 
duration. Therefore, for the sustainable development of ecosystems and water resources in a country, it is a 
requirement to evaluate associated linkages among various types of hydrometeorological drought to understand 
the likely impacts of climate change on drought characteristics (magnitude) and propagation. This paper 
explores the impact of climate change on hydrometeorological drought for 10 Irish catchments. The findings 
indicate significant summer drying, as well as increases in the magnitude and frequency of summer droughts. 
The probability of meteorological drought propagating to hydrological events, shows modest increases under 
the climate change projections considered. Drought, particularly during the summer, is a critical climate change 
risk for adaptation, according to the findings.
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catchment scale (Mishra & Cherkauer, 2010). The impact of climate change on drought characteristics has been 
widely investigated, with the frequency and occurrence of meteorological drought expected to worsen due to 
increasing greenhouse gas concentrations in major world regions (IPCC, 2021). Recent extreme droughts have 
increased the urgency of understanding the impact of climate change on droughts. European drought in 2015 
and 2018 (Falzoi et al., 2019; Ionita et al., 2017; Roudier et al., 2015; Stagge et al., 2015), in east Africa during 
1984 and 2015 (Funk et al., 2019; Oguntunde et al., 2017), Australia in 2019 (Kirono et al., 2020) and the USA, 
particularly in California, have clearly demonstrated the pervasive impact of drought on water resources, ecology, 
biodiversity and agriculture (He et al., 2019; Mann & Gleick, 2015; Ullrich et al., 2018). In turn, many studies 
have examined the impact of climate change and variability on hydrometeorological droughts (Hanel et al., 2018; 
H. K. Meresa et al., 2016; C. Murphy et al., 2020; Noone et al., 2017; Oguntunde et al., 2017; Stagge et al., 2015). 
Besides the spatial differences, the main conclusion of these studies is an expected increase in meteorological 
drought with climate change. However, the impact of climate change on soil moisture deficits, runoff, and base-
flow are less understood.

Hydrometeorological drought indices are widely used to investigate changes in drought characteristics. These 
indices are typically derived from single or multiple meteorological and/or hydrological variables, such as precip-
itation (P), AED, streamflow/runoff (R), and temperature (T) (Mukherjee et  al.,  2018). Over recent decades 
>160 hydrometeorological drought indices have been developed to detect, monitor and characterize droughts 
(Niemeyer,  2008) with commonly applied examples including the Palmer Drought Severity Index (PDSI) 
(Palmer,  1965), the Standardized Precipitation Index (SPI) (Mckee et  al.,  1993), the Standardized Precipita-
tion Evapotranspiration Index (SPEI) (Vicente-Serrano, et al., 2020a), the Rainfall Anomaly Index (RAI), the 
Standardized Runoff Index (SRI) (Shukla & Wood, 2008), the Standardized Soil-Moisture Index (SSMI) (Hao 
& Aghakouchak, 2013), and the Reconnaissance Drought Index (RDI) (Tsakiris & Vangelis, 2005). Each has its 
own strengths and weaknesses and it is challenging to select a single standard method. For instance, SPI is widely 
applied and can detect drought conditions at different timescales, ranging from monthly to multi-annual (Mckee 
et al., 1993). However, SPI is based on precipitation alone and fails to consider the role of temperature on drought 
events and frequencies (Reyniers et al., 2022) and may not be suitable for drought projections and changes under 
climate change (Vicente-Serrano, et al., 2020a). Similarly, for hydrological drought, Standardized Streamflow 
Index (SSI) only considers streamflow, whereas water managers may be interested in other hydrological compo-
nents such as groundwater that may be critical in understanding the development and duration of drought events 
(Wossenyeleh et al., 2021).

Relatively few studies have employed multiple indices at the catchment scale to assess the link between meteor-
ological and hydrological droughts and to understand the complex mechanisms of hydrometeorological drought 
propagation (Zhou et al., 2021). Zhou et al. (2021) introduced a nonlinear dependency indicator to examine propa-
gation of meteorological to hydrological drought using a directed information transfer index. They concluded that 
drought propagation was primarily affected by the magnitude and frequency of meteorological drought events, 
together with the sensitivity of hydrological characteristics to drought. Similarly, H. K. Meresa et al. (2016) inves-
tigated the impact of climate change on hydrometeorological drought frequency and occurrence in Polish catch-
ments, concluding that meteorological drought frequency was less than that of hydrological drought in lowland 
catchments. In contrast, in highland catchments, the frequency and magnitude of meteorological drought were 
greater than those of hydrological drought. Barker et al. (2016) used cross-correlation between the 1-month SSI 
and various SPI accumulation time scales to examine the relationship between meteorological and hydrological 
drought in the UK. Their results showed that at short aggregation time scales meteorological drought conditions 
have smaller spatial variability than longer accumulation periods. Shin et al. (2018) used Bayesian conditional 
probability theory to understand linkages and propagation between meteorological and hydrological drought 
using SPI and the palmer hydrological drought index (PHDI) finding that longer aggregation time scales result in 
higher probability of meteorological to hydrological drought propagation, and that the frequency of meteorolog-
ical drought was greater than hydrological drought, whilst the severity of meteorological drought was often less 
than that of hydrological drought.

In Ireland, while a number of studies have investigated changes in precipitation and temperature (e.g., Nolan 
et  al.,  2017) and projected changes in seasonal and low flows (e.g., Golian & Murphy,  2021; H. K. Meresa 
et al., 2022; Romanowicz et al., 2016), little research has examined prospective changes in drought characteris-
tics under climate change. To adapt to changes in hydrometeorological drought more knowledge regarding their 
likely changes, interlinkages, and propagation in the future is required. This study explores the impact of climate 
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change on hydrometeorological drought for 10 Irish catchments. Using indices representing different components 
of the hydrological system, changes in drought characteristics and propagation are examined. Specifically, we 
employ 12 Global Climate Models from the Coupled Model Inter-comparison Project phase 6 (CMIP6) (Eyring 
et al., 2016), forced with SSP370 and bias corrected to catchment conditions to force a conceptual hydrological 
model to generate hydrological projections for each catchment. We then fit standardized indices (SPI, SPEI, SSI, 
SBI) at different aggregation timescales (3, 6, and 12-months) to simulated variables to investigate changes in 
drought characteristics and their propagation at the catchment scale. The remainder of the paper is organized as 
follows. Data and methods are presented in Section 2. Section 3 provides the results, before Section 4 discusses 
the key findings and limitations of the study. Key conclusions are drawn in Section 5.

2. Data and Methods
Figure 1 provides an overview of the steps taken for examining future changes in drought characteristics and 
propagation for each study catchment. In the following sections details on the data and methods used are provided.

2.1. Study Catchments and Observed Data

Ten catchments were selected from across the island of Ireland with different hydroclimatic conditions, including 
catchment size, runoff coefficient (RC), climate elasticity, and groundwater storage (as measured by the Base 
Flow Index) (Table 1 and Figure 2). Each catchment has good quality discharge and meteorological data with 
limited urban land use and abstractions. Daily mean precipitation varies from 2.42 mm for the Dee to 5.41 mm 
for the Laune, while daily mean discharge ranges from 1.54 m 3/s for Stradbally and 28.6 m 3/s for the Laune catch-
ment. The elasticity of runoff is inversely correlated to the RC. Daily precipitation, air temperature and discharge 
data were collected for the period 1976–2005 for each catchment. Discharge data were obtained from the Office 
of Public Works (OPW) and the Environmental Protection Agency (EPA). Meteorological data were extracted 
from gridded data sets (https://www.met.ie/climate/available-data) produced by Met Éireann (Irish Meteorologi-
cal Agency) and averaged for each catchment. Estimates of PET were calculated using the Oudin method (Oudin 
et al., 2005), which shows relatively higher PET for eastern catchments.

Figure 1. Steps involved in the study design in evaluating changing drought characteristics and propagation under changing 
climate.

 21698996, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JD

038025 by N
ational U

niversity O
f Ireland M

aynooth, W
iley O

nline L
ibrary on [22/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.met.ie/climate/available-data


Journal of Geophysical Research: Atmospheres

MERESA ET AL.

10.1029/2022JD038025

4 of 20

2.2. Climate Models and Bias Correction

To evaluate the impact of climate change, daily air temperature and precip-
itation data from 12 earth system models (Table 2) comprising the Coupled 
Model Intercomparison Project Phase 6 (CMIP6) and forced using Shared 
Socioeconomic Pathway (SSP) SSP370 were extracted from the ESGF 
(Earth System Grid Federation) website (https://esgf-node.llnl.gov/search/
cmip6/) for the period of 1976–2100. The grid cells closest to the catchment 
centroid were used to extract data for each catchment. Bias correction of each 
model was undertaken using the baseline period 1976–2005. Teutschbein 
and Seibert  (2013) evaluated bias correction techniques for precipitation 
(including: linear scaling, local intensity scaling, power transformation, and 
distribution mapping (DM)) finding that DM offers promise for precipitation. 
Similarly, H. Meresa et al. (2021) examined five bias correction methods for 
flood projections in selected river catchments in Ireland, finding that quantile 
mapping is good at reproducing precipitation intensity on wet days. Here 
we employ three statistical bias correction techniques for precipitation: (a) 
the Change Factor (CF) technique as a simple and direct correction transfer 
from the historical to future period; (b) Empirical Quantile Mapping (EQM) 
based on pairwise comparison of the observed and simulated precipitation 
empirical cumulative density function (ecdf) during the reference period 
(1976–2005), and; (c) Distribution Quantile Mapping (DQM), whereby 
parameters are extracted by fitting a Gamma distribution to observed and 
simulated data and matching corresponding quantiles from observed and raw 
climate output during the period 1976–2005.

We applied two variants of DM: Single Gamma Quantile Mapping (SGQM) 
and Double Gamma Quantile Mapping (DGQM). These methods allow 
excess dry days, drizzle, and wet days to be considered and corrected. 
For SGQM, the Gamma distribution is fitted to the upper 75% of daily 
observed and simulated precipitation. For DGQM, the Gamma distribution 
is fitted to the upper 25% and lower 25% of observed and simulated precip-
itation. A detailed description of these methods is presented in H. Meresa 
et al. (2021). For temperature, we employ EQM only. Bias correction tech-
niques were assessed using Pearson's correlation (RR), relative Bias and 
the Murphy skill score (SSM) (A. Murphy, 1988) which measures repro-

Figure 2. Location of the case study catchments. The catchment codes are 
represented as S06013 for Dee catchment, S12001 for Slaney, S14007 for 
Stradbally, S15003 for Dinin, S18050 for Blackwater, S22035 for Laune, 
S23002 for Feale, S26029 for Dowra, S25001 for Annacotty, and S33001 for 
Glenamoy.

Table 1 
List of Selected Catchments (See Figure 1 for Their Geographical Location)

Code Flow station Waterbody Lat Lon Area (km 2) Pmean (mm) Qmean (m 3/s) BFI RC Ep PETr

S06013 Charleville Dee 53.856 −6.414 309 2.42 4.23 0.67 0.15 0.57 0.21

S12001 Scarrawalsh Slaney 52.549 −6.55 1,031 3.00 21.23 0.70 0.61 0.14 0.23

S14007 Derrybrock Stradbally 53.039 −7.085 115 2.50 1.54 0.73 0.05 1.62 0.22

S15003 Dinin Bridge Dinin 52.715 −7.292 140 2.81 5.91 0.53 0.18 0.48 0.22

S18050 Duarrigle Blackwater 52.096 −9.097 250 4.36 7.59 0.48 0.15 0.57 0.24

S22035 Laune Bridge Laune 52.062 −9.617 560 5.41 28.16 0.68 0.45 0.19 0.24

S23002 Listowel Feale 52.443 −9.476 647 3.96 24.92 0.52 0.54 0.16 0.24

S25001 Annacotty Mulkear 52.669 −8.529 648 3.25 15.36 0.64 0.41 0.21 0.23

S26029 Dowra Shannon 54.192 −8.015 117 4.29 4.87 0.39 0.10 0.88 0.21

S33001 Glenamoy Glenamoy 54.24 −9.696 76 4.45 2.88 0.43 0.06 1.55 0.22

Note. For each catchment, mean annual precipitation (Pmean), mean annual streamflow (Qmean), streamflow elasticity to precipitation (Ep), runoff coefficient (RC), PET 
ratio of winter and summer (PETr), and baseflow index (BFI) are computed for the period 1976–2005.
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duction of observed drought characteristics in the reference period (1976–2005) at different SPI time scales. 
Having bias corrected climate model outputs for each catchment, projected changes were evaluated for the 
2020s (2010–2039), the 2050s (2040–2069) and the 2080s (2070–2099) with respect to the reference period 
(1976–2005).

2.3. Hydrological Model

The Soil Moisture Accounting and Routing for Transport (SMART) hydrological model (Hallouin et al., 2020; 
Mockler et al., 2016) was used to simulate river flow. The model takes precipitation and potential evapotranspi-
ration as inputs and consists of 10 parameters that govern five catchment flow pathways, each represented as a 
single linear storage (including overland flow, interflow, drain flow, shallow, and deep groundwater flow). As 
described by Hallouin et al. (2020), soil moisture storage is estimated by whether conditions are water-limited 
(PET > P) or energy-limited (PET < P). Effective precipitation during energy-limited conditions is obtained by 
applying a scaling correction parameter (θT) and subtracting any direct soil evaporation. The parameter θH deter-
mines any direct surface runoff. Surplus precipitation infiltrates into the soil, represented by six layers with a total 
moisture capacity of θZ. Once the moisture-holding capacity of a layer is exceeded, surplus moisture percolates 
downwards to a deeper layer if it has capacity, otherwise it is intercepted by drains or eventually moves to shal-
low or deep groundwater stores. When PET < P, the model meets demands by evaporation from the soil layers, 
starting at the first layer and incrementally moving to the lower layers. The parameter θC represents evaporation 
decay as layers dry up. The outputs of each flow path are routed through a single linear reservoir, representing 
river routing (θRK).

Calibration and validation were carried out using observations for 1990–2007 and 2008–2015, respectively. 
Using Latin Hypercube Sampling (C. Murphy et al., 2006), 30,000 parameter sets were sampled from a uniform 
distribution representing each model parameter. The resultant parameter sets were then evaluated against obser-
vations for the validation period in each catchment using the logarithmic Nash Sutcliffe Efficiency (LogNSE) 
objective function (Nash & Sutcliffe, 1970) given our focus on drought. LogNSE is defined as;

LogNSE = 1 −

𝑗𝑗
∑

𝑡𝑡=1

(ln(𝑄𝑄𝑜𝑜𝑜𝑡𝑡) − ln(𝑄𝑄𝑚𝑚𝑜𝑡𝑡)
2

𝑗𝑗
∑

𝑡𝑡=1

(ln(𝑄𝑄𝑂𝑂𝑜𝑡𝑡) − ln(𝑄𝑄𝑜𝑜))
2

 (1)

where Qo,t and Qm,t are observed and simulated flow at time t, Qo is the mean observed flow and j is the length of 
the jth time series. The best 150 parameter sets were retained to derive future simulations, with results focused on 
the median simulation from 150 parameter sets.

Table 2 
List of Coupled Model Inter-Comparison Project Phase 6 Climate Models Employed in This Study

Code Institute Parent source Id Institution Id

CM1 Scientific and Industrial Research Organization, Australia ACCESS-CM2 CSIRO

CM2 Beijing Climate Center, China BCC-CSM2-MR BCC

CM3 National Center for Atmospheric Research, USA CESM2 NCAR

CM4 European: EC-EARTH consortium EC-Earth EC-EARTH consortium

CM5 Global Fluid Dynamics Laboratory, USA GFDL NOAA-GFDL

CM6 Met Office Hadley Center, UK HadGEM3-GC31-LL MOHC

CM7 JAMSTEC, AORI, NIES, and R-CCS, Japan MIROC6 MIROC

CM8 Max Planck Institute for Meteorology, Germany MPI-ESM1-2-HR MPI-M

CM9 Meteorological Research Institute, Japan MRI-ESM2-0 MRI

CM10 Nanjing University of Information Science and Technology, China NESM3 NUIST

CM11 NorESM Climate modeling Consortium, Norway NorESM2-LM NCC

CM12 Met Office Hadley Center, UK UKESM1-0-LL MOHC
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2.4. Baseflow Separation

Baseflow is the sum of delayed shallow and deep subsurface flow that sustains river flow between periods of 
excess precipitation and represents the groundwater recession component of streamflow. Understanding how 
baseflow is affected by climate change is critical for water resources management and in-stream ecohydrological 
health. Separation of streamflow into surface runoff and baseflow is commonly implemented using automatic 
baseflow digital filter (BFlow) techniques by passing the filtering equation three times through the daily stream-
flow time series (Bosch et al., 2017). Here we use a commonly applied recursive filtering technique to identify 
baseflow:

BF𝑡𝑡 = 𝛼𝛼 ∗ BF𝑡𝑡−1 +
1 − 𝛼𝛼

2
∗ (𝑄𝑄𝑡𝑡 +𝑄𝑄𝑡𝑡−1) (2)

where BF is the baseflow at time t, α is the filter parameter, Qt is the total streamflow at time t. This method 
is applied under only one condition, BF ≤ Qt (Eckhardt, 2008). We calibrate and validate this method using 
observed groundwater stage time series data to get stable filter parameters (Eckhardt, 2008).

2.5. Drought Indices

We employ four hydrometeorological drought indices, namely; the SPI (Mckee et al., 1993), the Standardized 
Precipitation-Evapotranspiration Index (SPEI) (Vicente-Serrano, et al., 2020a), the SRI (Shukla & Wood, 2008) 
and the Standardized Baseflow Index (SBI). The parameters of each index are calculated in the reference period 
(1976–2005) and utilized to project hydro-meteorological drought into the future. We characterized each drought 
index at three different accumulation timescales (3, 6, and 12-months) using running sums of precipitation and 
moisture deficits (for SPI and SPEI, respectively) and averages of runoff and baseflow (for SSI and SBI, respec-
tively). The following paragraphs summarize derivation of each index.

The mathematical formulation of SPI depends on the distribution of precipitation. In this study, if the monthly 
accumulated precipitation distribution is normal, then SPI is calculated based on simple Z-score statistics. Other-
wise, we used a two-parameter gamma distribution to calculate the drought index.

𝑍𝑍score =
𝑋𝑋 −𝑋𝑋

𝜎𝜎
or 𝑓𝑓 (𝑋𝑋; 𝛼𝛼𝛼 𝛼𝛼) =

1

𝛼𝛼𝛼𝛼 ∫
∞

𝑜𝑜
𝑋𝑋𝛼𝛼−1𝑒𝑒−𝑥𝑥𝑑𝑑𝑥𝑥

𝑋𝑋𝛼𝛼−1𝑒𝑒−𝑥𝑥∕𝛼𝛼 𝛼 for 𝑥𝑥 𝑥 0 (3)

where the Z-score standardized value, X is aggregated monthly precipitation, and a and b are the scale and 
shape parameters of the Gamma distribution, estimated using the maximum likelihood estimation (MLE) 
method.

SPEI is derived using aggregated monthly precipitation (Pre) and potential evapotranspiration (Pet). The moisture 
deficit (Mosdef) is calculated through simple subtraction,

Mosdef = Pre − Pet (4)

and fitted to a three parametric log-logistic distribution following Vicente-Serrano et al. (2010), and given as:

𝑓𝑓 (Mosdef; 𝛽𝛽𝛽 𝛽𝛽) =

(

1 +
𝛽𝛽(Mosdef−𝛼𝛼)

𝛽𝛽

)−(1∕𝛽𝛽+1)

𝛽𝛽

[

1 +
(

1 +
𝛽𝛽(Mosdef−𝛼𝛼)

𝛽𝛽

)

1

𝛽𝛽

]2 (5)

where β, α, ϒ are the scale, location, and shape parameters, respectively, estimated using MLE. The estimated 
log-logistic probabilities were then transformed into a standard normal distribution.

For SSI, we used average monthly flow fitted to a lognormal distribution:

𝑓𝑓 (𝑋𝑋;𝜇𝜇𝜇 𝜇𝜇) =
1

𝑋𝑋
∗

1

𝜇𝜇
√

2𝜋𝜋
exp

(

−
(ln − 𝜇𝜇)2

2𝜇𝜇2

)

𝜇 for 𝑋𝑋 𝑋 0 (6)
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where x is the streamflow, and σ and ꭒ are the scale and location parameters of the lognormal distribution esti-
mated by MLE. The estimated probabilities were transformed into a standard normal distribution.

Finally, for SBI, we used average monthly baseflow fitted to a normal distribution, and then calculated based on 
simple Z-score statistics:

𝑍𝑍score =
𝑋𝑋 −𝑋𝑋

𝜎𝜎
 (7)

where the Z-score standardized value, X is average monthly baseflow.

We analyze standardized indices in two ways. First, we examine changes in the magnitude of annual and seasonal 
mean standardized series for each future period relative to the reference period. For SPI, SPEI, SSI, and SBI winter 
[DJF] is represented by February 3 month accumulations (e.g., February SPI-3), spring [MAM] by May, summer 
[JJA] by August and autumn [SON] by November. To evaluate annual deficits, we utilize a 12-month accumula-
tion for December, while summer and winter half years are represented by 6-month accumulations in September 
and March, respectively. We also examine changes in the frequency of seasonal and annual drought by count-
ing the number of seasons/years in each 30-year period in which accumulated totals fall below the threshold of 
−0.5. Second, we also examine changes in the characteristics of drought events identified for each metric using a 
3-month accumulation period. Again, a threshold of −0.5 was selected to indicate the onset of drought conditions, 
as it is commonly used in Ireland (Falzoi et al., 2019; C. Murphy et al., 2018; Noone et al., 2017). Both the average 
duration and frequency of drought events was evaluated for each future period, relative to the reference period.

2.6. Drought Propagation

Drought propagation refers to the transfer of meteorological deficits to other components of the hydrological 
system (i.e., soil moisture deficits, streamflow deficits and/or groundwater deficits) (Eltahir & Yeh, 1999). The 
time taken for propagation is important for water managers (Apurv et al., 2017; Barker et al., 2016). To examine 
propagation, we derive the conditional probability of two dependent drought conditions (Pontes Filho et al., 2019; 
Ribeiro et al., 2019), that is, the probability of SPI drought propagating to SSI and SBI. For two drought indices 
with their respective lag time tg, we used the posterior and prior pairs of probabilities of SPI with SRI or SBI, 
and links were developed to indicate the direct influence of one on the another. Using the example of SPI and SSI 
this can be expressed as:

𝑃𝑃 (SSI𝑖𝑖 |SPI𝑗𝑗 ∈ 𝑡𝑡𝑡𝑡𝑚𝑚) =
𝑃𝑃 (SSI𝑖𝑖𝑖𝑚𝑚𝑖SPI𝑗𝑗𝑖𝑚𝑚)

𝑃𝑃 (SPI𝑗𝑗)
 (8)

where, P(SSI|SPI) is the conditional propagation probability to SSI drought given SPI, P(SPI, SSI) is the sum of 
individual and combined probabilities at a specific lag time, tgm is the optimal lag time, identified as the strongest 
correlation between respective drought conditions. The subscripts i, j, and m represent the meteorological drought 
series (i), hydrological drought series (j) at specific drought timescale (m).

Lag times and the probability of drought propagation from one type to another (using Equation 8) were estimated 
for each catchment using SPI, SSI, and SBI at 3 and 12-month accumulation timescales for both historical and 
projected future periods using the ensemble mean of projected changes. As there are different lagged responses 
for each drought event, the average drought propagation lag time was calculated.

3. Results
3.1. Hydrological Model Calibration/Validation and Bias Correction

Overall, LogNSE, PBIAS in baseflow index (the ratio of runoff to total streamflow), and the ratio of observed 
streamflow-precipitation elasticity (QPobs) to simulated streamflow-precipitation elasticity (QPest) were used to 
assess model performance. Table 3 shows calibration and validation results for the LogNSE objective function 
for each catchment. Calibration scores range from 0.83 (Slaney) to 0.91 (Annacotty), while validation scores 
range from 0.66 (Dowra) to 0.95 (Laune), indicating good fit to the observed time series. PBIAS values in BFI 
range from 0.66 (Dowra) to 13.52 (Annacotty), while validation scores range from 1.19 (Blackwater) to 22.48 
(Glenamoy), indicating low PBIAS error in fitting to observed BFI time series. The Glenamoy station had the 
highest PBIAS (22.48%), which is not directly reflected in a higher BFI but rather in a lower BFI and a higher 
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PBIAS value. Furthermore, the sensitivity of changes in streamflow to changes in precipitation was also used to 
compare between the observed and simulated time series. The ratio of QPobs to QPsim values range from 12.33 
(Glenamoy) to 40.66 (Dinin) in the calibration period, and from 11.34 (Laune) to 43.06 (Dinin) in the validation 
period.

Similarly, the spread of the 150 best simulations were evaluated using LogNSE, PBIAS of BFI, and the ratio of 
elasticity of streamflow to precipitation in the calibration period (Figures 3a and 3b). Overall, the spreads (box 
sizes) of LogNSE, PBIAS (of BFI), and the relative change of the elasticity (QP) are small across the catchments. 
However, these values showed a clear spatial difference among the catchments. For instance, Dowra shows the 
highest values of LogNSE, Laune the smallest PBIAS, and Slaney the smallest relative change in elasticity. The 
Glenamoy catchment, on the other hand, has lower LogNSE values, the highest PBIAS, and the highest QP. There-
fore, the performance is acceptable across all the catchments in reproducing the observed Qmean, BF, and QP.

Figure 3b depicts the performance of the 150 best simulation indices by comparing the median of these simula-
tions to observed time series of Qmean, BFmean, and QP. These results are more consistent with the statical perfor-
mance in Figure 3a. The simulation spread is small across the selected catchments, indicating that the uncertainty 
in hydrological parameters is small.

Bias correction results are presented in Figure 4. Methods perform differently across catchments and drought time 
scales, but all methods outperform use of the raw climate model projections. SSM values <0 indicate higher bias 
and lower spread of residual errors between observed and simulated drought magnitude. For seasonal drought 
magnitude, the SSM is near to zero for all bias correction methods, indicating that the simulation error/bias is 
smaller and has higher accuracy in reproducing the historical drought magnitude. Correlation scores range from 
0.2 to 0.6, while the relative bias ranges from 0.3 to 1.3, and SSM ranges from 0 to −2.0 across the catchments 
and bias correction methods. Raw GCM outputs show the highest relative bias and lowest correlation scores.

DGQM shows a higher correlation with observed drought magnitude at the 3-month accumulation period, 
whereas EQM performed best at the 6- and 12-month accumulation time scale. However, performance is not the 
same across catchments and time scales. 3-month SPI indices have lower bias than 6- and 12-months SPI indices 
for different bias correction techniques. In addition, the SSM scores differ considerably across catchments for 
SPI3 and SPI12, while they are less varied for summer and autumn drought magnitude detection. Interestingly, 
the bias correction approach tends to have greatest influence on drought magnitude, and overall, the DGQM 
shows better performance in reproducing seasonal drought magnitudes across the catchments. CF and BSM show 
a weaker correlation and higher bias with observed meteorological drought magnitude using SPI. In general, the 
Dowra, Dinin, and Laune catchments show weak correlation, high bias and lower SSM across aggregated time 
scales. Overall, the DGQM bias correction method performed best in reproducing drought magnitude across the 
catchments, therefore we employ this method for further analysis.

Table 3 
Soil Moisture Accounting and Routing for Transport Model Performance Using Logarithmic NSE (LogNSE) Objective 
Function, Percent of Bias (PBIAS) in Baseflow (BFI) Values, and Streamflow-Precipitation Elasticity Values (Relative 
Difference in %) in the Calibration (Cal) From 1990 to 2007 and Validation (Val) From 2008 to 2015 Period

Catchment code Flow station Waterbody

LogNSE PBIAS: BFI QPobs/QPsim

Cal Val Cal Val Cal Val

S06013 Charleville Dee 0.9 0.9 −1.48 5.83 17.51 16.53

S12001 Scarrawalsh Slaney 0.83 0.84 −0.38 8.46 28.26 24.64

S14007 Derrybrock Stradbally 0.86 0.9 −2.28 3.33 34.19 35.21

S15003 Dinin Bridge Dinin 0.87 0.86 3.06 11.11 40.66 43.06

S18050 Duarrigle Blackwater 0.91 0.88 0.90 1.19 17.46 18.01

S22035 Laune Bridge Laune 0.93 0.95 1.87 −1.70 13.36 11.34

S23002 Listowel Feale 0.91 0.90 8.94 12.88 12.84 14.48

S25001 Annacotty Mulkear 0.91 0.87 13.52 15.17 16.18 14.16

S26029 Dowra Shannon 0.85 0.66 2.46 1.49 13.59 18.82

S33001 Glenamoy Glenamoy 0.84 0.84 12.37 22.48 12.33 17.65
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3.2. Projected Changes in Precipitation, Moisture Deficient, Streamflow, and Baseflow

We examine changes in seasonal precipitation, moisture deficits (P-E), discharge and baseflow simulations for 
the 21st century from our ensemble of 12 bias corrected climate models under SSP370. Figure 5 shows relative 
change in monthly precipitation, mean moisture deficit, mean flow, and mean baseflow for each catchment for 
the 2020s, 2050s, and 2080s. Large decreases in summer precipitation and increases in winter and spring are 
evident. Summer decreases show a wide range for each variable, becoming larger as the century progresses. For 
summer precipitation, a mean reduction of ∼6% across catchments is evident for the 2020s, ∼17% by the 2050s, 
and ∼40% by the 2080s. Likewise, moisture deficits are projected to become larger in summer due to higher 
evaporative losses with increasing temperature. The largest decreases are noted for baseflow in summer season, 
with mean reductions across catchments ranging from ∼10% in the 2020s to ∼50% in the 2080s. Overall, there is 
a substantial summer reduction in mean flow and groundwater in the low water period in catchments Stradbally, 
Dinin, and Feale. The summer hydroclimatic changes at Dee, Slaney, and Laune are relatively smaller.

3.3. Changes in Seasonal and Annual Standardized Drought Indices

Figures  6a and  6b show the relative changes in seasonal and annual standardized indices and the frequency 
of seasonal/annual droughts for each catchment for the 2050s and 2080s under SSP370. The boxplots show a 

Figure 3. (a). Performance scores for all 150 parameter sets in reproducing the observed streamflow: (a) logNSE, (b) BF, and (c) QP. Each boxplot represents the 150 
simulations for each catchment. The blue line represents the median of the 150 simulations. (b) The performance of 150 hydrological parameter sets in reproducing the 
observed streamflow: (a) logNSE, (b) BF and (c) QP. Boxplots represents simulations from the best 150 parameter sets. The blue line represents the median of the 150 
simulations, and the red circle represents the observed values.
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wide range of changes in both magnitude and frequency, with a tendency for decreased drought magnitude in 
all seasons except summer in most catchments. In summer, drought magnitude and frequency are increased by 
50% and 20%, respectively, in the 2050s and by a further 10% by the 2080s for meteorological drought (SPI). 
Similarly, hydrological indices (SSI and SBI) show increasing summer drought magnitude and frequency in the 

Figure 4. Correlation (RR), relative bias (Bias) and skill score deviation (SSM) of drought magnitude for each catchment from climate models bias corrected using 
each of the five methods, together with raw climate model projections, relative to observed data in the reference period (1976–2005). Standardized Precipitation Index 
is derived at 3, 6, and 12-month time scales.

Figure 5. Changes (%) in seasonal precipitation (first row), mean moisture deficit (second row), mean flow (third row), and mean baseflow (last row) in the 2020s 
(green shaded and green solid line), the 2050s (blue shaded and blue solid line), and 2080s (orange shaded and orange solid line) for each catchment with respect to the 
reference period (1976–2005) under SSP370. Shaded area and line show the spread and ensemble median from 12 Coupled Model Inter-comparison Project phase 6 
climate models bias corrected using Double Gamma Quantile Mapping.
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2050s and 2080s. However, SPI and SPEI show a lower spread and variability than SSI and SBI in the 2050s and 
2080s, indicating that meteorological drought is less variable and uncertain than hydrological drought. Changes 
in autumn drought are small compared to the summer in most catchments and periods.

Figure 6. (a) Change (%) in seasonal and annual hydrometeorological drought magnitude in the 2050s (left: 2040–2069) and 2080s (right: 2070–2099) for each 
catchment using Standardized Precipitation Index, Standardized Precipitation Evapotranspiration Index, Standardized Streamflow Index, and Standardized Baseflow 
Index under SSP370. Boxplots show the spread of 12 climate models bias corrected using Double Gamma Quantile Mapping. Boxplots show the median and 
interquartile range (IQR) of simulated changes with black dots indicating changes outside the IQR. (b) As per Figure 5 but for changes (%) in seasonal and annual 
drought frequency.
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Annual (December SPI-12), spring (March SPI-3) and summer half year (September SPI-6) droughts show decreas-
ing magnitude and frequency across catchments and indices (Figure 5). Modest differences in drought changes among 
the catchments are evident. In the 2050s, catchments Annacotty, Dowra, and Glenamoy shows relatively smaller 
change in magnitude and frequency during summer and spring. In the 2080s, changes typically become progressively 
greater across catchments. However, for Stradbally and Dee a decrease in drought frequency and magnitude from 
2050s to 2080s is evident. Overall, the mean drought frequency and magnitude changes are much higher in the future 
in most catchments and range from −20% to +50% for SPI and SPEI and −30% to 70% for SSI and SBI.

3.4. Changes in Drought Event Duration and Frequency

Figure 7 shows projected changes in average drought duration and event frequency in each catchment derived 
from indices with 3-month accumulation. Modest changes in event duration and frequency are simulated for 
the 2080s, despite the large reductions in precipitation and increases in magnitude simulated for summer 
above. This is due to the increased mean and variability of precipitation in winter and spring in most catch-
ments. The direction of change in drought duration is uncertain for all indices for the 2020s and 2050s. 
However, by the 2080s drought duration for SPI-3 and SPEI-3 events is projected to increase, by up to 
8 months in some catchments. For SSI-3 the direction of change remains uncertain for all future time periods, 
while for SBI-3 drought duration is projected to increase in catchments with least groundwater storage (low 
BFI, see Table 1).

The direction of change in the frequency of droughts is uncertain for most catchments in the 2020s and 2050s 
(Figure 7). For the 2080s some catchments show a clear signal toward decreased drought event frequency across 
different indices. For SPI-3 events Slaney, Stradbally, Dinin, Annacotty and Dowra show decreases in frequency, 
typically within the −10% range. Decreased frequencies are also returned for SPEI-3 by the 2080s for catchments 
Slaney, Stradbally, Dinin, and Annacotty. For SSI-3 only catchments Dinin and Annacotty show a clear signal 
of decreased drought frequency by the 2080s, while catchments Feale and Annacotty show decreases in the 
frequency of SBI-3 events. Again, this is despite large reductions in summer precipitation and increased drought 
magnitude simulated for summer above.

Figure 7. Changes in the average duration (months) and frequency of drought events in each catchment and future period for Standardized Precipitation Index, 
Standardized Precipitation Evapotranspiration Index, Standardized Streamflow Index, and Standardized Baseflow Index. Boxplots show the spread of 12 climate 
models bias corrected using Double Gamma Quantile Mapping. Boxplots show the median and interquartile range (IQR) of simulated changes with black dots 
indicating changes outside the IQR.

 21698996, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JD

038025 by N
ational U

niversity O
f Ireland M

aynooth, W
iley O

nline L
ibrary on [22/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Atmospheres

MERESA ET AL.

10.1029/2022JD038025

13 of 20

3.5. Lag Time Between Meteorological and Hydrological Droughts

The lag times and respective correlation coefficients for drought occurrence at different accumulation periods 
using SPI, SPEI, SSI, and SBI indices are shown in Figures 8–10 for the reference and future periods. Most catch-
ments show similar lags between meteorological and hydrological drought occurrence at specific accumulation 
periods. As the accumulation timescale increases, the lag times of drought occurrence also increase. On average, 
the lag time for the three-month accumulation period is 3-months, whereas for the 12-month accumulation period 
it increases to almost 5-months. This is mainly related to the catchments' response to seasonal precipitation and 
catchment storage. For Dee and Slaney have unstable correlation across different lag times. This may be due to 
the drainage area and shape of the catchments affecting the lag time.

SSI and SBI have a reasonable correlation ranging from 0.2 to 0.4 across a wide range of lag times at the 
12-month accumulation period, while SPI and SPEI have a good correlation ranging from 0.4 to 0.6, especially 
at a 4-month lag time. This implies that the connection between the surface and groundwater is crucial and plays 
a major role in controlling streamflow and groundwater drought in most catchments. For the 2050s and 2080s 
correlation between meteorological and hydrological drought increase for longer lags, with strongest correlations 
after 4–6 and 5–7 months in the near and far future, respectively (Figures 9 and 10). This indicates that the lag 
times between the meteorological drought and hydrological drought is likely to increase with climate change, 
with the time taken for precipitation anomalies to become apparent in hydrological variables increasing. This 
likely results from increases in precipitation in winter and spring, with associated increased in water storage 
which maintains baseflow contributions during meteorological drought onset. These were tested using the t-test 
statistical method, which confirmed that both meteorological drought and hydrological drought do not have the 
same mean and standard deviation (Table S1 in Supporting Information S1). Almost all the catchment showed 
a consistent result with the propagation probability that the one-to-one relationship between the meteorological 
drought and hydrological is not significant (Table S1 in Supporting Information S1).

3.6. Changes in Drought Propagation Probability

The probability of meteorological drought propagating to hydrological drought conditions (SSI and SBI) was esti-
mated using conditional likelihoods at a given lag time for both 3- and 12-month accumulation periods using the 
ensemble mean (Figure 11). The time lag between the hydrological and meteorological drought was found to average 

Figure 8. Lagged correlation between meteorological (Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index) and hydrological 
drought (Standardized Streamflow Index and Standardized Baseflow Index) indices for 3, 6, and 12-month accumulation periods during the reference period 
(1976–2005).
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3–5 months during the reference period and 5–7 months in the 2080s. The conditional probability of meteorological 
drought propagation from SPI to SBI (0.36) is higher than to SSI (0.3) at a 3-month accumulation timescale in the 
reference period. For future periods (2020s, 2050s, 2080s), the probability of drought propagation increased slightly. 
Largest increases are found for the 2050s in catchment Dee which shows a 7% increase in  the probability of SPI-3 
drought propagating to SSI drought. Changes in probability of <5% are found for other catchments. Similar results 

Figure 10. As per Figure 8 but for the 2080s (2070–2099).

Figure 9. As per Figure 8 but for the 2050s (2040–2069).
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are found for propagation of SPI to SBI drought at 3-month accumulation for the future time periods with catchment 
S06013 showing largest changes. Overall changes in drought propagation for 3-month accumulations are modest.

For the 12-months accumulation period the probability of drought propagation from SPI to SSI ranges from 0.39 
(Dee) to 0.53 (Glenamoy) during the reference period. For SPI to SSI catchments Blackwater and Feale show a 7 
and 6% increase in probability of drought propagation for the 2020s, respectively. For the 2050s catchment Dee 
shows an increase of 11%, increasing to 13% by the 2080s. Other catchments tend to show increases in SPI to SSI 
propagation probability, but typically less that 10% during the 2050s and 2080s. Largest increases are found for 
SPI to SBI propagation probabilities. During the reference period propagation of meteorological to groundwater 
drought is smallest for Dee (0.35) and largest for Stradbally and Dinin (0.40). For the 2020s catchments showing 
more than 10% increase in propagation probability include Dee (14%) and Stradbally (10%). By the 2050s all 
catchments show an increase in probability, greatest for Dee (19%), Stradbally (15%) and Slaney (11%). Increases 
in the probability of drought propagation from SPI to SBI are not as high for the 2080s, indicating the importance 
of increases in winter and spring precipitation in offsetting drought propagation to baseflow.

4. Discussion
This study evaluated changes in drought characteristics and propagation with climate change for 10 Irish catchments. 
Bias corrected output from 12 GCMs comprising the CMIP6 ensemble and forced using SSP370 were used to run the 
SMART hydrological model for future time periods. A baseflow separation routine was used to disaggregate base-
flow as an indicator of groundwater storage. Standardized drought indices (SPI, SPEI, SSI, and SBI) were then used 
to examine changes in seasonal and annual drought, the duration and frequency of drought events and the propagation 
to meteorological to hydrological drought events for future time periods, relative to the reference period (1976–2005).

Figure 11. The probability of meteorological to hydrological drought propagation in each catchment between standardized series at 3 and 12-month accumulation 
periods. Results are provided for the reference and future time periods from the ensemble mean of 12 Coupled Model Inter-comparison Project phase 6 models forced 
with SSP370 and bias corrected using Double Gamma Quantile Mapping.
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Our results indicate substantial changes in monthly/seasonal precipitation that drive changes in droughts. While 
ranges of change are large and span a sign change, summer [JJA] precipitation shows large reductions (ensemble 
mean reduction across catchments of −40% by the 2080s), becoming increasingly large as the century progresses. 
Concurrent increases in evaporative demand result in increases in summer soil moisture deficits (P-PET) of 
greater magnitude than reductions in precipitation alone. In summer, large decreases in discharge and baseflow 
are also simulated, with the latter showing a mean decrease of −50% across catchments by the 2080s. Outside of 
summer, winter [DJF] precipitation shows a tendency for increases, becoming progressively larger as the century 
progresses, while the direction of change in spring [MAM] and autumn [SON] precipitation is uncertain. Similar 
changes are evident for discharge and baseflow. Changes in precipitation and discharge are very much in line 
with previous research in Irish catchments (H. K. Meresa et al., 2022; C. Murphy et al., 2023). Therefore, the key 
season for changes in drought is summer, with changes in precipitation in winter and spring important in setting 
antecedent conditions in relation to catchment wetness and groundwater storage.

For seasonal droughts, while a wide range of change is apparent there is a tendency for decreases in the magnitude 
and frequency of droughts on an annual basis and in all seasons except summer. Summer (August 3-month accu-
mulation) shows large increases in the magnitude and frequency of drought in all components of the hydrological 
system (SPI, SPEI, SSI, SBI) by mid-century. Hänsel et al. (2019) showed similar seasonal drought characteristics, 
with dryness becoming more pronounced for summer and a wetting trend in autumn and winter in central Europe. 
Spinoni et al. (2018) also highlight that drought frequency and magnitude are projected to increase in summer and 
spring over southern Europe, and less intensely in winter and autumn. Notably, summer SSI and SBI show larger 
variability than SPI and SPEI indicating the non-linear translation of meteorological to hydrological drought and the 
additional uncertainty associated with hydrological modeling (H. K. Meresa & Zhang, 2021; Mockler et al., 2016). 
Such increases in the magnitude and frequency of summer droughts would have substantial management implica-
tions for Irish water resources and agriculture where the recent summer drought in 2018 caused widespread water 
shortages, hosepipe bans and challenges for grass growth in a pasture based agricultural system (Falzoi et al., 2019).

While no other studies to date have evaluated changes in future drought in Ireland, studies of observational 
records have revealed trends toward increasing summer drought magnitude. O'Connor, Murphy, Matthews, and 
Wilby (2022) and O’Connor, Meresa, and Murphy (2022) examined trends in summer drought for reconstruc-
tions of SPI and SSI spanning 1900 to present, finding trends toward shorter, more intense meteorological and 
hydrological droughts. Similarly, Vicente-Serrano et al. (2020b) examined long term variability and change in 
meteorological droughts in western Europe using quality assured precipitation series, finding that trends toward 
increased drought magnitude in Ireland were among the largest trends identified in Europe. Both studies also 
found decreasing trends in drought on an annual basis, consistent with projected changes found here.

Despite large increases in summer moisture deficits, analysis of the duration and frequency of drought events 
revealed large uncertainties. This is likely due to changes outside of summer season with wetter winters and 
spring offsetting increases in duration and frequency in summer months. While the direction of change in indi-
vidual drought characteristics is uncertain, the ensemble mean changes by the 2080s signal increased duration 
of meteorological droughts (SPI-3 and SPEI-3) along with increased duration of groundwater drought (SBI-3). 
Largest increases in the latter are found for catchments with low groundwater storage. For catchments with high 
groundwater storage, the ensemble mean indicates decreased drought duration, likely because of increases of 
winter and spring precipitation. These findings highlight the susceptibility to multi-year droughts, whereby a 
dry winter/spring increases the risk of extreme droughts given the large scale summer drying indicated by the 
ensemble mean (Browne et al., 2016; Van der Wiel et al., 2022).

Changes in drought propagation were investigated using ensemble mean projections. The time lag showing maxi-
mum correlation between meteorological and hydrological drought was found to increase by up to 2 months by the 
2080s. This is consistent with increases in precipitation resulting in additional storage in catchments, with the greatest 
increases in lag times evident for catchments with greater storage capacity. Modest changes in the propagation of mete-
orological to hydrological drought events were found for the 3-month accumulation period. For 12-accumulations, 
all catchments show an increase in propagation probability by mid-century, with some catchments showing a >10% 
increase. Notably the probability of drought propagation from SPI to SBI are not as high for the 2080s, indicating the 
importance of increases in winter and spring precipitation in offsetting drought propagation to baseflow. A similar 
finding was reported for UK catchments by Parry et al. (2023) whereby changes in drought were more modest for 
groundwater relative to runoff. They also highlight more modest changes by the end of century relative to mid-century 
using an independent set of climate scenarios and hydrological models. As we do here, Parry et al. (2023) highlight 
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the role of wetter winters toward the end of the century as a key driver of this finding. Increases in the probability of 
drought propagation have been found in other contexts (e.g., Jehanzaib et al., 2020 in South Korea).

There are several limitations to note. We evaluated five bias correction techniques finding DGQM best suited for 
our purposes. However, no bias correction technique is perfect, and performance is different across catchments 
and drought accumulation periods. DGQM performed best for the 3-month accumulation period, while EQM 
performed marginally better for longer accumulation periods (6- and 12-month). Bias correction also tended to 
have the greatest impact on drought magnitude, with DGQM performing best in this regard. Therefore, future work 
should examine the sensitivity of our results to bias correction techniques employed. While uncertainty ranges in 
projected changes are large, they are likely to be underestimated here, particularly for hydrological drought (SSI 
and SBI). We do not include uncertainty due to hydrological model structure which is likely to impact on the 
range of change simulated (Addor et al., 2014; Bastola et al., 2011; H. K. Meresa & Romanowicz, 2017). Future 
work should explore the sensitivity of results to different hydrological model structure, although we note that 
Parry et al. (2023) find overall consensus between four different hydrological model structures in terms of simu-
lation of drought characteristics in the UK. Exploring model structural uncertainty is particularly important in 
assessing the role of baseflow contributions and the influence of increased precipitation in winter/spring seasons 
on drought magnitude, frequency and propagation in summer.

It is also important to note that the changes presented here assume no changes in landuse for future time periods. 
Landuse strategies to mitigate greenhouse gases, implemented on large scales, such as afforestation, are likely to 
influence drought risk. Some studies show that vegetation change, through partitioning of green and blue water, 
can have significant implications for hydrological drought risk (e.g., Mastrotheodoros et al., 2020; Peña-Angulo 
et al., 2022; Vicente-Serrano et al., 2021). Future research could examine scenarios of climate and landuse change 
and their combined impact on droughts at the catchment scale using physically based models capable of integrat-
ing such feedbacks.

5. Conclusions
This study examines changing drought characteristics and propagation under climate change for 10 Irish catch-
ments. Twelve GCMs from the CMIP6 archive forced by SSP370, were bias corrected and used as input to a concep-
tual hydrological model. Standardized drought indices for different accumulation periods were fitted to simulated 
precipitation (SPI), moisture deficits (SPEI), streamflow (SSI) and baseflow (SBI). Drought characteristics, includ-
ing the magnitude, frequency and duration were evaluated seasonally and for individual events for each future time 
period, and the changing probability of propagation from meteorological to hydrological events was assessed. Our 
results indicate substantial drying during summer with associated increases in summer drought magnitude and 
frequency. However, simulations show a wide range of change, especially for SSI and SBI. Only modest changes in 
the magnitude and frequency of drought events were found outside of summer, with increases in winter and spring 
precipitation offsetting summer dryness. Large uncertainties mean that even the direction of change in the duration 
and frequency of drought events is unclear. Finally, we find an increase in the probability of drought propagation 
from meteorological to hydrological events for catchments where groundwater storage is limited. For catchments 
with ample groundwater storage, decreases in drought propagation were evident for the 2080s, again likely driven 
by increases in precipitation outside of summer. As the first analysis to investigate future drought risk in Ireland at 
the catchment scale, using multiple indices, these findings should inform adaptation planning.
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