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Abstract: We assess changes in the seasonal mean and annual low flows (Q95) for 37 catchments
across the Republic of Ireland. Two hydrological models (SMART and GR4J) are trained and evaluated
for their ability to capture key hydrological signatures from observations before being forced with
bias corrected outputs from 12 Earth System Models from the CMIP6 ensemble. Projected changes
are derived for three shared socio-economic pathways (SSP126, SSP370 and SSP585) for the 2020s,
2050s, and 2080s. The results show a wide range of change in all metrics across the catchment sample.
While even the direction of change is highly uncertain in spring and autumn, there is a tendency
towards increased flows in winter and reduced flows in summer, together with large reductions
in annual low flows. Under SSP370, the median reduction in summer flows across catchments for
the 2080s simulated by GR4J is −21.3 percent (90 percent CI: 4.8 to −36.9 percent). For Q95, for the
2080s, GR4J returns a median reduction of −20.9 percent (90 percent CI: −2.5 to −38.2 percent), while
SMART suggests a median reduction of −21.2 percent (90 percent CI: −6.0 to −36.9 percent). Such
changes would pose significant challenges for water management, requiring significant adaptation.
Notably, for low flows in particular, significant reductions in emissions under SSP126 result in more
moderate future changes, indicating the importance of both adaptation and mitigation to sustainable
water management.

Keywords: climate change impacts; seasonal flows; low flows; CMIP6; Ireland

1. Introduction

Climate change, through changes in precipitation and evapotranspiration, is expected
to lead to alterations in the flow regime of catchments [1]. Understanding plausible
projected changes is fundamental to adaptation in the water sector, with impacts having
implications for water resource management [2], hydro power [3], aquatic ecosystems [4],
and economic activity. The assessment of climate change impacts on catchment hydrology
tends to follow a modelling chain that begins by downscaling/bias correcting climate
model projections forced with future emissions scenarios to the catchment scale and then
using these projections to force hydrological models to evaluate future changes relative to a
reference period representing current conditions [5].

In Ireland, despite evident vulnerability across sectors to recent drought events in
summer 2018 [6] and spring 2020, together with significant pressure on water supply
systems, the aging infrastructure, and the little or no spare capacity to meet existing water
demand in certain parts of the country [7], relatively little work has been conducted to
evaluate future changes in mean and low river flows. Research has tended to focus on high
flows and changes in floods [8,9]. Two published studies by Charlton et al. [10] and Steele
Dunne et al. [11] are exceptions. Charlton et al. [10] employed a statistically downscaled
output from HadCM3 under the Special Report on Emissions Scenarios (SRES) A1 emissions
scenario to force a hydrological model for 10 km × 10 km grid cells over Ireland for a
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baseline (1961–1990) and two future time periods (2041–2070 and 2061–2090). Their results
suggest decreases in the annual runoff, most markedly in the east and southeast of the
country, with reductions particularly marked during summer in these regions.

Taking a catchment-based approach, Steele-Dunne et al. [11] employed precipitation
and temperature projections from the ECHAM5 General Circulation Model, forced using
the Special Report on Emissions Scenarios (SRES) A1B scenario, and downscaled with the
Rossby Centre Atmosphere Model (RCA3) regional climate model to force the HBV light
hydrological model to evaluate changes in the flow regimes of nine catchments. Their
results suggest an amplification of the seasonal cycle of precipitation across the island
for the 2021–2060 period with increases (decreases) in winter (summer) precipitation and
increased temperatures in all seasons. Increases in streamflow of up to 20 percent for the
months of October to April (winter half year) and decreases in flow of up to 60 percent
during the months of May to September (summer half year) were simulated. However,
both these studies only used a single climate model and are likely to have underestimated
the range of plausible changes from the larger ensemble of models now available. Moreover,
both studies were based on a single SRES emissions scenario that under-represented the
range of plausible future emissions and has subsequently been replaced by Representative
Concentration Pathways (RCPs) and, more recently, by the Shared Socioeconomic Path-
ways (SSPs). In addition, neither study evaluated the uncertainty due to the hydrological
model structure.

Given the above vulnerabilities and research gaps, this study aimed to provide an
updated assessment of the impacts of climate change on the seasonal means and low flows
of 37 Irish catchments. In doing so, we attempted to better represent the plausible ranges
of future change by employing 12 Earth System Models (ESMs) that comprise the recently
available Coupled Model Intercomparison Project Phase 6 [12] ensemble forced using three
SSP scenarios (SSP126, SSP370 and SSP585). Changes in future flow regimes were evaluated
using two structurally different conceptual hydrological models.

2. Materials and Methods
2.1. Hydroclimatic Indices and Catchments

We assess future changes in seasonal (winter [DJF], spring [MAM], summer [JJA],
autumn [SON]) mean and annual low flows (Q95; the flow exceeded 95 percent of the time)
for 37 catchments across the Republic of Ireland, selected to be broadly representative of the
range of catchment types present. Figure 1 shows the distribution of the catchments, while
Table S1 (Supplementary Information) shows the key characteristics of the catchment sam-
ple calculated for the 1976–2005 period, including the catchment area, mean discharge (Q),
mean precipitation (P), and the Q to P ratio, which is indicative of the catchment storage
effects. The average catchment area was 737.8 km2, with the smallest catchment being
11 km2 and the largest being 2418 km2.

For each catchment, the gridded (1 km × 1 km) daily precipitation and temperature
data [13] area averaged for the 1976–2005 period were used to derive inputs for hydrological
models and to provide a representative reference series for bias correction (see below).
The Daily Potential Evapotranspiration (PET) was derived from the air temperature data
using the method of Oudin et al. [14]. While Penman–Monteith based estimates of PET
are available for some stations in Ireland, they are not available for most catchments, nor
are the datasets required as inputs extensive (e.g., wind speed, humidity). For training
and verification, daily discharge data from the hydrological models for each catchment for
the 1976–2015 period were obtained from the relevant hydrometric agencies, namely the
Office of Public Works (https://waterlevel.ie/hydro-data/ accessed on 11 March 2022) and
the Environmental Protection Agency (https://epawebapp.epa.ie/hydronet/#Water%20
Levels accessed on 11 March 2022).

https://waterlevel.ie/hydro-data/
https://epawebapp.epa.ie/hydronet/#Water%20
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Figure 1. Distribution of the 37 catchments used in the analysis. The red line identifies the catchment
boundary, while the green triangle indicates the location of the gauging station. The numbers
listed are unique hydrometric codes used to identify gauges and correspond to those given in
subsequent figures.

2.2. Climate Models and Bias Correction

Daily precipitation and air temperature data for the 1976–2100 period were extracted
for 12 members of the CMIP6 ensemble (see Table 1) forced by each of three Shared
Socioeconomic Pathways (SSPs), including SSP126, SSP370, and SSP585. These SSPs
represent a scenario of sustainability (SSP1), a rocky road marked by regional rivalry
(SSP3), and a fossil-fuel-dependent future (SSP5), consistent with radiative forcing levels
(watts per meter squared) analogous to RCP2.6, RCP7.0, and RCP8.5. For each catchment,
daily precipitation and temperature data were extracted from the closest land-based GCM
grid overlying the catchment centroid. Before using projections to force hydrological
models, we bias-corrected the raw climate model output. Meresa et al. [9] compared the
performances of five bias correction methods (change factor (CF), single gamma quantile
mapping (SGQM), empirical quantile mapping (EQM), double gamma quantile mapping
(DGQM), and Birnbaum–Sanders-based quantile mapping (BSM)) for Irish catchments,
highlighting the good performance of double gamma quantile mapping in the reproduction
of observed precipitation characteristics and the utility of the simpler empirical quantile



Water 2022, 14, 1556 4 of 20

mapping method for daily air temperature. Therefore, in this study, the DGQM method
was used for the bias correction of daily precipitation climate projections. The gamma
distribution was fitted to both the upper and lower 75th percentiles of the observed and
simulated precipitation distributions. This helped to better capture the drizzle/low (dry)
precipitation, and wet/intensity of precipitation days at the same time.

Table 1. Details of the 12 CMIP6 Earth System Models (ESMs) included in the analysis. ESMs marked
with an asterix indicate those showing high climate sensitivity.

Code Institute Parent Source ID Institution ID

* CM1 Commonwealth Scientific and Industrial Research
Organisation, Australia ACCESS-CM2 CSIRO

* CM2 Met Office Hadley Centre, UK UKESM1-0-LL MOHC

CM3 Beijing Climate Center, China BCC-CSM2-MR BCC

CM4 Global Fluid Dynamics Laboratory, USA GFDL NOAA-GFDL

CM5 European: EC-EARTH consortium EC-Earth EC-EARTH consortium

* CM6 National Center for Atmospheric Research, USA CESM2 NCAR

* CM7 Met Office Hadley Centre, UK HadGEM3-GC31-LL MOHC

CM8 JAMSTEC, AORI, NIES, and R-CCS, Japan MIROC6 MIROC

CM9 Max Planck Institute for Meteorology, Germany MPI-ESM1-2-HR MPI-M

CM10 Meteorological Research Institute, Japan MRI-ESM2-0 MRI

CM11 NorESM Climate modeling Consortium, Norway NorESM2-LM NCC

* CM12 Nanjing University of Information Science and
Technology, China NESM3 NUIST

Bias correction was undertaken for the reference period 1976–2005. Based on the CDF
of observed and simulated precipitation in the reference period (Po, 75th, Pb, 75th) and
future period (Pfut, 75th), we derived two gamma parameter values (αo, βo) and used
them to bias correct the raw model output. For the bias correction of temperature, we
employed a simpler empirical quantile mapping method. Bias-corrected outputs from
each of the 12 CMIP6 models employed were used to force hydrological models to assess
changes in future seasonal and low flows under three SSP scenarios for three future time
periods: the 2020s (2010–2039), the 2050s (2040–2069), and the 2080s (2070–2099).

Given concerns over the high climate sensitivity reported for some CMIP6 models [15],
we also explored whether differences in simulated changes from these ESMs were dis-
cernable at the catchment scale. In Table 1, ESMs within our ensemble with high climate
sensitivity are marked with an asterix. To discern whether ESMs with high climate sensi-
tivity resulted in more/less severe projected changes, we visually assessed box plots of
changes in winter and summer precipitation for the 2080s across all catchments under each
SSP scenario.

2.3. Hydrological Models

We employed two structurally different lumped conceptual hydrological models
to simulate future changes in catchment responses. Both models have been employed
previously for climate change impact assessments in Ireland.

2.3.1. The GR4J Model

The GR4J (Génie Rural à 4 paramètres Journalier [16]) model is a parsimonious model
that was developed as part of the airGR R hydrological modelling package [17]. It consists
of four parameters (X1–X4) that describe the catchment water balance and routing. The
model takes precipitation and potential evapotranspiration as inputs, with four parameters
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(X1–X4) describing the maximum soil moisture storage (mm) (X1), the groundwater ex-
change coefficient (mm) (X2), the maximum capacity of the routing store (mm) (X3), and the
time to peak for the unit hydrograph or flow delay (days) (X4). Table 2 lists the parameters
of the model and parameter ranges employed. The GR4J has been successfully applied
in multiple Irish studies. Broderick et al. [8,18] demonstrated that the model performs
well for a similar set of catchments to those employed here in terms of the temporal tran-
sition between contrasting climate periods and the reproduction of various hydrological
signatures. The GR4J has also been used for flood [8,9] and low flow simulations [19] repre-
senting climate change, ensemble streamflow prediction [20], and predictions of ungauged
conditions [21] in Irish catchments.

Table 2. Range of GR4J and SMART hydrological model parameters used for the sampling parameter sets.

Model Parameter Description Lower Upper Unit

GR4J

X1 Capacity of the soil store production 2.59 582.75 mm
X2 Water exchange coefficient −4.02 4.81 mm/d
X3 Capacity of the routing store 18.24 500 mm
X4 Time parameter for unit hydrographs 0.12 5 d

SMART

T Areal Rainfall Correction coefficient 0.9 1.1 (/)
C Evaporation decay parameter 0 1 (/)
H Quick runoff coefficient 0 0.3 (/)
D Drain flow parameter 0 1 (/)
S Soil outflow coefficient 0 0.013 (/)
Z Effective soil depth 15 150 mm

SK Surface routing parameter 1 240 d
FK Interflow routing parameter 48 1440 d
GK Groundwater routing parameter 1200 4800 d
RK River routing parameter 1 96 d

2.3.2. SMART Model

Our second model, the SMART model [22,23], is widely used in Ireland for water
quality simulations [24], including those investigating climate change [25]. Taking pre-
cipitation and potential evapotranspiration as inputs, SMART consists of 10 parameters
and represents five catchment flow pathways, each represented as a single linear reservoir,
including overland flow, drain flow, interflow, shallow, and deep groundwater flow. As
described by Hallouin et al. [24], soil moisture accounting is determined by whether con-
ditions are energy-limited (PET < P) or water-limited (PET > P). In the former, effective
precipitation is derived by applying a scaling correction (θT) and subtracting any direct
evaporation. The parameter θH determines any direct surface runoff. The remaining
surplus precipitation infiltrates into the soil, represented by six layers with a total moisture
capacity of θZ. Once the moisture-holding capacity of a layer is exceeded, surplus moisture
percolates downwards to a deeper layer if it has capacity; otherwise, it is intercepted by
drains or eventually moves to shallow or deep groundwater stores. When PET > P, the
model meets demands by evaporation from the soil layers, starting at the first layer and
incrementally moving to the lower layers. The parameter θC represents evaporation decay
as layers dry up. The outputs of each flow path are routed through a single linear reservoir,
representing river routing (θRK). Table 2 lists the parameters of the SMART model and
the ranges for each used in this study. Further details on SMART and its development are
provided by Mocker et al. [22,23] and Hallouin et al. [24].

2.4. Hydrological Model Calibration and Evaluation

The same approach to calibration was employed for both models. Using Latin Hy-
percube Sampling [26], 30,000 parameter sets were sampled with a uniform distribution
representing each model parameter. The resultant parameter sets were then evaluated
against observations for the 1990–2015 period in each catchment. The year 1989 was used
for the model warm-up. Parameter sets were evaluated using the Nash–Sutcliffe Effi-
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ciency [27] criterion derived from the log of flows (logNSE) with the best 150 parameter
sets retained. Additional performance criteria were also employed, including the Percent
Bias (PBias) and the performance of the median simulation from both models in capturing
hydrological signatures representative of the range of flow conditions, namely, the 5th,
50th, and 95th percentiles of the CDF of daily flows, together with the runoff coefficient,
skewness, and coefficient of variation (CV) of the observed daily flows. The resultant
median simulation of the retained parameter sets was also used to evaluate future changes
in seasonal and low flows for each model.

3. Results
3.1. Bias Correction

The performance levels of the DGQM and EQM bias correction methods were evalu-
ated using the mean monthly precipitation and temperature indices in the reference period,
respectively. For precipitation, the raw climate model outputs tended to underestimate
precipitation in most catchments. This was particularly the case for small catchments in
the southwest and west (e.g., catchments 22035, 38001). Following the bias correction,
considerable improvement in the replication of observed monthly and seasonal patterns
of precipitation was evident (Figure 2). For temperature, the raw climate model output
showed a tendency to overestimate temperature, especially in the winter months. Again,
following the bias correction, there was considerable improvement in the consistency of
the observed and simulated monthly mean temperatures for all catchments (Figure 3).
Therefore, the corrected daily precipitation and temperature data were used to force the
GR4J and SMART hydrological models.

Figure 2. Comparison between raw (black dots) and bias-corrected (green dots) monthly mean
precipitation from 12 Earth System Models (ESMs) and observations (red line) during the reference
period 1976–2005 for each catchment.
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Figure 3. As in Figure 2, but for the monthly mean temperature.

3.2. Hydrological Model Performance

Figure 4 shows the performance of the median simulations for both hydrological
models for each catchment in terms of logNSE, NSE, and PBIAS, together with the key
hydrological signatures during the evaluation period (1990–2015). GR4J and SMART
performed similarly for the majority of catchments, with logNSE scores ranging from
0.50 to 0.94. For some catchments, GR4J performed better than SMART (e.g., catchments
07009, 23002 and 38001), while for others, the reverse was the case (e.g., catchments 06014,
26021 and 34001). Catchment 15003 was poorly simulated by GR4J (logNSE < 0.6), while
catchment 38001 was poorly simulated by SMART, with both models performing poorly
for catchment 26058. Lower logNSE scores tended to be associated with smaller catchments
(e.g., catchment 26058 (60 km2), catchment 33001 (76 km2), catchment 38001 (111 km2)).
For NSE, SMART marginally outperformed GR4J for most catchments, while for PBIAS,
some large biases were evident for GR4J in catchments 24008 and 24030 and for SMART
in catchment 27002. It was difficult to distinguish a consistently better model from the
reproduction of hydrological signatures, with both models producing good results in terms
of replicating the runoff coefficient and the percentiles of the CDF of daily flows (Figure 4)
across catchments. This is particularly reassuring for the mean and low flows, given
the focus of this study. Both models were less successful at capturing the skewness of
observations. In terms of the CV, there were differences between models across the sample,
with SMART showing a tendency to underestimate and GR4J a tendency to overestimate
CV for some catchments.
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Figure 4. Model performance for various hydrological signatures (ability to capture different per-
centiles of the CDF of daily flows (Q95, Q50, Q5), the skewness, and the Coefficient of Variation (CV)
of observations and the runoff coefficient), together with PBIAS, NSE, and LogNSE skill scores for
each catchment over the evaluation period (1990–2015).

3.3. Projected Changes in Seasonal Flows

Bias-corrected projections of precipitation and PET (derived from bias-corrected tem-
perature using the method of Oudin et al. [14]) were used to force both hydrological models
for three future time periods (2020s: 2010–2039; 2050s: 2040–2069; 2080s: 2070–2099) under
three different SSPs (SSP126, SSP370, and SSP585). Percent changes in seasonal flows
in each future period were derived relative to the baseline period 1976–2005. Projected
changes for each SSP included the uncertainty derived from 12 CMIP6 ESMs and the hy-
drological model structure (GR4J and SMART). Below, we summarize changes in seasonal
flows across the catchment sample for each SSP. The median percent changes for each
catchment/season/SSP/hydrological model, together with 90 percent confidence intervals
(henceforth CI), are provided as look-up tables in the Supplementary Information of which
interested readers/end users can examine results for any catchment.

3.3.1. SSP126 Sustainable Future

Figure 5 shows the percent change in seasonal flows under SSP126 for each catchment,
as simulated by GR4J and SMART. For all seasons, there was no clear direction of change,
with model simulations spanning zero. Median changes across all catchments were similar
for GR4J and SMART for the 2020s and 2050s. However, ranges of change were considerably
greater for the SMART model. The largest increases in winter flows were simulated by
SMART for the 2080s, with a median increase of 12.6 percent across all catchments (CI:
53.3 to 0.2 percent). Increases in winter flows for the 2080s for GR4J showed a median
increase of 4.9 percent across all catchments (CI: 21.1 to −4.7 percent). GR4J tended to
predict decreases for spring flows, while SMART tended to predict increases. For example,
for the 2080s, GR4J simulated a median reduction of −10.3 percent across all catchments
(CI: 1.4 to −19.9 percent), while SMART simulated a median increase of 4.4 percent (CI:
38.3 to −10.9 percent). The ranges of change were the largest for the SMART model. For
the summer mean flows, the direction of change was again uncertain for all future time
periods. For the 2080s, the median change in summer flows across all catchments was 1.8
percent (CI: 30.5 to −17.1 percent) for GR4J and −12.5 percent (CI: 38.2 to −34.8 percent)
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for SMART. Finally, for autumn, GR4J tended to show increases in flow, while SMART
tended to show decreases. The median SON change simulated across catchments by GR4J
for the 2080s was 18.2 percent (CI: 42.1 to −1.1 percent), while for SMART, a median change
of −1.7 percent (CI: 34.7 to −25.5 percent) was simulated. For both hydrological models,
projected increases/decreases in each season became progressively larger when moving
from the early to the mid to late century.

Figure 5. Projected percent changes in seasonal flows derived from the GR4J model (A) and SMART
model (B) forced by the bias-corrected outputs from 12 CMIP6 models under SSP126 for the 2020s
(blue), 2050s (red), and 2080s (yellow) relative to the reference period 1976–2005.
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3.3.2. SSP370 Rocky Road

Figure 6 shows the percent changes in seasonal flows under SSP370 for each catchment,
as simulated by GR4J and SMART. The largest increases in winter flows were projected
by the SMART model, with a median increase of 13.4 percent by the 2080s (CI: 32.2 to
2.9 percent). For winter in the 2080s, GR4J simulated a median increase of 6.9 percent
(CI: 23.1 to −1.8 percent). In spring, while the simulation span increased and decreased,
the median change for GR4J tended to show decreases in flow in each future time period,
while SMART tended to show increases. For the 2080s, GR4J returned a median decrease
of −6.0 percent (CI: 5.6 to −23.6 percent), while SMART returned a median increase of
2.3 percent (CI: 19.6 to −9.0 percent) for spring flows. For summer, projected changes
from both hydrological models again spanned increases and decreases. However, GR4J
projected the most substantial decreases in summer flows, with a median reduction of
−21.3 percent (CI: 4.8 to −36.9 percent) by the 2080s. The equivalent prediction for SMART
was −17.9 percent (CI: 11.4 to −38.6 percent). For both hydrological models, summer
changes became increasingly negative, moving from the 2020s to the 2080s. In autumn, the
median simulation from each model suggested modest increases in flows for the 2050s and
2080s; however, the ranges of change were large. For the 2080s, GR4J returned a median
increase of 8.4 percent (CI: 32.5 to −8.5 percent), while SMART returned a median increase
of 2.3 percent (CI: 29.9 to −12.6 percent). As for SSP126, increases/decreases under SSP370
became progressively greater over time.
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3.3.3. SSP585 Fossil Fuel Intensive

Figure 7 shows the percent change in seasonal flows under the fossil-fuel-intensive
SSP585 for each catchment, as simulated by GR4J and SMART. Again, the largest median
increase in winter flows weas simulated by SMART for the 2080s (median 13.4 percent; CI:
28.6 to 5.5 percent). The equivalent for GR4J was a median increase of 8.5 percent (CI: 29.6
to 0.1 percent). For both models the range of changes shifted to the right (increases) with
progression of the century. In spring, both hydrological models spanned increases and
decreases, with median changes from GR4J suggesting progressively decreasing flows as the
century progresses (2080s median −10.8 percent; CI: 8.6 to −20.9 percent), while SMART
showed increases (2080s median 4.9 percent; CI: 19.2 to −15.4 percent). For summer,
progressively larger decreases in flow were simulated with progression of the century.
Reductions were typically greatest for the GR4J model with a median reduction in JJA flows
of −25.0 percent by the 2080s (CI: −3.2 to −43.3 percent). SMART reductions in JJA flows
were more modest, but still substantial, with a median reduction of −10.8 percent simulated
for the 2080s (CI: 12.0 to −35.1 percent). The autumn results from both models spanned
sign changes, with median simulations from both models tending towards increases in
SON mean flows. For the 2080s, SMART returned a median increase of 1.8 percent (CI: 28.9
to −12.7 percent). GR4J showed a median increase of 5.2 percent (CI: 30.2 to −11.0 percent)
for the same time period.
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Figure 7. As in Figure 5, but for SSP585.

3.4. Projected Changes in Low Flows

Changes in annual low flows were evaluated using Q95, the flow exceeded 95 percent
of the time during the reference period. Again, we summarize changes across the catch-
ment sample, with median changes and 90 percent confidence intervals for each catch-
ment/SSP/hydrological model provided in the Supplementary Information. Figure 8 presents
the changes in Q95 for each future time period under SSP126, SSP370, and SSP585 for GR4J
and SMART. For SSP126, the direction of change in low flows was found to be uncertain,
spanning positive and negative changes. For GR4J, median reductions in Q95 of −3.4,
−6.0, and −1.7 percent were simulated for the 2020s, 2050s, and 2080s across the catchment
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sample. However, the range of changes was large with 90 percent confidence intervals
spanning 17.0 to −16.8 percent for the 2020s, 18.7 to −23.3 percent for the 2050s, and 19.2
to −18.5 percent for the 2080s. Similar results were obtained with the SMART model,
with slightly greater reductions in Q95 for the 2080s (median −5.0 percent; CI: 15.8 to
−23.3 percent).

For SSP370 and SSP585, simulated changes tended more towards reductions in Q95,
especially for the middle and end of the century. For SSP370, for the 2080s, GR4J returned
a median reduction of −20.9 percent in Q95 (CI: −2.5 to −38.2 percent), while SMART
suggested a median reduction of −21.2 percent (CI: −6.0 to −36.9 percent). Unlike SSP126,
where changes in low flows are not predicted to become more severe from the 2050s to the
2080s, under SSP370, a progressive reduction in low flows moving through the century
was predicted. SSP585 showed the most severe reductions. For the 2050s, GR4J returned
a median reduction in Q95 of −17.7 percent across catchments (CI: 1.9 to −35.2 percent),
while SMART returned a median reduction of −18.1 percent (CI: 3.2 to −31.5 percent). By
the 2080s, reductions were predicted to be more severe by both hydrological models. GR4J
returned a median reduction of −23.2 percent (CI: −5.4 to −45.0 percent), while SMART
returned a median reduction of −25.5 percent (CI: −6.1 to −41.8 percent).

Figure 8. Cont.
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Figure 8. Projected percent changes in the annual Q95 for the 2020s, 2050s, and 2080s relative to the
reference period 1976–2005 for each catchment, as simulated for SSP126, SSP370, and SSP585 for the
GR4J model (A) and SMART model (B).

3.5. Avoided Impacts from Mitigation

To further explore the differences in simulated impacts for the three SSPs considered,
we examine the median changes simulated for seasonal and low flows across the catchment
sample for the 2080s, assuming that differences between SSPs would be the greatest at this
time. The results give an indication of the impacts avoided by greenhouse gas mitigation.
From Figure 9, the largest differences between SSPs are evident for the annual Q95 low
flows. For both SMART and GR4J, SSP126 resulted in more modest changes in low flows
in comparison with SSP370 and SSP585, indicating the importance of mitigation efforts
in avoiding the most extreme impacts. For seasonal mean flows, the differences between
outcomes for various SSPs were less clear cut, with results depending on which hydrological
model was employed. For example, for GR4J, clear differences were shown between the
more modest impacts of SSP126 for summer mean flows and the more extreme changes
simulated by the more fossil-fuel-intensive SSP370 and SSP585. However, this was not the
case for SMART, where there was large overlap in the simulated median changes for each
SSP in summer. This finding highlights the importance of hydrological model structural
uncertainty in assessing avoided impacts due to mitigation. For both hydrological models,
it was difficult to discern differences in impacts between SSPs for winter mean flows, with
both models showing large overlap in projected changes across different SSPs.
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Figure 9. Density functions of median changes in the seasonal mean and annual low flows simulated
by SMART (left) and GR4J (right) across all catchments for each SSP during the 2080s.

3.6. ESMs with High Climate Sensitivity

To examine whether ESMs with high climate sensitivity show different results from
others in our ensemble, simulated changes in winter and summer precipitation for the
2080s across our catchment sample for each SSP are shown in Figure 10. ESM abbreviations
corresponding to high-sensitivity ESMs are marked with an asterix on the plot (see also
Table 1). High-sensitivity ESMs do not appear to show systematic differences in simulated
precipitation at the catchment scale, typically falling within the range of change simulated
by other ensemble members. Similar results (not shown) were found for seasonal and
low flow simulations with no obvious evidence that high-sensitivity ESMs produce results
outside of the range of other ensemble members.
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Figure 10. Simulated changes (percent) for winter (left) and summer (right) precipitation in each
catchment for the 2080s derived from each of the 12 climate models employed (see Table 1). Results
are presented for SSP126 (top), SSP370 (middle), and SSP585 (bottom). High-sensitivity climate
models are denoted by an asterix.

4. Discussion

This study evaluated simulated changes in seasonal mean and low flows for 37 Irish
catchments under climate change pressure. Changes in hydrological response were derived
from an ensemble of 12 Earth System Models from the CMIP6 archive, forced using
three SSP scenarios (SSP126, SSP370 and SSP585). Projected changes in precipitation
(bias corrected to the catchment scale using Double Gamma Quantile Mapping (DGQM))
and potential evapotranspiration (derived using the Oudin method from temperature
projections, bias corrected to the catchment scale using Empirical Quantile Mapping (EQM))
were used to force two hydrological models to examine changes for the 2020s, 2050s, and
2080s relative to the baseline period of 1976–2005. Below we summarize the key results,
implications, limitations, and possible directions for future work.

The results presented represent the most comprehensive assessment of the impacts of
climate change on the mean and low flows in Ireland to date, extending previous analyses
by Charlton et al. [10] and Steele Dunne et al. [11]. Key advances include the consider-
ation of multiple catchments, climate models, SSPs, and hydrological models. Previous
research has indicated the importance of including hydrological model uncertainties in
assessments of future flows [28,29]. While this work included increased consideration of
key components of the modeling chain in climate change impact assessments [30], it is not
exhaustive. For instance, we did not include an assessment of hydrological model parame-
ter uncertainty [31], nor did we use different downscaling or bias correction techniques [9].
We also assumed that the parameter sets derived to run our hydrological models would be
transferable to future climates [18]. Our focus was on exploring projected changes from the
CMIP6 archive, associated SSPs, and the hydrological model structure. Future work should
attempt to expand the consideration of uncertainties considered here to further inform
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the plausible ranges of change that might be expected with climate change. Alternative
approaches to the estimation of PET should also be considered. We also note the some of
the catchments analyzed are small (<100 km2) and that future work should evaluate the
impact of climate model resolution on simulated changes for such catchments.

Projected changes in seasonal and mean flows showed a wide range of plausible
changes. For most seasons, the direction of change in mean flows is uncertain with ensemble
members spanning positive and negative changes. However, the overall distribution of
changes derived suggests increases in winter flows and decreases in summer flows. These
findings are broadly consistent with the earlier studies outlined above and with recent
studies in Northern Ireland [32], where large reductions in low flows were identified in
simulations driven by the UKCP18 regional climate projections. For the shoulder seasons
of spring and autumn, the overall direction of change is more uncertain. Given the lack
of resilience in water supply systems in Ireland [7], the projected changes would have
significant implications and require substantial adaptation effort. This is particularly the
case for SSP370 and SSP585 by the 2050s and 2080s, where increases in winter flows and,
in particular, decreases in summer flows could prove problematic for water resources
management, freshwater ecosystems, and water quality. Substantial reductions in low
flows (annual Q95) are also projected for the 2050s and 2080s across catchments, which
would also prove problematic for a range of sectors. Importantly, our results show that
reducing greenhouse gas emissions trajectories will have a large impact on the magnitude
of reductions in summer flows (as simulated by the GR4J model) and low flows (from both
hydrological models), whereas reductions under SSP126 for the 2080s were shown to be
more modest in comparison to more fossil-fuel-intensive scenarios.

There were notable differences in the changes simulated by both hydrological models
employed. Increases in winter led flows to be greatest for the SMART model, while
reductions in summer and low flows tended to be greater for GR4J. In spring, SMART/GR4J
tended towards modest increases/decreases; however, the ranges of change were large.
The opposite was the case for autumn mean flows. Overall, the SMART model tended
to result in a slightly larger spread of projected future impacts, which may be related to
the added complexity of the model in terms of number of parameters relative to GR4J.
The analysis of both models during verification showed similar performance levels across
catchments with both models able to successfully simulate key hydrological signatures
across the range of flow conditions. These results emphasize the importance of including
different hydrological model structures in the assessment of climate change impacts [33,34].

The projected changes derived here will be of utility for informing adaptation in the
water sector [35] including for water resource management, water quality assessments,
freshwater ecosystem management, and implementation of the Water Framework Direc-
tive. While median changes are provided in the analysis, it is important that decision
makers account for the full range of plausible changes simulated to ensure the devel-
opment of robust adaptation strategies [36]. In addition to traditional top-down impact
assessments, the results derived could feed into the development of storylines to inform
adaptation planning [37], while the range of changes may be used to stress test adapta-
tion options [35,38–40]. To assist in this process, detailed tables of projected changes for
each catchment, SSP, and hydrological model are provided as part of the Supplementary
Information. While this work sampled 37 catchments, future work could expand the
range of catchments analyzed and further explore whether catchment characteristics (e.g.,
predominant landcover types, soil types, geology, baseflow etc.) play roles in modifying
the response of catchments to climate change. It may also be possible to develop an em-
ulator of climate change impacts [41] for mean and low flows from the results derived
here, which could be used to (1) expand the uncertainty space sampled and (2) allow the
development of results for ungauged catchments where observations are not available to
train hydrological models.
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5. Conclusions

The impacts of climate change were simulated for 37 catchments across the Republic of
Ireland derived from 12 Earth System Models from the CMIP6 ensemble, forced with three
shared socioeconomic pathways (SSP126, SSP370, SSP585). To integrate the uncertainty in
future impacts due to hydrological model structure, we employed two conceptual, lumped
hydrological models (SMART and GR4J). The results show wide ranges of plausible changes
in the seasonal mean and low flows with increases in the winter mean flows and large
reductions in the summer mean flows and annual low flows (Q95) for both SMART and
GR4J for higher emissions pathways (SSP370 and SSP585). Notably, it is evident that more
modest reductions in the summer mean and low flows can occur by the mid to end of
the century if ambitious mitigation reductions can be achieved (SSP126). For spring and
autumn, large ranges of change are evident, but the direction of change is unclear. We
found little evidence that CMIP6 ESMs with high climate sensitivity produce simulated
changes in precipitation outside the range of other ensemble members at the catchment
scale. The derived projections will be useful for informing adaptation planning in the
water sector.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14101556/s1, Table S1: List of 37 catchments with their drainage
area, mean daily discharge (Qmean), mean daily precipitation (Pmean), and discharge to precipitation
ratio (Q-to-P ratio) for the period 1976–2005; Table S2: Median and 90 percent confidence interval
of projected changes (percent) in seasonal flows simulated for each catchment using the SMART
hydrological model for each future time period and SSP; Table S3: Median and 90 percent confidence
interval of projected changes (percent) in seasonal flows simulated for each catchment using the GR4J
hydrological model for each future time period and SSP; Table S4: Median and 90 percent confidence
interval of projected changes (percent) in annual Q95 low flows for each catchment using the SMART
hydrological model for each future time period and SSP. Table S5: Median and 90 percent confidence
interval of projected changes (percent) in annual Q95 low flows for each catchment using the GR4J
hydrological model for each future time period and SSP.
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