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Abstract: As an island nation, Ireland needs to ensure effective management measures to protect
marine ecosystems and their services, such as the provision of fishery resources. The characterization
of marine waters using satellite data can contribute to a better understanding of variations in the
upper ocean and, consequently, the effect of their changes on species populations. In this study,
nineteen years (1998–2016) of monthly data of essential climate variables (ECVs), chlorophyll (Chl-a),
and the diffuse attenuation coefficient (K490) were used, together with previous analyses of sea
surface temperature (SST), to investigate the temporal and spatial variability of surface waters around
Ireland. The study area was restricted to specific geographically delineated divisions, as defined by
the International Council of the Exploration of the Seas (ICES). The results showed that SST and Chl-a
were positively and significantly correlated in ICES divisions corresponding to oceanic waters, while
in coastal divisions, SST and Chl-a showed a significant negative correlation. Chl-a and K490 were
positively correlated in all cases, suggesting an important role of phytoplankton in light attenuation.
Chl-a and K490 had significant trends in most of the divisions, reaching maximum values of 1.45%
and 0.08% per year, respectively. The strongest seasonal Chl-a trends were observed in divisions VIId
and VIIe (the English Channel), primarily in the summer months, followed by northern divisions VIa
(west of Scotland) and VIb (Rockall) in the winter months.

Keywords: chlorophyll-a; phytoplankton; diffuse attenuation coefficient (K490); time series; temporal
trends; ESA OC CCI

1. Introduction

The potential of the world’s oceans to provide food and nutrition for the growing
global population is widely recognised [1], and it is expected to reach 9.7 billion people
by 2050 (FAO, 2016). The seas around Ireland are considered one of the most productive
and biologically sensitive areas in European Union (EU) waters. As an island nation,
fishery resources are highly important to the economy and society. In 2020, Irish vessels
landed a total of 188,994 tonnes of fish catch in Irish ports, with an estimated value of
EUR 220.5 million [2], and with another EUR 31.5 million landed abroad [3]. According to
the Irish Seafood Development Agency, Bord Iascaigh Mhara (BIM), 16,430 people were
employed directly and downstream in the Irish seafood sector in 2020.

The value and importance of fishery resources make their responsible management
essential. Despite remarkable progress in some areas, the overall downward trend in global
marine fish stocks has not improved [1]. Previous attempts to manage either single- or multi-
species fish stocks without considering their population dynamics and without accounting
for environmental variability have systematically failed, sometimes with catastrophic
ecological and economic consequences, such as global declines in fish populations [4] and
the collapse of fisheries [5]. Widespread recognition of these shortcomings has led to the
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development of a set of principles, guidelines, and strategies, known as the Ecosystem
Approach to Fisheries Management (EAFM) [6,7]. This approach explicitly recognises that
fisheries are entities dependent on biological dynamics, which are strongly influenced
by ecological, social, and economic elements and changes. EAFM aims to improve the
understanding of the factors responsible for changes in abundance and spatial distribution
of exploited fish stocks, to decouple the impacts of fisheries on the marine environment from
natural environmental influences, and ultimately, to implement more effective management
systems [8,9].

It is widely recognised that the physical and biological characteristics of pelagic
habitats can influence the distribution and abundance of fish populations by affecting
prey availability, larval distribution and survival, and migration patterns [10,11]. Over
the years, it has been recognised that the key to understanding fish population variability
lies in understanding the variables affecting the pelagic ecosystem when fish are in their
larval stage [12]. Since the larval stage is generally planktonic, it is mostly a captive
of its environment and cannot travel far to seek optimal survival conditions. Several
studies address the effects of climate change on marine species and marine ecosystems
as a whole [13,14], and directly link temporal and spatial changes in climate variables to
fish abundance [15,16]. Global ocean warming increased by 0.13 ◦C per decade between
1971 and 2010 [17], and this rate is predicted to continue over the next 100 years [18]. The
waters of the northeast Atlantic have warmed at a faster rate compared to the global ocean,
and the distribution and changes in the relative abundance of various fish species have
been observed at local, regional, and global scales [19,20]. Understanding the effects of
environmental conditions and their changes on the abundance and distribution of exploited
fish stocks is a key challenge for developing management strategies [21], especially under
the influence of climate change effects. The use of environmental data (e.g., SST, Chl-a) in
analysing, assessing, and predicting fishery health is therefore essential. The assessment
of the status and appropriate management of living marine resources depend on a proper
understanding of the complex relationship between marine environmental processes and
biological dynamics [22].

A major barrier to the operational implementation of EAFM has been the sparse
availability of information on the state of the broader marine ecosystem structure and
processes [23]. In recent years, efforts to implement EAFM concepts have greatly in-
creased [24,25], partly in response to legislation. However, actual implementation of EAFM
strategies remains a challenge, with significant obstacles to overcome [26,27]. Satellite-
based data offer great potential for applications in fisheries, including marine resource
management, stock assessment, marine aquaculture site selection, detection of harmful
algal blooms, or habitat change monitoring [12]. Remote sensing tools can provide a wide
range of indicators of ecosystem health over large areas, including an accurate description
of the pelagic ecosystem at a given time and location [28]. Advances in remote sensing
technology and the efficient use of satellite-based data are proving to be resourceful and an
integral component in implementing EAFM strategies at regional and global scales. Recent
advances in satellite sensors and technologies under the Copernicus Programme, the EU’s
Earth Observation Programme, has facilitated a new era of satellite data and the derivation
of a variety of oceanic and atmospheric datasets, with high spatial and temporal resolutions
that are freely available to potential users. Despite the current and future prospects for
using satellite-based marine data to assess the functioning of marine ecosystems, satellite
data remain underutilized by practitioners and policymakers in fishery management.

In this context, the main objective of this work is to strengthen the use of satellite
data to provide reliable products for monitoring the marine environment. To this end,
we will characterise the temporal and spatial variability of ECVs variables such as Chl-a
and the diffuse attenuation coefficient for the downwelling spectral irradiance at 490 nm
wavelength (K490), in specific areas around Ireland defined by the International Council
for the Exploration of the Seas (ICES), extending previous work on the temporal and spatial
variability of seasurface temperature (SST) [29].
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2. Materials and Methods
2.1. Study Area

The study area is composed by 12 ICES divisions known as the North Western Waters
(NWW) (Figure 1). The study area includes sub-area VI composed of the ICES divisions
VIa (west of Scotland) and VIb (Rockall), and sub-area VII formed by ICES divisions VIIa
(Irish Sea), VIIb (west of Ireland), VIIc (Porcupine Bank), VIId (eastern English Channel),
VIIe (western English Channel), VIIf (Bristol Channel), VIIg (north Celtic Sea), VIIh (south
Celtic Sea), VIIj (southwest of Ireland—east), and VIIk (southwest of Ireland—west). The
NWW covers approximately 1.15 million km2 and includes the entire exclusive economic
zone (EEZ) of Ireland and part of the EEZs of the United Kingdom (UK) and France [30].
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Figure 1. Study area, where Roman numerals denote ICES divisions considered in this study. Letter
abbreviations are as follows: IR-Ireland, GB—Great Britain, FR-France, PB-Porcupine Bank, RB-
Rockall Bank, HB-Hatton Bank.

NWW waters are very productive, supporting a rich and diverse range of ecosystems,
habitats, and species. Some of the most extensive and valuable sea fishery resources in
Europe are found off the Irish coast, and the region is considered an ideal location for
finfish, shellfish, and seaweed aquaculture [31]. The oceanographic characterisation of
these economically important divisions, using satellite data, can contribute to a better
understanding of upper ocean environmental changes and, consequently, the effects of
these changes on species populations.

2.2. Satellite-Derived Essential Climate Variables (ECVs)

Nineteen years (January 1998–December 2016) of monthly chlorophyll-a (Chl-a) and
diffuse attenuation coefficient for the downwelling spectral irradiance at 490 nm (K490)
were used to assess the temporal and spatial variability within the surface waters surround-
ing Ireland. The Chl-a and K490 products were obtained from the Ocean Colour Climate
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Change Initiative (OC-CCI) dataset, version 3.1, with a spatial resolution of ~4 km/pixel.
The OC-CCI dataset is based on ocean colour data, registered by MERIS, MODIS-Aqua and
VIIRS, with band shifting, bias correction, and per-pixel uncertainty calculation applied
to align the SeaWiFS bands to produce a consistent climate-quality dataset. The biases
between sensors from different missions can generate a significant false trend, which could
affect findings derived from time-series analysis [32]. Products from OC-CCI have been
shown to be more consistent over time, compared to other multi-mission products, than
single-mission and other merged ocean colour satellite products [33].

The generation of the OC-CCI v3.1 Chl-a algorithm involved the blending of the
Ocean Colour Index (OCI) [34], the OC5 algorithm [35], adopted for coastal regions, and
the OC3 [36] and OC4 [37] algorithms. The blended Chl-a algorithm, used in versions
v3.0 and v3.1, attempts to weight the outputs of the best-performing algorithms (OC3,
OCI (OC4 + CI), and OC5), which are based on the water types present, further improving
performance in Case-2 waters compared to earlier versions, which were mainly open-ocean
focused [38]. Some filters were applied to the products, considering the realistic values of
each parameter. In the case of Chl-a, all the values less than 0.001 were set to 0.001 mg/m3,
while the values greater than 100 mg/m3 were set to 100 mg/m3 [34]. The diffusive
attenuation coefficient at 490 nm for downwelling irradiance (K490), which is an apparent
optical property (AOP), was computed from the inherent optical properties (IOPs) at 490 nm
using Lee et al.’s (2005) algorithm. K490 can be considered an indicator of turbidity, directly
related to the presence of scattering particles in the water column. It indicates how strongly
light is attenuated within the water column at a specific wavelength—in this case, 490 nm.
Considering IOPs, all values greater than 10 (1/m) were discarded [34]. More detailed
information about the OC-CCI v3.1 dataset can be found in the product user guide [38]. In
November 2020, ESA Ocean Colour project released the v5.0 dataset, which incorporates
Sentinel-3 A-OLCI data. The new v5.0 OC-CCI product extends the data availability until
the end of June 2020, including associated per-pixel uncertainty information. The dataset
used in this study does not correspond to the latest v5.0 version. However, this issue does
not affect the application of our methodology and the results derived from it, as the main
difference between both datasets corresponds to the time spans.

In addition to the Chl-a and K490 OC-CCI products (Figure 2), daily sea surface
temperature (SST) data, covering the same nineteen years (January 1998–December 2016),
were obtained from the NOAA Reynolds Optimal Interpolation SST (OISST) dataset,
version v2.0, with a spatial resolution of 25 km. Selecting this dataset instead of the one
produced by OC-CCI corresponds to a practical reason, since SST values had already
been extracted and analysed for the same study area [29]. The OISST version v2.0 is a
global dataset created using the International Comprehensive Ocean-Atmosphere Data
Set (ICOADS) and AVHRR Pathfinder data. In this dataset, the operational AVHRR
products were used along with in situ data from ships and buoys to allow for the large-
scale adjustment of satellite biases [39]. More detailed information on this dataset can be
found in previous studies [39–42].

2.3. Statistical Analyses

Firstly, an exploratory analysis was performed to summarise the main characteristics
of the Chl-a, K490, and SST data in the study area. Subsequently, spatial and temporal
variability analyses were performed with respect to the 19 years of monthly Chl-a and K490
data. Trend analyses were also performed for both parameters, complementing previous
temporal and spatial SST analyses [29].
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2.3.1. Time Series Decomposition

A time series can be defined as a collection of observations on a variable of interest.
Most time-series analyses, based on remote sensing data, use the classical decomposition
X = S + T + I, where S, T, and I represent the seasonal, trend, and irregular (or residual)
components, respectively [43]. However, this approach does not allow for a flexible
specification of the seasonal component, while the trend component is represented by a
deterministic function of time that is easily affected by outlying observations. In this study,
the time series were decomposed using the stl.fit () procedure [44,45], built on the Seasonal-
Trend decomposition based on Loess (STL, local polynomial regression fitting) [46], where
Loess is a nonlinear estimating method [46]. One of the advantages of the “stl.fit ()”
function is its capability to identify a seasonal component that changes over time, responds
to nonlinear trends, and is robust to outliers. This is achieved by smoothing the time
series, using Loess, in two loops: an inner loop, which iterates between the seasonal
and trend smoothing; and the outer loop, which minimises the effect of outliers, locating
them in the irregular, or residual component [46]. The irregular/residual component
is derived by subtracting the seasonal and trend time series components [46]. STL, as
other non-parametric regression methods, requires the subjective selection of seasonal and
trend smoothing parameters [46]. The Loess smoothing parameters, applicable to the STL
analysis, must be defined in advance and set according to the user’s knowledge of the
data [47,48]. The STL algorithm [44], applied in this study, allows a selective choice of the
STL smoothing parameters and selects the best STL model based on the lowest error (in
our case, the root mean squared error). This fact is beneficial for studies of time series that
need to evaluate interannual variability. We direct the reader to previous studies for more
information on the STL approach [44–46].

2.3.2. Non-Parametric Trend Analysis

Once the seasonal component was extracted, Sen’s slope was calculated using the
Mann–Kendall test [49,50]. The Mann–Kendall test is used to statistically evaluate a
monotonic upward or downward trend of the variable of interest over time. A monotonic
upward (downward) trend means that the variable is consistently increasing (decreasing)
over time; however, the trend may or may not be linear [49,50]. The Mann–Kendall test
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does not require a normal distribution of the residuals resulting from the fitted regression
line [49,50]. Sen’s slope is a nonparametric estimator that uses a median value to estimate
the slope and is quite robust in the presence of outliers.

Additionally, to identify cases where structural changes (i.e., points where the changes
are more pronounced) might occur, we used the statistical R package “strucchange” [51] and
its “breakpoints ()” function. The “breakpoints ()” function allows to identify breakpoints
that minimise the residual sum of squares of a linear model with m + 1 segments. The
optimal number of structural breaks is determined using the Bayesian information criterion
(BIC) [51]. This analysis allowed the identification of significant changes (e.g., trend shifts)
in the time series of each ICES division.

Monthly trends and significance levels were also calculated, using the “wql” R pack-
age [52] and the “seasonTrend ()” function, which calculates the signs and magnitudes of
trends for individual months [53]. “SeasonTrend ()” is based on the Mann–Kendall test and
calculates the actual and relative Sen´s slope, the p-values for the trend, and the fraction of
missing slopes encompassing the first and last fifths of the data [53]. This analysis can be
informative because some time series may not show a significant trend overall but may
show a significant trend for individual months, such that the direction of the trend varies
from month to month.

2.3.3. Similarities between ICES Divisions

To examine similarities among divisions with respect to Chl-a, K490, and SST, an
agglomerative hierarchical cluster analysis using the climatology values for each ICES
division was performed. In hierarchical cluster analysis, data are grouped into homoge-
neous clusters by merging data points, or classes, one at a time in a series of sequential
steps [54,55]. Here, we use agglomerative hierarchical cluster analysis, also known as
bottom-up clustering. In the initial stage of the algorithm, each n data point is considered
as a single cluster [56]. Then, in each step, the two most similar data points or clusters are
combined into a larger cluster, resulting in n − 1 clusters [56]. Similarities or proximities are
determined by a distance function, in our case the Euclidean distance, which corresponds
to the squared distance between data points or vectors. For details on agglomerative
hierarchical algorithms, we refer the reader to previous overviews [57].

3. Results
3.1. Exploratory Statistical Analyses

Exploratory analysis, including all ICES divisions (Figure 3), showed a median SST
of 12.04 ◦C, with the most common values between 9 ◦C and 12 ◦C (Figure 3). The data
distribution considerably changed in the case of Chl-a and K490. Both variables showed a
highly skewed distribution to the right with a median value of 0.74 mg/m3 for Chl-a and
0.12 1/m for K490. The most common values for Chl-a in the time series were lower than
1 mg/m3, while for K490, the most common values were lower than 0.1 1/m, indicating
a general first optical depth (Z90 = 1/K490) of 10 m. This value (Z90) represents the layer
depth from which 90% of the water leaves radiance that the satellite register comes from.

The three ECVs—Chl-a, K490, and SST—showed a significant correlation in almost all
divisions (Table 1). SST and Chl-a showed significant correlation in all divisions except for
division VIIj (southwest of Ireland—east). In most cases, there is an inverse relationship
between SST and Chl-a. Significant and positive SST-Chl-a correlations were found within
oceanic divisions, such as divisions VIa (west of Scotland) and VIb (Rockall), as well as
in ICES divisions located on the west coast of Ireland such as divisions VIIc (Porcupine
Bank) and VIIk (south of Ireland—west) (Table 1). The highest SST-Chl-a correlations
were negative and found in divisions VIIa (Irish Sea), VIIg (north Celtic Sea), and VIIf
(Bristol Channel), all of them highly influenced by coastal processes and dynamics (e.g.,
tidal mixing, stratification intensity, freshwater input/river runoff). Overall, SST and K490
showed a significant positive correlation in most of the divisions, except for divisions
located in more oceanic waters, where the relationship was primarily negative. Chl-a
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and K490 showed significant and positive relations in all ICES divisions, suggesting that
the attenuation of light in the first meters of the water column could mainly depend on
phytoplankton biomass.
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Figure 3. Frequency histograms of sea surface temperature (SST), chlorophyll-a concentration (Chl-a)
and diffuse attenuation coefficient at 490 nm (K490). Red lines indicate the median.

Table 1. Pearson correlation coefficients for each pair of variables in each ICES division. Significance
levels of p-values ≤ 0.001 (***) and p-values ≤ 0.05 (**) are indicated by asterisks. p-values indicate
the probability that an observed difference could have arisen by chance. The lower a p-value is, the
greater the statistical significance.

ICES Area Area Name SST-Chl-a SST-K490 Chl-a-K490

VIa West of Scotland 0.20 ** 0.04 0.86 ***
VIb Rockall 0.44 *** 0.11 0.41 ***
VIIa Irish Sea −0.58 *** −0.56 *** 0.86 ***
VIIb West of Ireland −0.23 *** −0.27 *** 0.74 ***
VIIc Porcupine Bank 0.42 *** 0.32 *** 0.86 ***
VIId Eastern English Channel −0.53 *** −0.62 *** 0.64 ***
VIIe Western English Channel −0.2 ** −0.33 *** 0.70 ***
VIIf Bristol Channel −0.55 *** −0.58 *** 0.89 ***
VIIg North Celtic Sea −0.56 *** −0.51 *** 0.84 ***
VIIh South Celtic Sea −0.34 *** −0.37 *** 0.70 ***
VIIj Southwest of Ireland—East −0.07 −0.19 ** 0.64 ***
VIIk Southwest of Ireland—West 0.31 *** 0.08 0.59 ***

3.2. Chl-a and K490 Temporal and Spatial Variability

The Chl-a distribution, in the nineteen-year monthly climatology, showed a clear
seasonal variation that was spatially dependent (Figure 4). The ICES divisions that
showed the highest Chl-a concentrations (median ± standard deviation) corresponded
to VIIa (2.00 ± 0.51 mg/m3), VIIf (1.81 ± 0.43 mg/m3), and VIId (1.73 ± 0.35 mg/m3),
while the lowest Chl-a concentrations were found on VIIk (0.36 ± 0.22 mg/m3), VIIc
(0.39 ± 0.28 mg/m3), and VIb (0.42 ± 0.39 mg/m3). Considering annual values, the highest
Chl-a values (median ± standard deviation) were found in 2009 (0.87 ± 0.84 mg/m3), 2011
(0.87 ± 0.95 mg/m3), and 2012 (0.86 ± 0.86 mg/m3), while the lowest values were found in
2016 (0.60 ± 0.91 mg/m3), 1998 (0.60 ± 0.88 mg/m3), and 2001 (0.63 ± 0.73 mg/m3). The
highest monthly Chl-a values were found in May (0.96 ± 0.43 mg/m3), while the lowest
Chl-a values were found in February (0.59 ± 0.48 mg/m3).



Remote Sens. 2022, 14, 1749 8 of 22
Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 23 
 

 

 
Figure 4. Seasonal variation for Chl-a (mg/m3) and K490 (1/m) considering the nineteen-year time 
series. Note that the y-axis scale is not the same to better illustrate monthly variability and temporal 
differences between ICES divisions. The size of the boxes indicates the interquartile range (IQR), 
and the horizontal line inside represents the median. The vertical lines indicate the variability out-
side the upper and lower quartiles, while the individual points beyond the vertical lines represent 
the outliers. 

3.3. Chl-a Temporal Trends 

Figure 4. Seasonal variation for Chl-a (mg/m3) and K490 (1/m) considering the nineteen-year time
series. Note that the y-axis scale is not the same to better illustrate monthly variability and temporal
differences between ICES divisions. The size of the boxes indicates the interquartile range (IQR), and
the horizontal line inside represents the median. The vertical lines indicate the variability outside the
upper and lower quartiles, while the individual points beyond the vertical lines represent the outliers.

The nineteen-year monthly climatology of K490 showed consistency with the Chl-
a spatial distribution, indicating a well-delimited differentiation between coastal and
more open waters (Figure 4). The spatial distribution of K490 showed the highest values
(>1 1/m) in areas near the coast, mostly in the bays. Considering the different ICES di-
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visions, the highest values were found in VIIf (0.33 ± 0.11 1/m), VIIa (0.29 ± 0.11 1/m)
and VIId (0.24 ± 0.15 1/m), while the lowest values were in VIIk (0.07 ± 0.015 1/m),
VIIc (0.08 ± 0.023 1/m), and VIb (0.08 ± 0.03 1/m). The annual values (median ± stan-
dard deviation) were the highest in 2009 (0.14 ± 0.10 1/m), 2012 (0.13 ± 0.10 1/m), and
2014 (0.13 ± 0.12 1/m), while 2016 (0.11 ± 0.12 1/m), 1998, and 2001 (0.10 ± 0.10 1/m)
showed the lowest values. The highest K490 monthly values were detected in wintertime—
December (0.16 ± 0.11 1/m) and January (0.15 ± 0.10 1/m)—whereas the lowest K490
values were observed in the summertime—July and August (0.10 ± 0.04 1/m). The find-
ing of the highest K490 values in the winter months is not surprising since, for example,
higher amounts of terrestrial runoff increase the amount of resuspended material and
tidal-driven turbidity within coastal/nearshore areas. However, K490 values in winter
should be treated with caution, as cloud cover and light conditions may affect absolute
values due to data gaps.

3.3. Chl-a Temporal Trends

Nineteen years of monthly data (January 1998–December 2016) were used to determine
temporal trends of Chl-a in each of the ICES divisions. Most of the ICES divisions showed a
significant (p-value ≤ 0.05) and positive trend, indicating an increase in Chl-a concentration
(Table 2). The strongest trends were observed in ICES divisions located in the southeastern
part of the study area, VIIa (Irish Sea) and VIId (eastern English Channel), with a Sen’s
Slope (SS) of 0.014 mg/m3/year and 0.010 mg/m3/year, respectively. The lowest values
were found in ICES divisions located in the most western areas such as VIIc (Porcupine
Bank) with a trend of 0.004 mg/m3/year followed by the ICES divisions VIIk (southwest of
Ireland—west) and VIIh (south Celtic Sea) with a trend of 0.005 mg/m3/year in both cases.
ICES divisions located in the northern areas, VIa (west of Scotland) and VIb (Rockhall), did
not show any significant Chl-a trend.

Table 2. Chl-a trend values resulting for each ICES division. SS—Sen slope (mg/m3/year), %SS (in
percentage per year), S—Kendall’s S, VarS—variance of S. In bold: p-value ≤ 0.05.

Parameter ICES Area Area Name SS %SS p-Value

VIa West of Scotland 0.003 0.290 0.170
VIb Rockall 0.001 0.130 0.395
VIIa Irish Sea 0.014 1.446 0.000
VIIb West of Ireland 0.007 0.714 0.000
VIIc Porcupine Bank 0.004 0.364 0.001

Chl-a VIId Eastern English Channel 0.010 1.000 0.000
VIIe Western English Channel 0.004 0.412 0.002
VIIf Bristol Channel 0.004 0.353 0.113
VIIg North Celtic Sea 0.004 0.420 0.003
VIIh South Celtic Sea 0.005 0.491 0.000
VIIj Southwest of Ireland—East 0.006 0.584 0.000
VIIk Southwest of Ireland—West 0.005 0.474 0.000

Most of the ICES divisions showed at least one structural change in Chl-a concentration
(Figure 5), except division VIIg (north Celtic Sea), which did not present any. The largest
number of breakpoints was found in VIIb (west of Ireland), indicating a high variability in
this area.
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Figure 5. Seasonally adjusted chlorophyll (Chl-a) time series for each ICES division. Structural
breakpoints were identified in the following dates: (a) May 2002 and February 2014; (b) July 2002
and May 2005; (c) December 2001; (d) April 2002, June 2008; (e) December 2008; (f) October 2000;
(g) October 2003 and September 2006; (h) October 2001; (i) no breakpoints; (j) November 2007;
(k) April 2008 and December 2012; (l) June 2003, March 2007.
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The signs and magnitudes of trends for individual months were also computed because
they may behave differently from the general computed trend (Figure 6). The monthly
analysis can provide a more comprehensive idea of how Chl-a values behave between
seasons. The ICES divisions VIIa (Irish Sea), VIIf (Bristol Channel), and VIIg (north Celtic
Sea), all of them located close to each other, did not show any significant trend between
seasons. The ICES divisions VIIb (west of Ireland) and VIIh (south Celtic Sea) showed the
same pattern with positive trends in the winter months. Similar behaviour was found in
VIIj (southwest of Ireland—east) and VIIk (southwest of Ireland—west), but these ICES
divisions also showed a significant and positive trend in late summer (September). The
ICES divisions located in northern areas, VIa (west of Scotland) and VIb (Rockall), showed
increasing Chl-a values in winter months. However, VIa (west of Scotland) showed a
significant negative trend in late spring–early summer. The ICES divisions corresponding
to the English Channel showed different behaviour between them. VIId (western English
Channel), most influenced by surrounding coastal areas, showed a significant and positive
trend in summer months, whereas VIIe (eastern English Channel) showed positive trends
in spring and summer months but negative trends in autumn (September).
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Figure 6. Monthly trends for the different ICES divisions. Bar heights measure trend magnitude for
each month (Sen’ slope) over the period 1998–2016. Blue bars are significant trends (p < 0.05) based
on the Mann-Kendall test. The bar is omitted if the proportion of missing values in the first and last
fifths of the data is less than 0.5.

The magnitude of Chl-a trends was different between ICES divisions. The strongest
trends were found in ICES divisions VIId and VIIe (the English Channel), mainly in summer
months, followed by the northern ICES divisions VIa (west of Scotland) and VIb (Rockhall)
in winter months. High increments in Chl-a trend values were also found in the west of
Ireland (VIIb) in the summer months.
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3.4. K490 Temporal Trends

As in the case of Chl-a, 19 years of monthly data (January 1998–December 2016) were
used to extract the temporal trends of K490 in each of the ICES divisions. A significant K490
trend was detected in almost all divisions, except for VIIa (Irish Sea), VIId (eastern English
Channel), and VIIf (Bristol Channel). Due to the nature of the data (very low values), the
percentage per year was used for comparison (Table 3). The highest trends were found
in division VIIe (eastern English Channel) with 0.125% per year, followed by VIIg (north
Celtic Sea) and VIIj (south of Ireland—east) with 0.078% per year, respectively (Table 3).
The lowest significant trends in K490 values were found in divisions VIIh (south Celtic Sea)
with a trend of 0.040% per year and VIIc (Porcupine Bank) and VIIb (Rockall) with a value
of 0.042% per year. All significant trends were positive, indicating an increment of K490
values and, consequently, a decrease in the attenuation depth and water quality.

Table 3. K490 trend values resulting for each ICES division. SS-Sen slope (1/m/year), %SS (in
percentage per year), S-Kendall’s S. In bold: p-value ≤ 0.05.

Parameter ICES Area Area Name SS %SS p-Value

VIa West of Scotland 0.001 0.063 0.002
VIb Rockall 0.000 0.042 0.004
VIIa Irish Sea 0.000 −0.015 0.758
VIIb West of Ireland 0.001 0.063 0.009
VIIc Porcupine Bank 0.000 0.042 0.001

K490 VIId Eastern English Channel 0.001 0.059 0.056
VIIe Western English Channel 0.001 0.125 0.000
VIIf Bristol Channel 0.000 −0.011 0.818
VIIg North Celtic Sea 0.001 0.078 0.000
VIIh South Celtic Sea 0.000 0.041 0.001
VIIj Southwest of Ireland—East 0.001 0.070 0.000
VIIk Southwest of Ireland—West 0.000 0.049 0.001

The monthly K490 time series were also analysed to detect unusual shifts in K490
values (Figure 7). Only in division VIIg (north Celtic Sea) was no shift in K490 values
detected, as was the case for Chl-a, indicating temporal stability in this area. The behaviour
of K490 in the remaining ICES divisions was quite variable, but one or two breakpoints
were observed in most of them. Breakpoints in K490 trends were found in coastal divisions,
such as VIIa (Irish Sea), VIIf (Bristol Channel), and VIId (eastern English Channel). The
breakpoints occurred at different times, suggesting that they could be caused by local
conditions. Most of the K490 breakpoints were coincident with the ones obtained for Chl-a
values. However, new breakpoints were found for in VIIf (Bristol Channel) and VIId
(eastern English Channel). These results suggest that factors other than phytoplankton
concentration influence the water attenuation and turbidity. Light penetration is strongly
attenuated by particulate and dissolved matter originating from river runoff, or which
could be re-suspended from the seabed due to strong vertical tidal mixing [58]. The Bristol
Channel and its adjacent coastal seas, for example, are considered to be one of the most
energetic European continental shelf areas, exhibiting some of the largest spring tides and
tide ranges, which contribute to sediment resuspension [59].
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Figure 7. Seasonally adjusted K490 time series for each ICES division. Structural breakpoints were
found in the following dates: (a) June 2010, January 2014; (b) September 2002, July 2005, November
2008, October 2013 (c) December 2001; (d) December 2001, June 2008, October 2012; (e) December
2008; (f) October 2000; January 2004; November 2013; (g) August 2006; (h) November 2001, October
2011; (i) no breakpoints; (j) October 2007; (k) December 2008; February 2013; (l) January 2009.
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Analysis of monthly trends for K490 showed variability among ICES divisions (Figure 8).
As with the Chl-a time series analysis, there were no significant trends for K490 in some
ICES divisions. These divisions were VIIa (Irish Sea), VIIf (Bristol Channel), and VIIg
(north Celtic Sea). ICES divisions located in the southwest of Ireland such as VIIb (west of
Ireland), VIIc (Porcupine), VIIh (south Celtic Sea), VIIj (southwest of Ireland—east), and
VIIk (southwest of Ireland—west) showed positive and significant trends (p-value ≤ 0.05)
in winter months, with some slight differences between them. Moreover, ICES divisions
located in oceanic waters such as VIa (west of Scotland) and VIb (Rockall) showed negative
and significant trends in summer months. In the case of VIa (west of Scotland), it showed
negative trends in summer and positive trends in spring and autumn. This could indicate
a possible reduction in the summer phytoplankton bloom in this area and a shift to the
spring and autumn months, as Chl-a and K490 parameters are strongly correlated in this
ICES division (r = 0.86, p-value ≤ 0.001). A significant and positive trend was observed in
spring in the case of VIId and VIIe, both corresponding to the English Channel, while a
negative and significant trend was observed in autumn. In the case of VIIe (eastern English
Channel), the results were coincident with the trends of Chl-a. The strongest trends were
found in spring in the English Channel and west of Ireland.
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Figure 8. Trends by months for the different ICES divisions. Bar heights measure trend magnitude
for each month and the Sen slope over the period 1998–2016. Blue bars are significant trends (p < 0.05)
based on Mann-Kendall test. The bar is omitted if the proportion of missing values in the first and
last fifths of the data is less than 0.5.

4. Discussion

Chl-a, K490, and SST parameters can provide a comprehensive picture of the biophysi-
cal properties of both oceanic and coastal surface waters, e.g., [11,60,61]. Chl-a and SST are
considered ECVs, which, together with turbidity, are used by the Marine Strategy Frame-
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work Directive (MSDF) for assessing the Good Environmental Status (GES). In addition,
SST, Chl-a, and K490 are among the marine biophysical parameters strongly influencing the
distribution of pelagic fish, e.g., due to their effects on, for example, recruitment, survival
conditions, distribution, migration patterns, feeding rate, or spawning, e.g., [60–68].

As previously mentioned, pelagic fisheries such as mackerel, herring, and blue whiting
are among Ireland´s most important seafood resources. Ireland’s 2020 environmental
assessment, conducted by the Environmental Protection Agency (EPA), reported that
the status of commercial fish and shellfish stocks was not fully compatible with Good
Environmental Status [69]. The Irish Fisheries Ecosystems Advisory Services (FEAS) found
that the number of sustainably fished stocks has slightly decreased, and 13 stocks remained
overfished in 2020 [70]. On the other hand, fisheries are one of the economic sectors that
will be most affected by Brexit. More than 70% of the total Irish fishing fleet over 12 m
in length, which operate in both whitefish and pelagic fisheries, would be affected by the
loss of access to UK waters [71]. Therefore, understanding species distribution is key to
optimizing fishing efforts and the sustainability of these resources in the future.

Satellite imagery has been used as a tool to support fish population studies and their
changes, e.g., [7,11,72]. This study showed that SST was significantly and negatively related
to Chl-a in most of the ICES divisions, indicating a decrease in Chl-a concentration with an
increase in SST. This relationship was more pronounced in divisions located close to the
coast, such as divisions VIIa (Irish Sea), VIIf (Bristol Channel), and VIId (eastern English
Channel). The most likely cause of this relationship could be an increase in the stratification
and a deepening of the thermocline leading to a reduction in nutrients in the euphotic
zone [73]. Significant and positive correlations between SST and Chl-a were detected
in oceanic divisions, such as VIa (west of Scotland) and VIb (Rockall), and in divisions
located off the west coast of Ireland, such as VIIc (Porcupine Bank) and VIIk (southwest
of Ireland—west). The significant positive correlations between SST and Chl-a could be
explained by the temporal cycles of phytoplankton, which strongly depend on seasonal
changes in the vertical water column structure, e.g., [74,75]. Seasonal solar stratification
plays a crucial role in determining the light and nutrient requirements for phytoplankton
growth and the onset of blooms throughout the year, e.g., [74]. As the spring season
progresses, solar heating generates a buoyance flux that stabilizes the water column and,
together with increased solar radiation, triggers the spring phytoplankton bloom in waters
around Ireland, e.g., [72,74]. However, prolonged stratification would impair nutrient
regeneration and thus negatively affect primary production. Significant increases in SST
have been observed in some areas around Ireland [29], with trends ranging from 0.28 ◦C
to 0.20 ◦C per decade [29]. If this warming trend continues in the future, it could lead to
persistent stratification of the water column, resulting in a decrease in Chl-a concentration
and, consequently, affecting local phytoplankton abundance and the food web that depends
on it.

The results presented in this study also showed that surface waters around Ireland
exhibit high spatial variability in Chl-a and K490 values. The highest Chl-a and K490 values
were found in coastal divisions, such as divisions VIIa (Irish Sea), VIIf (Bristol Channel), and
VIId (eastern English Channel). These results were consistent with in situ oceanographic
data obtained through scientific surveys, e.g., the PELTIC12 survey [76]. Coastal areas are
highly influenced by terrestrial runoff and associated inputs of nutrients, such as nitrogen
and phosphorus, which can lead to increases in phytoplankton biomass. High Chl-a levels
often indicate poor water quality, and the long-term persistence of these high values is
considered an indicator of an environmental problem such as eutrophication [77]. Other
studies, e.g., [78], have also found an increase in Chl-a levels in the northeast Atlantic
between 52◦ N and 58◦ N since the mid-1980s. Our study suggests that this trend is
continuing, and that Chl-a values are increasing in these areas.

Seasonal variability of Chl-a in Irish waters shows a high peak in spring and a low peak
in autumn [75]. In winter, low light conditions inhibit phytoplankton growth, but in spring
(March to April), phytoplankton biomass increases in response to increasing solar irradiance



Remote Sens. 2022, 14, 1749 16 of 22

levels [75]. After the spring bloom, Chl-a levels decrease due to a combination of factors,
including zooplankton grazing, nutrient depletion, and sedimentation [75]. An autumn
bloom, which is shorter and less intense than a spring bloom, usually marks the end of the
autumn seasonal growing period [75]. In our analysis, this pattern was evident in divisions
VIIg and VIIh (the Celtic Sea), VIIb, (west of Ireland), and VIIj (southwest of Ireland—east).
However, other patterns were also detected. Several ICES divisions were characterised
by a single and prolonged peak in Chl-a values with its maximum detected in spring and
summer months. The areas that showed this behaviour mainly corresponded to ICES
divisions located in the west of Ireland, such as the divisions VIb (Rockall), VIIc (Porcupine
Bank), and VIIk (southwest of Ireland—west). This single and long-lasting peak could be
explained by a succession of different phytoplankton groups, such as the abundance of
diatoms in spring and autumn and the dominance of dinoflagellates in summer [75]. Other
authors have described the same behaviour in Chl-a values in the eastern Atlantic Ocean
(a single peak in summer months), caused by above-average concentrations of particulate
inorganic carbon (PIC) [79]. In coastal ICES divisions, such as divisions VIIa (the Irish
Sea) and VIId (Bristol Channel), Chl-a did not show any particular patterns, except for
minimum Chl-a values detected during the summer months. These coastal divisions often
receive a considerable amount of terrestrial and riverine runoff, most notably in winter
months, resulting in nutrient enrichment. Other studies reported different behaviour of
Chl-a values in these areas. For example, some authors [80] reported an increase in Chl-a
concentrations in the spring in the Irish Sea, which corresponds to division VIIa in this
study. These authors reported that Chl-a levels in the Irish Sea reach a peak between
March and May, or June, with concentrations higher than 40 mg/m3 [80]. In this study,
we did not find such high concentrations, probably because we used monthly averages
rather than isolated in situ measurements, or due to recent and continuous changes in
environmental conditions.

Both Chl-a and K490 showed significant increasing trends in most ICES divisions. This
result differs from our preliminary analyses [81], which found no trends in Chl-a values,
using the same time series of data. This fact highlights the importance of considering the
presence of outliers when calculating temporal trends of oceanographic variables such
as Chl-a. To decompose the Chl-a and K490 time series and extract the temporal trends,
the Seasonal and Trend decomposition using Loess (STL), incorporated in the R software
function “stl.fit ()” [44], was used. The STL method has been shown to be robust to extreme
values and unusual observations, i.e., outliers, and avoids effects on seasonal and trend
components without reducing the size of the dataset [44]. The significant trends reported
in this study were based on a nineteen-year, monthly time series. However, some studies
have reported that a minimum length of the Chl-a time series is required to obtain a reliable
trend value. For example, Beaulieu et al. [33] considered that continuous Chl-a time series
of at least 27 years are required, while Henson et al. [82] estimated the minimum period to
be 39 years. Beaulieu et al. [33] also stated that a minimum period of 43 years is required if
the time series is interrupted. In any case, satellite data time series are constantly growing,
and new missions will continue to maintain the temporal continuity of these data in the
future, offering an unprecedented source of information for trend analysis.

One of the most important ecological insights from multidecadal observations is that
changes can occur abruptly as discrete shifts from one state to another [53]. These changes
can reveal important information about trends that cannot be detected with simple trend
analysis [83]. In our case, most of the ICES divisions exhibited some structural change
during these 19 years, with the exception of division VIIg (north Celtic Sea). This fact could
be explained by the oceanographic nature of the Celtic Sea, which is surrounded by several
fronts, such as the Irish Sea Front to the north, and the Ushant Front to the east. These
fronts, along with the continental shelf in the southern part and some eddies produced by
tidal currents, may provide some stability to this area. Even these assumptions should be
studied in more detail, it is known that oceanographic fronts can separate water masses
that may change little over hundreds of kilometres.
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The highest number of structural changes was detected in division VIIb (west of
Ireland). This high variability could be explained by the influence of freshwater input and
nutrients from the Shannon, Clare (Corrib), and Laune rivers. In some ICES divisions,
which include oceanic or intermediate depth waters, Chl-a exhibited multiple structural
changes that coincided in time. In general, most Chl-a breakpoints within oceanic divisions
were found in wintertime, between October and December. However, it is quite difficult
to determine the causes of these shifts due to the lack of comprehensive monitoring
programmes that would allow in-depth investigation of specific processes. For example, the
observed structural Chl-a change between October and December 2002 spans over divisions
VIa (west of Scotland), VIb (Rockall), VIIa (Irish Sea), VIIb (west of Ireland), and VIIf (Bristol
Channel), indicating a relatively large-scale process. The mixing of upper ocean waters
is strongly stimulated by the passage of weather systems during winter and early spring,
disrupting the development of water-column stratification, bringing up nutrients, and
thus influencing the timing of the seasonal increase in phytoplankton [84]. The variability
and intensity of such mixing events are associated with atmospheric synoptic events, or
storms [84], which would directly affect the variability and intensity of phytoplankton
blooms. A chain of low-pressure systems (a persistent large low-pressure system) have
been recorded in October 2002 [85]. The passage of these low-pressure systems could have
initiated and promoted phytoplankton blooms over an extensive area, resulting in the
observed October–December 2002 Chl-a breakpoints. The breakpoints in both the K490
and Chl-a time series were coincident in time, suggesting, as previously discussed, a direct
relationship between both parameters and dependence between water attenuation and
Chl-a values.

As expected, the analyses presented here have shown that Chl-a and K490 exhibit
similar cycles and patterns in different ICES divisions, generally within divisions that are
spatially close to each other. Marine waters are a fluid and ever-changing environment
that do not fit strictly within the boundaries of the ICES-defined divisions and sub-areas,
primarily outlined as geo-political delaminations. Considering Chl-a, K490, and SST pa-
rameters, a hierarchical cluster analysis revealed that the divisions considered could be
categorised into three main groups (Figure 9). Two of the main groups could be classified
as oceanic (VIa and VIb) and coastal (VIIa, VIIf, and VIId) waters, while the largest number
of divisions could be designated as intermediate waters (VIIb, VIIc, VIIe, VIIg, VIIh, VIIj,
and VIIk). This fact suggests that considering each division as an isolated and discrete man-
agement area could lead to a mismatch between environmental processes and associated
fish population behaviour.

The transition from single-species fishery management to an ecosystem approach
continues to progress, as environmental factors are incorporated into fish stock assessments,
resulting in more appropriate and more effective management tools and systems, e.g., [7].
EAFM implementation requires a high temporal frequency of sampling, often over large
regions. This study demonstrates that satellite data can provide a cost-effective and time-
efficient approach to qualitatively and quantitatively assessing biophysical conditions and
changes in the marine surface waters. SST trends are already influencing the onset of
spawning, migration, and distribution of blue whiting, northeast Atlantic mackerel, and
western horse mackerel as well as the recruitment of some gadoids in the Irish Sea, Celtic
Sea, and west of Scotland [86]. The recently reported SST increase in surface waters around
Ireland over the period 1982–2015 [29] and the changes in Chl-a trends reported in this study
may already have implications for the life cycles and dynamics of fish populations. Pelagic
fish species, such as herring, blue whiting, northeast Atlantic mackerel, and horse mackerel,
are keystones of the food web, and changes in their abundance can have significant impacts
throughout the marine food chain.
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A systematic monitoring of biophysical changes and trends in the marine environ-
ments will be key to understanding the complex dynamics of marine ecosystems, especially
bottom-up (primary production) forcing. Satellite-based data, in conjunction with conven-
tional ship-based data, will enable the development and use of informative and reliable
marine ecosystem indicators and variables (e.g., SST, Chl-a, turbidity) and support contin-
uous assessment of the biotic and abiotic components of the marine ecosystem. Despite
the recognised interactions between marine species and their environment, spatial man-
agement approaches remain largely limited to static boundaries and isolated sampling
stations [87]. Consequently, any introduced fixed-time area closures would not always
encompass the core habitat of species of concern and could unjustifiably restrict (or allow)
fishing activity [87]. Static or seasonal area closures are usually based on historical data on
species distribution, thus putting these areas at risk of losing ecological relevance as species’
distributions shift with changing climate and human activity [87]. Satellite data could add
value to species distribution models, where the major focus is to identify spatial patterns
in datasets [88]. In addition, satellite-based data could be useful in developing ecological
response models to better understand the responses of species to changes in environmental
variables [89,90].

5. Conclusions

In recent years, legislation and policy sectors have emphasised the need for a holistic
approach to decision making for the protection and management of marine areas and
living resources. The primary goal of EAFM is to maintain the health of marine ecosystems
while ensuring appropriate use of marine resources for the benefit of present and future
generations. A major limitation in the practical implementation of EAFM for fishery
management is the sparse availability of information on the status of the overall ecosystem
structure and processes. To overcome this limitation, some countries have made significant
investments to support and maintain routine monitoring of the marine environment and
fish populations.

In this context, satellite-based information can help fill existing data gaps and facilitate
surface water assessment and monitoring. No other observational strategy can provide
synoptic views of upper ocean optical properties with such a high spatial and temporal res-
olution and extent. This study demonstrates the advantages and benefits of satellite-based
data in providing up-to-date knowledge of the ecosystem status of Irish waters, confided
within ICES-defined divisions. The study also contribute to promote the incorporation of
satellite-based data into living marine resource management, such as fishery management.
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