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Abstract— The use of unmanned aerial vehicles (UAVs) is
strongly advocated for sixth-generation (6G) networks, as the 6G
standard will not be limited to improving broadband services,
but will also target the extension of the geographical cellular
coverage. In this context, the deployment of UAVs is considered a
key solution for seamless connectivity and reliable coverage. That
being said, it is important to underline that although UAVs are
characterized by their high mobility and their ability to establish
line-of-sight (LOS) links, their use is still impeded by several
factors such as weather conditions, their limited computing
power, and, most importantly, their limited energy. In this work,
we are aiming for the novel technology that enables indefinite
wireless power transfer for UAVs using laser beams. We propose
a novel UAV deployment strategy, based on which we analyze the
overall performance of the system in terms of wireless coverage.
To this end, we use tractable tools from stochastic geometry to
model the complex communication system. We analyze the user’s
connectivity profile under different laser charging capabilities
and in different type of environments. We show a decrease in the
coverage probability by more than 12% in moderate-to-strong
turbulence conditions compared to low turbulence conditions.
We also show how the connection rate to the aerial network
significantly decreases in favor of the terrestrial network for short
laser charging ranges. We conclude that laser-powered drones
are considered interesting alternatives when placed in LOS with
users, in low-to-moderate optical turbulence, and at reasonable
ranges from the charging stations.

Index Terms— Stochastic geometry, laser-powered UAVs, wire-
less power transfer, 6G, coverage probability, Poisson point
process, Matérn cluster process.

I. INTRODUCTION

W ITH the recent upsurge in the demand for fast and
reliable connectivity, researchers have been gravi-
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tating incessantly towards integrating aerial and terrestrial
architectures. It is expected that low latency, seamless connec-
tion, and wide coverage areas will be a real paramount to sixth-
generation (6G) networks [1], [2]. In this context, unmanned
aerial vehicles (UAVs) are deemed to be the road to meet the
aforementioned requirements of the future 6G standards in
light of their multiple striking features. For instance, we men-
tion their high flexibility and ability to establish line-of-sight
(LOS) links with users. Without a doubt, drones were used in a
plethora of applications such as in the military, farming, traffic
control, and delivery [3]. Notwithstanding these several use
case scenarios, one recent application attracted the researchers’
attention worldwide. It consists of using drones as aerial
base stations (ABSs) to provide coverage for ground users
(GUEs). The latter scenario is believed to be compelling
as it might provide interesting alternatives for users in an
outage, for instance at gatherings or in the hardly accessible
regions. During such scenarios, the classical cellular network
architecture gets overwhelmed with multiple service requests,
and hence UAVs intervene as rescuers. On this basis, literature
related to deploying UAVs as ABS is gradually maturing with
a wealth of publications in this area. On the one hand, several
classical techniques have been used to propose overarching
studies for the UAV deployment problem such as optimization
and stochastic geometry [4], [5]. On the other hand, machine
learning was also used to provide efficient solutions enabling
a smart UAV deployment [6], [7]. Although deploying UAVs
as ABSs seems to be tremendously exciting, its practical
implementation faces myriad challenges that we cannot hide.
Undoubtedly, the notable vulnerability to bad weather condi-
tions is one of the downsides related to the use of drones as
ABSs. Added to that the fact that drones must always keep a
visual LOS with the controller, according to most of the latest
drone aviation regulations. Furthermore, drones are known to
be unable to process heavy tasks on board as their equipped
hardware is usually limited. This could be explained by the
limited payload that can be carried on commercial drones,
which is irrevocably linked to the quality of hardware that can
be installed onboard. That being said, the UAV constrained
energy remains undeniably the ultimate UAV drawback that
will be our main focus in this work.

Broadly speaking, there have been several attempts in
the literature to optimize the drone’s endurance, especially
for long-duration missions. To make it simple, we classify
these solutions into (i) software-based solutions where math-
ematical solutions and algorithms have been proposed, and
(ii) hardware-based solutions where special devices have been
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designed to prolong the battery capacity. Starting with a
software-based solution, we mention resource allocation and
scheduling for UAV-based networks where authors in [8]
proposed an energy-efficient resource allocation framework
based on multi-agent reinforcement learning. In the same
context, Sun et al. [9] investigated resource allocation for
solar-powered drones by maximizing the system sum through-
put. Along with resource allocation, trajectory optimization
also attracted researchers’ attention. Authors in [10] pro-
posed an energy-efficient UAV trajectory by maximizing the
communication throughput and minimizing the UAV’s energy
consumption. Furthermore, battery optimization is also inves-
tigated in literature [11], [12]. With this in mind, a great
source of concern might arise when considering running such
powerful solutions onboard UAV processors, especially with
the present limited UAV resources. As an alternative to the
previously mentioned solutions, a growing body of literature
has examined equipping drones with physical solutions to
lengthen their hovering time. Within this frame, we bring
solar-powered drones to the reader’s attention. As its name
suggests, it consists of equipping drones with adequate solar
panels to harvest daylight energy. Although several interesting
research works targeted this area [9], [13], [14], this solution
remains limited since it loses its efficiency at night. Added
to that, the considerable complexity of equipping lightweight
and energy-efficient solar panels onboard small drones. This
is why other research publications targeted the use of tethered
drones as an attempt to provide UAVs with indefinite battery
life [15], [16]. This obviously comes with the heavy cost
of physically linking drones with the ground stations. That
being said, laser light recently stole the limelight from tethered
drones, as laser beams have been used to provide indefinite
wireless charging for drones.

For many years, laser light was used primarily for appli-
cations related to surgery, industry, and especially communi-
cation [17]. However, in recent decades, several companies
have begun to use lasers to enable high-power beaming. For
instance, LaserMotive, also known as PowerLight Technolo-
gies, managed to win the NASA power beaming prize for
their laser-powered robot. The same company succeeded in
powering a drone for over 48 hours [18]. More recently, they
held a demonstration of transferring more than 400W at a
distance of 325m, which is indeed an exciting achievement.
In addition to powering drones, high-power laser beaming has
also been used to attack and eliminate drones. Companies
such as Lockheed Martin and Boeing have developed several
exciting projects in this area. The proposed system, usually
referred to as laser beam director (LBD), consists of using
a dedicated optical system formed by a set of mirrors to
beamform the laser arrays and direct them towards their target.
Although it is beyond the scope of this paper, within such a
complex setup, it is reasonable to worry about safety measures.
This is why several systems are put in place to guarantee safety
such as the tracking systems, cooling systems, and eye-safety
systems.

In this paper, we analyze the performance of the deployment
of laser-powered UAVs as ABSs to assist terrestrial base
stations (TBSs) in providing coverage for GUEs. We use
ground LBDs to provide energy to the UAVs, so that they can

carry out long-duration missions. As proposed in our previous
work [19], we assume simultaneous energy and information
transfer to enable a backhaul link between the drone and its
serving LBD. That being said, we propose keeping a backup
battery to be used in critical cases, when the drone has to leave
its mission area or if by accident a LOS is lost. To this end,
we use tools from stochastic geometry to model the system
and provide the expression of some performance metrics based
on which we assess the system performance. In what follows,
we review the most related works to the present paper and
highlight the novelty and contribution of our work.

A. Related Works

The use of stochastic geometry in system modeling is now
a mature field where a surfeit of publications already exists.
With the recent integration of ABSs into existing networks,
researchers attempted to use tools from stochastic geometry to
provide comprehensive studies and performance analysis for
UAV-assisted networks. In this context, authors in [20] used
stochastic geometry tools to provide performance analysis for
a network of UAVs modeled as a Poisson point process (PPP)
for serving one user in an urban environment. Authors in [21]
consider a network of UAVs and LTE base stations (BSs), both
modeled with PPPs, where the BS provides the UAV with a
backhaul link. Furthermore, in [22] a coverage and rate analy-
sis has been proposed for a network of mixed TBSs and ABSs,
modeled with PPPs and serving a typical user. Moreover,
Poisson cluster processes (PCPs) have been used to model
the distribution of users on the ground. In [23], authors used
Thomas cluster process and Matérn cluster process (MCP)
to model the distribution of users, while in [24], users were
modeled with MCP where the drones are positioned above
the cluster centers. PPP is known to be tractable and easy to
exploit compared to other point processes, however, it assumes
that the user’s position is completely random. Compared to
PPP, MCP is considered more realistic in scenarios where
the distribution of users is described by gathering groups,
called clusters. This being said, MCP requires knowledge of
the statistics of these clusters to adjust the parameters of the
point process such as the cluster radius. Furthermore, authors
in [25] used binomial point processes (BPP) to model the
distribution of the drones. In the same context, authors in [26]
model the drones with a BPP, consider the existence of TBSs,
and provide a downlink coverage and rate analysis. None of
the previously mentioned research works have focused on the
energy aspect of drones which is a crucial factor, especially
when deploying UAVs as ABSs.

Compared to the use of stochastic geometry in modeling,
the use of laser beams for drones is still under investigation.
Authors in [27] studied the downlink throughput maximization
problem for a laser-powered UAV. The considered fixed-wing
drone in this work uses the laser beam to harvest enough
energy for hovering and for communication with the ground
terminal. Moreover, authors in [28] consider the use of
laser-powered drones in assisting an Internet-of-Things (IoT)
network. An optimization problem is formulated to maximize
the number of IoT devices connected with the drone. In [29]
the problem of joint power and trajectory optimization was

Authorized licensed use limited to: Maynooth University Library. Downloaded on September 18,2023 at 11:46:28 UTC from IEEE Xplore.  Restrictions apply. 



520 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2023

studied for rotary-wing laser-powered drones. In [30] authors
studied a UAV-aided multicasting system for simultaneous
FSO backhaul and power transfer. Under PPP distributed
users, the UAV altitude and the FSO and RF transmissions
are optimized. Statistics of the FSO communication channel
between a UAV and a central unit were proposed in [31].
Channel models were derived taking into account the posi-
tion and orientation fluctuation of the drone as well as the
non-orthogonality of the laser beam. In another context, Jaafer
et al. provided a battery dynamics study for a laser-powered
drone under different charging techniques [12]. Authors in [32]
investigated different charging techniques for drone networks
including laser-powered drones. These research works do not
provide any performance analysis for BS-mounted drones.
We provided a stochastic geometry-based analysis in our
previous work [19]. We studied the communication coverage
and energy coverage of a single UAV powered by a network
of ground LBDs, however, we did not consider using multiple
drones, multiple users, or multiple TBSs.

B. Novelty and Contributions

All of the above-mentioned works either consider applying
stochastic geometry for UAV-assisted networks or studying
laser-powered drones from other angles rather than stochastic
geometry, whereas in our work:

• We design a complex system setup, composed of a
network of TBSs, multiple UAVs, multiple GUEs, and
a network of LBDs. We use various point processes to
model their spatial distribution.

• We propose and analyze a novel deployment strategy for
the laser-powered drones that enables a trade-off between
energy and wireless coverage.

• We derive the theoretical expressions of the coverage
probability, the Laplace transform of interference, and
the coverage probability. We validate these expressions
through numerical simulations in different types of envi-
ronments.

• Finally, we provide high-level insights about the proposed
system based on the derived performance metrics.

Notations: In this paper, we use E(·) to denote the expectation
operator and P(·) for the probability of an event. 1(·) denotes
the indicator function while δ(·) is the Dirac delta function,
equal to one at zero and null otherwise. Function Fx(·) denotes
the cumulative distribution function (CDF) of a given random
variable x. Set R+ denotes non-negative real numbers and
R

2 denotes the set of 2-dimensional vectors with real-entries.
For x ∈ R

2, ||x|| denotes the euclidean norm of x. We denote
by | · | the absolute value operator.

II. SYSTEM MODEL

In this work, we consider the scenario of assisting a poor
terrestrial TBSs architecture in providing wireless coverage to
GUEs through the use of drones that are acting as ABSs. The
UAVs, while performing their task, benefit from the energy
supply provided by the terrestrial LBDs that are statically
placed on the ground. Figure 1 represents one use case for
laser-powered drones used to provide coverage for GUEs.

Fig. 1. Laser-powered UAV network.

Such users may be located in small geographic areas, which
motivates modeling them with clustered processes. Figure 1
also hints at the fact that the deployment of LBDs can be
either static or dynamic. Moreover, the LBDs guarantee energy
coverage for the drones as long as the UAVs are placed within
an adequate range R∗ that is derived later. Consequently, the
drones will not rely on their battery but use them only in
critical situations, allowing them to carry out long-duration
missions. We assume that an LBD can only serve one UAV
at a time, so temporal coordination is beyond the scope of
this paper. Therefore, the case where more than one UAV
requires recharging is included in the critical situation we
have mentioned previously. The environments that we target
in this study are suburban, urban, and dense urban, where the
distributions of buildings may affect the performance analysis
significantly. In what follows, we present the different models
used in this work.

A. Spatial Distributions

We assume that we do not have any prior knowledge
about the optimal positions of the LBDs and model their
distribution with a homogeneous PPP, denoted by ΦLBD, with
corresponding density λLBD . Consequently, our performance
results can serve as a lower bound since we do not optimize the
LBD locations. We also consider the existence of a network
of TBSs that is modeled with another homogeneous PPP,
denoted by Φb, with density λb. Taking advantage of the
nature of the users’ gathering, that usually forms random
groups creating a congesting in the wireless network traffic,
we model the GUEs distribution with a MCP where the
distribution of the parent nodes, referring to the cluster center,
forms a PPP denoted by Φcc with density λcc and maximum
cluster radius rmax. For the moment, we denote the UAV
distribution by Φu with density λu, where xi is the position of
the ith UAV. We explain, later in this work, our proposed
deployment strategy for the drones.

B. LOS Blockage Probability Model

It is crucial in our work to identify the link type between
the transmitter and the receiver. To this end, we model the
probability of LOS link such that it captures the effect of
the distribution of the surrounding buildings within an urban
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Fig. 2. System model summary.

environment. Various complex models were proposed in the
literature [33], however, in our work, we use the simplified
LOS probability, derived in [26], to model the link UAV-user
and TBS-user:

Pi(r) = −a exp
(
−b arctan

(
hi

r

))
+ c, ∀i ∈ {Lu, Lb}

(1)

PNu(r) = 1− PLu(r), (2)

PNb(r) = 1− PLb(r), (3)

where PLu, PNu, PLb and PNb represent respectively the UAV
LOS, UAV non-LOS (NLOS), TBS LOS, and TBS NLOS
probabilities, r is the horizontal distance to the respective
node, hLu = hNu = h is the UAV altitude, hLb = hNb = hb

is the TBS height. The parameters a, b, and c depend on the
environment nature.

C. PPP Thinning Procedure

In this section, we derive the different distances to the near-
est LOS UAV, NLOS UAV, LOS TBS, and NLOS TBS. To this
end, a common technique in dealing with LOS and NLOS
distributions of a given point process is to take advantage of
the thinning operation in dividing the parent PPP into two non-
homogeneous PPPs. The operation consists of deleting each
point with a given probability. In our case, we use PLu(r) in
dividing Φu into a set of LOS UAVs denoted by ΦLu and a
set of NLOS UAVs, denoted ΦNu. The same is done to Φb

by dividing it into ΦLb and ΦNb. The density of each point
process is given by:

λi(r) = λuPi(r), i ∈ {Lu, Nu} (4)

λi(r) = λbPi(r), i ∈ {Lb, Nb} (5)

D. Channel Modeling

The UAV-to-user channel is modeled by a Nakagami-m
multi-path fading denoted by GLu and GNu. However, the
terrestrial BS-to-user channel is modeled by a Rayleigh fading
denoted by GLb and GNb. We use this notation to provide a
compact notation for the equations later. The instantaneous

power received from a node placed at xi at the reference user
is given by:

Rj(r(xi)) = ρj ηj

(
r(xi)2 + h2

j

)−αj
2 Gj, xi ∈ Φj and j ∈ C,

(6)

where ρLu = ρNu = ρu denotes the UAV transmit power,
ρLb = ρNb = ρb denotes the TBS transmit power, ηi represents
the additional path loss related to a LOS condition or NLOS
conditions, and r(xi) is the horizontal distance to the point
located at xi ∈ R

2. Hereinafter, we denote by C the set
{Lu, Nu, Lb, Nb}. For the ease of notation, we also define
the average power received from a node place at xi at the
reference user as follows:

Rj(r(xi)) = ρj ηj

(
r(xi)2 + h2

j

)−αj
2 , xi ∈ Φj and j ∈ C,

(7)

E. Energy Harvesting and Backhaul Link

As proposed in our previous work [19], we consider simul-
taneous communication and energy transfer under a power
splitting technique at the drone level, where the LBD at
the ground does not only guarantee energy supply but also
provides a backhaul link to the drones. To model the energy
transfer link between the drones and the LBDs, we use the
following model based on the Beer-Lambert equation [34]:

pharv(R) = ht

(1− δs)ωTχ ptrans exp
(−α
√

R2 + h2
)

(
D +

√
R2 + h2Δθ

)2 ,

(8)

where R is the horizontal distance to the drone, ht is a
log-normal random variable representing the turbulence effect,
δs is the power splitting factor used to separate the energy
transfer link and the communication link. The parameter w
denotes the receiver conversion efficiency, T is the area of the
receiver telescope or collection lens, D is the size of the initial
laser beam, α is the attenuation coefficient of the medium,
χ is the combined transmission receiver optical efficiency, and
Δθ is the angular spread of the laser beam. The angular spread
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Δθ is equal to Dd

f , where Dd is the size of the detector and
f its focal length.

Regarding the backhaul link, we propose using a basic laser
intensity modulation such as on-off keying for communication.
Accordingly, the signal-to-noise ratio (SNR) level at the UAV
is given by [34], [35]:

SNRUAV(R) =
δs η ht ωAχ ptrans exp

(−α
√

R2 + h2
)

2 � ν Δf
(
D +

√
R2 + h2Δθ

)2 ,

(9)

where � is Planck’s constant, ν = c
λ is the photon’s frequency,

λ is the wavelength, c is the speed of light, and Δf is the
modulation frequency bandwidth.

III. UAV DEPLOYMENT STRATEGY

In this section, we present the details of our proposed UAV
deployment. We consider it a large-scale UAV deployment
strategy since we use a PPP to model multiple drones and
simulate them in a large area of interest. In what follows,
we derive the critical charging distance R∗, then we use its
value to define our deployment strategy. Finally, we identify
the resulting UAV distribution after applying the proposed
placement strategy.

A. Critical Charging Distance

To guarantee a safe energy level and successful communica-
tion with the LBD, the UAV flies inside a ball centered around
the serving LBD and of radius R∗. This critical charging
distance was the subject of [19], where we provided its closed-
form expression in the non-turbulent 1 regime as follows:

R∗ =

[{
2
α

W0

⎛
⎝ α

2Δθ

√
(1− δs)ωTχptranse

αD
Δθ

pprop + pcomm

⎞
⎠

− D

Δθ

}2

−H2

] 1
2

, (10)

where W0(.) is the principal branch of the Lambert W func-
tion [36], Pprop is the UAV propulsion power, and Pcomm is
the UAV communication power. However, the laser intensity
is usually affected by optical turbulence, especially for long
range applications.

Lemma 1 (Critical Charging Distance): In the Case of log-
normal turbulence effect, where ht ∼ lognormal(−2σ, 2

√
σ),

the value of the critical charging distance R∗, is derived
numerically by solving the below equation:

Pharv(R∗) exp
(
2
√

2σ(R∗) erf−1(1 − 2B)− 2σ(R∗)
)

− pprop − pcomm = 0, (11)

where R∗ is derived such that the joint SNR and energy
coverage probability is above a certain level denoted by B.

Proof: See Appendix A.
We bring to the reader’s attention the following points:
(i) σ is denoted by σ(R∗) in (11) to emphasize the fact that it is

1Refers to the case where the effect of the optical turbulence on energy
harvesting is not taken into consideration.

a function of R∗ and that a closed-form solution could not be
easily derived since a commonly used expression is σ(R∗) =√

0.3 k
7
6 C2

n(h)R∗ 11
6 , where C2

n(h) is the refraction index at
an altitude h, and k is the wavenumber. Moreover, pharv(R∗)
is not linear in R∗, as (8) shows, which complicates further
a closed-form solution. (ii) Typical values for the minimal
threshold B are [0.9, 0.99], which means that successful
communication energy coverage is guaranteed with probability
90% to 99%. Regarding the outage probability, we rely on the
drone’s backup battery to get back to the LBD’s field of view
or to a safe-charging range.

B. UAV Deployment Strategy Description

Positioning the UAV above the cluster centers might provide
good coverage for the users, but can not be optimal in terms
of energy coverage as it is not guaranteed that the distance
to the serving LBD is always in safe ranges. Based on the
distance R∗, we propose a deployment strategy, denoted by S,
described by Figure 3 and Algorithm 1, that establishes a
trade-off between energy coverage and the quality of service
provided. Below, we summarize the main points of the UAV
placement strategy:

• One UAV is dedicated to each user cluster center.
• Case1. S = “rc ≤ R∗”: If the distance from the cluster

center to its nearest LBD is below R∗, the drone decides
to hover above the cluster center to provide maximum
coverage for the users inside the cluster center. This is
assumed to provide the lowest average euclidean distance
to the users inside the cluster and thus results in better
coverage.

• Case2. S = “rc > R∗”: If the distance from the cluster
center to its nearest LBD is above R∗, The UAV is forced
to shift along the line linking the cluster center and its
nearest LBD. This is because the harvested energy level
at the cluster center cannot compensate for the consumed
energy. Thus the UAV is placed at a distance R∗ on the
line linking the drone from its nearest LBD.

C. UAV Distribution

In this subsection, we present the resulting UAV distribution
after applying Algorithm 1. Applying random translations to
a PPP only affects its density, and the resulting density is
provided in [37]. However, in our case, we cannot apply
the displacement theorem to derive the new density. This is
because the translations we are making are not independent.
In this case, and from the reference user point of view,
we consider the existence of a central UAV, which is the
drone associated with the cluster of the reference user and
we approximate the rest of the UAV distribution as a PPP.
We show later through the numerical simulation that this
approximation is decent. In what follows, we provide the
ranges of the critical charging distance at which this approx-
imation is decent. To do so, we analyze the displacement
magnitude, which is the distance crossed by a drone following
the placement strategy. Let x, y ∈ R

2, where x ∈ Φu denotes
the location of one UAV and y denotes its new position after
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TABLE I

SYSTEM NOTATIONS

Fig. 3. Deployment strategy overview.

the relocation described in Algorithm 1. Let NN(x) ∈ ΦLBD

be the nearest LBD to x. Notice that ||x − y|| is a mixed
random variable from the following PDF:

f||x−y||(α)

=
(
1− exp

(
−πλLBDR∗2

))
δ(α)

+ 2λLBDπ(R∗ + α) exp
(−πλLBD(R∗ + α)2

)
1(α ≥ 0).

(12)

This is because the CDF of ||x− y|| is derived as follows:

F||x−y||(α) = P (||x− y|| ≤ α)

= P (||NN(x) − x|| ≤ R∗ + α)

= 1− exp
(
−πλLBD(R∗ + α)2

)
. (13)

Thus, the displacement magnitude ||x−y|| is a mixed random
variable with a continuous part:

C(α)

=

{
exp

(−πλLBDR∗2
)−exp

(
−πλLBD(R∗+α)2

)
α ≥ 0

0 else.

(14)
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Algorithm 1 UAVs Relocation Algorithm
1: procedure RELOCATE(ΦLBD, Φcc)
2: R∗ ← solve(11)
3: Φu ← Φcc

4: for (x, y) ∈ Φu do
5: for (x′, y′) ∈ ΦLBD do
6: d(x′, y′)←√

(x− x′)2 + (y − y′)2
7: end for
8: rc ←min(d)
9: (xn, yn)←argmin(d)  (xn, yn) is the nearest

neighbor of (x,y) from ΦLBD

10: slope ← y−yn

x−xn

11: if (rc ≥ R∗) then  set (x,y) such that the distance
to the nearest LBD is set to R∗

12: x← xn + sign(x−xn)R∗√
1+slope2

13: y ← yn + sign(y−yn)R∗√
1+slope2

 In case rc < R∗ keep

(x,y) unchanged.
14: end if
15: end for
16: return Φu

17: end procedure

Accordingly, the discrete part which discribes the probability
of not displacing the node x, is given by:

D(α) =

{
1− exp

(
−πλLBDR∗2

)
α ≥ 0

0 else.
(15)

In Figure 4, we plot the theoretical CDF of the displacement
norm versus the empirical CDF for different ranges of the
critical charging distance R∗ and the displacement distance
α. Based on this figure, we can notice that for reasonable
ranges of the critical charging distance [900m 1300m], the
probability of displacement is low and the nodes are often
not relocated. This is represented by the blue-colored facet
of the cube. Moreover, even if the node is relocated then
the displacement distance is not significant as shown by the
green-colored facets of the cube in Fig .4.

IV. PERFORMANCE ANALYSIS

To assess the performance of the system, we start by
deriving the important distance distributions, the necessary
association probabilities, the Laplace transform of interfer-
ence, and finally the coverage probability.

A. Important Distance Distributions

1) Distance to the Nearest Neighbor From a PPP: The
distance distribution to the nearest point from any PPP is given
in [37] by:

fri(r) = 2π λi(r) r exp
(
−2π

∫ r

0

λi(x)x dx

)
, (16)

where ri is the distance to the nearest neighbor from Φi,
with corresponding density λi, and such that i ∈
{Lu, Nu, Lb, Nb, LBD}.

Fig. 4. Displacement magnitude as a function of R∗ and the displacement
distance α, λLBD = 0.52 × 10−6 unit/m2 and λu = 3 × 10−6 unit/m2 .

2) Distance Distribution Between the Reference User and
Its Central UAV: Following the deployment strategy that we
proposed previously in Sec. III-B, it is clear that a single UAV
is associated with each user cluster. From the reference user
point of view, the UAV associated with its cluster center is con-
sidered as the central UAV. Deriving the distance distribution
between the reference user and its central UAV, denoted by rcu,
is important as it is used later in deriving the association
probabilities and finally the coverage probability. As indicated
in Algorithm 1, this distance depends on rc, which is the
distance from the cluster center to the nearest LBD.
Case1. Central UAV is placed above the cluster center
(rc ≤ R∗)
In this scenario, as the UAV is placed above the cluster center
to maximize its coverage for GUEs, and since the users are
uniformly distributed inside the cluster of radius rmax, the
distance distribution to the reference user is given by:

frcu|rc≤R∗(r) =
2r

r2
max

1 (0 ≤ r ≤ rmax) (17)

where rmax is the maximal cluster radius.
Case2. Central UAV is placed at a distance R∗ from its

nearest LBD (rc > R∗)
In the case where being placed above the hotspot center does

not guarantee enough energy level for the drone, the UAV is
obliged to be placed at the distance R∗ from its nearest LBD.

Proposition 1: For α ∈ R+, the PDF of the distance
between the UAV and a reference user in the case where
rc > R∗, denoted by frcu|rc>R∗ (α), is given by equation (18),
shown at the bottom of the next page, where rcc = rc − R∗,

and f(r, α) = (rc−R∗)2+r2−α2

2(rc−R∗)r .
Proof: See Appendix B.

Remark 1: To speed up the integration in the simulation,
it is important to identify the support of the PDF. The support
of the PDF frcu(α) is itself random and depends on the
placement strategy S and consequently on the random variable
rc. However, when conditioning on the placement strategy,
the support of the PDF of rcu is given by [(rc − R∗ −
rmax)+, rmax + (rc − R∗)+], where x+ denotes max(0, x).
This can be justified as follows:
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• The first case corresponds to placing the UAV above the
cluster center (rc ≤ R∗). Based on the properties of MCP
the support of the PDF is [0, rmax].

• The second case corresponds to relocating the UAV
according to Algorithm 1 and placing it inside the refer-
ence cluster as shown in Figure 3, which is mathemati-
cally explained by (0 < rc − R∗ ≤ rmax). In this case,
we can show that the support of the PDF function is
[0, rmax + rc −R∗].

• The third case corresponds to relocating the UAVs but
placing it outside the reference cluster i.e. (rmax <
rc − R∗). In this case we can show that the support of
the PDF is [rc −R∗ − rmax, rmax + rc −R∗].

3) Distance to the Nearest Interferes: The reference user
associates towards the nearest point from each distribution
since it provides, by definition, the strongest signal. Since we
use multiple distributions and in order to avoid any confusion,
we provide a compact form for the distance to the nearest
interferer from each distribution.

Lemma 2 (Distance to the Nearest Interferer): Suppose
that the reference user is connected to the nearest point from
a distribution Φj , distant by r ≥ 0. The distance to the
nearest interferer from the distribution Φi is given by:

f i
j(r)

=

√√√√max

(
0,

(
ρiηi

ρjηj

) 2
αi (

h2
j + r2

)αj
αi − h2

i

)
, i, j ∈ C,

(19)

where ρi is the transmit power, ηi is the additional path loss,
αi is the path loss exponent, and hi is the height of any node
from Φi. Remark that f i

i (r) = r, ∀i ∈ C.
Proof: See Appendix C.

Following the association policy defined later in
Section IV-B.1, Lemma 2 defines a shield circle of
radius f i

j(r) around the reference user that does not contain
any interferer from the distribution Φi. Thus, a logical

consequence is that f i
j(r) an increasing function of the

distance to the serving node r from the distribution Φj .

B. Association Probabilities

1) Association Policy: We consider domination by the
long-term statistics of the channel. The reference user connects
to the UAV or the TBS providing the strongest average
received power. Consequently, provided that the user is con-
nected to a distribution Φi then the serving entity is the nearest
node from Φi to the reference user.

2) Association Probability to the Central UAV: Let
Ac(r, Lu) denote the association probability to the central
UAV given that it is in LOS condition with the user and
distant by r. In contrast, Ac(r, Nu) refers to the case of NLOS
condition with the reference user.

Lemma 3 (Central Association Probability): The
expression of Ac(r, i), i ∈ {Lu, Nu}, is given by:

Ac(r, i) =
∏
j∈C

exp

(
−2 π

∫ fj
i (r)

0

λj(x) x dx

)
, (20)

where f j
i (r) is given by Lemma 2 and λi is the density of the

point process Φi.
Proof: See Appendix D.

3) Association Probability to a Non-Central UAV: Let
A(r, i, S) denotes the association probability to the nearest
neighbor, distant by r ≥ 0, from the distribution Φi such
that S = “rc ≤ R∗” refers to the case where the UAV
is placed above the cluster center of the reference user and
S = “rc > R∗” refers to the case where the UAV is relocated
according to Algorithm 1.

Lemma 4 (Non-central association probability): For i ∈ C,
the expression of A(r, i, S) is given by:

A(r, i, S) = A(r, i, S)×
∏

j∈C\i

exp

(
−2 π

∫ fj
i (r)

0

λj(x) x dx

)
,

(21)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

frcu|rc≤R∗ (α− rcc) |α− rcc| ≥ rmax

frcu|rc≤R∗ (α− rcc)− 2 (α− rcc) arcos (f (|α− rcc|, α))
πr2

max

|α− rcc| < rmax ≤ rcc + α

+
∫ rmax

|α−rcc|

2α

πr2
maxrcc

√
1− f2(r, α)

dr and α 	= rcc

∫ rmax

0

2α

πr2
maxrcc

√
1− f2(r, α)

dr |α− rcc| < rmax ≤ rcc + α

and α = rcc

frcu|rc≤R∗(α− rcc)− 2(α− rcc) arcos(f(|α− rcc|, α))
πrmax

|α− rcc| < rcc + α < rmax

+
∫ α+rcc

|α−rcc|

2α

πr2
maxrcc

√
1− f2(r, α)

dr +
2(α + rcc) arcos(f(α + rcc, α))

πr2
max

and α 	= rcc

∫ α+rcc

0

2α

πr2
maxrcc

√
1− f2(r, α)

dr +
2(α + rcc) arcos(f(α + rcc, α))

πr2
max

else

(18)
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where A(r, i, S) is the probability that the serving entity from
Φi is providing stronger signal than the central UAV. The
expression of A(r, i, S) is given by:

A(r, i, S)

=
∫ ∞

fLu
i (r)

frcu|S(x) PLu(x) dx

+
∫ ∞

fNu
i (r)

frcu|S(x) PNu(x) dx, (22)

Proof: See Appendix E.

C. Laplace Transform of Interference

In this subsection, the Laplace transform of interference is
derived. To this end, several scenarios are possible depending
on what node the reference user is connected to.

1) Reference User Connected to the Central UAV: Let
Lc

I(s, i, r) denotes the Laplace transform of the interference
experienced at the reference user when it is connected to its
central UAV distant by r and conditioned on the placement
strategy S.

Lemma 5 (Central Laplace Interference): The Laplace
transform of interference in the case where the UAV is
connected to the central UAV, distant by r ≥ 0, conditioned
on the channel type i ∈ {Lu, Nu}, is given by equation (23),
shown at the bottom of the page.

The Laplace transform of the interference is used later to
derive the coverage probability. It is a decreasing function
of the distance to the serving node r, which means that the
interference I is increasing with r, by definition of the Laplace
transform, i.e. Lc

I(s, i, r) = E(exp (−sI)). This is a logical
consequence since when the connected node is far then a large
shield circle radius f i

j(r) is imposed around the reference user.
Proof: See Appendix F.

2) Reference User Not-Connected to the Central UAV:
Suppose that the user is connected to the nearest point from
the distribution Φi, distant by ri, and different from the
central UAV. In the following lemma, we derive the Laplace
transform of the interference generated by the central UAV.

Lemma 6 (Non-Central Laplace Interference): The Laplace
interference generated by the central UAV conditioned on the
distance to the serving entity ri and the placement strategy S

is given by equation (24), shown at the bottom of the page,
where LI(s, r, i, S) is the Laplace transform of interference
generated by the central UAV conditioned on the distance to
the serving entity r and the placement strategy S:

Proof: See Appendix G.

D. Coverage Probability

In this section, we derive the analytical expression of the
coverage probability C(γ), defined as the probability that the
received signal at the user is below a certain threshold γ.
Equation (25), shown at the bottom of the page.

Proposition 2: The coverage probability C(γ) is given by:

C(γ) =
∫ ∞

0

( ∑
i∈C

ES{L(r, i, S)A(r, i, S)}fRi(r)

+
∑

i∈{Lu,Nu}
Lc(r, i)Ac(r, i)Pi(r)ES{frcu|S(r)}

)
dr,

(26)

where the expectation over the placement strategy S are given
by:

ES{L(r, i, S)A(r, i, S)}
= L(r, i, rc ≤ R∗)A(r, i, rc ≤ R∗)

×
(
1− exp

(
−λLBDπR∗2

))
(27)

+
∫ ∞

R∗
L(r, i, rc > R∗)A(r, i, rc > R∗)fRc(rc)drc,

ES{frcu|S(r)}
=

∫ ∞

R∗
frcu|rc>R∗(r) fRc(rc)drc

+
(
1− exp

(
−λLBDπR∗2

))
frcu|rc≤R∗(r). (28)

Moreover, L(r, i, S) is given by:

L(r, i, S) =
mi−1∑
k=0

(−1)k sk

k!
dk

dsk
LI+σ2(sr, i, r, S), (29)

whereas Lc(r, i) is given by:

Lc(r, i) =
mi−1∑
k=0

(−1)k sk

k!
dk

dsk
Lc

I+σ2 (sr, i, r), (30)

Lc
I(s, i, r) =

∏
j∈C

exp

(
−2π

∫ ∞

fj
i (r)

(
1−

(
mj

mj + sρjηj(x2 + h2
j)

−αj
2

)mj
)

λj(x)xdx

)
. (23)

LI(s, i, r, S) = LI(s, i, r, S)×
∏

j∈C\i

exp

(
−2π

∫ ∞

fj
i (r)

1−
(

mj

mj + sρjηj(x2 + h2
j )

−αj
2

)mj

λj(x)xdx

)
, (24)

LI(s, r, i, S) =
∑

j∈{Lu,Nu}

∫ ∞

fj
i (r)

(
mj

mj + sρjηj(z2 + h2)−
αj
2

)mj

Pj(z)frcu|S(z)∫ ∞
fj

i (ri)
frcu|S(x)dx

dz (25)
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Fig. 5. Conditional association probability to the central UAV as a function
of the serving distance.

and finally sr is given by:

sr =
γmi(h2

i + r2)αi/2

ρiηi
. (31)

Proof: See Appendix H.

V. NUMERICAL RESULTS

In this section, we validate the theoretical results we have
proposed in this paper through Monte Carlo simulations.
We analyze various figures to reveal some relevant trends
related to the setup we have suggested. Finally, we provide
high-level insights about the system we proposed for future
practical deployment of laser-powered drones. In all of the
figures, we use markers for the simulation results whereas solid
lines are used to represent the analytic expressions.

In Figure 5, we plot the association probability conditioned
on the distance to the reference user in different environments.
The figure shows that the probability to connect to the central
UAV in dense urban environments is significantly higher than
in suburban environments. This means that in dense urban
environments, since links between drones and the reference
user are often NLOS, as long as a LOS drone is placed close
to the reference user there is a high chance to be the serving
drone, this is not the case for suburban environments since
links are probably LOS and the probability of having another
LOS drone providing a stronger signal is not negligible. The
same figure brings to light the effect of the link type on
the association probability since the association to an NLOS
central drone, plotted with dashed lines, is lower than the
association probability to a central drone in LOS condition
with the reference user, showing how much building blockage
could affect the system setup.

Figure 6 shows the coverage probability as a function of
the signal-to-interference-plus-noise ratio (SINR) threshold γ
in different type of environments. It shows that coverage in
dense urban environments is higher than coverage in urban
and suburban environments. The degradation of wireless cov-
erage is a logical consequence of the significant interference
generated by all the nodes in the system, especially when most
of them are in LOS condition with the user. In other words,
it is a confirmation of Figure 8, but from a different angle.

Fig. 6. Coverage Probability as a function of the SINR threshold.

Fig. 7. Joint energy and communication coverage as function of the distance
to the drone.

Figure 7 shows the joint energy and communication cover-
age probability as a function of the distance to the drone R
under different turbulence conditions. The figure is informative
regarding the charging requirement for the drones as the
coverage probability decreases when increasing the critical
charging distance, in other words in strong turbulent environ-
ments. Moreover, we can state that reasonable ranges for the
critical charging distance are [1000 1300] meters for energy
and communication coverage threshold B = 90%. The critical
charging distance is also related to the energy coverage and
communication threshold B, since it decreases when targeting
highly reliable charging and backhaul link for the drones when
increasing B.

Figure 8 shows the connectivity diagram of the user in
different types of environments and in different laser charging
coverage. The purpose of this figure is to answer the question
to what extent the UAV network could support the terrestrial
architecture. We distinguish 3 different connection modes:
(1) connection to the central UAV, (2) connection to any other
UAV, and (3) connection to a TBS. As we consider LOS and
NLOS links, the number of connection modes increases to
6 accordingly. The trends in Figure 8a show a considerable
tendency to connect to terrestrial architecture in dense urban
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TABLE II

SYSTEM PARAMETERS [19], [26]

Fig. 8. Average user connectivity profile.

environments. This is due to the fact that LOS links to UAVs
are largely affected by building blockage. In addition, the
transmit power of UAVs (1W) is remarkably lower than the
transmit power of TBSs (30W), which explains why links to
UAVs are very sensitive to LOS probability. That said, in urban
and suburban environments, the drone network successfully
assists the TBS by providing stronger signals to users. We note

that the connection rate to airborne base stations is 7.4% for in
dense urban environments, 66.4% in urban environments and
increases to 73.5% in suburban environments. In a nutshell,
this confirms that UAVs must be deployed in LOS conditions
to be effective in wireless coverage scenarios, i.e. in urban
to suburban environments. Figure 8b captures the effect of
the maximal laser charging radius on the user connectivity.
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Fig. 9. UAV altitude effect on the coverage probability.

We can easily notice that under poor laser charging conditions,
i.e under low critical charging distance R∗ = 800m, the asso-
ciation rate to the central UAV is 33.8%. However, under better
laser critical charging distance, R∗ = 1300m, the association
probability to the central drone increases to 47.16%. This is
the consequence of expanding the drones’ flexibility, allowing
them to be positioned close to user clusters. At the same
time, the association rate to the TBSs decreases by 11% when
increasing the critical charging distance, as the performance
of the drones is severely affected.

In Figure 9, we plot the coverage probability as a function
of drone altitude for different building densities. This figure
shows how drone altitudes can affect the users’ quality of
service in certain scenarios. With the current system configura-
tion, we can see that the optimal drone placement is at 50 m
altitude in a suburban environment and at 80 m altitude in
an urban environment. The same figure confirms the results
observed in Figure 8 where the coverage probability is not
affected by the altitudes of the UAVs in dense urban envi-
ronments because the probability of association to the aerial
network is low. This problem can be solved by optimizing the
altitude of each drone individually, which is not feasible in
our system model.

Figure 10 presents the turbulence effect on the coverage
probability for different levels of the drone energy reliability,
denoted by B. This figure is equivalent to plotting against the
critical charging distance R∗ since there is a direct relation
between R∗ and B. The figure shows a degradation in the
coverage probability for moderate-to-strong optical turbulence
and relatively constant energy coverage probability for weak
optical turbulence (C2

n = 10−15). We can also remark that
coverage probability at the user is affected by the energy cov-
erage reliability level. For instance, the coverage probability
is better for low joint energy and communication coverage
levels. We can also notice that the gap induced by the drone
energy coverage increases in moderate to strong optical tur-
bulence. The aforementioned observations could be explained
as follows; (1) when increasing the energy coverage threshold
B the critical charging distance R∗ decreases to meet this
requirement. Consequently, this fact induces shifting the UAV
more close to their nearest LBDs instead of being positioned
above the cluster center, thus wireless coverage is sacrificed
for better energy coverage. (2) The same phenomenon happens

Fig. 10. Optical turbulence effect on the coverage probability for different
energy coverage (B) levels.

when increasing the refractive index, i.e increasing the optical
turbulence effect, as the critical charging distance decreases in
such environments. In a nutshell, a trade-off between energy
and wireless coverage is visible in all the figures we have
presented as a logical consequence of the placement strategy
we have proposed. The best-case scenario corresponds to
the placement of the drone above the cluster centers while
maintaining energy harvesting, which yields the best average
performance. However, in the worst case, drones are attracted
to the energy sources, and therefore users tend to connect to
the available terrestrial network architecture.

VI. CONCLUSION

In this paper, we have presented a comprehensive coverage
analysis for assisting a terrestrial network architecture through
a laser-powered drone network. We used stochastic geometry
to model the system and proposed a novel deployment strat-
egy for the laser-powered UAVs that ensures concomitantly
energy and wireless coverage for GUEs. As proposed in our
previous work, we assume simultaneous communication and
energy harvesting at the drone, enabling a reliable backhaul
link. Within this framework, we shed light on an interesting
trade-off between energy reliability and coverage efficiency.
We have also showed how optical turbulence badly affect
the drone’s wireless charging and consequently results in a
degradation of the user’s coverage probability. In the light of
these analyses, we believe that laser-powered UAVs strongly
compete with tethered, solar-powered, and untethered UAVs
and could offer interesting alternatives for future wireless
communication networks.

APPENDIX

A. Proof of Lemma 1

To start with, we have previously demonstrated in [19]
that the joint energy and communication coverage probability
is dominated by the energy coverage probability, and thus
to derive the critical charging distance, we rely on lower
bounding the energy coverage probability defined in the same
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work. Let us denote the lower bound on the energy coverage
probability by B ∈ [0 1]:

Penergy = P (htpharv(r) ≥ pprop + pcomm) ≥ B.

⇒ P(ht ≥ pprop + pcomm

pharv(r)
) ≥ B.

⇒ 1− Fht(
pprop + pcomm

pharv(r)
) ≥ B.

(a)⇒ 1
2
− 1

2
erf

(
ln(pprop+pcomm

pharv(r) ) + 2σ
√

2σ

)
≥ B.

(b)⇒
ln(pprop+pcomm

pharv(r) ) + 2σ
√

2σ
≤ erf−1 (1− 2B) . (32)

where (a) is due to the fact that the turbulence effect is fol-
lowing a lognormal distribution and (b) is due to the fact that
erf−1 is an increasing function. Based on the inequality (32),
we conclude that R∗ should satisfy (11) provided in Lemma 1.

B. Proof of Proposition 1

To derive the PDF of the distance between the reference
user and the central UAV, denoted by rcu, in the case of S =
“rc > R∗′′, we start by deriving Frcu|rc>R∗. Let α ∈ R+,
we can write the following:

Frcu|rc>R∗(α)

= P(rcu≤α|rc > R∗)=P(r2
cu ≤ α2|rc > R∗). (33)

We exploit the cosine rule applied to the colored triangle
shown is Figure 2. Notice that r, d, and θ are random variables,
but, since we conditioned on rc then rcc is also fixed due the
fact that rcc = rc −R∗.

= Er

(
P

(
r2
cc + r2 − 2 rrcccos(θ) ≤ α2

∣∣∣ rc > R∗, r
))

= Er

(
P

(
cos(θ) ≥ r2

cc + r2 − α2

2rrcc

∣∣∣ rc > R∗, r
))

= Er

(
P

(
cos(θ) ≥ r2

cc + r2 − α2

2rrcc

∣∣rc > R∗, r
))

. (34)

Now using the fact that arccos is a decreasing function defined
on [−1 1] and that θ is uniformly distributed across [0 2π],
we can further develop as follows:

= Er

(
arcos

(
r2
cc+r2−α2

2rrcc

)
π

1
{∣∣∣r2

cc + r2 − α2

2rrcc

∣∣∣ ≤ 1
}

+1
{r2

cc + r2 − α2

2rrcc
< −1

}
+ 0× 1

{r2
cc + r2 − α2

2rrcc
> 1

})

(a)
= Er

⎛
⎝arcos

(
r2
cc+r2−α2

2rrcc

)
π

1
{
|α− rcc| ≤ r ≤ rcc + α

}⎞
⎠

+ Er

(
1
{
r < α− rcc

})
. (35)

At this stage, we average over the random variable r taking
into account that r is derived form the distance of one point

and the cluster center from a MCP. Thus we can write the
following:

=
∫

[0,rmax]∩[|α−rcc|,rcc+α]

2r

πr2
max

arcos
(

r2
cc + r2 − α2

2rccr

)
dr

+
(α − rcc)

2

r2
max

1
{
0 ≤ α− rcc ≤ rmax

}
. (36)

In what follows, we explain how (a) is derived. Notice that r,
rcc, and α are positive:

1
{∣∣∣r2

cc + r2 − α2

2rrcc

∣∣∣ ≤ 1
}

= 1
{
r2
cc + r2 − α2≤2rrcc

}
× 1

{
r2
cc + r2 − α2 ≥ −2rrcc

}
= 1

{
(rcc − r)2≤ α2

}
1
{
(rcc + r)2 ≥ α2

}
= 1

{
|rcc − r| ≤ α

}
1
{
|rcc + r| ≥ α

}
= 1

{
rcc − α ≤ r ≤ rcc + α

}
1
{
r ≥ α− rcc

}
= 1

{
|α− rcc| ≤ r ≤ rcc + α

}
.

(37)

Now that we derived the CDF of rcu, we obtain the PDF
expression by deriving the CDF with respect to α, to this end,
we simply apply the Leibniz integral rule to the CDF to get the
expression described in Proposition 1. Different cases should
be distinguished depending on the result of [0, rmax] ∩ [|α−
rcc|, rcc + α].

C. Proof of Lemma 2

Let ri be the distance from the reference user to its nearest
neighbor from a point process Φi. Suppose that the reference
user is connected to the nearest neighbor from the point
process Φj , distant by rj . According to the association policy
that implies connection to the strongest signal, the nearest
interferer from Φi to the reference user must satisfy the
following equation:

ρj ηj (h2
j + r2

j )−
αj
2 ≥ ρi ηi (h2

i + r2
i )−

αi
2(

ρi ηi

ρj ηj

) 2
αi

(h2
j + r2

j )
αj
αi − h2

i ≤ r2
i√√√√max

(
0,

(
ρi ηi

ρj ηj

) 2
αi

(h2
j + r2

j )
αj
αi − h2

i

)
≤ ri. (38)

Hence, conditioned on the distance to the serving node r, the
nearest interferer distance is provided by:

f i
j(r) =

√
max

(
0, (

ρiηi

ρjηj
)

2
αi (h2

j + r2)
αj
αi − h2

i

)
,

i, j ∈ {Lu, Nu, Lb, Nb}. (39)

D. Proof of Lemma 3

Suppose that the central UAV is located at a distance
r ≥ 0 with channel type i, where i could be either LOS
(i = Lu), or NLOS (i = Nu). Then, based on the association
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policy defined in Sec. IV-B.1, the association probability to
the central UAV is given by:

Ac(r, i) = P

(
Ri(r) ≥ max

j∈C

(
Rj(rj)

))

=
∏
j∈C

P

(
Ri(r) ≥ Rj(rj)

)

=
∏
j∈C

P

(
rj ≥ f j

i (r)

)
. (40)

Since rj is the nearest neighbor distance from the PPP Φj

with density λj , we can write the following:

Ac(r, i) =
∏
j∈C

exp

(
−2 π

∫ fj
i (r)

0

λj(x) x dx

)
. (41)

E. Proof of Lemma 4

Let A(r, i, S) denotes the association probability to the
nearest neighbor, distant by r ≥ 0, from the distribution Φi,
and S = { “rc ≤ R∗”,“rc > R∗” } denotes the deploy-
ment strategy specified in Algorithm 1. Accordingly, for
i ∈ {Lu, Nu, Lb, Nb}, we can write the following:

A(r, i, S) = A(r, i, S)P

(
Ri(r) ≥ max

j∈C\i

(
Rj(rj)

))

= A(r, i, S)
∏

j∈C\i

P

(
Ri(r) ≥ Rj(rj)

)

= A(r, i, S)
∏

j∈C\i

P

(
rj ≥ f j

i (r)

)

= A(r, i, S)
∏

j∈C\i

exp

(
−2π

∫ fj
i (r)

0

λj(x)x dx

)
,

(42)

where A(r, i, S) is the probability that the signal from the
serving entity from Φi is stronger than the signal from the
central UAV, given that the serving point is at a distance r
from the reference user and conditioned on the placement of
the central UAV. Let rcu be the distance from the reference
user to the central UAV. The expression A(r, i, S) is given by:

A(r, i, S)

= P

(
RLu(rcu) ≤ Ri(ri), LOS

)

+ P

(
RNu(rcu) ≤ Ri(ri), NLOS

)

= P

(
rcu ≥ fLu

i (r), LOS

)
+ P

(
rcu ≥ fNu

i (r), NLOS

)

=
∫ ∞

fLu
i (r)

frcu|S(r) PLu(r) dr +
∫ ∞

fNu
i (r)

frcu|S(r) PNu(r) dr.

(43)

F. Proof of Lemma 5

Suppose that the reference user is connected to its cen-
tral UAV. Let Ii, i ∈ C denotes the interference induced by
the point process Φi. Let Ic denotes the interference generated
by the central UAV. Since the UAV is connected the central
UAV placed at xc, Ic = 0, and hence, LIc(s) = 1. Let
Lc

I(s, i, r) denotes the Laplace interference given that the
reference user is connected to the central UAV with channel
type i ∈ {Lu, Nu}, and I denotes the total interference:

I =
∑
j∈C

Ij

I =
∑
j∈C

∑
xi∈Φj\xc

Rj(r( xi)). (44)

Hence, the Laplace transform of interference is given by:

Lc
I(s, i, r)

= E(exp (−sI))

=
∏
j∈C

E

⎛
⎝exp

⎛
⎝−s

∑
xi∈Φj\xc

Rj(r(xi))

⎞
⎠

⎞
⎠

(a)
=

∏
j∈C

exp

(
−2π

∫ ∞

fj
i (r)

(
1− EGj {exp (−sRj(x))})

× λj(x)xdx)

(b)
=

∏
j∈C

exp

(
−2π

∫ ∞

fj
i (r)

(
1−

(
mj

mj + sRj(x)

)mj
)

× λj(x)xdx) , (45)

where (a) is performed by applying the probability generating
functional of a process [37] and (b) is due to the fact that
the Gj is gamma distributed with channel-dependent fading
parameters mj .

G. Proof of Lemma 6

Suppose that the UAV is not connected to the central UAV,
placed at xc, with channel type j, instead it is connected to
the nearest point from the distribution Φi, distant by ri, and
placed at xi. Suppose also that the placement strategy S is
used. The generated interference expression is given by:

I = Ic +
∑

j∈C\i

Ij , (46)

where Ic is the interference generated by the central UAV, and
Ij is the interference generated by the other point porcesses
except the point process Φi since Ii = 0. Hence, based on the
proof in Appendix. E, we can write the Laplace transform of
interference as follows:

LI(s, r, i, S)
= LI(s, r, i, S)

×
∏

j∈C\i

exp

(
−2π

∫ ∞

fj
i (r)

1−
( mj

mj + sRj(x)

)mj

× λj(x)xdx) , (47)
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C(γ) = P(
S

I + σ2
≥ γ)

= ES,r,i|r,I|r,i,S
{

P(
ρiηiGi(h2

i + r2)−
αi
2

I + σ2
≥ γ)

}

= ES,r,i|r,I|r,i,S
{

P(Gi ≥ γ(I + σ2)(h2
i + r2)

αi
2

ρiηi
)
}

(a)
= ES,r,i|r,I|r,i,S

{Γ(mi, mi(I + σ2)X)
Γ(mi)

∣∣∣∣∣
X=

γ(h2
i
+r2)

αi
2

ρiηi

}

(b)
= ES,r,i|r,I|r,i,S

{
exp

(−mi(I + σ2)X
) mi−1∑

k=0

mk
i (I + σ2)kXk

k!

}

= ES,r,i|r

{
EI|r,i,S

(
exp

(−miX(I + σ2)
)
(I + σ2)k

) mi−1∑
k=0

mk
i Xk

k!

}

= ES,r,i|r

{
mi−1∑
k=0

(−1)k sr
k

k!
dk

dsr
k
LI+σ2(sr, r, i, S)

}

(c)
= ES

{ ∫ ∞

0

∑
i∈A

mi−1∑
k=0

(−1)k sr
k

k!
dk

dsr
k
LI+σ2(sr, r, i, S)Ai(r, i, S)fRi(r)

+
∑
i∈B

mi−1∑
k=0

(−1)k sr
k

k!
dk

dsr
k
Lc

I+σ2(sr, r, i)Ac
i (r, i)Pi(r)frcu|S(r)dr

}
(50)

where the Laplace transform of the interference generated by
the central UAV, LI(s, r, i, S), is given by:

LI(s, r, i, S)
= E(exp(−s Ic))

= Er(xc)

(
Ej,Gj (exp(−s Rj(r(xc)))

)
(a)
=

∑
j∈{Lu,Nu}

∫ ( mj

mj + sRj(z)

)mj

P (r(xc)

= z, j|S, Rj(r(xc)) ≤ Ri(r(xi))
)
dz

=
∑

j∈{Lu,Nu}

∫ ( mj

mj + sRj(z)

)mj

× P(Rj(r(xc)) ≤ Ri(r(xi)), r(xc) = z, j|S)
P(Rj(r(xc)) ≤ Ri(r(xi))|S)

dz

=
∑

j∈{Lu,Nu}

∫ ( mj

mj + sRj(z)

)mj

× P(Rj(r(xc)) ≤ Ri(r(xi)), r(xc) = z, j|S)
P(Rj(r(xc)) ≤ Ri(r(xi))|S)

dz

(b)
=

∑
j∈{Lu,Nu}

∫ ∞

fj
i (r)

( mj

mj + sRj(z)

)mj

× Pj(z)frcu|S(z)∫ ∞
fj

i (r)
frcu|S(x)dx

dz, (48)

where (a) is due to the moment generating function of Gamma
distribution. To explain (b), we can write:

P

(
Rj(r(xc)) ≤ Ri(r(xi))|S

)

=
∫ ∞

fj
i (r)

frcu|S(x)dx

×P

(
Rj(r(xc)) ≤ Ri(r(xi)), r(xc) = r, j|S

)
= P

(
Rj(r(xc)) ≤ Ri(r(xi))|r(xc)=r, j, S

)
P

(
r(xc)=r, j|S

)
= P

(
Rj(r(xc))≤Ri(r(xi))|r(xc)=r, j, S

)
P

(
j|r(xc)=r, S

)
×P

(
r(xc) = r|S

)
= 1

(
r ≥ f j

i (r)
)
Pj(r)frcu|S(r). (49)

H. Proof of Proposition 2

In (a), since Gi follows a Gamma distribution, we use the
CDF of a Gamma distribution, (b) comes form the power
series expansion of the lower incomplete gamma function, and
in (c), we average over the distance to the serving node and
the channel link type (LOS,NLOS). Equation (50), shown at
the top of the page.
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