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Abstract

Data derived from synthetic aperture radar (SAR) are widely employed to

predict soil properties, particularly soil moisture and soil carbon content.

However, few studies address the use of microwave sensors for soil texture

retrieval and those that do are typically constrained to bare soil conditions.

Here, we test two statistical modelling approaches—linear (with and without

interaction terms) and tree-based models, namely compositional linear regres-

sion model (LRM) and random forest (RF)—and both nongeophysical

(e.g., surface soil moisture, topographic, etc) and geophysical-based (electro-

magnetic, magnetic and radiometric) covariates to estimate soil texture (sand %,

silt % and clay %), using microwave remote sensing data (ESA Sentinel-1). The

statistical models evaluated explicitly consider the compositional nature of soil tex-

ture and were evaluated with leave-one-out cross-validation (LOOCV). Our find-

ings indicate that both modelling approaches yielded better estimates when fitted

without the geophysical covariates. Based on the Nash–Sutcliffe efficiency coeffi-

cient (NSE), LRM slightly outperformed RF, with NSE values for sand, silt and

clay of 0.94, 0.62 and 0.46, respectively; for RF, the NSE values were 0.93, 0.59

and 0.44. When interaction terms were included, RF was found to outperform

LRM. The inclusion of interactions in the LRM resulted in a decrease in NSE

value and an increase in the size of the residuals. Findings also indicate that the

use of radar-derived variables (e.g., VV, VH, RVI) alone was not able to predict

soil particle size without the aid of other covariates. Our findings highlight the

importance of explicitly considering the compositional nature of soil texture infor-

mation in statistical analysis and regression modelling. As part of the continued

assessment of microwave remote sensing data (e.g., ESA Sentinel-1) for predicting

topsoil particle size, we intend to test surface scattering information derived from

the dual-polarimetric decomposition technique and integrate that predictor into
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the models in order to deal with the effects of vegetation cover on topsoil

backscattering.
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1 | INTRODUCTION

Few studies address the use of microwave remote sensors
for soil texture retrieval or for understanding, analysing and
predicting these soil properties (Domenech et al., 2020).
Typically, research to date has focused on the utilization of
Synthetic Aperture Radar (SAR) for estimating soil moisture
or carbon content and employing in situ soil texture mea-
surements to retrieve those soil properties (Babaeian
et al., 2019; Petropoulos et al., 2015; Pradipta et al., 2022).
Additionally, the investigation of soil texture with SAR
remote sensing has largely been constrained to bare soil
areas (Gholizadeha et al., 2018; Marzahn & Meyer, 2020;
Mondejar & Tongco, 2019; Niang et al., 2014), which
greatly limits its application. Similar to geophysical data
based on electromagnetic signals, SAR data are reliant on
dielectric properties (Marzahn & Meyer, 2020); namely, a
measure of the electrical properties of a material that can
impede a charge to move when subjected to an external
electrical field. Consequently, both share a common diffi-
culty, translating the measured response, or signal, into a
meaningful soil characteristic (Pradipta et al., 2022). An
alternative approach is to understand the influence of the
soil characteristic on the geophysical parameter (Pradipta
et al., 2022), provided that studied data refer to the same
field conditions (Grandjean et al., 2009). A pioneering
study related to this subject can be found in Ulaby
et al. (1978, 1979).

Since soil texture comprises a relative percentage of
sand, silt and clay, the soil property is compositional in
nature (i.e., the sum of the components D (SD = 3) is
equal to 100%). In this context, we tested two different
statistical modelling approaches—a linear model and
tree-based model—to estimate the percentage of sand,
silt and clay using microwave remote sensing data. The
modelling approach explicitly considers the composi-
tional nature of soil texture and relies on the general
principle of simplicial regression, that is, regression
models fitted in SD space. In addition, we also evaluated
the use of both topographical and geophysical covariates.

In essence, we sought to address two key research
questions: (i) to evaluate whether radar-based methods,
such as backscattering intensities from VH and VV polar-
isations, alpha and a radar vegetation index (RVI) can be

employed to estimate soil particle size; and, (ii) the value
of explicitly considering the compositional nature of soil
particle size [sand %, silt % and clay %] in the modelling
approaches, since their multivariate characteristic and
sum of components are a constraint for obtaining soil tex-
ture (classes).

This paper is organized as follows. Section 2 presents
a brief description of both the theory and relevant works.
Section 3 outlines the methodological procedure and the
datasets used to carry out the research, including a
description of the selected study area. This section also
outlines the treatment of soil particle size as composi-
tional data within the modelling framework. Sections 4
and 5 present the results of the modelling approaches
and discussion; finally, Section 6 concludes by outlining
the relevance of findings.

2 | THEORETICAL BACKGROUND

Soil texture affects the radar backscattering coefficient, as
sandy soils contain a higher amount of free water than
clay soils (Das & Paul, 2015; Srivastava et al., 2006),
whereas the latter contains more bound water. A theoret-
ical explanation that underpins the behaviour of soil tex-
ture in the microwave spectrum refers to the relation
between free water and bound water (Dobson &
Ulaby, 1981), both onto and into the soil, as the distribu-
tion of particle-size fractions controls the amount of free

Highlights

• Compositional LRM with interaction slightly
outperformed RF; without interactions, RF
was better.

• Sand and clay exhibited different responses for
radar and geophysical data in the models.

• Geophysical data were not good predictors to
estimate the content of sand, silt and clay on
topsoil.

• SAR-based variables were not able to predict
soil particle size alone without the covariates.
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water in soils. This is consistent with Jackson and
Schmugge (1989) who found that water molecules are
adsorbed onto the soil particles and effectively immobi-
lize their dipoles, restricting the bound water's ability to
interact with the radar signal (Das & Paul, 2015). Thus,
the distribution of particle-size fractions controls the
amount of free water in soils due to their interstice water
content.

Consequently, soil porosity (i.e. open space between
soil particles) and seasonality of soil moisture influence
the soil's electrical resistivity and contribute to different
soil texture characteristics (Grandjean et al., 2009). For
example, during summer, under dry conditions when the
effect of porosity dominates, soil resistivity increases as soil
moisture content decreases as water is a conductor of elec-
tricity. Therefore, higher moisture content in the soil
lowers its resistivity. Conversely, when the porosity is low,
the electrical resistivity can be used to discriminate soils
with different textures (Grandjean et al., 2009). During
winter, under wet conditions when the soil pores (high
porosity) are filled or almost filled with water, resistivity is
highly sensitive to soil water (Grandjean et al., 2009).

A core tenet for energy intensity measurements in
microwave remote sensors is the radar range equation
(Figure 1), which determines the proportion of energy
that is returned from the target. One of its parameters,
the normalized radar cross-section (σ0), otherwise known
as coefficient backscattering, is of significant importance
as it is a measure of the polarization intensity (i.e., VV,
VH in Sentinel-1).

A key challenge for utilizing SAR for the retrieval of
soil parameters is the presence of vegetation; most natu-
ral surfaces contain some type of vegetation cover that
will impact on the signal. The SAR backscattering values
reflect the physical properties of the earth's surface such
as soil moisture content, surface roughness, topography

and dielectric constant (including soil and vegetation),
which affect the measurement of microwave signals.
Cross-polarization is more sensitive to vegetation, as it
captures vegetation response (backscattering) better than
VV polarization. Barrett et al. (2007), in a study to derive
relative changes in soil moisture in the near-surface
(0–5 cm) over an agricultural area in southern Ireland,
observed that the growth of vegetation (grass) could
cause attenuation of the radar signal (i.e., depolarisation
effect due to volumetric scattering contribution). Pratola
et al. (2014) in a similar study, also carried out in south-
ern Ireland, found that in winter, the distribution of soil
moisture is rather homogenous over the SAR pixels,
whereas a higher spatial variability was observed in sum-
mer. They also noted that the coefficient of variation of
sandy soil increases as the soil dries.

Tree-based models are alternatives to linear regression
models due to their advantages of being relatively robust
to overfitting and not requiring standardization or normal-
ization of data, as they are insensitive to the ranges in the
predictor values (Zhang & Shi, 2019). Decision trees are
used in classification and regression problems whose pre-
dictor space is divided up by recursive partitioning. Ran-
dom forest (RF) (Breiman, 2001) is one example of tree-
based models, and it aims to merge less powerful learners
to form a strong learner to minimize the residual sum of
squares by tuning two main hyper parameters—the num-
ber of trees (ntree) and the number of features randomly
sampled at each split (mtry). Successful examples of RF
applications to estimate soil properties—without consider-
ing soil texture as compositional data—in remote sensing
context are found in Mirzaeitalarposhti et al. (2022),
Domenech et al. (2020), Dotto et al. (2020), Cisty et al.
(2019), Bousbih et al. (2019) and Ballabio et al. (2016).

Compositional data analysis (CoDa) is mostly performed
in terms of log-transformations and relies on log-ratios
between the parts or components of one sample. The theo-
retical foundations are found in Aitchison (1982, 2005).
Three log-transformation methods are typically employed in
CoDa analysis, namely additive log-ratio transformation
(ALR), centred log-ratio transformation (CLR) and isometric
log-ratio transformation (ILR). For the purposes of the work
outlined here, we focused on the CLR and ILR methods, as
they are symmetric transformations meaning that distances
are preserved. The difference between these two methods is
that, in the former, the identity (covariance) matrix is singu-
lar whereas, in the ILR transformation, the covariance
matrix is nonsingular. Compositional data approach has
increasingly been employed to estimate soil particle-size
fractions in both nonspatial modelling (Chappell
et al., 2019; Loosvelt et al., 2013) and explicitly spatial
models (Odeh et al., 2003; Wang & Shi, 2017; Wang &
Shi, 2018; Zhang & Shi, 2019).

FIGURE 1 Diagram for the radar equation that is used to

determine the proportion of energy that is being returned from a

target. Source: ESA-EO College (2021).
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Details about both CLR and ILR transformations as
well as the simplicial linear regression model used in this
study are found in Supplementary Information—Models
(Data S2).

3 | DATA AND METHODS

3.1 | Study region

The study area, representing approximately 24,989 km2,
encompasses a central swath of the Republic of Ireland
(Figure 2). The land cover comprises croplands, grass-
lands, wetlands (peat bogs) and man-made structures,
including urban areas. Agriculture, including pasture
and arable land, is the primary land use-land cover cate-
gory in Ireland, accounting for 67% of the national land
cover. Within that category, pasture is the main agricul-
tural class (55%) with arable land accounting for a much
smaller proportion (4.5%) based on the CORINE 2018
land cover inventory (Supplementary Figure 1).

The study area is relatively heterogeneous concerning
slope with variations in elevation across the region, rang-
ing from 923 m on the uplands in the east of the domain
to 1 m in the lowlands (i.e., flood plains in south-west)
(Figure 3). Rainfall amounts are typically higher on the
west coast reflecting the predominant maritime airflow
off the North Atlantic Ocean interacting with orography
along the west coast. Average annual rainfall in Ireland
is approximately 1230 mm, but ranges from 750 mm to
1000 mm in the midlands/eastern areas, and between
1000 and 1400 mm along the west coast (Walsh, 2012).
Spring and summer are the driest seasons with approxi-
mately 260 mm of rain (Walsh, 2012) while winter and
autumn are the wettest, with approximately 350 mm of
rainfall.

In terms of parent materials, they are broadly grouped
into two main types, solid geology (and weathered mate-
rials) and drift geology (unconsolidated deposits or loose
sediments), and account for the majority of parent materials
across the Irish landscape (Creamer & O'Sullivan, 2018). In
an association between lithology and quaternary sediments

FIGURE 2 Map of the study area with the location of topsoil sampling sites available from different soil surveys and measurement

programmes.
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(GSI, 2017), the study area is composed of till derived from
limestones, shales (Lower Palaeozoic) and sandstones
(Devonian); raised and blanket peats; till derived from
granites (in the south-eastern portion); and alluvium,
ordered by priority of area occurrence. The predominant
soil texture class in Ireland is Fine Loamy (Creamer
et al., 2016).

3.2 | Data

3.2.1 | Soil information

Soil textural information, used as the response variable to
train and evaluate the models, consisted of 235 soil samples
collected by a number of different institutions and programs
across Ireland covering both shallow and deep soil layers.
All the datasets encompass soil particle-size fractions as one
of the soil properties analysed but only the topmost layer
(0–15 cm in depth) was considered in this study as it relates
to topsoil. The source datasets are presented in Table 1 and

details of each dataset are presented in the Supplementary
Information—Datasets (Data S1).

Soil sampling strategies included in legacy databases are
typically derived based on a variety of methods, thus, it is
important to highlight the procedures we adopted for using
them in this study. In terms of the various depth intervals
sampled in each survey, we considered the values for the
0–15 cm only. The rationale for this is due to the capability
of a C-band SAR beam to reach the soil and capture infor-
mation from it in the first 4 cm of the soil layer (Babaeian
et al., 2019). This means that information beyond that depth
of soil surface has no effect on the radar backscattering. The
soil layer selected is within this ascribed depth. We did not
employ a function-of-depth method to account for the dif-
ferences in sampling depth to harmonize each soil pro-
file from the field-described horizon (e.g., the equal area
quadratic spline approach). This was justified for a num-
ber of reasons. We did not aim to model and/or predict
the soil particle-size fraction (PSF) by depth. Moreover,
accounting for the error introduced by the spline proce-
dure could lead to more uncertainty in the statistical

FIGURE 3 Topographic, morphometric and soil moisture for the study domain. Surface soil moisture data were obtained on the same

date as that of the Sentinel-1 image (03/04/2021).
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models. We are explicitly considering particle-size fractions
as compositional data, and the spline procedure is applied
independently to each particle size, thus, unity of the com-
position (e.g., sum = 100) is not guaranteed in the
spline-estimated values of sand, silt and clay for each
horizon (Saurette, 2022). Our approach is consistent

with Read et al. (2018), who dealt with the same issues
in relation to the soil datasets they employed to predict
sand (%) and clay (%) from airborne geophysical data.

Regarding soil sampling, the methods differed
between spade (e.g., LUCAS) and auger (e.g., LUCAS,
SoilC-2008, SIS-Teagasc), whilst laboratory analysis

TABLE 1 Summary of data used in the modelling approaches.

Type of data Original dataset Source
Covariate derived from
the original dataset

Topsoil (response
variables: sand, silt
and clay)

Irish Soil Information System (SIS). Modal and
nonmodal profiles (Creamer et al., 2014),
which include the legacy survey An Foras
Talúntais-AFT. Sampling depth varied
according to survey purposes, but surficial
horizons include 0–5 cm and 5–10 cm.

https://data.gov.ie/dataset/
irish-soil-information-
system-national-soils-map

-

LUCAS Topsoil 2009 Survey-v1 (T�oth et al.,
2013; Orgiazzi et al., 2018).

Sampling depth: 0–20 cm

https://esdac.jrc.ec.europa.eu/
content/lucas-2009-topsoil-
data

-

LUCAS Topsoil 2015 Survey (Jones
et al., 2020). Sampling depth: 0–20 cm

https://esdac.jrc.ec.europa.eu/
content/lucas2015-topsoil-
data

-

Soil Carbon Project 2008 (Kiely et al., 2009).
Sampling depth: 0–10 cm, 10–25 cm and 25–
50 cm

https://www.ucc.ie/en/
hydromet/soilcarbon/

-

WoSIS Soil Profile Database (June 2022).
Sampling depth: 0–5 cm, 5–15 cm, 15–30 cm,
30–60 cm, 60–100 cm, 100–200 cm
(SoilGrids)

https://www.isric.org/
explore/wosis

-

SAR (covariate) Sentinel-1 C-band (dual polarization: VV, VH) European Space Agency
https://scihub.copernicus.eu/
dhus/#/home

- Backscatter coefficients
(VV, VH);

- Alpha parameter obtained
from a dual-pol
decomposition (Cloude
and Pottier (1997);

- Dual-pol radar vegetation
index—RVI. (Gururaj
et al., 2019;
Nasirzadehdizaji
et al., 2019);

Soil moisture (covariate) Surface soil moisture—SSM calculated from
Sentinel 1 for the 3 April 2021 (Copernicus
Global Land Service)

European Space Agency
https://land.copernicus.eu/
global/products/ssm

-

Topography (covariate) Digital Elevation Model-DEM EEA-10 m
(Copernicus European DEM)

European Space Agency
https://spacedata.copernicus.
eu/collections/copernicus-
digital-elevation-model

- Altitude
- Slope
- Aspect
- Curvature of the slope:
concave and convex
surfaces.

Geophysical: (covariate) - Electromagnetic
- Magnetic
- Radiometric (potassium uranium and
thorium)

Tellus project (Geological
Survey Ireland—GSI)

https://www.gsi.ie/en-ie/data-
and-maps/Pages/
Geophysics.aspx
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methods differed from the pipette (SoilC2008, SIS-Tea-
gasc) and laser diffraction (LUCAS). Despite slight differ-
ences in methods, they are consistent in considering
topsoil only for the C-band SAR application in our study.
Moreover, in a comparison of sampling with a spade and
auger for topsoil monitoring for LUCAS, Fern�andez-
Ugalde et al. (2020) found that the spade and gouge auger
methods produced similar results for all soil properties,
according to Lin's concordance correlation coefficient
(LCCC ≥0.73). They concluded that, in general, the rela-
tion and average magnitude of the differences for clay,
silt and sand contents between the two sampling
methods were satisfactory.

3.2.2 | Radar data

We used microwave remote sensing data obtained from the
European Space Agency (ESA) for Sentinel-1 SAR
(C-band), with Interferometric Wide (IW) swath mode
acquisition, as radar-based predictors. The C-band SAR
operates at a centre frequency of 5.405 GH, which corre-
sponds to a wavelength of �5.55 cm. Sentinel-1 data are
available in dual polarization (VV + VH). Both the Single
Look Complex (SLC) and Ground Range Detected (GRD)
(10 m � 10 m) products were obtained with the backscat-
tering coefficients converted to the same units (σ0).
Sentinel-1 data (VV, VH) were acquired for the 3 April 2021
(Supplementary Figure 2) as the rainfall for the preceding
month of March was below the long-term average, associ-
ated with a high pressure that dominated the weather dur-
ing March (Met Eireann, 2021); a number of meteorological
stations within the study domain recorded their driest
March since 2012, during 2021 (Met Eireann, 2021).

Radar-based data consist of (i) the backscatter coefficients
(backscatter intensity) provided by the VV and VH polarisa-
tions measured in sigma nought (σ0) obtained for the in situ
soil sampling locations, georeferenced; (ii) alpha parameter
resulting from the dual-pol decomposition (Cloude &
Pottier, 1997), which is used to determine the dominant scat-
tering mechanism (e.g., surface); (iii) the dual-pol radar vege-
tation index (RVI) (Gururaj et al., 2019; Nasirzadehdizaji
et al., 2019) developed for Sentinel-1; and (iv) surface soil
moisture (SSM), which refers to the relative water content of
the top few centimetres of the soil, measured by Sentinel-1
(ESA-Copernicus). Likewise the alpha parameter, RVI takes
into account the vegetation effect on soil backscattering.

3.2.3 | Topographical and geophysical data

A number of topographical and geophysical variables
were also evaluated as covariates in the modelling

approach. The topographical data consisted of altitude,
slope, aspect and curvature of the slope (concave and
convex surface). They were derived from the ESA EEA-
10 (10 m spatial resolution) digital elevation model
(DEM) using the surface Spatial Analyst tool in the
ArcGIS® toolbox (e.g., Aslam et al. (2021); Bogale (2021);
Patton et al. (2018)). Details about the Spatial Analyst
ArcGIS® applied in this work for deriving topographical
data are presented in the Supplementary Information—
Datasets (Data S1).

The geophysical data refer to electromagnetic, mag-
netic and radiometric variables derived from airborne
geophysical surveying undertaken by the Geological Sur-
vey of Ireland (GSI) as part of the Tellus programme, a
national programme to gather geochemical and geophysi-
cal data across the island of Ireland. The former measures
how electrical current flows through the ground and how
it changes due to different types of rock or soil. The radio-
metric and magnetic data provide information about soil
and rocks. Details about the geophysical datasets are pre-
sented in the Supplementary Information—Datasets
(Data S1). Table 1 summarizes the datasets used in this
study.

3.3 | Methods

Two modelling approaches were evaluated in this study.
The first focuses on the SAR radar-based data with the
inclusion of topography covariates. The second approach
employs both radar and geophysical-based data; topo-
graphical data are also considered in this approach. Two
different statistical models were employed—linear- and
tree-based models (Table 2 and Figure 4). Both approaches
were evaluated with a leave-one-out cross-validation
(LOOCV), where the training set includes n – 1 observa-
tions and the evaluation set includes one observation.
Here, we applied the ILR transformation to the response
variables (sand, silt and clay) for fitting the compositional
LRM following the default partition built in the CoDaPack
software (Comas-Cufí & Thi�o-Henestrosa, 2011). We
applied the CLR transformation to the response variables
to fit the tree model-based regression (Random Forest
model-RF). Details about both CLR and ILR transforma-
tions are presented in Supplementary Information—
Models (Data S2).

We aimed to test both isometric log-ratio transforma-
tions (i.e., preserves distance in the transformation from
the simplex space SD to the Euclidian space RD) in a lin-
ear model and a tree-based model. A linear model is a
least-squares problem (OLS) in the simplex space SD (the
natural sample space of compositional data) (Egozcue &
Pawlowsky-Glahn, 2006), thus it can be formulated in
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terms of orthonormal log-ratio coordinates, following
Morais and Thomas-Agnan (2021), and Pawlowsky-
Glahn et al. (2015). We applied the CLR transformation
to the response variables to fit the tree-based model since
this transformation method produces a singular covari-
ance matrix of the target compositional parts and RF
does not rely on covariance matrices or other statistical
assumptions. It is worth noting that the model was fitted

using a multivariate approach, wherein the response vari-
ables were treated simultaneously.

After checking for the convergence of the tuning
parameters for the RF model (Supplementary Tables 1
and 2), we selected the default values available in the R
package ‘Ranger’ (Wright & Ziegler, 2017), which are
ntree = 500 and mtry = 3, since different values for ntree
and mtry did not significantly change the model's

TABLE 2 Summary of methods and covariates employed in the two modelling approaches.

Modelling approach (data) Covariates Statistical model
Log-ratio
transformation

Model 1: Nongeophysical
(SAR + Topography)

VV, VH, alpha, RVI, SSM, altitude, slope, aspect,
curvature

Y-compositional LRM ILR

Y-compositional RF CLR

Model 2: Geophysical
(SAR + Topography + geophysics)

VV, VH, RVI, SSM, altitude, slope, aspect,
curvature, electromagnetic, magnetic,
radiometric

Y-compositional LRM ILR

Y-compositional RF CLR

backsca�ering
coherence

YesAlpha  
Entropy

No

VV, VH backsca�ering values
Radar Vegeta�on Index (RVI)
Digital Eleva�on Model 
- Al�tude, Slope, Aspect, Curvature
Geophysical data

- Electromagne�c-EM, Radiometric-RAD
Magne�c-MAG

VV, VH backsca�ering values
Alpha 
Radar Vegeta�on Index (RVI)
Surface Soil Moisture (SSM)
Digital Eleva�on Model

(Al�tude, Slope, Aspect, Curvature)

SOIL PARTICLE-SIZE PREDICTION FROM SENTINEL 1 C-BAND SAR

MODELLING WORKFLOW

SENTINEL-1
(VH , VV)SINGLE LOOK COMPLEX (SLC) DATASET

PRE-PROCESSING PROCESSING

POLARIMETRIC DECOMPOSITION

MODELLING

Input: predictors

Input: predictors

Input: response variables

Clay Silt Sand
Clay Silt Sand

Predic�on

Output 

Valida�on

Topsoil PSF*
datasets

GROUND RANGE (GRD)
DATASET

* PSF: Par�cle Size Frac�ons

Model Approach 1 Model Approach 2

FIGURE 4 Flowchart of the methodology depicting the data used in the models, the processing steps performed for both SLC and GRD

products from SAR Sentinel-1, and the modelling approaches (with geophysical and nongeophysical covariates).
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performance. For the compositional LRM, we also relied
on the default method in the CoDaPack software
(Comas-Cufí & Thi�o-Henestrosa, 2011).

A key objective was to understand the nature of the
relationship between the predictors and the response
variables in order to investigate the effectiveness of the
SAR-based covariates to predict soil texture. To achieve
this, we also evaluated second-order interaction terms
in the compositional LRM. This approach should also
assist in understanding interactions between influen-
tial processes. It is also worth noting that the soil tex-
ture class was inferred from the compositional
predictions of sand, silt and clay content rather than
directly using a categorical modelling approach. The
resultant soil textural classes will also be outlined in
the Results section.

3.3.1 | Evaluation metrics for soil particle-
size predictions

The accuracy and performance of the original (untrans-
formed) and transformation approaches were evaluated
using three statistical indicators; the root mean square
error (RMSE) (Equation (1)), mean absolute error
(MAE) (Equation (2)) and Nash–Sutcliffe efficiency
(NSE) (Nash & Sutcliffe, 1970) (Equation (3)). The lat-
ter is a normalized statistical metric that determines
the relative magnitude of the residual variance com-
pared with the measured data variance (Nash &
Sutcliffe, 1970). It indicates how well the plot of
observed versus predicted (simulated) data fits the 1:1
line according to the following: NSE = 1 corresponds
to a perfect match of the model to the observed data;
NSE = 0 indicates that the model predictions are as
accurate as the mean of the observed data; �
Inf < NSE <0 indicates that the observed mean is a
better predictor than the model.

RMSE¼
ffiffiffi

1
n

r

X

n

i¼1

yi�byið Þ2, ð1Þ

where yi is the actual value of the dependent variable, byi
is the predicted value of the dependent variable, and n is
the number of observations.

MAE¼ 1
n

X

n

i¼1

yi�byij j, ð2Þ

where yi, byi, and n represent the same descriptors that
those of RMSE.

NSE¼ 1�
P

n

i¼1
Yobs

i �Ysim
i

� �2

P

n

i¼1
Yobs

i �Yobs
� �2

2

6

6

4

3

7

7

5

, ð3Þ

where Yobs
i is the ith observation, Ysim

i is the ith simulated
(predicted) value, Yobs

i is the mean of observed data, and
n is the total number of observations.

4 | RESULTS

4.1 | Statistical descriptive analysis

Based on the initial descriptive analysis, the frequency
distribution of the clay values displayed a highly skewed
distribution in its original form (untransformed), with a
skewness equal to �1.07. Following the CLR transfor-
mation, the symmetry improved (0.34) (see Supplemen-
tary Figures 3 and 4). Conversely, for sand (referred to
as sand.clr following the CLR transformation), this
transformation method did not improve the skewness. Based
on the selected soil textural information, the sand fraction
exhibited greater variability, as well as the minimum
and maximum percentages, whereas clay showed lower
variability and the lowest maximum percentages (see
Supplementary Figure 4). Moreover, the soil fraction
contained a number of outliers, according to the Atypi-
cality Index for CoDa (a measure of irregular data),
under a level of confidence (threshold of atypicality) of
0.975 (default) (Supplementary Figure 5). However,
this may be due to differences in proportions between
the components (i.e., sand %, silt % and clay %), and
those soil samples were considered in the modelling.

With regards to the predictor variables, the SAR
VV polarization provided the highest backscatter
intensity values (0.35) whereas VH gave the lowest
intensity values (0.07). Also, we did not find a signifi-
cant correlation between the radar backscatter coeffi-
cients (σ0VV , σ

0
VH) and the soil particle-size fractions for

either the nontransformed or transformed response vari-
ables (Supplementary Figures 6–8).

4.2 | Soil particle-size prediction

4.2.1 | Y-compositional LRM

Modelling approach 1: SAR + topography
(morphometry) data
The compositional model for approach 1 (Table 2—
Model 1), without interaction terms, yielded an overall

DEODORO ET AL. 9 of 21
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R2 value of 70.74%. Curvature was identified as the most
statistically significant predictor (p-value = <2e-16). In
general, the distribution of the samples estimated by the
model was similar to that of the original data in the ter-
nary diagram (Supplementary Figure 9). The composi-
tional coefficients of the LRM indicated an effect of VH
backscattering (σ0VH) on clay (referred to as inv.ilr. 3 after
transformation) (Supplementary Figure 10). Based on the
NSE, the agreement between the observed and predicted
samples in the test data were 0.94, 0.62 and 0.46 for sand,
silt and clay, respectively (Table 3 and Figure 5a–c).
Regarding the soil texture classes, the corresponding clas-
ses from the soil particle-size fractions predicted (test) are
sand (S), loamy sand (LS), sand loam (SL), loam (L), clay
loam (CL), silty clay loam (SICL), silty clay (SIC)
(Figure 5h).

The inclusion of second-order interaction terms
resulted in a disimprovement in the model; resulting in
a lower NSE and increase in the RMSE and MAE
values (Table 3 and Figure 5d–f). The most statistically
important variables and interactions were curvature,

VH:slope, SSM:curvature, slope:curvature, SSM:alpha,
aspect:curvature and altitude:curvature. The derived
soil texture classes are depicted in Figure 5i. Analysis
of variance (ANOVA) for the models fitted with and with-
out interaction indicated that the former is statistically
significant (p-value = 9.929e-09).

These results are reflected in the soil texture diagram
in terms of both number and typology of classes
(Figure 5g–i). More clayey and loamy soil textural
classes were obtained in the soil ternary when interaction
terms were considered in the regression model, whereas
the same is not observed in the model without the inter-
action terms. It is important to highlight that here, the
reference to clay is the textural class rather particle-size
fraction.

It is worth highlighting that the sum of the soil
particle-size fractions predicted (100% or 1) was guaran-
teed with the ILR transformation applied to the original
data (See Supplementary Table 3). Conversely, when per-
forming a simple linear regression model, as a univariate
approach and with no transformation applied to the data,

TABLE 3 Summary of the evaluation metrics resulted from the modelling approaches validated with LOOCV.

Modelling approach (validation method: LOOCV) SPSF

Model evaluation metrics

RMSE MAE NSE

Model 1:
Y-compositional LRM (ilr transf.) without second-
order interaction terms

Sand 4.12 3.37 0.94

Silt 7.08 5.44 0.62

Clay 7.00 5.02 0.46

Model 1:
Y-compositional LRM (ilr transf.) with second-order
interaction terms

Sand 4.88 3.35 0.91

Silt 9.08 6.45 0.37

Clay 8.93 6.16 0.13

Model 1: Sand 4.28 2.91 0.93

Y-compositional RF Silt 5.55 5.52 0.59

(clr transformation) Clay 7.13 5.27 0.44

Model 2: Sand 15.21 12.04 0.11

Y-compositional LRM (ilr transf.) without second-
order interaction terms

Silt 11.48 9.16 - 0.03

Clay 9.37 7.00 0.08

Model 2: Sand 23.05 17.86 �1.05

Y-compositional LRM (ilr transf.) with second-order
interaction terms

Silt 16.33 12.83 �1.09

Clay 14.84 10.61 �1.30

Model 2: Sand 15.26 11.71 0.10

Y-compositional RF Silt 11.26 8.62 0.01

(clr transformation) Clay 9.33 7.03 0.09

Non-CoDa approach (without log-ratio
transformation)

Simple LR (univariate responses)

Sand 7.10 5.35 0.81

Silt 7.92 6.10 0.52

Clay 7.36 5.33 0.41

Note: Model 1: nongeophysical data; Model 2: with geophysical data;

Abbreviation: SPSF, soil particle-size fraction.
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the soil particle-size fractions predicted are not con-
strained to sum to 100% (Supplementary Figure 11).
Moreover, some negative estimates were obtained from
both a random proportional split (e.g., 75% and 25%) and

LOOCV (Supplementary Figures 11 and 12). These find-
ings are likely a product of employing standard statistical
methods for the analysis of compositional data, which
can lead to biased results (Filzmoser et al., 2018). Odeh

FIGURE 5 Observed versus predicted plots from the Y-compositional linear regression model validated with LOOCV for Modelling

approach 1 (SAR + Topography covariates), without second-order interaction terms (Figure 5a–c) and with second-order interaction terms

(Figure 5d–f). The responses are measured in % content and the line in the plots refers to the 1:1 line. Corresponding soil texture classes are

displayed in a soil ternary diagram. The soil ternary diagram in Figure 5g depicts the original soil texture classes (n = 100% = 235) obtained

directly from the measured data, while ternary diagrams in the 5h and 5i show classes resulting from predictions of soil particle-size

fractions without- and with second-order interaction terms, respectively.
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et al. (2003) also noted that modelling individual compo-
nents of composition was not meaningful.

Modelling approach 2: SAR + topography
(morphometry) + geophysical datasets
The statistical descriptives indicated different symmetry
and variability of the geophysical dataset (Supplementary
Figure 13). In Model 2, which employed the geophysical
covariates and the ILR-transformed compositional
responses with LOOCV LRM, the overall R2 obtained
was 18.33%. In terms of predicted and observed
responses, the NSE was close to zero for sand, silt and
clay (Table 3 and Figure 6a–c). The radiometric covari-
ates (thorium and uranium) and altitude were the most
statistically significant predictors. An effect was observed
for VV on the sand response (Supplementary Figure 14).
The corresponding classes from the soil particle-size frac-
tions predicted (test) are loamy sand (LS), SL (sand
loam), loam (L), clay loam (CL) and silt loam (SIL)
(Figure 6h). Note that LS and SIL were obtained with
only one sample.

When second-order interaction terms were consid-
ered in the model, the agreement between the observed
(actual) and the predicted data decreased (Figures 6d–f)
as indicated by the evaluation metrics (Table 3).
Additionally, more than five soil texture classes were
obtained (Figure 6i). Analysis of variance (ANOVA) for
the models fitted with and without interactions
indicated that the former is statistically significant
(p-value = 0.04).

4.2.2 | Random forest—CLR transformation
applied

Modelling approach 1: SAR + Topography
(morphometry) datasets
For Model approach 1, employing RF and CLR trans-
formed responses, the NSE values obtained for sand, silt
and clay were 0.93, 0.59 and 0.44, respectively (Table 3
and Figure 7a–c). Similar to the LRM model, the most
important variable was curvature (concavity and convex-
ity), according to the impurity method, which is a mea-
sure of the variance of the responses for regression in
Random Forest (Ranger package) (Supplementary Fig-
ure 15). Regarding soil texture classes, the corresponding
classes from the soil particle-size fractions predicted are
sandy loam (SL), loam (L), clay loam (CL) and silty clay
loam (SICL) (Figure 7e).

Consistent with the LRM approach, the sum of the
soil particle-size fractions predicted (100% or 1) was guar-
anteed with the CLR transformation applied to the origi-
nal data (See Supplementary Table 4).

Modelling approach 2: SAR + Topography
(morphometry) + Geophysical datasets
The inclusion of the geophysical covariates resulted in
a model with NSE of close to zero (Table 3) indicating
that the model simulations have the same explanatory
power as the mean of the observations (Figure 8a–c).
Loam was the main soil textural class (Figure 8e)
(e.g., LS, SL, L, SIL, CL). This is likely explained by the
higher proportion of sand and silt estimated by the
model in the test data following the observed data in
which the proportion of sand and silt is also higher
than clay. The RF method showed a low magnitude of
importance with altitude, uranium, electromagnetic,
RVI and slope being the most important predictors
(Supplementary Figure 16).

5 | DISCUSSION

5.1 | General aspects of soil particle-size
estimation with Sentinel-1 C-band data

We obtained different goodness-of-metrics depending on
the soil fraction. This denotes the complexity of soil tex-
ture for statistical modelling due to the size magnitude of
the soil fractions and the mineral constitution, as well as
the reliance of the signal intensity from the SAR beam on
how clayey or sandy the soil is. Typically, cross-
polarization (VH) measurements are significantly lower
than the co-polarization (VV) (Sano et al., 2020; Ulaby
et al., 1978; Ulaby et al., 1979), and this was observed
over our study area wherein the VV intensity values
(in σ0 units) ranged from 0.01 to 0.31, whereas for VH
polarization the coefficient backscatter varied between
0.02 and 0.07. It is worth noting that the Sentinel-1 data-
set was acquired during a dry period (03/04/2021). This is
important in terms of the amount of free water (e.g., in
sand fractions) that can interact with the incident micro-
wave, affecting the SAR backscatter (Das & Paul, 2015),
since soil texture in the microwave spectrum is a function
of the relation between free water and bound water
(Dobson & Ulaby, 1981; Jackson & Schmugge, 1989). The
best prediction was obtained for the sand, compared with
clay, fraction reported by the evaluation metrics.

We did not find a significant correlation between
the radar backscatter coefficients and the soil particle-
size fractions. Notwithstanding the log-transformations
slightly improved the correlation coefficients, but the
values remained low. Han et al. (2017) also found a
weak correlation in a study investigating the associa-
tion between radar backscatter (UAVSAR) and in situ
soil property measurements on an approximately 3 km
long section of earthen levees along the lower
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FIGURE 6 Observed versus predicted plots resulting from the Y-compositional linear regression model validated with LOOCV for

Modelling approach 2 (SAR + Topography + Geophysical covariates), without second-order interaction terms (Figure 6a–c) and with

second-order interaction terms (Figure 6d–f). The responses are measured in % content and the black line in the plots refers to the 1:1 line.

Corresponding soil texture classes are displayed in a soil ternary diagram. The soil ternary diagram in (6g) depicts the soil texture classes

obtained directly from the measured data, while ternary diagrams in (6h) and (6i) show classes resulting from predictions of soil particle-size

fractions without- and with second-order interaction terms, respectively.
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Mississippi river (riverside and landside). On the land-
side, the correlation coefficients found with HV polari-
zation were �0.16 and 0.16 for clay and sand,
respectively; and 0.16 and �0.25 with VV polarization.
Such results would seem to confirm the fact that trans-
lating the microwave signal into a soil characteristic is
not straightforward. While UAVSAR is an aerial Earth
Observation (EO) platform, Sentinel-1 is an orbital-
based EO platform (about 700 km altitude) and thus
more distant from the targets. This means a loss of
energy equal to the power of 4 (Wolff, 2007) according
to the radar range equation (Figure 1).

5.2 | Y-compositional
LRM—ILRTransformation

The Y-compositional LRM applied to the Model
Approach 1 (SAR + Topography covariates) yielded
significant predictions for sand (NSE = 0.94), silt
(NSE = 0.62) and clay (NSE = 0.46) with lowest RMSE
and MAE. It is worth noting that the model was fitted
using a multivariate approach, wherein the response vari-
ables were treated simultaneously. Whilst interaction
terms decreased the goodness-of-fit metrics (e.g. NSE
values equal to 0.91, 0.37, 0.13, for sand, silt and clay,

FIGURE 7 Comparative plots of observed and predicted samples (Figure 7a–c) obtained from the Random Forest Modelling with CLR

transformation applied to the response variables and validated with LOOCV (Approach 1: SAR + Topography covariates). The responses

are measured in % content and the black line in the plots refers to the 1:1 line. The ternary diagrams on the bottom show the soil texture

classes. The original (measured data) classes are depicted in Figure 7d and the classes resulting from predictions of soil particle-size fractions

are exhibited in 7e.
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respectively) and increased both the RMSE and MAE, the
soil texture classes obtained from the particle-size frac-
tions estimations appeared to be more consistent with
the texture classes derived from in situ data.

Notwithstanding the low values of the metrics
obtained from Model approach 2 (SAR + Topography
+ Geophysical covariates) without interaction applied
to the model, it raises some points regarding the relation-
ship between the response variable and the predictors, as
well as amongst the predictors. Results suggest that the
geophysical-based variables reduced the prediction
importance of both the radar-based and topography-

based covariates by returning poor models. This was also
observed with a more generalized- and elastic modelling
in which any variable with a coefficient of zero was
dropped from the model—See Supplementary Informa-
tion: Models (Data S2). Similar to Model approach
1 (LRM without geophysical data), interaction terms
decreased the goodness-of-fit metrics and yielded more
clayey classes. Furthermore, the inclusion of interaction
terms resulted in soil textural classes that were more con-
sistent with the textural classes derived from the observed
data. This finding is likely due to the effect of soil texture
on radiometric signals. Read et al. (2018) found that

FIGURE 8 Comparative plots of observed and predicted samples (Figure 8a–c) obtained from the Random Forest Modelling with CLR

transformation applied to the response variables and validated with LOOCV (Approach 2: SAR + Topography + Geophysical covariates).
The responses are measured in % content and the black line in the plots refers to the 1:1 line. The ternary diagrams on the bottom show the

soil texture classes. The original (measured data) classes are depicted in Figure 8d, and the classes resulting from predictions of soil particle-

size fractions are exhibited in 8e.
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gamma radiometric thorium (Th) and potassium
(K) both had strong relationships with clay (%) and sand
(%). Cattle et al. (2003) found that topsoils with strong
clay content were distinguishable from sandy soils using
radiometric Th and K. However, our findings require fur-
ther exploration of geophysical data and soil PSF, since
such covariates contributed to obtaining more consistent
classes (soil texture) rather than estimates (soil PSF %) in
the regression models with interactions.

5.3 | Random Forest—CLR
transformation applied

The Random Forest algorithm with the CLR transforma-
tion applied to the response variables also yielded good
results in predicting soil particle-size fractions predictions
with SAR-derived and topography-based covariates
(Model approach 1). In general, the evaluation of the
observed and predicted data is similar to that of the com-
positional LRM with ILR transformation (olr coordi-
nates) and without second-order interaction terms. When
interactions between covariates were specified in the lin-
ear model, the RF model outperformed the compositional
LRM, exhibiting lower RMSE and MAE and higher NSE.

Model approach 2 (SAR + Topography + Geophysical
data) fitted with the Random Forest method and CLR
transformation applied to the compositional responses
resulted in poor predictions, based on the evaluation
metrics. Despite the poor predictions, the mostly Loam
class resulting from the soil fractions estimation
appears to follow the pattern observed in the study area
since fine loamy is the predominant soil texture class
found in Ireland. Notwithstanding the low performance of
the models and low importance magnitude of the geophys-
ical covariates, the effect of the geophysical-based variables
on the other covariates is clearly noticed in the Supple-
mentary Figures 15 and 16, wherein the measure of vari-
able importance was enhanced (e.g., altitude, slope,
RVI, SSM) while others are weakened (e.g., curvature).

5.4 | General aspects of the modelling
approaches

In terms of soil dynamics, the results suggest that the
models captured processes rather than genesis, with
topography parameters, especially curvature, being the
most important predictor. To a certain extent, such an
observation is consistent with the topsoil position on the
landscape. As a first soil layer, it is more prone to
undergo surface interactions than subsurface interac-
tions. In relation to the topography covariates being

identified as important predictors and machine learning
models (e.g., RF) not performing well in some situa-
tions, these general findings are consistent with Mirzaei-
talarposhti et al. (2022) and Schönbrodt-Stitt et al.
(2021) who also applied Sentinel-1 data and topography
covariates to estimate soil particle-size fractions and soil
moisture.

Notwithstanding their low importance, the VV and
VH covariates (σ0VV , σ

0
VHÞ were found to be related to

sand, silt and clay in the compositional LRM. Whilst we
observed an effect of VH on the clay fraction in Model
approach 1—an increase in VV resulted in a decrease in
the clay estimate; an increase in VH led to an increase
in the clay estimate. We also found an effect of VV on
sand, in Model approach 2—an increase in VV led to an
increase in sand.

Regarding this case where the compositional linear
model slightly outperformed the tree-based model, this
could be due to the small sample size used to fit the
model. These results are not related to the parameter tun-
ing of the RF model, since we tested different values for
ntree and mtry and the model's performance did not
change significantly (Supplementary Tables 1 and 2).
Moreover, the evaluation strategy did not play a signifi-
cant role in this case, since data splitting and leave-
one-out cross-validation produced similar results. On the
contrary, when the linear model was fitted with interac-
tion terms, the RF approach outperformed the LRM. This
is likely due to the fact that tree-based models consider
variables sequentially, that is, they consider interactions
without specifying them. Additionally, RF models do not
rely on formal model assumptions such as linearity, nor-
mality, (multi)collinearity and homoscedasticity.

Results obtained with both the linear-based and tree-
based models indicated that geophysical data are not
good predictors for estimating PSF in topsoil. This was
also observed with a more generalized- and elastic model-
ling under different penalty coefficients—See supplemen-
tary information: Models (Data S2). However, the use of
geophysical covariates resulted in better estimates of the
soil textural classes. Electromagnetic, magnetic and
radiometric signals may be more related to deeper soil
layers, due to their relationship with the underlying rock.
Moreover, topsoil may be influenced by topography con-
ditions such as slope and curvature in terms of surficial
material deposits (geomorphological process). Our study
region, as an extensive landscape, is relatively heteroge-
neous concerning these geomorphological variables.
Interpretation of radiometric data where parent materials
of transported sediments have different origins is also
more challenging, which suggests a natural limit on soil
textural interpretation of soil radiometric data (Read
et al., 2018; Wilford et al., 1997). Our findings highlight
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the need for further investigation of radiometric data and
soil properties in our study region.

5.5 | Strengths and limitations of
the work

Our findings denoted how and to what extent interaction
terms between variables work (explicitly specified) in a
linear model and (underlying) in a tree-based model to
estimate soil PSF in a large and physical-geographically
heterogeneous area. Furthermore, they provide a poten-
tial basis and methodological approach to obtain either
estimate of soil PSF (as continuous results) or soil tex-
tural classes (as categorical) based on two different statis-
tical modelling and three different types of data.

Our work also demonstrated the potential relevance of
the statistical modelling approaches for soil particle-size
fractions mapping and soil textural mapping. Moreover,
since our work is grounded in CoDa analysis, it provided
some important information to Digital Soil Mapping as
such techniques may not guarantee that the sum of the pre-
dicted clay, silt and sand contents would be equal to 100%
(Azizi et al., 2023; Taghizadeh-Mehrjardi et al., 2020).

Another highlight regarding the potential relevance of
this work to soil properties mapping builds upon the fact
that the models indicate soil particle-size estimation as
more processes-based rather than genesis-based, as
topography-based variables—especially curvature—were
the most important covariate and geophysical-based data
did not improve the models for topsoil.

We addressed different aspects of the prediction
models in terms of the Sentinel-1 data products (e.g., SLC
and GRD), the structure of the data (e.g., SAR-derived
data, topography-based, geophysical-based), modelling
approaches (e.g., linear-based and tree-based) and inter-
activity amongst covariates (e.g., models with- and with-
out interactions). Such aspects brought robustness to the
study.

Nevertheless, our work is not without limitations,
which can be summarized as follows. Firstly, the lack
of the dielectric constant of the soil, which could be
useful to determining the relationship between soil
particle-size fractions and backscattering coefficients,
as well as to investigate whether only radar-based variables
(σ0VV and σ0VH) could be used as predictors. The intensity
of the backscattering coefficient σ0 (a normalized mea-
sure of the radar return) is a function of the physical and
electrical properties of the target, along with the wave-
length (λ), polarization and incidence angle (θ) of the
radar (Barrett et al., 2009). We expected that the geophys-
ical electromagnetic data could fill this lack with electri-
cal resistivity information, however, according to the

results, the geophysical datasets did not improve the
model.

Secondly, it could be challenging to select radar
images that match the soil vegetated-covering conditions
for all legacy topsoil datasets to address only bare soil
samples in the modelling approaches. On the contrary,
controlling different land cover conditions in this case
could be more of a challenge-based issue than a limita-
tion issue (Supplementary Tables 5 and 6). There is a
paucity of national soil information requiring the use of
multiple different data sources. While not ideal, due to
the difference in methods, we adopted a pragmatic
approach to using the available data for application on a
small geographical scale (large areas).

6 | CONCLUSION

In this work, we tested two different statistical modelling
approaches—linear models and tree-based models—to
predict percentages of sand, silt and clay from Irish top-
soil using microwave remote sensing data topographical
and geophysical covariates, on different vegetation cover
conditions, taking into account the compositional nature
of soil texture.

Based on the results from the prediction models, it
can be concluded that it was worthwhile treating soil PSF
as compositional data in the models. We also found that
radar-based variables were not able to predict soil particle
size without the aid of covariates, since the models evalu-
ated here did not identify their importance as covariates
and no linear or direct relationships were found between
the backscattering coefficients (σ0VV , σ0VH) and the soil
particle-size fractions.

Based on the analysis outlined here, we highlight the
following strategies to predict soil PSF from Sentinel-1-SAR:

• The linear model (compositional Y-LRM), without second-
order interaction terms, was found to be the optimum
approach; where it is necessary to consider interactions
between variables, the RF approach should be employed.

• To obtain the soil textural classes from the estimates of
PSF (sand%, silt %, clay%)—instead of predicting the
classes using a classification method—the composi-
tional Y-LRM with interaction terms applied to the
covariates is useful as the classes were more consistent
with the ternary diagram of the measured data than
those obtained without interaction. This finding may
be useful for subsequent use in models, which require
soil textural class and not soil textural properties

• LOOCV is a better validation method over randomly
splitting data for dealing with small sampling size
(e.g., n = 235).
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• Employing geophysical data with SAR data did not
improve the model estimates of soil particle fractions;
the inclusion of geophysical covariates resulted in poor
model estimates. However, the use of geophysical data
was found to result in soil textural classes that better
matched the textural classes derived from the mea-
sured data.

As part of the continued assessment of microwave
remote sensing data (Sentinel-1) for predicting topsoil
particle-size fractions, we intend to test surface scattering
information derived from the dual-polarimetric decompo-
sition technique to deal with the vegetation cover and
integrate that predictor into the models. The goal is to
separate different types of scattering mechanisms
(i.e., ground or surface and volume or vegetation contri-
butions) using the H-α dual-pol decomposition. This
method yields surface scattering that will be used for pre-
dicting sand, silt and clay contents (%) since target decom-
position theorems and Pol-SAR can be used to compensate
for the presence of vegetation cover (Barrett et al., 2009).
This procedure will also follow Jagdhuber (2012:4).
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