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Abstract
VerifyThis is a series of program verification competitions that emphasize the human aspect: participants tackle the verification
of detailed behavioral properties—something that lies beyond the capabilities of fully automatic verification and requires
instead human expertise to suitably encode programs, specifications, and invariants. This paper describes the 8th edition of
VerifyThis, which took place at ETAPS 2019 in Prague. Thirteen teams entered the competition, which consisted of three
verification challenges and spanned 2 days of work. This report analyzes how the participating teams fared on these challenges,
reflects on what makes a verification challenge more or less suitable for the typical VerifyThis participants, and outlines the
difficulties of comparing the work of teams using wildly different verification approaches in a competition focused on the
human aspect.

Keywords functional correctness · correctness proofs · program verification · verification competition

1 The VerifyThis 2019 verification
competition

VerifyThis is a series of program verification competitions
where participants prove expressive input/output proper-
ties of small programs with complex behavior. This report
describes VerifyThis 2019, which took place on April 6–7,
2019, in Prague, Czech Republic, as a 2-day event of the
European Joint Conferences on Theory and Practice of Soft-
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ware (ETAPS 2019). It was the eighth event in the series,
after the VerifyThis competitions held at FoVeOOS 2011,
FM 2012, the Dagstuhl Seminar 14171 (in 2014), and ETAPS
2015–2018. The organizers of VerifyThis 2019 were also the
authors of this paper—henceforth referred to as “we.”

VerifyThis aims to bring together researchers and practi-
tioners interested in formal verification, providing them with
an opportunity for engaging, hands-on, and fun discussion.
The results of the competition help the research commu-
nity evaluate progress and assess the usability of formal
verification tools in a controlled environment—which still
represents, on a smaller scale, important practical aspects of
the verification process.

Unlike other verification competitions that belong to
the same TOOLympics (Competitions in Formal Methods)
track of ETAPS, VerifyThis emphasizes verification prob-
lems that go beyond what can be proved fully automatically,
and require instead human experts “in the loop.” During a
VerifyThis event, participating teams are given a number
of verification challenges that they have to solve on-site
during the time they have available using their favorite
verification tools. A challenge is typically given as a natural-
language description—possibly complemented with some
pseudo-code or lightweight formalization—of an algorithm
and its specification. Participants have to implement the
algorithm in the input language of their tool of choice, formal-
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ize the specification, and formally prove the correctness of
the implementation against the specification. The challenge
descriptions leave a lot of details open, so that participants
can come up with the formalization that best fits the capabil-
ities of their verification tool of choice. Correctness proofs
usually require participants to supply additional information,
such as invariants or interactive proof commands.

Following a format that consolidated over the years, Ver-
ifyThis 2019 proposed three verification challenges. During
the first day of the competition, participants worked during
three 90-minute slots—one for each challenge. Judging of
the submitted solutions took place during the second day of
the competition, when we assessed the level of correctness,
completeness, and elegance of the submitted solutions. Based
on this assessment, we awarded prizes to the best teams in
different categories (such as overall best team, and best stu-
dent teams) The awards were announced during the ETAPS
lunch on Monday, April 8, 2019.

The online archive of VerifyThis

http://verifythis.ethz.ch

includes the text of all verification challenges, and the solu-
tions submitted by the teams (typically revised and improved
after the competition). Reports about previous editions of
VerifyThis are also available [3,6,13,16,18–20]. The moti-
vation and initial experiences of organizing verification
competitions in the style of VerifyThis are discussed else-
where [17,23]; a recent publication [11] draws lessons from
the history of VerifyThis competitions. Finally, an extended
version of the present article [10] includes more details about
the challenges that we had to omit for space constraints.

1.1 Challenges

A few months before the competition, we sent out a public
“Call for Problems” asking for suggestions of verification
challenges that could be used during the competition. Two
people submitted by the recommended deadline proposals
for three problems; and one more problem proposal arrived
later, close to the competition date.

We combined these proposals with other ideas in order
to design three challenges suitable for the competition. Fol-
lowing our experience, and the suggestions of organizers
of previous VerifyThis events, we looked for problems that
were suitable for a 90-minute slot, and that were not too
biased toward a certain kind of verification language or tool.
A good challenge problem should be presented as a series of
specification and verification steps of increasing difficulty;
even inexperienced participants should be able to approach
the first steps, whereas the last steps are reserved for those
with advanced experience in the problem’s domain, or that
find it particularly congenial to the tools they’re using. Typ-
ically, the first challenge involves an algorithm that operates

on arrays or even simpler data types; the second challenge tar-
gets more complex data structures in the heap (such as trees
or linked lists); and the third challenge involves concurrency.

In the end, we used one suggestion1 collected through
the “Call for Problems” as the basis of the first challenge,
which involves algorithms on arrays (see Sect. 2). Another
problem suggestion2 was the basis of the second challenge,
which targets the construction of binary trees from a sequence
of integers (see Sect. 3). For the third challenge, we took
a variant of the matrix multiplication problem (which was
already used, in a different form, during VerifyThis 2016)
that lends itself to a parallel implementation (see Sect. 4).

1.2 Participants

Table 1 lists the 13 teams that participated in VerifyThis 2019.
Four teams consisted of a single person, whereas the majority
of teams included two persons (the maximum allowed).

As it is often the case during verification competitions,
the majority of participants used a tool they know very well
because they have contributed to its development. However,
four teams identified themselves as non-developers, as they
did not directly contribute to the development of the verifi-
cation tools they used during the competition.

Out of 21 participants, 11 were graduate students. Some
participated with a senior colleague, while some others
worked alone or with other students, making up a total of
three all-student teams.

1.3 Judging

Judging took place on the competition’s second day. Each
team sat for a 20–30-minute interview with us, during which
they went through their solutions, pointing out what they did
and didn’t manage to verify, and which aspects they found
the most challenging.

Following the suggestions of previous organizers [11], we
asked teams to fill in a questionnaire about their submitted
solutions in preparation for the interview. The questionnaire
asked them to explain the most important features of the
implementation, specification, and verification in their solu-
tions, such as whether the implementation diverged from
the pseudo-code given in the challenge description, whether
the specification included properties such as memory safety,
and whether verification relied on any simplifying assump-
tions. The questionnaire also asked participants to reflect
on the process they followed (How much human effort was
involved? How long would it take to complete your solu-
tion?), and on the strengths and weaknesses of the tools they
used. With the bulk of the information needed for judging

1 Sent by Nadia Polikarpova
2 Sent by Gidon Ernst.
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Table 1 Teams participating in VerifyThis 2019, listed in order of registration

Team name Members Tool

1 Mergesort Quentin Garchery Why3 [5,14]

2 VerCors T(w/o)o Marieke Huisman, Sebastiaan Joosten VerCors [1,4]

3 Bashers Mohammad Abdulaziz, Maximilian P L Haslbeck Isabelle [26]

4 Jourdan-Mével Jacques-Henri Jourdan, Glen Mével Coq [2,21]

5 OpenJML David Cok OpenJML [8]

6 YVeTTe Virgile Prevosto, Virgile Robles Frama-C [22]

7 The Refiners Peter Lammich, Simon Wimmer Isabelle [24,26]

8 KIV Stefan Bodenmüller, Gerhard Schellhorn KIV [12]

9 Sophie & Wytse Sophie Lathouwers, Wytse Oortwijn VerCors [4]

10 Coinductive Sorcery Jasper Hugunin Coq [2]

11 Heja mig Christian Lidström Frama-C [22]

12 Eindhoven UoT Jan Friso Groote, Thomas Neele mCRL2 [7,9]

13 Viper Alexander J. Summers Viper [25]

For each team, the table reports its name, its members, and the verification tool they used. A member name is in italic if the member is a student;
and it is underlined if the member is also a developer of the tool or of some extension used in the competition

available in the questionnaire, we could focus the interviews
on the aspects that the participants found the most relevant
while still having basic information about all teams.

At the same time as judging was going on, participants not
being interviewed were giving short presentations of their
solutions to the other teams. This is another time-honored
tradition of VerifyThis, which contributes more value to the
event and makes it an effective forum to exchange ideas
about how to do verification in practice. We briefly consid-
ered the option of merging interviews (with organizers) and
presentation (to other participants), but in the end we decided
that having separate sessions makes judging more effective
and lets participants discuss freely with others without the
pressure of the competition—although the atmosphere was
generally quite relaxed!

Once the interviews were over, we discussed privately to
choose the awardees. We structured our discussion around
the questionnaires’ information, and supplemented it with the
notes taken during the interviews. Nevertheless, we did not
use any fixed quantitative scoring, since VerifyThis’s judging
requires us to compare very different approaches and solu-
tions to the same problems. Even criteria that are objectively
defined in principle may not be directly comparable between
teams; for example, correctness is relative to a specification,
and hence, different ways of formalizing a specification dras-
tically change the hardness of establishing correctness. We
tried to keep an open mind toward solutions that pursued an
approach very different from the one we had in mind when
writing the challenges, provided the final outcome was con-
vincing. Still, inevitably, our background, knowledge, and
expectations somewhat may have biased the judging process.
In the end, we were pleased by all submissions, which showed

a high level of effort, and results that were often impressive—
especially considering the limited available time to prepare
a solution.

We awarded six prizes in four categories:

– Best Overall Team went to Team refiners
– Best Student Teamswent to Team mergesort and Team sw
– MostDistinguished Tool Featurewent to Team bashers—

for a library to model concurrency in Isabelle, which
they developed specifically in preparation for the com-
petition—and to Team vercors—for their usage of ghost
method parameters to model sparse matrices

– Tool Used by Most Teams went to Viper—used directly
or indirectly3 by three different teams—represented by
Alexander J. Summers.

2 Challenge 1: Monotonic segments and
GHC Sort

The first challenge was based on the generic sorting algorithm
used in Haskell’s GHC compiler.4 The algorithm is a form
of patience sorting.5

3 VerCors uses Viper as back-end; hence, Team viper used it directly,
and Team vercors and Team sw used it indirectly.
4 https://hackage.haskell.org/package/base-4.12.0.0/docs/src/Data.
OldList.html#sort.
5 Named after the patience card game https://en.wikipedia.org/wiki/
Patience_sorting.
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Fig. 1 Algorithm to compute the maximal cutpointscut of sequence s

2.1 Challenge description

2.1.1 Part A: Monotonic segments

Given a sequence s

s = s[0] s[1] . . . s[n − 1] n ≥ 0

of elements over a totally sorted domain (for example, the
integers), we call monotonic cutpoints any indexes that cut
s into segments that are monotonic: each segment’s elements
are all increasing or all decreasing.6 Here are some examples
of sequences with monotonic cutpoints:

sequence s monotonic cutpoints monotonic segments

1 2 3 4 5 7 0 6 1 2 3 4 5 7
1 4 7 3 3 5 9 0 3 5 7 1 4 7 | 3 3 | 5 9
6 3 4 2 5 3 7 0 2 4 6 7 6 3 | 4 2 | 5 3 | 7

In this challenge, we focus on maximal monotonic cut-
points, that is such that, if we extend any segment by one
element, the extended segment is not monotonic anymore.

Given a sequence s, for example, stored in an array, max-
imal monotonic cutpoints can be computed by scanning s
once while storing every index that corresponds to a change in
monotonicity (from increasing to decreasing, or vice versa),
as shown by the algorithm in Fig. 1.

To solve Challenge 1.A, we asked participants to carry out
the following tasks.

Implementation task: Implement the algorithm in Fig. 1 to
compute monotonic cutpoints of an input
sequence.

Verification tasks:

6 More precisely, all strictly increasing, or nonincreasing (decreasing
or equal).

1. Verify that the output sequence consists of the input
sequence’s cutpoints.

2. Verify that the cutpoints in the output are a monotonic
sequence.

3. Strengthen the definition of monotonic cutpoints so that
it requires maximal monotonic cutpoints, and prove that
your algorithm implementation computes maximal cut-
points according to the strengthened definition.

2.1.2 Part B: GHC Sort

To sort a sequence s, GHC Sort works as follows:

1. Split s into monotonic segments σ1, σ2, . . . , σm−1

2. Reverse every segment that is decreasing
3. Merge the segments pairwise in a way that preserves the

order
4. If all segments have been merged into one, that is an

ordered copy of s; then terminate. Otherwise, go to step 3

Merging in step 3 works like merging in Merge Sort.
To solve Challenge 1.B, we asked participants to carry out

the following tasks.

Implementation task: Implement GHC Sort in your pro-
gramming language of choice.

Verification tasks:

1. Write functional specifications of all procedures/functio-
ns/main steps of your implementation.

2. Verify that the implementation ofmerge returns a sequence
merged that is sorted.

3. Verify that the overall sorting algorithm returns an output
that is sorted.

4. Verify that the overall sorting algorithm returns an output
that is a permutation of the input.

2.2 Submitted solutions

Team openjml and Team refiners submitted solutions of
challenge 1 that were complete and correct. Another team
got close but missed a few crucial invariants. Five teams
made substantial progress but introduced some simplify-
ing assumptions or skipped verification of maximality. And
another five teams’ progress was more limited, often due to
a mismatch between their tools’ capabilities and what was
required by the challenge.

Teams did not find the definition of monotonicity hard to
work with because it is asymmetric: as far as we could see,
most of them encoded the property as we suggested and made
it work effectively.
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However, a couple of teams were confused by mistakenly
assuming a property of monotonic segments: since the condi-
tion for “decreasing” is the complement of the condition for
“increasing,” they concluded that increasing and decreasing
segments must strictly alternate (after a decreasing segment
comes an increasing one, and vice versa). This is not true in
general, as shown by the example of sequence 6 3 4 2 5 3 7,
which is made of 4 monotonic segments 6 3 | 4 2 | 5 3 | 7,
all of them decreasing.

While we did not give a formal definition of maximality,
the teams that managed to deal with this advanced property
did not have trouble formalizing it. Since “extending” a seg-
ment can be generally done both on its right and on its left
endpoint, teams typically expressed maximality as two sep-
arate properties: to the right and to the left. While it may be
possible to prove that one follows from the other (and the
definition of monotonic cutpoints), explicitly dealing with
both variants was found to be preferable in practice since the
invariants to prove one variant are clearly similar to those to
prove the other.

3 Challenge 2: Cartesian trees

The second challenge involved the notion of Cartesian trees7

of a sequence of integers and, in particular, dwelt on how such
trees can be constructed in linear time from the sequence of
all nearest smaller values8 of the input sequence.

3.1 Challenge description

3.1.1 Part A: All nearest smaller values

For each index in a sequence of values, we define the nearest
smaller value to the left, or left neighbor, as the last index
among the previous indexes that contains a smaller value.
There are indexes that do not have a left neighbor; for exam-
ple, the first value, or the smallest value in a sequence.

We consider here an algorithm that constructs the sequence
of left neighbors of all values of a sequence s. This algorithm
is given in pseudo-code in Fig. 2.

As an example, consider sequence s = 4 7 8 1 2 3 9 5 6.
The sequence of the left neighbors of s (using indexes that
start from 1) is: left = 0 1 2 0 4 5 6 6 8. The left neighbor
of the first value of s is 0 (denoting no valid index), since the
first value in a list has no values at its left. The fourth value
of s (value 1) is also 0, since 1 is the smallest value of the
list.

To solve Challenge 2.A, we asked participants to carry out
the following tasks:

7 https://en.wikipedia.org/wiki/Cartesian_tree.
8 https://en.wikipedia.org/wiki/All_nearest_smaller_values.

Fig. 2 Algorithm to compute the sequence left of all left nearest
smaller values of input sequence s. The algorithm assumes that indexes
start from 1, and hence, it uses 0 to denote that an index has no left
neighbor

Implementation task. Implement the algorithm to compute
the sequence of left neighbors from an
input sequence.

Verification tasks.

1. Index: verify that, for each index i in the input sequence
s, the left neighbor of i in s is smaller than i , that is
left[i] < i .

2. Value: verify that, for each index i in the input sequence
s, if i has a left neighbor in s, then the value stored in s
at the index of the left neighbor is smaller than the value
stored at index i , namely, if left[i] is a valid index of s
then s[left[i]] < s[i].

3. Smallest: verify that, for each index i in the input sequence
s, there are no values smaller than s[i] betweenleft[i]+
1 and i (included).

3.1.2 Part B: Construction of a Cartesian tree

Given a sequence s of distinct numbers, its unique Cartesian
tree CT (s) is the tree such that:

1. CT (s) contains exactly one node per value of s.
2. When traversing CT (s) in-order—that is, using a sym-

metric traversal: first visit the left subtree, then the node
itself, and finally the right subtree—elements are encoun-
tered in the same order as s.

3. Tree CT (s) has the heap property—that is, each node in
the tree contains a value (not an index) bigger than its
parent’s.
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4 7 8 1 2 3 9 5 6
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Fig. 3 Cartesian tree of sequence 4 7 8 1 2 3 9 5 6

The Cartesian tree of sequence s = 4 7 8 1 2 3 9 5 6 is given
in Fig. 3.

To construct a Cartesian tree in linear time, we first con-
struct the sequence of left neighbors for the value of s using
the algorithm in Fig. 2. Then, we construct the sequence of
right neighbors using the same algorithm, but starting from
the end of the list. Thus, for every index x in sequence s, the
parent of x in CT (s) is either:

– The left neighbor of x if x has no right neighbor.
– The right neighbor of x if x has no left neighbor.
– If x has both a left neighbor and a right neighbor, then

x’s parent is the larger one.
– If x has no neighbors, then x is the root node.

To solve Challenge 2.B, we asked participants to carry out
the following tasks:

Implementation task. Implement the algorithm for the con-
struction of the Cartesian tree.

Verification tasks.

1. Binary: verify that the algorithm returns a well-formed
binary tree, with one node per value (or per index) in the
input sequence.

2. Heap: verify that the resulting tree has the heap property,
that is, each non-root node contains a value larger than its
parent.

3. Traversal: verify that an in-order traversal of the tree tra-
verses values in the same order as in the input sequence.

3.2 Submitted solutions

Two teams submitted solutions to challenge 2 that were both
correct and complete: Team openjml worked on part A of
the challenge, and Team vercors on part B. The latter team
even managed to verify a partial specification of part B’s
task traversal—which was marked “optional.” Another four
teams completed the first two verification tasks of part A,
one of them coming close to finishing the proof of the third,
with only a small part of the necessary invariant missing.
Another team completed all three verification tasks of part
A but with simplifying assumptions (on the finite range of
inputs). Another two teams completed part A’s verification
task 1 only. The remaining four teams didn’t go further than
implementing the algorithm of the same part and writing
partial specifications of the properties that were to be verified.

We presented challenge 2 under the assumption that its
part A was somewhat easier and more widely feasible than
part B. The fact that most teams worked on part A may seem
to confirm our assumption about its relatively lower diffi-
culty.9 At the same time, one out of only two teams who
submitted a complete and correct solution to challenge 2
tackled part B. This may just be survival bias but another
plausible explanation is that the difficulties of the two parts
are not so different (even though part B looks more involved).

Indeed, part A revealed some difficulties that were not
obvious when we designed it. First, the algorithm in Fig. 2
follows an imperative style, and hence, it is not obvious how
to encode it using functional style; various teams introduced
subtle mistakes while trying to do so. Part B is easier in this
respect, as the Cartesian tree construction algorithm consists
of a simple iteration over the input, which manipulates data
that can all be encoded indifferently using sequences, arrays,
or lists. Part A, in contrast, requires a stack data structure with
its operations. In the end, what really makes part B harder
than part A is probably its third, optional, verification task
traversal. Specifying it is not overly complicated, but proving
it requires a complex “big” invariant, which was understand-
ably not easy to devise in the limited time available during
the competition.

9 After the competition, Team vercors explained that they missed our
hint that part A was simpler, and chose part B only because it looked like
a different kind of challenge (as opposed to part A, which they felt was
similar in kind to challenge 1’s part A). In the heat of the competition,
participants may miss details of the challenges that may have helped
them; this is another factor that should be considered when designing a
challenge.
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Fig. 4 Algorithm to multiply an input vector x with a sparse matrix m
and store the result in the output vector y. Input matrix m is represented
in the COO format as a list of triplets

4 Challenge 3: Sparse matrix multiplication

The third challenge targeted the parallelization of a basic
algorithm to multiply sparse matrices (where most values
are zero).

4.1 Challenge description

We represent sparsematrices using the coordinate list (COO)
format. In this format, nonzero values of a matrix are stored in
a sequence of triplets, each containing row, column, and cor-
responding value. The sequence is sorted, first by row index
and then by column index, for faster lookup. For example,
the matrix:

⎛
⎜⎜⎝

0 0 1 0
5 8 0 0
0 0 0 0
0 3 0 0

⎞
⎟⎟⎠

is encoded into the following sequence (using row and col-
umn indexes that start from 1):

(1, 3, 1) (2, 1, 5) (2, 2, 8) (4, 2, 3)

In this challenge, we consider an algorithm that com-
putes the multiplication of a vector of values (encoded as
a sequence) with a sparse matrix. It iterates over the val-
ues present inside the matrix, multiplies each of them by the
appropriate element in the input vector, and stores the result
at the appropriate index in the output vector. Figure 4 presents
the algorithm in pseudo-code.

To solve challenge 3, we asked participants to carry out
the following tasks:

Implementation tasks.

1. Implement the algorithm to multiply a vector x with
a sparse matrix m.

2. We want to execute this algorithm in parallel, so
that each computation is done by a different process,
thread, or task. Add the necessary synchronization
steps in your sequential program, using the synchro-
nisation feature of your choice (lock, atomic block,
…). You can choose how to allocate work to pro-
cesses. For example:

– each process computes exactly one iteration of
the for loop;

– there is a fixed number of processes, each taking
an equal share of the total number of for loop
iterations;

– work is assigned to processes dynamically (for
example using a work stealing algorithm).

Verification tasks.

1. Verify that the sequential multiplication algorithm
indeed performs standard matrix multiplication (that
is, it computes the output vector y with values yi =∑

k xk × mk,i ).
2. Verify that the concurrent algorithm does not exhibit

concurrency issues (data races, deadlocks, …).
3. Verify that the concurrent algorithm still performs

the same computation as the sequential algorithm. If
time permits, you can also experiment with differ-
ent work allocation policies and verify that they all
behave correctly.

4.2 Submitted solutions

No teams solved challenge 3 completely. Six teams, out of
the 12 teams10 that took part in VerifyThis’s third and final
session, attempted the verification of the sequential algorithm
only—usually because their tools had little or no support for
concurrency; out of these six teams, one completed verifi-
cation task 1. Another six teams introduced concurrency in
their implementation and tried to verify the absence of con-
currency issues (verification task 2). Some of these teams
used tools with built-in support for the verification of con-
current algorithms, while others added concurrency to their
mostly sequential tools via custom libraries. Three teams out
of the six that tackled task 2 completed the verification task
in time during the competition; all of them happened to use a
tool with built-in support for concurrency. Finally, five teams
attempted verification task 3 (proving that the sequential and
concurrent algorithms compute the same output). Two of
them achieved substantial progress on the proofs of task 3:
Team eindhoven used a model checker with native support
for concurrency; Team refiners used Isabelle—a tool with-
out built-in support for concurrency—and hence modeled
the concurrent implementation as a sequential algorithm that
goes over the sparse matrix’s elements in nondeterministic
order.

Regardless of whether their verification tools supported
concurrency, all teams had plenty of work to do in chal-
lenge 3. We wanted a challenge that was approachable by
everybody, and it seems that challenge 3 achieved this goal.

10 That is, one team skipped the last session.
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On the other hand, the challenge turned out to be more
time-consuming than we anticipated. The sequential and the
concurrent part alonewere enough to fill all 90 minutes of the
competition session, and no team could complete the whole
challenge.11 When we designed the challenge, we did not
realize how time-consuming it would be.

The multiplication algorithm is conceptually simple, but
verifying it requires to fill in a lot of details, such as associa-
tivity and commutativity properties of arithmetic operations,
that are not central to the algorithm’s behavior but are nec-
essary to complete the proofs. In most cases, it was these
details that prevented participants from completing the chal-
lenge. Another feature that is often missing from verification
tools but was required for challenge 3 is the ability of express-
ing sums over sets and sequences; while this can always be
specified and verified, doing so takes time and distracts from
the main goal of the challenge.

In all, verification challenges involving concurrency are
not only harder to verify but also to design! There are so
many widely different concurrency models and verification
frameworks that calibrating a challenge so that it suits most of
them is itself a challenge. A possible suggestion to come up
with concurrency challenges in the future is to write problems
with different parts that are suitable for different verification
approaches. This strategy worked to ensure that tools without
support for concurrency still had work to do in this challenge,
and it may be generalizable to encompass different styles of
concurrent programming and reasoning.

5 Discussion

We organize the discussion around three themes. Section 5.1
outlines how teams revised their solutions for publication in
the months after the competition. Section 5.2 analyzes the
features of the verification challenges offered over the years,
and how they affect the teams’ success rate. Section 5.3 men-
tions some lessons we learned during this year’s VerifyThis,
which we would like to pass on to future organizers.

5.1 Revised solutions

A couple of weeks after VerifyThis was over, we contacted
all participants again, asking them permission to publish
their solutions online. Teams who consented had the choice
of either publishing the solutions they submitted during
the competition or supplying revised solutions—which they
could prepare with substantially more time and the benefit
of hindsight. Nine teams submitted revised solutions—from

11 Using a model checker, Team eindhoven covered all verification
tasks but relied on simplifying assumptions on input size and number
of processes.

light revisions to significant extensions. Among the former,
Team jm and Team openjml cleaned up their code, added
comments, and improved a few aspects of the implementation
or specification to make them more readable. Team yvette
thoroughly revised their solutions and filled in missing parts
of specification and proofs, so as to complete parts A of
challenges 1 and 2, and the sequential part of challenge 3.
Team kiv and Team viper went further, as they also com-
pleted the concurrent part of challenge 3. So did Team ver-
cors, Team sw,12 and Team refiners who also provided partial
solutions for part B of challenge 2. Team mergesort submit-
ted extensively revised solutions, including the only complete
solution to challenge 2’s part B—relying on a Coq proof of
task traversal13—and the sequential part of challenge 3.

The process of revising and extending solutions after the
competition is very different from that of developing them
from scratch during it. With virtually unlimited time at their
disposal, and the freedom to explore different approaches
even if they may not pan out in the end, every team could
in principle come up with a complete and correct solution.
At the same time, comparing the post-competition work
of different teams is not very meaningful since some may
simply not have additional time to devote to improving
solutions—after all, we made it clear that revising solutions
was something entirely optional that they did not commit to
when they signed up for the competition.

5.2 Whatmakes a challenge difficult?

We used various criteria to classify the 21 challenges
used at VerifyThis to date—three in each edition exclud-
ing VerifyThis 2014, which was run a bit differently among
participants to a Dagstuhl Seminar. We classified each chal-
lenge according to which VerifyThis competition it belongs
to, whether it appeared first, second, or third in order of
competition, how much time was given to solve it, whether
it targets a sequential or concurrent algorithm, what kind of
input data it processes (array, tree, linked list, and so on),
whether the main algorithm’s output involves the same kind
of data structure as the input, whether the challenge’s main
algorithm is iterative or recursive (or if the algorithm is only
outlined), and whether the input data structure is mutable
or immutable. For each challenge, we also record what per-
centage of participating teams managed to submit a partial or
complete correct solution. Table 2 shows the results of this
classification.

12 Team vercors and Team sw worked together to prepare one revised
solution that merged both teams’ independent work during the compe-
tition.
13 The proof obligation was generated automatically by Why3, but the
Coq proof steps were supplied manually.
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Table 2 For each challenge problemused at VerifyThis: thecompeti-
tionwhen it was used; the order in which it appeared; how much time
(in minutes) was given to participants to solve it; whether the main algo-
rithm is sequential or concurrent; the main input data type; whether
the output data type is of the same kind as the input, simpler, or more

complex; when the algorithm was given in pseudo-code, whether it
was iterative or recursive (if it was not given, whether it was outlined
or participants had to find it based on the requirements); whether the
input is mutable or immutable; and the percentages of participating
teams that were able to submit a partial or complete solution

Problem Competition Order Time Sequential Input Output Algorithm Mutable Partial Complete

Maximum by elimination VT11 1 60 Sequential Array Simple Iterative Immutable 83 67

Tree maximum VT11 2 90 Sequential Tree Simple Outlined Immutable 100 17

Find duplets in array VT11 3 90 Sequential Array Simple Find Immutable 83 50

Longest common prefix VT12 1 45 Sequential Array simple Iterative Immutable 100 73

Prefix sum VT12 2 90 Sequential Array Complex Outlined Immutable 73 9

Delete min node in binary search tree VT12 3 90 Sequential Tree Same Recursive Mutable 18 0

Relaxed prefix VT15 1 60 Sequential Array Same Iterative Immutable 79 7

Parallel GCD by subtraction VT15 2 60 Concurrent Scalar Same iterative mutable 79 14

Doubly linked lists VT15 3 90 Sequential Linked list Same Outlined Mutable 71 7

Matrix multiplication VT16 1 90 Sequential Matrix Same Iterative Immutable 86 43

Binary tree traversal VT16 2 90 Sequential Tree Simple Iterative Mutable 79 7

Static tree barriers VT16 3 90 concurrent Tree Simple Iterative Mutable 79 7

Pair insertion sort VT17 1 90 Sequential Array Same Iterative Mutable 100 10

Odd–even transposition sort VT17 3 90 Concurrent Array Same Iterative Mutable 60 0

Tree buffer VT17 4 90 Sequential Tree Same Recursive Immutable 40 20

Gap buffer VT18 1 60 Sequential Array Same Iterative Mutable 91 36

Count colored tiles VT18 2 90 Sequential Array Same Recursive Immutable 55 18

Array-based queue lock VT18 3 90 Concurrent Array Simple Iterative Mutable 27 9

Monotonic segments and GCG sort VT19 1 90 Sequential Array Same iterative Immutable 85 15

Cartesian trees VT19 2 90 Sequential Array Complex Iterative Immutable 69 15

Sparse matrix multiplication VT19 3 90 Concurrent Matrix Same Iterative Immutable 85 0

To help us understand which factors affect the complexity
of a verification problem, we fit a linear regression model
(with normal error function) that uses competition, order,
time, sequential, input, output, algorithm, and mutable as
predictors, and the percentage of complete solutions as out-
come.14 Using standard practices [15], categorical predictors
that can take n different values are encoded as n − 1 binary
indicator variables—each selecting a possible discrete value
for the predictor. Fitting a linear regression model provides,
for each predictor, a regression coefficient estimate and a
standard error of the estimate; the value of the predictor has
a definite effect on the outcome if the corresponding coef-
ficient estimate differs from zero by at least two standard
errors.

Our analysis suggests that the competition challenges
were somewhat simpler in the early editions compared to the
recent editions (starting from VerifyThis 2015): the coeffi-
cients for indicator variables related to predictor competition

14 We could also perform a similar analysis using the percentage of par-
tial solutions as outcome. However, what counts as “partially correct” is
a matter of degree and depends on a more subjective judgment—which
would risk making the analysis invalid.

for the years 2015–2017 and 2019 are clearly negative,
indicating that belonging to one of these editions tends to
decrease the number of correct solutions. Similarly, the later
a challenge problem appears in a competition the fewer teams
manage to solve it correctly. This is to be expected, as the first
challenge is normally the simpler and more widely accessi-
ble one, and participants get tired as a competition stretches
over several hours.

When a challenge’s main algorithm is only outlined, or is
given in pseudo-code but is recursive, and when the input is
a mutable data structure, participants found it harder to com-
plete a correct solution. While the difficulty of dealing with
mutable input is well known—and a key challenge of formal
verification—different reasons may be behind the impact of
dealing with naturally recursive algorithms. One interpreta-
tion is that verification tools are still primarily geared toward
iterative algorithms; a different, but related, interpretation is
that VerifyThis organizers are better at gauging the complex-
ity of verifying iterative algorithms, as opposed to that of
recursive algorithms that may be easy to present but hard to
prove correct.

Sequential algorithms, as opposed to concurrent ones, are
associated with harder problems. Since the association is not
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very strong, it is possible that this is only a fluke of the anal-
ysis: sequential algorithms are the vast majority (76%) of
challenges and thus span a wide range of difficulties; the few
challenges involving concurrent algorithms have often been
presented in a way that they offer a simpler, sequential vari-
ant (see for example challenge 3 in Sect. 4)—which may be
what most teams go for.

The input data structure also correlates with the ease of
verification. Unsurprisingly, when the algorithm’s input is a
scalar more teams are successful; but, somewhat unexpect-
edly, success increases also when the input is a linked list or
a tree. It is possible that the organizers are well aware of the
difficulty of dealing with heap-allocated data structures, and
hence stick to relatively simple algorithms when using them
in a verification challenge. Another possibility is that linked
lists and trees just featured a few times (compared to the
ubiquitous arrays), and hence, their impact is more of a sta-
tistical fluke. Input in matrix form is associated with harder
problems too; this is probably because most verification tools
have no built-in matrix data types, and representing bidimen-
sional data using arrays or lists is possible in principle but
may be cumbersome.

5.3 Lessons learned for future competitions

Most verification tools are somewhat specialized in the kinds
of properties and programs they mainly target; such spe-
cialization normally comes with a cost in terms of less
flexibility when tackling challenges outside their purview.
VerifyThis organizers try to select challenges that target dif-
ferent domains and properties, so that no participants will
be exclusively advantaged. However, this may also indicate
that it may be interesting to see the participation of teams
using different approaches. While only one team has used
two different verification tools in the history of VerifyThis,
teams using verification frameworks that integrate differ-
ent libraries and features effectively have at their disposal
a variety of approaches. For instance, Team refiners used a
refinement library for Isabelle only in one challenge, whereas
they stuck to Isabelle’s mainstream features for the rest of the
competition. In order to promote eclectic approaches to ver-
ification, organizers of future events may introduce a new
award category that rewards the teams that displayed the
widest variety of approaches during the competition.

VerifyThis challenges are made publicly available after the
competition every year, and several team members took part
in more than one competition. Therefore, the most competi-
tive and ambitious teams are aware of the kinds of problems
that will be presented, and may be better prepared to solve
them in the limited time at their disposal. We have evidence
of at least one team that went one step further preparing for
the competition this year: Team bashers created an Isabelle
library to reason about concurrency, expecting a challenge

of the same flavor as those given in recent years. These
observations may give new ideas to organizers of future
events to design verification challenges that are interesting
but also feasible. For example, they could announce before
the competition (in the call for participation) some topics that
will appear in the verification challenges, or some program
features that participants will be expected to deal with—
but without mentioning specific algorithms or problems.
Researchers and practitioners interested in participating may
then use this information to focus their preparation.

Following the recurring suggestions of previous organiz-
ers, we used a questionnaire to help compare solutions and
judge them. This was of great help and we hope future orga-
nizers can improve this practice even further. While our
questionnaire was primarily made of open questions and col-
lected qualitative data, it may be interesting to complement
it with quantitative information about the challenges and
the solutions—such as the size of specifications, implemen-
tation, and other tool-specific annotations. Collecting such
information consistently year after year could also pave the
way for more insightful analyses of the trends in the evo-
lution of verification technology as seen through the lens of
verification competitions (perhaps along the lines of what we
did in Sect. 5.2).

We are always pleased to see how committed participants
are, and how much effort they put into their work during
and after the competition. One sign of this commitment is
that most teams (see Sect. 5.1 for details) were available
to substantially revise their solutions during the weeks and
months after the competition, so that we could publish a com-
plete solution that shows the full extent of the capabilities of
their tools. It may be interesting to find ways to give more
visibility to such additional work—for example, publishing
post-proceedings where teams can describe in detail their
work and how it was perfected. Since not all participants
may be able to commit to such an extra amount of work, this
may be organized only occasionally, and contributing to it
should be on a voluntary basis.
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