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Abstract

Relating drought indicators and real-world impacts is fundamental for under-

standing and addressing drought vulnerability. We link drought indices and

impacts from newspapers compiled in the Irish Drought Impacts Database

(IDID) for the period 1900–2016. For three catchment clusters across the island

of Ireland we link the Standardized Precipitation Index (SPI) with land-based

impacts and the Standardized Streamflow Index (SSI) with water-based

impacts by matching total reported articles per month with concurrent

drought indices. Using logistic regression we find SPI-3 links best with land-

based impact reports, whereas SSI-2 links best with water-based impact

reports. Catchments in the east/southeast display the highest sensitivity to

land- and water-based impacts; however, in summer months at low deficits

northwestern catchments show a higher likelihood of impact reports. In winter

months the likelihood of water-based impacts is considerably greater than the

land-based equivalent, particularly in east/southeastern catchments. Moreover,

the likelihood of news-worthy drought impacts has changed over the 117 year

period. More severe deficits are required to induce a high likelihood (0.6) of

land- and water-based impacts in east/southeastern and southwestern catch-

ments during 1961–2016 compared with 1900–1960. Largest changes emerge

in the southwest with SPI-3 values of −2.51 (<−3.00) required to reach the

high impact likelihood threshold in the pre (post) 1961 period. Even greater

reductions are found for water-based impacts in the southwest with SSI-2

values associated with high impact likelihoods changing from −2.04 to −2.58.
Conversely, for catchments in the northwest more moderate drought deficits

result in high impact likelihoods for both land-based (from <−3.00 to −2.32
SPI-3) and water-based impacts (from <−3.00 to −2.29 SSI-2) for the 1961–
2016 period. These findings show the value of newspaper archives for under-

standing regional sensitivities to drought plus their potential for underpinning

a near real-time, drought monitoring and warning system in Ireland.
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1 | INTRODUCTION

Drought is one of the most damaging natural hazards,
arising from extended periods of reduced precipitation,
often covering large areas for periods of months to years,
or even decades (Mishra and Singh, 2010; Van Loon and
Laaha, 2015). Impacts may be experienced at local to con-
tinental scales (Wilhite et al., 2007), including reduced
agricultural output, freshwater shortages, ecosystem deg-
radation, reduced energy and industrial productivity (Gil
et al., 2013; Mosley, 2015; Van Vliet et al., 2016; García-
Le�on et al., 2021). Given their effects, understanding
drought events and associated impacts is crucial to suc-
cessful management (Wilhite et al., 2007). Typically,
drought assessments involve analysing the features of
historic drought in terms of their occurrence, duration,
intensity and accumulated moisture deficits, expressed
through drought indicators. Studies linking indicators to
impacts, however, have been relatively rare, primarily
due to the limited availability and spatial coverage of his-
torical impact data (Bachmair et al., 2015). Studies under-
taken typically relate to agricultural drought and linking
indices to historical crop yield data, with multisectoral
impact assessments much sparser (Wang et al., 2020). As
such studies are of fundamental importance in gaining a
better understanding of drought impacts, further research
is warranted in this area (Bachmair et al., 2016).

Indices are widely employed to quantify historic and
future drought (Steinemann et al., 2015; Ekström
et al., 2018). For meteorological drought, indices such as
the Standardized Precipitation Index (SPI), Standardized
Precipitation Evapotranspiration Index (SPEI), Effective
Drought Index (EDI), Reconnaissance Drought Index
(RDI) and Palmer Drought Severity Index (PDSI) are
often used (e.g., Lloyd-Hughes and Saunders, 2002; Tsa-
kiris et al., 2007; Deo et al., 2017; Erfurt et al., 2019;
Erfurt et al., 2020). For hydrological drought, indices
such as the Standardized Streamflow Index (SSI), Total
Storage Deficit Index (TSDI) and Palmer Hydrological
Drought Index (PHDI) can be applied (e.g., Karl, 1986;
Vicente-Serrano et al., 2012; Nie et al., 2018). Although
indicators provide means of quantifying and comparing
droughts (Vicente-Serrano et al., 2011), their utility and
representativeness of extreme events can be limited when
derived from short series (Wu et al., 2005). Furthermore,
drought indices may not always reflect actual impacts on
society and/or the environment (Bachmair et al., 2016),

particularly where there is modulation and propagation
of hydrological droughts by catchment properties (Barker
et al., 2016; Rust et al., 2021).

Good quality, long-term precipitation and river flow
records are essential for drought analysis (Brigode
et al., 2016). However, most precipitation datasets are
short, with observations typically commencing in the sec-
ond half of the 20th century in many regions (Brunet and
Jones, 2011). For river flows, available records are often
even shorter (Mediero et al., 2015). Data rescue efforts
are continually extending the availability of observed
meteorological variables including precipitation
(e.g., Ashcroft et al., 2018; Hawkins et al., 2019; Ryan et
al., 2021); however, historical records for river flow are
not as readily available. One means of addressing this
gap is by reconstructing historic river flows using
rainfall-runoff models forced with long-term temperature
and precipitation series (e.g., Jones, 1984; Crooks and
Kay, 2015; Spraggs et al., 2015; Rudd et al., 2017; Hanel
et al., 2018; Smith et al., 2019; Noone and Murphy, 2020;
O'Connor et al., 2021).

Drought indicators have been extracted from recon-
structed flows to assess historical droughts in a number
of studies (e.g., Caillouet et al., 2017; Rudd et al., 2017;
Hanel et al., 2018; Moravec et al., 2019; Erfurt et al., 2020;
O'Connor et al., 2022). However, knowledge of drought
characteristics alone does not necessarily translate into
socio-economic impacts. Establishing robust links
between indicators and impacts is important for evaluat-
ing and communicating drought risks. Methods have
been developed to do this by associating meteorological
drought indices with historic records (e.g., Vicente-
Serrano et al., 2012; Gudmundsson et al., 2014; Bachmair
et al., 2015; Blauhut et al., 2015; Stagge et al., 2015; Bach-
mair et al., 2018; Parsons et al., 2019; Salmoral
et al., 2020). Others have related hydrological drought to
impact metrics (e.g., Bachmair et al., 2016; Sutanto and
Van Lanen, 2020) by drawing on centralized databases
(e.g., the European Drought Impact Report Inventory:
Stahl et al., 2012). National-level databases also exist,
such as the UK Drought Inventory (UKCEH, 2021) and
US Drought Impact Reporter (Wilhite et al., 2007). In
Ireland, historic monastic writings, including the Irish
annals, have been used to evaluate extreme weather
events and their impacts over the last two millennia
(e.g., Ludlow, 2006; Hickey, 2011). More recently, Mur-
phy et al. (2017) demonstrated the value of newspaper
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archives in an analysis of drought impacts over the past
250 years. Noone et al. (2017) also used newspaper collec-
tions to verify the occurrence and duration of historical
droughts. The utility of newspaper articles as a source of
information on drought impacts has also been demon-
strated in the UK (e.g., Dayrell et al., 2022) and elsewhere
(e.g., Llasat et al., 2009; Linés et al., 2017; Br�azdil et
al., 2019).

The SPI has been shown to be effective in generating
strong links between drought occurrence and agricultural
impacts (Vicente-Serrano et al., 2012). Similarly, the SSI
has demonstrable utility for linking hydrological drought
with groundwater levels, vegetation growth, and agricul-
tural yields (Vicente-Serrano et al., 2021). Most studies
explore such associations using correlation analysis, but
other methods have been trialled. For example, Bachmair
et al. (2017) found that random forest and logistic regres-
sion models predicted text-based reports of a range of
drought impacts well. Similarly, Blauhut et al. (2015),
Parsons et al. (2019), Stagge et al. (2015) and Sutanto
et al. (2019) concluded that logistic regression could gen-
erate valuable information on localized impacts.

Although many studies have demonstrated the utility
of indices in drought assessments (Kchouk et al., 2021),
impacts are often evaluated within a static framework
under assumed stationarity. However, population change,
demographic profiles, technological developments, water
and land management policies, environmental conditions,
water demand and social behaviour are all dynamic fac-
tors affecting drought vulnerability (Wilhite et al., 2014).
Recent studies have begun to address this knowledge gap.
For example, Parsons et al. (2019) found an increasing
likelihood of agriculture-related drought impact reports in
the UK, which they equate to increases in actual or per-
ceived vulnerability as a result of changing farming and
reporting practices. Stagge et al. (2015) attributed inter-
annual variations in agricultural drought impacts across
Europe to sampling and reporting bias, changes in impact
awareness, coping capacity, economic stressors and politi-
cal effects. Erfurt et al. (2019) found that, despite meteoro-
logical drought propagation and types of impacts
remaining consistent over time in southwest Germany,
impacts and vulnerability have fallen.

In this paper, we relate monthly drought indicators
and reported impacts for 51 catchments in Ireland. We
use reconstructed catchment precipitation and river
flows, alongside drought impacts derived from newspaper
archives covering the period 1900–2016. Section 2 pro-
vides an overview of the datasets and methods employed,
section 3 presents the results of our analysis, then sec-
tion 4 provides a discussion of key results and insights.
Finally, conclusions are drawn and suggestions for fur-
ther research are offered in section 5.

2 | DATA AND METHODS

2.1 | Meteorological and
hydrological data

Meteorological and hydrological data consist of monthly
precipitation and river flow reconstructions (1767–2016),
produced by O'Connor et al. (2021) for 51 catchments across
Ireland (https://doi.org/10.1594/PANGAEA.914306).
Catchment specific monthly precipitation reconstruc-
tions were extracted from the gridded (0.5� × 0.5�) pre-
cipitation dataset developed by Casty et al. (2007) and
bias-corrected to observed catchment data. O'Connor
et al. (2021) also produced uncertainty estimates for
flow reconstructions by applying different model
structures and parameter sets; here we use the avail-
able ensemble median flow reconstruction for each
catchment. Previous hierarchical cluster analysis of
the SSI-1, 3, 6 and 12 during 1767–2016 identified
three dominant catchment clusters for Ireland from
the same 51 test catchments (O'Connor et al., 2022).
To allow for a comparison of results between the stud-
ies, we conduct our analysis using the same cluster
groupings (see Figure 1a). Cluster 1 catchments,
located in the wetter northwest of the island, have rel-
atively small areas, low groundwater influences, and
most frequent hydrological droughts. Cluster 3 catch-
ments, located in the drier east/southeast, have rela-
tively large groundwater contributions, large areas
and the lowest frequency of hydrological droughts
that, once established, result in the longest durations
and greatest accumulated deficits. Cluster 2 catch-
ments, located in the southwest, have a drought fre-
quency intermediate between Cluster 1 and 3, with
short durations and relatively low accumulated defi-
cits. Median monthly flow and precipitation were
extracted for catchments comprising each identified
cluster. As per O'Connor et al. (2022), standardized
drought indices for 1767–2016 were applied to median
monthly precipitation and flow data in each cluster.
These were the Standardized Precipitation Index (SPI;
McKee et al., 1993) and Standardized Streamflow
Index (SSI; Vicente-Serrano et al., 2012) over accumu-
lations of 1, 2, 3, 4, 5, 6, 9, 12 and 18 months. These
were generated using the “SCI” package in R
(Gudmundsson and Stagge, 2016). The 70-year refer-
ence period (1930–1999) and the Tweedie distribution,
both found by O'Connor et al. (2022) to perform best
at fitting SPI and SSI in Irish catchments, were
employed to generate indices. Extracted monthly SPI
and SSI series for 1767–2016 were subsequently trun-
cated to 1900–2016, concurrent with the derived
drought impact data discussed next.

1798 O'CONNOR ET AL.
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2.2 | Drought impact data

Jobbov�a et al. (2022a) developed an Irish Drought
Impacts Database (IDID; Jobbov�a et al., 2022b) from the
Irish Newspaper Archive (INA) spanning the period
1737–2019. The INA is an online newspaper database
consisting of over 6 million pages of searchable content
from 100 titles for the island of Ireland. A number of
search terms were trialled (e.g., “dryness,” “dry spell,”
etc.) with the terms “drought” and “droughts” finally
chosen to identify relevant newspaper articles. All search
results were assessed so as to remove articles that used
the term for descriptive or other purposes resulting in a
total of 6,319 drought related articles. Using a modifica-
tion of European Drought Impact report Inventory (EDII;
Stahl et al., 2012) adapted to cater for the nature of the
Irish newspaper data, returned articles were assigned to
15 drought impact categories (i.e., agriculture and live-
stock farming; forestry; freshwater aquaculture and fish-
eries; energy and industry; waterborne transportation;
tourism and recreation; public water supply; water qual-
ity; freshwater ecosystem: habitats, plants and wildlife;
terrestrial ecosystem: habitats, plants and wildlife; soil
systems; wildfires; air quality; human health and public
safety; conflicts), with the possibility of each article being

assigned to one or more categories depending on impacts
described. Where the described impact could be classified
under multiple categories the final decision on the associ-
ated grouping(s) was determined by the authors to ensure
consistency in classifications across the entire dataset.
For each drought impact, that is, the occurrence of an
article that references a specific impact related to a
drought event and fitting to one of the pre-defined impact
types, information including the date of publication, date
of impact, location, newspaper title and a quote from the
article were all included in the database.

In total, more than 11,000 individual drought impact
reports are included in the IDID dataset. The number of
titles contributing to the INA remains relatively stable for
the period post-1900, while having good spatial coverage
across Irish counties. Therefore, we employ output from
the IDID for the period 1900–2016, concurrent with the
last year of available meteorological and hydrological
data. Of the 15 drought impact categories 13 were further
grouped into two simple categories signified as land-
based impact reports (related to agriculture and livestock
farming, terrestrial ecosystems, soil systems, wildfires, air
quality and forestry) and water-based impact reports
(related to aquaculture and fisheries, waterborne trans-
port, energy and industry, tourism and recreation, public

FIGURE 1 Distribution of (a) clusters of catchments used in the analysis, (b) counties and corresponding drought impact article

numbers (combined land-based and water-based) over the period 1900–2016 [Colour figure can be viewed at wileyonlinelibrary.com]
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water supply, water quality and freshwater ecosystems).
Human Health and Public Safety, and Conflicts were not
retained due to a lack of articles in those categories for
the chosen study regions and difficulties associating
related articles consistently with land- or water-based
impacts. We matched the associated year and month of
each reported impact in the IDID to the drought indices
on that date. Impact reports which did not include a year
and month of impact were excluded from the analysis.
Impact reports in the IDID are not systematically compiled
for catchments, therefore, we tallied reports for each
county, the boundaries of which have remained largely
unchanged over the period of assessment, and assigned
them to one of our three clusters of catchments (see
Figure 1b). Impact reports that did not provide a specific
location or from which the relevant county could not be
derived were also omitted. When a county straddles two
clusters of catchments, impact reports are associated with
the cluster overlapping the largest area of that county.
Counties with no study catchment(s) contained within
their boundaries (five in total) were excluded from the
assessment. An inventory of article numbers, by county,
allocated cluster, and drought impact subcategory is given
in Table S1, Supporting Information. For each cluster, the
cumulative number of drought impact reports were then
calculated for each month from 1900 to 2016.

2.3 | Model generation and analysis

Logistic regression and Generalized Additive Models
(GAMS) have been previously used to link drought indices
to impacts (Stagge et al., 2015; Bachmair et al., 2017; Par-
sons et al., 2019). We take a similar approach by applying
binomial logistic regression models to establish relation-
ships between SPI and SSI indices with drought impact
occurrence (based on article counts). First, we transform
the dependent variable (impact articles) into a binary
series by noting the occurrence/nonoccurrence of articles.
Logistic regression was then used to determine the odds of
event occurrence (impact article), by relating the condi-
tional expectation of the response variable to a combina-
tion of linear predictor variables (drought indices). This
link was obtained using a logit, or log odds function
(Equation (1)) typically applied to derive the probability or
likelihood of occurrence of a sample observation, P(X),
from regression models (see Peng et al., 2002),

logit P Xð Þð Þ= ln
P Xð Þ

1−P Xð Þ
� �

: ð1Þ

Logistic regressions were fit using the Generalized
Additive Model (GAM) framework which enables logistic

regressions to be applied with a smoothing function for
selected predictor variables (month values) to account for
nonlinear components in series (e.g., the seasonal compo-
nents of monthly SPI/SSI values). To convert the log-odds
predicted output to a simple likelihood output (i.e., to
generate impact likelihood values in the range from 0 to
1) the inverse logit of the predicted values were found.
Values could then be easily categorized by their likeli-
hood of impact and assessed for each model.

Model fitting and subsequent predictions were carried
out in the R environment using the “mgcv” package
(Wood, 2012). Individual models were generated for each
cluster linking SPI values to land- and SSI values to water-
based articles. Model predictor variables included stan-
dardized drought indices, smoothed month values and
year values. Month values account for seasonal variations
in drought impact reporting likelihoods, while year values
allow for any trends in the data (cf., Parsons et al., 2019).

Weights were derived and then applied to each model
to account for cases where more than one drought impact
article occurred in a given month. For each model we
determined the weights by reciprocally ranking the total
monthly number of articles. The procedure was as fol-
lows: Step 1, the date (month/year) with the highest
number of articles was ranked as one (rank1 = 1), the
second highest as two (rank2 = 2) and so forth, until all
dates were assigned a rank. Dates with the same number
of articles were given the same rank, including dates with
zero articles which were assigned the lowest rank. Step
2, the Reciprocal Rank was found for this series of ranked
values, as shown in Equation (2), with i representing the
rank number, Q representing the total number of distinct
article values. Step 3, the resultant series of values was
then applied as the weighting factor in the final model, in
the order of the original time-series,

Reciprocal rank=
XQ

i=1

1
ranki

: ð2Þ

Reciprocal ranked weights were determined sepa-
rately for each model. Dependent variable values for each
model were represented by the binary occurrence/
nonoccurrence of monthly drought impact articles (land-
or water-based) for each cluster, with final model output
returning the likelihood of occurrence of articles for
given SI values.

Following Parsons et al. (2019), we test the model by
initially generating logistic regression models with a sin-
gle predictor consisting of either SPI or SSI at accumula-
tions of 1, 2, 3, 4, 5, 6, 9, 12 or 18 months. Only one
drought index accumulation period was considered in
each model as indices for overlapping periods tend to be
highly correlated. Model performances were assessed

1800 O'CONNOR ET AL.
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using the different accumulation periods, with best per-
forming accumulation periods for each cluster identified
for the 1900–2016 period and retained. Model performance
was assessed by evaluating the amount of explained vari-
ance, adjusted for sample size (R2adj). Subsequently,
models were regenerated with the inclusion of smoothed
monthly values (to account for seasonality of reported
impacts) as well as year (to account for any trend).
Smoothing was carried out using the Restricted Maximum
Likelihood (REML) approach to estimate components of
variance resulting from the unbalancing caused by the
nonlinear, seasonal impacts of the monthly data. Models
were then re-evaluated to examine improvement in skill.

For each cluster, models were used to relate SPI and
SSI to predicted impact report likelihoods, that is, the
probability of a drought related newspaper article for a
given SPI or SSI value. To aid interpretation, we classify
reported impact likelihood scores as follows: “very low”
(0–0.19), “low” (0.20–0.39), “medium” (0.40–0.59), “high”
(0.60–0.79) and “very high” (0.80–1.00). We primarily
focus on the high threshold (≥0.60) as it represents an
above average likelihood of impact report occurrence. We
identify temporal and spatial variations in drought
impact reports for each catchment cluster over the full
117 years using SPI and SSI values at that threshold and
at the lower limit of −3 SI, matching that used by Parsons
et al., 2019. We also investigate the variation in reported
impact likelihoods at annual and monthly timescales
with the latter allowing for assessment of how reported
impacts change within clusters over the course of a year.
Annual values were derived by finding the mean of
monthly likelihoods for each year across the 1900–2016
period. Finally, we assess homogeneity in reported
drought impact likelihoods by identifying any significant
change points in the drought impact report series for
each cluster, using the nonparametric Pettitt (1979) test.
Theil–Sen slope estimates (Sen, 1968) were also calcu-
lated to identify significant trends in the series. We subse-
quently investigate how impact report likelihoods (for
SPI and SSI values of −3) and SPI and SSI values required
to exceed the high likelihood (0.6) threshold have chan-
ged in each cluster, pre/post identified break point.

3 | RESULTS

3.1 | Indices and impact data

SPI and SSI were derived for each cluster for the period
1900–2016 for accumulations of 1, 2, 3, 4, 5, 6, 9, 12 and
18 months (sample plots are shown in Figures S1 and S2).
Across the period several extreme events emerge in both
the SPI and SSI series, and over multiple accumulation

periods. These include the 1933–1935, 1953–1954, 1971–
1972 and 1975–1977 droughts. Other prominent events in
the SPI series are less notable in the SSI equivalent, such
as the 1911–1912 and 1983–1984 droughts, while events
such as the 2003–2004 drought show greater prominence
in the SSI series. Figure 2 plots the annual number of arti-
cles by cluster over the period 1900–2016. Notable are the
high counts of articles for Cluster 3 and the large decrease
in land-based drought reports in both Clusters 1 and 2 dur-
ing recent decades. Some of the largest meteorological and
hydrological drought article numbers occur in 1921, 1938,
1940, 1949, 1959, 1975 and 1984. Differences in article
numbers for certain events are identifiable between clus-
ters and article types. Although most droughts coincide
with article occurrence (e.g., the 1911–1912 and 1975
droughts) others show fewer impact reports, despite being
classified as severe or extreme droughts by the standard-
ized indices (e.g., the 1933–1934 and 1972–1973 droughts).
Conversely, events such as the 1921 and 1949 droughts do
not rank as significant droughts in SPI- and SSI-12 series
despite producing some of the highest number of drought
impact reports. It should be noted, however, that the level
of agreement between drought impact reports and indices
depends on the accumulation period applied.

3.2 | Model performance analysis

Logistic regression and GAMs show the relationship between
SPI/SSI and land-/water-based impact reports in each cluster.
Figure 3 displays results of this assessment with R2adj values
for different SPI/SSI accumulation periods plotted for land-
and water-based impact reports (lighter coloured bars). For
water-based impact reports SSI-2 performed best across all
three clusters (R2adj values of 0.14 (p < .05; Cluster 1), 0.18
(p < .05; Cluster 2) and 0.25 (p < .05; Cluster 3)). For land-
based impact reports SPI-3 performed best having the highest
R2adj score for Cluster 1 (0.10; p < .05) and 3 (0.17; p < .05).
For Cluster 2, SPI-2 performed marginally better than SPI-3
(0.11; p < .05) vs. (0.10; p < .05). For simplicity, SPI-3 was
adopted as the best predictor of land-based drought impact
reports in all clusters.

Following Parsons et al. (2019), both month and year
predictor variables were added to each of the best perform-
ing single variable models (i.e., SPI-3 and SSI-2), with
monthly smoothing implemented using the REML
method (see section 2.3). Model performance was again
assessed using R2adj, with results presented in Figure 3
(darker coloured bars). Across all clusters, inclusion of
month led to significant model improvements. Final
model structures for land- and water-based drought
impact reports are given in Equations (3) and (4), where P
(X) represents the likelihood of occurrence of a land-based

O'CONNOR ET AL. 1801
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(Xland) or water-based (Xwater) drought impact report, β0 is
the intercept value, β1 and β2 are the indices and year coef-
ficient values, s() is the smoothing function applied to the
month value and ε is the standard error. Additional perfor-
mance metrics are provided in Table 1. For reported land-
based impacts (Equation (3)) model performance is best
for Cluster 3 (R2adj = 0.49; p < .05), with Cluster 1 and
2 having R2adj values of 0.34 (p < .05). For reported
water-based impacts (Equation (4)) model performance is
greater than the land-based equivalent for Cluster 1, 2
while for Cluster 3 it is lower, with R2adj values of 0.38,
0.35 and 0.42, respectively (all with p-values of <.05),

logit P X landð Þð Þ=β0+β1 SPI-3ð Þ+s monthð Þ+β2 yearð Þ+ε,

ð3Þ

logit P Xwaterð Þð Þ=β0+β1 SSI-2ð Þ+s monthð Þ+β2 yearð Þ+ε:

ð4Þ

Receiver operator characteristic (ROC) curves, which
demonstrate the ability of models to correctly predict the
occurrence or nonoccurrence of an event, are shown in

Figure 4 (see Stagge et al., 2015 for a similar application).
Values are assessed for increasing thresholds across the
[0–1] range. For a perfect model the proportion of cor-
rectly identified impact articles is equal to 1 across all
threshold values and will have an area under the curve
(AUC) value of 1. A model with zero skill produces an
AUC of 0.5 and will lie on the diagonal (0:1) line. Here,
both land- and water-based models show good skill at
correctly classifying drought impact reports, with the for-
mer performing marginally better overall. For land-based
impact reports AUC scores are highest for Cluster
3 (0.90) and lowest for Cluster 2 (0.85). For water-based
impact reports AUC scores are highest for Cluster 1 and
3 (0.87) and lowest for Cluster 2 (0.85).

3.3 | Linking indices to reported impacts

Derived models were used to determine the likelihood of
impact reporting at annual and monthly timescales. Ini-
tially, an examination of outputs from models generated
using annualized SPI and SSI at 1, 2, 3, 4, 5, 6, 9, 12 and
18 month accumulations was carried out revealing that

FIGURE 2 Distribution of land-based (left) and water-based (right) drought impact reports (annual totals) for each cluster (bottom of

each panel) are displayed for the period 1900–2016. Also displayed are related SI values (top of each panel; SPI-12 on the left and SSI-12 on

the right) [Colour figure can be viewed at wileyonlinelibrary.com]
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SPI-3 and SSI-2 generated the highest likelihoods of
drought impacts across clusters, specifically at low defi-
cits. Impact likelihood values reduced markedly for accu-
mulations above and below 3 and 2 months, respectively.
Notably, the patterns of change in values across clusters
remained similar for all accumulations. As SPI-3 and
SSI-2 produced the highest impact likelihoods and best
model performances for land-based and water-based
impact reports they were retained for further analysis.
Figure 5 shows the predicted likelihood of reported
impacts on an annual basis over the period 1900–2016.

Cluster 3 has the highest reported impact likelihoods for
both SPI and SSI values. Clusters 1 shows the lowest
reported impact likelihoods for any given SPI value. For
SSI-2, Cluster 1 shows a higher likelihood of impact
reports than Cluster 2 for modest deficits, while the oppo-
site is the case for more extreme SSI-2 deficits. Figure 5
also identifies SPI/SSI thresholds resulting in at least a
high likelihood of impact reports (0.60). For land-based
impacts SPI-3 ≤ −2.68 for Cluster 1, ≤ −2.35 for Cluster
2 and ≤−1.98 for Cluster 3 result in at least a high impact
likelihood on an annual scale. For water-based impacts

FIGURE 3 Adjusted R2 values of the logistic regression models for selected SPI/SSI accumulation periods (n) when simulating monthly

land-based (left) and water-based (right) impact articles for each cluster during 1900–2016. Results are also shown for models including

month and year (darker colours) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Performance indicators for land-based impact article models (β0 + β1(SPI-3) + s(month) + β2(year) + ε) and water-based

impact article models (β0 + β1(SSI-2) + s(month) + β2(year) + ε) generated for each cluster over the 1900–2016 period

Model
Cluster
no.

Intercept
coeff. (β0)

Indices
coeff. (β1)

Year
coeff. (β2)

Adjusted
R2 p-value % deviance AUC AIC BIC

SPI-3 + s(month) + year 1 17.30 −1.11 −0.01 0.34 0.001 35.07 0.87 13.61 46.49

2 25.11 −1.04 −0.01 0.34 0.001 33.55 0.85 13.27 46.24

3 21.34 −1.43 −0.01 0.49 0.002 45.94 0.90 12.90 46.00

SSI-2 + s(month) + year 1 2.64 −1.28 0.00 0.38 0.001 37.90 0.87 13.42 46.39

2 19.30 −1.37 −0.01 0.35 0.001 34.36 0.85 12.71 44.68

3 20.22 −1.58 −0.01 0.42 0.002 38.21 0.86 12.35 43.83
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the equivalent values are SSI-2 ≤ −2.48 for Cluster
1, ≤−2.02 for Cluster 2 and ≤−1.60 for Cluster 3. Cluster
3 is identified as most likely to experience both land- and
water-based drought impact reports, whereas Cluster 1 is
least likely. Indices values required to reach each land-
and water-based drought impact report threshold are
given in Table 4.

Figure 6 displays results of the monthly land-based
drought impact report analysis. There are large variations
in the propensity for reported impacts across months and
clusters. December and January show very low to low
impact report likelihoods, even for extreme deficits in
SPI-3. February is the winter month with highest land-
based values, reaching a moderate likelihood for deficits
of −3 SPI-3 in Cluster 2 and a high likelihood in Cluster
3. Excluding December, Cluster 3 consistently shows the
highest propensity for impact reporting in all months.
The 0.6 threshold (dashed black horizontal lines) helps
identify SPI-3 deficit values resulting in a high likelihood
of impact reports. Notably, in summer (JJA) months only
very modest SPI-3 deficits (not less than −1.2 SI) are
required to reach this threshold for land-based impact
reports in Cluster 3. July (closely followed by June) is the
month most prone to reported impacts, with the most
modest SPI-3 deficits resulting in high impact report

likelihoods (−0.90 for Cluster 1, −0.73 for Cluster 2 and
−0.28 for Cluster 3). In autumn (SON), the SPI-3 deficits
required to reach the high impact threshold become
more extreme, with Cluster 3 remaining the most vulner-
able. Throughout most months (excluding winter) there
is little difference in land-based drought impact likeli-
hoods between Clusters 1 and 2.

Figure 7 displays monthly likelihoods for water-based
impact reports. Cluster 3 shows the highest propensity for
reported impacts across all months, particularly in autumn
(SON), winter (DJF) and early spring. However, differ-
ences with Cluster 1 and 2 during late spring and summer,
especially from May to August, are minimal, with Cluster
1 showing higher likelihood of impacts at low deficits dur-
ing these months. From June through to August Cluster
2 is least sensitive to water-based impact reports. Late
autumn and winter months show the greatest differences
between clusters with the possibility of water-based
impacts in Cluster 3 markedly greater than that for Cluster
1 and marginally greater than Cluster 2 from October till
March. Cluster 3 consistently reaches the 0.6 high likeli-
hood of reported impacts threshold across the year, but
only for extreme SSI-2 deficits in winter months. During
summer months, deficits of close to −1 SSI-2 are required
to reach that same threshold in most clusters. July is the

FIGURE 4 Receiver operating characteristic (ROC) curves displaying performance of the logistic regression models generated using

land-based newspaper articles and SPI-3 indices (left) and for models generated using water-based newspaper articles and SSI-2 indices

(right) for each cluster [Colour figure can be viewed at wileyonlinelibrary.com]
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month most prone to water-based impact reporting, with
the most modest SSI-2 deficits resulting in high impact
report likelihoods (−0.72 for Cluster 1, −0.98 for Cluster
2 and −0.80 for Cluster 3). The lowest reported impact
likelihoods are in December for Cluster 1 (very low likeli-
hood) and January for Clusters 2 and 3 (moderate and
high likelihoods) for SSI-2 values of −3.

3.4 | Sensitivity of results to impacts
baseline

All clusters display a negative year coefficient (β2) for
land- and water-based impact reports, with the exception
of Cluster 1 for water-based reported impacts (Table 1).
Significant negative trends across all clusters were con-
firmed using Theil–Sens slope testing, again with the
exception of water-based reported impacts for Cluster
1. This suggests that during the 1900–2016 period there
was an overall decline in reported drought impacts.
According to the Pettitt test, there are notable step changes
in the number of impact articles for each cluster and
impact type, with statistically significant changes (p < .05)
identifiable in the land-based articles (see Table 2).

In Cluster 1 a significant downward step change in
land-based drought impact articles was identified in 1985.

In Cluster 2 and 3 significant downward changes were
identified in 1961. For reported water-based drought
impacts, no significant changes (0.05 level) were found.
Given the prominence of 1961 as a step change in drought
impacts series, we evaluate the changing likelihood of
reported impacts pre and post-1961. Table 3 shows model
results and coefficients for the pre/post-1961 periods. Mod-
est reductions in skill between the 1900–1960 and 1961–
2016 periods are evident with greatest reductions in R2adj
for land-based impact report models occurring in Cluster
2 (from 0.36 to 0.25; both p < .05). The largest reduction in
R2adj for water-based impact models occurs for Cluster
3 (from 0.46 to 0.31; both have p < .05). The smallest
change in R2adj between periods occurs for Cluster
1, land-based impact models. AUC scores show little
change relative to the earlier period. Reductions in model
performance post-1961 can be partially attributed to
reduced occurrence of drought in the latter period as iden-
tified by Noone et al. (2017), while article numbers also fall
by 59% (Cluster 1), 69% (Cluster 2) and 46% (Cluster 3) for
land- and 40% (Cluster 1), 58% (Cluster 2) and 63%
(Cluster 3) for water-based impact reports.

Figure 8 shows annual results for reported impact
likelihoods for land- and water-based drought, with
groupings A and B representing results derived from the
1900–1960 and 1961–2016 baseline periods, respectively,

FIGURE 5 Predicted likelihood of reported impacts (annual) from models generated using land-based impact articles and SPI-3 indices

(left) and from models using water-based impact articles and SSI-2 indices (right). Impact likelihoods for each cluster over the period 1900–
2016 are shown for indices values ranging from −3 to 3. Indices values resulting in high reported impact likelihoods (0.60) are denoted by

the dashed horizontal line [Colour figure can be viewed at wileyonlinelibrary.com]
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for Clusters 1, 2 and 3. Differences between reported
impact likelihood curves are apparent for all three clus-
ters and both impact categories, but are greater for land-
based impact reports where agricultural and livestock
farming dominate (91 and 79% of land-based reports
across all clusters for the 1900–1960 and 1961–2016
periods, respectively). For both Clusters 2 and 3 the
1961–2016 period returns lower likelihoods of drought
impact reports. For Cluster 1, however, larger SPI-3 defi-
cits produce a greater likelihood of impact reporting for
the 1961–2016 period, while for values closer to zero the
risk is higher for the 1900–1960 period, indicating that
the possibility of reported impacts has increased for
extreme droughts and decreased for more moderate
droughts. For SSI-2 both Cluster 2 and 3 show lower
likelihoods of reported water-based drought impacts for
the 1961–2016 period, however the reduction is not as
large as seen for land-based impacts. Cluster 1 also
shows a higher likelihood of water-based impact reports

for the 1961–2016 period but only at larger SSI-2
deficits.

The reduction in impact report likelihoods for the
1961–2016 period is reflected in an increase in deficits
required to reach the high likelihood of impact threshold
(0.6), with differences greatest in Cluster 1 catchments.
For Cluster 3 land-based impact reports, the SPI-3 value
associated with a high likelihood of impact reporting
changes from −2.08 SPI-3 for 1900–1960 to −2.63 SPI-3
for 1961–2016. For water-based drought in the same clus-
ter, values change from −1.65 to −2.06 SSI-2. For Cluster
2 catchments, high impact likelihoods for land-based arti-
cles occur at −2.51 SPI-3 for the 1900–1960 period and
<−3.00 SPI-3 for the 1961–2016 period. Water-based
impact reports change from −2.04 to −2.58 SSI-2. The
largest change in deficit thresholds returning high likeli-
hoods of reported impacts is in Cluster 1 for both land-
and water-based droughts (<−3.00 to −2.32 SPI-3 and
<−3.00 to −2.29 SSI-2). Table 4 provides a cluster specific

FIGURE 6 Predicted likelihood of reported impacts (monthly) from models generated using land-based impact articles and SPI-3

indices. Impact likelihoods for each cluster over the period 1900–2016 are shown for indices values ranging from −3 to 3. Indices values for

each cluster resulting in a high reported impact likelihood (0.60) are also identified (dashed horizontal line) [Colour figure can be viewed at

wileyonlinelibrary.com]
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breakdown of SSI-2 and SPI-3 values required to reach
each impact threshold.

Figures 9 and 10 repeat the analysis on a monthly
basis for land- and water-based reported impacts, respec-
tively. The likelihood of land-based impacts being
reported in Clusters 2 and 3 is consistently lower for all
months for the 1961–2016 period, with the exception of
January for Cluster 3. The opposite is the case for Cluster
1 where at larger deficits the latter period displays greater
likelihoods of reported drought impacts while at more
modest deficits the earlier period dominates from April to

October. For the 1961–2016 period, high likelihoods of
impact reporting are most easily attained in June for
Cluster 1 and July for Cluster 2 and 3 with corresponding
SPI-3 values of −1.38, −1.56 and −0.93, compared to
−0.75, −0.51, 0.01 (all in July) for equivalent values
derived from the 1900–1960 period. The lowest likelihood
of reported impacts is in January for all Clusters, with the
exception for Cluster 3 (1961–2016) which occurs in
December. All clusters have low to very low impact
report likelihoods at −3 SPI-3. Between baseline periods,
impact reporting also differs markedly for water-based

FIGURE 7 As in Figure 6 but for water-based impact articles and SSI-2 indices [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Step change month and

year identified for land- and water-

based impact articles grouped by each

cluster over the 1900–2016 period

Article type Cluster Month Year p-value Direction

Land-based 1 6 1985 .03 Downward

2 7 1961 .01 Downward

3 9 1961 .02 Downward

Water-based 1 8 1977 .47 Downward

2 6 1961 .18 Downward

3 10 1959 .08 Downward
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articles (Figure 10). For the 1961–2016 period, Cluster
3 shows the greatest sensitivity to drought impacts in
each month. Also, across the year Cluster 1 consistently
has a greater propensity for producing impact reports at
more extreme deficits in the later period compared to

1900–1960. As with land-based impact reports (excluding
January in Cluster 3), the likelihood of water-based
impact reports in Cluster 2 and Cluster 3 is consistently
lower for all months for the 1961–2016 period. The
month with the greatest likelihood of reported water-

TABLE 3 Performance indicators for land-based impact article models (β0 + β1(SPI-3) + s(month) + β2(year) + ε) and water-based

impact article models (β0 + β1(SSI-2) + s(month) + β2(year) + ε) generated for each cluster over the 1900–1960 and 1961–2016 periods

Model (period)
Cluster
no.

Intercept
coeff. (β0)

Indices
coeff. (β1)

Year
coeff. (β2)

Adjusted
R2 p-value % deviance AUC AIC BIC

SPI-3 + s(month) + year (1900–1960) 1 −42.10 −1.01 0.02 0.37 .028 36.46 0.87 13.52 42.02

2 −0.51 −1.01 0.00 0.36 .007 31.98 0.83 12.87 41.14

3 −15.39 −1.48 0.01 0.52 .007 48.66 0.90 12.54 40.98

SSI-2 + s(month) + year (1900–1960) 1 −65.10 −1.34 0.03 0.47 .025 45.23 0.90 13.28 41.91

2 −2.82 −1.36 0.00 0.37 .003 34.27 0.83 12.36 39.75

3 −25.41 −1.66 0.01 0.46 .001 41.69 0.86 11.97 38.98

SPI-3 + s(month) + year (1961–2016) 1 50.52 −1.37 −0.03 0.36 .053 38.54 0.89 11.80 38.41

2 6.27 −1.02 −0.01 0.25 .007 30.63 0.87 11.87 38.64

3 −0.91 −1.28 0.00 0.41 .007 40.85 0.89 11.92 38.81

SSI-2 + s(month) + year (1961–2016) 1 11.63 −1.28 −0.01 0.34 .027 34.58 0.86 11.76 38.27

2 19.80 −1.22 −0.01 0.28 .000 29.91 0.86 11.66 37.94

3 38.78 −1.30 −0.02 0.31 .001 30.33 0.85 11.16 36.31

FIGURE 8 Predicted likelihood of reported impacts (annual) from models generated using land-based impact articles and SPI-3 indices

(left panel) and from water-based impact articles and SSI-2 indices (right panel). Impact likelihoods for each cluster over the baseline period

A: 1900–1960 (i.e., Clusters 1A, 2A and 3A) and baseline period B: 1961–2016 (i.e., Clusters 1B, 2B and 3B) are shown in each panel for

indices values ranging from −3 to 3. Indices values for each cluster resulting in a high reported impact likelihood (0.60) are also identified

(dashed horizontal line) [Colour figure can be viewed at wileyonlinelibrary.com]
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based impacts for 1961–2016 is July with SSI-2 values
required to reach the (0.6) threshold having values of
−1.23, −1.54 and −1.36 SSI-2 in Clusters 1 to 3 compared
to −0.57, −0.92 and −0.76 SSI-2 for the 1900–1960 period.

4 | DISCUSSION

Employing drought indices derived from historic river
flow and precipitation reconstructions, together with a
database of newspaper articles on historical drought
impacts, we have shown that it is possible to relate counts
of newspaper articles to drought indicators using GLMs
at the regional scale. The process of model development
closely followed Parsons et al. (2019) and Stagge et al.
(2015) who both showed the effectiveness of logistic
regression models in linking drought indices and
reported impacts. Our model evaluation highlighted the
strong relationship between short accumulation SPI/SSI
periods and drought impact reports in Ireland. An analy-
sis of model performance scores at accumulations of 1, 2,
3, 4, 5, 6, 9, 12 and 18 months together with an examina-
tion of model outputs showed that SPI-3 was best at
modelling land-based drought impact reports across each
catchment cluster. This is consistent with Bachmair et al.
(2018), Haro-Monteagudo et al. (2018) and Naumann

et al. (2015), each of whom found SPI-3 correlated well
with reported agricultural impacts. For water-based
drought impacts, SSI-2 generated the best model perfor-
mance scores and the highest impact likelihood values of
all accumulations.

Model performance varied by region, but overall
Cluster 3 in the east/southeast produced the best per-
forming land- and water-based models. The weakest
land-based model was Cluster 1 in the northwest whereas
the weakest water-based model was Cluster 2 in the
southwest. Drought impact article counts have a notable
influence on model performance with Cluster 3 catch-
ments, containing the greatest number of land- and
water-based articles, producing better results than those
for Cluster 1 and 2. Overall, we find that Cluster 1 and
2 models derived from land-based articles and SPI indices
perform better than the water-based equivalent, while
the opposite is the case for Cluster 3 models. Catchment
characteristics likely influence model performance with
Cluster 3 catchments, which tend to have greater ground-
water storage (O'Connor et al., 2022) and are influenced
more by the nonlinear propagation of drought through
such catchment systems, producing lower model perfor-
mances than the faster responding catchments in Cluster
1 and 2. The addition of smoothing to monthly values
considerably improved model performance (by a factor of

TABLE 4 SPI-3 and SSI-2 values producing incremental increasing impact likelihoods from very low to very high, for land- and water-

based models for the full period 1900–2016 and sub-periods 1900–1960 and 1961–2016

Index (period)
Cluster
number

Very low
(0.00–1.99) Low (0.20–0.39)

Moderate
(0.40–0.59) High (0.60–0.79)

Very high
(0.80–1.00)

SPI-3 (1900–2016) 1 >3.00 −0.60 −1.65 −2.68 <−3.00

2 >3.00 −0.42 −1.41 −2.35 <−3.00

3 >3.00 −0.17 −1.07 −1.98 <−3.00

SSI-2 (1900–2016) 1 >3.00 −0.46 −1.49 −2.48 <−3.00

2 >3.00 −0.57 −1.33 −2.02 −2.83

3 >3.00 −0.39 −1.03 −1.60 −2.27

SPI-3 (1900–1960) 1 >3.00 −0.47 −2.27 <−3.00 <−3.00

2 >3.00 −0.06 −1.33 −2.51 <−3.00

3 >3.00 0.12 −0.97 −2.08 <−3.00

SSI-2 (1900–1960) 1 >3.00 −0.47 −2.00 <−3.00 <−3.00

2 >3.00 −0.39 −1.26 −2.04 <−2.98

3 >3.00 −0.23 −0.99 −1.65 <−2.43

SPI-3 (1961–2016) 1 >3.00 −0.93 −1.66 −2.32 <−3.00

2 >3.00 −1.03 −2.21 <−3.00 <−3.00

3 >3.00 −0.60 −1.65 −2.63 <−3.00

SSI-2 (1961–2016) 1 >3.00 −0.66 −1.52 −2.29 <−3.00

2 >3.00 −0.95 −1.82 −2.58 <−3.00

3 >3.00 −0.71 −1.47 −2.06 <−2.81
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3.1 on average), as was found by Parsons et al. (2019).
Weighting of predictors by reciprocal rank of drought
article occurrence further improved model performance
(by a factor of 1.4 on average). Performance scores for
our models (R2adj and AUC) compare favourably with
similar studies (Stagge et al., 2015; Parsons et al., 2019).

Our results show that the likelihood of drought
impacts being reported is influenced by location, drought
type, and time-of-year. On an annual basis Cluster
3 catchments consistently showed the greatest propensity
for land- and water-based impact reports, whereas Clus-
ter 1 showed the least for land- and water-based impact
reports at more extreme deficits. For moderate deficits,
Cluster 2 showed the least propensity for water-based
impact reports. On a monthly basis, our results indicate
large intra-annual variations in the likelihoods of
reported drought impacts across clusters. In all clusters
and for both impact categories, summer shows the

highest reported impact likelihoods, which is unsurpris-
ing as agricultural activities (crop and livestock produc-
tion) and water use (consumption) increase markedly in
these warmer months. For land-based impacts, all clus-
ters display a high likelihood of impact reports in July,
associated with very modest SPI-3 deficits (none less than
−1), indicating a very high vulnerability to drought in
that month. Conversely, winter months show lower like-
lihoods of drought impacts being reported, with deficits
as extreme as <−3 SPI-3 in January resulting in low like-
lihoods across clusters. Previous studies on drought char-
acterization in Ireland (e.g., Noone et al., 2017; O'Connor
et al., 2022) have employed a common year-round thresh-
old of −1 SPI to identify the onset of drought events.
These findings suggest that the use of such fixed thresh-
olds for drought analysis in Ireland, which has a strong
seasonal cycle in both the mean and variability of precipi-
tation and flows, poorly reflects experienced drought

FIGURE 9 Predicted likelihood of reported impacts (monthly) from models generated using land-based impact articles and SPI-3

indices. Impact likelihoods for each cluster over the baseline period A: 1900–1960 (i.e., Clusters 1A, 2A and 3A) and baseline period B: 1961–
2016 (i.e., Clusters 1B, 2B and 3B) are shown in each panel for indices values ranging from −3 to 3. Indices values for each cluster resulting

in a high reported impact likelihood (0.60) are also identified (dashed horizontal line) [Colour figure can be viewed at

wileyonlinelibrary.com]
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conditions. Our work suggests that nonstationary, loca-
tion dependent threshold values would more accurately
capture the changing impacts of drought across seasons
on the island.

We find a close relationship between hydrological
drought impact reporting and catchment characteristics.
Despite revealing the lowest likelihood of reported land-
based impacts, Cluster 1 catchments show the highest like-
lihood of water-based impacts at low deficits in summer
months. These findings are consistent with O'Connor et al.
(2022) who identify Cluster 1 catchments as being the
most susceptible to hydrological drought in summer due
to the lack of groundwater storage. Cluster 3 catchments
show the highest likelihoods of impact reporting from
September through April where even in December at more
extreme deficits there exists a very high chance of drought
related impact reports occurring. These catchments tend
to have higher groundwater storage and more delayed
hydrological drought onset, consistent with higher impact
report likelihoods from September through April. As per
many aspects of the analysis, Cluster 2 catchments show

impact likelihood patterns intermediate between Cluster
1 and 3.

Inclusion of the “year” predictor variable in our
model revealed a decreasing trend in reported drought
impacts across all three clusters for both land- and water-
based models during the 1900–2016 period, a result con-
firmed by Theil–Sens slope testing. We also identify step
changes towards fewer drought impact reports for recent
decades in each cluster, especially for land-based impact
reports. As drought reports in this category are domi-
nated by impacts on agricultural and livestock farming
this may be indicative of autonomous adaptation in that
sector. These results differ to the UK where Parsons et al.
(2019) found a marked increase in the likelihood of
reported drought impacts in the agricultural sector. Simi-
larly, Stagge et al. (2015) found notable differences in
trends in agricultural drought impacts between five
European countries. Both studies linked possible biases
in reporting of impacts, resulting from a change in the
actual or perceived drought vulnerability of farms and/or
changes in reporting practices, as a cause of such

FIGURE 10 As in Figure 9 but for water-based impact articles and SSI-2 indices [Colour figure can be viewed at

wileyonlinelibrary.com]

O'CONNOR ET AL. 1811

 10970088, 2023, 4, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.7946 by H
ealth R

esearch B
oard, W

iley O
nline L

ibrary on [06/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


deviations, something that may well affect results
obtained here. Furthermore, it should be noted that the
period since the 1980 s in Ireland has been relatively
drought poor (Wilby et al., 2015; Noone et al., 2017), as
reflected by the relative lack of articles on the subject.
For the 1961–2016 period the risk of reported land-based
impacts is lower for Clusters 2 and 3. Changes in the
reporting of water-based drought impacts are less
extreme but nevertheless notable and coincide with find-
ings by O'Connor et al. (2022) showing reduced hydrolog-
ical drought occurrence in recent years. However, Cluster
1 catchments contradict this trend, whereby an increased
likelihood of drought impact reports for extreme deficits
in the 1961–2016 period was found. One plausible expla-
nation for the difference is that the economic growth and
industrial development that occurred in Ireland from the
1960s (Daly, 2016), which likely resulted in reduced vul-
nerability to drought impacts, was not universally felt
across the island with the northwest the latest to benefit
from these changes, as suggested by Martin and Townroe
(2013). However drought impacts are not a direct mea-
sure of, but a symptom of drought vulnerability (Wang
et al., 2020). Furthermore, drought vulnerability is also a
function of exposure, sensitivity and adaptive capacity
(Smit and Wandel, 2006) so accurately apportioning attri-
bution for such changes is not possible without a more
in-depth analysis.

Linking drought metrics and reported impacts at the
regional scale opens the possibility of more grounded
drought monitoring and warning systems (Bachmair
et al., 2016). This work identifies the accumulation
periods for SSI and SPI that are most closely associated
with drought impact reporting and identifies thresholds
for impact likelihoods associated with different values of
each drought metric for various catchment types.
Although we detect a decrease in the likelihood of
drought impact reports for some catchment clusters in
recent decades, this may be an artefact of reduced
drought occurrence in that period given the widespread
and significant impacts of the 2018 drought in Ireland
(Dillon et al., 2018; Falzoi et al., 2019; Government of
Ireland, 2020). Moreover, we show the value of newspa-
per archives as a source of information on drought
impacts. The IDID (Jobbov�a et al., 2022b) provides an
unprecedented resource for investigating drought impacts
in Ireland, as well as new opportunities for evaluating
societal effects and responses to drought events.

There are several methodological limitations to note.
Historic precipitation reconstructions from which SPI
indices have been generated are subject to varying uncer-
tainties across seasons (Casty et al., 2007). Flow values
from which SSI values have been derived also have
uncertainties, linked to the underlying precipitation data

and rainfall runoff models used in their generation. Con-
siderable efforts were made to address these concerns
using different model structures and datasets to evaluate
the quality of the reconstructions (see O'Connor et al.,
2021). While drought impact reports have been meticu-
lously assessed and grouped, uncertainty arises from dif-
ferences in the duration, frequency, spatial extent and
regional density of the newspaper publications (see
Jobbov�a et al., 2022a). For example, some publications
were only in print in the early half of the 20th century
while others commenced in the latter half of the century.
The frequency of publication also differed between some
newspapers while smaller regional publications had a
greater local emphasis in reports. Furthermore, drought
reporting competes with other local/national events
which may have more pressing news content, thereby
impacting the number of and space provided for drought
articles, particularly over extended drought periods. The
count of drought impact articles is, therefore, an imper-
fect proxy for the significance of reported impacts. As the
models applied weights based on reciprocal ranking of
total monthly article counts, the aforementioned sources
of bias would all impact model performance which might
account for the superior performance of models with rel-
atively short accumulation periods. While aggregation of
data by catchment clusters helps to constrain some of
these biases, a more substantive assessment of the text of
the articles together with a sectoral based approach of
model generation would help reduce this source of uncer-
tainty further.

Possibilities for future work include the application of
other drought metrics such as SPEI and/or low flow indi-
cators. Alternative modelling approaches could also be
considered. For instance, Bachmair et al. (2017) demon-
strate the utility of machine learning for linking drought
impacts and metrics which could potentially better han-
dle the complex, multithreshold relationships found here,
including accounting for nonbinary impact series. Other
impact datasets could be explored to supplement use of
newspaper articles including historical inventories, such
as harvest volumes, and/or records of impacts on online
social media platforms such as Twitter, which facilitates
a near real-time analysis of impacts as has been demon-
strated for flooding events (Basnyat et al., 2017; Thomp-
son et al., 2021). Our analysis has shown that drought
indices and article counts do not always coincide (as was
the case for the 1945 and 1921 droughts). Examining the
relationships between the frequencies of drought impact
reporting and evolving drought indices for such events
would be beneficial. Finally, real-time drought monitor-
ing is an essential component of drought risk manage-
ment (Senay et al., 2015), with the success of drought
mitigation measures largely dependent upon the
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gathering of information on drought onset, progress and
areal extent (Morid et al., 2006). The identification of
regional vulnerability to drought impacts here offers an
additional element to drought monitoring that could
potentially yield societal benefits. The development of
such a system for Ireland, using these research findings,
should be explored further.

5 | CONCLUSIONS

This paper applied logistic regression and GAMs to link
reconstructed SPI and SSI metrics to reported land- and
water-based drought impacts as inferred from newspaper
reports covering the period 1900–2016 in 51 catchments
in Ireland. We find that, based on model performance
metrics and impact likelihood scores, SPI-3 and SSI-2 are
most closely related to reported land- and water-based
impacts, respectively. Catchments in the east/southeast
show the highest likelihood of land- and water-based
impact report occurrence on an annual timescale, dis-
playing notably higher impact reporting likelihoods dur-
ing winter months, which might be attributed to the
greater influence of groundwater sources in these catch-
ments. During summer months, catchments in the north-
west display the highest water-based impact reporting
likelihoods at low SSI-2 deficits, despite having the lowest
equivalent land-based values. Our findings show that
maximum drought impacts across the 1900–2016 period
occur in July for SPI-3 and SSI-2 with even modest defi-
cits resulting in a high likelihood of impacts. Overall, the
lowest impacts occur in January for SPI-3 and SSI-2 were
indices values of <−3 for the former only generate very
low to low likelihoods of impact reports, while for the lat-
ter they generate differences from low impacts (Cluster 1)
to high impacts (Cluster 3). These findings suggest that
the use of fixed thresholds for identifying drought
impacts is not suitable. Our analysis of impact reports
over the last 117 years reveal a decreasing likelihood of
drought impact reports for catchments in the east/
southeast and southwest. Northwestern catchments show
an increasing likelihood of reported impacts for more
extreme drought deficits in recent decades, particularly in
respect of agricultural and livestock farming. The results
reported here have the potential to inform the develop-
ment of a near real-time, drought monitoring and warn-
ing system both regionally and at the catchment scale
across Ireland.
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