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Evaluating the Accuracy of Stochastic Geometry Based Models
for LEO Satellite Networks Analysis

Ruibo Wang , Mustafa A. Kishk , Member, IEEE, and Mohamed-Slim Alouini , Fellow, IEEE

Abstract— This letter investigates the accuracy of recently
proposed stochastic geometry-based modeling of low earth
orbit (LEO) satellite networks. In particular, we use the Wasser-
stein Distance-inspired method to analyze the distances between
different models, including Fibonacci lattice and orbit models.
We propose an algorithm to calculate the distance between the
generated point sets. Next, we test the algorithm’s performance
and analyze the distance between the stochastic geometry model
and other more widely acceptable models using numerical results.

Index Terms— Stochastic geometry, homogeneous BPP,
distribution, LEO satellite.

I. INTRODUCTION

W ITH the recent advances in the low Earth orbit (LEO)
satellites industry, a wide range of applications are

anticipated to benefit from more than 4,700 LEO satellites
launched in space [1]. One main application is providing
seamless global coverage and low-latency ultra-distance com-
munication [2]. As a powerful mathematical tool, stochastic
geometry is one of the few modeling methods that can provide
analytical results for crucial performance metrics of satellite
networks such as interference power, coverage probability,
and latency [3], [4]. Some literature has studied the coverage
probability of satellite networks by modeling LEO satellite
locations as Poisson point process (PPP) [5], [6], binomial
point process (BPP) [7]–[9] and non-homogeneous Poisson
point process (NPPP) [10]. Although stochastic geometry
facilitate the analysis of the performance of satellite networks,
the satellites rotate along fixed orbits in reality rather than
follow the point process distribution on the entire spherical
surface. Because of the difference between the stochastic
geometry-based model and the actual orbit model, whether the
stochastic geometry method is suitable for satellite network
performance analysis has been the focus of discussion.

Some literature tries to answer this question. The work
in [11] indicates that the lower bound of coverage probability
in the stochastic geometry-based model is as tight as the upper

Manuscript received 8 July 2022; accepted 23 July 2022. Date of publication
27 July 2022; date of current version 10 October 2022. The funding for the
research of this article is KAUST Office of Sponsored Research. The associate
editor coordinating the review of this letter and approving it for publication
was M. Koca. (Corresponding author: Mustafa A. Kishk.)

Ruibo Wang and Mohamed-Slim Alouini are with the CEMSE Divi-
sion, King Abdullah University of Science and Technology (KAUST),
Thuwal 23955-6900, Saudi Arabia (e-mail: ruibo.wang@kaust.edu.sa;
slim.alouini@kaust.edu.sa).

Mustafa A. Kishk is with the Department of Electronic Engineering,
National University of Ireland, Maynooth, W23 F2H6 Ireland (e-mail:
mustafa.kishk@mu.ie).

Digital Object Identifier 10.1109/LCOMM.2022.3194210

bound of the regular mesh model in a two-dimensional net-
work. For a massive satellite constellation with a large number
of orbits, [8] further proves that the coverage probability of the
stochastic geometry-based model is consistent with that of the
constellation with orbit model. However, the above literature
focuses on a comparisons in terms of coverage probability, for
which conclusions might not hold when other performance
metrics are considered. In order to verify the accuracy of
stochastic geometry based tools in the context of LEO satellite
communications, a comparison with a general perspective is
needed, but not the one focus on a specific performance metric.

The contributions of this letter can be summarized in the fol-
lowing three points. Firstly, we give expressions of the satellite
orbit model distribution and spherical homogeneous BPP dis-
tribution, a common stochastic geometry model. To complete a
comprehensive study, we considered geosynchronous devices,
such as ground gateways and buoys on the sea. In many
scenarios, they are suggested to be distributed uniformly to
achieve better coverage or enhance availability when serving
as relays. Therefore, the Fibonacci lattice model is introduced.
The second contribution of this letter is that we establish
the relationship between BPP and Fibonacci lattice, i.e., both
of them provide solutions to the Tammas problem. Thirdly,
this letter proposes a low-complexity algorithm to measure
the accuracy of BPP when it is used to replace the other
two models. What’s more, the notations and corresponding
descriptions involved in the following sections are shown in
Table I.

II. TYPICAL MODELS

A. Homogeneous BPP

BPP can be a better alternative to satellite networks because
it is more suitable than PPP for modeling a finite number
of points in a finite area. The following proposition gives a
distribution of homogeneous BPP on a sphere.

Proposition 1: For a point in homogeneous BPP, the
azimuth angle is uniformly distributed between 0 and 2π, i.e
ϕBPP ∼ U [0, 2π], and the Cumulative Distribution Func-
tion (CDF) of each point’s polar angle (of the spherical
coordinate) θBPP follows

FθBPP (θ) =
1− cos θ

2
, 0 ≤ θBPP ≤ π, (1)

and θBPP can be generated by,

θBPP = arccos (1− 2U [0, 1]) , 0 ≤ θBPP ≤ π. (2)
Proof: See Appendix A.

Note that the BPP given in subsequent parts of this letter
means homogeneous BPP unless otherwise stated.
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TABLE I

SUMMARY OF NOTATIONS

Fig. 1. Comparison of homogeneous BPP, non-homogeneous BPP and
Fibonacci lattice model-based point set.

B. Fibonacci Lattice-Based Point Set

As shown in the right side of Fig. 1, the point set based
on the Fibonacci lattice is stationary to the Earth and highly
uniform. The above distribution can be obtained by solving
Tammes problem [12], which is a problem in packing a given
number of points on a sphere such that the minimum distance
between points is maximized,

P1 : dopt = maximize
All of the xi∈Φt

min
i�=j
{dP (xi, xj)}, (3)

where xi (R, θi, ϕi) is the position of point i, for gateways
and buoys, R = 6371km is the radius of the Earth, θi

and φi are polar angle and azimuth angle of point i. Φt =
{x1, x2, . . . , xNP } is the point set and dP (xi, xj) in (3) is the
distance between xi and xj , which can be expressed as,

dP (xi, xj)

= R

√
2
(
1− cos θi cos θj − sin θi sin θj cos (ϕi − ϕj)

)
.

(4)

To obtain Φt from the above optimization problem, a well-
studied point set called the Fibonacci lattice is given in the
following proposition [13].

Proposition 2: For the ith point in Fibonacci lattice-based
point set, the polar angle θFib,i and azimuth angle ϕFib,i are
calculated by [13],⎧⎨⎩θFib,i = arccos

(
2i− 1
NP − 1

)
,

ϕFib,i =
(√

5− 1
)
πi,

when i ≤
⌈

NP

2

⌉
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θFib,i =π−arccos

(
2
(
i−⌈NP

2

⌉)−1
NP − 1

)
,

ϕFib,i =
(√

5− 1
)
π ·
(

i−
⌈

NP

2

⌉)
,

when i>

⌈
NP

2

⌉
.

(5)

Fig. 2. Comparison of homogeneous BPP and orbit model-based point
process.

where NP is the number of points in point set Φt, and �·�
represents round up to an integer.

Based on the nearest neighbor angle of BPP, we give an
approximate solution to Tammes problem.

Corollary 1: When packing NP points on a sphere with
radius R, the maximum value dopt of the minimum distance
between points can be approximate as,

dopt ≈ 2R sin

(
π

NP −1∏
i=1

2i− 1
2i

)
. (6)

Proof: See Appendix B.

C. Orbit Model-Based Point Process

The orbit model of part of the Starlink constellation at
550km is shown on the right side of Fig. 2. It consists of
72 isometric orbits, each uniformly distributed with 22 satel-
lites, with an orbital inclination of 53 degrees [14]. For
increasing coverage and avoiding collisions, the satellites in
each orbit are also assumed to be uniformly distributed. Since
LEO satellites are not geostationary, they are modeled as a
homogeneous stochastic point process in fixed orbits. The
following proposition gives the realization of the above point
process.

Proposition 3: For a point in orbit model-based point
process, the CDF of its polar angle Fθorb (θ) is given by,

Fθorb (θ) =
cos γ − cos θ

2 cosγ
, γ ≤ θ ≤ π − γ, (7)

where γ is the orbit inclination. For a given θorb, its azimuth
angle ϕorb follows a discrete uniform distribution,

�

[
ϕorb =

2kπ

Norb
± arcsin

(
tan θorb

tanγ

)]
=

1
2Norb

,

k = 1, 2, . . . , Norb, (8)

where Norb is the number of orbits.
Proof: See Appendix C.
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III. WASSERSTEIN DISTANCE-INSPIRED DIFFERENCE

MEASUREMENT

Based on the concept of Wasserstein distance, we calcu-
late the distance between two point processes or between
a point process and a set of points. For discrete distribu-
tions, the squared of Wasserstein distance is the minimum
energy required to move one distribution to another. Similarly,
we sample the original process Φo (for BPP) and the target
point process/set Φt (for Fibonacci lattice-based point set
or orbit model-based point process) to obtain the coordi-
nates Φo = {x1, x2, . . . , xNp} and Φt = {x̃1, x̃2, . . . , x̃Np}
respectively. Note that the number of points in Φo and Φt

must be equal. To measure the distance between Φo and Φt,
we calculate the minimum power required to move from Φo

to Φt. The corresponding optimization problem is expressed
as follows,

P2 : Wd = min
F

√√√√NP∑
i=1

NP∑
j=1

Fij · d2
P (xi, x̃j), (9a)

s.t.
NP∑
j=1

Fij = 1, ∀i, (9b)

NP∑
i=1

Fij = 1, ∀j, (9c)

Fij = 0 or Fij = 1, ∀i, j. (9d)

where dP (xi, x̃j) is defined in (4), F is a permutation matrix
which represents a moving scheme. According to the whole
permutation formula, there are NP ! moving schemes, which
brings in a huge computing burden.

Therefore, we propose the sampling algorithm for the
distance with the following steps: (i) Let the points in Φo

associate to their nearest points in Φt; (ii) Traverse points
in Φt which have been associated multiple times, left the
nearest point in Φo and disassociated the others; (iii) Repeat
the above process for the disassociated points in Φo and the
unassociated points in Φt, until all the one-to-one association
is achieved; (iv) Move Φo to Φt according to the association
and calculate Wd. According to the above analysis, each
round’s computation amount of step (i) and (ii) is no more
than that of a moving scheme in P2. Since at least one point
in Φt is associated in each round, the number of rounds will
not exceed NP . Compared with NP ! moving scheme in P2,
the algorithm 1 has low computational complexity.

In the above algorithm, vI
i is used to record the index of the

point in Φt which is associated to point xi in Φo, and vC
j is

used to record how many points are associated with point x̃j in
Φt. Finally, a round of association for the sampling algorithm
is given in algorithm 2.

IV. NUMERICAL RESULTS

In this section, we begin with the verification process in
Fig. 3 and 4, then the numerical results obtained by the
algorithm 1 are analyzed in Fig. 5 and 6. We run NNOI =
106 iterations for each point in the figures and take the mean of
the obtained 106 distances as the final result. In each iteration,

Algorithm 1 Sampling Algorithm for the Distance
1: Input: Positions of original point processes Φo, positions

of target point set/process Φt, and the number of iterations
NNOI.

2: Initialize: Initialize index vector vI ← 0NP×1, count vec-
tor vC ← 0NP×1, and distance matrix Dij ← dP (xi, x̃j)
for all i, j ≤ NP .

3: for n = 1 : NNOI do
4: while ∃ vC

j �= 1, j = 1, 2, · · · , NP do
5: Perform a round of association according to algo-

rithm 2, renew vI , vC , and Wd ←
√

W 2
d + ΔW 2

d .
6: end while
7: end for
8: Wd ← Wd

NNOI
.

9: Output: Distance between point set/processes Wd.

Algorithm 2 A Round of Association for Sampling Algorithm

1: Input: Distance matrix D, index vector vI , and count
vector vC .

2: Initialize: Distance increment ΔWd ← 0 , temporary count
vector vTC ← 0NP×1.

3: for i = 1 : NP do
4: if vI

i = 0 then
5: jopt ← arg min

j, for all vC
j =0

Dij .

6: vI
i ← jopt.

7: vTC
jopt
← vTC

jopt
+ 1.

8: end if
9: end for

10: for j = 1 : NP do
11: if vTC

j = 1 then
12: vT

j ← 1.

13: ΔWd ←
√

ΔW 2
d + D2

ioptj
, where iopt is derived by

vI
i = j.

14: else if vTC
j > 1 then

15: vT
j ← 1.

16: iopt ← arg min
i, for all vI

i=j

Dij .

17: ΔWd ←
√

ΔW 2
d + D2

ioptj
.

18: vI
i ← 0, for all vI

i = j and i �= iopt.
19: end if
20: end for
21: Output: Distance increment ΔWd, index vector vI , and

count vector vC .

the coordinates of points will be reconstructed for BPP or orbit
model-based point process.

In Fig. 3, the optimality of algorithm 1 is verified by
comparing the distance between BPP and orbit model-based
point process. h = R − 6371km is the height of the satellite
constellation, where R is the radius of the sphere over which
the satellites are located. The solid line is obtained by tra-
versing all schemes F in P2, which is optimal. From Fig. 3,
we notice that the distances obtained by the algorithm (the
dashed lines) is not far from the optimal distance, even when
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Fig. 3. Optimality analysis of the proposed algorithm.

Fig. 4. Verification of the accuracy in Corollary 1.

Fig. 5. Figure of the distances between point processes/sets.

there are less than 10 points. In Fig. 4, we verify accuracy
of corollary 1. Since the points and lines fit well, we prove
that the results in Corollary 1 based on the nearest neighbor
angle can provide an excellent approximation to the Tammes
problem at any height.

Fig. 5 and Fig. 6 analyze the distances between BPP and
other two models. To show the uniformity of BPP obtained in
proposition 1, we design a non-homogeneous binomial point
process (NBPP) shown in the middle sub-graph of Fig. 1

Fig. 6. The analysis of the distance between BPP and orbit model-based
point processes.

as a comparison. Both azimuth and polar angles of NBPP
follow uniform distributions, i.e., ϕNBPP ∼ U [0, 2π] and
θNBPP ∼ U [0, π]. For the red and green lines of Fig. 5 and
subfigures in Fig. 1, Fibonacci lattice-based point set, BPP,
and NBPP are located on the ground (h = 0). The results of
these two lines show that BPP is more suitable for substituting
the Fibonacci lattice-based point set than NBPP. When the
number of points exceeds 1000, the distance between BPP
and Fibonacci lattice-based point set is small enough.

In the black and blue lines of Fig. 5, h = 550km and
γ = 53◦. For the orbit model-based point process in Fig. 5
and Fig. 6, the number of satellites in each orbit is fixed
at 22. As shown in Fig. 5, since the orbit model generates
a stochastic point process, there are also distances between
samples at different times. However, the distance between
BPP and orbit model-based point process is not much greater
than the distance of this process itself. Therefore, the distance
caused by substituting the orbit model with a stochastic
geometry model is acceptable. Fig. 6 compares the distance
between BPP and orbit model-based point processes under
different parameters. Smaller orbit inclinations, lower alti-
tudes and more satellites lead to smaller distances. Stochastic
geometry model is more suitable in analyzing Starlink mega-
constellation (γ ≈ 53◦, NP = 41927, h = 550km), than
Iridium (γ ≈ 87.5◦, NP = 81, h = 778km) and OneWeb
(γ ≈ 87.5◦, NP = 720, h = 1200km) constellations [1].

V. CONCLUSION

As a point process suitable for theoretical analysis, homo-
geneous BPP is an excellent substitute for both Fibonacci
lattice-based point set and orbit model-based point process.
According to the results obtained by the proposed algorithm
which is used to measure the distance between point processes,
BPP has a better substitution effect for a point process/set with
a lower altitude and larger number of points, such as a point
process based on a massive LEO satellite constellation.

APPENDIX A
PROOF OF PROPOSITION 1

First, we introduce a well-known distribution in stochastic
geometry called the contact angle distribution. The contact
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angle of a reference point is the dome angle between the point
and its nearest satellite, and the dome angle is the connection
between the reference point and the center of the earth and the
connection between the satellite to the center of the Earth [15].
The CDF of the contact angle Fθc (θ) is given by,

Fθc (θ) = 1−
(

1 + cos θ

2

)NP

, 0 ≤ θc ≤ π, (10)

where NP is the number of satellites. The CDF of each point’s
polar angle is Fθc (θ) at NP = 1. Let the CDF of the polar
angle be equal to a uniformly distributed random variable on
[0, 1], i.e. FθBPP (θ) = 1−cos θ

2 = U [0, 1], the result in (2) can
be derived.

APPENDIX B
PROOF OF COROLLARY 1

We start the proof from the concept of the nearest neighbor
angle. The nearest neighbor angle is the dome angle between a
reference point from the point process and its nearest neighbor
(a gateway or buoy). By definition, the CDF of Fθn (θ) nearest
neighbor angle can be derived directly from (10),

Fθn (θ) = 1−
(

1 + cos θ

2

)NP−1

. (11)

Take the expectation of θn, we have

E [θn] =
∫ π

0

1− Fθn (θ) dθ =
∫ π

0

(
1 + cos θ

2

)NP−1

dθ

= 2
∫ π

2

0

(
cos θ̃

)2NP−2

dθ̃
(a)≈ π

NP−1∏
i=1

2i− 1
2i

, (12)

where (a) follows Wallis’ integrals. In the isosceles triangle
formed by the reference point, its nearest neighbor, and the
center of the earth, the simple geometric relationship between
the average dome angle E [θn] and the average distance
dn between the reference point and its nearest neighbor is
obtained,

dn = 2R sin (E [θn]) . (13)

dn can be regarded as an approximation of dopt. Substi-
tuted (12) into (13), corollary 1 is proved.

APPENDIX C
PROOF OF PROPOSITION 3

Since the trajectory of the satellite is continuous, so is the
CDF of the polar angle Fθorb (θ). Fθorb (θ) can be obtained
by the normalization of the interval γ ≤ θBPP ≤ π − γ in
FθBPP (θ),

Fθorb (θ) =
FθBPP (θ)− FθBPP (γ)

FθBPP (π − γ)− FθBPP (γ)

=
cos γ − cos θ

cos γ − cos (π − γ)
=

cos γ − cos θ

2 cos γ
. (14)

Since the orbit is discretized, the azimuth angle is given by
a discrete uniform distribution. First, we derive a particular
orbital equation and establish the connection between θorb and
ϕorb. For a circle passing point (R, π

2 , γ) with its center at the
center of the earth, the following equation is satisfied,

tan γ cos θorb sin ϕorb − sin θorb = 0, (15)

and there are two solutions for azimuth angles,

ϕorb = ± arcsin
(

tan θorb

tan γ

)
. (16)

By changing the coordinates of the points which the circle
passes, the relationship between θorb and ϕorb in the rest of
the orbits can be represented. Finally, since the probability of
a satellite appearing in each orbit is equal, the proposition is
proved.
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