Software and Systems Modeling (2021) 20:1271-1298
https://doi.org/10.1007/s10270-020-00849-8

REGULAR PAPER O‘)

Check for
updates

A formal approach to finding inconsistencies in a metamodel

Hao Wu'® - Marie Farrell?

Received: 21 December 2018 / Revised: 12 November 2020 / Accepted: 24 November 2020 / Published online: 29 January 2021
© The Author(s) 2021

Abstract

Checking the consistency of a metamodel involves finding a valid metamodel instance that provably meets the set of constraints
that are defined over the metamodel. These constraints are often specified in Object Constraint Language. Often, a metamodel
is inconsistent due to conflicts among the constraints. Existing approaches and tools are typically incapable of pinpointing
the conflicting constraints, and this makes it difficult for users to debug and fix their metamodels. In this paper, we present
a formal approach for locating conflicting constraints in inconsistent metamodels. Our approach has four distinct features:
(1) users can rank individual metamodel features using their own domain-specific knowledge, (2) we transform these ranked
features to a weighted maximum satisfiability modulo theories problem and solve it to compute the set of maximum achievable
features, (3) we pinpoint the conflicting constraints by solving the set cover problem using a novel algorithm, and (4) we have
implemented our approach into a fully automated tool called MaxUSE. Our evaluation results, using our assembled set of

benchmarks, demonstrate the scalability of our work and that it is capable of efficiently finding conflicting constraints.

Keywords Metamodel - Conflicts - SMT

1 Introduction

Metamodelling plays a key role in model-driven engineering
(MDE), it paves the way for many other MDE approaches
including model transformation, language engineering and
business process modelling [8,47,84]. A metamodel captures
the syntax for a set of models and allows users to construct a
system design at a higher level of abstraction. A valid model,
or an instance of a metamodel, is one that conforms to all
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of the constraints imposed by its features. These constraints
vary according to the structural features of the metamodel
such as multiplicities for an association or class invariants
written in Object Constraint Language (OCL). Then the task
for checking the consistency of a metamodel becomes find-
ing a valid instance. This is challenging because an instance
must meet all of the constraints that are defined over that
metamodel. Recent studies have shown that this task can be
tackled using well-engineered constraint solvers [51,76,83].

In practice, many metamodels are not consistent. This is
caused by conflicting constraints that are imposed by dif-
ferent features such as the multiplicities of an association or
class invariants. These conflicts can be a result of user error or
of features being over-constrained in the design. Conflicts are
more likely to occur when a metamodel defines a large num-
ber of constraints interleaving over different features. In this
case, current modelling tools and approaches are unable to
assist users in identifying the constraints that cause inconsis-
tencies. These tools usually terminate and report inconsistent
metamodels, or are unable to generate a valid instance. With-
out automated tool support, it is extremely difficult for users
to pinpoint the conflicts in the constraints. It is often help-
ful for users to know how many metamodel features can be
fulfilled in their current design so that they might use this
information to further refine their metamodels. For exam-
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ple, a user may be interested in maximising the number of
features that can be satisfied in their metamodel and remove
those that cannot be satisfied. In realistic scenarios, users may
employ their domain-specific knowledge to rank individual
features and search for a model that fulfils as many of the
higher ranked features as possible.

In this paper, we present an approach to dealing with meta-
model inconsistency caused by conflicting constraints. Our
approach aims to provide the user with two distinct pieces
of information: (1) the set of achievable metamodel features
and (2) the set of structural constraints or class invariants that
cause conflicts. By identifying the former, users can either
compute a model that contains as many achievable features as
possible or find a model that conforms to the most desirable
features based on their rankings. We distinguish our approach
from the literature on checking consistencies of a metamodel
in that we focus on the information that should be presented
to the user when a metamodel is inconsistent.

To be precise, we require every (non-abstract) class to
be instantiated at least once in the same configuration. If
there exists one (non-abstract) or more classes that cannot be
instantiated, while preserving all of the imposed constraints,
we then consider a metamodel to be inconsistent or to have a
conflict. Throughout the remainder of this paper, we strictly
adhere to this notion of conflict.

We believe that providing the set of achievable features
and conflicting constraints is useful and will help users to
further refine their metamodels by locating and understand-
ing the cause of the constraint conflicts. We compute both
of these pieces of information using an SMT solver. The
use of an SMT solver has several advantages. First, we can
perform fast satisfiability checks on not only pure Boolean
constraints but also complex structures with a number of
numeric constraints. Second, it does not introduce a substan-
tial implementation overhead since an SMT solver is treated
as a black-box engine. Third, with recent advances in SMT
solving, SMT solvers have been proven to be widely adopted
in different software engineering research projects such as
program synthesis/analysis, test case generation and in the
education domain, to name but a few [30,39,40,46,68,73].

This paper extends and builds upon our previous work
where we introduced an algorithm for locating the conflicts
among different constraints [79]. This paper expands this
work by presenting our complete techniques in greater detail,
including refined examples, full formalisations, proofs of the
correctness of our formulas and algorithms, and the imple-
mentation of our MaxUSE tool. We have also performed a
new evaluation of our automated tool, MaxUSE, with the
latest SMT-solving techniques. We present our new findings
and discuss the strengths and limitations of our techniques.

Overall, the contributions and organisation of this paper
are as follows:
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1. We introduce a set of annotations, in Sect. 4, that allows
users to rank individual metamodel features, including
OCL constraints, based on their own domain-specific
knowledge. These annotations categorise metamodel fea-
tures into soft and hard features that are essential to our
algorithm for maximising the number of metamodel fea-
tures based on different ranks.

2. In Sect. 5, we present a set of SMT encodings for differ-
ent metamodel features including classes, associations,
and OCL invariants. With these encodings, we can now
encode individual ranked metamodel features.

3. We present an algorithm for computing the maximised
number of metamodel features by solving ranked OCL
constraints in Sect. 6. This algorithm reduces ranked OCL
constraints to a weighted maximum satisfiability modulo
theories (MaxSMT) problem and solves it using a binary-
search-based technique. Moreover, we provide a proof of
correctness of this algorithm.

4. Based on computed weighted MaxSMT solutions, we
present an algorithm for finding constraint conflicts by
solving the set cover problem in Sect. 7. We show that our
reduction from the set cover problem to SMT is correct.

5. Weintroduce our fully automated prototype tool, MaxUSE,
in Sect. 8 by discussing its architecture and core parts with
a detailed, illustrative example.

6. We propose a benchmark that can be used for evaluating
scalability and performance. We evaluate our MaxUSE
tool (with the latest version of the SMT solver integrated)
against this proposed benchmark in Sect. 9. Further-
more, we discuss our findings and MaxUSE’s capabilities
in terms of usability, scalability and performance in
Sect. 10.

In order to frame our subsequent discussions, we begin by
introducing a motivating example in Sect. 2 and present an
overview of our approach in Sect. 3.

2 A motivating example

In this section, we provide a small example that will be used
throughout this paper to illustrate and motivate our approach
at a high level. In this example, we use a UML class diagram
to depict our metamodel for the purpose of discussing a real
world example. Specifically, we use UML as a notation to
capture the metamodel which describes the grammar for the
structures in question.

This example is illustrated in Fig. 1, and represents a
metamodel that models a real world example of the multiple
relationships among the University, Department, Student,
Child and Module entities. For example, a Child does not
attend a University. However, the Students can attend a Uni-
versity and choose multiple Modules to study. On the other
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Fig.1 An example of a

metqmodgl describing the University Person | Child
relationships among the age : Integer

University, Department, 1

Student, Child and Module

entities. Here, the Person class manage

is abstract, and a University

contains multiple Departments 1

which, in turn, contain many

Students that take many Department 1 1 Student 1 choose * Module

Modules

teach

business code: Integer
fund: Integer

Table 1 The descriptions for the 8 class invariants defined for the meta-
model shown in Fig. 1 with their corresponding enumerative surrogates

Description Reference
Every person’s age is between 0 and 18 invl
The minimum student age is 18 inv2
Year range is between 1 and 6 inv3
Student numbers are unique inv4
Students can only select modules which correspond inv5
to their year
There are both research and non-research students inv6
All students must take modules inv7
Modules are for students between years 1 and 5 inv8

hand, a Department can teach many Students. Besides the
associations among different classes capturing multiple rela-
tionships, this metamodel is also enriched with 8 different
class invariants. Throughout the remainder of this paper, we
refer to these invariants by number in order to keep the text

context Person
inv1: Person.allinstances()->forAll(p|p.age>0 and p.age<18)

context Student

inv2: self.age>18

inv3: self.year>=1 and self.year<=6

inv4: Student.alllnstances()->forAll

(s1,s2:Student|s1<>s2 implies s1.id <> s2.id)

inv5: Student.alllnstances()->forAll(s|s.modules->
forAll(m|s.year=m.year))

inve: Student.alllnstances()->exists(s|s.year=6) and
Student.allinstances()->exists(s|s.year<6)

inv7: Student.alllnstances()->forAll(s|s.modules->notEmpty())

context Module
inv8: self.year>=1 and self.year<=5

(a) The 8 class invariants for the metamodel illustrated in
Figure 1. These class invariants impose constraints on Stu-
dents choosing Modules.

id : Integer
year: Integer

code : Integer
year: Integer

clear and concise. However, we provide Table 1, which con-
tains a brief description of each of these invariants, that can
be used as a reference point for the reader. Each class invari-
ant expresses a constraint over this metamodel. For example,
inv4 in Fig. 2a states that each Student must have a unique
id number. The fifth invariant, inv5, indicates that every
Student can only choose Modules that are in their year. In
this example, we use numbers 1 to 6 to distinguish a Stu-
dent’s year, and Students that are in year 6 are considered as
research Students. Thus, invariant inv6 specifies that there
must exist some research students and non-research students.

Unfortunately, this metamodel is inconsistent because not
every class invariant that is defined here can be achieved.
Thus, we cannot generate valid instances from this meta-
model. In order to fix this inconsistent metamodel, a user
may wish to know two pieces of information. First, the max-
imum number of class invariants that can be achieved in the
current design. This gives the user a clear idea about how
robust their current design is. The second thing that the user
may want to know is the exact class invariant(s) that cause the

context Person

inv1: Person.allinstances()->forAll(p|p.age>0 and p.age<18)

(@StudentRank{Rank=5}

context Student

inv2: self.age>18

inv3: self.year>=1 and self.year<=6

inv4: Student.alllnstances()->forAll

(s1,s2:Student|s1<>s2 implies s1.id <> s2.id)

inv5: Student.allinstances()->forAll(s|s.modules->
forAll(m|s.year=m.year))

inve: Student.alllnstances()->exists(s|s.year=6) and
Student.alllnstances()->exists(s|s.year<6)

inv7: Student.alllnstances()->forAll(s|s.modules->notEmpty())

context Module
inv8: self.year>=1 and self.year<=5

(b) The 8 class invariants are annotated with the ranks
(shaded area) for the metamodel that is illustrated in Fig-
ure 1. The higher the rank of a class invariant, the more
important it is.

Fig.2 An example of two types of OCL constraints (unranked on the left and ranked on the right) that are used in the metamodel shown in Fig. 1.
The conflicts computed from our approach are: (invl, inv2) and (inv5, inv6, inv7 and inv8)
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context Person
inv1: Person.alllnstances()->forAll(p|p.age>0 and p.age<18)

context Student

inv3: self.year>=1 and self.year<=6

inv4: Student.alllnstances()->forAll
(s1.s2:Student|s1<>s2 implies s1.id <> s2.id)
inv5: Student.alllnstances()->forAll(s|s.modules->
forAll(m|s.year=m.year))

inv6: Student.alllnstances()->exists(s|s.year=6) and
Student.allinstances()->exists(s|s.year<6)

inv7: Student.alllnstances()->forAll(s|s.modules->notEmpty())

context Module
inv8: self.year>=1 and self.year<=5

(a) Sample Solution 1: inw2 and inv5 cannot be satisfied.
This is because invl and inv2 conflict, and inv5 conflicts
with inv6, inv7 and invs.

context Person
[inv1: Person.alllnstances()->forAll(p|p.age>0 and p.age<18) ]

context Student

inv2: self.age>18

inv3: self.year>=1 and self.year<=6

inv4: Student.allinstances()->forAll

(s1,s2:Student|s1<>s2 implies s1.id <> s2.id)

inv5: Student.allinstances()->forAll(s|s.modules->
forAll(m|s.year=m.year))

inve: Student.allinstances()->exists(s|s.year=6) and
Student.alllnstances()->exists(s|s.year<6)

(inv7: Student.allinstances()->forAll(s|s.modules->notEmpty()) |

context Module
inv8: self.year>=1 and self.year<=5

(b) Sample Solution 2: nvl and inv7 cannot be satisfied.
This is because invl conflicts with inv2, and inv7 conflicts
with invb, inv6 and inv8.

Fig. 3 Two sample solutions (computed by our MaxUSE tool) of achieving a maximum number of 6 class invariants defined in Fig. 2a. In each

solution, the invariants in the red boxes are those that cannot be achieved

inconsistencies. This helps users to narrow down their search
and investigate the reasons behind the inconsistencies.

Our approach allows us to compute these two pieces of
information. In fact, we are able to achieve a maximum num-
ber of 6 class invariants for this metamodel. Figure 3 shows
two possible ways of achieving 6 class invariants. For exam-
ple, Fig. 3a shows that invariants invl, inv3, inv4, inv6,
inv7 and inv8 can be achievable. There are a total of 8 dif-
ferent ways (solutions) of achieving a maximum number of
6 class invariants as shown in Table 2. This is due to the two
conflicts among the invariants in Fig. 2a. Let us first consider
invl as defined in the Person abstract class and inv2 in the
Student class. For example, when creating a student (student
person only) whose age is greater than 18. Since the Person
class is abstract and a student is an instance of the Person
class, it inherits the invariant inv1 (it applies to both Student
and Child class). However, invl states that for every single
Person whose age is less than 18, while inv2 specifies that
every Student’s age must be greater than 18. Thus, a con-
flict occurs between inv1 and inv2.! This conflict is easy to
spot once the user identify that invl is accidentally defined
under Person class instead of Child class.

The second conflict is not so easy to identify, even for
experienced users. This conflict is caused by the invari-
ants that there must exist some research and non-research
Students (inv6) choosing some modules (inv7) in their cor-
responding year (inv5). But, according to inv8, Modules
are only available for non-research Students (inv8: between
yvear 1 and 5).

1 Based on our notion of conflicts, here we require both Student and
Child to be instantiated in the same configuration.
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Table 2 A total of 8 different solutions (computed by our MaxUSE
tool) of achieving a maximum number of 6 class invariants shown in
Fig. 2a

Solutions invl inv2 inv3 inv4 inv5 inv6 inv7  inv8

(1) VA S A S S
) VA S Y A D S
3) VA S A N S S S
@ VA S A S S A
5) A S A S S O
0) X v v v /X v v
0) X v v v v v X v
8) X v v v v v v X

Here, we use a v to indicate that an invariant is selected and a X to
denote a class invariant that cannot be met

In the real world, all constraints are not treated equally.
In particular, some may be considered to be more important
than others. Thus, we allow users to freely rank individual
invariants using their own domain-specific knowledge. Then,
our approach searches for all possible ways of maximising
these ranks.

Consider the class invariants defined in Fig. 2a, one can
rank them as in the example presented in Fig. 2b. The rank for
each class invariant is highlighted in the shaded region. For
example, inv1 is ranked with an integer value of 4 and inv8
is not ranked at all.?> All other invariants (inv2, inv3, inv4,
inv6 and inv7) defined under the Student class are ranked
with an integer value of 5, except for inv5 which is ranked

2 If an invariant is not ranked then it must be included in the solution.
This will be explained further in Sect. 4.1.
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context Person

inv1: Person.alllnstances()->forAll(p|p.age>0 and p.age<18)

@StudentRank{Rank=5}

contextStudent ___________________________
inv2: self.age>18 i
inv3: self.year>=1 and self.year<=6

linv4: Student.allinstances()->forAll
I(s1,52:Student|s1<>s2 implies s1.id <> s2.id)

iinv5: Student.allinstances()->forAll(s|s.modules->
forAll(m|s.year=m.year))

linve: Student.allinstances()->exists(s|s.year=6) and

inv7: Student.allinstances()->forAll(s|s.modules->notEmpty())

context Module
inv8: self.year>=1 and self.year<=5

(a) Here, inv2, inv3, inv4, and inv6 can be achieved and
each of them contributes to a rank of 5. inv8 is achieved
but with no rank defined while inv5 is also achieved and
contributes a rank of 6. In this case invl and inv7 cannot

be achieved.
Fig. 4 There are two ways of achieving a maximum total rank of 26

out of 35 (computed by our MaxUSE tool). The invariants in the blue
dashed box are these that can be achieved and each of them contributes

context Person

@Rank=4

inv1: Person.allinstances()->forAll(p|p.age>0 and p.age<18)

@StudentRank{Rank=5}

context Student

:Tn'v'2': selfage>18 T
linv3: self.year>=1 and self.year<=6

linv4: Student.allinstances()->forAll
I(s1,s2:Student|s1<>s2 implies s1.id <> s2.id)

iinv5: Student.allinstances()->forAll(s|s.modules->
fforAll(mls.year=m.year)) _____________________]
invB: Student.allinstances()->exists(s|s.year=6) and
Student.allinstances()->exists(s|s.year<6)

3

inv7: Student.allinstances()->forAli(s[s.modules->notEmpty())}

context Module
inv8: self.year>=1 and self.year<=5

(b) Here, inv2, inv3, inv4, and inv7 can be achieved and
each of them contributes a rank of 5. inv8 is achieved but
with no rank defined while inv5 is also achieved and con-
tributes rank of 6. In this case invl and inv6 cannot be

achieved.
to the maximum total rank. The invariant in the green dashed box means

that it can be achieved but with no rank defined. The invariants that are
not in the dashed box are those that cannot be achieved

MaxUSE
1 1
,tlnput !
| |
! !
| Ranked Metamodel / | Automated SMT2 Formulas
! > Formula
! .
i + ! Generation
/ /
! Ranked OCL |
/ Constraints i
! |
i ! Valid Instances

optimal rank
Weight MaxSMT Solver j‘:,

boolean matrix

v

, Constraint Conflicts
The Set Cover Solver

J3A10S 1LINS

I
1
I
I
I
1
I
I
I
I
I
i

Fig. 5 Our approach reduces a metamodel along with ranked OCL
constraints into an SMT problem. This is achieved by our automated
formula generation engine. Core to our approach are two customised

with a value of 6. This means that a University may consider
that a registration procedure for Students choosing Modules
in their corresponding year (inv5) is more important than
other constraints such as choosing some Modules (inv7)
or having some non-research and research Students (inv6).
With these ranked invariants, we now have a total rank of 35
for this metamodel. Since not every invariant can be achieved
due to the two conflicts: (invl, inv2) and (inv5, inv6, inv7,
inv8), itis impossible to achieve a total of rank 35. However,
we can achieve a total of rank of 26 out of 35. In fact, there
are two ways of achieving this rank of 26 as shown in Fig.
4. In particular, Fig. 4a shows one way of achieving a total
rank of 26 by choosing inv2 over invl and inv5 over inv7,
while Fig. 4b shows another way of achieving this rank by
choosing inv2 over invl and inv5 over inv6.

built-in solvers (Weighted MaxSMT and set cover solver) for solving
two challenging problems: computing the maximum number of achiev-
able features and finding minimum conflicts for OCL constraints

3 Our approach

Figure 5 provides an overview of our approach to maximis-
ing the number of achievable features based on their ranks
and locating conflicts among different constraints. For our
approach to be successful, we require that users provide
a well-formed metamodel along with syntactically correct
OCL constraints. First, users use a set of pre-defined annota-
tions to rank their metamodel features and the corresponding
OCL constraints. The formula generation engine then auto-
matically translates the metamodel and OCL constraints into
a set of SMT2 formulas, and checks the satisfiability of these
formulas. In other words, we perform consistency check-
ing on both metamodel structural and OCL constraints here.
If these formulas are satisfiable (SAT), then our approach

@ Springer
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directly reports that the metamodel is consistent and that there
are no conflicts among the defined constraints. Thus, we are
able to generate valid instances conforming to the constraints
defined for the metamodel.

If these formulas are unsatisfiable (UNSAT), then the
metamodel is inconsistent. This means that there exists at
least one conflict among the structural and OCL constraints.
As mentioned in Sect. 1:

a conflict occurs in a metamodel if at least one of the non-
abstract classes cannot be instantiated while preserving all
of the associated OCL constraints.’

In this way, our approach tries to instantiate every non-
abstract class in the same configuration. If there exists at least
one (non-abstract) class that cannot be instantiated, while
preserving all of the imposed constraints, then this meta-
model has a conflict. For example, we try to instantiate every
non-abstract class in Fig. 1. These classes are: University,
Student, Child, Module and Department. However, it is
impossible to instantiate the Student class due to the con-
flict between invl defined in the Person abstract class and
inv2 defined in the Student class.

To compute the set of maximum number of achievable fea-
tures, we first compute a maximum rank that can be achieved
by casting it to the weighted maximum satisfiability problem
(MaxSMT). The key step here is that our approach traverses
every element and constraint in a metamodel and uses a
weighted MaxSMT solver to find an optimal value for the
ranks. This step employs a binary-search-based algorithm
that iteratively asks an SMT solver for an optimal value. The
returned solution here is a set containing all possible ways of
maximising the ranks over a metamodel (namely, weighted
MaxSMT solutions).

In order to pinpoint the exact conflicts among the meta-
model features, our approach treats all features (classes,
assertions and invariants) equally and casts them into the
set cover problem [2,21,32]. This work is inspired by the
work in [55] on computing minimal unsatisfiable subsets of
constraints. Therefore, all features are treated equally here
because the relationship between weighted MaxSMT solu-
tions and constraint conflicts is captured by the set cover
problem [55]. We form a Boolean matrix representing the
set cover problem and then use a customised solver (namely,
the set cover solver) to solve the set cover problem. This
solver uses a novel algorithm that reduces the set cover prob-
lem to an SMT problem and solves it using an efficient SMT
solver. The returned solution here is a set containing those
constraints that cause conflicts.

3 However, users can verify a metamodel in a specific configuration by
issuing a specific query. This is a new feature that we will discuss in
our next article.

@ Springer

AnnotationSpec := (BlockAnnotation | Line Annotation) ? Feature
BlockAnnotation ::= QIDEN{AnnotationTag}

LineAnnotation ::= QAnnotationTag

AnnotationTag ::= Rank = Tag

Tag = automatic | INT

Fig. 6 The syntax of our annotations for ranking different meta-
model features. Here, Feature denotes a single metamodel feature that
includes a class, an association and invariant. Here, ‘IDEN’ denotes an
identifier. ‘Rank’ and ‘automatic’ are two keywords

In the following sections, we describe the details about
our formulations and the algorithms (Sects. 5, 6 and 7) used
for computing these two kinds of information. We begin
by introducing our annotations for ranking individual meta-
model features in Sect. 4.

4 Annotation for ranking

In this section, we present our ranking annotations by first
describing their syntax. Then we discuss ranking criteria and
introduce an automated ranking process.

4.1 Annotation syntax

We provide a simple set of annotations that enable users to
freely rank distinct metamodel features. The syntax of these
annotations is outlined in Fig. 6. In general, a rank can be
applied to each metamodel feature depending on different
purposes. There are two distinct types of annotations: the line
annotation and the block annotation. Each annotation denotes
a specific rank for a metamodel feature. This includes classes,
associations and OCL invariants. The rank for each feature
must be a non-negative integer (i.e. rank € Z A 0 < rank).

A line annotation is used for ranking one single metamodel
feature. For example, in Fig. 2b, inv1 is given a rank of 4.
A block annotation allows a user to rank a set of features
with the same value. For example, the annotation used in
Fig. 2b for the Student class ranks every class invariant with
an integer value of 5. If a user wishes to overwrite a rank in a
block annotation then a line annotation can be inserted. For
example, the rank for inv5, in Fig. 2b, is overwritten with an
integer value of 6.

We consider all ranked metamodel features as soft fea-
tures. A soft feature with a higher rank is more favourable
than a feature with a lower rank during the search. For exam-
ple, inv5 in Fig. 2b is more likely to be chosen over inv7 (see
Fig. 4a). On the other hand, if a feature is not ranked, then
we say that it is a hard feature. This means that it must not be
ignored during the search. For example, inv8 in Fig. 2b must
hold in all situations. Thus, these annotations enable a user
to specify a set of soft and hard features over a metamodel.
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4.2 Ranking criteria

A metamodel feature can be ranked in two ways: (1) users
rank an individual metamodel feature as a soft feature based
on their domain-specific knowledge, or (2) in situations
where users wish the program to automatically handle a
particular feature for them, an automatic ranking criteria is
provided.

When users rank a metamodel, there are 3 different sce-
narios that our approach computes and these are summarised
below.

1. A metamodel is partially ranked. This means that it con-
tains a mixture of soft and hard features such as the one
presented in Fig. 2b. In this case, our approach computes
the maximum rank for all of the soft features defined and
satisfies the hard features.

2. A metamodel is totally ranked. This means that every
single metamodel feature is ranked with some integer
value. Our approach tries to find a maximum total rank
for all achievable metamodel features. If the metamodel
is consistent, then the maximum rank can be achieved and
is equal to the sum of the ranks of all of the metamodel
features.

3. A metamodel is not ranked at all. This means that every
single metamodel feature must be considered during the
search. In this scenario, our approach only performs the
consistency checking for the metamodel, since no fea-
tures can be ignored during the search.

In order to pinpoint the set of exact conflicts, we require that
the user rank every single metamodel feature with the same
value. In other words, every feature is treated equally and no
feature is more important than another.

4.3 Automatic ranking

We now present our automatic ranking that provides a quick
and simple ranking scheme for users who do not have
domain-specific knowledge of the system being modelled
to begin with. This automatic ranking should then be over-
ridden once the user’s domain-specific knowledge increases.
In this way, our automatic ranking provides an initial ranking
that could then be further refined.

By default all metamodel features are initially treated as
hard features. However, users may override the default set-
tings using the ‘automatic’ keyword. All features annotated
with ‘automatic’ are assigned a specific value internally and
automatically calculated using the following set of rules.

— For a non-abstract class, we compute its rank based on
counting the number of attributes and operations (includ-

(@Rank = automatic)
inv5: Student.allinstances()->forAll(s|s.modules->
forAll(m|s.year=m.year))

Fig.7 An example of using the ‘automatic’ ranking keyword to rank
a class invariant

forAll
/ \
Student.
allinstances  S:Student forAll
/ |
s m:Module =
/ \
modules s m

year year

Fig.8 The abstract syntax tree for the invariant in Fig. 7 has a total of
12 nodes

ing those inherited from an abstract class) defined within.
We take this view because a class (non-abstract) that con-
tains more attributes and operations typically describes
more information about a system than a class with fewer
attributes and operations.

— For an association, the rank is calculated by adding up
the rank defined on each association end. Currently, we
require that each association end is owned by a class.

— For a class invariant, we calculate the size of its abstract
syntax tree (AST) by counting the number of nodes. The
larger the size of an invariant’s AST, the more likely
it is that a complex constraint will be imposed on a
metamodel. Though an invariant could be written in
multiple ways, we assume that users write all class invari-
ants in a consistent manner. For example, using self to
constrain attributes and allInstances() for quantifiers
and navigations. Thus, an invariant with a large AST
will have a higher rank than an invariant with a small
AST. For example, the invariant in Fig. 7 is automati-
cally ranked. In Fig. 8, we can see that its AST has 12
nodes in total. Thus, this invariant is ranked with a value
of 12.

In order to compute the precise size of an OCL abstract
syntax tree, we implement an algorithm that iteratively
records the node seen during the traversal. This algorithm
uses a visitor pattern to traverse each OCL expression’s AST
and calculate its size.

@ Springer



1278

H. Wu, M. Farrell

5 Generating SMT formulas from a
metamodel

In this section, we describe how we reduce all of the ranked
metamodel features to a weighted MaxSMT problem. First
we encode different types of metamodel features into SMT
formulas. We then decompose an SMT formula into two
parts. The first part is an SMT encoding of a specific meta-
model feature including classes, attributes, associations and
class invariants. The second part is an SMT formula that rep-
resents the corresponding rank for each metamodel feature
so that this can be successfully solved using an SMT solver.
We begin by introducing the first part of our SMT encoding
in this section. This includes our SMT encoding for classes,
associations and class invariants.

5.1 Classes and attributes

Each class that is defined in a metamodel has its own
attributes and can be instantiated to create a specific object.
In order to capture a set of objects that have the same type, we
must show our corresponding SMT encodings. To encode an
object we use an object function, O;4, and a type function per
class, T¢iqss, to represent an object’s unique id and its type,
respectively. These two functions are defined as follows:

Oig :INT — INT
Totass : INT — BOOL

The intuition here is that we use an integer to represent
the memory address of an object/instance, o. The functions
O;q and T 455 are then designed for dereferencing o and
ascertaining its type, respectively. For example, the follow-
ing axiom checks whether an object p; is of type Person
and that the object p; is not a Person.

Tperson(0ia(p1)) A =Tperson(Oia(p2))

With functions O;4 and T,ss, Wwe now define a function per
attribute, F;,,, of the following form to access an attribute
of an object.

Farr 1 INT — Ty

Here the input argument is a unique object id (captured by
the function O;4) and T, represents the attribute’s type.
The intuition here is that, given an object id, the function
F is able to return its object’s attribute. For example, given
an object p of type Person in Fig. 1, the property which
specifies that the age attribute corresponding to p is equal to
18 is formalised as:

(Fage(oid(p)) = 18) A (TPerson(Oid(p)))
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Thus we have presented our SMT encodings for classes and
attributes. Next, we show how to encode the relationships
among different classes.

5.2 Relationships: inheritance and associations

Each class that is defined in a metamodel may be related to
other classes. These relationships are typically depicted using
inheritance and associations among classes. Hence, in order
to capture such relationships, we show our SMT encodings.

Since we can use the type function, 7., that we have
defined above to determine an object’s type, we can build a
general form for inheritance. Generally, if a class B inher-
its from A (denoted by B < A), then every attribute (with
protected and public modifiers) in A is also in B. In other
words, an instance of B is also an instance of A. Thus, we
use Formula 1 as follows to capture this semantics.

1G]

/\ T5,(0ia (b)) A Ta(Oja(b)) (0
i=1

where B; € G,i € Nand B; < A.Here, G is a generalisation
set* that contains a set of subclasses of A. For each subclass
B; and its instance b, the type of b is B; but also is A. For
a disjoint relation, we simply require that no instances (of
a subclass) can be of any other specific subclasses. This is
done by adding one additional axiom.

To encode an association, we introduce a relational func-
tion, Rel, to relate two objects.

Rel : INT x INT — BOOL

In fact, we only consider binary associations since n-ary
associations can be decomposed into multiple binary associ-
ations. The rule (encoding) here is that if two classes A and
B are associated with each other, then their instances might
also be linked. Since a binary association relates two objects,
we use Formula 2 to add an additional axiom stating that if
an instance a of class A is associated with an instance b of
class B, then b is linked with a.

IS]

/\ Rel;(Oja(a), Oiqa(b)) = Relc;(0ia(b), Oja(a))  (2)
i=1

Here S denotes the set of binary associations and ¢; € S. A
and B are two classes at two association ends. Then a and b
are the instances of A and B respectively. Note that Rel here
does not necessarily encode the direction of a binary associ-
ation. However, this directional information can be reflected

4 Note that we only consider the scenario where G is incomplete and
disjoint.
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R

- I11...ul 12...u2 -

Fig. 9 A general form of a binary association. Here, R denotes the
association name. Then /1...ul and /2...u2 denote the lower and
upper bounds at two association ends

by the information used in a metamodel. For example, users
may define Rel pqrens (a, b) asais aparentof b, or conversely,
as b is a parent of a.

In order to capture the semantics of multiplicities, we
introduce a cardinality function, Card, to express the lower
and upper bound of a class that can be associated with another.
Given a binary association, R, as shown in Fig. 9, we con-
struct Formula 3:

Card(Xa) > Ry N Card(X4) < R.up

A Card(Xp) > Ry N Card(Xp) < R.up ©)
Since cardinality constraints are numerical, we directly use
two integers X 4 and X p to encode two collections of objects
from both ends of an association. X 4 here represents the set
of objects connecting to the instances of class B. Similarly,
X p represents the set of objects connecting to the instances
of class A. Thus, Card is directly applied to a collection
rather than using a quantified formula as was the case in
previous formulas. This is because our cardinality function
returns the number of elements in a collection. In fact, we
could use linear inequalities to reason about cardinality con-
straints and this process can be carried out separately from
the relations used for associations [5,70]. Differently, we also
consider OCL invariants here such as: the size operator over
a collection. However, the encoding presented here does not
reflect the detailed links at object level. For readers who are
interested in the detailed SMT encodings at object level, we
refer to [78,83]. Next, we show how class invariants can be
encoded.

5.3 Class invariants

For class invariants that are written in OCL, we support a
wide range of constructs including navigation, nested quan-
tifiers and operations on generic collection data types such as
include. These encodings are generally in first-order form.

Currently, we do not support string operations.

Since each class invariant specifies a constraint that all
instances of that class must conform to, we introduce a vV
quantifier in our SMT encoding. In general, each class invari-
ant is encoded in the following form:

n
VP :INT, ..., Py INT - )\ Teiass(0ia(Pi)) = Expr  (4)

i=1

The list of objects (Py, ..., P,) are bounded by the V quanti-
fier (allInstances()). The implication simply means that if
an objectis an instance (type) of class, then the corresponding
SMT formula (Expr) is implied.

For example, the invariant (inv3) for the Student class in
Fig. 2a is encoded as follows:

VP :INT - TPerson(Oid(P)) N TStudent(Oid(P)) =
Fyear(Oid(P)) > 1A Fyear(Oid(P)) <6

The conjunction here is used to express that P is also an
instance of both the Person and Student classes. Note that
this was captured by our use of the sel f keyword in inv3.
For operations such as include() and not Empty() over a
collection data types, our encoding is similar to that used
in [24]. We use either a quantified predicate or function to
encode an operation depending on the specific receiver of
that operation. For example, we use an existential quantifier
(3) for the not Empty() operation.

6 Reducing to weighted MaxSMT

Each of our SMT formulas consists of two parts, the first is
an SMT formula for a specific metamodel feature such as
those described in the previous section. The second part of
the formula is central to our approach. Using the formulas
generated for this part, we are able to apply a rank for a
specific metamodel feature when the constraint imposed by
that feature is achievable. In other words, the second part
of our formula enables us to transform the SMT formulas
(described in the previous section) into a weighted MaxSMT
problem that we can solve using an efficient SMT solver. Our
reduction to SMT is a procedure that traverses the set of soft
features defined on a metamodel and automatically generates
a set of SMT formulas.

6.1 Forming weighted MaxSMT

The key idea of reducing ranked metamodel features into a
weighted MaxSMT problem is that we introduce an integer
type auxiliary variable for each SMT formula that encodes a
feature. To be precise, given a total of k € N soft features and
letting F; be an SMT formula that encodes the i ¢4 soft feature
in a metamodel. We use an integer type auxiliary variable,
Aux;, whose range is {0, 1}. We then construct Formula 5.

(;\Fiv(ﬂi))A<<Xk:Auxi)=O> (5)

i=1 part a i=1

part b
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The key insight here is that we associate each F; with an
auxiliary variable so that it is equisatisfiable to the original
F;. This is ensured by part a and part b of Formula 5 since
both parts cannot be satisfied simultaneously. Therefore, we
can check whether a feature encoded by Formula F; is achiev-
able via testing the satisfiability of Formula 5. To show that
Formula 5 is equisatisfiable to F;, we prove Lemma 1.

Lemma 1 Testing the satisfiability of Formula 5 is equivalent
to testing the satisfiability of F;.

Proof (=4): Suppose that Formula 5 is satisfiable, then
the two subformulas at both ends of the conjunction must
hold. Here, part b of Formula 5 constrains the summation
of auxiliary variables to be equal to 0. Hence, it is impossible
for part a of Formula 5 to be satisfied. In order to make
Formula 5 satisfiable, F; must be satisfiable because of the
disjunction in the left subformula.

(<=sar): Suppose that F; is satisfiable, then in order to make
Formula 5 satisfiable, the SMT solver must find an assign-
ment that satisfies the two subformulas at both ends of the
conjunction. The only way to achieve this is to assign zeros to
all of the defined auxiliary variables (part b). This is because
either part a or part b holds, but not both. Therefore, For-
mula 5 is satisfiable because F; is satisfiable and part b is
satisfiable.

(= unsat): Suppose that Formula 5 is unsatisfiable then there
are 3 scenarios: (1) both the left and right subformulas of the
conjunction are unsatisfiable including F;, (2) if the right sub-
formula (part b) of the conjunction is unsatisfiable, then the
left subformula including part a could be satisfiable. This
allows F; to be satisfiable. However, by <, this is impos-
sible. That is, if F; is satisfiable, then there exists a way of
making Formula 5 satisfiable. Thus, F; must be unsatisfiable
and, (3) if the left subformula is unsatisfiable and the right
subformula is satisfiable, then F; must be unsatisfiable due
to the disjunction in the left subformula.

(<=unsar): Suppose that F; is unsatisfiable. Since either
part a or part b can be satisfied but not both, no matter
which case here then Formula 5 must be unsatisfiable. ]

We let V"i be an SMT encoding for a user-specified rank
W; of the ith soft feature. Note that VWi > 0 (no negative
value is allowed). We now generate Formula 6.

k

/\ <<(Aux,- =0)= (V" = Ci))

i=l (©)

A ((Auxi = 1) = (VW" = 0)))

where ¢; > 0.
The implication of this formula is built on Formula 5. If
Formula 5 is satisfiable, then each Aux; = 0 and F; must also
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be satisfiable. This means that the constraint imposed by the
ith soft feature can be achieved. Thus, we assign an integer
constant, c;, to V% to indicate that the corresponding rank is
achieved. Otherwise, there must exist some F;s that are not
satisfiable. In this case, we simply disable the corresponding
rank by setting VWi to 0.

Finally, we form a weighted MaxSMT problem by gener-
ating Formula 7.

k N k o~ )
<<;Auxl) m)A<(§v ) c |,
part ¢ part d (7)
k

wherelfmfkandlfcgzwi.

i=1

We generate this formula only when Formula 5 is not sat-
isfiable. This is because if Formula 5 is satisfiable, then the
metamodel is consistent. Intuitively, we know that some F;s
are not satisfiable, and both part a and part b of Formula
5 cannot be satisfiable at the same time. Now to make For-
mula 5 become satisfiable, we remove part b (Formula 5)
and rewrite it as part ¢ (Formula 7). This forces some of
the auxiliary variables (Aux; in Formula 5) to be evaluated
to 1.

In other words, we fix some number m and if there are
some features that cannot be met, then the associated aux-
iliary variables (Aux;) must be evaluated to 1 in order to
be satisfiable. In this way we can work out m number of
constraints imposed by the metamodel features that cannot
be fulfilled. In the meantime, we also check whether it is
possible to achieve a total rank of ¢ based on the remaining
number of metamodel features (part d of Formula 7). If ¢
is the maximum number that we can find to make Formula
7 satisfiable, then c is a solution to our weighted MaxSMT
problem.

Now, we have formed a weighted MaxSMT problem from
aranked metamodel, the goal here is to find a maximum total
rank from all ranked metamodel features, namely a weighted
MaxSMT solution.

6.2 Solving weighted MaxSMT problem

Each weighted MaxSMT solution is a set that represents a
way of forming a set of achievable metamodel features. We
use Algorithm 1 to find these sets. This algorithm first checks
whether a metamodel is consistent or not (line 4). In order to
achieve this, we add an extra axiom stating that there must
exist some instances for every non-abstract class. This axiom
is shown in Formula 8 and conjoined with the SMT encodings
of different metamodel features (line 1). To be precise, this
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formula states that given n non-abstract classes (n € N), then
every class must be instantiated at least once.’

J\3Pi : INT - Toass(0ia(P)) ®)

i=1

If a metamodel is not consistent (line 4), then the algo-
rithm uses a customised binary search algorithm to locate
an achievable maximum rank from a total rank (Zf: W)
of all soft features (Fy). This binary-search algorithm itera-
tively checks the constant ¢ in part d of Formula 7 with a
new possible optimal value and asks an SMT solver to deter-
mine whether this is the maximum value that can be achieved
(line 6). If it is, then the algorithm finds a way of maximising
the total rank, namely a weighted MaxSMT solution.

It then enumerates all other possible ways of achieving
this value (v, on line 6) by blocking all previous successful
assignments (line 8) until no more weighted MaxSMT solu-
tions can be found. Note that a metamodel could contain soft
features that have the same rank. In other words, each feature
is equally weighted. In this case, the algorithm enumerates
all possible ways of achieving as many features as possible
(maximising the number of achievable features). For exam-
ple, there are 8 ways (Table 2) of achieving a maximum of 6
invariants (in Fig. 2) for the metamodel in Fig. 1.

Algorithm 1: This algorithm uses a customised binary
search method to find the set of all achievable features

for inconsistent metamodels.
Input : A set of SMT formulas ¢ encoding soft (F) and hard

k
features (Fj), and a total rank > W; from k metamodel
i=1

soft features.

Output: A set s containing all sets of achievable metamodel
features.

¢ < ¢ N Formula 8

Solver.add(¢p N Formula 5 N Formula 6)

s <

if SMT Solve(¢) = UNSAT then

// a metamodel is not consistent

Topt < BinarySearch(Formula 7, Fy)

= 7 T VR SR

k
7| while SMT Solve (3 VW">:rD,,,> = SAT do
i=1

Solver.add (BlockingFormula)

s < s U Interpret(Solver.model())
10 end

11 else

12 // a metamodel is consistent

13 s < F;, U Fy,

14 end

15 return s

5 In the case of inheritance: B < A (B is subtype of A). We also require
that the successful instantiation of B and creation of an instance of A
alone that is not of type B.

Theorem 1 Algorithm 1 finds all possible sets of achievable
metamodel features that maximise the total ranks.

Proof Let ¢ be the set of SMT formulas that capture soft and
hard features. To prevent generating empty instances, For-
mula 8 is added to enforce class instantiation. By Lemma 1,
we know that Formula 5 is equisatisfiable to some formulas
¢, that capture soft features. Formula 6 only adds extra con-
straints on the consequent assignments of auxiliary variables.
Hence, the conjunction of three formulas on line 2 maintains
the satisfiability of ¢.

Case 1 When a metamodel is consistent, the set s simply
returns all metamodel features (line 13). The maximum rank
found is Zf;l W;.

Case 2 When a metamodel is inconsistent, a binary search
is employed to explore the search space. The lower bound
and upper bound here are 1 and Zle W; — 1, respectively.
In other words, there exists m € N constraints that cannot
be satisfied. Each step in the binary search is a call to an
SMT solver to test the satisfiability of ¢ with m number of
constraints deactivated. Since the binary search guarantees to
deterministically find the optimal value (r,;), the following
properties must hold for all possible total ranks, r:

- Vr-r=1Ar > rq = ¢ is unsatisfiable.
= Vr-r=1Ar <ry = ¢ is satisfiable.

Thus, the enumeration on the optimal value, r,,,, by rewriting
part d of Formula 7 finds all possible other ways. O

7 Finding metamodel inconsistencies

It has been determined that the set of conflicts among SAT
formulas can be captured by the set cover problem [55].
Inspired by this work, we find constraint conflicts of meta-
model features by further solving the set cover problem using
an SMT solver. A conflict among a set of metamodel features
is essentially a minimal unsat core [55]. This core is a set of
unsatisfiable SMT formulas and all proper subsets of this
core are satisfiable. Although only a few SMT solvers pro-
vide unsat core extraction, such extraction is not guaranteed
to find all minimal unsat cores [27]. In particular, the Z3 SMT
solver only finds one conflict (invl, inv2) for the example
in Fig. 2a.

7.1 Mapping to the set cover problem

Formally, a set cover problem can be defined as follows:
given a finite universe, U = {S1, S», ..., S,}, and a collection
of subsets, 11, I, ..., Iy € U, find a sub-collection (set) of
Iis,i € {1,2, ..., k} such that | J I; = U. The sub-collection
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Table 3 An example that

. MaxSMT solutions invl inv2 inv3 invd invS inv6 inv7 inv8

illustrates how the set cover

problem captures the conﬂlct§ Sy = {inv2, inv5) 0 1 0 0 1 0 0 0

for the metamodel presented in . .

Fig. 1 including 8 class 2 = {inv2, inv6} 0 1 0 0 0 1 0 0

invariants in Fig. 2a S3 = {inv2, inv7} 0 1 0 0 0 0 1 0
S4 = {inv2, inv8} 0 1 0 0 0 0 0 1
Ss = {invl, inv5} 1 0 0 0 1 0 0 0
Se¢ = {invl, inv6} 1 0 0 0 0 1 0 0
S7 = {invl, inv7} 1 0 0 0 0 0 1 0
Sg = {invl, inv8} 1 0 0 0 0 0 0 1

For example, a conflict between invl and inv2 in Fig. 2a can be identified here, since invl covers
{Ss, Se, S7, Sg} and inv2 covers {Si, S2, S3, S4}

is minimum if it uses the least number of /;s to cover U and
such a collection is called a minimum set.

To illustrate that the conflicts among the set of metamodel
features can be mapped to the set cover problem we use our
motivating example from Fig. 1. This example has 8 class
invariants as shown in Fig. 2a that we then solve to derive
a total of 8 different solutions (S;, S, ..., Sg), as outlined
in Table 3. Each individual solution describes a way of max-
imising the number of class invariants in Fig. 2a, in particular,
each of these are MaxSMT solutions. We then construct a
matrix with each row describing one solution and each col-
umn denoting a class invariant from Fig. 2a. For example,
in Table 3, row S = {inv2, inv5} denotes a way of achiev-
ing 6 of the invariants by deactivating 2 invariants (inv2 and
inv5 in Fig. 2a). In the first row, we use a 1 to denote these
two invariants that can not be achieved, and 0 to denote the
remaining invariants that can be achieved.

There are two conflicts in Table 3. In order to find these
two conflicts, consider this table in two dimensions: row and
column. We define the union of each row (S;) as a set to be
covered using the column inv; as acollection of subsets. Each
column covers only those rows marked with a 1 in that col-
umn. Now, we say that S; is covered if and only if at least one
of the elements is covered. For example, column inv1 covers
row Ss, Sg, S7, and Sg, while column inv3 covers no rows.
A conflict can now be identified by finding a sub-collection
(set) of inv;s such that the union of the inv;s covers all rows
(S to Sg) in Table 3. Such a set is a minimal unsat core. It is
minimal in the sense that the removal of any element from the
setresults in at least one of the rows becoming uncovered. For
example, we can formaset A = {invl, inv2}. Infact, this set
is aminimal unsat core and thus inv1 and inv2 (from Fig. 2a)
conflict with one another. The other conflict can be identified
by forming the second set B = {inv5, inv6, inv7, inv8}.
This is because each element of B uniquely covers two
rows, i.e. invS covers S1 and S5 while inv6 covers S»
and Sg.
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7.2 Solving the set cover problem

In general, finding one solution to the set cover problem is
NP-complete, and finding a minimum set is NP-hard [48].
To tackle this problem, we present a novel technique that
allows us to find all metamodel constraint conflicts via SMT
solving. Our technique first computes a set of achievable
metamodel features (MaxSMT solutions) and populates an
m X n matrix, M, that is similar to the one in Table 3. Then
it automatically generates a set of SMT formulas that cap-
ture the set cover problem and uses an SMT solver to find
metamodel constraint conflicts.

The basis of this technique is to reformulate the set cover
problem into a set of numeric constraints so that we can utilise
SMT solvers’ well-engineered arithmetic reasoning engine
to quickly explore the search space. To form such constraints,
we first define the m x n matrix, M, as follows:

I I I ... I,

si[an an a3 ... ap,

S2| a1 azy az3z ... ap

M = S$3| @31 a3z asz ... as,

SmlLAml Gm2 Am3 - .. Amn

M represents the set cover problem. The union of ;s is a
finite universe to be covered and each I; represents every
subset that can be used. In fact, this matrix is structured as
follows:

— each entry a;; € {0, 1} is an element from a set (S; or
I;), and 1 denotes that a;; € S; Aa;; € I, otherwise the
entry is not in both §; and /;.

— each S; denotes a set of metamodel features that cannot
be achieved.

— each I; denotes a subset of the S;s in the jth column,
depending on whether a;; = 1.
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Let the mappings S; — V5, I — V1% and ajj = Vi
be SMT encodings of §;, I; and each entry a;; of M respec-
tively, where V51, V1 and V¢ are SMT integer variables
whose range is {0, 1}. Next, we generate a set of SMT for-
mulas which captures the set cover problem. The range value
1 denotes that an element or a set is selected (covered) while
0 indicates that it is unselected (not covered).

We first generate Formula 9 which states that S; is selected
(covered) if one of the g;;s in the ith row is selected. Oth-
erwise if all of the a;;s (in the ith row) are not chosen, then
S; cannot be covered. For example, in Table 3, we say that
S1 can be covered by either the entry in the 1st row and 2nd
column (aj7) or the entry in the st row and Sth column (a;5),
as both of them are set to 1 (§1 = {a12, ai5}).

m

i/:\l ((( jn\_/1 Vi = 1) - (VSf - 1)) A

/\(( ]/n\_1 v =0) = (V¥ = 0)))

a,'jES,'

©))

Intuitively, Formula 10 encodes a constraint indicating that
if the subset /; is selected, then all of its elements must be
selected as well. Otherwise no elements in /; can be selected.
This formula guarantees that either /; is chosen or it is not
chosen at all. This rules out the possibility of a partial selec-
tion of /;’s elements. This is because when a subset is not
chosen (used), then none of its elements should be selected.
This condition is enforced by the use of a conjunction to con-
nect all elements in /; to make sure that none of its elements
are selected. For example, if the subset /5 in Table 3 is not
chosen, then its two elements at the 5¢4 column, marked as
1 (a15 and ass) are also not selected (Is = {ais, ass}).

/1\ (((V’.f - 1) - ( /m\ Vi = 1))

j=1 afj:Ele (10)
m
(e (R r-9)
el

Finally, we generate an integer equality as shown in Formula
11 that describes the restriction that every S; must be covered
(part a) by some subsets ;s (part b). To find all possible
combinations of subsets, (I;), that cover S;s, we use Algo-
rithm 2 (presented overleaf) to iteratively ask an SMT solver
to find an answer for part b, starting from 1 subset to n
subsets. If this equality is satisfiable (line 5), we then have a
solution to the set cover problem with k subsets covering all
Sis. Otherwise, there is no solution to the set cover problem
with k subsets. Finally, we interpret those V /i s assigned with

1 as the chosen subsets (line 6) and find the next solution by
blocking all previous solutions (line 7).

((évs">=’")A((gV”)=k> (11)

part a

where 1 < k < n.

Lemma 2 The reduction (Formulas 9, 10 and 11) from the
set cover problem to SMT is correct.

Proof We decompose our proof into three components as
follows:

Proof of the correctness of Formula 9 by contradiction: Sup-
pose that an element a;; € §; from matrix M is selected, but
the corresponding S; is not covered. This is, in fact, impos-
sible because the disjunction in Formula 9 guarantees that
if at least one of the a;; € S; is selected, then S; must be
covered (Vi = 1). Suppose that a;; € S; is not selected
and the corresponding S; is covered. This is also not possible
because the second conjunction in Formula 9 guarantees that
when there are no a; s selected, then §; is not covered either
(VSi = 0). Thus, Formula 9 captures the constraints for the
set (S;s) to be covered in M.

Proof of the correctness of Formula 10 by contradiction: Let
the subset I; be selected and there exists some a;; € I;s
that are not selected. However, the second conjunction in
Formula 10 prevents this from happening. As long as /; is
selected, then every single element (a;; € [;)in I; must also
be selected. Thus, this is not possible. Similarly, let us assume
that V; is not selected but some a;; € V; are selected. Again,
this is not possible since the third conjunction in Formula
11 rules out this scenario. Thus, Formula 10 captures the
constraints for the subsets to be used (/;) in M.

Proof of the correctness of Formula 11: part a in Formula
11 enforces that all S;s must be covered and by Formula 9 we
know that at least one a;; must be selected in the correspond-
ing ith row. Furthermore, part b in Formula 11 enforces that
we must use k subsets of /;s and by Formula 10 we know
that once an /; is selected, then all of its elements are also
selected and this leads to some S;js being covered.
Therefore, by the correctness of Formula 9, 10 and 11, this
is a correct reduction from the set cover problem to SMT. O

We now construct Algorithm 2 which iteratively calls an
SMT solver to return all solutions to the set cover problem.

Theorem 2 Algorithm 2 finds all solutions to the set cover
problem.

Proof By Lemma 2, we know that Formula 9, Formula 10
and Formula 11 correctly capture the set cover problem. Each
iteration (outer loop on lines 4-9) in Algorithm 2 issues a call
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Algorithm 2: This algorithm iteratively calls an SMT
solver and returns all solutions to the set cover problem.
The first set of solutions found by this algorithm must be
the set containing all minimum sets since k starts from 1.
This algorithm works by iteratively using an SMT solver
as an oracle for solutions that uses k subsets.
Input : A matrix M representing metamodel constraint conflicts
as the set cover problem.
Output: A set s containing all solutions to the set cover problem
including all minimum sets.
1k<«1
285 <0
3 Solver.add(Formula 9 A Formula 10 A Formula 11 pars o)
4 while k < ndo

s | while SMT Solve(( S Vi) = k) = SAT do
j=1

s < s U Interpret(V%)
Solver.add(BlockingFormula)
end

k<—k+1

10 end

11 return s

6
7
8
9

toan SMT solver to test the satisfiability of ¢ with k subsets. If
¢ is satisfiable, then there must exist a way that uses k subsets
to cover the set. The algorithm then enumerates (inner loop
on lines 5-8) all other possible ways (using k subsets). Since
the value of k starts from 1 to n, s (line 11) must contain all
solutions (using k subsets) to the set cover problem. O

In this section, we have presented our reduction and proofs
of the correctness of our algorithm for solving the set cover
problem to derive the set of minimum conflicts.

8 Tool implementation: MaxUSE

In this section, we introduce our automated tool called
MaxUSE by describing its architecture and core components.
Further to this, we show how MaxUSE solves an example by
revealing its generated SMT?2 formulas along with relevant
screen-shots of the final output.

8.1 Implementation

We have built a prototype tool called MaxUSE that imple-
ments our approach.

Auvailable at https://github.com/classicwuhao/maxuse

MaxUSE is a fully automated tool that builds on top of the
existing USE modelling tool [37]. We chose USE mainly
because it is a widely used modelling tool that has its own
specification language that we can alter for our requirements.
We modified its grammar and abstract syntax trees so that
it now takes a metamodel that is either fully or partially
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MaxUSE

EUSE :
t [ umL mm ocmm| i
E ModelVisitor InvariantVisitor| .

model features

e .
'Uran :
: | FunctionFactory | E
E * functions E
E | FormulaWriter | :
R :
+ Solver ranked assertions
E | Weighted MaxSMT Wrapperl E
: assertions :
E | Z3 SMT Solver | E
L __________________________________ 1

Fig.10 The architecture of MaxUSE integrates three layers: USE, Uran
and Solver

ranked as input. MaxUSE works by traversing a metamodel
and automatically generates a set of SMT2 formulas [7].
Currently, MaxUSE uses Z3 as its solving engine [27]. It
incrementally solves generated formulas and interprets each
successful assignment as a solution. The implementation of
MaxUSE consists of approximately 10,000 lines of Java
code, with approximately 3000 of these lines dedicated to
our core algorithm.

8.1.1 Overall architecture

MaxUSE is composed of three layers: USE, Uran and Solver
[80]. MaxUSE exploits USE’s front-end (OCL engine) to
read in a UML class diagram that is annotated with OCL
constraints and automatically generates SMT assertions that
can be solved by an SMT solver. The overall architecture of
MaxUSE is illustrated in Fig. 10. We discuss each of these
three layers in detail as follows:

USE is an open-source modeling tool that allows users to con-
struct UML class diagrams in its own specification language
[37]. It also supports constraints that are written in OCL. USE
provides a set of commands that enable users to construct
object diagrams (instances) and to check whether an object
diagram (instance) conforms to its class diagram’s struc-
tural and OCL constraints. To support ranked constraints,
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| *

AbstractFormula FormulaBuilder ‘ AbstractVisitor ‘

Bit-vector ‘ ArrayFormuIa‘ BinaryFormuIa‘ QuantifiedFormula FunctionFactory }—0 SMT2Writer ‘
1
1

AndFormuIa‘ ArithmeticFormuIa‘ OrFormula ‘ Z3SMT2Parser ‘

Fig.11 The core classes of our intermediate layer Uran. Uran uses a factory design pattern (Function Factory) to build different kinds of formulas
and uses a visitor pattern (SMT2Writer) to output standard SMT2 formulas

we amend USE’s front-end by modifying its grammars, UML
and OCL metamodels (abstract syntax trees). We then imple-
ment two visitors that traverse and store each model feature.
In particular, classes, associations and class invariants are
stored into a temporal memory location that can be used by
our intermediate layer, Uran.

Uranis an open-source project that aims to provide users with
an engine for constructing and evaluating standard (ranked
or unranked) SMT2 assertions through well-defined APIs.

Auvailable at: https://github.com/classicwuhao/uran.

Uran provides an intermediate layer between a specification
and a constraint solver so that formula generation function-
alities are decoupled from the modules that are designed for
other purposes. More importantly, Uran outputs all asser-
tions into standard SMT?2 format so that they can be easily
debugged.® This design allows users to freely modify and
upgrade formula generation for specific purposes without
affecting other modules. Currently, Uran communicates with
the Z3 SMT solver.

The core part of Uran is illustrated in Fig. 11 and central to
it are the FunctionFactory and SMT2Writer classes. To
construct a formula or a constraint, users must instantiate the
Abstract Formula class via its children classes. Currently,
Uran supports the creation of a variety of formulas includ-
ing Boolean, integer arithmetic, array, and bit-vector through
the factory design pattern. Uran uses a visitor pattern to tra-
verse the formulas that are created by FunctionFactory
and writes them to an SMT?2 file that is later parsed using the
73 APIs. Once Z3 determines the satisfiability of the formu-
las, Uran maps each successful assignment into a solution
back to the problem domain. It then generates blocking for-
mulas in order to find the next solution until the formulas are
unsatisfiable.

Solver we have implemented Algorithms 1 and 2 into a
wrapper. This wrapper iteratively calls the Z3 SMT solver

6 The output from current Z3 Java APIs includes other information or
may be reduced into one long assertion which is not ideal for debugging
purposes.

and performs constraint solving until no more solutions are
found. Currently, this wrapper only provides APIs to work
with the Z3 SMT solver and standard SAT solvers such
as SAT4J and minisat [10,28]. In the future, we plan to
extend this wrapper for other SMT solvers such as CVC4
and MATHSAT [6,23].

The above, three-layer architecture is modular thus mak-
ing it easily extensible and we illustrate its use via a detailed
example in the next subsection.

8.2 A Detailed Example

In this section, we use a small but detailed example from
[36] to illustrate how the techniques that we have described
in the previous sections are implemented in MaxUSE. Figure
12a illustrates this example that models multiple inheri-
tance relationships with one class invariant. This metamodel
is inconsistent. In fact, it is impossible to instantiate class
D because of the conflict between the diamond shaped
inheritance relationship and the disjoint BC constraint. To
demonstrate our MaxUSE tool, we specify this metamodel
in the USE specification language. Figure 12b contains the
USE specification corresponding to this example. However,
the current version of MaxUSE does not support the syntax
of variable declaration of the form:

contextv:V

Thus, we rewrite the disjoint BC into a semantically
equivalent class invariant in Fig. 12b. We then rank each
class with an integer value of 2 and the invariant with a value
of 8. Hence, the total rank for this metamodel is now 16.
Since there is a conflict between the diamond inheritance
relationship and the class invariant, MaxUSE finds a maxi-
mum rank of 14 achievable constraints. This is accomplished
by deactivating class D.

The detailed SMT encodings for this example are shown
in Fig. 13 and we summarise them as follows
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context b: B inv disjointBC:
C.allinstances()->forAll(c | b<>c)

(a) A metamodel that has multiple inheritance relationships
along with one OCL class invariant.

model DisjointSubclasses

class A en

®Rank = 2
class B < A end

i
N

Rank =
class C < Aend

class D <B, C end
constraints

context B
@Rank =8

inv: B.allinstances()->forAll(b|C.allinstances()->forAll(c|b<>c))

(b) The corresponding ranked USE specification for the
metamodel in Figure 13(a).

Fig.12 A metamodel depicts a diamond inheritance relationship among four different classes. The USE specification for this inheritance relationship

is also shown

1 <Vb S INT - T(O;q(b)

2 (Vc:INT~TC(Oid(c) A Ta(Oslc)) =
3 Ou(b) # Oid(c))) V (Auzy = 1) A
4 (Ip:INT-Ta(Owl(p))) V (Auzs = 1) A
5 (Ip: INT -Tg(0i(p))) V (Auxzs =1) A
6 23]3 :INT - Tc(0Oi4(p))) V EAu:m = 1; A
7 (Elp :INT -Tp(O44 p))) V (Auxs = 1) A
8 (Aux;=1)= (W1 =0)A
9 (Aux; =0)= (W1 =8) A
10 (Auze =1) = (W =0) A
11 (Au:Eg = 0) = (WQ = 2) A
12 (Auzs =1) = (W3 =0) A
13 (Auzs =0) = (W3 =2) A
14 (Auzy =1) = (Wy =0) A
15 (Auzy =0) = (Wy =2) A
16 (Auxs =1) = (W5 =0) A
17 Auxs =0) = (W5 =2) A
5

18 > Auz; =0 A

i=1

5

19 S W =C

i=1

Fig. 13 The detailed SMT encodings for the example shown in Fig.
12. Lines 1-7 show the encodings of the four classes and one class
invariant in Fig. 12a. Lines 8—17 show the encodings of corresponding
ranks. Line 18 encodes the condition for checking consistency and line
19 encodes the condition for maximising defined ranks

Lines 1-3: show the formula that encodes the class invari-
ant (this corresponds to Formula 4 in Sect. 5).
The formula also captures the inheritance struc-
tural constraints referred to by the class invari-
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Status Weight

Total: 14

Fig. 14 This report shows that the solution found by MaxUSE for
ranked USE specification in Fig. 12b

ant. For example, an instance (b) of a class B is
also a type of a class A since B inherits from A.
This is captured by Tg(0;q(b)) A T4(O;q(b)).

Lines 4-7: contain the additional axioms stating that there
must exist at least one object for each of the
four classes (A, B, C and D) (this corresponds
to Formula 8 in Sect. 6.2).

Lines 8-17: Since this metamodel is ranked, an integer type
auxiliary (Aux; - Auxs) variable is introduced
for the formulas that encode each different meta-
model feature. Note that we constrain each
auxiliary variable with either O or 1. Hence,
these formulas have two consequences:

1. If an Aux; is successfully assigned to a O, then a
corresponding rank is applied.
2. Otherwise no ranks should be applied (W; = 0).

Line 18: To check the consistency of this metamodel, we
construct the formula on line 18 to constrain
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| Weighted Solution 1:
Name Type

Status Weight

Type Status Weight

INVAR

Fig. 15 The report shows that the two solutions with one conflict found by MaxUSE for an equally ranked metamodel in Fig. 12a. O F F in two
screen-shots here indicate that a particular feature is deactivated, and O N means a feature is activated

the summation of all auxiliary variables to O.
This forces the SMT solver to try and satisfy
the SMT encodings of each class and invariant.
If the SMT solver could not find an assignment
for the formula on line 18, then this metamodel
is not consistent.

Line 19: If the metamodel is inconsistent, we add this
additional formula and use Algorithm 1 to max-
imise the constant C. This allows us to compute
the set of achievable features based on their indi-
vidual ranks.

Figure 14 contains a screenshot of the report that is generated
by MaxUSE showing a maximum total rank of 14.

In order to pinpoint the conflict, we then rank each fea-
ture in this example equally’ and run MaxUSE again. This
time MaxUSE returns two solutions indicating that there are
two ways of achieving the maximum number of 4 achiev-
able features. Figure 15 presents a screenshot of a MaxUSE
generated report containing these two solutions.

9 Evaluation

In the previous section, we described the internal design of
our tool and how it can be used to find conflicting OCL con-
straints via a detailed example. In this section, we present
systematic evaluation results of MaxUSE and discuss its
advantages and our findings. Furthermore, we contribute a
benchmark that we have used to evaluate our tool and we
believe that it can be used for evaluating the usability, scala-
bility and performance of other OCL-based verification tools.

7 In this case, we rank each class and the invariant with 1.

9.1 Generating a benchmark

In order to extensively evaluate the capabilities of our tool,
MaxUSE, we initially collected a group of metamodels from
[36]. However, each of these metamodels was quite small
and contained very few class invariants. Hence, using these
metamodels was insufficient for us to determine the capabil-
ities of MaxUSE. In fact, the majority of the literature in this
area uses very few examples for evaluation and some of them
only use a single, bespoke example [51,63,69,76]. Therefore,
one of the contributions of this paper is our formation of a
robust benchmark that can be used for evaluating OCL-based
verification tools.

To form a benchmark that is suitable for fully and sys-
tematically evaluating our approach, we use the metamodels
from [36] as candidate metamodels. Based on these candi-
date metamodels, we calculate a configuration in terms of
the number of associations (different multiplicities), quanti-
fiers, logic/arithmetic operators, invariants, quantifiers, and
breadth/depth of inheritance trees. We then follow the work
presented in [81] to develop a generator for USE specifica-
tions based on different sized configurations. This generator
currently employs a tree generation algorithm that generates
a distinct shape of AST based on the given size. We use this
generator to generate an additional four groups (Group B, C,
D and E in Table 4) of metamodels using the configurations
calculated from the candidate metamodels. For each meta-
model listed in each group, we generate two sets of rankings:
one for mixed rankings so that we can evaluate finding opti-
mal values and one for equal rankings so that we can evaluate
finding conflicts. For mixed rankings, we randomly generate
a set of different rankings (including the automatic rankings
as outlined in Sect. 4.3) for each individual feature including
classes, associations and class invariants.

The full benchmark is listed in Table 4 where each
group (B,C,D and E) contains small, medium, large and
extreme numbers of class invariants. The detailed overall
structure of the defined invariants are calculated in terms
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Table 4. The benchmark for Name Metamodel structure Invariant structure
evaluating MaxUSE Classes Assocs Invs Nodes Quantifiers Operators
Group A CS 3 1 6 30 3 9
WR 2 2 7 52 8
DS 4 0 1 7 2 1
SM 5 3 8 73 7 18
Group B B1 13 5 27 150 10 30
B2 24 9 45 266 13 57
B3 33 14 68 430 9 111
B4 46 15 90 599 23 152
B5 57 19 136 925 44 228
Group C Cl 13 5 29 201 24 33
C2 24 11 43 279 28 51
C3 35 17 66 413 42 82
C4 46 15 98 698 69 137
C5 57 15 156 1008 100 184
Group D Dl 13 2 22 174 23 36
D2 26 47 286 29 68
D3 33 3 61 324 23 72
D4 46 101 753 102 163
D5 56 18 166 1143 131 225
Group E El 10 6 31 294 12 86
E2 15 12 39 452 18 135
E3 30 18 37 403 31 102
E4 18 18 105 985 56 246
E5 18 18 167 1134 68 325

The columns of metamodel structure list the overall size of each metamodel. The columns of invariant structure
list the overall size of class invariants of each metamodel

of the AST size (Node in Table 4), number of quantifiers
and logic/arithmetic/collection operators. The benchmark in
Table 4 covers a variety of class invariants and imposes a
great challenge for current techniques in terms of automa-
tion, verification and constraint solving. Hence, we believe
that our generated benchmark can be used not only for
measuring the strengths of existing OCL-based verification
techniques but also their limitations. Currently, our prototype
tool, MaxUSE, fully supports the OCL constraints that are
used in this benchmark, except for the OAI metamodel (in
Group A) due to its recursive structures. Thus, we replace
this OAI metamodel with our running example that was pre-
sented in Sect. 2.

9.2 Performance evaluation

We have evaluated MaxUSE on an Intel(R) Xeon(R) machine
that has eight 3.2GHz cores with 16G of memory. Nev-
ertheless, our current implementation uses only one core.
MaxUSE’s underlying solver is the Z3 SMT solver (version
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4.8.3).3 Though we have performed an evaluation in [79], we
have not covered MaxUSE’s capabilities for solving ranked
constraints and enumerating all possible solutions. In our
new evaluation, we evaluate the performance of MaxUSE in
two different experiments. The first experiment focuses on
measuring MaxUSE’s performance in two scenarios: equally
ranked and mix ranked. In the first scenario, we rank each
metamodel feature equally. In the second scenario, we use
a mixture of rankings including randomly generated ranks
(soft and hard features) and the automatic ranking that was
described in Sect. 4. Our second experiment measures the
effectiveness and efficiency of MaxUSE when it is used to
find conflicts among class invariants in each of the meta-
models in Table 4. We discuss our findings from these two
experiments in what follows.

In order to carry out these experiments, MaxUSE first
determines whether a metamodel is consistent or not.
MaxUSE can generate SMT2 formulas and determine the
consistency of each metamodel in under 7 s. Figure 16a, b
show the average time that MaxUSE spent on generating

8 https://github.com/Z3Prover/z3.
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Fig. 16 Performance evaluation: a formula generation, b consistency checking, ¢ number of calls to find maximum rank, d computing achievable
features for 30-100 invariants, e number of quantifiers affect solving time, and f number of operators affect solving time
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Table 5 The results of the first two experiments

Name Formulas Consis (s) Rank Optimal value (s) All solutions (#/s)
Max Total Eq ranked Mix ranked Eq ranked Mix ranked
Group A CS 19 0.019 15 15 NA NA NA NA
WR 33 0.044 36 40 0.450 4.02 2/0.132 2/12.57
DS 16 0.047 14 16 0.450 0.74 2/0.134 1/0.129
SM 44 0.021 79 91 0.183 0.292 8/0.670 1/0.36
Group B B1 169 0.042 490 498 1.092 2.609 2/1.787 1/3.249
B2 285 0.067 521 556 7.845 14.485 12/19.110 4/18.971
B3 * 420 0.125 792 821 23.412 31.42 6/44.945 6/53.89
B4 539 0.433 620 622 44.040 151.165 2/68.438 1/175.073
BS5 729 0.167 881 894 141.715 834.210 24/267.369 8/5978.879
Group C C1 171 0.171 237 268 1.092 2.609 2/1.787 1/3.249
Cc2 276 0.051 470 478 5.993 12.383 4/10.498 1/13.743
C3 418 0.298 570 581 50.448 61.686 1/57.034 1/68.912
Cc4* 549 0.968 605 630 107.395 211.004 4/176.403 1/250.790
C5 765 0.155 1004 1045 208.489 350.517 11/749.589 91/8246.351
Group D D1 136 0.033 171 189 1.730 2.544 1/2.264 1/3.062
D2 294 0.075 259 329 19.683 18.835 3/32.816 1/23.924
D3 329 0.092 520 596 10.683 22.617 6/21.835 2/28.274
D4 525 0.124 452 651 41.315 79.698 3/85.313 2/2733.066
D5 805 0.183 NA 1291 98.376 TO 91/ 8246.351 TO
Group E El* 162 0.042 69 72 4.538 5.375 1/5.723 1/6.559
E2* 224 0.052 217 233 15.920 48.034 2/25.027 1/55.289
E3 312 0.138 238 243 27.057 14.303 1/35.153 1/23.652
E4 511 0.536 NA 515 TO TO TO TO
E5 698 0.658 NA 415 TO TO TO TO

Here, “Formulas” denotes the number of generated formulas, “Consis” denotes the time spent by MaxUSE on determining whether a metamodel
is consistent or not. “Rank” denotes the achieved maximum rank (“Max”) out of a total rank distributed (‘“Total”). “Optimal Values” measures the
time MaxUSE took in order to find an optimal rank for both equally ranked and mix ranked scenarios. “All Solutions” denotes the time (in s) spent

by MaxUSE on finding all possible solutions. Note, * denotes the metamodels that require several runs of MaxUSE in order to find solutions

SMT formulas and checking consistency. The performance
here shows that MaxUSE is very efficient when check-
ing metamodel’s consistency. In other words, checking the
consistency of a metamodel for MaxUSE is an easy task
[50,51,72]. Compared to the research on consistency check-
ing, MaxUSE takes one step further to finding achievable
features (based on their ranks) and pinpointing conflicts. This
is done by solving two much more challenging problems:
weighted MaxSMT and the set cover problem.

9.2.1 Experiment 1: equally ranked and mix ranked

In this experiment, both scenarios (equally ranked and mix
ranked) require MaxUSE to first find an optimal rank and then
enumerate all other possible solutions. Hence, we measure
the performance of finding such an optimal rank. The results
are presented in the columns labelled “Optimal Value” in
Table 5. In general, finding an optimal rank for the mix ranked
scenario is more challenging than for the equally ranked sce-
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nario. This is because the mix ranked scenario could easily
have a much larger total rank. In most cases, MaxUSE is
able to find an optimal rank within a reasonable amount of
time. However, in some of the extremely challenging cases,
MaxUSE may not be able to find a solution. For example,
MaxUSE could not progress, in one hour for, metamodels
E4 and ES. This is because the underlying solver (Z3) is not
capable of efficiently solving formed linear equalities using
our Algorithm 1. Overall, the problem (weighted MaxSMT)
that we are trying to solve here is extremely challenging for
SMT solvers due to the nature of its computational complex-
ity.

To precisely evaluate MaxUSE’s capabilities for finding
maximum ranks (optimal value) for mix ranked metamodels,
we record the number of calls to the solver that MaxUSE
makes. Figure 16¢ shows these numbers for each metamodel
listed in Table 4. In the best case scenario, MaxUSE is able to
find maximum ranks between one and three SMT calls such
as CS and DS metamodels. However, most of the metamodels
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Table 6 The detailed rankings
for each class in the B1
metamodel from our benchmark
listed in Table 4

Feature Rank

Class 0
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class 10
Class 11
Class 12
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in our benchmark require quite a few SMT calls in order to
find the maximum achievable ranks. As shown in Fig. 16c,
each maximum rank found is very close to the total rank.
This suggests that MaxUSE explores the worst case scenario
for most of the metamodels to hit the optimal value.

Asoutlined above, our first experiment focuses on two sce-
narios: a metamodel that is equally ranked and a metamodel
that is mix ranked. The columns labelled “All Solutions”
show the performance for finding all possible solutions for
both scenarios (Table 5). In general, solving equally ranked
metamodels is slightly faster than mix ranked metamodels.
This is because the ranks distributed to each metamodel fea-
ture are relatively smaller. On the other hand, mixed rank
pose a great challenge to the underlying SMT solver. In
most cases, MaxUSE can enumerate all possible solutions
for mixed rank metamodels within a reasonable amount of
time. For example, Table 6 illustrates our randomly gener-
ated rankings for 13 classes from the B1 metamodel in our
benchmark. Detailed rankings for each of the metamodels in
our banchmark are available in the MaxUSE git repository
as .rank files.

In most cases where metamodels contain a medium to
large (30—100) number of invariants, MaxUSE is able to find
the maximum total rank for both equally and mix ranked sce-
narios within a reasonable amount of time (at most 4 min).
This is shown in Fig. 16d. As can be seen, MaxUSE typ-
ically takes longer to find maximum ranks for mix ranked
metamodels than for equally ranked ones. This further con-
firms our observation that mix ranked features impose greater
challenges to the SMT solver than equally ranked ones. In
extreme cases (over 100 invariants), the longest time taken
by MaxUSE is approximately 2.5 h to get 91 solutions for the
C5 metamodel in Table 5. This is mainly due to the Z3 SMT
solver spending a significant amount of time solving a large

number of formulas that contain deeply nested quantifiers
and inequalities.

Both the number of quantifiers and the number of opera-
tors are proportional to the solving time. This relationship is
shown in Fig. 16e, f. The more quantifiers a constraint con-
tains, the more challenging it is for MaxUSE to solve this
constraint. When a metamodel contains a large number of
invariants with large rankings, MaxUSE typically spends a
significant amount of time on finding optimal values. Simi-
larly, the number of operators (including: logical, arithmetic,
collection operators) could also have an impact on solving
time. In particular, operators over collection data types such
as include/exclude. This is because these operators are trans-
lated into quantifiers over collections.

9.2.2 Experiment 2: finding conflicts

When compared to solving equally ranked or mix ranked
metamodel features, finding conflicting constraints is much
more efficient. In general, MaxUSE finds all constraint
conflicts in a very efficient manner. This is because once
MaxUSE solves the (equally) weighted MaxSMT problem,
it can utilise the MaxSMT solutions to solve the set cover
problem much faster by forming a boolean matrix. In two
cases, MaxUSE could not find solutions. For the ES meta-
model, MaxUSE was stuck with a particular value and could
not progress to the next possible optimal value within 9 h.
We extracted the formulas from MaxUSE’s engine, man-
ually checked them with Z3 and found that Z3 timed-out
when deciding the satisfiability of the formulas for a particu-
lar value. In general, this is an extremely challenging task for
any algorithm to find an optimal value for such a large num-
ber of complicated formulas. This is because the nature of
this particular optimisation problem typically has a massive
search space.

For the conflicts found in these metamodels using the
benchmarks shown in Table 4, we compare them against
actual injected conflicts in order to determine their accu-
racy. The injected conflicts cover a wide range of different
metamodel features including multiplicities on association
ends, different types of attributes and inheritance relation-
ships among multiple classes. We classify our comparison
results as either “accurate” (denoted as a), “near” (denoted
as n) or “miss” (denoted as m) and present them in Table
7. Here, “accurate” means that MaxUSE finds conflicts that
match with exact injected conflicts. In other words, each one
(set) is minimal and the removal of any members can make
the metamodel become consistent. Then “near” means that
MaxUSE is able to identify all of the conflicts that are close
enough to the injected ones. We label these as “near”” because
each reported conflict is a slightly larger set containing those
injected ones as a subset. For example, MaxUSE may list
the a class containing conflicted invariants as a part of the
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Table 7 Our evaluation results on finding all constraint conflicts for each metamodel in Table 4
Group A Group B Group C Group D Group E
Name Conflicts Name Conflicts Name Conflicts Name Conflicts Name Conflicts

A #/s A #ls A #s A #/s A #s
CS NA 0 B1 a 1/0.45 Cl1 a 11/0.68 D1 a 6/0.43 El n 1/0.44
WR a 1/0.91 B2 n 1/0.21 C2 a 2/0.87 D2 n 13/1.06 E2 n 1/0.66
DS a 1/0.06 B3 a 4/1.42 C3 n 2/1.35 D3 n 2/1.05 E3 a 1/0.93
OAI NA NA B4 a 1/1.76 C4 a 2/1.96 D4 n 1/1.40 E4 TO TO
SM a 2/0.13 BS5 a 6/3.83 C5 n 11/3.22 D5 n 114/165.81 E5 TO TO

A here denotes the quality of computed conflicts. We use a, n and m to denote accurate, near and miss, respectively. TO here means timed out

returned conflicts. Thus, users could easily understand this
information and use it at a later stage for debugging or fix-
ing conflicts. Finally, “miss” indicates that MaxUSE returns
at least one “conflict” that is not related to any of those
injected conflicts. We suspect that this is probably caused
by the heuristic algorithms that are used internally by Z3.
Despite this inaccuracy, we believe that the results here show
the potential of our approach to finding constraint conflicts
for inconsistent metamodels.

10 Discussion

In this section, we discuss the advantages of MaxUSE in
terms of its usability, scalability and performance. We also
discuss some other interesting findings that we uncovered
during our evaluation phase.

10.1 Usability, scalability and performance

We discuss the advantages of MaxUSE under three specific
headings as follows.

Usability In general, MaxUSE is easy to use and does not
require manual interactions since it is fully automatic. It
produces HTML-based reports that contain the number of
achievable features (based on the ranks) and the conflicting
constraints without any human interaction. Since MaxUSE
is built on top of the USE modelling tool, users who are
familiar with USE would find the annotations that we have
described in Sect. 4 easy to use. For users who have not
used USE before, we provide detailed descriptions, includ-
ing build instructions, on the MaxUSE website.” Though
the automation here has been achieved, in some cases an
interactive mode is necessary. This is because the underlying
73 SMT solver might not be able to construct a successful
assignment for complex formulas. For example, when Z3
could not solve formulas generated for the £5 metamodel
within a specified time frame, we paused MaxUSE and man-

9 https://github.com/classicwuhao/maxuse.

@ Springer

ually chose a possible optimal value. MaxUSE was then able
to resume the search. However, selecting such a value is tricky
and requires that one has knowledge about the internal work-
ings of the Z3 solver.

Scalability MaxUSE performs well on a large number of class
invariants. From our evaluation results, it can be seen that
MaxUSE is able to handle over 100 different types of class
invariants ranging from nested quantified expressions to a
combination of heavily used arithmetic and logic operators.
In general, the solving time is proportional to the number
of ranked features. The more ranked features found in a
metamodel, the more time MaxUSE needs to find a solu-
tion. Though it is the user’s choice to use different integers
for ranking individual metamodel features, we suggest that
one could gain better performance by normalising the ranks.
Using relatively smaller ranks can ease the computational
burden of an SMT solver.

Performance The reductions to the weighted MaxSMT prob-
lem and the set cover problem pose a great challenge for
MaxUSE. This is because both problems are not easy in
terms of computational complexity. However, the overall per-
formance of computing achievable features and conflicting
constraints mainly depends on the kinds of formulas that are
generated by MaxUSE. For example, expressions with quan-
tifier alternations are typically challenging for the underlying
solver, while propositional formulas are easy to decide. We
found that, overall, MaxUSE is efficient and effective in find-
ing achievable features and conflicting constraints. However,
finding one solution is quite different from enumerating all
possible solutions. In general, computing all solutions such
as conflicting constraints can be significantly more expensive
than finding one solution since there could be an exponen-
tial number of them. In this case, it might be necessary to
let the user decide when to stop MaxUSE during the enu-
meration of all constraint conflicts. This is because some
constraint conflicts are not independent. Therefore, these
dependent conflicts can be used to identify other conflicts
without exhaustive enumeration. In the future, we plan to
address this issue and enhance our algorithms to reduce the
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number of calls to the solver for finding all possible constraint
conflicts.

10.2 Other findings

During our evaluation phase, we encountered a number of
other findings and we discuss these below.

1. The Z3 SMT solver is particularly sensitive to alternative
quantifiers. This means that for an OCL constraint of the
following form, where Q is a predicate or function over
x and y, it is highly likely that the solver will return
unknown.

Vx3yQ(x, y)

The reason for this is that alternative quantifiers in general
impose a great computational challenge for all SAT/SMT
solvers. Though dedicated decision procedures can be
integrated directly into the solver, existing SMT-based
techniques explore large search space [66,67].

2. The first run of MaxUSE does not always return solu-
tions.!® In order to get solutions, multiple runs of
MaxUSE are required. For example, MaxUSE is not able
to find solutions for metamodels B3, C4, E1 and E2 in
the first run. However, the second or third runs typically
return solutions. We surmise that this is mainly due to
the incomplete heuristic algorithms used in SMT solvers
[65]. These algorithms may use random seeds for their
fitting functions to choose values that are approximately
to the best one. In the future, we plan to overcome this
by integrating multiple SMT solvers (in a similar fashion
to Why3 [33]) and allow users to switch among them for
the best performance and accuracy.

3. MaxUSE was able to solve the £4 metamodel from [79]
with version 4.4.0 of Z3. However, with the latest ver-
sion of Z3, MaxUSE cannot solve E4, even for equally
ranked features. In fact, MaxUSE cannot find a more opti-
mised maximum rank than 128, and returns unknown.
We surmise that the reason for this is the new linear inte-
ger arithmetic solver that has been integrated into the Z3
SMT solver since version 4.8.0. This new solver may
have a direct impact on solving linear integer inequali-
ties. Furthermore, we also notice that the latest version of
the solver is slightly more accurate than the old version.
This is reflected in multiple metamodels from our bench-
mark. For example, for metamodels C'1 and C2 MaxUSE
is able to find exact sets of conflicting features compare
to our evaluation in [79].

10 The time taken here varies and we only consider successful runs in
our evaluation.

11 Limitations
In this section, we discuss MaxUSE’s limitations.
11.1 Ranking

The automatic ranking calculation that we describe in
Sect. 4.3 provides a simple way of calculating rankings for
classes, associations and invariants. However, this current
automatic ranking calculation may not precisely capture the
importance of each individual feature. For example, a class
with 2 attributes and 1 operation is weighted less than an
invariant that has 12 AST nodes. During the search, the
invariant with a higher rank is more likely to be chosen (by
the solver) than its class if there is a conflict between the
class and the invariant. This is counter-intuitive and one may
argue that this invariant is not 4 times more important than the
class. Thus, we conclude that our automatic ranking does not
always precisely reflect which features are most important.

Infact, itis designed as a quick and simple ranking scheme
for those who do not have domain-specific knowledge. In
this way, we provide a simple ranking scheme that can be
used as a base for more precise rankings at a later stage. To
avoid an imprecise ranking, we recommend that users use the
automatic ranking first and then refine the model with manual
rankings as the design progresses to appropriately reflect the
relative importance of the features. For example, a user may
not have domain-specific knowledge at the beginning of the
design. They may choose to use the automatic rankings as a
default scheme. When they gain more knowledge about the
system, they can then use manual rankings to override the
previous automatic rankings.

Furthermore, our automatic ranking is designed for the
purpose of evaluating our techniques. Currently, we are
developing new ranking schemes that allow users to build
much more customised rankings. For example, a user can
build a personalised ranking scheme for a particular set of
model features using their domain-specific knowledge. This
includes introducing a different set of ranking schemes for
classes and associations as well as measuring OCL constructs
by taking into account more language features such as nested
quantifiers and collection operations. We intend to address
these issues and solutions as future work.

11.2 OCL

Though our benchmark covers a wide range of OCL con-
structs including: multiple arithmetic/logic operators, navi-
gations, nested quantifiers and operations on collection data
types, MaxUSE does not support the full range of OCL
features such as string data types, closure operators, navi-
gations (using the self keyword) and variable declarations.
For example, the syntax of a variable declaration along with
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the context keyword described in Sect. 8.2. Hence, there is a
gap between the full range of OCL language constructs and
current version of MaxUSE.

Currently, we are extending MaxUSE to support string
data types by directly casting OCL string data types into
SMT string theories. Typically, solving complex string con-
straints is a very challenging task. With the recent advances in
string constraint solving techniques, it is now possible to cast
complex OCL string operations such as concatenation and
substring directly to a string solver [20,43,54]. This would
allow us to utilise the latest SMT solving techniques com-
bined with string decision procedures for solving complex
OCL string-based constraints in a metamodel.

12 Related work

In this section, we review the literature that is related to
our techniques that we present in this paper. Recently, this
area has received quite a bit of attention with most of
the research focused on determining the consistency of a
metamodel/UML class diagram. Of course, finding incon-
sistencies is more challenging than deciding consistencies,
however, it is still necessary to decide the consistencies of a
metamodel in the first place as was mentioned in Sect. 9.
Our work is mainly concerned with the scenario when a
metamodel is not consistent. Therefore, the literature on con-
sistency checking is relevant here. We categorise the set
of relevant literature into five areas based on their under-
lying techniques. These include graph-based approaches,
SAT/SMT (constraint solving), constraint programming,
Alloy (kodkod) and others.

Graph-based approaches A metamodel or UML class dia-
gram can be considered as a graph so graph-based approaches
are naturally employed for reasoning about consistencies
of a metamodel [5,29,41,42,57]. Among them, Ehrig et al.
propose an instance-generating graph grammar for creating
instances of a metamodel. In particular, they use an attributed
type graph to capture metamodel structures, and the con-
cept of layered graph grammars to order rule applications.
However, this approach cannot handle OCL constraints.
Winkelmann et al. present a method for translating a sub-
set of OCL constraints into graph constraints [77]. The OCL
constraints in this approach are restricted to equality, size and
attribute operations. Others in this domain devise-specific
algorithms that determine consistencies of a metamodel. For
example, Balaban and Maraee propose a very specialised
algorithm called FiniteSat for deciding (finite) satisfiabil-
ity of class hierarchy and generalisation constraints that are
defined over UML class diagrams [5]. The FiniteSat algo-
rithm transforms a class diagram with multiplicity constraints
into a linear inequality system. However, this algorithm does
not support any OCL constraints.

@ Springer

SAT/SMT With recent advances in constraint solving [22,53,
60], well-engineered SAT/SMT solvers have become popu-
lar in the verification of metamodels/UML class diagrams.
In fact, a significant number of SAT/SMT-based techniques
and approaches have emerged, ranging from consistency
checking to model synthesis [13,26,71,72,76,78,83]. Biittner
et al. [13] and Clavel et al. [24,26] directly map a meta-
model and its OCL constraints into first-order logic (FOL)
that can be handled by SMT solvers. Biittner et al. use the
73 SMT solver to verify the correctness of the ATL trans-
formation, while Clavel and Dania use Prover 9 and Z3 to
check the satisfiability of OCL constraints. Przigoda et al.
encode OCL operational contracts into bit-vectors and use
an SMT solver to check concurrent behaviour of a model
[59,62]. Each triggered internal system state is represented
as a vector and verified via SMT solving. Similarly, Soeken
et al. encode the OCL data collection data type into a set
of bit-vector-based formulas which can be solved by SMT
solvers [69]. Our previous work also focuses on reason-
ing about metamodel consistencies by generating different
types of instances [78,83]. We used bounded typed attributed
graphs as our intermediate representation and Z3 for solving
constraints over these graphs to generate instances. In this
work, we used an unbounded encoding to encode individ-
ual metamodel features into FOL and introduce ranked OCL
constraints. This allows us to pinpoint conflicting constraints
rather than only checking consistencies.

Constraint programming Calvanese represents UML class
diagrams using description logic [19], and Cadoli et al. use
this idea to implement a technique that can encode a UML
class diagram into linear inequalities that can be solved by
a constraint programming solver [17,18]. In general, con-
straint programming allows users to program a problem into
a Constraint Satisfaction Problem (CSP). For example, Cabot
et al. propose a detailed systematic procedure that auto-
matically translates UML/OCL class diagrams into a CSP
[14,16,38,44]. Their approach can check a variety of cor-
rectness properties including weak and strong satisfiability
by generating a different number of instances for every class.
In [15], they extended this approach to OCL operational
contracts. The pre/postconditions along with class invari-
ants are programmed into a CSP and solved by a constraint
solver. In general, using constraint programming techniques
is similar to SAT/SMT. Both techniques require a transla-
tion to a set of constraints that can be solved by a constraint
solver. However, the main advantage is that CSP provides a
high-level language so that a particular constraint problem is
programmable while SAT/SMT approaches typically require
a relatively low-level encoding (propositional or first-order
logic).

Alloy (kodkod) Alloy as a model finder, is a popular tool that
receives much attention in many areas including the Model
Driven Engineering (MDE) community [45,75]. There has
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been much work on using Alloy to test/verify specifications
of both semi-formal models and formal specifications [35,
58,61]. Since Alloy can be used to generate model instances,
research with Alloy has been highly active [4,34,49-51].
Most of this literature uses Alloy as a back-end reasoning
engine to check consistencies of a metamodel. Among them,
Anastasakis et al. focus on a transformation between UML
class diagrams and Alloy’s relational specification language
[3,4]. In [51], Kuhlmann et al. integrate kodkod (Alloy’s rea-
soning engine) into the USE modeling tool and translate OCL
collection data types into Alloy [50]. The main advantage of
using Alloy is that it possesses a dedicated algorithm for
finding minimal conflicts in the specification [74]. Hence,
users are not required to have knowledge about SAT encod-
ing details. However, Alloy currently does not support ranked
constraints. Thus, Alloy cannot compute the maximum num-
ber of achievable features for a metamodel. Further, Alloy
is not guaranteed to find all minimal conflicts. Therefore,
approaches using Alloy as a basis for a constraint solving
engines are restricted by this functionality [3,34,49,51,56].
Others Other approaches have sought to formalise UML and
OCL using different types of formalisms such as interac-
tive theorem provers [1,5,12,25,26]. Berardi et al. formalise
a UML class diagram using description logic and show that
the complexity of reasoning about a UML class is EXP-Time
hard [9]. In fact, reasoning about a UML class diagram with
OCL constraints is undecideable since it is equivalent to rea-
soning about first-order logic sentences [17]. Though their
approach formalises features such as classes and different
types of associations using description logic, no OCL con-
straints are covered. Queralt and Embley translate both UML
class diagrams with OCL constraints into first-order logic and
use a constructive query containment (CQC) method to check
the integrity and properties for the given diagram and con-
straints [31,64]. Other techniques include formalising OCL
into higher-order logic. For example, Brucker et al. propose
a systematic way of translating OCL into higher-order logic
(HOL), and prove correctness using Isabelle. Kyas et al. for-
malises OCL constraints into PVS [11,52].

Summary In summary, our approach distinguishes from
the literature by addressing and solving two particularly
challenging problems: (1) computing the set of achievable
metamodel features based on their ranks and (2) pinpointing
conflicting constraints. By solving these two problems, our
approach advances current metamodel consistency checking
techniques to another level and we believe that the modelling
community can indeed benefit a lot from the techniques pre-
sented in this paper. Furthermore, our approach highlights
the importance of finding inconsistencies.

13 Conclusions and future work

In this paper, we have presented a formal approach to finding
achievable features and constraint conflicts for inconsis-
tent metamodels. Our approach is unique in the sense that
we allow users to rank individual metamodel features and
find achievable features and constraint conflicts using a
state-of-the-art SMT solver, Z3. The reduction (SMT encod-
ing) described here can be used as an add-on to existing
SMT-based approaches. Thus, this gives us an advantage
of avoiding the tuning of existing SMT encodings. We
have implemented our approach into a fully automatic tool
called MaxUSE. Our evaluation results show that MaxUSE
has promising capabilities for finding both achievable fea-
tures and conflicting constraints for inconsistent metamodels.
These results also show that MaxUSE scales reasonably well
on a large number of metamodel features.

During the work described in this paper, we have iden-
tified two interesting future research directions. Firstly, the
current lack of a proper OCL benchmark makes it difficult
for researchers to compare and analyse the capabilities of
different OCL analysis/verification tools. In particular, the
scalability of each tool. As such, we aim to fill this void
by proposing a systematic approach that can automatically
generate user-customised OCL benchmarks [81]. Secondly,
we plan to extend our approach that we have described in
this paper in two directions: (1) To precisely highlight the
component of an association that cause inconsistencies. For
example, a lower or an upper bound of one association-
end. This involves detailed analysis of formulated linear
inequalities. (2) To cover OCL operational contracts, the
challenge here is that the proposed SMT formulas can quan-
tify unbounded system states triggered by each operation
call. Recent work proposes bit-vector-based formulas over
unrolled system states [62,71]. Currently, we are investi-
gating a new SMT encoding that provides a high level of
expressiveness, flexibility and performance [82].
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