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Higher vegetation sensitivity to meteorological
drought in autumn than spring across European
biomes
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Europe has experienced severe drought events in recent decades, posing challenges to

understand vegetation responses due to diverse vegetation distribution, varying growth

stages, different drought characteristics, and concurrent hydroclimatic factors. To analyze

vegetation response to meteorological drought, we employed multiple vegetation indicators

across European biomes. Our findings reveal that vegetation sensitivity to drought increases

as the canopy develops throughout the year, with sensitivities from −0.01 in spring to 0.28 in

autumn and drought-susceptible areas from 18.5 to 57.8% in Europe. Soil water shortage

exacerbates vegetation-drought sensitivity temporally, while its spatial impact is limited.

Vegetation-drought sensitivity strongly correlates with vapor pressure deficit and partially

with atmospheric CO2 concentration. These results highlight the spatiotemporal variations in

vegetation-drought sensitivities and the influence of hydroclimatic factors. The findings

enhance our understanding of vegetation response to drought and the impact of concurrent

hydroclimatic factors, providing valuable sub-seasonal information for water management

and drought preparedness.
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Droughts are periods of lower than long-term average water
availability1. Climate change is leading to increased
intensity, duration, and frequency of droughts in certain

regions of the world2,3, which negatively impacts both societies
and ecosystems4,5. Drought can decrease vegetation productivity6,
change vegetation composition7, decrease biodiversity8,9, and
reduce ecosystem services5. Many European countries have suf-
fered from severe summer droughts in the last decades10–12. In
Europe and the UK, the average annual economic loss due to
drought during 1981–2010 was about 9 billion euros, with half of
these losses being from agriculture13,14, highlighting the impor-
tance of preparedness and knowledge of vegetation responses to
drought.

Meteorological droughts, caused by precipitation deficit, have
complex effects on vegetation growth that are influenced by
multiple hydroclimatic factors. Here, “growth” refers to vegeta-
tion processes that result in changes in biomass or primary
production in a broad sense15. The hydroclimatic factors include
soil water availability (soil moisture, SM), transient atmospheric
dryness (vapor pressure deficit, VPD), solar radiation (net
radiation, Rn), and atmospheric carbon dioxide (aCO2)
concentration16–19. These factors can interact in ways that either
amplify or mitigate the impacts of drought on biophysical pro-
cesses. Vegetation response to meteorological drought depends
on whether its growth is limited by water (SM) or energy (Rn)17.
Whereas the relative roles of SM and VPD on vegetation during
drought are challenging to disentangle20. Also, the aCO2 effect
during vegetation water stress remains debated21 and is inter-
twined with other factors22. A comprehensive study is needed to
assess the relative roles of these factors on vegetation growth and
responses to drought, attaining a holistic understanding of the
interplay among various concurrent factors with meteorological
drought.

The Standardized Precipitation and Evapotranspiration Index
(SPEI)23 is often used to estimate characteristics of meteorological
drought events, including drought severity, intensity, and dura-
tion; for a detailed definition, see ref. 24. The SPEI takes into
account the water balance between precipitation and atmospheric
evaporative water demand and provides a comprehensive
understanding of the water stress conditions on vegetation at
global and regional scales25–28. SPEI has been shown to outper-
form other indices in evaluating drought impacts on soil moist-
ure, vegetation activities, crop yield and forest growth29–31. The
SPEI calculated from coarse climate data (0.5-degree) has been
used to assess the impacts of interannual variability of SPEI on
vegetation activities over global and regional scales32,33. Recently
developed high-resolution (0.1-degree) climate reanalysis data
offer the potential for assessing drought impacts on vegetation
using SPEI with spatially detailed information.

Drought can happen at any time of a year34,35, and the
vegetation responses to drought vary depending on the timing
of drought and vegetation growing stage due to varying
water requirements along seasonal vegetation growth36–38.
Current research has primarily focused on the overall annual
vegetation response to drought and its time-scale effects32, post-
drought recovery36, and the impacts of drought on vegetation
phenology39. The fundamental knowledge about immediate sub-
seasonal vegetation responses to drought over large scales has
been overlooked. This information is crucial for ecosystem
drought monitoring40, as many studies on plant drought stress
responses have been limited to pot-scale experiments41. The
extent to which vegetation sub-seasonal growth is affected by
drought at the ecosystem scale remains unclear, as the applic-
ability of Liebig’s law of the minimum may not extend from the
individual to the community level42,43. The situation is compli-
cated by the spatial variability of soil water availability preceding

meteorological droughts, in addition to other factors necessary to
meet the minimum growth requirements of individual plants44.
The knowledge of sub-seasonal vegetation responses to water
availability is needed for crop planning, efficient water resource
management, optimizing ecosystem restoration, and mitigating
drought risks.

Europe experienced drying conditions in the south and wetting
conditions in the north, with a tendency towards wetter winters
and drier summers during past decades34. The region of Europe
facing water stress has been projected to increase significantly
everywhere45. Several studies have analyzed the effects of drought
on pan-European vegetation using remotely sensed vegetation
proxies. For example, the Normalized Difference Vegetation
Index (NDVI) was used and revealed that drought led to
decreased vegetation production in central Europe during
1999–201046. Another closely related indicator, the fraction of
photosynthetically active radiation (FPAR), was also employed,
and it found that vegetation in northern Europe showed a weaker
sensitivity to drought compared to vegetation in southern Europe
during the period 1982–2011 and that droughts had limited
impacts on boreal and alpine forests but significantly reduced
productivity in agricultural regions47. In a comparison study of
European drought during 2001‒2015 using an ensemble of
satellite-derived land surface products and carbon cycle models48,
it was reported that NDVI failed to capture drought impacts on
vegetation. A single vegetation proxy, e.g., the greenness proxy
NDVI, only provides one facet related to vegetation growth and
may be insufficient to understand vegetation responses to
environments49. Some vegetation indicators from satellite
observation also have limitations, such as the issues caused by
snow cover and dense vegetation50, leading to potential inaccu-
racy in the estimation of vegetation growth. A comprehensive
assessment of vegetation responses to drought requires evaluating
multiple indicators, including greenness, structure, physiology,
photosynthetic light absorption, productivity, and more, to offer a
complete understanding of vegetation’s response to drought
stress.

Taking into account the multifaceted nature of plant growth15,
this study uses an ensemble of remotely sensed vegetation indi-
cators in combination with a state-of-the-art gridded climate
dataset to investigate how vegetation responds to drought across
European biomes during 2000‒2020. We assess the immediate
impacts of interannual variability of SPEI on vegetation at a half-
month step during canopy development over a year, considering
different time scales of drought, including both positive values for
wet and negative values for dry conditions. The robust statistical
methods are used to classify drought-vegetation associations and
disentangle meteorological drought impacts on vegetation growth
from concurrent hydroclimatic factors, including SM, Rn, VPD,
and aCO2, at each growing stage. We examine vegetation
responses to drought separately for the most common European
land cover types.

Results
Vegetation-drought association. Vegetation growth was corre-
lated to drought with varying strengths at different drought time
scales in different months of the year across European biomes.
The correlation values between the ensemble vegetation indica-
tors and SPEI are summarized in Fig. 1 for three typical months
of a vegetation season (spring onset, summer peak, and autumn
senescence). During the spring months of vegetation growth
onset, 18.5% of the area presented a significant positive correla-
tion (implying vegetation susceptible to drought) between vege-
tation and SPEI, whereas 26.5% of the area had significant
negative correlation, leading to an average correlation coefficient
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of −0.11 over the region. This indicates an overall drought-
tolerant response in springtime, albeit with notable exceptions
over the Iberian Peninsula, parts of France, Latvia, Ukraine, and
western Russia. The proportion of land area susceptible to
drought increased to 45.6% in the month of summer peak growth
and 57.8% in the month of autumn senescence (Fig. 1d). The
average correlation coefficient for the entire area increased from
0.33 in summer to 0.46 in autumn. The seasonal variations of
vegetation correlations to SPEI were consistent among all seven
vegetation indicators, with only minor differences among vege-
tation greenness or structure indicators (NDVI, LAI, and FPAR)
and productivity indicators (GPP). The GPP was least affected by
drought in the spring and summer months, compared with
NDVI, FPAR, and LAI. Three indicators, NIRv, PPI, and SIF,
exhibited consistent proportions of areas susceptible to drought
(Fig. 1d). The dominant drought time scale differed among sea-
sons, with 5–6 months for the majority area in spring and
2–3 months in summer and autumn (inset histograms in
Fig. 1a–c).

The vegetation-drought association was classified into different
levels of hierarchical classes, with the two main classes being

humid/subhumid and arid. Humid regions include northern
Europe, while subhumid regions can be found in central Europe.
Arid regions are typically located in southern Europe, particularly
around the Mediterranean and Black Sea (Fig. 2). Figure 2 also
demonstrates how the area can be further divided into 5, 8, and
12 sub-classes. These 12 vegetation-drought association classes
were further used for evaluating zonal statistics of vegetation-
drought responses and to analyze the effects of concurrent
hydroclimatic factors.

Sensitivities of vegetation growth to drought and hydrocli-
matic factors. From the northern humid region to the southern
arid region, the sensitivities of vegetation to drought exhibited
notable increases, characterized by stronger and more prolonged
peak responses (Fig. 3). The average sensitivity during the
growing season was around zero in Zone 1–3 (northern Europe,
Fig. 2), 0.06 in Zone 4 (mainly Alpine regions), and 0.11 in Zone
5 (Western Russia). The sensitivity values were 0.09–0.20 in
Zone 6 and 7 (central European subhumid zones), and 0.19–0.44
in Zone 8–12 (southern European arid zones, Fig. 3). Tempo-
rally, the mean sensitivities rose from −0.01 in spring to 0.28 in
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Fig. 1 Maps of vegetation-drought Spearman correlations during three vegetation seasons. a Spring months of growth onset, b summer months of peak
growth and c autumn months of senescence, determined from an ensemble of seven vegetation indicators (NDVI, NIRv, PPI, FPAR, LAI, SIF, and GPP) and
drought index SPEI. d Bar chart of the proportion of drought-susceptible areas with significant positive correlations between vegetation and SPEI in three
vegetation seasons. The dot-dash lines denote the ensemble mean proportion areas of the seven variables. Inset histograms in (a–c) show the frequency
(in percent of total area) of time scale distributions, with red colors denoting the time scales of maximum positive correlation between vegetation and
drought, blue colors for minimum negative correlation, dark color for significant at p≤ 0.05, and light color for non-significant (p > 0.05). Inset pie charts
indicate the overall proportion of areas of correlation values.
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autumn (Fig. 4a–c). The high response occurred mostly in the
month of or within one month before the autumn senescence. In
southern Europe, the responses were high throughout the entire
growing season. Among the seven vegetation indicators, a
higher response in the greenness indicator NDVI was evident
during the autumn months. Another two spectral indicators,
NIRv and PPI, also showed relatively high responses to SPEI
variability. The productivity indicator GPP exhibited a lower
response than other vegetation indicators to drought during the
summer peak growth months in the central and southern Eur-
opean regions, and the responses to drought of all vegetation
indicators converged to a narrow range of high-level during
autumn senescence (Fig. 3).

The seven major land cover types from northern to southern
Europe all experienced widespread increases in drought sensitiv-
ities from spring to autumn (Fig. 4a–c and Fig. 5). The strongest
increases occurred in cropland, grassland, and deciduous forests

over central and southern Europe (Fig. 5c, d), which are the
predominant land cover types in the area (Fig. 5a). In northern
Europe, wetlands exhibited the strongest sensitivities to drought.
The evergreen needle leaf forest, the dominant land cover of the
region, was found to exhibit lower sensitivity to drought
compared to wetlands and shrublands.

During the summer and autumn seasons, vegetation
responded more strongly to drought than to other concurrent
hydroclimatic factors, evident by the widespread positive
drought sensitivities (Fig. 4b, c), i.e., vegetation growth
decreased with increasing drought intensity (SPEI decreasing).
Along with the role of drought on vegetation growth, other
hydroclimatic factors also exerted a range of roles depending on
vegetation phenology stages. Vegetation growth decreased with
decreasing soil moisture in summer and autumn (positive
relations in Fig. 4e, f), with an average sensitivity of 0.12 in both
seasons. Vegetation growth overall showed the least response to
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VPD, Rn, and aCO2 concentration during the summer and
autumn seasons (average sensitivities −0.03 to 0.04), except for
some local hotspots, for example in middle Sweden the relatively
strong positive sensitivity of vegetation growth to autumn VPD
(Fig. 4i), and in western Russia, high sensitivity to summer Rn
(Fig. 4k). Vegetation responses to hydroclimatic factors in
spring differed largely from the other two seasons. On average,
drought showed the weakest role in vegetation growth during
spring in central Europe (overall sensitivity −0.01, Fig. 4a). The
VPD showed strong effects on vegetation growth with an
average sensitivity of 0.21 (Fig. 4g), indicating higher spring
atmospheric dryness could promote vegetation growth.

Roles of hydroclimatic factors on vegetation-drought sensi-
tivities. Table 1 and Fig. 6 summarize the Spearman correlation
coefficients between the sensitivities and hydroclimatic factors
aggregated over 12 vegetation-drought association zones during
three seasons. The concurrent hydroclimatic factors had varied
roles on vegetation-drought sensitivities in different vegetation
growth stages. The VPD had the strongest positive significant
relationships to the vegetation-drought sensitivities among all
the hydroclimatic factors during the entire growing season
(Table 1, Fig. 6d–f), with particularly high and significant cor-
relation coefficients in summer and autumn seasons (0.90–0.91,
p ≤ 0.05, n= 12). The correlation between the vegetation-
drought sensitivity and SM over 12 zones was around zero
(−0.06 to 0.17, p > 0.05, Table 1, Fig. 6a–c), suggesting that the
spatial variations of SM had minor roles in vegetation-drought
sensitivities. During spring, aCO2 concentration had weak
negative correlations with the vegetation-drought responses
(ensemble mean correlation coefficients −0.28, p > 0.05, n= 12).
During autumn, Rn and aCO2, together with VPD, all had
positive significant correlations with vegetation-drought
responses, with an ensemble mean correlation coefficient from
0.83 to 0.91 (p ≤ 0.05, n= 12, Table 1). The drought sensitives
estimated from the seven vegetation indicators exhibited gen-
erally consistent correlations to a hydroclimatic factor. A minor
inconsistency was found in the roles of aCO2 and VPD on
summer vegetation-drought sensitivities estimated from GPP,
which were much weaker compared to estimates from the other
six vegetation indicators (Table 1).

Discussion
This study investigates the immediate responses of the multi-
faceted nature of vegetation growth to meteorological drought
across European biomes. The results show that different satellite-
derived vegetation indicators reveal generally consistent patterns
of drought responses, which justifies other studies based on a
single vegetation indicator from satellites to study drought
impacts32,46,47. However, we found that the satellite-derived GPP
exhibited noticeably weaker responses to drought than the other
six indicators during the peak growth (Fig. 3). That the GPP is
less affected by drought at the ecosystem level may be explained
by resource utilization and re-balancing within the community.
Different species adjust resource utilization (niche differentia-
tion), maintaining GPP despite water stress22. The optimization
of resource usage for maximizing production at the community
level may not follow Liebig’s law of the minimum for
individuals42,43. However, it is important to note that vegetation
responses to extreme drought events40 may differ from the results
obtained from linear regression analysis. Further research is
needed to understand these mechanisms and enhance drought
impact assessment.

The association between vegetation and drought varied
depending on the month of canopy growth stage. This suggests
that droughts can significantly impact ecosystem carbon seques-
tration due to the high levels of plant photosynthesis and carbon
allocation that occur during these periods51–53. However, the
higher sensitivity of vegetation growth to drought in the summer
and autumn seasons compared to spring raises the question of
whether larger biomass or productivity contributes to this greater
sensitivity. No evidence supports this speculation, as opposite or
insignificant relationships were found after further examination
between vegetation growth and vegetation-drought sensitivity
over the 12 zones. Seasonally varied sensitivity to water stress may
be attributed to plant strategies developed during evolution to
cope with stressful environments for survival54–56.

Our findings show that the stronger vegetation responses in
central and southern Europe are mainly attributed to the domi-
nant land cover types of the region, such as croplands and
grasslands, which can plastically tune their growth to water
availability, a physiological strategy after long-term natural
adaptation or human selection during farming practice to fit
subhumid and arid climates57. However, in northern humid
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regions, wetlands had a stronger drought sensitivity than other
land cover types, making them more vulnerable to increasing
drought with changing climate58. We used dimension-reduction
and hierarchical classification techniques to produce a map of the
association between vegetation and drought in Europe. The map
shows a resemblance to the Köppen-Geiger climate classification
map, which characterizes empirical fundamental biome dis-
tributions based on monthly climate factors59–61. By taking into

account the drought effects (combining precipitation and energy)
on monthly vegetation growth, our mapping approach has the
potential to provide a realized vegetation distribution under
vegetation-climate interactions. Vegetation distribution study
using climatic water balance has been shown to be more reliable
than temperature and precipitation-based approaches62.

We revealed seasonal shifts in hydroclimatic constraints on
vegetation growth and vegetation sensitivities to drought,
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consistent with the intra-annual shifts in another study17. The
transient atmospheric dryness indicator VPD and the energy
indicator Rn played strong roles in vegetation growth in spring,
whereas SM played a strong role in summer and autumn53,63.

Spatially, the zonal aggregated feature exhibited that VPD had the
greatest role in the vegetation responses to drought, with higher
VPD leading to stronger drought responses in summer and
autumn (Fig. 6e, f). Surprisingly, the soil moisture effects on the

%
 a

r e
a

Vegetation-drought association zones
2 3 4 5 6 7 8 9 10 11 121

0.0

0.3

0.6

0.0

0.3

0.6

-0.3

0.0

0.3 b)

c )

d)

SouthNorth Central

100

0.0

1

a) CRO DBF ENF SHR WET IRRGRA

Se
ns

iti
vi

ty
Se

ns
iti

vi
ty

Se
ns

iti
vi

ty

Spring

Summer-minus-spring

Autumn spring-minus-

Land cover

10

Fig. 5 Statistics of seven aggregated land covers in 12 vegetation-drought association zones. a Proportion of areas, b drought sensitivities in spring,
c difference of drought sensitivities in summer against spring, and d difference of drought sensitivities in autumn against spring. CRO―non-irrigated cropland,
DBF―deciduous broadleaf and mixed forest, ENF―evergreen needle leaf forest, GRA―grassland, SHR―shrubland, WET―wetland,
IRR―irrigated cropland. Note that the sensitivities for landcover proportion less than 1% of the association zone are omitted due to the small number of pixels.

Table 1 Spearman correlation coefficients of the vegetation-drought sensitivities to concurrent hydroclimatic factors.

Season Environmental
variable

Vegetation spectral indicators Vegetation biophysical indicators Ensemble
mean

NDVI NIRv PPI FPAR LAI SIF GPP

Spring months of growth
onset

SM −0.08 −0.06 0.00 −0.08 −0.09 −0.07 −0.06 −0.06
VPD 0.50 0.57 0.55 0.45 0.46 0.58 0.36 0.45
Rn 0.27 0.24 0.29 0.23 0.22 0.22 0.22 0.27
aCO2 −0.14 −0.21 −0.34 −0.29 −0.34 −0.34 −0.26 −0.28

Summer months of peak
growth

SM 0.07 −0.03 0.01 0.03 0.04 −0.06 −0.13 0.02
VPD 0.87 0.78 0.78 0.88 0.92 0.80 0.51 0.90
Rn 0.10 −0.08 −0.02 0.19 0.18 −0.04 0.06 0.08
aCO2 0.38 0.66 0.62 0.51 0.50 0.69 −0.02 0.49

Autumn months of growth
senescence

SM 0.08 0.09 0.10 0.08 0.15 0.15 0.00 0.17
VPD 0.85 0.94 0.96 0.90 0.90 0.95 0.89 0.91
Rn 0.78 0.89 0.92 0.87 0.89 0.94 0.78 0.89
aCO2 0.74 0.82 0.85 0.77 0.78 0.87 0.72 0.83

The correlation coefficients are estimated from aggregated statistics over 12 vegetation-drought association zones and three phenological seasons in Fig. 6. The bold fonts indicate significant correlations
at p ≤ 0.05.
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sensitivity of vegetation to meteorological drought were weak
(Fig. 6, Table 1), even though soil moisture did influence vege-
tation growth (Fig. 3). We may conclude that seasonal variations
in SM contributed to seasonal variations of vegetation growth
(Fig. 4d–f), and spatial variations in SM had no observable effects
on vegetation sensitivity to meteorological drought (Fig. 6a–c).

The spatial variation of VPD, instead, played an important role in
the variations of vegetation sensitivities to drought. Therefore,
spatial increases in vegetation sensitivity to drought were attrib-
uted to VPD increase and seasonal increases in vegetation sen-
sitivities to drought can be further exacerbated by SM
scarcity17,20,63. This suggests that a lack of SM can impede
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vegetation productivity, but it is the high VPD that consistently
increases vegetation’s vulnerability to drought64.

Vegetation sensitivities to drought across global drylands were
found to have increased during the past four decades, and the
increase was attributed to the elevated aCO2

22. Our results
revealed divergent sub-seasonal perspectives. European dry
regions were more sensitive to drought than humid regions, and
the higher aCO2 in dry regions could significantly increase
vegetation susceptibility to drought in the autumn season
(Fig. 6l), with no effects in spring (Fig. 6j). A plant-centric view is
that elevated aCO2 could mitigate drought impacts on
vegetation19 because plants can use water efficiently during
photosynthesis with high aCO2. However, the enhanced photo-
synthesis from elevated aCO2 could also lead to water depletion
due to excessive consumption by CO2-boosted plant growth,
particularly in areas where water is already scarce22,65. In sum-
mary, the effect of elevated aCO2 on vegetation-drought sensi-
tivity is still a matter of debate66. The outcome depends on
various factors such as plant species, growing stage, water and
nutrient availability, and the intensity of the drought event. The
situation can be further complicated by legacy effects since the
saved evaporative water loss from elevated aCO2 allows more
partitioning of precipitation into runoff and soil water for later
use in another area.

Conclusions
We found that the sensitivity of vegetation to meteorological
drought is higher in autumn than in spring, indicating a greater
susceptibility of vegetation growth to drought in autumn com-
pared to spring. Therefore, it is crucial to prioritize water man-
agement strategies during the late growing season to enhance
primary production, carbon sequestration, and crop yield, taking
into account the anticipated European climate change scenario of
wet springs and dry summers.

Vegetation in southern regions demonstrates higher sensitivity
to drought than in the northern regions. The spatial pattern of the
association between vegetation and drought resembles the climate
zone of the distribution of vegetation. Different land cover types
also exhibit varying sensitivities to drought. Cropland, grassland,
and deciduous forests in central and southern Europe show the
strongest sensitivities to drought. Wetlands in northern Europe
are also highly sensitive to drought, whereas evergreen needle leaf
forests exhibit lower sensitivity compared to other land cover
types. This study utilized a hierarchical classification to categorize
the vegetation-drought association into different classes, facil-
itating the understanding of regional variations in vegetation
response to drought.

The study also identified varying roles of concurrent hydro-
climatic factors on vegetation growth and vegetation-drought
sensitivities. In northern Europe, wet soil and low VPD tend to
inhibit springtime vegetation growth. SM primarily affects
vegetation growth in summer and autumn, whereas it has weak
role in vegetation sensitivity to meteorological drought. In areas
with high VPD, vegetation demonstrates strong responses to
drought throughout the year, particularly during summer and
autumn. Although aCO2 plays a minor role in the interannual
variability of vegetation growth, vegetation in high aCO2 regions
exhibits considerably high sensitivity to autumn drought but
weak sensitivity to spring drought. The seven vegetation indi-
cators used to estimate drought sensitivities generally exhibit
similar seasonal patterns and consistent correlations with
hydroclimatic factors. However, it is worth noting that the GPP-
derived drought sensitivity appears weaker and shows less
influence from summer VPD and aCO2 compared to the other
vegetation indicators.

Our research provides insights into the immediate effects of
meteorological drought on vegetation across Europe over space
and time. The findings contribute to a better understanding of
vegetation responses to drought and help elucidate the effects of
soil moisture, vapor pressure deficit, radiative energy, and
atmospheric CO2 on vegetation development during drought
stress.

Methods
Study area. We focus on European biomes across a climate
gradient from northern cold humid tundra to southern hot arid
desert, covering latitudes 33°N to 74°N and longitudes 27°W to
45°E. Vegetated land cover was aggregated into seven major
types: non-irrigated cropland (CRO), irrigated cropland (IRR),
grassland (GRA), deciduous broadleaf/mixed forest (DBF), ever-
green needleleaf forest (ENF), shrubland (SHR), and wetland
(WET), based on Corine Land Cover (CLC) 2018 (Version
2020_20u1). The European Space Agency (ESA) Climate Change
Initiative (CCI) land cover product was used for regions outside
the CLC coverage (ESA 2017). Both landcover datasets show
good agreement, justifying their merging67. Pixels that changed
land cover type from 2000 to 2020 were identified in the CCI
product and excluded from this study. The study area (Fig. 7a) is
dominated by non-irrigated cropland (40.7%), followed by
broadleaf and mixed forests (22.3%), needleleaf forest (11.7%),
and grassland (7.8%). The study area, in general, has dry climate
conditions in the south, subhumid in the center, and humid in the
northern part and in the alpine mountains (Fig. 7b).

Climate data. Daily precipitation data were collected from the
Multi-Source Weighted-Ensemble Precipitation dataset (MSWEP
http://www.gloh2o.org/mswep/). MSWEP provides global pre-
cipitation estimates (P) by optimally merging rain gauge, satellite,
and reanalysis data at 0.1-degree resolution from 1979 to the
present68. The daily atmospheric demand (AED, or potential
evapotranspiration) data were collected from Bristol’s potential
evapotranspiration dataset at 0.1-degree resolution for the global
land surface from 1981 to 2020 (https://data.bris.ac.uk/data/). The
AED data are calculated using FAO’s Penman-Monteith
formulation69 with climate variables from ERA5-Land70. The P
and AED were used to calculate SPEI in this study (Section 2.4).

We also collected monthly SM (0‒100 cm), VPD, and Rn data
from the Global Land Data Assimilation System (GLDAS) Noah
Land Surface Model L4 monthly 0.25 × 0.25 degree V2.1 dataset
GLDAS_NOAH025_M71, to investigate the independent roles of
these hydroclimatic factors on vegetation growth and vegetation-
drought responses. We utilized the water component (SM) and
energy components (Rn, VPD) from the same land surface model
to consider their coupling nature72. We collected aCO2 column-
mean molar fraction from Copernicus Atmosphere Monitoring
Service (CAMS) global greenhouse gas reanalysis monthly
averaged fields dataset to investigate the role of aCO2 in
vegetation-drought responses. All these data (Table 2) were
resampled to 0.1-degree resolution and half-month step using
bilinear spatial interpolation and linear temporal interpolation,
consistent with the drought indices.

Remotely sensed vegetation data. Assessing drought response on
vegetation growth at local, regional, and global scales can be done
using remotely sensed indicators. Vegetation growth has different
facets15; therefore, drought impacts on vegetation growth have
also multiple aspects. We used an ensemble of indicators for
vegetation growth and productivity derived from different satel-
lite platforms to examine vegetation responses to drought
(Table 2). The NDVI is one of the most widely used greenness
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indices for studying vegetation growth and environmental
impact73. The near-infrared reflectance of vegetation NIRv74, is
another indicator that strongly correlates to leaf chlorophyll
photon interception during photosynthesis processes. The plant
phenology index (PPI)75 is a physically based vegetation index for
photosynthetically active leaf area quantity and has good relation
with vegetation productivity. Furthermore, several vegetation
biophysical variables derived from satellite observations, such as
Leaf Area Index (LAI), FPAR, solar-induced fluorescence (SIF),
and gross primary productivity (GPP) estimations, can be used to
investigate drought impacts on vegetation16,40,46,76.

Three of the aforementioned vegetation indicators, NDVI,
NIRv, and PPI, were calculated using the Moderate Resolution
Imaging Spectroradiometer (MODIS) nadir bi-directional reflec-
tance distribution function (BRDF) adjusted reflectance (NBAR)
product (Version 6.0) at a daily time step and 0.05-degree spatial
resolution:

NDVI ¼ DVI
NIRþ Red

ð1Þ

NIRv ¼ NDVI ´NIR ð2Þ
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PPI ¼ �K ´ ln
M � DVI
DVI � 0:09

� �
ð3Þ

where DVI ¼ NIR� Red, the difference vegetation index
between Red and near-infrared reflectance (NIR). M is the
maximum DVI of each pixel during 2000−2020, and K is a factor
calculated from M, the solar zenith angle, and the diffuse fraction
of radiation. Four biophysical vegetation indicators, LAI, FPAR,
SIF, and GPP, were directly downloaded from open sources. The
LAI and FPAR are generated from three satellite platforms:
SPOT/VGT, PROBA-V, and Sentinel-3, available from the
Copernicus Global Land Service (CGLS, https://land.copernicus.
eu/global/ themes/vegetation). The clear sky daily SIF data were
from the contiguous solar-induced fluorescence (CSIF) dataset77,
and GPP from the Global MODIS and FLUXNET-derived Daily
Gross Primary Production, V2 FluxSat 2.078. Both SIF and GPP
datasets are generated using neural network-based models trained
by MODIS NBAR reflectance data. Specifically, CSIF is from the
downscaling of coarse resolution Orbiting Carbon Observatory-2
observations and FluxSat GPP from the upscaling of tower-based
measurements in the global FLUXNET 2015 networks (Joiner
and Yoshida 2020).

All seven vegetation indicators were aggregated to 0.1-degree
resolution at a half-month step to investigate vegetation-drought
associations and responses. To investigate sub-seasonal vegetation
responses to drought, we estimated vegetation phenology,
including the start of the growing season, the peak of the
growing season, and the end of the growing season, from the PPI
time series using the TIMESAT software79, following ref. 80. To
facilitate comparison, we particularly summarize the results for
three distinct months of a year: the month of spring onset of
vegetation growth, the month of summer peak growth, and the
month of autumn senescence.

Calculation of SPEI. The SPEI was calculated for time scales
from 1 to 24 months at a half-month step. First, the accumulated
water balance D was calculated as:

Dk
n ¼ ∑

2n�1

i¼0
Pk�i � AEDk�i

� � ð4Þ

where k is the time position at a half-month step, and n is the
time scale (n= 1, 2, …, 24 months). Second, D was transformed
to normal distribution N 0; 1ð Þ using a 3-parameter log-logistic
distribution to obtain SPEI for each half-month-of-year and each
time scale over a reference period of 1981–2020 using the script at
https://digital.csic.es/handle/10261/10002 following Vicente-
Serrano et al.23.

Data analysis. The impact of SPEI interannual variability on
vegetation growth was evaluated by examining the correlation
between vegetation indicators and SPEI, following a similar
approach as in Vicente-Serrano et al.32. Specifically, we calculated
the simple Spearman correlation between a vegetation indicator
and SPEI for each half-month from January to December, cov-
ering the period from 2000 to 2020 with 24 time series for each
pixel. The computation was performed for seven vegetation
indicators and 24 time scales. The Spearman rank correlation
rather than Pearson linear correlation was used to account for the
potential nonlinear nature of vegetation response to water avail-
ability. Furthermore, the first differencing variables were
employed instead of raw data to account for non-stationary time
series and potential spurious correlation81. Each pixel yielded
4032 correlation coefficients (24 × 7 × 24). These correlation
coefficients were then used in two tasks: (1) To classify spatial
patterns of the vegetation-drought association for the 1.2 × 105T
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vegetated land pixels in total. (2) To determine the dominant
drought time scale, at which of 1 to 24 months’ time scale the
correlation between the vegetation indicator and SPEI was
strongest in each half-month of a year.

In the first task, we used the t-distributed stochastic neighbor
embedding method t-SNE82 to reduce the 4032 dimensions to
3-D. Based on Euclidian distance measures of the 3-D data, the
entire region was then classified into different vegetation-drought
association zones using a hierarchical classification method. A
fixed seed is specified before the tSNE processing to allow for
repeatability in the unsupervised classification. The number of
classes in a hierarchical classification system was chosen from
separable distance measures to avoid merging sub-classes at
different hierarchical levels.

In the second task, the correlation at the dominant time scale
could be either negative or positive, depending on its absolute value.
A positive value indicates that vegetation growth is sensitive to
drought, and the drought has a prohibition effect on vegetation
growth at the dominant time scale. A negative correlation indicates
vegetation growth is contrarily promoted by the metrological
drought condition. The vegetation-drought sensitivity was estimated
in the following analysis for the SPEI at the dominant time scales.

A linear model was used to estimate the sensitivities of
vegetation growth to meteorological drought. To separate the
unique contribution of meteorological drought from other
concurrent hydroclimatic factors on vegetation growth, we
included SM, VPD, Rn, and aCO2 in the multiple linear regression:

y ¼ αþ γdSPEI þ ∑
4

i¼1
γi � xi þ βt þ ε ð5Þ

where y is a vegetation indicator (NDVI, NIRv, PPI, LAI, FPAR,
SIF, or GPP), γd is the vegetation sensitivity to drought. γi
(i= 1,2,…, 4) is the vegetation sensitivities to the four concurrent
hydroclimatic factors, SM, VPD, Rn, and aCO2. The regressor t is
an augment term to address potential spurious regression caused
by trends in variables, which is preferred over the explicit
detrending method to address stochastic trends83.

Equation (5) was transformed to the first difference form to
eliminate the constant α. The five sensitivity parameters (regression
coefficients γd and γ1 to γ4) were estimated using ridge regression
by standardizing regressors (the first differences of SPEI, SM, VPD,
Rn, and aCO2, respectively). The regression coefficients reflect the
changes in response variables corresponding to unit changes in the
standardized regressors. They are unitless and comparable across
models and predictors. The ridge regression reduced the variability
of regression slopes, which is particularly useful in the case of
multicollinearity among hydroclimatic factors. No significant level
is reported for slopes estimated from ridge regression since the
variance of slopes is manipulatively suppressed by a ridge factor.
The ridge factor was chosen following ref. 84 using the script at
https://se.mathworks.com/matlabcentral/fileexchange/121008-
autoridge. All the analyses were implemented using MATLAB
(R2022a) Statistics and Machine Learning Toolbox™ on a high-
performance computing (HPC) system of the Swedish National
Infrastructure for Computing (SNIC).

Data availability
All the original data resources are publicly accessible and listed in Table 2. The datasets
generated in this study are available in the Figshare repository, https://doi.org/10.6084/
m9.figshare.23653110.

Code availability
All analyses were implemented using MATLAB (R2022a) Statistics and Machine
Learning Toolbox. Scripts for SPEI calculation are from script at https://digital.csic.es/

handle/10261/10002. TIMESAT for phenology processing is freely available at https://
web.nateko.lu.se/timesat/timesat.asp?cat=6. Automatic ridge regression is from https://
se.mathworks.com/matlabcentral/fileexchange/121008-autoridge.
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