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ABSTRACT: Seasonal forecasting of climatological variables is important for water and climatic-related decision-making.
Dynamical models provide seasonal forecasts up to one year in advance, but direct outputs from these models need to be
bias-corrected prior to application by end users. Here, five bias-correction methods are applied to precipitation hindcasts
from ECMWF’s fifth generation seasonal forecast system (SEASS). We apply each method in two distinct ways; first to the
ensemble mean and second to individual ensemble members, before deriving an ensemble mean. The performance of bias-
correction methods in both schemes is assessed relative to the simple average of raw ensemble members as a benchmark.
Results show that in general, bias correction of individual ensemble members before deriving an ensemble mean (scheme
2) is most skillful for more frequent precipitation values while bias correction of the ensemble mean (scheme 1) performed
better for extreme high and low precipitation values. Irrespective of application scheme, all bias-correction methods
improved precipitation hindcasts compared to the benchmark method for lead times up to 6 months, with the best perfor-

mance obtained at one month lead time in winter.

KEYWORDS: Precipitation; Bias; Probabilistic Quantitative Precipitation Forecasting (PQPF); Seasonal forecasting;

General circulation models

1. Introduction

Seasonal precipitation forecasts have high utility in inform-
ing decision-making in diverse areas including in agricultural
decision-making (e.g., Calanca et al. 2011), private insurance
companies (e.g., Osgood et al. 2008), water authorities (e.g.,
Baker et al. 2019), and other sectors to assist preparation for
probable future weather conditions (Blench 1999). However,
due to uncertainties related to model structure, boundary con-
ditions, and input datasets, outputs from dynamical forecast-
ing systems contain systematic and random model errors.
Changing the initial conditions or even the formulation of the
model, e.g., perturbing the values of model parameters, can
produce ensemble forecasts for the same time period. In this
way, uncertainties in dynamical models can be taken into
account (Troccoli 2010). The advantages of using dynamical
seasonal forecasts have been shown in many studies. For
example, Arnal et al. (2018) showed that using ensemble hind-
casts from the European Centre for Medium-Range Weather
Forecasts (ECMWF) System 4 (SEAS4) is more skillful in
streamflow forecasting compared to the ensemble streamflow
prediction (ESP) forecasting approach in some catchments in
Europe and for certain seasons, especially in winter. Golian
et al. (2022) also showed how a hybrid statistical-dynamical
method can improve precipitation forecast skill in winter and
summer in Ireland.

While ensemble forecasting provides more complete infor-
mation on possible future weather conditions compared to a
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single forecast (Atger 2001), their accuracy and reliability are
not usually good for variables close to Earth’s surface such as
precipitation (Buizza 2018). To increase the skill of seasonal
weather prediction systems, Stockdale et al. (2010) reviewed
and explained the requirements for these systems, including the
initial condition, high-quality models of the ocean—atmosphere—
land system, and required data for validation of seasonal fore-
casting systems. The raw ensemble forecasts from dynamical
models usually do not provide reliable and accurate forecasts,
especially for longer lead times. Qian et al. (2020) showed
that when using the ensemble mean of the dynamical models,
they perform worse than a statistical method which employed
regression relationships between sea surface temperature
(SST) and precipitation. They showed that the accuracy of
raw dynamical model outputs sharply decreased with lead
times longer than 1 month. This implies the importance of us-
ing postprocessing and bias-correction methods to increase
the skill of dynamical model outputs for decision-making.
Bias correction is referred to the process of adjusting biased
simulated data to observations (Reiter et al. 2016).

Different methods have been developed for bias correction
and downscaling dynamical models (e.g., Bhatti et al. 2016;
Moghim and Bras 2017; Maity et al. 2019; Yang et al. 2020;
Kim et al. 2021). Two widely used bias-correction methods
are linear scaling and distribution mapping (Crochemore et al.
2016). Ghimire et al. (2019) applied eight bias-correction
methods to rainfall forecasts from three global climate models
(GCMs) at monthly and annual time scales to improve hydro-
logical simulations at multiple time scales. While all methods
improved the accuracy of forecasts, linear scaling and empiri-
cal quantile mapping showed better performance compared
to other methods, i.e., parametric quantile mapping methods
with scaling function. Mendez et al. (2020) compared six bias-
correction methods to adjust the precipitation outputs of five
dynamical models over Costa Rica and found that empirical

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
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quantile mapping (EQM) and the delta method (DT) outper-
formed the other approaches including linear scaling, gamma
quantile mapping, power transformation of precipitation, and
gamma-Pareto quantile mapping in enhancing the accuracy
of dynamical model predictions.

Despite previous research, there are few comprehensive
studies demonstrating how bias-correction methods perform
over different lead times for seasonal forecasting. For exam-
ple, Crochemore et al. (2016) showed how bias-correcting
precipitation forecasts can improve the skill of streamflow
forecasts up to 3-month lead time. While their results revealed
that bias correction generally improved the skill of forecasts,
they did not clearly show the effect of lead time on perfor-
mance of bias-correction methods. In another study, Monhart
et al. (2018) assessed the two bias-correction methods at dif-
ferent lead times (5-32 days) and seasons and found improved
skill for bias-corrected temperature in all seasons except
spring. In terms of ensemble forecast outputs from dynamical
models, the majority of studies apply bias-correction methods
to ensemble members individually and then average them or
use them separately (e.g., Ratri el al. 2019; Crespi et al. 2021;
Lorenz et al. 2021), while there is little research to compare
how bias-correction methods perform when applied to indi-
vidual ensembles members or when applied to the ensemble
mean.

This study aims to assess the performance of different bias-
correction methods for application to precipitation forecasts
from ECMWF SEASS for 44 Irish catchments over the period
1981-2016. Specifically, we address the following three ques-
tions: 1) Which bias-correction method is most effective at im-
proving forecast skill? 2) Is bias-correction skill a function of
lead time? 3) Is there a significant difference between the per-
formance of bias-correction methods when applied directly to
the ensemble mean or alternatively when applied to individ-
ual ensembles first and then averaged?

The remainder of the paper is organized as follows. In
section 2, a brief description of datasets, bias-correction
methods, and evaluation criteria employed is presented.
Section 3 contains results and discussion, and finally, conclu-
sions are briefly presented in section 4.

2. Data and methods
a. Study catchments and data

Figure 1 shows the location of the 44 study catchments
across Ireland. These catchments were selected as they have
good quality data and provide a representative sample of
Ireland’s diverse hydrological and climatological conditions,
with good spatial coverage. They have also been employed in
previous efforts to develop seasonal hydrological forecasting
techniques (Donegan et al. 2021; Foran Quinn et al. 2021).
Table 1 summarizes the key characteristics of each catchment.

For precipitation, monthly hindcasts from ECMWF’s fifth gen-
eration long-range seasonal forecasting system (SEASS) with up
to 6 months lead time (LT) were downloaded from the ECMWF
Meteorological Archival and Retrieval System (MARS) system
(https://'www.ecmwf.int/en/computing/software/ecmwf-web-api)
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FI1G. 1. The location of study catchments (after Golian et al. 2021).

for the period 1981-2016. SEASS consists of 25 ensemble
members initialized on the first of the month. The monthly
values were used to calculate seasonal forecasts for winter
(DJF) and summer (JJA) as the wettest and driest seasons in
Ireland, respectively, and also for spring (MAM) and autumn
(SON) seasons. SEASS5 data were downloaded at 0.125°
spatial resolution using the ECMWF web application pro-
gramming interface (API) tools and then averaged over each
catchment by overlaying the shapefile of catchments on pre-
cipitation maps. Seasonal forecasts are compared with observed
precipitation values for each catchment derived from a national
gridded precipitation dataset produced by Met Eireann
(Ireland’s national meteorological service) (Walsh 2012). The
number of rain gauges varies from year to year, with approxi-
mately 550 rain gauge locations used by Walsh (2012). Data
were quality controlled (QC) and missing data were filled using
three methods, namely, weighted ratios of nearby stations,
weighted spatial regression and finally spatial interpolation
method. For more details, readers are referred to Walsh (2012).

b. Bias-correction methods

Following collation of observed and forecast data for con-
current periods, different bias-correction methods were ap-
plied (Fig. 2). We employ five methods, namely, linear scaling
(Scaling), quantile mapping based on empirical distribution
(EQM), quantile mapping based on the gamma distribution
(GQM), quantile delta mapping (QDM), and ordinary least
squares (OLS) regression. The OLS method is applied only to
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TABLE 1. The characteristics of selected catchments for this study.

VOLUME 23

Mean annual

Mean annual

Station River Location Area (km?) Mean elevation (m) precipitation (mm) temperature (°C)
6013 Dee Charleville 309.15 83.92 882.95 9.27
6014 Glyde Tallanstown 270.38 84.53 920.38 9.27
6030 Big Ballygoly 10.40 256.44 1152.69 8.52
7009 Boyne Navan Weir 1658.19 84.77 892.05 9.30
7012 Boyne Slane Castle 2460.27 90.96 911.39 9.25
9011 Slang Frankfort 5.46 101.91 972.36 9.82

12001 Slaney Scarawalsh 1030.75 160.60 1094.06 9.17
14007 Stradbally Derrybrock 118.59 134.91 900.68 9.14
14019 Barrow Levitstown 1697.28 93.90 869.21 9.34
15001 Kings Annamult 44435 118.43 964.21 9.41
15003 Dinin Dinin Br. 299.17 208.31 1015.51 8.76
15005 Erkina Durrow Ft. Br. 379.37 126.65 896.77 9.25
15006 Nore Brownsbarn 2418.27 136.60 967.75 9.22
15007 Nore Kilbricken 339.76 168.78 1114.96 8.96
16008 Suir New Bridge 1090.25 138.01 1033.20 9.30
16009 Suir Caher Park 1582.69 139.35 1074.94 9.32
16011 Suir Clonmel 2143.67 148.99 1103.13 9.29
16012 Tar Tar Br. 229.63 195.91 1271.01 9.11
16013 Nire Fourmilewater 93.58 284.81 1313.72 8.47
18002 Blackwater Ballyduff 2333.69 165.62 1256.67 9.43
18003 Blackwater Killavullen 1256.70 181.07 1342.32 9.40

18006 Blackwater CSET Mallow 1054.78 187.84 1366.37 9.36

18050 Blackwater Duarrigle 248.83 210.71 1574.50 9.27

22006 Flesk (Laune)  Flesk 328.81 233.29 1819.37 9.21

23002 Feale Listowel 646.85 195.81 1441.98 9.31

24008 Maigue Castleroberts 806.04 96.12 979.78 9.71

24030 Deel Danganbeg 258.88 119.62 1055.29 9.75

25001 Mulkear Annacotty 647.56 152.49 1172.67 9.26

25002 Newport Barrington’s Br. 221.61 188.91 1263.04 8.98

25006 Brosna Ferbane 1162.76 88.40 924.53 9.33

25030 Graney Scarriff 280.02 136.00 1207.74 9.31

25034 L. Ennell trib Rochfort 10.77 109.64 989.29 9.10

26021 Inny Ballymahon 1098.78 89.74 975.83 9.18

26058 Inny Upper Ballinrink Br. 59.98 118.97 1001.93 9.02

27002 Fergus Ballycorey 564.27 70.06 1327.55 9.80

30007 Clare Ballygaddy 469.90 75.00 1131.77 9.38

32012 Newport Newport Weir 146.16 133.40 1674.39 9.10

33001 Glenamoy Glenamoy 76.12 108.58 1587.81 9.19

34001 Moy Rahans 1974.76 81.22 1317.81 9.31

35002 Owenbeg Billa Br. 88.82 183.24 1562.77 8.60

35005 Ballysadare Ballysadare 639.66 99.71 1263.21 9.13

36019 Erne Belturbet 1491.76 106.49 1034.89 9.03

38001 Owenea Clonconwal Ford 111.25 184.91 1866.51 8.38

39009 Fern O/L Aghawoney 206.83 139.82 1560.59 8.67

selected ensemble members while the other four bias-correction
methods are applied to both the ensemble mean (scheme 1)
and each (X25) ensemble members (scheme 2) to evaluate if
there is a significant difference between methods of deploy-
ment (Fig. 2). Like many data-driven models, for OLS method
we only apply the best combination of predictors (here ensem-
bles) derived from a feature selection method to reduce the
computational cost, enhance model generalization, and in-
crease model performance [section 2b(5)]. The results of these
bias-correction methods are compared with the raw ensemble
mean (Mean_ens) for each season to evaluate the skill of

different methods in improving forecast accuracy. The follow-
ing subsections provide a brief overview of each bias-correc-
tion method.

1) LINEAR SCALING METHOD (SCALING)

This is the simplest bias-correction approach in which a
monthly correction factor is applied to the forecasted precipi-
tation data using the following equations

P
_ m,obs
myrev Pm,orig X ? 4 (1)
m,orig
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FIG. 2. Overview of study design adopted for evaluating bias-correction methods and approaches to implementation.

where P, ;. is revised precipitation for month m, P, orig is
the average precipitation of the raw ensembles from dy-
namical models for month m, Fm,obs is the average ob-
served precipitation for month m, and meg is the average
precipitation from dynamical models for month m. For pre-
cipitation multiplicative correction factors are applied
(Teutschbein and Seibert 2012).

2) EMPIRICAL DISTRIBUTION QUANTILE
MAPPING (EQM)

This method is based on the empirical cumulative distribu-
tion function (ecdf) and can be applied to both wet and dry
spells. In the EQM method, both the frequency of precipita-
tion occurrences along with standard deviations can be cor-
rected simultaneously (Luo et al. 2018) using the following
equations:

P =ecdf ![ecdf

m,rev m,orig(

P

m,orig)]’

@

where ecdf ! represents the inverse of the ecdf.

3) GAMMA DISTRIBUTION QUANTILE MAPPING (GQM)

It has been shown in some studies that the gamma distribu-
tion is an appropriate distribution function for climatological
variables, especially precipitation (e.g., Piani et al. 2010). The
probability distribution function has the following equation:

1

X —x/B. =0 >0
—B"‘XF(a)e ;3 x=0;0,>0,

f,(xle, ) = x7! ®)

where a and 3 are shape and scale parameters, respectively,
and I'(+) is the gamma function. The bias-corrected precipita-
tion is then calculated by the cumulative gamma distribution
function using following equation:

P =F[F(P

m,rev b% ¥ | @

m,orig ‘m,orig’ Bm,orig)|am,obs’ Bm,obs] (4)
where F, and F/ ! are the cumulative gamma distribution and
its inverse form, respectively; @, org and B, orig are gamma
parameters of original (raw) ensemble data; and a,, ops and
Buobs are gamma parameters from observed precipitation for

month m.
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FIG. 3. Time series of forecasted precipitation with 1-month lead time from different bias-correction methods and raw ensemble mean and
observed precipitation for six sample catchments.

4) QUANTILE DELTA MAPPING (QDM)

QDM, preserves the relative changes in quantiles of mod-
eled precipitation while at the same time the algorithm seeks
to correct the systematic biases in quantiles of the modeled
precipitation with respect to observed values (Cannon et al.
2015). The relative change term at month m [Ayyg(11)] is cal-
culated first [Eq. (5)] and then bias-corrected precipitation is
derived using Egs. (6) and (7):

Prig st M)
A (m) S mong,test . (5)
one or}g,cal[Forigytcst{Pnrig,lest(m)}]
—_ 1 (m)
Prev,cal(m) — % m,obs [Forigﬁlest{Porig,lest(m)}]’ (6)
Prev,test(m) = Prev,cal(m)Aorig(m)’ (7)

where Py est() is the average precipitation ensemble for

month m, Fgrilgcal is the inverse cumulative distribution

function of the of raw data from dynamical models for calibra-
tion (baseline) period, Fgy, . is the cumulative distribution
function of raw data from dynamical models for test period,
Prev cal is the bias-corrected data for the calibration (baseline)
period, and finally, Py est(#) is the bias-corrected precipita-
tion at month m of the test (validation) period.

5) ORDINARY LEAST SQUARES (OLS) COMBINATION
METHOD

OLS is a regression-based method which combines individ-
ual forecast ensembles linearly to predict target (observed)
values using the following equation:

E
Pobs(m) = BO + Zl Bipgfi)g,i + e (10)
i=

where P,,s(m) is the target (observed) precipitation at
month m, Pg’:’i)g’i are ith ensemble predicted precipitation from
the dynamical model, E is total number of ensembles (E = 25
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FIG. 4. Mean absolute error (MAE) for different bias-correction methods over 44 study catchments. Bias-correction methods applied
on individual ensemble members first and then averaged have the “_ens” extension on their names. The red dashed line shows the value

for MAE = 40.0 to make comparison easier.

for SEASS model), B; are coefficients of the regression model,
and ¢ is the residual (error) term. OLS estimates the coeffi-
cients in a way to minimize the sum of squared errors. Unlike
the schemes 1 and 2 where all ensembles are used (in scheme
1, average of all ensembles are calculated first and then bias-
corrected, and in scheme 2, all individual ensembles are bias-
corrected first and then averaged), in the OLS method only
those selected individual ensembles are utilized to develop
the regression equation to calculate the bias-corrected precip-
itation. An exhaustive search method (Golian et al. 2022) was
used to select the best combination of predictors (here ensem-
ble members) to be used in the OLS method.

¢. Evaluation of methods

Based on bias-corrected precipitation with different lead
times and the observed precipitation datasets, various sta-
tistics are used to evaluate the performance of different
bias-correction methods. We estimate parameters of bias-
correction methods over the calibration period (1981-2006)

and applied the models to the validation period (2007-16).
These criteria include the correlation coefficient, mean abso-
lute error (MAE), and coefficient of variation (CV). The ideal
value for the correlation coefficient and MAE is 1 and 0, re-
spectively, while for CV the closer the bias-corrected CV to
the observed, the better. In addition to deriving these perfor-
mance criteria for the entire observed and bias-corrected time
series for the validation period, we also derive them for sea-
sonal precipitation series. Finally, we also compare the perfor-
mance of different methods with observed precipitation in
terms of high, medium, and low precipitation values, which
are defined as precipitation with a probability of exceedance
of 5%, 50%, and 95 %, respectively.

3. Results and discussion

a. Performance of bias-correction methods and schemes

The methods described in section 2 were applied to bias
correct precipitation from SEASS. These methods include the
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FIG. 5. Correlation coefficient between observed and bias-corrected precipitation over different lead times. Bias-correction methods
applied on individual ensemble members first and then averaged are shown with “_ens” extension on their names. The red dashed line
shows the value of correlation = 0.4 for the sake of convenience in their comparison.

scaling method (Scale), EQM, GQM, and QDM, which all
were applied to mean ensemble. The same methods were also
applied to individual ensembles first and then averaged. We
also used the OLS method with selected ensemble members
while the raw ensemble mean precipitation without bias cor-
rection (Ens_mean) was used as the benchmark method.

Figure 3 shows the time series of different bias-corrected
precipitation series with 1-month lead time for six sample
catchments as an example. It can be seen that some methods,
e.g., EQM_ens, GQM_ens, and QDM_ens provide more ac-
curate precipitation when compared to observed precipita-
tion, especially for more frequent precipitation values.

Using observed data, mean absolute error (MAE) and the
coefficient of variation are employed to measure the accuracy
of bias-correction methods. Figures 46 show the performance
of different methods. The dashed red line is plotted as a scale to
compare the performance of different methods more conve-
niently. From Fig. 4, almost all methods improve the MAE

compared to the benchmark (Ens_mean) for 1-month lead time
(LT1), but over other LTs, GQM followed by QDM and EQM
have the worst performance, which shows the weaker perfor-
mance of these methods in bias-correcting of the bulk of precip-
itation values, i.e., values around the mean.

Applying bias-correction methods to individual ensemble
members first and then calculating the average precipitation im-
proves the performance of all methods, especially GQM, QDM,
and EQM. For LT1, QDM._ens, Scale, OLS, and other ensemble-
based methods have the best performance. For other LTs, OLS
followed by scale and ensemble-based methods outperform other
methods. However, there is no specific pattern as to which bias-
correction method systematically performs better over different
lead times. There have not been many studies on the relationship
between lead time and performance of bias-correction methods
at seasonal time scales. Li et al. (2019) examined the efficiency of
bias-correction methods up to 11 days. Crespi et al. (2021) evalu-
ated the performance of different bias-correction methods in
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FIG. 6. Coefficient of variation (CV) for different bias-correction methods over all study catchments. The red dashed line shows the
median CV for observed data.

improving precipitation and temperature from the SEASS model
with 1-month lead time, but did not examine other lead times.

Using Spearman’s correlation coefficient between ob-
served and bias-corrected precipitation with different lead
times, it can be seen from Fig. 5 that all methods show
very similar performance for LT1, but for longer LTs, OLS
outperforms other methods, while QDM has the worst
performance. The correlation score of the raw ensemble
mean (Ens_mean) decreases as lead time increases from
1 to 6 months. In general, except for 1-month lead time,
correlation values are very small. Gubler et al. (2020) derived
similar correlation coefficients for precipitation forecasts with
1-month lead time over South America with correlation val-
ues less than 0.5 for most regions. Crespi et al. (2021) also
showed very low positive and negative correlations between
reference precipitation, i.e., ERAS and forecasted precipita-
tion from SEASS with 1-month lead time for most parts of
Europe (correlation spanning from —0.4 to 0.4 for most re-
gions), without clear spatial dependency.

From Fig. 6 the CV is closer to observed values for those
bias-correction methods which are applied to the mean en-
semble. EQM and QDM followed by GOM outperform other
methods. These methods better preserve the relative disper-
sion of bias-corrected precipitation around the mean. It was
also shown by Son et al. (2017) that nonparametric bias-cor-
rection methods, e.g., EQM, provided the best results in in-
creasing the accuracy of GloSea5 precipitation forecasts over
South Korea. The reason can be related to the fact that when
bias-correction methods are applied to individual ensemble-
members first and then averaged, the resulting values have a
tendency toward average precipitation. Some ensemble mem-
bers tend to have much higher/lower values and when they are
averaged, the result preserves the mean (average) statistics. In
this way, the relative dispersion of data points around the mean
is lower, resulting in lower CV values, as shown in Fig. 6.

In general, bias-correction methods performed better for
1-month lead time (LT1) compared to other LTs based on
correlation and MAE criteria. They revealed the worst
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performance for LT6, but there is no specific rule/pattern
for other LTs. This can be related to the fact that the per-
formance of precipitation hindcast from SEASS5 model is
much better for LT1 compared to other lead times (e.g.,
Fig. S1 in the online supplemental material for correlation co-
efficient). Zhao et al. (2017) also showed that at longer lead
times, the efficiency of applying bias-correction postprocess-
ing of forecasts decreases compared to the case with 0-month
lead time. Also, compared to the Ens_mean, it can be seen
that some methods have similar or even worse performance
based on correlation coefficient and MAE, e.g., EOM, GQM,
and QDM for LT1. In another study, Crochemore et al.
(2016) showed that resulting biases vary more with the calen-
dar month of the forecast horizon than with lead time.

b. Assessment of bias-correction methods for extreme
precipitation values

To examine if bias-correction methods and schemes can
preserve extreme precipitation values, the precipitation with
5% and 95% exceedance probabilities were calculated from
bias-corrected precipitation time series for the test period and

results compared to the observed values over different catch-
ments and lead times. Results are illustrated in Figs. 7 and 8
for 1- and 6-month lead times as examples. For both extreme
conditions, i.e., low and high precipitation, ordinary quantile-
based methods, i.e., EQM, GQM, and QDM applied to en-
semble mean outperformed those bias-correction methods
applied to individual ensemble members first and then aver-
aged. Also, ordinary EQM, GQM, and QDM outperformed
the other methods, i.e., OLS and scale methods for all lead
times. When applying bias-correction methods to individual
ensembles first and then averaging them, this averaging tends
to neutralize the extreme information which is inherent in
some ensemble members, with averaging of individual mem-
bers tending toward median/mean values.

¢. Performance of bias-correction methods at
seasonal scales

Finally, the performance of different bias-correction meth-
ods across seasons (winter, DJF; spring, MAM; summer, JJA;
and autumn, SON) is shown in Fig. 9 in term of the median
MAE for all study catchments. EOM, GQM, and QDM
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applied to the ensemble mean in winter and summer; QDM
in spring; and GQM followed by EQM and QDM in autumn
had the worst performance. In spring and summer, the MAE val-
ues for all bias-correction methods are smaller than and perform
more closely over different lead times compared to winter and
autumn. This is because MAE is related to precipitation and
therefore smaller MAE is expected in drier seasons. Overall, for
all seasons, the performance of bias-correction methods is better
for LT1 compared to other LTs. Based on the correlation coeffi-
cient (Fig. 10), all methods perform better for LT1, while the
performance of bias-correction methods is better in winter com-
pared to other seasons. Tong et al. (2021) also showed that the
effects of bias correction are season dependent, performing
better in the wet season in their study region. This might be
related to the fact that dynamical models provide less accu-
rate precipitation forecasts in spring and summer than wet
seasons, i.e., winter and autumn due to difficulties in model-
ing convective rainfall (Lenderink et al. 2007) and this
weaker performance is transferred to bias-correction meth-
ods over these seasons too. Zarei et al. (2021) also showed
that their bias-correction methods, i.e., quantile mapping and
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FIG. 8. Precipitation (P) amount with (top left) 95%,
(top right) 50%, and (bottom left) 5% probability of
exceedance for 6-month lead time resulted in from different
bias-correction methods and also from observed values.

random forests revealed better performance in improving pre-
cipitation forecasts in winter and autumn compared to sum-
mer and spring.

In general, while it has been shown by previous studies that
bias-correction methods based on quantile mapping can im-
prove precipitation estimates from regional climate models
(e.g., Jakob ThemeRBl et al. 2011; Enayati et al. 2021), our results
show that regression based methods, e.g., OLS in our study can
perform as well as or better in improving the accuracy of precip-
itation from dynamical climate models based on correlation and
MAE criteria. However, this resulted in poor performance in
correcting extreme high and low precipitation, i.e., precipitation
with 5% and 95% exceedance probabilities. Also, while most
climatemodels provide ensembles of forecasts/hindcasts as their
outputs, our study showed that applying bias-correction meth-
ods to individual members first and then averaging the results
can further improve the outputs of dynamical models in terms
of correlation and MAE criteria. However, when it comes to ex-
treme high or low precipitation, quantile-based methods ap-
plied to the ensemble mean provides more skillful results
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compared to the same methods applied to individual ensembles
first and then averaged.

4. Conclusions

We compared the performance of five different bias-correction
methods in improving the accuracy of precipitation forecasts
from the European Center for Medium Range Forecasts
(ECMWF) System 5 (SEASS) with 1-6-month lead times. Bias-
correction methods were applied to (i) the ensemble mean and
(ii) individual ensemble members that were then averaged, to ex-
amine differences between bias-correction methods under both
schemes. Using multiple evaluation criteria, the performance of
bias-correction methods were evaluated monthly and seasonally.
Applying bias correction to individual ensemble members
(scheme 2) and the OLS method applied to selected ensem-
bles provide the best performance in terms of correlation and
MAE for most precipitation values distributed around the
mean. However, for extreme precipitation application of sim-
ple methods like EQM, QDM, and GQM to the ensemble
mean (scheme 1) are more skillful. All methods perform

better over 1-month lead time (LT1) compared to other lead
times. Bias-correction performance is best in winter relative
to other seasons.

Bias-correction methods perform more similarly over different
lead times in drier seasons, i.e., spring and summer compared
with wetter winter and autumn seasons. It is difficult to identify a
single best-performing bias-correction method for a specific lead
time and season.

Given that the ensemble-based method, i.e., applying the
bias-correction methods to individual ensembles first and
then calculate the average of corrected precipitation improves
the accuracy of hindcasted precipitation from SEASS5 based
on correlation and MAE criteria, we conclude that this en-
semble bias-correction scheme is useful for the bulk of pre-
cipitation values, e.g., values around the mean, but not for
extreme values. For low and high precipitation, ordinary
quantile-based bias-correction methods can directly be ap-
plied to the ensemble mean. Hence, developing a hybrid
method based on both simple and ensemble-based bias-
correction methods may be an interesting subject for future
research.
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