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Abstract

In order to understand evolutionary-ecological processes and make decisions con-
cerning wildlife management (i.e., conservation and monitoring, according to Caugh-
ley (1994)), the ability to estimate abundances of wild animal species can prove
imperative (Verdade et al., 2014). However, methods of data collection that in-
volve direct interaction with wild animals can be invasive and pose risks to both
wildlife and humans (Verdade et al., 2013).

In this thesis, we propose methodologies that may be used to estimate animal
abundances using different types of data, with an emphasis on data whose collec-
tion is relatively low-effort, cost-effective and poses the least risk of danger to the
animal and observer. The ability to use these data to estimate abundance may
allow for the establishment of large-scale wildlife monitoring programs.

First we present a multivariate extension to the N-mixture model proposed by
Royle (2004). This extension allows for the estimation of abundances for multi-
ple species simultaneously, while also estimating the correlation between species
abundances. This model is further extended to allow for data collected over long
time periods through the addition of a first-order autoregressive term on the abun-
dance. This model is then extended further to allow for the use of zero-inflated
data by considering a hurdle-Poisson distribution for the latent abundances.

We then provide an overview of various N-mixture models, aimed at introducing
practitioners unfamiliar with statistics to this methodology. We demonstrate a
Bayesian implementation of some of these models to estimate foraging bee abun-
dance, with R code provided to allow model implementation by any interested
practitioners.
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Abstract

Finally we examine a scenario in which data is not composed of observations of
individuals, but rather observations of animal vestiges (i.e., traces that an animal
leaves behind as it moves through the environment). Here we present a novel
modelling framework, the triple Poisson model, that allows for the estimation of
animal abundance using vestige data, even when only very scarce data is available.
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CHAPTER 1
Introduction

In this chapter, we discuss the motivations behind the work presented in this thesis and
provide an overview of the material contained within the following chapters.

1.1 Motivation
Monitoring animal populations is of vital importance for multiple sectors, and
is necessary to carry out any plans that involve wildlife conservation, control of
wildlife population sizes, or the optimisation of yield for species of economic im-
portance. It has, as a result, been a primary focus for wildlife ecologists for over
20 years (Caughley, 1994).

Abundance in animal communities is of great interest in ecology, particularly in
the areas of conservation and wildlife management (Witmer, 2005; Nichols and
MacKenzie, 2004). The question of estimating abundance is an important one due
in part to the rapid decline in species abundance and diversity occurring globally
(Novacek and Cleland, 2001). The ability to estimate abundance facilitates the
establishment of large-scale animal monitoring programmes, which impacts not
only those working in statistics and ecology, but also conservationists, policy mak-
ers, and wider society, as the early warning provided by monitoring programmes
will allow for early intervention in species decline. The scenario where animal
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1.1. Motivation

populations experience unnoticed decline due to a lack of monitoring programmes
is one that would affect society and the environment on a global scale. In addi-
tion to conservation, the establishment of wildlife monitoring programmes is of
economic importance as these programmes allow for the optimisation of yield of
species that are deemed to possess economic value. These can include wild animal
populations that provide human populations with products such as meat, cloth-
ing, and medicines. Wildlife monitoring programmes are also important due to
the ability they provide us with to determine when population sizes of pest species
are rapidly increasing, with implications for resulting economic and environmental
damage (Witmer, 2007). The ability to estimate animal abundance is central to
the development of these long-term wildlife monitoring programmes.

Throughout the remainder of this thesis we make a distinction between direct and
indirect data. Direct data refers to data which has been collected or obtained
through direct interactions with animal individuals, (e.g., data that is obtained
using methods that involve capturing an animal), and indirect data refers to data
which is obtained while avoiding direct interactions with an individual (i.e., counts
of observed individuals).

Wildlife abundance has typically been estimated using direct methods of observa-
tion, which involve close interactions between human and animal, and often involve
the capturing of the animal in order to tag or study it. The implementation of
these methods can prove to be expensive, time-consuming, and can pose risks of
distress or danger to both the animal and observer.

In this thesis we place an emphasis on the use of indirect data to estimate animal
abundance, due to certain advantages this type of data possesses over direct data.
Data collected indirectly is an attractive option for estimating abundance due
to the fact that it does not involve any direct interactions between human and
animal, which results in it being relatively affordable to collect when compared
with direct methods. There is also a reduced risk of harm to both animals and
humans inherent in the collection of these types of data (Verdade et al., 2013).
However, this type of data is often imperfect (i.e. the recorded information is
usually imperfect in the sense that it does not represent the total abundance). In

2



1.2. Thesis Outline

order to utilise these types of data to estimate animal population sizes, we must
use modelling frameworks that take into account the characteristics of this data.
Due to these characteristics, traditional modelling techniques, such as generalised
linear models (McCullagh and Nelder, 1989), cannot be applied directly to the
data, as they do not allow for the estimation of detection probabilities and so do
not accommodate aspects such as imperfect detection.

This thesis presents modelling frameworks that can be used to estimate animal
population sizes using different forms of indirect data, namely data composed of
counts of animal sightings, and data composed of counts of animal vestiges (e.g.
scats, footprints, fur, feathers, among others). In each case this data is collected
by carrying out surveys along transect lengths, during which surveyors record
every individual animal or vestige observed. Vestige data in particular is currently
under-utilised in estimating abundance due to a lack of research into statistical
methodologies with the ability to utilise it.

The objective of the research presented in this thesis is twofold. The first objective
is the development of novel modelling frameworks that are fit for use by those work-
ing in the wildlife monitoring space, including statisticians, population–ecologists
and conservation–ecologists. The second objective is to introduce ecologists – and
entomologists in particular in Chapter 4 – who may be unfamiliar with statistics,
to these types of modelling methodologies. We aim to provide practitioners with
the information needed to carry out their own data analysis. We do this by imple-
menting these models in a Bayesian framework, offering comparisons of different
methodologies and demonstrating their use using real–world data. It is the overar-
ching aim of this thesis that through the completion of these objectives we might
contribute to facilitating the establishment of more large-scale animal monitoring
programmes.

1.2 Thesis Outline
The remainder of this thesis is organised as follows. In Chapter 2 we provide an
introduction to the case studies examined as part of this thesis. We discuss the
characteristics of these datasets, as well as any limitations or difficulties encoun-

3



1.2. Thesis Outline

tered when working with them. We also discuss the source of each dataset, and
provide details for interested practitioners who may wish to fully reproduce the
analysis in this thesis using these datasets.

The subsequent chapters are presented in the format of journal articles and were
modified where possible to avoid repetition while retaining the consistency and
clarity of the thesis.

In Chapter 3 we propose a modelling framework constructed as an extension to
the N-mixture model by Royle (2004) that allows the user to estimate abundances
for multiple species simultaneously though the inclusion of a species-level random
effect. The use of this random effect further provides us with the ability to estimate
inter-species correlations, which may allow us to begin to make inferences as to
the relationships that these species have with one another. We then propose a
further extension to this model that allow us to examine zero-inflated data through
the use of a hurdle-Poisson distribution on the abundance. Using an extensive
simulation study, we show that this modelling framework provides consistently
accurate estimates of abundance in a range of scenarios. We also explore the
performance of this modelling framework using a real-world dataset collected as
part of the North American Breeding Bird Survey, examining all of the models
described above and choosing the model that provides the best fit using BIC
values.

In Chapter 4 we provide information on the development of the original N-mixture
model for closed populations by Royle (2004). We examine the assumptions made
for this framework, along with some limitations associated with it, and issues that
can arise when using the N-mixture model, such as those described by Dennis et al.
(2015). In Section 4.3, we provide an overview of many important extensions that
have been made for this model since its development in 2004. This includes N-
mixture models that have been extended to allow for the examination of multiple
species simultaneously, models that do not require the population to be closed, and
can thus support the occurrence of births, deaths and migration in a population,
and models that contain a number of zero counts greater than that expected by
the Poisson distributed abundance, which is a common occurrence when working

4
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with count data composed of animal sightings. We assess the advantages and lim-
itations associated with each of these model extensions. In Section 4.4 we provide
an implementation of the original N-mixture model by Royle (2004) and the mul-
tispecies N-mixture model developed in Chapter 3 to estimate the abundance of
foraging bee populations.

In Chapter 5 we propose a novel modelling framework which we refer to as a triple
Poisson model. The aim of this model is to allow the use of vestige data to estimate
abundance. This is achieved by assuming that the number of vestiges observed,
the number of groups of animals in the area and the species abundance may each
be estimated using a Poisson distribution. We use simulation studies to show that
the predictive performance of the proposed model can rival that of the distance
sampling model (Thomas et al., 2006), particularly in scenarios when data is very
scarce. We analyse several case studies described in Chapter 2 including data
collected on collared peccary which consists of only two counts, data collected on
red foxes by Cavallini (1994) and data collected on sika deer by Marques et al.
(2001).

All proposed methods in this thesis were implemented using the R (R Core Team,
2022) software and are accessible on the author’s Github 1 via three public repos-
itories. The repositories MNM, insect_populations_ch11, and triple_poisson
are related to Chapters 3, 4, and 5, respectively. Within these repositories we have
made available R scripts required to produce all analyses and plots presented in
this thesis. Additionally, all datasets are publicly available, and their source is
provided in Chapter 2.

Finally, in Chapter 6, we present conclusions and final remarks, while indicating
topics for future research.

1https://github.com/niamhmimnagh
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CHAPTER 2
Case Studies

In this chapter, we discuss the various case studies utilised as part of this thesis, provide
details as to their notable features, and detail where these datasets may be located, for
practitioners interested in reproducing the work detailed within this thesis.

In this thesis we examine data that can be used to estimate animal abundance.
The data we examine is collected from several species in diverse locations and
under various circumstances. In this Chapter we will present the case studies to
be examined in subsequent chapters, examine some of their characteristics and
present any obstacles or difficulties that we encountered while using them.

2.1 North American Breeding Bird Survey
In Chapter 3 we consider data collected as part of the North American Breeding
Bird Survey (Pardieck et al., 2020). This data is available at a public repository2.
The North American Breeding Bird Survey is a large scale monitoring programme
focused on collecting data on breeding birds in the United States and Canada.
It has been conducted annually since 1966, and now provides data on more than
400 bird species at approximately 3, 700 routes (Figure 2.1). Each of these routes

2https://www.sciencebase.gov/catalog/item/625f151ed34e85fa62b7f926
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2.1. North American Breeding Bird Survey

is approximately 24.5 miles long and is composed of 50 stops, approximately 0.5
miles apart. At each stop, every bird seen or heard within a 0.25-mile radius is
recorded.

160°W 140°W 120°W 100°W  80°W  60°W
Longitude

La
tit

ud
e

Figure 2.1: The location within the United States and Canada of all North Amer-
ican Breeding Bird Survey sites, with the 94 sites in Alaska that were selected for
analysis highlighted in red.

Due to the size of this dataset, we needed to select only certain data for use with
our modelling framework. We decided to examine data collected in Alaska in the
10–year period 2010–2019. The result was a dataset that contained 94 routes, each
with 50 sampling locations, for a total of 4, 700 observations per bird species. From
here the next step was to select bird species to examine. The bald eagle (Haliaeetus
leucocephalus) was chosen for examination due to the large bald eagle populations
present in Alaska (between 8, 000 and 30, 000 birds which accounts for roughly
half of the global bald eagle population (Hodges, 2011; Hansen, 1987; King et al.,
1972)). Several other species were then selected for examination; these species
included waterbirds such as geese, swans and snipes which were chosen for their

7



2.1. North American Breeding Bird Survey

relationships with bald eagles, as bald eagles are known to prey on waterbirds such
as ducks, geese and grebes when fish are in short supply (Dunstan and Harper,
1975; Todd et al., 1982; McEwan and Hirth, 1980). Additionally, a selection of
species with inland habitats, such as thrushes and swallows, were examined. In
total, 10 species were selected for analysis, of the 233 total species present in Alaska
within the 10-year period. The resulting dataset contained observations collected
at 94 sites where each site divided into 50 sections, for 10 species over 10 years.
This gave us a total of 470, 000 observations.
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Figure 2.2: The frequency at which counts of observed birds occur at the 94 selected
sites between 2010 and 2019 in the North American Breeding Bird Survey.
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Initial examination of this dataset revealed that 93.2% of the observations exam-
ined for Alaska (438, 040 of a total of 470, 000 observations, Figure 2.2) consisted of
zero counts. These counts are decomposed into species-level counts in Figure 2.3.
This figure reveals that while zeros dominate the counts for each species examined,
no species experienced only zero counts (i.e., no species examined was extinct, or
so seldom observed that it did not appear in the dataset at all).
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Figure 2.3: The frequency at which counts individual species of observed birds oc-
cur at the 94 selected sites between 2010 and 2019 in the North American Breeding
Bird Survey.

Zero counts were then temporarily removed to examine frequencies of larger counts
(Figure 2.4). This revealed that the majority of bird sightings contained less than
four birds, with counts of greater than seven individuals occurring only 170 times,
and accounting for only 0.036% of observations.
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Figure 2.4: The frequency at which counts of observed birds occur at the 94 selected
sites between 2010 and 2019 in the North American Breeding Bird Survey, after
zero counts have been removed.

This large number of zero-counts would suggest that a Poisson distribution as-
sumption for the abundance would provide a poor fit, and that an alternative
model that accounts for large proportions of zeros should be considered. Further-
more, this data was collected over a decade, which suggests that a model that
assumes populations are open would provide a better fit than a model that as-
sumes closed populations. A sample of the North American Breeding Bird survey
dataset is provided in Table 2.1.
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2.2. BeeWalk Survey

Country State Route Year Species Stop 1 Stop 2 ... Stop 50
USA Alaska 23 2003 Bald Eagle 37 1 ... 0
USA Alaska 24 2005 Bald Eagle 23 3 ... 0
USA Alaska 125 2017 Bald Eagle 3 0 ... 2

Table 2.1: A sample of the North American Breeding Bird survey dataset, with
the country, state, route, year and species observed at each stop (stops labelled
1–50).

2.2 BeeWalk Survey
In Chapter 4 we examine the N-mixture model proposed by Royle (2004) and
revisit the model that we present in Chapter 3, and demonstrate their implemen-
tation on a dataset collected as part of the BeeWalk Survey Scheme (Comont et al.,
2021).

The BeeWalk Survey Scheme is a survey established in the UK in 2008 by the
Bumblebee Conservation Trust, which involves transects being surveyed by volun-
teers across the UK on a monthly basis. Data up until the end of 2019 is available
at a public repository3. By the end of the 2019 data-collection period, observations
of approximately 70 bee species had been recorded as part of this survey scheme
at over 1300 sites in the UK. In Chapter 4 we examine counts of observations
for several species of bees collected at 60 sites in 2016 and 2019. To ensure that
we are comparing data collected from the same seasonal cycles, we examine data
collected in June of both years. The 60 sites examined in Chapter 4 are presented
in Figure 2.5.

3https://figshare.com/authors/Richard_Comont/97396
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Figure 2.5: A selection of sites in the UK at which bee observations were recorded.

Prior to estimating abundance using an N-mixture model, we confirm that we do
not expect to encounter identifiability issues that might lead to infinite estimates
of abundance. We do this using the covariance diagnostic proposed by Dennis
et al. (2015)(detailed in Chapter 4) . Beewalk survey data is also available for the
years 2017 and 2018, but a negative value for the covariance diagnostic revealed
that we might expect issues with parameter estimates using the data collected for
these two years. For this reason, we decided to examine only data collected in
2016 and 2019.

Figure 2.6 displays the total frequency of counts for observed bees across the 60
selected sites in the BeeWalk survey in 2016 and 2019. From this bar plot it
is obvious that zero counts (survey responses which record that no individuals
of a particular bee species were observed) compose a large portion of this data.
Further examination reveals that 54.6% of the entire dataset is composed of these
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zero values, with the majority of the dataset (96.25%) composed of counts of less
than 20 bee individuals.
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Figure 2.6: The frequency at which counts of observed bees occur at the 60 selected
sites in 2016 and 2019 in the BeeWalk survey data.

In Figure 2.7 we decompose the BeeWalk Survey counts into species-level counts.
This reveals that while zero counts occur very frequently for all species, no species
is composed entirely of zero counts.
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Figure 2.7: The frequency at which counts of individual species of observed bees
occur at the 60 selected sites in 2016 and 2019 in the BeeWalk survey data.

An issue that we must take into consideration when using data composed of bee
sightings is that at any one time, only a small portion (approximately 30%) of the
bee colony’s population is currently out foraging. For this reason, any estimate for
“abundance” obtained using counts of bees observed is not representative of the
entire population. We instead consider these estimates as estimates of the size of
the population who are currently out foraging, knowing that there are many more
bees in the area than these estimates would suggest. A sample of the BeeWalk
survey data is provided in Table 2.2.
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Site Grid
Reference

Length
(m)

Weather Wind
Speed

Temperature
(◦C)

Species

Holyrood
park:

Hunter’s
Bog S2

NT273733 558 Sunny Slight
smoke
drift

14 Common
Carder

Bumblebee

Holyrood
park:

Hunter’s
Bog S1

NT273733 232 Sunny Slight
smoke
drift

14 Common
Carder

Bumblebee

Holyrood
park:

Hunter’s
Bog S3

NT273733 383 Sunny/
Cloudy

Wind felt
on face,
leaves
rustle

12 Common
Carder

Bumblebee

Holyrood
park:

Hunter’s
Bog S4

NT273733 283 Sunny/
Cloudy

Smoke
rises

vertically

17 White-
tailed

Bumblebee

Table 2.2: A sample of the BeeWalk survey dataset with the site, the site grid
reference, the length of the transect in metres, the weather, the wind speed, the
temperature in degrees Celsius, and the species observed.

2.3 Collared Peccary Survey
In Chapter 5, several case studies are examined, and are used to demonstrate
various aspects of our proposed modelling framework. This modelling framework
utilises data composed of counts of animal vestiges, where a vestige may be any
trace of an animal in the environment such as fur or tracks. However, for our
purposes, all datasets examined here contain counts of observed animal scats.
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2.3. Collared Peccary Survey

Figure 2.8: Photos of (a) a group of collared peccaries foraging during the day
and (b) an individual collared peccary at night, captured at camera traps as part
of the collard peccary survey. Reproduced with permission from Prof. Luciano
Martins Verdade, Principal Investigator of the BIOTA programme, funded by the
Brazilian government.

The first dataset examined is composed of vestige counts collected for collared
peccary (Dicotyles tajacu) in the state of São Paulo in southeast Brazil (Assis,
2012) between July 2012 and October 2012. A camera trap survey was also carried
out at the same sites during this time. While the collared peccary observations
collected from camera traps do not form part of the analysis presented in Chapter
5, the data from camera traps was used to inform prior distributions assigned to
estimate animal group sizes, and so Figure 2.8 contains photos of collared peccaries
captured in August 2012 from some of these camera traps.

Figure 2.9 presents the location at which this survey was carried out, in the mu-
nicipality of Angatuba in the southeast of São Paulo.
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Figure 2.9: The location of the collared peccary survey marked in red in the
geographic region of Sorocaba (geographic regions outlined in black) in the state
of São Paulo, outlined in dark blue.

This dataset is composed of data collected on a single occasion at only two loca-
tions, and so contains only two counts. The first transect (23◦20’0”- 23◦18’51”S/
48◦27’30”- 48◦28’20”W) was 8km in length and seven vestiges were observed along
its length, and the second transect (23◦22’0”- 23◦20’41”S/ 48◦28’00”- 48◦27’57”W)
was 12km long, and only a single vestige was observed along its length. Researchers
walked along each transect, with stops approximately every 50m for improved ob-
servations. This was the dataset that motivated our interest in determining how
the triple Poisson model proposed in Chapter 5 might cope when presented with
very scarce datasets. This became one of the central research questions we wished
to answer when performing the simulation studies described in Chapter 5.
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2.4 Sika Deer Survey
The second dataset examined in Chapter 5 contains vestige counts collected for sika
deer (Cervus nippon) from eight regions in Scotland from March 1997 to May 1997
(Marques et al., 2001). This data is available as part of the Distance R package
(Miller et al., 2019), and provides us with the distance between every vestige and
the transect, which allows us to compare the predictive performance of the triple
Poisson model introduced in Chapter 5 to the distance sampling model (Thomas
et al., 2006). This data motivated a simulation study which would compare the
performance of the triple Poisson model with a distance sampling model under a
range of scenarios. A sample of the dataset is provided in Table 2.3.

Region Section Area (km2) Length (km) Distance (cm)
A A-15 13.9 0.15 73
B B-9 10.3 0.20 154
B B-14 10.3 0.05 108
C C-1 8.6 0.10 113
J J-3 9.6 0.10 18

Table 2.3: A sample of the sika deer dataset, with the region label (labelled A–J)
for each vestige, the area of the region in square kilometres, the transect section,
the length of the transect in kilometres, and the distance in centimetres of the
vestige from the transect.

Figure 2.10 displays the location of the study area (2.10a) in the Tweedsmuir
region of Scotland, and the number of vestiges observed at each of the eight regions
(2.10b). From initial examination, it is apparent that the majority of the vestiges
were observed at two sites, with 1366 and 426 vestiges observed at sites 1 and
2 respectively, while the remainder of the sites saw a maximum of 36 vestiges
observed. This is due to “greater survey effort being allocated to blocks thought
to contain higher deer densities” (Marques et al., 2001). This greater survey effort
manifests as greater transect lengths. We anticipate that this will pose no issues
for the modelling framework that we will introduce in Chapter 5, as transect length
will be incorporated into our abundance estimates.

An issue encountered on initial examination of this data, and one which inter-
ested practitioners may keep in mind, is that the sika deer dataset is described
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in the Distance R package as relating to the Peebleshire portion rather than the
Tweedsmuir portion of the study by Marques et al. (2001). This caused some con-
fusion initially, as the survey design and data analysis for the Peebleshire portion
of the sika deer survey differs from that of the Tweedsmuir region, and did not
align with the data presented in the R package.
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Figure 2.10: (a) The approximate location of the sika deer study in the Tweedsmuir
region of Scotland (b) The number of vestiges observed at each of the eight tran-
sects monitored during the study.

2.5 Red Fox Survey
The third and final dataset examined in Chapter 5 is composed of vestige counts
collected for red foxes (Vulpes vulpes).This data was collected along transects in
nine regions in the province of Pisa in central Italy (Cavallini, 1994) between
April 1992 and March 1993. The approximate location of each of the nine sites
is presented in Figure 2.11, along with the length of each transect in kilometres
(Figure 2.11a) and the number of vestiges observed at each site over the course of
the 12–month survey (Figure 2.11b).
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Figure 2.11: (a) The number of vestiges observed at transects and (b) a scatter
plot of transect length vs. vestige count at transects, at each of nine regions in
Pisa, central Italy

In the original paper by Cavallini (1994), the author produced an index of fox
abundance, estimated as the number of vestiges observed per kilometre of transect
length. This allowed the original paper to estimate this abundance index separately
for each of the nine regions examined. Ideally, we would also produce an estimate
of red fox abundance per region, for comparison with the original model. However,
this is not possible in our case because, as we describe in Chapter 5, the modelling
framework that we have developed requires knowledge of the size of each study
area. Cavallini (1994) provide the size of the study area as 2448km2. This is
however, the area of the province of Pisa, and so we do not have information as
to the area of each region examined within Pisa. For this reason, we are able
to obtain only a single value, which is the estimate for red fox abundance in the
province of Pisa.

For interested practitioners, this dataset is available in its entirety as a part of the
paper by Cavallini (1994). Observations were taken at these transects once each
month for a year. This dataset motivated our interest in a modelling framework
that can accommodate temporal replicates, and this subsequently formed a large
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Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar
Berignone 37 22 10 11 25 71 12 23 17 42 22 66
Lucagnano 6 14 6 6 9 8 0 2 4 3 3 2

Coltano 10 11 3 3 4 16 0 3 3 7 6 8

Table 2.4: A sample of the red fox dataset, with the number of vestiges observed
each month from April 1992 to March 1993 in three locations of Pisa.

part of the simulation studies described in Chapter 5. A sample of the dataset is
provided in Table 2.4.
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CHAPTER 3
The Bayesian Multi-Species

N-Mixture Model for Unmarked
Animal Communities

The N-mixture model proposed by Royle (2004) provides an attractive option for esti-
mating animal abundance using animal count data, as it takes into account the imperfect
detection inherent in this form of data. In this chapter, we introduce a multi-species
N-mixture (MNM) extension to the original model, which allows us to estimate abun-
dances for multiple species, while simultaneously estimating the correlation between
abundances of different species. We also provide further extensions that allow for the
use of data that contains a large number of zero-counts and data collected over long time
periods. Via simulation studies and real data applications, we demonstrate the utility
of the MNM family of models under a range of conditions. R code for the MNM model
implementation is available at https://github.com/niamhmimnagh/mnm .

3.1 Introduction
Abundance in animal communities is of great interest in ecology, particularly in
the areas of conservation and wildlife management (Witmer, 2005; Nichols and

22

https://github.com/niamhmimnagh/mnm


3.1. Introduction

MacKenzie, 2004). Count data is an attractive option for estimating abundance
due to the relative affordability with which it may be collected when compared
to methodologies that require the use of technologies such as camera traps and
thermal imagery, and the reduced risk of harm to both animals and humans when
compared to more direct data collection methods (Verdade et al., 2013), such
as a mark-recapture data collection technique. However, count data for animal
abundance has a tendency to suffer from imperfect detection (i.e., the recorded
information is usually imperfect in the sense that it does not represent the to-
tal abundance). Furthermore, when the detection probability is small, there is a
tendency towards the underestimation of abundance. Due to the characteristics
of these data, traditional modelling techniques, such as generalised linear models
(McCullagh and Nelder, 1989), cannot be applied directly to the data, as they do
not accommodate imperfect detection through the estimation of detection proba-
bilities. If the detection probability was a known value, it could be incorporated
as an offset in a generalised linear model. However, as we do not know the true
values for detection probability and wish to estimate it, a generalised linear model
was not chosen for this analysis.

N-mixture models (Royle, 2004) constitute a class of models which may be used to
estimate abundance from count data. These models assume that the population
under analysis is closed, (i.e., it is constant in terms of births, deaths, and migra-
tion). The counts at each site and sampling occasion are considered independent
and identically distributed (i.i.d) random variables that follow a binomial distri-
bution. The population size at each site is treated as a random effect, with an
assumed probability distribution. The distributions that are typically considered
for the population size at each site are the Poisson and negative binomial, although
any other non-negative discrete distribution could also be considered.

The ability to estimate correlations between species abundances allows us to relax
any assumption of independent species abundances. This is the aim of the multi-
species N-mixture (MNM) models presented in this chapter – a class of models
that estimate abundance for multiple species simultaneously while accounting for
imperfect detection, and estimate inter-species correlations, which are intended to
allow for inferences about the relationships between different species.
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The remainder of this chapter is organised as follows. In Section 3.3, we in-
troduce our novel modelling framework to estimate abundance and inter-species
correlations in animal communities based on spatio-temporal count data. We also
describe the model formulation, estimation procedure, and the computation of the
inter-species correlations. In Section 3.4, we present the data obtained from the
North American Breeding Bird Survey (Pardieck et al., 2020), which will be used
to illustrate our modelling approach. Later, in Section 3.5, we compare results of
model fit on the North American Breeding Bird Survey data to obtain the best
fit. Finally, in Section 3.6, we present a general discussion.

3.2 Related Works
Previous examinations of detection probability include those by Fisher (1934),
Fisher et al. (1943), and Rao (1965). Fisher (1934) explored the effect of various
data collection techniques and ascertainment (the process of choosing individuals
for analysis) on the estimation of frequencies. He explored the "detection prob-
ability" of albinism occurring in children, the potential for bias in ascertainment
and the implication of this bias on resulting population inferences. Rao (1965)
also addressed the problem of ascertainment bias, and explored how different as-
certainment methods can lead to specific discrete probability distributions. Fisher
et al. (1943) explored how different statistical models, including the log-series dis-
tribution and the negative binomial distribution, can be used to predict the total
number of species in a population based on a population sample.

Several multi-species modelling frameworks have been developed previously which
allow for the analysis of occurrence-data (binary data, in which a one represents an
occupied site, and a zero represents an unoccupied site) (Dorazio and Royle, 2005;
Yamaura et al., 2011) or count-data, which represents the number of individuals of
a species of interest that are observed(Yamaura et al., 2012; Golding et al., 2017;
Gomez et al., 2018).

Dorazio and Royle (2005) developed a model for estimating the size of a biological
community by modelling the probability of detection as a binomial random vari-
able, and the probability of occurrence as a Bernoulli random variable. They allow
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rates of detection and occurrence to vary among species, and not every species is
assumed to be present at every location. However, the aim of their model is to
determine the number of species present, not the number of individuals of each
species present, as is the aim of N-mixture models.

Yamaura et al. (2011) developed a multi-species model that estimates animal abun-
dance from occurrence-data. This is an extension of the single-species model devel-
oped by Royle and Nichols (2003), in which binary detection/non-detection data
is linked to abundance. Yamaura et al. (2012) extended this model to count data.
The assumption behind these models is that the abundances or detection proba-
bilities of species in the community might be linked by species-level or functional
group-level characteristics. However, inter-species abundance correlations are not
explored within these models.

Gomez et al. (2018) developed a multi-species N-mixture model whose aim was to
allow for the estimation of abundance of rare species by borrowing strength from
other species in the community. This was done by assuming detection probabilities
are drawn at random from a Beta distribution. Another multi-species N-mixture
model was developed by Golding et al. (2017), which used the dependent double-
observer method to create a multi-species dependent double-observer abundance
model. This allowed them to address an issue of false-positive errors in detection.
The focus of both Gomez et al. (2018) and Golding et al. (2017) was an improve-
ment in detection probability. None of the preceding multi-species models allow
us to make inferences as to the relationships within an ecological community, as
we propose to do with our multi-species N-mixture model.

Moral et al. (2018) developed an extension to the single-species N-mixture model
which allowed for the estimation of abundances of two species, and the correlations
between these abundances. However, this model only examines two species, and
is therefore not as complete as the model we propose here, which allows us to
examine whole communities.

Dorazio and Connor (2014) developed a multi-species N-mixture model which al-
lowed for abundances of species with similar traits to be correlated. However, to
guarantee positive definite correlations, they only allow for positive correlations
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through the use of a distance metric d coupled with a spatial autocorrelation struc-
ture of the type e− d

ϕ . The framework we present here is more complete in that
we guarantee positive definiteness of the correlation matrix via an elegant prior
setup. We also explore ways of incorporating zero-inflation and open population
dynamics, which is not something attempted by Dorazio and Connor (2014).

Finally, Niku et al. (2019) describe generalised linear latent variable models - a
modelling technique which allows for obtaining correlation matrices in an elegant
manner. However, these models do not allow for the incorporation of imperfect
detection.

Some of the above described modelling frameworks, along with the original N-
mixture model by Royle (2004) are detailed in Chapter 4.

3.3 Methods
The models developed in the following Section are a multi-species extension to the
original N-mixture model of Royle (2004), which allows for accurate estimation
of both the latent abundances and inter-species correlations, while accounting for
imperfect detection and relaxing the closure assumption.

3.3.1 Multi-Species N-Mixture Model (MNM Model)
Consider a study which involves the collection of count data Yits, where Yits is
the number of individuals observed for S different species (s = 1, . . . , S) from R

sites (i = 1, . . . , R). Consider also that these samples are taken from each site
on T sampling occasions (t = 1, . . . , T ). The parameter of interest is the true
abundance, and at site i for species s is, this given by Nis. We observe a fraction
of Nis, with detection probability pits, and it is assumed that species populations
are closed with respect to births, deaths and migration (i.e., that the population
sizes do not change due to any of these factors, akin to the N-mixture model
proposed by Royle (2004)). Our model assumes that Nis may be described by a
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Poisson distribution, and the model may be written as:

Yits | Nis, pits ∼ Binomial(Nis, pits),

Nis | λis ∼ Poisson(λis),

logit(pits) = z⊤
itbs,

log(λis) = ais + x⊤
i βs,

ai | µa,Σa ∼ MVN(µa,Σa),

where ai = (ai1, . . . , aiS)⊤. The Poisson rate parameter λis represents the mean
abundance at site i, and ai is an S-dimensional vector that contains the random
effects ais that allow us to estimate an instantaneous inter-species correlation. In
the above model, covariates may be incorporated in the detection probability and
the abundance, with z⊤

it the it-th row of the design matrix Z of dimension RT ×qp,
bs the qp × 1 parameter vector for the probability of detection, x⊤

i the i-th row of
the design matrix X of dimension R×qλ, and β the qλ ×1 parameter vector for the
abundance. Here, qp and qλ represent the number of covariates associated with
the detection probability and the abundance, respectively. Note that different
covariate effects may be estimated per species, and other species-level random
effects may also be included.

3.3.2 Hurdle-Poisson Model (MNM-Hurdle Model)
In this Section, we develop a further extension of the multi-species N-mixture
model, appropriate for scenarios in which the number of zero-counts exceed those
expected under a Poisson distribution. We now allow the counts to follow a Hurdle-
Poisson distribution, with λis defined as in the MNM Model, and θ the probability
of obtaining a zero-count.

The Hurdle-Poisson distribution consists of two separate processes. The first is a
Bernoulli process, which determines whether a site is occupied (count is non-zero)
or unoccupied (count is zero). If the count is non-zero, a second random variable
with a zero-truncated Poisson distribution determines the value of the count, i.e.,

Occupancyis ∼ Bernoulli(1 − θ),

Countis ∼ Zero Truncated Poisson(λis).
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We then define the latent abundances Nis as

Nis =

0 if Occupancyis = 0

Countis if Occupancyis = 1
,

which yields
Nis ∼ Hurdle-Poisson(λis, θ).

If the Bernoulli process is equal to 0, then the site is unoccupied and Nis is equal
to 0. However, if the Bernoulli process is equal to 1, then the hurdle is crossed,
and the value of Nis is determined by the zero-truncated Poisson process. Similar
to the MNM model, populations are assumed to be closed.

An alternative to the Hurdle Poisson model would be a zero-inflated Poisson (ZIP)
model. This model functions in a way similar to the Hurdle Poisson model de-
scribed above, with the substitution of a Poisson distribution for the count process,
rather than a zero-truncated Poisson distribution as is described above. The re-
sult being that in a ZIP model, the count process is also capable of producing
zero counts, and so the zero values can be decomposed into "true" zeros (produced
because the site is unoccupied) and "false" zeros (produced because, though the
site is occupied, the animal is not observed). This categorisation of zero counts
was not of interest to us in this case, and so we choose to implement the Hurdle
Poisson model instead.

We assume a single probability of obtaining a zero count θ. However, θ may also
be allowed to vary by site and/or species, and may depend on covariates through
a logit link. All other parameters are as described in the MNM model in Section
3.3.1.

3.3.3 Autoregressive Model (MNM-AR Model)
In order to model populations over multiple years, a further extension to the multi-
species N-mixture model is proposed, which allows us to relax the assumption that
species populations are closed with respect to births, deaths and migration (i.e.,
that the latent abundance N does not change during the data-collection period
due to any of these factors). We do this through the inclusion of a first-order
autoregressive term in the abundance parameter.
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The study design now consists of data collected over K years (k = 1, . . . , K) for S
species at R locations, each site sampled on T occasions. The observed abundance
(Y ) and actual abundance (N) are now allowed to vary by year:

Yitks ∼ Binomial(Niks, ps),

Niks ∼ Poisson(λiks).

If k = 1, then λi1s is defined as before:

log(λi1s) = ais + x⊤
i βs.

However, for k > 1, we allow λiks to depend on the latent abundance at year k−1:

log(λiks) = ais + x⊤
i βs + ϕslog(Ni(k−1)s + 1).

We regress the mean abundance at time k, λiks, on the actual abundance at time
k − 1, Ni(k−1)s, which is, in essence, a Poisson ARCH (autoregressive conditional
heteroscedasticity) model, as examined by Zeger and Qaqish (1988) and Fahrmeir
et al. (1994). An alternative, proposed by Fokianos and Tjøstheim (2011) and
Ferland et al. (2006) would be the Poisson INGARCH (integer-valued generalised
autoregressive conditional heteroscedasticity) process, which regresses λ on both
past values ofN and λ. By regressing λ on past values ofN , we capture the effect of
short-term dependence on the previous time-point, while regressing on past values
of λ might allow us to capture long-term patterns in the average count rate, and
may be useful for count data with varying trends or seasonality. For parsimony
in model design, ease of interpretation and lower computational complexity, we
choose to examine the framework that regresses on only past values of N in this
chapter.

The term ϕslog(Ni(k−1)s + 1) is used rather than the simpler ϕsNi(k−1)s to avoid
a known issue with this type of modelling framework, (Fokianos and Tjøstheim,
2011), that is, the tendency for sampled λ values to increase rapidly when λiks is
regressed on Ni(k−1)s.
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3.3.4 Hurdle-Autoregressive Model (MNM-Hurdle-AR
Model)

A straightforward combination of the MNM-Hurdle model and the MNM-AR
model produces the MNM-Hurdle-AR model. This model accommodates excess
zeros while also accounting for an autoregressive structure in the data. The zero-
inflation is introduced as in Section 3.3.2, i.e.,

Yitks ∼ Binomial(Niks, ps),

Niks ∼ Hurdle-Poisson(λiks, θ),

and the autoregressive structure is incorporated as in Section 3.3.3,

log(λiks) =

ais + x⊤
i βs, for k = 1

ais + x⊤
i βs + ϕslog(Ni(k−1)s + 1), for k > 1

.

3.3.5 Model Estimation
The models described in this chapter are implemented using a Bayesian framework.
Each of the above models were implemented in R (R Core Team, 2022) through
the probabilistic programming software JAGS (Plummer, 2003, 2017) using four
chains with 50,000 iterations each, of which the first 10,000 were discarded as
burn-in, with a thinning of five to reduce autocorrelation in the MCMC samples.
Parameter convergence was determined using the potential scale reduction factor
(R̂), a diagnostic criteria proposed by Gelman and Rubin (1992). An R̂ value that
is very close to one is an indication that the four chains have mixed well. If R̂
value was less than 1.05, the chains were considered to have mixed properly, and
the posterior estimates of the parameters were considered reliable.

Prior distributions were assigned as follows: µa, the vector of means of the ran-
dom effect a, was assigned a multivariate Normal prior with a diagonal variance-
covariance matrix Σ0 and mean vector µ0. Σa, the variance-covariance matrix of
a was assigned an inverse-Wishart prior with a diagonal scale matrix Ω, and S+1
degrees of freedom v which results in a Uniform(−1, 1) prior on the correlations
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(Plummer, 2017):

µa ∼ MVN(µ0,Σ0),

Σa ∼ Inverse-Wishart(Ω, v).

An inverse-Wishart distribution is specified as the prior distribution for the co-
variance matrix of the random effect a. Criticisms of the inverse-Wishart prior
include the dependency imposed between correlations and variances, and the fact
that there is a single degree of freedom parameter which determines the uncer-
tainty for all variance parameters. It is demonstrated by Alvarez et al. (2014)
that when the variance is small relative to the mean, the correlation is biased
towards zero, and the variance is biased towards larger values. However, it is
not anticipated that this issue will arise with count data, as when working with
count data, typically variances are large relative to the mean. Despite these is-
sues, the inverse-Wishart distribution is a prior distribution commonly assigned
to a covariance matrix in Bayesian analysis due to its conjugacy with the Normal
distribution, and for these models the inverse-Wishart distribution provides a good
solution due to its guarantee of providing a positive definite covariance matrix.

In the Hurdle and Hurdle-AR models, θ is the non-negative probability of obtain-
ing a zero count, and so is assigned a beta prior with the value of both shape
parameters equal to one, which is equivalent to a non-informative uniform prior
distribution:

θ ∼ Beta(1, 1).

In the AR and Hurdle-AR models, ϕ is assigned a multivariate normal prior dis-
tribution, with hyperpriors µϕ and diagonal matrix Σϕ:

ϕs ∼ MVN(µϕ,Σϕ),

Extensive simulation studies were carried out to examine the accuracy of parameter
estimates; see Appendix 3.A for more details.
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3.3.6 Inter-Species Correlations
The presence of the multivariate normal random effect a in the abundance provides
a link between species’ abundances. The correlation matrix for the random effect,
Σa, may be estimated directly from the Bayesian model. Using these estimated
values, the inter-species correlations for the latent abundances Ns and Ns′ , for all
s ̸= s′, are calculated for each model as:

ρ(Ns, Ns′) = Cov(Ns, Ns′)√
(Var(Ns))(Var(Ns′))

.

The derivation of ρ(Ns, Ns′) for each of the models described in this Section can
be found in Appendix 3.B.

The inter-species correlations for the MNM model and Hurdle model are assumed
not to vary by year, so these models have a single analytic correlation matrix ρ.
However, in the AR and Hurdle-AR model, we assume latent abundances change
by year, which requires the computation of K analytic correlation matrices. Note
that the MNM and AR models required the use of properties of conditional variance
and covariance to determine analytic correlations. In the Hurdle and Hurdle-AR
models, the properties of conditional variance and covariance were merged with
second-order Taylor approximations to make their computation feasible.

3.4 Case Study: North American Breeding
Bird Survey

In this section, we briefly revisit the North American Breeding Bird Survey de-
scribed in Chapter 2, and describe the application of the multi-species N-mixture
models to this case study, to examine bird populations in Alaska, in the northwest
of the United States of America.

The North American Breeding Bird Survey (Pardieck et al., 2020) was first con-
ducted in 1966, and now provides data annually on more than 400 bird species
across 3700 routes in the United States and Canada. Each of these routes is ap-
proximately 24.5 miles long and is composed of 50 stops, approximately 0.5 miles
apart. At each stop, every bird seen or heard within a 0.25-mile radius is recorded.
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3.4. Case Study: North American Breeding Bird Survey

For the sake of our models, each of these routes is considered a site, and each of
the 50 stops along a route is a sampling occasion.

We examine data collected in Alaska in the 10-year period 2010-2019. There are 94
routes in Alaska (Fig. 3.1) at which data was collected during this time, and each
of these routes are composed of 50 sampling locations, totalling 4,700 observations
per bird species.
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Figure 3.1: Location of sites in Alaska marked in blue, with the Alexander
Archipelago - the location of the Alaskan Bald Eagle population - outlined in
black.

Bald eagle populations in Alaska are estimated at between 8,000 and 30,000 birds,
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2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Bald Eagle 21 20 25 20 22 19 23 30 30 23

Canada Goose 14 18 17 19 8 11 12 15 16 14
Hammond’s Flycatcher 16 16 15 12 12 11 12 15 17 14
Red-breasted Sapsucker 12 11 10 9 10 9 10 12 12 12

Steller’s Jay 16 16 14 11 12 13 12 14 15 13
Swainson’s Thrush 57 52 56 50 50 49 48 63 62 55

Tree Swallow 27 26 27 25 22 27 25 31 27 30
Trumpeter Swan 13 9 14 14 11 12 12 14 12 8
Varied Thrush 62 58 62 52 55 52 50 68 62 58
Wilson’s Snipe 52 47 51 47 44 48 42 53 50 47

Table 3.1: Number of routes each species appears at by year, out of a total 94
routes.

which accounts for roughly half of the global population (Hodges, 2011; Hansen,
1987; King et al., 1972). For this reason, bald eagles were chosen as a species
of interest for this analysis. Several other species were chosen; these included
waterbirds such as geese, swans and snipes which were chosen for their relationships
with bald eagles, as bald eagles are known to prey on waterbirds such as ducks,
geese and grebes when fish are in short supply (Dunstan and Harper, 1975; Todd
et al., 1982; McEwan and Hirth, 1980). Additionally, a selection of species with
inland habitats, such as thrushes and swallows, were examined. In total, 10 species
were selected for analysis, of the 233 total species present in Alaska within the 10-
year period. The full list of species selected and the frequency with which they
were observed is given in Table 3.1.

The models described in Section 3.3 were fitted to the North American Breeding
Bird Survey data. Each was fitted three times, varying the dimension of the de-
tection probability. Initially, the detection probability was allowed to vary by site,
species and year. Subsequently, models were fitted in which detection probability
varies only by site and species, and then by species alone.

Initially, the models were fitted without covariates, and results were compared us-
ing their Bayesian Information Criterion (BIC) (Delattre et al., 2014) and Deviance
Information Criterion (DIC) (Spiegelhalter et al., 2002) values. Subsequently, lat-
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itude, longitude and their interaction term latitude × longitude were included in
the linear predictors for the abundance parameters, and models were again com-
pared using BIC and DIC values. All covariates were scaled to have zero-mean
and unit variance.

Initial examination of this data revealed that 93.2% of observations (438, 040 of
a total of 470, 000 observations) consisted of zero counts. This suggested that a
model with a hurdle component might provide an appropriate framework for this
data. Furthermore, this data was collected over the course of a decade. It would
be unrealistic to expect that populations remain closed for this length of time.
For this reason, we might expect that an autoregressive term may be useful to
incorporate time dependence in abundance estimates.

Each model was fitted using four chains with 50,000 iterations each, of which the
first 10,000 were discarded as burn-in, using a thinning value of five. All prior
distributions were assigned as described in Section 3.3.5.

3.5 Results
Initially, the models were fitted without covariates and were compared using BIC
and DIC values. The result of this comparison was that BIC values suggested that
the Hurdle-AR model, in which detection probability varies by species (Hurdle-
AR(C) model in Table 3.2), provided the best fit for the North American Breeding
Bird Survey data. DIC values, on the other hand, chose the Hurdle model, in
which detection probability varies by site and species (Hurdle(B) model in Table
3.2) as the model of best fit. This is due to the difference in penalty terms used
in the calculation of BIC and DIC values. The BIC value penalises model com-
plexity more heavily than the DIC value, and as a result chooses a model with
far fewer parameters. The subsequent addition of a response surface for latitude
and longitude in the linear predictors for the abundance parameter results in the
Hurdle model in which detection probability varies by species (Hurdle(C) model
in Table 3.2) producing the lowest BIC value overall, and the DIC value choosing
the Hurdle-AR model in which detection probability varies by site and species
(Hurdle-AR(B) in Table 3.2). As a result, we could choose to examine either the
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Hurdle(C) model or the Hurdle-AR(B) model as the model of best fit. Priori-
tising parsimony in our model choice, we will examine the Hurdle(C) model for
the remainder of this analysis. The variance that was initially explained by the
addition of the autoregressive term (in model Hurdle-AR(C)) is now explained by
the latitude and longitude covariates, which render the autoregressive component
unnecessary. The full details of this model comparison are given in Table 3.2,
along with the number of parameters in each model. Because the models differ
in terms of dimension of detection probability p, models in which p varies by 94
sites, 10 species, and 10 years (models labelled (A))contain far more parameters
than models in which p varies only by site and species (models labelled (B)), or
by species alone (models labelled (C)).

No Covariates Covariates
Model P BIC EP DIC P BIC EP DIC

MNM(A) 9,465 291,860 3,968 191,563 9,471 291,899 3,974 191,558
MNM(B) 1,005 194,592 4,181 191,597 1,011 194,743 4,044 191,419
MNM(C) 75 183,587 5,555 193,989 81 183,940 5,260 193,696
AR(A) 9,467 291,648 4,204 191,803 9,473 291,808 4,096 191,692
AR(B) 1,007 194,767 4,029 191,450 1,013 194,805 4,040 191,455
AR(C) 77 183,922 5,236 193,668 83 183,580 5,674 194,108

Hurdle(A) 9,466 291,699 3,820 191,094 9,472 291,596 3,988 191,272
Hurdle(B) 1,006 194,964 3,092 189,779 1,012 194,915 3,203 189,897
Hurdle(C) 76 183,890 4,091 191,352 82 183,349 4,771 192,116

Hurdle-AR(A) 9,468 291,597 3,950 191,233 9,474 291,652 3,952 191,237
Hurdle-AR(B) 1,008 194,859 3,217 189,906 1,014 195,044 3,094 189,789
Hurdle-AR(C) 78 183,5724,515 191,810 84 183,644 4,493 191,837

Table 3.2: BIC values and associated number of parameters (P), DIC values and
associated effective number of parameters (EP), comparing model fits on North
American Breeding Bird Survey data. Models labelled (A) contain detection prob-
ability which varies by site, species and year, (B) contain detection probability
which varies by site and species, and (C) contain detection probability which varies
only by species. Smallest BIC and DIC values for each case are indicated in bold.

The latent inter-species correlations are given in Fig. 3.2, while the derivation of
analytic correlations, which vary by site and year, are given in Appendix 3.B. These
latent correlations are obtained after probability of detection and other covariates
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are taken into account, and they may be interpreted as an interaction strength
metric, which allows for the study of the influence of one species’ abundance on
the abundance of others (Berlow et al., 2004; Moral et al., 2018). The strength of
the correlation between the abundances of two species may be due to environmental
factors that affect both species, or may be due to direct interactions between them.
This might inform ecologists as to whether conservation efforts made for one species
could have an effect on another species. For example, the bald eagle has a positive
correlation with the other water birds examined (trumpeter swan, Wilson’s snipe,
Canada goose). This suggests that there may be environmental factors at play that
would have similar affects on the abundances of these species, and conservation
efforts to increase bald eagle abundances may also increase populations of these
other water birds.
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Figure 3.2: Estimated latent inter-species correlation matrix, produced by the
Hurdle(C) model fitted to the North American Breeding Bird Survey data includ-
ing covariates in the linear predictor for the abundance parameter.
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3.6 Discussion
We have proposed a multi-species extension to the N-mixture model which allows
for the estimation of inter-species abundance correlations through the addition of
a random variable in the abundance. Results of simulation studies (see Appendix
3.A) reveal that this model performs well under a range of scenarios, with abun-
dances and detection probabilities that range from low to high. For this reason,
we believe that this approach represents an attractive framework for examining
multi-species abundances.

Issues with parameter convergence were encountered when fitting the Hurdle and
Hurdle-AR models. When zero-inflation and abundance are large, and detection
probability is small, issues with convergence occurred in up to 20% of parameters.
While this convergence issue does not appear to negatively affect the relative biases
of parameter estimates (as can be seen in Appendix 3.A, Table 3.A.1 and Table
3.A.2), coverage probability for detection probability p and random effect mean µa

is negatively impacted (Appendix 3.D). In the same models, we see larger coverage
for N . This is to be expected, and is due to zero counts being perfectly predicted.

Previous works have demonstrated that N-mixture models can sometimes suffer
from issues with identifiability (Dennis et al., 2015) wherein probability of detection
estimates are very close to zero and abundance estimates are infinite. To address
this issue, we have performed extensive simulation studies, detailed in Appendix
3.A, in which we assess the estimates of abundance and detection probability for a
large range of sample sizes, detection probabilities, abundance sizes, and in the case
of the Hurdle and Hurdle-AR models, zero-count probabilities. We have thus far
not witnessed the occurrence of these identifiability issues in any of the simulation
studies performed.

The models presented here all use the Poisson distribution to model the latent
abundances. However, any other count distribution might instead be used. For
example, if overdispersion is to be expected in latent abundances, the negative
binomial distribution may provide a better fit to estimate N . Our calculations for
the analytic correlations, however, reflect only the use of the Poisson distribution.
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We have also examined an implementation of this modelling framework using real-
world data collected as part of the North American Breeding Bird Survey. Results
reveal that the model with the lowest associated BIC value is the Hurdle model,
in which detection probability varies only by species, and a latitude × longitude is
included in the abundance linear predictor. The difference in BIC value between
this model, and the model with the second-lowest associated BIC value is 223.
This suggests that the Hurdle(C) model with latitude and longitude covariates
provides the best fit to our data, of the models examined.

Case study detection probability values range from 0.047 (Tree Swallow) to 0.564
(Swainson’s Thrush). Estimates of the maximum latent abundance N per species
are provided in Appendix 3.C. We do not see any excessively large estimates for N
or exceedingly small estimates for p, which suggests that while N-mixture models
occasionally suffer from identifiability issues as described by Dennis et al. (2015),
this does not appear to be an issue for this case study.

The estimates for bald eagle abundance produced by this model are plotted by site
and year in Fig. 3.3. Of the 94 possible sites in Alaska, the bald eagle population
is concentrated at 18 sites at the southeastern coast, along a 300-mile stretch of
islands called the Alexander Archipelago. Examination of this figure suggested a
possible increase in bald eagle abundance in this area between 2010 and 2019. The
mean abundance was calculated per year (Fig. 3.4), and a one-sided Mann-Kendall
test (Mann, 1945; Kendall, 1948) for an increasing trend in time series data was
performed. The result of this was a Kendall’s τ value of 0.6 and a p-value of 0.0082,
indicating that it was appropriate to reject the null hypothesis that no increasing
trend exists. We can therefore conclude that bald eagle abundances increased in
the area of the Alexander Archipelago in the decade between 2010 and 2019.
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Figure 3.4: Annual posterior mean abundance for bald eagles in the Alexander
Archipelago, estimated by the Hurdle(C) model fitted to the North American
Breeding Bird Survey data. The light-blue ribbon represents the 95% credible
interval for the mean.

In the models that contain an autoregressive component, we obtain separate corre-
lations ρ(Ns, Ns′) per year. As a feature of model formulation (the autocorrelation
coefficient Σϕ is currently a diagonal matrix) the correlation between two species
do not change sign from year to year. We can accommodate a change in sign by
allowing for an unstructured covariance matrix of the autocorrelation coefficient
Σϕ, and this particular extension is subject of ongoing work. Furthermore, the
models presented in this paper assume that sites are independent of one another.
A further extension we are currently working on is the incorporation of spatial
dependence in abundance estimates, which aims to relax this assumption of site
independence.
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Appendix

3.A Simulation Study
In this section, we describe the simulation studies that were used to determine the
accuracy of the estimates produced by the multi-species N-mixture models.

To determine if our modelling framework produces accurate estimates at contrast-
ing sample sizes, a series of simulations were run in which we varied the number
of sites, R ∈ {10, 100}, the number of sampling occasions, T ∈ {5, 10}, and the
number of species observed, S ∈ {5, 10}. Within these simulations, we varied the
detection probability p, and the mean number of individuals per site λ. Small
values for p lay between 0.1 and 0.4, while large values for p lay between 0.5 and
0.9. Small values for λ had a median value of 7 and standard deviation of 10, while
large values for λ had a median value of 55 and standard deviation of 74.

In the case of the Hurdle and Hurdle-AR models, we also varied the probability
of a zero-count occurring, θ ∈ {0.2, 0.7}. For each combination of parameters, we
simulated 100 datasets and estimated N , Σa, and p. We also estimated values
for θ and ϕ, in the case of the Hurdle and AR models, respectively. Relative
mean bias was calculated for the estimated probability of obtaining a zero count θ̂,
autocorrelation coefficient ϕ̂, probability of detection p, and mean of the abundance
random effects µa. The smaller the value for relative bias, the closer to the true
value our estimated parameters were. We compared abundance estimates N̂ to
true values N using the concordance correlation coefficient (Lin, 1989), which is
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3.A. Simulation Study

given by the formula:

ρc = 2ρσ̂σ
σ̂2 + σ2 + (µ̂− µ)2

,

where ρ is Pearson’s correlation coefficient, σ and µ are the standard deviation and
mean of the true values of N , and σ̂ and µ̂ are the standard deviation and mean
of the estimated values of N . The Pearson correlation coefficient is a measure of
the strength of a linear association between two variables. However, the Pearson
correlation is invariant under changes in location and scale. If two variables exhibit
a linear relationship, but are very different in terms of their location or scale, the
Pearson correlation coefficient will not reveal this. The concordance correlation
coefficient, however, does take into account differences in location and scale. For
this reason, the concordance correlation coefficient was chosen as a measure of the
linear relationship between the true abundance and estimated abundance, rather
than the Pearson correlation coefficient. The higher the value of the concordance
correlation coefficient, the closer our estimates for N were to the true values.

We compared our estimated correlation matrix to the true value using the correla-
tion matrix distance (Herdin et al., 2005), which is given by the following formula:

CMD(X1,X2) = 1 − tr(X1X2)
∥X1∥f∥X2∥f

,

where X1 and X2 are two correlation matrices, tr(X1X2) is the trace of the product
of these two matrices, and ∥.∥f denotes the Frobenius norm.

Additionally, the coverage probabilities for each parameter were determined as the
proportion of simulations in which the 50% credible interval contained the true pa-
rameter value. We expect that approximately 50% of the time, the estimated 50%
credible interval for the parameter will contain the true value of that parameter
(Appendix 3.D). Each of these scenarios were simulated 100 times. All data was
simulated using the R statistical software version 4.0.2 (R Core Team, 2022), and
all Bayesian models were implemented using the R2jags package (Su and Yajima,
2020).
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3.A. Simulation Study

3.A.1 Simulation Study Results
The results of the small-scale simulation study, which was composed of data sim-
ulated for five species at 10 sites, over five years, is shown in Table 3.A.1. The
results of the large-scale simulation study, which contained 10 species, 100 sites
and 10 years, is shown in Table 3.A.2.

3.A.1.1 MNM Model

The large-scale simulation study (Table 3.A.2) produced reliable estimates for
latent abundance N at every combination of p and λ, with CCC values between
0.97 and 0.99. Estimates of N from the small-scale simulation study (Table 3.A.1)
appear more dependent on the detection probability p, with greater CCC values
associated with larger detection probabilities.

From Table 3.A.2, the relative bias for the estimate of p shows that when R, T
and S are large, the model produces estimates for p which are accurate to two
decimal places. When, R, T and S are small (Table 3.A.1), the relative bias for
the estimate of p is larger for small median p. When R, T and S are small, larger
values of p produce more reliable estimates of p.

Estimates for the correlation matrix and µa improve with larger values of λ. In
both Table 3.A.1 and Table 3.A.2, the relative bias for µa and the CMD decrease
when λ is larger. Larger values of R, T and S produce more accurate estimates of
the inter-species correlations and µa, as can be seen by the decrease in the sizes
of the CMD and RB(µa) between Table 3.A.1 and Table 3.A.2.

Coverage probabilities (Appendix 3.D) for this model reveal that both small- and
large-scale simulations produce parameters whose true value lie within the 50%
credible interval approximately 50% of the time, as expected.

3.A.1.2 Autoregressive Model

At both small-scale simulations (Table 3.A.1) and large-scale simulations (Table
3.A.2), the autoregressive model produced reliable estimates for N , with CCC
values above 0.9 for all simulations. Both the Table 3.A.1 and Table 3.A.2 con-
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3.A. Simulation Study

tain CMD values accurate to two decimal places. Relative bias for p decreases as
median p increases. This can be observed for both small (Table 3.A.1) and large
(Table 3.A.2) values of R, T , and S. In Table 3.A.1, relative bias for the autocor-
relation coefficient ϕ is much larger when abundance is small. In this situation,
the estimates for the autocorrelation coefficient ϕ cannot be relied upon. This is
an issue that persists, though not as severely, as R, T and S increase in size in
Table 3.A.2.

All parameters in this model have coverage probabilities of approximately 50%, as
is expected for the 50% credible intervals (Appendix 3.D).
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3.A. Simulation Study

Median p Median λ θ CCC CMD RB(p) RB(µa) RB(θ) RB(ϕ)
MNM

0.3 7 - 0.7871 0.1037 0.2512 0.1269 - -
0.3 55 - 0.8689 0.0641 0.2256 0.0554 - -
0.8 7 - 0.9847 0.0768 0.0612 0.0379 - -
0.8 55 - 0.9878 0.0522 0.0579 0.013 - -

Hurdle
0.3 7 0.2 0.772 0.146 0.437 0.2499 0.241 -
0.3 7 0.7 0.808 0.196 0.418 0.3485 0.116 -
0.3 55 0.2 0.799 0.081 0.418 0.1065 0.191 -
0.3 55 0.7 0.816 0.152 0.469 0.1194 0.134 -
0.8 7 0.2 0.960 0.114 0.071 0.1385 0.242 -
0.8 7 0.7 0.928 0.167 0.094 0.1923 0.130 -
0.8 55 0.2 0.927 0.074 0.085 0.0712 0.201 -
0.8 55 0.7 0.946 0.125 0.103 0.0811 0.114 -

AR
0.3 7 - 0.9475 0.0638 0.1529 0.140 - 1.9807
0.3 55 - 0.9818 0.0515 0.1479 0.0663 - 0.0515
0.8 7 - 0.999 0.0652 0.0153 0.1149 - 1.8982
0.8 55 - 0.9999 0.0598 0.0168 0.0538 - 0.0598

Hurdle-AR
0.3 7 0.2 0.9227 0.0602 0.1919 0.1475 0.1145 2.758
0.3 7 0.7 0.8899 0.1262 0.3228 0.2084 0.0329 12.365
0.3 55 0.2 0.9716 0.0709 0.1866 0.0752 0.0959 0.649
0.3 55 0.7 0.9223 0.0918 0.3575 0.0941 0.0356 4.206
0.8 7 0.2 0.994 0.0718 0.0386 0.1183 0.1024 2.088
0.8 7 0.7 0.974 0.0972 0.0787 0.1457 0.0316 6.459
0.8 55 0.2 0.9977 0.0636 0.0355 0.0497 0.1112 0.419
0.8 55 0.7 0.9322 0.1101 0.0986 0.0775 0.0308 5.505

Table 3.A.1: Results of small-scale simulation ((R, T, S,K) = (10, 5, 5, 5)): Con-
cordance Correlation Coefficient (CCC) for the estimates of latent abundance N ,
Correlation Matrix Distance (CMD) for the estimate of the inter-species correla-
tions, and relative biases for probability of detection (p), probability of obtaining
a zero count (θ), and autocorrelation coefficient (ϕ).
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Median p Median λ θ CCC CMD RB(p) RB(µa) RB(θ) RB(ϕ)
MNM

0.3 7 - 0.973 0.0315 0.0661 0.0163 - -
0.3 55 - 0.990 0.0197 0.0613 0.0110 - -
0.8 7 - 0.997 0.0261 0.0162 0.0104 - -
0.8 55 - 0.999 0.0176 0.0171 0.0041 - -

Hurdle
0.3 7 0.2 0.953 0.049 0.183 0.0881 0.058 -
0.3 7 0.7 0.948 0.193 0.278 0.1310 0.016 -
0.3 55 0.2 0.964 0.022 0.192 0.0420 0.061 -
0.3 55 0.7 0.928 0.152 0.462 0.0879 0.015 -
0.8 7 0.2 0.997 0.041 0.019 0.0389 0.058 -
0.8 7 0.7 0.997 0.179 0.033 0.0569 0.015 -
0.8 55 0.2 0.999 0.023 0.024 0.018 0.046 -
0.8 55 0.7 0.999 0.206 0.034 0.0546 0.013 -

AR
0.3 7 - 0.9923 0.0174 0.0520 0.0443 - 0.2799
0.3 55 - 0.9971 0.0182 0.0469 0.0192 - 0.0802
0.8 7 - 0.9997 0.0182 0.0044 0.0320 - 0.2433
0.8 55 - 0.9999 0.0204 0.0054 0.0160 - 0.0704

Hurdle-AR
0.3 7 0.2 0.9937 0.02 0.0567 0.0417 0.0248 0.269
0.3 7 0.7 0.9892 0.0257 0.0679 0.0535 0.0109 0.434
0.3 55 0.2 0.9779 0.0143 0.0662 0.0223 0.0276 0.069
0.3 55 0.7 0.9678 0.0168 0.0943 0.0258 0.0128 0.109
0.8 7 0.2 0.9994 0.0178 0.0078 0.0335 0.0227 0.315
0.8 7 0.7 0.9992 0.0241 0.0096 0.0371 0.0123 0.396
0.8 55 0.2 0.9967 0.0187 0.0136 0.0158 0.0245 0.049
0.8 55 0.7 0.9976 0.0166 0.0179 0.0180 0.0179 0.112

Table 3.A.2: Results of large-scale simulation ((R, T, S,K) = (100, 10, 10, 10)):
Concordance Correlation Coefficient (CCC) for the estimates of latent abundance
N , Correlation Matrix Distance (CMD) for the estimate of the inter-species corre-
lations, and relative biases for probability of detection (p), probability of obtaining
a zero count (θ), and autocorrelation coefficient (ϕ).

3.A.1.3 Hurdle Model

Similar to the MNM model, when R, T and S are large (Table 3.A.2), consistently
accurate estimates of latent abundance N are produced, with CCC values between
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0.948 and 0.999. In Table 3.A.1 we see that CCC values depend more heavily
on the detection probability, with more accurate estimates of N produced when
detection probability is high. Both Table 3.A.1 and Table 3.A.2 show higher
accuracy in estimates of the inter-species correlations when zero-inflation is small,
and abundance is large. CMD values are greater when θ = 0.7 or median λ = 7
than for θ = 0.2 or median λ = 55. From both Table 3.A.1 and Table 3.A.2,
the Hurdle model sees much smaller relative bias for p when median p is large
compared to when median p is small. Relative bias for θ decreases when θ increases,
indicating that θ is estimated with more accuracy when zero-inflation is large.
Table 3.A.2 sees smaller relative bias for θ than Table 3.A.1, revealing that the
strength of zero-inflation θ is estimated more accurately when R, T and S are
large.

Issues with parameter convergence were encountered when fitting the Hurdle model.
When zero-inflation and abundance are large, and detection probability is small,
issues with convergence occurred in up to 20% of parameters. While this conver-
gence issue does not appear to negatively affect the relative biases of parameter
estimates, as can be seen in Table 3.A.1 and Table 3.A.2, coverage probabilities
for detection probability p and random effect mean µa are negatively impacted
(Appendix 3.D). We also see coverage for N which is larger than 50%. This is to
be expected, and is due to zero counts being perfectly predicted.

3.A.1.4 Hurdle-Autoregressive Model

In Table 3.A.1, CCC values demonstrate that the Hurdle-AR model produces esti-
mates for N with greater accuracy when the probability of obtaining a zero count
is small. However, increasing R, T , and S (Table 3.A.2) reduces this dependence
on θ, and all CCC values produced are greater than 0.95.

The small-scale simulation (Table 3.A.1) has CMD values and relative biases for
p and µa which increase when the probability of obtaining a zero count increases,
indicating that the inter-species correlations, p and µa are estimated more accu-
rately when the degree of zero-inflation is low. The same is true for the large-scale
simulation (Table 3.A.2), though the differences in CMD and relative biases be-
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tween small θ and large θ are not as large, revealing that the increase in R, T and
S renders the increase in zero-inflation less important in the estimation of these
parameters.

The Hurdle-AR model suffers with the same issue estimating ϕ when the proba-
bility of obtaining a zero count is high. This issue is more severe in Table 3.A.1,
and estimates of ϕ cannot be trusted when R, T and S are small but θ is large.
Like the AR model, this issue is not as acute in Table 3.A.2, as an increase in R,
T and S appears to compensate for the problems caused by large zero-inflation.
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3.B Analytic Correlations
While the random effect a allows for the incorporation of the species-level correla-
tions, in order to examine the correlations between species abundances ρ(Ns, Ns′)
(rather than the correlations of the species-level random effects themselves), the
analytic correlations must be derived. An R implementation of these analytic cor-
relations is available in the public GitHub repository https://github.com/nia
mhmimnagh/mnm.

MNM Model
In this section, we present the analytical expressions for the correlation between
the latent abundances (Ns and Ns′) for all s ̸= s′ for the MNM model described
in Section 3.3.1. For convenience of notation, we drop the dependence on i and t,
Ys = ({Yits}), Ns = ({Nis}), ps = ({pits}), λs = ({λis}).

The MNM model in this case may be described as follows:

Ys | Ns ∼ Binomial(Ns, ps)

Ns | λs ∼ Poisson(λs)

as ∼ Normals(µ,Σ)

λs ∼ log-Normals(eµs+ 1
2 Σss , eµs+µs′ + 1

2 (Σss+Σs′s′ )eΣss′ − 1)

To begin our analysis we require the expectation, variance and covariance of the
log-Normal parameter λs. These are as follows:

E[λs] = eµs+ 1
2 Σss

Var(λs) = eµs+µs+ 1
2 (Σss+Σss)(eΣss − 1) = e2µs+Σss(eΣss − 1)

50

https://github.com/niamhmimnagh/mnm
https://github.com/niamhmimnagh/mnm


3.B. Analytic Correlations

Cov(λs, λs′) = eµs+µs′ + 1
2 (Σss+Σs′s′ )eΣss′ − 1)

As N is described with a Poisson distribution, we may write the conditional ex-
pectation and variance directly:

E[Ns | λs] = Var(Ns | λs) = λs

The conditional expectation and variance of the binomial Ys are given by:

E[Ys | Ns] = Nsps

Var(Ys | Ns) = Nsps(1 − ps)

The unconditional expectation of Ns can be derived using the law of total expec-
tation as follows:

E[Ns] = Eλs(ENs(Ns | λs))

= Eλs(λs)

= eµs+ 1
2 Σss

The unconditional expectation of Ys may be similarly derived:

E[Ys] = ENs(EYs(Ys | Ns))

= ENs(Nsps)

= λsps
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We can then derive the unconditional variance of Ns using the law of total variance:

Var(Ns) = Eλs(VarNs(Ns | λs)) + Varλs(ENs(Ns | λs))

= Eλs(λs)Varλs(λs)

= eµs+ 1
2 Σss + e2µs+Σss(eΣss − 1)

Similarly, the unconditional variance of Ys can be derived using the law of total
variance:

Var(Ys) = ENs(VarYs(Ys | Ns)) + VarNs(EYs(Ys | Ns))

= ENs(Nsps(1 − ps)) + VarNs(Nsps)

= λsps(1 − ps) + λsp
2
s

= λsps − λsp
2
s + λsp

s
s

= λsps

Finally, the unconditional covariance between Ns and Ns′ can be derived using the
law of total covariance:

Cov(Ns, Ns′) = Eλsλs′ (Cov(Ns, Ns′ | λs, λs′) + Covλsλs′ (ENs(Ns | λs),ENs′ (Ns′ | λs′))

We assume that, given the correlated effects a, the abundances are independent,
which means:

Cov(Ns, Ns′ | λs, λs′) = 0
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The result of this is as follows:

Cov(Ns, Ns′) = Covλsλs′ (ENs(Ns | λs),ENs′ (Ns′ | λs′))

= Cov(λs, λs′)

= eµs+µs′ + 1
2 (Σss+Σs′s′ )(eΣss′ − 1)

= (eµs+ 1
2 Σss)(eµs′ + 1

2 Σs′s′ )(eΣss′ − 1)

= E[Ns]E[Ns′ ](eΣss′ − 1)

The correlation between latent abundancesNs andNs′ can then be easily computed
using the following formula:

ρ(Ns, Ns′) = Cov(Ns, Ns′)√
Var(Ns),Var(Ns′)

The unconditional covariance between observed abundances Ys and Ys′ can be
derived using the law of total covariance:

Cov(Ys, Ys′) = ENsNs′ (Cov(Ys, Ys′ | Ns, Ns′) + CovNsNs′ (EYs(Ys | Ns),EYs′ (Ys′ | Ns′))

We assume that the observed abundances are independent given the actual abun-
dances, i.e.

Cov(Ys, Ys′ | Ns, Ns′) = 0

This results in the following simplification of the unconditional covariance between
observed abundances Ys and Ys′ :

Cov(Ys, Ys′) = CovNsNs′ (EYs(Ys | Ns),EYs′ (Ys′ | Ns′))

= CovNs,Ns′ (Nsps, Ns′ps′)

= CovNs,Ns′ (Ns, Ns′)psps′
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We have shown previously that Cov(Ns, Ns′) = E[Ns]E[Ns′ ](eΣss′ − 1)

Therefore
Cov(Ys, Ys′) = E[Ns]E[Ns′ ](eΣss′ − 1)psps′

ρ(Ys, Ys′) = ρ(Ns, Ns′)√psps′

| ρ(Ys, Ys′) |≤| ρ(Ns, Ns′) |

We may therefore conclude that the correlation between latent abundances Ns and
Ns′ can be written as follows:

ρ(Ns, Ns′) = (eµs+ 1
2 Σss)(eµs′ + 1

2 Σs′s′ )(eΣss′ − 1)
(
√
eµs+ 1

2 Σss + e2µs+Σss(eΣss − 1))(eµs′ + 1
2 Σs′s′ + e2µs′ +Σs′s′ (eΣs′s′ − 1))

Hurdle Model
In this section, we present the analytical expressions for the correlation between the
latent abundances (Ns and Ns′) for all s ̸= s′ for the MNM hurdle-Poisson model
described in Section 3.3.2. For convenience of notation, we drop the dependence
on i and t, Ys = ({Yits}), Ns = ({Nis}), ps = ({pits}), λs = ({λis}).

The MNM hurdle-Poisson model in this case may be described as follows:

Ys | Ns ∼ Binomial(Ns, ps)

Ns ∼ Hurdle Poisson(λs, θ)

λs = eas

as ∼ Normals(µ,Σ)

λs ∼ log-Normals(eµs+ 1
2 Σss , eµs+µs′ + 1

2 (Σss+Σs′s′ )(eΣss′ − 1))

The analytical expressions for the correlation between latent abundances for this
model are derived by following similar steps to those followed in the previous sec-
tion. The major difference encountered here is the need to approximate a number
of parameters using Taylor expansions. For completeness, all steps necessary to
derive these analytical correlations will be provided here.
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To begin our analysis we require the expectation, variance and covariance of the
log-Normal parameter λs. These are as follows:

E[λs] = eµs+ 1
2 Σss

Var(λs) = eµs+µs+ 1
2 (Σss+Σss)eΣss − 1) = e2µs+Σss(eΣss − 1)

Cov(λs, λs′) = eµs+µs′ + 1
2 (Σss+Σs′s′ )eΣss′ − 1)

As the latent abundance Ns follows a Hurdle Poisson distribution, the conditional
expectation and variance are as follows:

E[Ns | λs] = (1 − θ)λs

1 − e−λs

Var(Ns | λs) = (1 − θ)
[

λs

1 − e−λs
− eλs( λs

1 − e−λs
)2
]

+ θ(1 − θ)( λs

1 − e−λs
)2

The conditional expectation and variance of the binomial observed abundance Ys

is given by:

E[Ys | Ns] = Nsps

Var(Ys | Ns) = Nsps(1 − ps)
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The unconditional expectation of Ns can be derived using the law of total expec-
tation as follows:

E[Ns] = Eλs [ENs [Ns | λs]]

= Eλs

[
(1 − θ)λs

1 − e−λs

]

This is a function f of the random variable λs. We can approximate the expected
value of this function using second-order Taylor expansions around the point λs =
µλs (where µλs is the expected value of λs) as follows:

f(λs) ≈ f(µλs) + fλs(µλs)(λs − µλs) + 1
2!fλsλs(µλs)(λs − µλs)2

E[f(λs)] ≈ E[f(µλs) + fλs(µλs)(λs − µλs) + 1
2!fλsλs(µλs)(λs − µλs)2]

= E[f(µλs)] + fλs(µλs)E[(λs − µλs)] + 1
2!fλsλs(µλs)E[(λs − µλs)2]

= f(µλs) + 1
2fλsλs(µλs)σ2

λs

Where σs
λs

is the variance of the expected abundance λs

In this case we have:

f(λs) = (1 − θ)λs

1 − e−λs

fλs,λs(λs) = e−λs(e−λsλs + λs + 2e−λs − 2)(1 − θ)
(1 − e−λs)3

E[λs] = eµs+ 1
2 Σss

Var(λs) = (e2µs+Σss)(eΣss − 1)

So:

E[Ns] ≈ (1 − θ)(µλs)
1 − e−µλs

+ σ2
λs

2
e−µλs (e−µλsµλs + µλs + 2e−µλs − 2)(1 − θ)

(1 − e−µλs )3
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where µλs = eµs+ 1
2 Σss and σ2

λs
= (e2µs+Σss)(eΣss − 1)

The unconditional variance of Ns can be similarly derived. We begin by using the
law of total variance:

Var(Ns) = Eλs [VarNs(Ns | λs)] + Varλs(ENs [Ns | λs])

= Eλs

[
(1 − θ)

[
λs

1 − e−λs
− eλs( λs

1 − e−λs
)2
]

+ θ(1 − θ)( λs

1 − e−λs
)2)
]

+ Varλs

(
(1 − θ)λs

1 − e−λs

)

The variance of a function f of variable λs can also be approximated at the point
µλs using a second-order Taylor expansion as follows:

f(λs) ≈ f(µλs) + fλs(µλs)(λs − µλs) + 1
2!fλsλs(µλs)(λs − µλs)2

Var[f(λs)] ≈ Var[f(µλs) + fλs(µλs)(λs − µλs) + 1
2!fλsλs(µλs)(λs − µλs)2]

= Var[f(µλs)] + fλs(µλs)2Var[(λs − µλs)] + 1
2!fλsλs(µλs)2Var[(λs − µλs)2]

= fλs(µλs)2Var(λs) + 1
2fλsλs(µλs)2Var(λ2

s − 2µλsλs + µλs)

= fλs(µλs)2Var(λs) + 1
2fλsλs(µλs)2Var(λ2

s − 2µλsλs)

= fλs(µλs)2Var(λs) + 1
2fλsλs(µλs)2(Var(λ2

s) + 4µ2
λs

Var(λs) − 4µλsCov(λ2
s, λs))

The variance of Ns can be approximated using two separate Taylor series expan-
sions:
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For the first Taylor series approximation let:

f(λs) = (1 − θ)
(

λs

1 − e−λs
− e−λs

(
λs

1 − e−λs

)2)
+ θ(1 − θ)

(
λs

1 − e−λs

)2

fλsλs(λs) = e−2λs(−e−λsλ2
s − 4λ2

s − eλsλ2
s + 5eλsλs − 5e−λsλs − 4eλs − 4e−λs + 8)(1 − θ)

(1 − e−λs)4

+ 2θ(2e−2λsλ2
s + e−λsλ2

s + 4e−2λsλs − 4e−λsλs + e−2λs − 2e−λs + 1)(1 − θ)
(1 − e−λs)4

E[λs] = eµs+ 1
2 Σss

Var(λs) = (e2µs+Σss)(eΣss − 1)

We then have:

Eλs

(
(1 − θ)

(
λs

1 − e−λs
− e−λs

(
λs

1 − e−λs

)2)
+ θ(1 − θ)

(
λs

1 − e−λs

)2)

≈ (1 − θ)
(

µλs

1 − e−µλs
− e−µλs

(
µλs

1 − e−µλs

)2)
+ θ(1 − θ)

(
µλs

1 − e−µλs

)2

+ σ2
λs

2

(
e−2µλs (−e−µλsµ2

λs
− 4µ2

λs
− e−µλsµ2

λs
+ 5eµλsµλs − 5e−µλsµλs − 4eµλs − 4e−µλs + 8)(1 − θ)

(1 − e−µλs )4

+ 2θ(2e−2µλsµ2
λs

+ e−µλsµ2
λs

+ 4e−2µλsµλs − 4e−µλsµλs + e−2µλs − 2e−µλs + 1)(1 − θ)
(1 − e−µλs )4

)

Where µλs = eµs+ 1
2 Σss and σ2

λs
= (e2µs+Σss)(eΣss − 1)

For the second Taylor series approximation let:

f(λs) = (1 − θ)λs

1 − e−λs

fλs(λs) = (1 − e−λs − e−λsλs)(1 − θ)
(1 − e−λs)2

fλs,λs(λs) = e−λs(e−λsλs + λs + 2e−λs − 2)(1 − θ)
(1 − e−λs)3

E[λs] = eµs+ 1
2 Σss

Var(λs) = (e2µs+Σss)(eΣss − 1)
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3.B. Analytic Correlations

Varλs

(
(1 − θ)λs

1 − e−λs

)
≈
(

(1 − e−µλs − e−µλsµλs)(1 − θ)
(1 − e−µλs )2

)2

σ2
λs

+ 1
2

(
e−µλs (e−µλsµλs + µλs + 2e−µλs − 2)(1 − θ)

(1 − e−µλs )3

)2

(Var(λ2
s) + 4µ2

λs
σ2

λs
− 4µλsCov(λ2

s, λs))

Where µλs = eµs+ 1
2 Σss and σ2

λs
= (e2µs+Σss)(eΣss − 1)

We know
Var(λ2

s) = E[(λ2
s − E[λ2

s])2] = E[λ4
s] − E[λ2

s]2

Cov(λ2
s, λs) = E[λ3

s] − E[λ2
s]E[λs]

Now we need the following moments about the origin: E[λ4
s] and E[λ3

s]

We can find both of these moments about the origin using their respective central
moments:

E[(λs − µλs)3] = (
√
eΣss)(2 + eΣss)

E[(λs − µλs)4] = −3 + 3e2Σss + 2e3Σss + e4Σss

Therefore:

E[λ3
s] = E[(λs − µλs)3] + 3E[λs]E[λ2

s] − 2(E[λs])3

E[λ4
s] = E[(λs − µλs)4] + 4E[λs]E[λ3

s] − 6(E[λs])2E[λ2
s] + 3(E[λs])4
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3.B. Analytic Correlations

Var(λ2
s) = E[λ4

s] − E[λ2
s]2

= E[(λs − µλs)4] + 4E[λs]E[λ3
s] − 6(E[λs])2E[λ2

s] + 3(E[λs])4 − E[λ2
s]2

= E[(λs − µλs)4] + 4E[λs](E[(λs − µλs)3 + 3E[λs]E[λ2
s − 2E[λs]2)

− 6(E[λs])2E[λ2
s] + 3(E[λs])4 − E[λ2

s]2

= −3 + 3e2Σss + 2e3Σss + e4Σss + 4µλs((
√
eΣss)(2 + eΣss) + 3µλs(σ2

λs
+ µ2

λs
) − 2µ3

λs
)

− 6µ2
λs

(σ2
λs

+ µ2
λs

) + 3µ4
λs

− (σ2
λs

+ µ2
λs

)2

Cov(λ2
s, λs) = E[λ3

s] − E[λ2
s]E[λs]

= E[(λs − µλs)3] + 3E[λs]E[λ2
s] − 2(E[λs])3 − E[λ2

s]E[λs]

= (
√
eΣss)(2 + eΣss) + 3µλs(Var(λs) + E[λs]2) − 2µ3

λ − (Var(λs) + E[λs]2)µλs

= (
√
eΣss)(2 + eΣss) + 3µλs(σ2

λs
+ µ2

λs
) − 2µ3

λ − (σ2
λs

+ µ2
λs

)µλs

Thus we have:

Varλs

(
(1 − θ)λs

1 − e−λs

)
≈
(

(1 − e−µλs − e−µλsµλs)(1 − θ)
(1 − e−µλs )2

)2

σ2
λs

+ 1
2

(
e−µλs (e−µλsµλs + µλs + 2e−µλs − 2)(1 − θ)

(1 − e−µλs )3

)2

× (−3 + 3e2Σss + 2e3Σss + e4Σss + 4µλs((
√
eΣss)(2 + eΣss) + 3µλs(σ2

λs
+ µ2

λs
) − 2µ3

λs
)

− 6µ2
λs

(σ2
λs

+ µ2
λs

) + 3µ4
λs

− (σ2
λs

+ µ2
λs

)2 + 4µ2
λs
σ2

λs

− 4µλs(
√
eΣss)(2 + eΣss) + 3µλs(σ2

λs
+ µ2

λs
) − 2µ3

λ − (σ2
λs

+ µ2
λs

)µλs)

Putting these together gives:
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3.B. Analytic Correlations

Var(Ns) = Eλs(VarNs(Ns | λs)) + Varλs(ENs(Ns | λs))

= Eλs

(
(1 − θ)

[
λs

1 − e−λs
− eλs( λs

1 − e−λs
)2
]

+ θ(1 − θ)( λs

1 − e−λs
)2)
)

+ Varλs

(
(1 − θ)λs

1 − e−λs

)

≈ (1 − θ)
(

µλs

1 − e−µλs
− e−µλs

(
µλs

1 − e−µλs

)2)
+ θ(1 − θ)

(
µλs

1 − e−µλs

)2

+ σ2
λs

2

(
e−2µλs (−e−µλsµ2

λs
− 4µ2

λs
− e−µλsµ2

λs
+ 5eµλsµλs − 5e−µλsµλs − 4eµλs − 4e−µλs + 8)(1 − θ)

(1 − e−µλs )4

+ 2θ(2e−2µλsµ2
λs

+ e−µλsµ2
λs

+ 4e−2µλsµλs − 4e−µλsµλs + e−2µλs − 2e−µλs + 1)(1 − θ)
(1 − e−µλs )4

)

+
(

(1 − e−µλs − e−µλsµλs)(1 − θ)
(1 − e−µλs )2

)2

σ2
λs

+ 1
2

(
e−µλs (e−µλsµλs + µλs + 2e−µλs − 2)(1 − θ)

(1 − e−µλs )3

)2

× (−3 + 3e2Σss + 2e3Σss + e4Σss + 4µλs((
√
eΣss)(2 + eΣss) + 3µλs(σ2

λs
+ µ2

λs
) − 2µ3

λs
)

− 6µ2
λs

(σ2
λs

+ µ2
λs

) + 3µ4
λs

− (σ2
λs

+ µ2
λs

)2 + 4µ2
λs
σ2

λs

− 4µλs(
√
eΣss)(2 + eΣss) + 3µλs(σ2

λs
+ µ2

λs
) − 2µ3

λ − (σ2
λs

+ µ2
λs

)µλs)

Where µλs = eµs+ 1
2 Σss and σ2

λs
= (e2µs+Σss)(eΣss − 1)

Finally, the unconditional covariance between Ns and Ns′ can be derived using the
law of total covariance:

Cov(Ns, Ns′) = Eλsλs′ (Cov(Ns, Ns′ | λs, λs′) + Covλsλs′ (ENs(Ns | λs),ENs′ (Ns′ | λs′))

We assume that, given λ, the abundances are independent: Cov(Ns, Ns′ | λs, λs′) =
0

Therefore:

Cov(Ns, Ns′) = Covλsλs′ (ENs(Ns | λs),ENs′ (Ns′ | λs′))

= Covλs,λs′

(
(1 − θ)λs

1 − e−λs
,
(1 − θ)λs′

1 − e−λs′

)
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3.B. Analytic Correlations

To find this covariance we can use the fact that

Cov
(

(1 − θ)λs

1 − e−λs
,
(1 − θ)λs′

1 − e−λs′

)
= E

[
(1 − θ)λs

1 − e−λs
×(1 − θ)λs′

1 − e−λs′

]
−E

[
(1 − θ)λs

1 − e−λs

]
E
[

(1 − θ)λs′

1 − e−λs′

]

A second-order Taylor series expansion in two variables near the point (µλs , µλs)
has the following form:

f(λs, λs′) ≈ f(µλs , µλs′ ) + fλs(µλs , µλs′ )(λs − µλs) + fλs′ (µλs , µλs′ )(λs′ − µλs′ )

+ 1
2(fλsλs(µλs , µλs′ )(λs − µλs)2 + fλs′ λs′ (µλs , µλs′ )(λs′ − µλs′ )2)

+ fλsλs′ (µλs , µλs′ )(λs − µλs)(λs′ − µλs′ )

E[f(λs, λs′)] ≈ E[f(µλs , µλs′ ) + fλs(µλs , µλs′ )(λs − µλs) + fλs′ (µλs , µλs′ )(λs′ − µλs′ )

+ 1
2(fλsλs(µλs , µλs′ )(λs − µλs)2 + fλs′ λs′ (µλs , µλs′ )(λs′ − µλs′ )2)

+ fλsλs′ (µλs , µλs′ )(λs − µλs)(λs′ − µλs′ )]

= E[f(µλs , µλs′ )] + fλs(µλs , µλs′ )E[(λs − µλs)] + fλs′ (µλs , µλs′ )E[(λs′ − µλs′ )]

+ 1
2fλsλs(µλs , µλs′ )E[(λs − µλs)]2 + 1

2fλs′ λs′ (µλs , µλs′ )E[(λs′ − µλs′ )]2

+ fλsλs′ (µλs , µλs′ )E[(λs − µλs)(λs′ − µλs′ )]

=f(µλs , µλs′ ) + 1
2fλs,λs(µλs , µλs′ )Var(λs) + 1

2fλs′ ,λs′ (µλs , µλs′ )Var(λs′)

+ fλs,λs′ (µλs , µλs′ )Cov(λs, λs′)

As E[λs −µλs ] = 0, E[(λs −µλs)(λs′ −µλs′ )] = Cov(λs, λs′), E[(λs −µλs)2] = Var(λ)

We know Var(λs) and Cov(λs, λs′) from the lognormal distribution, so now we
need the second derivatives of f(λs, λs′)
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3.B. Analytic Correlations

f(λs, λs′) =
(

(1 − θ)λs

1 − e−λs

)(
(1 − θ)λs′

1 − e−λs′

)

fλsλs(λsλs′) = e−λsλs′(1 − θ)2(e−λsλs + λs + 2e−λs − 2)
(1 − e−λs′ )(1 − e−λs)3

fλs′ λs′ (λs, λs′) = e−λs′λs(1 − θ)2(e−λs′λs′ + λs′ + 2e−λs′ − 2)
(1 − e−λs)(1 − e−λs′ )3

fλsλs′ (λs, λs′) = (1 − e−λs − e−λsλs)(1 − θ)2(1 − e−λs′ − e−λs′λs′)
(1 − e−λs)2(1 − e−λs′ )2

Evaluating these at the point (µλs , µλs′ ) gives:

f(µλs , µλs′ ) =
(

(1 − θ)µλs

1 − e−µλs

)(
(1 − θ)µλs′

1 − e−µλs′

)

fλsλs(µλsµλs′ ) =
e−µλsµλs′ (1 − θ)2(e−µλsµλs + µλs + 2e−µλs − 2)

(1 − e−µλs′ )(1 − e−µλs )3

fλs′ λs′ (µλs , µλs′ ) =
e−µλs′µλs(1 − θ)2(e−µλs′µλs′ + µλs′ + 2e−µλs′ − 2)

(1 − e−µλs )(1 − e−µλs′ )3

fλsλs′ (µλs , µλs′ ) =
(1 − e−µλs − e−µλsµλs)(1 − θ)2(1 − e−µλs′ − e−µλs′µλs′ )

(1 − e−µλs )2(1 − e−µλs′ )2

where µλs = E[λs] = eµs+Σss , from the log-normal distribution.

We then have:

E[f(λs, λs′)] ≈
(

(1 − θ)µλs

1 − e−µλs

)(
(1 − θ)µλs′

1 − e−µλs′

)

+
σλ2

s

2
e−µλsµλs′ (1 − θ)2(e−µλsµλs + µλs + 2e−µλs − 2)

(1 − e−µλs′ )(1 − e−µλs )3

+
σλ2

s′

2
e−µλs′µλs(1 − θ)2(e−µλs′µλs′ + µλs′ + 2e−µλs′ − 2)

(1 − e−µλs )(1 − e−µλs′ )3

+
Σλs,λs′ (1 − e−µλs − e−µλsµλs)(1 − θ)2(1 − e−µλs′ − e−µλs′µλs′ )

(1 − e−µλs )2(1 − e−µλs′ )2

Where:
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3.B. Analytic Correlations

µλs = eµs+ 1
2 Σss ,

σ2
λs

= (e2µs+Σss)(eΣss − 1)

Σλs,λs′ = eµs+µs′ + 1
2 (Σss+Σs′s′ )(eΣss′ −1) are the mean, variance and covariance of the

log-normal distribution.

Cov(Ns, Ns′) =
(

(1 − θ)µλs

1 − e−µλs

)(
(1 − θ)µλs′

1 − e−µλs′

)

+
σλ2

s

2
e−µλsµλs′ (1 − θ)2(e−µλsµλs + µλs + 2e−µλs − 2)

(1 − e−µλs′ )(1 − e−µλs )3

+
σλ2

s′

2
e−µλs′µλs(1 − θ)2(e−µλs′µλs′ + µλs′ + 2e−µλs′ − 2)

(1 − e−µλs )(1 − e−µλs′ )3

+
Σλs,λs′ (1 − e−µλs − e−µλsµλs)(1 − θ)2(1 − e−µλs′ − e−µλs′µλs′ )

(1 − e−µλs )2(1 − e−µλs′ )2

−
(

(1 − θ)(µλs)
1 − e−µλs

+ σ2
λs

2
e−µλs (e−µλsµλs + µλs + 2e−µλs − 2)(1 − θ)

(1 − e−µλs )3

)

×
(

(1 − θ)(µλs′ )
1 − e−µλs′

+
σ2

λs′

2
e−µλs′ (e−µλs′µλs′ + µλs′ + 2e−µλs′ − 2)(1 − θ)

(1 − e−µλs′ )3

)

The correlation between species’ abundances can then be calculated using:

ρ(Ns, Ns′) = Cov(Ns, Ns′)√
Var(Ns),Var(Ns′)
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3.B. Analytic Correlations

ρ(Ns, Ns′) =
(

(1 − θ)µλs

1 − e−µλs

)( (1 − θ)µλs′

1 − e−µλ
s′

)
+

σλ2
s

2
e−µλs µλs′ (1 − θ)2(e−µλs µλs + µλs + 2e−µλs − 2)

(1 − e−µλ
s′ )(1 − e−µλs )3

+
σλ2

s′

2
e−µλ

s′ µλs
(1 − θ)2(e−µλ

s′ µλs′ + µλs′ + 2e−µλ
s′ − 2)

(1 − e−µλs )(1 − e−µλ
s′ )3

+
Σλs,λs′ (1 − e−µλs − e−µλs µλs)(1 − θ)2(1 − e−µλ

s′ − e−µλ
s′ µλs′ )

(1 − e−µλs )2(1 − e−µλ
s′ )2

−
(

(1 − θ)(µλs
)

1 − e−µλs
+

σ2
λs

2
e−µλs (e−µλs µλs

+ µλs
+ 2e−µλs − 2)(1 − θ)

(1 − e−µλs )3

)
×
( (1 − θ)(µλs′ )

1 − e−µλ
s′

+
σ2

λs′

2
e−µλ

s′ (e−µλ
s′ µλs′ + µλs′ + 2e−µλ

s′ − 2)(1 − θ)
(1 − e−µλ

s′ )3

)
×

[
(1 − θ)

(
µλs

1 − e−µλs
− e−µλs

(
µλs

1 − e−µλs

)2)
+ θ(1 − θ)

(
µλs

1 − e−µλs

)2

+
σ2

λs

2

(
e−2µλs (−e−µλs µ2

λs
− 4µ2

λs
− e−µλs µ2

λs
+ 5eµλs µλs − 5e−µλs µλs − 4eµλs − 4e−µλs + 8)(1 − θ)

(1 − e−µλs )4

+
2θ(2e−2µλs µ2

λs
+ e−µλs µ2

λs
+ 4e−2µλs µλs

− 4e−µλs µλs
+ e−2µλs − 2e−µλs + 1)(1 − θ)

(1 − e−µλs )4

)
+
(

(1 − e−µλs − e−µλs µλs
)(1 − θ)

(1 − e−µλs )2

)2
σ2

λs
+ 1

2

(
e−µλs (e−µλs µλs

+ µλs
+ 2e−µλs − 2)(1 − θ)

(1 − e−µλs )3

)2

× (−3 + 3e2Σss + 2e3Σss + e4Σss + 4µλs
((

√
eΣss)(2 + eΣss) + 3µλs

(σ2
λs

+ µ2
λs

) − 2µ3
λs

)

− 6µ2
λs

(σ2
λs

+ µ2
λs

) + 3µ4
λs

− (σ2
λs

+ µ2
λs

)2 + 4µ2
λs

σ2
λs

− 4µλs
(
√

eΣss)(2 + eΣss) + 3µλs
(σ2

λs
+ µ2

λs
) − 2µ3

λ − (σ2
λs

+ µ2
λs

)µλs
)
]

×

[
(1 − θ)

(
µλs′

1 − e−µλ
s′

− e−µλ
s′

(
µλs′

1 − e−µλ
s′

)2)
+ θ(1 − θ)

(
µλs′

1 − e−µλ
s′

)2

+
σ2

λs′

2

(
e−2µλ

s′ (−e−µλ
s′ µ2

λs′ − 4µ2
λs′ − e−µλ

s′ µ2
λs′ + 5eµλ

s′ µλs′ − 5e−µλ
s′ µλs′ − 4eµλ

s′ − 4e−µλ
s′ + 8)(1 − θ)

(1 − e−µλ
s′ )4

+
2θ(2e−2µλ

s′ µ2
λs′ + e−µλ

s′ µ2
λs′ + 4e−2µλ

s′ µλs′ − 4e−µλ
s′ µλs′ + e−2µλ

s′ − 2e−µλ
s′ + 1)(1 − θ)

(1 − e−µλ
s′ )4

)
+
( (1 − e−µλ

s′ − e−µλ
s′ µλs′ )(1 − θ)

(1 − e−µλ
s′ )2

)2
σ2

λs′ + 1
2

(
e−µλ

s′ (e−µλ
s′ µλs′ + µλs′ + 2e−µλ

s′ − 2)(1 − θ)
(1 − e−µλ

s′ )3

)2

× (−3 + 3e2σs′s′ + 2e3σs′s′ + e4σs′s′ + 4µλs′ ((
√

eσs′s′ )(2 + eσs′s′ ) + 3µλs′ (σ2
λs′ + µ2

λs′ ) − 2µ3
λs′ )

− 6µ2
λs′ (σ

2
λs′ + µ2

λs′ ) + 3µ4
λs′ − (σ2

λs′ + µ2
λs′ )

2 + 4µ2
λs′ σ

2
λs′

− 4µλs′ (
√

eσs′s′ )(2 + eσs′s′ ) + 3µλs′ (σ2
λs′ + µ2

λs′ ) − 2µ3
λ − (σ2

λs′ + µ2
λs′ )µλs′ )

) 1
2
]−1
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AR Model
In this section, we present the analytical expressions for the correlation between the
latent abundances (Ns and Ns′) for all s ̸= s′ for the MNM AR model described in
Section 3.3.3. In this model, indices are separated using commas to make it easier
for the autoregressive component to be read and understood.

The MNM-AR model may be described as follows:

Yi,t,k,s | Ni,k,s ∼ Binomial(Ni,k,s, pi,s)

Ni,k,s | λi,k,s ∼ Poisson(λi,k,s)

log(λi,k,s) = ai,s + ϕs × log(Ni,k−1,s + 1)

ϕ ∼ MVNs(µϕ,Σϕ)

with Σϕ = 100(IS) and µϕ = [0, 0, ..., 0]T of length S, where IS is the identity
matrix of dimension S.

We first need to determine the mean and covariance associated with the log of the
mean abundance λ. This may be achieved as follows.

µlog(λi,k−1,s) = E[a+ log(Ni,k−1,s + 1)ϕ]

= E[a] + log(Ni,k−1,s + 1)E[ϕ]

= µa + log(Ni,k−1,s + 1)µϕ

Σlog(λi,k−1,s) = Cov(a+ ϕlog(Ni,k−1,s + 1), a+ ϕ× log(Ni,k−1,s + 1))

= Cov(a) + 2log(Ni,k−1,s + 1)Cov(a, ϕ) + log(Ni,k−1,s + 1)2Cov(ϕ)

= Σa + log(Ni,k−1,s + 1)2Σϕ

In the models described in Appendices above, we have log(λi,s) ∼ MVN(µa,Σa),
where µa is an S × 1 vector and Σa is an SxS matrix. This means that though
log(λ) varies by site, the analytic covariance matrix does not.
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3.B. Analytic Correlations

However, in the AR Model we have:

log(λ) ∼ MVN(µa + log(Ni,k−1,s + 1)µϕ,Σa + log(Ni,k−1,s + 1)2Σϕ)

At year k=1, the mean and covariance are the same at every site:

µlog(λi,1,s) = µa

Σlog(λi,1,s) = Σa

At k > 1 the mean and covariance are affected by the log(Ni,k−1,s +1) term, which
means we have separate SxS matrices for each combination of site and year.

Thus:

λ ∼ MVLN(eµs+ 1
2 Σss , (eµs+µs′ + 1

2 (Σss+Σs′s′ ))(eΣss′ − 1))

where µ = µa + log(Ni,k−1,s + 1)µϕ

and Σ = Σa + log(Ni,k−1,s + 1)Σϕ

The rest of the analytic correlations for the AR model are carried out similarly
to those of the MNM model, with the above substitutions for µ and Σ. For
completeness, we will provide all steps necessary to obtain the analytic correlations
here.

As N is Poisson distributed, we can write the conditional expectation and variance:

E[Ns | λs] = Var(Ns | λs) = λs

The conditional expectation and variance of the binomial Ys is given by:

E[Ys | Ns] = Nsps

Var(Ys | Ns) = Nsps(1 − ps)
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3.B. Analytic Correlations

The unconditional expectation of Ns can be derived using the law of total expec-
tation as follows:

E[Ns] = Eλs [ENs [Ns | λs]]

= Eλs [λs]

= eµs+ 1
2 Σss

The unconditional expectation of Ys can be similarly derived:

E[Ys] = ENs [EYs [Ys | Ns]]

= ENs [Nsps]

= λsps

The unconditional variance of Ns can be derived using the law of total variance:

Var(Ns) = Eλs [VarNs(Ns | λs)] + Varλs(ENs [Ns | λs])

= Eλs [λs]Varλs(λs)

= eµs+ 1
2 Σss + e2µs+Σss(eΣss − 1)

Similarly, the unconditional variance of Ys can be derived using the law of total
variance:

Var(Ys) = ENs [VarYs(Ys | Ns)] + VarNs(EYs [Ys | Ns])

= ENs [Nsps(1 − ps)] + VarNs(Nsps)

= λsps(1 − ps) + λsp
2
s

= λsps − λsp
2
s + λsp

s
s

= λsps
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3.B. Analytic Correlations

The unconditional covariance between Ns and Ns′ can be derived using the law of
total covariance:

Cov(Ns, Ns′) = Eλsλs′ [Cov(Ns, Ns′ | λs, λs′)] + Covλsλs′ (ENs[Ns | λs],ENs′ [Ns′ | λs′ ])

We assume, given a, abundances are independent: Cov(Ns, Ns′ | λs, λs′) = 0, so:

Cov(Ns, Ns′) = Covλsλs′ (ENs[Ns | λs],ENs′ [Ns′ | λs′ ])

= Cov(λs, λs′)

= eµs+µs′ + 1
2 (Σss+Σs′s′ )(eΣss′ − 1)

= (eµs+ 1
2 Σss)(eµs′ + 1

2 Σs′s′ )(eΣss′ − 1)

= E[Ns]E[Ns′ ](eΣss′ − 1)

Then the correlation between Ns and Ns′ can be easily computed using:

ρ(Ns, Ns′) = Cov(Ns, Ns′)√
Var(Ns),Var(Ns′)

ρ(Ns, Ns′) = (eµs+ 1
2 Σss)(eµs′ + 1

2 Σs′s′ )(eΣss′ − 1)
(
√
eµs+ 1

2 Σss + e2µs+Σss(eΣss − 1))(eµs′ + 1
2 Σs′s′ + e2µs′ +Σs′s′ (eΣs′s′ − 1))

where µ = µa + log(Ni,k−1,s + 1)µϕ, and Σ = Σa + log(Ni,k−1,s + 1)Σϕ
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3.B. Analytic Correlations

Hurdle-AR Model

Yi,t,k,s | Ni,k,s ∼ Binomial(Ni,k,s, ps)

Ni,k,s ∼ Poisson-Hurdle(λi,k,s, θ)

log(λi,k,s) = ai,s + log(Ni,k−1,s + 1)ϕs

ai,s ∼ Normals(µa,Σa)

ϕi,s ∼ Normals(µϕ,Σϕ)

λs ∼ logNormals(eµi+ 1
2 Σii , eµi+µj+ 1

2 (Σii+Σjj)(eΣij − 1))

Where µ = µa + log(Ni,k−1,s + 1)µϕ and Σ = Σa + log(Ni,k−1,s + 1)Σϕ, from the AR
analytic correlations. The hurdle model and AR model can be combined through
the substitution of these µ and Σ from the AR model into the Hurdle model
approximations below.

First we need the expectation, variance and covariance of the log-normal λs

E[λs] = eµs+ 1
2 Σss

Var(λs) = eµs+µs+ 1
2 (Σss+Σss)eΣss − 1) = e2µs+Σss(eΣss − 1)

Cov(λs, λs′) = eµs+µs′ + 1
2 (Σss+Σs′s′ )(eΣss′ − 1)

As N follows a Poisson-Hurdle distribution, the conditional expectation and vari-
ance are as follows:

E[Ns | λs] = (1 − θ)λs

1 − e−λs
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3.B. Analytic Correlations

Var(Ns | λs) = (1 − θ)
[

λs

1 − e−λs
− eλs( λs

1 − e−λs
)2
]

+ θ(1 − θ)( λs

1 − e−λs
)2

The conditional expectation and variance of the binomial Ys is given by:

E[Ys | Ns] = Nsps

Var(Ys | Ns) = Nsps(1 − ps)

The unconditional expectation of Ns can be derived using the law of total expec-
tation as follows:

E[Ns] = Eλs(ENs(Ns | λs))

= Eλs

(
(1 − θ)λs

1 − e−λs

)

This is a function f of the random variable λs. We can approximate the expected
value of this function using second-order Taylor expansions around the point λs =
µλs (where µλs is the expected value of λs) as follows:

f(λs) ≈ f(µλs) + fλs(µλs)(λs − µλs) + 1
2!fλsλs(µλs)(λs − µλs)2

E[f(λs)] ≈ E[f(µλs) + fλs(µλs)(λs − µλs) + 1
2!fλsλs(µλs)(λs − µλs)2]

= E[f(µλs)] + fλs(µλs)E[(λs − µλs)] + 1
2!fλsλs(µλs)E[(λs − µλs)2]

= f(µλs) + 1
2fλsλs(µλs)σ2

λs

Where σs
λs

is the variance of λs
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3.B. Analytic Correlations

In this case we have:

f(λs) = (1 − θ)λs

1 − e−λs

fλs,λs(λs) = e−λs(e−λsλs + λs + 2e−λs − 2)(1 − θ)
(1 − e−λs)3

E[λs] = eµs+ 1
2 Σss

Var(λs) = (e2µs+Σss)(eΣss − 1)

So:

E[Ns] ≈ (1 − θ)(µλs)
1 − e−µλs

+ σ2
λs

2
e−µλs (e−µλsµλs + µλs + 2e−µλs − 2)(1 − θ)

(1 − e−µλs )3

where µλs = eµs+ 1
2 Σss and σ2

λs
= (e2µs+Σss)(eΣss − 1)

The unconditional variance of Ns can be similarly derived. We begin by using the
law of total variance:

Var(Ns) = Eλs(VarNs(Ns | λs)) + Varλs(ENs(Ns | λs))

= Eλs

(
(1 − θ)

[
λs

1 − e−λs
− eλs( λs

1 − e−λs
)2
]

+ θ(1 − θ)( λs

1 − e−λs
)2)
)

+ Varλs

(
(1 − θ)λs

1 − e−λs

)

The variance of a function f of variable λs can also be approximated at the point
µλs using a second-order Taylor expansion as follows:

f(λs) ≈ f(µλs) + fλs(µλs)(λs − µλs) + 1
2!fλsλs(µλs)(λs − µλs)2

V ar[f(λs)] ≈ V ar[f(µλs) + fλs(µλs)(λs − µλs) + 1
2!fλsλs(µλs)(λs − µλs)2]

= V ar[f(µλs)] + fλs(µλs)2V ar[(λs − µλs)] + 1
2!fλsλs(µλs)2V ar[(λs − µλs)2]

= fλs(µλs)2Var(λs) + 1
2fλsλs(µλs)2Var(λ2

s − 2µλsλs + µλs)

= fλs(µλs)2Var(λs) + 1
2fλsλs(µλs)2Var(λ2

s − 2µλsλs)

= fλs(µλs)2Var(λs) + 1
2fλsλs(µλs)2(Var(λ2

s) + 4µ2
λs

Var(λs) − 4µλsCov(λ2
s, λs))
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3.B. Analytic Correlations

The variance of Ns can be approximated using two separate Taylor series expan-
sions. For the first Taylor series approximation let:

f(λs) = (1 − θ)
(

λs

1 − e−λs
− e−λs

(
λs

1 − e−λs

)2)
+ θ(1 − θ)

(
λs

1 − e−λs

)2

fλsλs(λs) = e−2λs(−e−λsλ2
s − 4λ2

s − eλsλ2
s + 5eλsλs − 5e−λsλs − 4eλs − 4e−λs + 8)(1 − θ)

(1 − e−λs)4

+ 2θ(2e−2λsλ2
s + e−λsλ2

s + 4e−2λsλs − 4e−λsλs + e−2λs − 2e−λs + 1)(1 − θ)
(1 − e−λs)4

E[λs] = eµs+ 1
2 Σss

Var(λs) = (e2µs+Σss)(eΣss − 1)

We then have:

Eλs

(
(1 − θ)

(
λs

1 − e−λs
− e−λs

(
λs

1 − e−λs

)2)
+ θ(1 − θ)

(
λs

1 − e−λs

)2)

≈ (1 − θ)
(

µλs

1 − e−µλs
− e−µλs

(
µλs

1 − e−µλs

)2)
+ θ(1 − θ)

(
µλs

1 − e−µλs

)2

+ σ2
λs

2

(
e−2µλs (−e−µλsµ2

λs
− 4µ2

λs
− e−µλsµ2

λs
+ 5eµλsµλs − 5e−µλsµλs − 4eµλs − 4e−µλs + 8)(1 − θ)

(1 − e−µλs )4

+ 2θ(2e−2µλsµ2
λs

+ e−µλsµ2
λs

+ 4e−2µλsµλs − 4e−µλsµλs + e−2µλs − 2e−µλs + 1)(1 − θ)
(1 − e−µλs )4

)

Where µλs = eµs+ 1
2 Σss and σ2

λs
= (e2µs+Σss)(eΣss − 1)
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3.B. Analytic Correlations

For the second Taylor series approximation let:

f(λs) = (1 − θ)λs

1 − e−λs

fλs(λs) = (1 − e−λs − e−λsλs)(1 − θ)
(1 − e−λs)2

fλs,λs(λs) = e−λs(e−λsλs + λs + 2e−λs − 2)(1 − θ)
(1 − e−λs)3

E[λs] = eµs+ 1
2 Σss

Var(λs) = (e2µs+Σss)(eΣss − 1)

Varλs

(
(1 − θ)λs

1 − e−λs

)
≈
(

(1 − e−µλs − e−µλsµλs)(1 − θ)
(1 − e−µλs )2

)2

σ2
λs

+ 1
2

(
e−µλs (e−µλsµλs + µλs + 2e−µλs − 2)(1 − θ)

(1 − e−µλs )3

)2

(Var(λ2
s) + 4µ2

λs
σ2

λs
− 4µλsCov(λ2

s, λs))

Where µλs = eµs+ 1
2 Σss and σ2

λs
= (e2µs+Σss)(eΣss − 1)

Var(λ2
s) = E[(λ2

s − E[λ2
s])2] = E[λ4

s] − E[λ2
s]2

and

Cov(λ2
s, λs) = E[λ3

s] − E[λ2
s]E[λs]

Now we need E[λ4
s] and E[λ3

s]

We can find both of these moments about the origin using their respective central
moments.

E[(λs − µλs)3] = (
√
eΣss)(2 + eΣss)

E[(λs − µλs)4] = −3 + 3e2Σss + 2e3Σss + e4Σss
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3.B. Analytic Correlations

E[λ3
s] = E[(λs − µλs)3] + 3E[λs]E[λ2

s] − 2(E[λs])3

E[λ4
s] = E[(λs − µλs)4] + 4E[λs]E[λ3

s] − 6(E[λs])2E[λ2
s] + 3(E[λs])4

Var(λ2
s) = E[λ4

s] − E[λ2
s]2

= E[(λs − µλs)4] + 4E[λs]E[λ3
s] − 6(E[λs])2E[λ2

s] + 3(E[λs])4 − E[λ2
s]2

= E[(λs − µλs)4] + 4E[λs](E[(λs − µλs)3 + 3E[λs]E[λ2
s − 2E[λs]2)

− 6(E[λs])2E[λ2
s] + 3(E[λs])4 − E[λ2

s]2

= −3 + 3e2Σss + 2e3Σss + e4Σss + 4µλs((
√
eΣss)(2 + eΣss) + 3µλs(σ2

λs
+ µ2

λs
) − 2µ3

λs
)

− 6µ2
λs

(σ2
λs

+mu2
λs

) + 3µ4
λs

− (σ2
λs

+ µ2
λs

)2

Cov(λ2
s, λs) = E[λ3

s] − E[λ2
s]E[λs]

= E[(λs − µλs)3] + 3E[λs]E[λ2
s] − 2(E[λs])3 − E[λ2

s]E[λs]

= (
√
eΣss)(2 + eΣss) + 3µλs(Var(λs) + E[λs]2) − 2µ3

λ − (Var(λs) + E[λs]2)µλs

= (
√
eΣss)(2 + eΣss) + 3µλs(σ2

λs
+ µ2

λs
) − 2µ3

λ − (σ2
λs

+ µ2
λs

)µλs

Thus we have:

Varλs

(
(1 − θ)λs

1 − e−λs

)
≈
(

(1 − e−µλs − e−µλsµλs)(1 − θ)
(1 − e−µλs )2

)2

σ2
λs

+ 1
2

(
e−µλs (e−µλsµλs + µλs + 2e−µλs − 2)(1 − θ)

(1 − e−µλs )3

)2

× (−3 + 3e2Σss + 2e3Σss + e4Σss + 4µλs((
√
eΣss)(2 + eΣss) + 3µλs(σ2

λs
+ µ2

λs
) − 2µ3

λs
)

− 6µ2
λs

(σ2
λs

+mu2
λs

) + 3µ4
λs

− (σ2
λs

+ µ2
λs

)2 + 4µ2
λs
σ2

λs

− 4µλs(
√
eΣss)(2 + eΣss) + 3µλs(σ2

λs
+ µ2

λs
) − 2µ3

λ − (σ2
λs

+ µ2
λs

)µλs)
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3.B. Analytic Correlations

Putting these together gives:

Var(Ns) = Eλs(VarNs(Ns | λs)) + Varλs(ENs(Ns | λs))

= Eλs

(
(1 − θ)

[
λs

1 − e−λs
− eλs( λs

1 − e−λs
)2
]

+ θ(1 − θ)( λs

1 − e−λs
)2)
)

+ Varλs

(
(1 − θ)λs

1 − e−λs

)

≈ (1 − θ)
(

µλs

1 − e−µλs
− e−µλs

(
µλs

1 − e−µλs

)2)
+ θ(1 − θ)

(
µλs

1 − e−µλs

)2

+ σ2
λs

2

(
e−2µλs (−e−µλsµ2

λs
− 4µ2

λs
− e−µλsµ2

λs
+ 5eµλsµλs − 5e−µλsµλs − 4eµλs − 4e−µλs + 8)(1 − θ)

(1 − e−µλs )4

+ 2θ(2e−2µλsµ2
λs

+ e−µλsµ2
λs

+ 4e−2µλsµλs − 4e−µλsµλs + e−2µλs − 2e−µλs + 1)(1 − θ)
(1 − e−µλs )4

)

+
(

(1 − e−µλs − e−µλsµλs)(1 − θ)
(1 − e−µλs )2

)2

σ2
λs

+ 1
2

(
e−µλs (e−µλsµλs + µλs + 2e−µλs − 2)(1 − θ)

(1 − e−µλs )3

)2

× (−3 + 3e2Σss + 2e3Σss + e4Σss + 4µλs((
√
eΣss)(2 + eΣss) + 3µλs(σ2

λs
+ µ2

λs
) − 2µ3

λs
)

− 6µ2
λs

(σ2
λs

+mu2
λs

) + 3µ4
λs

− (σ2
λs

+ µ2
λs

)2 + 4µ2
λs
σ2

λs

− 4µλs(
√
eΣss)(2 + eΣss) + 3µλs(σ2

λs
+ µ2

λs
) − 2µ3

λ − (σ2
λs

+ µ2
λs

)µλs)

Where µλs = eµs+ 1
2 Σss and σ2

λs
= (e2µs+Σss)(eΣss − 1)

Finally, the unconditional covariance between Ns and Ns′ can be derived using the
law of total covariance:

Cov(Ns, Ns′) = Eλsλs′ (Cov(Ns, Ns′ | λs, λs′) + Covλsλs′ (ENs(Ns | λs),ENs′ (Ns′ | λs′))

We assume that, given λ, abundances are independent: Cov(Ns, Ns′ | λs, λs′) = 0

Therefore:

Cov(Ns, Ns′) = Covλsλs′ (ENs(Ns | λs),ENs′ (Ns′ | λs′))

= Covλs,λs′

(
(1 − θ)λs

1 − e−λs
,
(1 − θ)λs′

1 − e−λs′

)
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3.B. Analytic Correlations

To find this covariance we can use the fact that

Cov
(

(1 − θ)λs

1 − e−λs
,
(1 − θ)λs′

1 − e−λs′

)
= E

[
(1 − θ)λs

1 − e−λs
×(1 − θ)λs′

1 − e−λs′

]
−E

[
(1 − θ)λs

1 − e−λs

]
E

[
(1 − θ)λs′

1 − e−λs′

]

A second-order Taylor series expansion in two variables near the point (µλs , µλs)
has the following form:

f(λs, λs′) ≈ f(µλs , µλs′ ) + fλs(µλs , µλs′ )(λs − µλs) + fλs′ (µλs , µλs′ )(λs′ − µλs′ )

+ 1
2(fλsλs(µλs , µλs′ )(λs − µλs)2 + fλs′ λs′ (µλs , µλs′ )(λs′ − µλs′ )2)

+ fλsλs′ (µλs , µλs′ )(λs − µλs)(λs′ − µλs′ )

E[f(λs, λs′)] ≈ E[f(µλs , µλs′ ) + fλs(µλs , µλs′ )(λs − µλs) + fλs′ (µλs , µλs′ )(λs′ − µλs′ )

+ 1
2(fλsλs(µλs , µλs′ )(λs − µλs)2 + fλs′ λs′ (µλs , µλs′ )(λs′ − µλs′ )2)

+ fλsλs′ (µλs , µλs′ )(λs − µλs)(λs′ − µλs′ )]

= E[f(µλs , µλs′ )] + fλs(µλs , µλs′ )E[(λs − µλs)] + fλs′ (µλs , µλs′ )E[(λs′ − µλs′ )]

+ 1
2fλsλs(µλs , µλs′ )E[(λs − µλs)]2 + 1

2fλs′ λs′ (µλs , µλs′ )E[(λs′ − µλs′ )]2

+ fλsλs′ (µλs , µλs′ )E[(λs − µλs)(λs′ − µλs′ )]

=f(µλs , µλs′ ) + 1
2fλs,λs(µλs , µλs′ )Var(λs) + 1

2fλs′ ,λs′ (µλs , µλs′ )Var(λs′)

+ fλs,λs′ (µλs , µλs′ )Cov(λs, λs′)

As E[λs − µλs ] = 0, E[(λs − µλs)(λs′ − µλs′ )] = Cov(λs, λs′)

and E[(λs − µλs)2] = Var(λ)

We know Var(λs) and Cov(λs, λs′) from the lognormal distribution, so now we
need the second derivatives of f(λs, λs′)
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3.B. Analytic Correlations

f(λs, λs′) =
(

(1 − θ)λs

1 − e−λs

)(
(1 − θ)λs′

1 − e−λs′

)

fλsλs(λsλs′) = e−λsλs′(1 − θ)2(e−λsλs + λs + 2e−λs − 2)
(1 − e−λs′ )(1 − e−λs)3

fλs′ λs′ (λs, λs′) = e−λs′λs(1 − θ)2(e−λs′λs′ + λs′ + 2e−λs′ − 2)
(1 − e−λs)(1 − e−λs′ )3

fλsλs′ (λs, λs′) = (1 − e−λs − e−λsλs)(1 − θ)2(1 − e−λs′ − e−λs′λs′)
(1 − e−λs)2(1 − e−λs′ )2

Evaluating these at the point (µλs , µλs′ ) gives:

f(µλs , µλs′ ) =
(

(1 − θ)µλs

1 − e−µλs

)(
(1 − θ)µλs′

1 − e−µλs′

)

fλsλs(µλsµλs′ ) =
e−µλsµλs′ (1 − θ)2(e−µλsµλs + µλs + 2e−µλs − 2)

(1 − e−µλs′ )(1 − e−µλs )3

fλs′ λs′ (µλs , µλs′ ) =
e−µλs′µλs(1 − θ)2(e−µλs′µλs′ + µλs′ + 2e−µλs′ − 2)

(1 − e−µλs )(1 − e−µλs′ )3

fλsλs′ (µλs , µλs′ ) =
(1 − e−µλs − e−µλsµλs)(1 − θ)2(1 − e−µλs′ − e−µλs′µλs′ )

(1 − e−µλs )2(1 − e−µλs′ )2

where µλs = E[λs] = eµs+Σss , from the lognormal distribution.

We then have:

E[f(λs, λs′)] ≈
(

(1 − θ)µλs

1 − e−µλs

)(
(1 − θ)µλs′

1 − e−µλs′

)

+
σλ2

s

2
e−µλsµλs′ (1 − θ)2(e−µλsµλs + µλs + 2e−µλs − 2)

(1 − e−µλs′ )(1 − e−µλs )3

+
σλ2

s′

2
e−µλs′µλs(1 − θ)2(e−µλs′µλs′ + µλs′ + 2e−µλs′ − 2)

(1 − e−µλs )(1 − e−µλs′ )3

+
Σλs,λs′ (1 − e−µλs − e−µλsµλs)(1 − θ)2(1 − e−µλs′ − e−µλs′µλs′ )

(1 − e−µλs )2(1 − e−µλs′ )2

Where:
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µλs = eµs+ 1
2 Σss ,

σ2
λs

= (e2µs+Σss)(eΣss − 1)

Σλs,λs′ = eµs+µs′ + 1
2 (Σss+Σs′s′ )(eΣss′ −1) are the mean, variance and covariance of the

log-normal distribution.

Cov(Ns, Ns′) =
(

(1 − θ)µλs

1 − e−µλs

)(
(1 − θ)µλs′

1 − e−µλs′

)

+
σλ2

s

2
e−µλsµλs′ (1 − θ)2(e−µλsµλs + µλs + 2e−µλs − 2)

(1 − e−µλs′ )(1 − e−µλs )3

+
σλ2

s′

2
e−µλs′µλs(1 − θ)2(e−µλs′µλs′ + µλs′ + 2e−µλs′ − 2)

(1 − e−µλs )(1 − e−µλs′ )3

+
Σλs,λs′ (1 − e−µλs − e−µλsµλs)(1 − θ)2(1 − e−µλs′ − e−µλs′µλs′ )

(1 − e−µλs )2(1 − e−µλs′ )2

−
(

(1 − θ)(µλs)
1 − e−µλs

+ σ2
λs

2
e−µλs (e−µλsµλs + µλs + 2e−µλs − 2)(1 − θ)

(1 − e−µλs )3

)

×
(

(1 − θ)(µλs′ )
1 − e−µλs′

+
σ2

λs′

2
e−µλs′ (e−µλs′µλs′ + µλs′ + 2e−µλs′ − 2)(1 − θ)

(1 − e−µλs′ )3

)

The correlation between species’ abundances can then be calculated using:

ρ(Ns, Ns′) = Cov(Ns, Ns′)√
Var(Ns),Var(Ns′)
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3.C Estimated Abundances
In this section, we provide a comparison of the maximum observed abundance
with the maximum abundance estimated from the Hurdle(C) Model, fitted to the
North American Breeding Bird Survey data, as discussed in Section 3.4. This
table demonstrates that this dataset is not producing excessively large estimates
for abundance N , as described by Dennis et al. (2015).

Species Maximum Y Maximum N
Bald Eagle 29 39

Canada Goose 24 46
Hammond’s Flycatcher 4 10
Red-breasted Sapsucker 4 22

Steller’s Jay 6 14
Swainson’s Thrush 12 71

Tree Swallow 50 53
Trumpeter Swan 38 39
Varied Thrush 21 70
Wilson’s Snipe 6 43

Table 3.C.1: Maximum observed and estimated abundances per species, produced
by the Hurdle(C) model.
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3.D Coverage Probabilities
True Median Value Coverage

p λ θ N Σ p µa θ ϕ
MNM

0.3 7 - 0.55 0.53 0.49 0.49 - -
0.3 55 - 0.49 0.51 0.48 0.45 - -
0.8 7 - 0.56 0.52 0.47 0.54 - -
0.8 55 - 0.52 0.52 0.51 0.58 - -

Hurdle
0.3 7 0.2 0.61 0.57 0.45 0.52 0.54 -
0.3 7 0.7 0.72 0.60 0.47 0.50 0.6 -
0.3 55 0.2 0.59 0.51 0.49 0.51 0.45 -
0.3 55 0.7 0.70 0.52 0.51 0.52 0.50 -
0.8 7 0.2 0.64 0.51 0.53 0.51 0.42 -
0.8 7 0.7 0.73 0.55 0.53 0.55 0.54 -
0.8 55 0.2 0.60 0.52 0.52 0.52 0.53 -
0.8 55 0.7 0.69 0.56 0.46 0.56 0.54 -

AR
0.3 7 - 0.59 0.53 0.54 0.52 - 0.52
0.3 55 - 0.53 0.54 0.53 0.49 - 0.45
0.8 7 - 0.54 0.51 0.52 0.48 - 0.50
0.8 55 - 0.52 0.52 0.51 0.49 - 0.47

Hurdle-AR
0.3 7 0.2 0.66 0.54 0.54 0.56 0.42 0.47
0.3 7 0.7 0.85 0.53 0.51 0.56 0.46 0.46
0.3 55 0.2 0.62 0.49 0.50 0.51 0.52 0.49
0.3 55 0.7 0.84 0.51 0.52 0.50 0.48 0.50
0.8 7 0.2 0.66 0.52 0.55 0.50 0.54 0.51
0.8 7 0.7 0.87 0.51 0.46 0.47 0.54 0.50
0.8 55 0.2 0.63 0.52 0.58 0.49 0.48 0.48
0.8 55 0.7 0.84 0.52 0.47 0.50 0.54 0.41

Table 3.D.1: Coverage probabilities for the small-scale MNM simulations – i.e. the
proportion of small-scale simulations ((R, T, S,K) = (10, 5, 5, 5)) in which the true
parameter value lies within the estimated 50% credible interval.
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True Median Value Coverage
p λ θ N Σ p µa θ ϕ

MNM
0.3 7 - 0.55 0.53 0.46 0.50 - -
0.3 55 - 0.49 0.52 0.45 0.47 - -
0.8 7 - 0.52 0.52 0.49 0.43 - -
0.8 55 - 0.51 0.53 0.50 0.42 - -

Hurdle
0.3 7 0.2 0.61 0.53 0.38 0.39 0.43 -
0.3 7 0.7 0.84 0.54 0.37 0.38 0.51 -
0.3 55 0.2 0.51 0.54 0.36 0.36 0.46 -
0.3 55 0.7 0.78 0.55 0.30 0.25 0.54 -
0.8 7 0.2 0.62 0.51 0.53 0.52 0.44 -
0.8 7 0.7 0.85 0.53 0.51 0.51 0.57 -
0.8 55 0.2 0.61 0.55 0.49 0.48 0.58 -
0.8 55 0.7 0.85 0.56 0.50 0.41 0.6

AR
0.3 7 - 0.58 0.56 0.48 0.45 - 0.48
0.3 55 - 0.52 0.50 0.51 0.52 - 0.51
0.8 7 - 0.52 0.53 0.48 0.51 - 0.52
0.8 55 - 0.49 0.47 0.53 0.47 - 0.46

Hurdle-AR
0.3 7 0.2 0.66 0.53 0.46 0.53 0.45 0.50
0.3 7 0.7 0.78 0.51 0.50 0.45 0.56 0.52
0.3 55 0.2 0.60 0.56 0.49 0.49 0.40 0.48
0.3 55 0.7 0.74 0.54 0.47 0.52 0.40 0.53
0.8 7 0.2 0.63 0.56 0.47 0.48 0.48 0.45
0.8 7 0.7 0.76 0.53 0.48 0.47 0.44 0.50
0.8 55 0.2 0.59 0.54 0.49 0.49 0.42 0.49
0.8 55 0.7 0.74 0.55 0.41 0.44 0.40 0.50

Table 3.D.2: Coverage probabilities for the large-scale MNM simulations – i.e. the
proportion of large-scale simulations ((R, T, S,K) = (100, 10, 10, 10)) in which the
true parameter value lies within the estimated 50% credible interval.
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CHAPTER 4
A Review and Comparison of

N-Mixture Models and
Extensions

In this chapter, we discuss the original N-mixture model, detail its advantages and
assumptions, and present notation and terminologies used. We then discuss a range
of extensions that have been made to this original model that allow for the estimation
of animal abundance in scenarios not supported by the original model, such as when
observations are available for multiple species, or when a large number of zero counts
are present in the data. Finally we demonstrate how this original model may be used to
estimate abundances for bee species using data collected at sites in the UK. For those
interested, R code that implements this approach is available at https://github.c

om/niamhmimnagh/insect_populations_ch11.

4.1 Introduction
The sizes of a certain animal populations are often of interest to many profession-
als that work in conservation, such as biologists, ecologists and environmentalists
(Krebs, 1972; Norris, 2004). This information is important to evaluate whether
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4.2. N-Mixture Model for a Closed Population

the population size is growing, stable, diminishing or at risk of extinction. In the
context of conservation policies and monitoring programmes, it can give an idea
whether the actions that have been carried out are proving successful (Jenkins
et al., 2003). Animal abundance data normally consists of counts at different loca-
tions (referred to generally as sites or transects) and periods (sampling occasions),
which are obtained using methods which may or may not involve the capture of
the animal (Williams et al., 2002). However, the recorded information is usually
imperfect in the sense that it does not represent the total abundance, which pre-
vents traditional statistical techniques based on linear models from being used in
the analysis of these data.

This chapter presents the N-mixture model proposed by Royle (2004) from the
frequentist and Bayesian perspectives. This model assumes that the animal counts
follow a binomial distribution and that the population under analysis is closed (i.e.,
it does not change over time due to births, deaths or migration). This chapter will
also explore extensions to this original model, which allow for the relaxation of this
assumption of a closed population, the analysis of multiple species simultaneously,
and the use of data which contains large numbers of zero-counts. This chapter will
finish by presenting how some of these models may be implemented to estimate
abundances of foraging bees, on data collected as part of the BeeWalk Survey.

4.2 N-Mixture Model for a Closed Population
Let Yit denote the counts associated with distinct animals from the same species at
site i and sampling occasion t, where i = 1, 2, . . . , R and t = 1, 2, . . . , T . In the N-
mixture model proposed by Royle (2004), the Yit are assumed to be independent
and identically distributed (i.i.d) realisations from a binomial distribution with
denominator Ni, with the likelihood function given by

L({Ni}R
1 , p|Y) =

R∏
i=1

[
T∏

t=1

(
Ni

Yi,t

)
pYit(1 − p)Ni−Yit

]
, (4.1)

where Ni is the latent population size at site i, p corresponds to the probability of
detecting the animals of interest and Y denotes an R × T matrix which contains
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the counts Yit. One advantage of this model is that it accounts for imperfect
detection as Yi,t represents the number of animals observed at site i and time t,
while Ni is actually the quantity of interest since it is the true (and latent) number
of animals at site i. In the form presented in (4.1), the N-mixture model assumes
that the true population, Ni, does not change over time, which may be reasonable
if studies are carried out over a short time period, and depending on the species
being observed.

To estimate the latent abundance, Ni, and the detection probability, p, Ni is consid-
ered as a random effect (or a nuisance parameter) and then standard optimisation
methods can be used to estimate both parameters. In this case, a distribution
π(Ni|θ) is assumed for Ni, which can be any positive discrete distribution, and
the estimation of the parameters θ and p is obtained by maximising the integrated
likelihood function

L(p,θ|Y) =
R∏

i=1

 ∞∑
Ni=maxt{Yit}


(

T∏
t=1

(
Ni

Yit

)
pYit(1 − p)Ni−Yit

)
π(Ni|θ)


 . (4.2)

The Poisson and negative binomial distributions are reasonable choices for π(Ni|θ).
For the Poisson distribution, θ = λ is a scalar. For the negative binomial distri-
bution, θ is a vector. It is also possible to use covariates to model θ (e.g., θ = λ

can be modelled via log-linear predictor when π(Ni|θ) is a Poisson) in order to
evaluate whether external information might help to predict the total abundance.
In practice, N-mixture models are available through the R (R Core Team, 2022)
package unmarked (Fiske and Chandler, 2011).

From the Bayesian viewpoint, the likelihood function of the N-mixture model is
the same as presented in (4.1). However, to estimate the parameters of interest (Ni

and p), the likelihood does not require any marginalisation as in (4.2). Instead,
prior distributions are placed on Ni and p and the inference is carried out through
the posterior distribution. The prior distributions describe the knowledge that one
possesses about these parameters beforehand (e.g., due to experience or previous
studies) and their specification should reflect it. In the Bayesian N-mixture model,
the joint posterior distribution is proportional to the likelihood function times the
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priors as

π({Ni}R
i=1, p|Y) ∝

[
R∏

i=1

T∏
t=1

(
Ni

Yit

)
pYit(1 − p)Ni−Yit

]
×
[

R∏
i=1

π(Ni|θ)
]
π(θ) π(p), (4.3)

where π(·) represent the prior distributions. Similar to its frequentist counterpart,
the Bayesian N-mixture model can be easily implemented through R packages,
such as R2jags (Su and Yajima, 2020), via probabilistic programming languages
like JAGS (Plummer, 2003) and Stan (Carpenter et al., 2017).

Though the N-mixture models are interesting modelling alternatives to estimate
latent abundances, they present some limitations. First, these models assume that
the population under study does not evolve over time, which is an assumption
that can be appropriate for short-term studies but not for medium- and long-term
programmes where the animals are followed for years or even decades. Second,
these models allow only one species to be analysed at a time. That is, if there
is an interest in analysing how two or more species interact jointly in a given
environment (e.g., prey and predator), the original N-mixture model cannot be
used because it does not account for multiple species nor for any sort of correlation
measure that might exist between different species. Third, the counts Yit are
assumed to be independent which implies that the sites where the counts are
collected are also independent. In practice, the latter assumption is satisfied when
the sites under study are reasonably far apart so that the animals in one site can
not easily access other sites.

Some of these limitations have been recognised, and N-mixture models have been
extended to deal with different applications. Its theoretical and computational as-
pects have also been explored. The closure assumption has been relaxed in models
by Dail and Madsen (2011); Hostetler and Chandler (2015); Mimnagh et al. (2022),
and in Section 4.3.2 we provide further details about these N-mixture models for
open populations, which allow the species under study to change over time. In
addition, we highlight the work of Martin et al. (2011) who consider that both p

and Ni are random effects in a Bayesian approach to account for non-independent
detection. Thus, a beta distribution with fixed hyperparameters is adopted for p.
In some cases, however, it may be of interest to estimate the detection probability
through covariates specified in a linear predictor, but under this framework this
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is not possible. For instance, characteristics inherent to the environment, such as
temperature, vegetation and observer experience, may influence in the detection
of the animals (Kéry et al., 2009). Also, the value of the detection probability p

impacts directly the estimates of the total abundance, and there is not a default
mechanism to choose ideal values for the hyperparameters of the distribution on
p.

Haines (2016) shows that the infinite sum in (4.2) can be re-expressed in a closed
form by using a hypergeometric function, thus avoiding the need to set an upper
limit. This is an important contribution to the estimation of the parameters in the
frequentist N-mixture model as, in practice, an upper bound needs to be estab-
lished in such way that the sum of the remainder terms is negligible. In addition,
the specification of the upper bound in the sum over Ni and the equivalence be-
tween the N-mixture model proposed by Royle (2004) and the multivariate Poisson
model were explored by Dennis et al. (2015). Via simulation studies, they show
that the N-mixture model can produce ‘infinite’ estimates for the latent abundance
(Ni) when both the detection probability (p) and the number of periods of obser-
vations (T ) are small. For these situations, they proposed some diagnostics based
on the method of moments to identify beforehand if the estimate of the abundance
will potentially be unrealistic. In short, the diagnostics suppose that Ni follows a
mixed-Poisson distribution in the form of

π(Ni) =
∫ ∞

0
π(Ni|λ)g(λ)dλ

=
∫ ∞

0

λN
i e

−λ

Ni!
g(λ)dλ,

where g(λ) is the mixing distribution, E[Ni] = λ and V(Ni) = σ2 ≥ λ. Considering
that Yit|Ni, p ∼ Binomial(Ni, p) and that E[Yit|Ni, p] = Nip, E[Y 2

it |Ni, p] = Nip(1−
p) + N2p2 and E[Yit, Yit′|Ni, p] = N2

i p
2, for all t ̸= t′, the following unconditional

expectations are given by

E[Yit] = λp,

E[Y 2
it ] = λp(1 − p) + (λ2 + σ2)p2,

E[Yit, Yit′ ] = (λ2 + σ2)p2.
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Hence, the method of moments estimators for p, λ and σ2 are

p̂ = (m1 −m2 +m12)/m1,

λ̂ = m1/p̂,

σ̂2 = (m12 −m2
1)/p̂2,

where
m1 = 1

RT

T∑
t=1

R∑
i

Yit,

m2 = 1
RT

T∑
t=1

R∑
i

Y 2
it ,

m12 = 2
RT (T − 1)

T∑
t=1

T∑
t′=t+1

R∑
i

YitYt′t.

Since 0 ≤ p ≤ 1 represents a probability, λ a positive rate and σ2 a measure of
variance, the diagnostics are based on the following inequalities:

m1 −m2 +m12 > 0,

m1 −m2 +m12 ≤ m1 and

m12 −m2
1 ≥ 0.

Dennis et al. (2015) highlight that when one of the inequalities above is violated, in
most of the cases the estimate for λ is very large, whereas the detection probability,
p, is very small. In their simulations, the greater the detection probability and the
number of periods of observations, the less the inequalities are violated. However,
there are cases where the inequalities are satisfied, but the estimate for λ is still
large. In contrast, situations where λ is finite and the inequalities are violated are
also found. Nonetheless, they recommend using the following covariance diagnostic
to determine whether unrealistic estimates may arise.

For more than two sampling occasions (T > 2),

cov(y1, ..., yT ) = 2(y1y2, . . . , yT −1yT )
T (T − 1) −

(y1 + . . .+ yT

T

)2

where y1y2 denotes the mean of the product y1y2 over R sites. A negative value
for this covariance diagnostic suggests that the issue of infinite estimates of λ
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may arise. An implementation of this covariance diagnostic in R is available in
Appendix 4.C

4.3 Model Extensions
Following the introduction of the N-mixture model by Royle (2004), many exten-
sions have been proposed to estimate abundances using a broad range of data.
This includes, but is not limited to, data in which species abundances are per-
mitted to vary with time, data containing abundances for multiple species, data
pertaining to species that are observed very rarely, and data with a large propor-
tion of zero-counts. In this section, we will examine the methodologies proposed
for some of these extensions.

4.3.1 N-Mixture Models for Multiple Species
The N-mixture model introduced by Royle (2004) provides estimates of abundance
for single species. There have since been several extensions made to this model
that allow us to examine abundances of multiple species simultaneously.

Golding et al. (2017) proposed a multi-species extension to the N-mixture where
the imperfect detection is addressed in the form of false-positive errors, by combin-
ing the N-mixture model with a dependent double-observer data collection frame-
work. This framework involves a primary observer recording the number of in-
dividuals that they observe, and a secondary observer verifying the observations
of the first observer. This observation method has three possible outcomes, with
three associated probabilities:

1. The primary observer observes an individual with probability p1.

2. The secondary observer observes an individual that the primary observer
missed with probability (1 − p1)p2.

3. Both observers miss an individual with probability (1 − p1)(1 − p2).

Because this process has multiple possible outcomes, the observation process in
this case cannot be modelled using a binomial distribution as in the Royle (2004)
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paper, but is instead a multinomial process. The abundance of species s at site i
and sampling occasion t is then modelled as:

Yits ∼ Multinomial(Ni,πits),

where πits represents the survey outcomes. This model may prove useful in sce-
narios where the possibility of misidentification or double-counting of individuals
is a concern, though it requires the presence of a second observer, which may not
be practical for every data-collection programme.

Gomez et al. (2018) proposed a multi-species extension to the N-mixture model
which involves the use of a beta distribution for the detection probability of low-
abundance species. The abundance of species s at site i and sampling occasion t

is in this modeling framework represented by:

Yits ∼ Binomial(Nis, ps),

ps ∼ Beta(τ p̄, τ(1 − p̄)),

where p̄ is the mean detection probability among species, and τ is a precision pa-
rameter that measures the similarity in detection probabilities. The use of the beta
distribution to model the detection probability allows for sharing strength between
species, using information for abundant species to inform detection probabilities
for less abundant species. In turn, this can allow the estimation of abundance for
species whose rarity may otherwise preclude them from examination.

Moral et al. (2018) developed a method that allows for the estimation of abun-
dances of two species, as well as a measurement of the relationship between them.
This is achieved through the inclusion of a parameter in the abundance of one
species which links it to the other species. At site i and sampling occasion t, the
abundance of one species is allowed to depend on the other species as follows:

Yit1 ∼ Binomial(Ni1),

Ni1 ∼ Poisson(λi1),

Yit2 ∼ Binomial(Ni2),

Ni2 ∼ Poisson(ψi + λi2Ni1),
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where λi2 > 0 allows for a positive impact of the abundance of one species on
the other, while λi2 = 0 suggests that one species does not impact the other.
In this case, the parameter ψi allows the species to be independently modelled.
This modeling framework provides the opportunity to make inferences as to the
relationship between species with the inclusion of the λi2 parameter, though it
focuses on pairs of species, rather than the community as a whole.

Mimnagh et al. (2022) proposed the multi-species N-Mixture (MNM) model, de-
tailed in Chapter 3. This is a methodology that allows for the measurement of
abundances of multiple species, and the relationships between them through the
estimation of inter-species correlations, which are introduced using a multivari-
ate normal random effect in the abundance. For species s at site i and sampling
occasion t, this model may be summarised as:

Yits ∼ Binomial(Nis, pits),

Nis ∼ Poisson(λis),

log(λis) = ais + x⊤
i βs,

ai ∼ MVN(µa,Σa),

where MVN(·, ·) denotes a multivariate normal distribution and xi represents a
vector of covariates at the site level that can be used to better predict the latent
abundance Nis. The unstructured covariance matrix Σa allows for the estimation
of positive and negative inter-species correlations in abundance, and allows the
user to make inferences as to the relationships that these species have with one
another.

A disadvantage common to all of the models described in this Section is an inability
to deal with species present in the study area which are not observed during the
survey. This is an area of interest that has been examined in terms of occupancy
modelling, but a solution remains to be found for abundance modelling.

4.3.2 N-Mixture Models for an Open Population
The N-mixture model introduced by Royle (2004) assumes that the population at
each site is closed, since it considers that the latent population, Ni, does not change
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over time. However, this assumption can be violated in studies where animals are
observed during many years or even decades. For these cases, Kéry et al. (2009)
and Dail and Madsen (2011) proposed extensions to deal with open populations.
In this Section, we focus on the model proposed by Dail and Madsen (2011), as
the model proposed by Kéry et al. (2009) can be viewed as a specific case.

The generalised N-mixture for open populations considers that the site abundance
vary throughout the periods of observation. The counts Yit ∼ binomial(Nit, p),
where Nit denotes the population size at site i and time t. Hence, the integrated
likelihood function is given in the form of

L(p,θ|{Yit}) =
R∏

i=1

 ∞∑
Ni1=Yi1

· · ·
∞∑

Nit=Yit


(

T∏
t=1

(
Nit

Yit

)
pYit(1 − p)Ni−Yit

)
×

π(Ni1, . . . , Nit,θ)


 .

The estimation of the parameters is carried out assuming that the abundance
at each site and time has a first-order Markovian structure, i.e., that Nit de-
pends only on Ni(t−1). Thus, the distribution for the abundance can be written as
π(Ni1, . . . , NiT ,θ) = π(Ni1,θ)∏T

t=2 π(Nit, Ni(t−1),θ), where π(Ni1,θ) is the distri-
bution of the initial abundance at site i and time 1. In addition, π(Nit, Ni(t−1),θ)
is modelled through migration decomposition (Nichols et al., 2000) as a sum of
two independent random variables, Sit and Git, where Sit represents the animals
at site i and time t who survived from t − 1 and Git denotes gains (new animals,
e.g., due to births and/or immigration) at site i since time t− 1. In probabilistic
terms, these variables are represented as

Git|Ni(t−1) ∼ Poisson(γ(Ni(t−1))),

Sit|Ni(t−1), ω ∼ Binomial(Ni(t−1), ω),

where γ(Ni(t−1)) is the rate of the new arrivals at site i, which can be a function of
the site abundance in the previous time, and ω represents the survival probability.
In this case, the discrete convolution, Pa,b, that is used to represent the prior
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distribution from state Ni(t−1) = a to Nit = b, for t > 1, is given by

Pa,b =
min{a,b}∑

c=0
Binomial(c; a, ω) × Poisson(b− c; γ(a))

=
min{a,b}∑

c=0


(
a

c

)
ωc(1 − ω)b−a × γ(a)b−ce−γ(a)

(b− c)!

.
Assuming that π(Ni1; θ) can be any discrete positive distribution, e.g., a Poisson(λ),
the integrated likelihood in (4.4) can be rewritten as

L(p, λ, ω, α|{Yit}) =
R∏

i=1

 ∞∑
Ni1=Yi1

· · ·
∞∑

Nit=Yit


 T∏

t=1

(
Nit

Yit

)
pYit(1 − p)Ni−Yit

×

λNi1e−λ

Ni1!

T∏
t=2

PNi(t−1),Nit


 . (4.4)

Although the sum over Nit is infinite, in practice it is necessary to set an upper
bound, L, large enough that the remainder sum does not impact significantly the
parameter estimates. For the simulations and examples, Dail and Madsen (2011)
set L = 200. However, they mention that the ideal choice may depend on the
observed counts, and its choice varies according to the problem at hand. As in the
N-mixture model for closed population, to estimate the parameters via classical
inference, numerical optimisation methods are required, as it is not possible to find
a closed-form expression for the integrated likelihood.

Additionally, Dail and Madsen (2011) proposed a closure test to verify whether
the population under analysis is from a closed population or not. As the model
proposed by Royle (2004) is a particular case when ω = 1 and γ = 0, it is possible
to utilise, for T sufficiently large, the asymptotic test introduced by Self and Liang
(1987) to test {H0 : γ = 0 and ω = 1} versus {H1 : γ ̸= 0 and 0 ≤ ω < 1}. As the
asymptotic distribution of the test is based on mixtures of Chi-squared distribu-
tions and depends on the Fisher information matrix, they recommend the use of
the observed information matrix, as the expected one cannot be obtained analyti-
cally. However, under the Bayesian perspective, the results of the asymptotic test
are based only on the posterior distributions of ω and γ, and it is not necessary to
obtain an information matrix.
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Due to the Markovian structure in the estimation of the parameters, the abundance
estimate at each time, assuming π(Ni1; θ) = Poisson(λ), is obtained as

N̂.1 = Rλ̂,

N̂.t = ω̂N̂.t−1 +Rγ̂,

where R is the number of sites, N̂.1 is the initial abundance at time 1 (regardless
of the site), N̂.t is the abundance at time t, and λ̂, ω̂ and γ̂ are the estimates
of the parameters λ, ω and γ, respectively. In addition, an estimate of trend in
the abundances can be obtained dividing N̂.t−1 by N̂.t. If there is no interest in
obtaining the abundance per period, the total abundance can be computed as
N̂ = Rλ̂.

While Dail and Madsen (2011) partition the open-population model into survival
Sit and recruitment Git, Hostetler and Chandler (2015) explain that this parti-
tioning is not always possible if sites are not closed with respect to movement. In
this case, it is suggested that we might replace the mechanistic model of Dail and
Madsen (2011) with a classical population growth model. In an unlimited envi-
ronment, population growth may be simply modelled using an exponential growth
model, where r is the maximum per capita rate of increase:

Nit ∼ Poisson(erNi(t−1)).

For scenarios in which a limit on population size exists, density-dependent versions
of this model are also possible. If K is the stable equilibrium of a population and r
is the population growth rate at low population density, abundance may be given
by:

Nit ∼ Poisson
(
e

r

(
1−

Ni(t−1)
K

)
Ni(t−1)

)
.

Further to this, immigration models that allow for population growth following
extinction, may be implemented through the addition of a term ν that describes
the average number of immigrants per year:

Nit ∼ Poisson
(
erNi(t−1) + ν

)
.
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The density-dependent models may also incorporate immigration in the same way.

Mutshinda et al. (2009) proposed an approach which breaks down changes in
species abundance over time into contributions from species interactions and en-
vironmental noise to determine which ones impose the greatest influence on com-
munity dynamics. This model proposes that the abundance of species i at time t
may be modelled as follows.

Nit|Ni(t−1) = Ni(t−1)e
ri[1−

∑S

j=1 αij logNj(t−1)
ki

]+eit

where ri is the intrinsic growth rate and ki is the natural logarithm of the carrying
capacity of species i, αij represents the interaction between species i and j, and
eit is a Gaussian variable that introduces environmental noise to the framework.

The multi-species N-mixture model by Mimnagh et al. (2022) described in sec-
tion 4.3.1 may also be extended to allow for a relaxation of the closure assumption
through the introduction of an autoregressive component on the abundance. Abun-
dance is collected at i sites, t sampling occasions, for s species over k years, and
is modelled as:

Yitks ∼ Binomial(Niks, pitks),

Niks ∼ Poisson(λiks).

If k = 1, then λi1s is defined as:

log(λi1s) = ais + x⊤
i βs.

For k > 1, λiks is allowed to depend on the latent abundance at year k − 1:

log(λiks) = ais + x⊤
i βs + ϕslog(Ni(k−1)s + 1).

This model allows the estimation of inter-species correlations that vary by year,
which can allow for inter-species relationships that change in time, though the
current specification of ϕs is restricted to correlations whose sign does not change
from one year to the next.

95



4.3. Model Extensions

4.3.3 N-Mixture Models for Zero-Inflated Data
The original N-mixture model assumes that the latent abundance can be described
using a Poisson distribution. This may not always be justified, particularly when
data contains a large number of zero-counts; a common scenario to encounter
when working with animal observation data which arises from surveying unoc-
cupied sites. A negative binomial distribution allows for extra-Poisson variation
by allowing the mean abundance to vary stochastically, and so a substitution of
the Poisson distribution on abundance for a negative binomial distribution may
accommodate a limited amount of zero-inflation. However, many datasets contain
a larger number of zero-counts than may be modelled using the negative binomial
distribution. If the negative binomial distribution proves unsuitable, distributions
that accommodate zero-inflation in the data, including the zero-inflated Poisson
distribution and zero-altered (hurdle) Poisson distribution, may be used as an
alternative. The modelling frameworks described in this section accommodate
zero-inflation by first determining whether a site is occupied, and subsequently
estimating abundance of occupied sites.

Wenger and Freeman (2008) proposed a method that allows for the use of the N-
mixture model to simultaneously model occurrence and abundance by specifying a
zero-inflated distribution for the abundance. This is done by specifying a binomial
distribution for the occupancy, Oi, and introducing a variable Ki, which is the
realised abundance at site i, given presence, as:

Oi ∼ Bernoulli(ϕi),

Ki ∼ Poisson(λi),

Ni = Oi ×Ki.

This modelling framework was not intended for use specifically with count data
that contains a large number of zero-counts, but rather as an alternative to the
original N-mixture model for any count dataset, with the aim of obtaining both
occupancy and abundance estimates from a single model. This model retains the
assumptions inherent under the original N-mixture model, and so may be used to
estimate single-species abundance for a closed population.
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Joseph et al. (2009) developed a framework that uses the zero-inflated Poisson
and zero-inflated negative binomial models. These are both a combination of a
Bernoulli process, which determines occupancy, and a negative binomial or Poisson
process, which determines abundance. To implement the zero-inflated Poisson
model, the site occupancy is given by:

Oi ∼ Bernoulli(1 − θ),

where Oi represents the occupancy at site i, and θ is the probability of obtaining a
zero-count. If the site is deemed to be occupied, the abundance is then estimated
using a Poisson distribution as in the original N-mixture model.

Hostetler and Chandler (2015) also proposed an extension that uses a zero-inflated
Poisson distribution to model excess zero-counts. This is achieved by specifying
the true abundance at site i and sampling occasion t as follows.

Nit ∼

Poisson(0) with probability γ

Poisson(Λ) with probability (1 − γ)

where γ represents the proportion of excess zero counts.

The MNM model proposed by Mimnagh et al. (2022) may also be used to model ex-
cess zeros in the observations through the use of a hurdle-Poisson (or zero-altered)
model in the abundance. The observations Yits are assigned a binomial distribu-
tion, as described in Section 4.3.1. The hurdle-Poisson distribution then consists of
two separate processes. The first is a Bernoulli process, which determines whether
a site is occupied (abundance is non-zero) or unoccupied (abundance is zero). If
the abundance is non-zero, a second random variable with a zero-truncated Poisson
distribution determines the value of the abundance, i.e.,

Ois ∼ Bernoulli(1 − θ),

Cis ∼ zero-truncated Poisson(λis).

where Ois represents the occupancy of species s at site i, θ is the probability of
obtaining a zero-count, and Cis represents the abundance of species s at site i.
This abundance Cis is only estimated at sites that are occupied by a particular
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species (i.e., Ois = 1). The abundance Nis is then defined as

Nis =

0, if Ois = 0

Cis, if Ois = 1
,

This may be written as:

Nis ∼ hurdle-Poisson(λis, θ).

The hurdle-Poisson model described by Mimnagh et al. (2022) differs from the
zero-inflated Poisson model described by Joseph et al. (2009) in the assumptions
required for abundance estimation. The use of a zero-truncated Poisson distri-
bution for abundance assumes that all zeros arising in the data arise from the
occupancy process, while the zero-inflated Poisson distribution allows zeros to
arise from both the occupancy and abundance processes. The decision as to which
model to use will depend on the goal of the user. If the user is interested in exam-
ining true and false zeros (i.e., zeros produced because the site is unoccupied, and
zeros produced because, though the site is occupied, no observations were made),
then a zero-inflated model is an appropriate choice. If the analysis is concerned
with whether a count is zero or non-zero, and the user is uninterested in the origin
of the zero counts, then all zeros may be assigned to the occupancy process and
the hurdle-Poisson model may be used.

We now employ some of the different extensions to N-mixture models to a real
dataset in the case study described below.

4.4 Case Study: Bee Abundance
Wild bee species play major roles in pollination, increasing the yield of approx-
imately 85% of all cultivated crops (Zattara and Aizen, 2021). Abundance and
diversity of bee species are reported to be in decline on a near-global level (Theisen-
Jones and Bienefeld, 2016; Pettis and Delaplane, 2010; Leonhardt et al., 2013),
with economic and ecological repercussions inherent in this decline. In order to
make decisions concerning management of bee populations (i.e., conservation, use,
and monitoring, according to Caughley (1994)), it is beneficial for us to be able to
estimate species abundance.
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Here, we examine how bee population sizes may be estimated using the original
N-mixture model (Royle, 2004) and the multi-species N-mixture model (Mimnagh
et al., 2022). This analysis is motivated by data collected as part of the BeeWalk
Survey Scheme (Comont et al., 2021), a programme established in 2008 by the
Bumblebee Conservation Trust, which involves transects being surveyed by volun-
teers across the UK on a monthly basis. By the end of the 2019 data-collection
period, data had been collected for approximately 70 bee species, at over 1, 300
sites in the UK. Here we examine bee observation data collected in 2016 and 2019.
To ensure that we are comparing data collected from the same seasonal cycles, we
examine data collected in June of both years.

The models described in this Section are implemented using a Bayesian frame-
work. Each of the models were implemented in R (R Core Team, 2022) through
the probabilistic programming software JAGS (Plummer, 2003, 2017) using four
chains with 50, 000 iterations each, of which the first 10, 000 were discarded as
burn-in, with a thinning of five to reduce autocorrelation in the MCMC samples.
Parameter convergence was determined using the potential scale reduction factor
(R̂), a diagnostic criteria proposed by Gelman and Rubin (1992). An R̂ value that
is very close to one is an indication that the four chains have mixed well. If R̂
value was less than 1.05, the chains were considered to have mixed properly, and
the posterior estimates of the parameters were determined to be reliable.

Prior to modelling this data to estimate bee abundance, we check to confirm that
we should not expect to encounter issues regarding infinite estimates of abundance,
using the covariance diagnostic proposed by Dennis et al. (2015), and detailed in
Section 4.2. A negative value for this diagnostic would suggest that problems with
infinite parameter estimates may occur. Covariance diagnostic values obtained for
the data utilised in this section were all positive, and so do not suggest that we
should expect issues with parameter estimates.

The original N-mixture model (Royle, 2004) may be used to estimate abundance
for a single species, and assumes that populations are closed. This analysis will
focus on data collected in June of 2019 at 60 sites for the common carder bumblebee
(Bombus pascuorum). Transects examined in this study range in length from 167
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to 3, 670 metres. It was thought that perhaps longer transects may provide more
opportunity for bee observations, which may in turn affect abundance estimates.
To account for possible effects on abundance due to transect length, the length
in metres of each transect was included in the linear predictor for the abundance
parameter. Additionally, to account for transect location, the latitude, longitude,
and their interaction term latitude × longitude were examined. All covariates were
scaled to have zero-mean and unit variance. The estimates for the effect of each of
these covariates on carder bumblebee abundance are available in Table 4.1. The
effect of longitude and latitude on carder bumblebee estimates may be difficult to
discern, due to the use of the interaction term latitude × longitude, though we
can see from Figure 4.1 that abundance estimates do appear larger in the south of
the UK, and appear to decrease towards the north. Additionally, transect length
appears to have a positive effect on estimates of abundance, with a mean estimate
of 0.16 (i.e., abundance estimates associated with longer transects are greater than
those associated with shorter transects).

Species Intercept Latitude Longitude Latitude
× Longitude Length

Carder
Bumblebee

4.27
(4.12, 4.43)

-0.09
(-0.28, 0.08)

0.39
(0.18, 0.61)

0.12
(-0.05, 0.28)

0.16
(0.03, 0.29)

Table 4.1: Mean parameter estimates and 95% credible intervals for the original
N-mixture model applied to Common Carder Bumblebee count data collected in
June 2019.

The estimates of abundance obtained for the common carder bumblebee using
this original N-mixture model are shown in Figure 4.1. The abundance estimates
provided here may be considered as an estimate of the size of the population that
is are currently foraging at this site. It cannot be viewed as representative of the
full carder bee abundance in the area, or the abundance of the local carder bee
colony as a whole, as only approximately 30% of a bee colony’s population will
forage at a certain time. Additionally, bees may travel several kilometres while
foraging (Greenleaf et al., 2007), so it is not impossible that the bees observed at
each site may not be local to the area, and may have travelled a distance from
their colony to forage. For works on estimates of bee colony abundances, we refer
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the reader to McGrady et al. (2021); Russo et al. (2015); Kuhlman et al. (2021)
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Figure 4.1: Common Carder Bumblebee (Bombus pascuorum) abundance esti-
mates for June 2019 at 60 sites in the UK, obtained using the original N-mixture
model.

The MNM model (Mimnagh et al., 2022) may be used to estimate abundances
for multiple species over longer time frames. This allows us to examine differ-
ences in abundance estimates from June 2016 to June 2019 for the European
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honeybee (Apis mellifera), and seven species of bumblebee: the white-tailed bum-
blebee (Bombus lucorum), the buff-tailed bumblebee (Bombus terrestris), the gar-
den bumblebee (Bombus hortorum), the tree bumblebee (Bombus hypnorum), the
early bumblebee (Bombus pratorum), the red-tailed bumblebee (Bombus lapidar-
ius), and the common carder bumblebee (Bombus pascuorum).

Initial examination of this data reveals that 54% of observations (1, 049 out of
a total of 1, 920 observations) are composed of zero-counts. For this reason, the
MNM model with a hurdle component, described in section 4.3.3 is employed.

For appropriate comparison with the N-mixture model implementation detailed
above, the same sites are examined here using the MNM model. The effect on
abundance estimates of the covariates latitude, longitude, latitude × longitude,
and transect length are provided in Table 4.2. As with the results in table 4.1,
the presence of the interaction term latitude × longitude makes it difficult to
interpret the effect of latitude and longitude on abundance estimates. For this
reason, these results could be displayed in a similar manner to those displayed in
Figure 4.1, with a separate abundance map per species, though we do not present
those maps here. It appears that the length of the transect has a positive effect
on abundance in the case of the buff-tailed bumblebee, the red-tailed bumblebee,
the tree bumblebee, the early bumblebee, and the common carder bumblebee,
as was demonstrated in Table 4.1. It may appear at first glance from the mean
estimates that transect length also has a positive effect on abundance estimates for
the European honeybee, and a negative effect for the white-tailed bumblebee, and
the garden bumblebee. However, as the 95% credible intervals associated with the
effect of transect length for these species contains 0, we cannot say with certainty
that these mean estimates are reliable, and instead conclude that it seems that
transect length does not have an effect on abundance estimates for these species.
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Species Intercept Latitude Longitude
Latitude

× Longitude Length

White-
tailed
Bumblebee

2.72
(2.01, 3.40)

1.02
(0.41, 1.59)

0.67
(0.07, 1.25)

-0.03
(-0.61, 0.51)

-0.13
(-0.27, 0.28)

Buff-tailed
Bumblebee

3.50
(3.02, 3.93)

0.28
(-0.13, 0.69)

0.12
(-0.05, 0.62)

-0.13
(-0.29, 0.31)

0.29
(0.16, 0.65)

Garden
Bumblebee

1.72
(1.03, 2.35)

0.04
(-0.62, 0.74)

-0.45
(-1.19, 0.27)

0.33
(-0.33, 1.01)

-0.04
(-0.56, 0.45)

Red-tailed
Bumblebee

3.67
(3.16, 4.14)

-0.58
(-1.04, -0.17)

-0.03
(-0.49, 0.42)

0.26
(-0.18, 0.71)

0.64
(0.29, 1.01)

Tree
Bumblebee

2.92
(2.36, 3.45)

0.04
(-0.54, 0.67)

0.38
(-0.25, 1.04)

0.83
(0.24, 1.41)

0.66
(0.26, 1.07)

Early
Bumblebee

3.15
(2.67, 3.57)

0.30
(-0.12, 0.73)

0.24
(-0.23, 0.76)

0.74
(0.29, 1.21)

0.54
(0.20, 0.89)

Carder
Bumblebee

4.03
(3.73, 4.31)

0.09
(-0.21, 0.41)

0.22
(-0.11, 0.55)

0.13
(-0.17, 0.42)

0.21
(0.01, 0.43)

European
Honeybee

0.98
(-0.20, 1.99)

-0.42
(-1.45, 0.61)

0.87
(-0.11, 2.01)

0.45
(-0.44, 1.45)

0.60
(-0.15, 1.35)

Table 4.2: Mean parameter estimates and 95% credible intervals for the MNM
model applied to count data for eight bee species, collected in June 2016 and 2019.

We can also examine how abundance estimates at each site change between 2016
and 2019. Table 4.3 shows the number of sites (out of the total 60 sites examined)
at which abundances increased, decreased, or remained unchanged between 2016
and 2019. Species such as the European honeybee and the buff-tailed bumblebee
appear to have experienced abundance increases at a large number of sites, while
species such as the early bumblebee and common carder bumblebee appear to have
experienced a decrease in abundance at a majority of sites.
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Species Increase Decrease No Change
White-tailed Bumblebee 32 22 6
Buff-tailed Bumblebee 34 21 5
Red-tailed Bumblebee 28 28 4

Garden Bumblebee 25 32 3
Tree Bumblebee 26 28 6
Early Bumblebee 17 34 9

Common Carder Bumblebee 18 29 13
European Honeybee 35 20 5

Table 4.3: The number of sites at which abundance estimates (obtained using the
MNM model) for each bee species increased, decreased, or remained unchanged
between 2016 and 2019.

Figure 4.2 displays inter-species abundance correlations, which may allow for infer-
ences to be made as to the relationships that these species have with one another,
or with their environments. For example, we can see that the early bumblebee
has a strong positive correlation with the garden bumblebee, which suggests that
the abundances of these species may be increasing or decreasing together, while
the early bumblebee has a slightly negative correlation with the white-tailed bum-
blebee, which suggests that one of these species may be experiencing an increase
in abundance while the other decreases. These correlations seem to correspond
with the results obtained in Table 4.3, as both the early bumblebee and garden
bumblebee experience a decrease at a large number of sites, while the white-tailed
bumblebee experiences an increase in abundance at a majority of sites examined.
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Figure 4.2: Correlation between abundance estimates for bee species obtained
using the MNM model.

4.5 Discussion
In this chapter, we have examined several approaches to modelling abundance
data, beginning with the original N-mixture model (Royle, 2004) and continuing
to explore model extensions, which allow us to estimate animal abundance using
data collected in a range of scenarios. The N-mixture family of models are widely
used due to their ability to estimate both abundance and detection probability.

We have also addressed previous work, which has demonstrated that N-mixture
models can sometimes suffer from issues with identifiability (Dennis et al., 2015),
which lead to very small estimates for detection probability and very large es-
timates of abundance. This is an issue that must be kept in mind when using
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N-mixture models, and the covariance diagnostic provided by Dennis et al. (2015)
is a useful tool in assessing whether an N-mixture model is appropriate for use
with a certain data set.

We finished by demonstrating how the N-mixture model by Royle (2004) and an
N-mixture model for multiple species (Mimnagh et al., 2022) may be implemented
to estimate foraging bee abundance using the software R and the probabilistic
programming language JAGS. Results of this analysis (Figure 4.1) suggest that
foraging bee populations may be larger in the South of England, and decrease as we
travel through the North of England and into Scotland. As mentioned previously,
due to bee colony dynamics, this abundance estimate does not represent the total
bee abundance in the area, but rather the foraging abundance and can be thought
of as an index of the local population size.
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Appendix

4.A Bayesian N-Mixture Models for Closed
Populations in JAGS

In this Section, we present an implementation of the Bayesian N-mixture model for
closed population using the software R and the probabilistic programming language
JAGS. Here, we present a simple Bayesian N-mixture model which assumes that

Yi|Ni, p ∼ Binomial(Ni, p),

Ni ∼ Poisson(λ),

λ ∼ Gamma(ζ = 1, η = 0.1),

p ∼ Beta(ν = 1, ξ = 1). (4.5)

The prior on λ is set up such that it is non-informative as a priori E(λ) = 10 and
Var(λ) = 100. In practice, that means that we believe that the true value of λ
is around 10, but we are not sure about it, which is demonstrated by the large
variance of the prior distribution. The prior on the detection probability, p, is also
non-informative in the sense that it gives equal prior probability to any possible
value in the range [0, 1].

This model can be specified as follows.

library(rjags)

library(R2jags)

# Simulate synthetic data -------------------

set.seed(1234)
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T <- 10 # Number of periods of observation

R <- 100 # Number of sites

p <- 0.7 # Detection probability

y <- matrix(data = NA,ncol = T,nrow = R)

lambda <- 20

N <- rpois(n = R, lambda)

for (t in 1:T){

y[,t] <- rbinom(n = R,size = N, prob = p)

}

# Specify the model -------------------------

model_code = ’

model{

for (i in 1:R) {

N[i] ~ dpois(lambda)

for (t in 1:T) {

y[i,t] ~ dbin(p, N[i])

}

}

# Priors

p~dunif(0, 1)

lambda~dgamma(1, 0.1)

}’

# Package data for R2jags

data_list <- list(R = R, T = T, y = y)

# Initial values

initial_values <- function(){list(N = apply(y, 1, max))}

# parameters to monitor

par_save <- c("p", "lambda")

# run model

model_run <- jags(data = data_list,

inits = initial_values,

parameters.to.save = par_save,

model.file = textConnection(model_code),

n.chains = 4,

n.iter = 10000,
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n.burn = 5000)
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4.B Bayesian N-mixture Models for Open
Populations in JAGS

In this Section, we present an implementation of the multi-species N-mixture model
(Mimnagh et al., 2022) for an open population with a large proportion of zero-
counts, using the software R and the probabilistic programming language JAGS.
Here, we present a model which assumes that

Yitsk|Nisk, p ∼ Binomial(Nisk, p),

Nisk ∼ Hurdle-Poisson(λisk, θ),

log(λisk) =

ais for k = 1,

ais + ϕslog
(
Nis(k−1) + 1

)
for k > 1,

ai ∼ MVN(µ = 0s,Σ),

Σ ∼ Inverse-Wishart (Ω = Is, ω = S + 1) ,

p ∼ Beta(ν = 1, ξ = 1),

θ ∼ Beta(ν = 1, ξ = 1),

ϕs ∼ Normal(µ = 0, σ2 = 100). (4.6)

The Yi,t,s,k = yi,t,s,k denote the observed counts at site i = 1, · · · , R, sampling
occasion t = 1, · · · , T , species s = 1, · · · , S and year k = 1, · · · , K. We denote
0s a vector of zeros of dimension S, Is an identity matrix of dimension S and
ai = (ai,1, · · · , ai,S). The model may be specified as follows in JAGS.

library(R2jags)

library(clusterGeneration)

library(mvtnorm)

library(extraDistr)

# Simulate synthetic data ------------------

set.seed(1234)

R <- 40 # number of sites

T <- 10 # number of sampling occasions

S <- 4 # number of species
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K <- 2 # number of years

theta <- 0.3 # probability of a site being unoccupied

p <- 0.8 # probability of detection

phi <- runif(S, -0.5, 0.5) # autocorrelation coefficient

# Empty arrays to store the observed and latent counts

y <- array(NA, dim=c(R,T,S,K))

N <- lambda<-array(NA, dim=c(R,S,K))

# Occupancy array

Occ <- array(rbinom(R*S*K, size=1, prob=1-theta), dim=c(R,S,K))

# Scale matrix for wishart distribution

Omega <- diag(1, nrow=S, ncol=S)

covariance <- genPositiveDefMat(S, rangeVar=c(0.2, 1),

covMethod="unifcorrmat")[["Sigma"]]

correlation <- cov2cor(covariance)

# species-level MVN random effect

a <- rmvnorm(R, mean=rep(0,S), sigma=covariance)

# Generate the latent abundance, N[i,s,k]

for(i in 1:R){

for(s in 1:S){

# for year K = 1

lambda[i,s,1]<-exp(a[i,s])

N[i,s,1] <- ifelse(Occ[i,s,1]==0, 0,

rtpois(1, lambda=lambda[i,s,1], a=0))

# for year K > 1

for(k in 2:K){

lambda[i,s,k] <- exp(a[i,s]+ phi[s]*log(N[i,s,k-1]+1))

N[i,s,k] <- ifelse(Occ[i,s,k]==0, 0,

rtpois(n=1, lambda=lambda[i,s,k], a=0))

}

}

}
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# Generate the observed abundance, y[i,s,k]

for(i in 1:R){

for(t in 1:T){

for(s in 1:S){

for(k in 1:K){

y[i,t,s,k] <- rbinom(1, size=N[i,s,k], prob=p)

}

}

}

}

# Specify the model -------------------------

model_code = ’model {

for(s in 1:S){

for (i in 1:R) {

Occ[i,s,1] ~ dbern(1-theta)

log(lambda[i,s,1]) <- a[i,s]

C[i,s,1] ~ dpois(lambda[i,s,1])T(1,)

N[i,s,1] <- ifelse(Occ[i,s,1]==0, 0, C[i,s,1])

for(k in 2:K){

Occ[i,s,k] ~ dbern(1-theta)

log(lambda[i,s,k]) <- a[i,s] + phi[s]*log(N[i,s,k-1]+1)

C[i,s,k] ~ dpois(lambda[i,s,k])T(1,)

N[i,s,k] <- ifelse(Occ[i,s,k]==0, 0, C[i,s,k])

}

}

}

for(i in 1:R){

for(s in 1:S){

for(t in 1:T){

for(k in 1:K){

y[i,t,s,k] ~ dbin(p, N[i,s,k])

}

}

}
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}

# species-level random effect

for(i in 1:R){

a[i,1:S] ~ dmnorm(rep(0,S), precision[,])

}

# Inter-species correlations

precision[1:S,1:S] ~ dwish(Omega[,], df)

covariance[1:S,1:S] <- inverse(precision[,])

for (s in 1:S){

for (s1 in 1:S){

correlation[s,s1] <- covariance[s,s1]/sqrt(covariance[s,s]*covariance[s1, s1])

}

}

# Priors

theta~dbeta(1,1)

p~dunif(0,1)

for(s in 1:S){

phi[s] ~ dnorm(0,0.01)

}

}

’ # end of model specification

# Package data for R2jags

data_list <- list(R=R, y=y, T=T, S=S, K=K, Omega=diag(1, S), df=S+1)

# Initial values

initial_values <- function(){

list(C = apply(y,c(1,3,4), max)+1,

Occ = apply(y, c(1,3,4), function(z) ifelse(any(z>0), 1, 0)))

}

# parameters to monitor

par_save=c("correlation", "N", "p", "theta", "Occ")
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# run model

model_run <- jags(data = data_list,

inits = initial_values,

parameters.to.save = par_save,

model.file = textConnection(model_code),

n.chains = 4,

n.iter = 25000,

n.burn = 10000)
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4.C Covariance Diagnostic
In this Section, we provide an implementation of the covariance diagnostic pro-
posed by Dennis et al. (2015) using the software R. To obtain this covariance
diagnostic, we need the number of sampling occasions in our data, T , and the
observed data, Y .

A negative value for this diagnostic indicates that there may be an issue with
estimates of infinite abundance. In the example below, the simulated data produces
a negative value for the covariance diagnostic, which suggests that the use of the
N-mixture model on this data may produce estimates of abundance that are very
large and estimates of detection probability that are very small.

# Simulate synthetic data -------------------

set.seed(1234)

T <- 5 # Number of periods of observation

R <- 20 # Number of sites

p <- 0.1 # Detection probability

y <- matrix(data = NA,ncol = T,nrow = R)

lambda <- 2

N <- rpois(n = R, lambda)

for (t in 1:T){

y[,t] <- rbinom(n = R,size = N, prob = p)

}

# Diagnostic for the N-mixture model --------

CovarianceDiagnostic<-function(y, T){

ninj <- 0

for(i in 1:(T-1)){

for(j in (i+1):T){

ninj<-cbind(ninj,y[,i]*y[,j])

}

}

covDiag <- sum(colMeans(ninj))*2/(T*(T-1))-((sum(colMeans(y)))/T)^2
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print(paste0("Covariance Diagnostic: ", round(covDiag,4)))

}

# Run diagnostic

CovarianceDiagnostic(y, T)
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CHAPTER 5
A Triple Poisson Model for

Scarce Vestige Data

We propose a new class of models for the estimation of animal abundance using animal
vestige data. We demonstrate that our approach is competitive to similar models, and is
particularly useful when data is very scarce, using both simulation studies and real-world
datasets. For interested readers, R code that implements this approach is available at
https://github.com/niamhmimnagh/triple_poisson .

5.1 Introduction
Estimating wildlife abundance may be relatively expensive and time-consuming.
Therefore, whenever possible monitoring population fluctuation by an abundance
index tends to be more cost-effective (Nichols, 2014). However, in order to un-
derstand evolutionary-ecological processes and make decisions concerning wildlife
management (i.e., conservation, use, coexistence, and monitoring, according to
Caughley (1994)), one might need to estimate actual species abundance (Verdade
et al., 2014). In addition, methods that involve capturing or even direct sightings
of animals can be invasive and pose risks to both wildlife and humans (Verdade
et al., 2013).
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In this chapter, we propose a modelling framework based on a triple Poisson hi-
erarchy, which allows for the estimation of animal abundance from animal vestige
count data, where a vestige may include any trace that an animal leaves behind as
it moves through a study area. In the simulation studies and case studies examined
in this chapter, the vestiges examined are scats, that we assume are produced at
a constant rate. Advantages associated with the use of vestige data to estimate
animal abundance include the reduced cost and labour required to carry out the
survey, as well as the reduced risk of disturbance caused to the animal, when com-
pared with direct methods of estimating animal abundance (Verdade et al., 2014).
In addition, we show that the modelling framework proposed here can be useful
for estimating animal abundance from small-scale monitoring programmes, which
may have very few transects and so produce data that is scarce.

The remainder of this chapter is organised as follows. In Section 5.3 we introduce
the modelling framework to estimate animal abundance from vestige count data.
In Section 5.4 we present simulation studies, which were carried out to assess the
estimates of abundance under a range of scenarios and with varying levels of prior
information. Finally, in Section 5.5 we present a number of case studies which we
use to illustrate how this modelling approach may have real-world applications.

5.2 Related Works
Several methods have been previously developed for estimating animal relative
abundance based on vestige count data.

Distance sampling (Buckland et al., 1993) is a methodology that while originally
proposed to estimate animal density using animal count data, may also be used
to estimate animal abundance using vestige data by making some small modi-
fications (Marques et al., 2001). Distance sampling using vestige data involves
modelling, with a detection function, the assumption that the detectability of ves-
tiges decreases with increasing distance from a transect. This is done to obtain
an estimate of vestige density, which may then be used to obtain an estimate of
animal density and finally animal abundance. Marques et al. (2001) estimate the
abundance of sika deer using this distance sampling methodology. In Section 5.4
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we provide details of a simulation study which involves the comparison of abun-
dance estimates obtained using a distance sampling model with those obtained
using the novel triple Poisson model that we propose in this chapter.

Becker (1991), Becker et al. (1998), and Patterson et al. (2004) propose a model
for estimating abundance based on the observation of animal tracks in snow. This
model assumes that the number of animal groups in the area may be obtained by
following tracks and locating each group. For this reason, this methodology could
prove time- and resource-intensive. The triple Poisson model that we propose in
this chapter allows us to assign a prior distribution to group size, which means
that we may estimate an unknown number of groups, and true values do not need
to be obtained.

The Formozov–Malyshev–Pereleshin formula for estimating animal abundance us-
ing animal track data is described by Stephens et al. (2006). This formula, orig-
inally proposed and published through Russian in Chelintsev (1995), involves es-
timating the probability that a transect will intersect an animal’s track. This
probability is then used to estimate the total number of track crossings, which can
be used to estimate animal density. The successful implementation of this formula
requires both estimates of animal daily travel distances and counts of animal tracks
whose age is known.

5.3 Methods
5.3.1 Model Formulation
This model assumes that we are examining closed populations of mammals which
move around randomly in G groups of size Ni, i = 1, . . . , G, within a study area
which is homogeneous in terms of habitat use. We assume that

G ∼ Poisson(λG),

and therefore the total number of animals in the area is

T =
G∑

i=1
Ni.
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By assuming the group sizes Ni are independent and distributed as

Ni ∼ Poisson(λN),

we can conclude that the conditional distribution of T |G is

T |G ∼ Poisson(GλN).

However, the data that we examine is not composed of realisations of the abun-
dance T . Instead, we observe a fraction of the number of vestiges left in the study
area by a certain species. Let Vt represent the total vestige count in the area at
time t. We assume that the number of vestiges left at time t = 1 has mean βT , i.e.
depends on the individual vestige production rate β. By letting V1 ∼ Poisson(βT )
and assuming vestiges left in the environment disappear exponentially over time
with some constant rate, we may write

Vt|V1, . . . , Vt−1 ∼ Poisson
βT +

t−1∑
j=1

βTe−δ(t−j)

 .
where δ is a vestige decay parameter.

We are interested, however, in the limiting distribution of Vt, and for that we
assume that after a short period of time, the total number of vestiges produced
plus old vestiges that remain in the environment from previous time points will
become constant. We next examine the rate term in the Poisson distribution
above, which can be written as follows:

βT + βT
t∑

j=1
e−jδ = βTe−(0)δ + βT

t∑
j=1

e−jδ = βT
t∑

j=0
e−jδ.

We may then say that

lim
t→∞

βT
t∑

j=0
e−jδ = eδβT

eδ − 1 .

We may then define a new parameter α =
(

eδβ
eδ−1

)
which we call the individual

vestige surplus, given that it accounts for the new vestiges produced per indi-
vidual, plus vestiges that were produced at previous time points, minus those
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that have decayed. We can then write the marginal distribution of V = Vt as
V ∼ Poisson(αT ).

By assuming random deposition of vestiges, the distribution of the observed num-
ber of vestiges will depend on the coverage level of the sampling method (e.g.
transects). We refer to this coverage as ν ∈ (0, 1). Given that study area and
transect length are generally known, we assume that ν can be calculated and is
thus a known parameter, and that every vestige within the covered area is detected.
Therefore, the distribution of the observed number of vestiges Y , alongside the full
modelling hierarchy, can be written using the following triple Poisson hierarchical
model:

Y |T,G, ν ∼ Poisson(αTν) (5.1)

T |G ∼ Poisson(GλN) (5.2)

G ∼ Poisson(λG) (5.3)

The above expression for observed vestiges Y may involve only a single visit per
transect (i.e., Y as a vector of length R), but may also involve multiple visits per
transect (i.e., Y as an R × S matrix, where S is the number of visits to each
transect). In each case, the true abundance T is assumed not to change between
transect visits. Abundance estimates obtained from single-visit data are compared
to those obtained from data involving temporal replication in Appendix 5.A.

The performance of the model is highly dependent on how well α, the individual
vestige surplus, is estimated. Therefore we may either opt to set up an informative
prior for α, or simply fix it as a “known” value. To estimate λG and λN we may use
informative or non-informative priors, depending on the level of prior information
that we possess.

It would also be reasonable to assume an aggregated process of resource alloca-
tion and/or aggregated animal behaviour, which may result in vestiges which are
produced at a non-constant rate. This would, in turn, affect the number of ves-
tiges present at each transect. A simple extension that would accommodate this
assumption would be to treat the top tier of the hierarchy as an over-dispersed
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process, e.g.

Y |T,G, ν ∼ Negative Binomial(αTν, ϕ) (5.4)

and use a non-informative gamma prior to estimate ϕ, the over-dispersion param-
eter. Analogously, if the group sizes are believed to be highly variable, a reason-
able modification to the model above would use Ni ∼ Negative Binomial(λN , ϕN),
which results in T ∼ Negative Binomial(GλN , GϕN). Finally, if numbers of groups
are highly variable when comparing across different regions, we may assume G ∼
Negative Binomial(λG, ϕG). This introduces a family of models that can accom-
modate different scenarios, depending on the species being monitored.

Gallant et al. (2007), Murray et al. (2005) , and Barnes (2001) examine the limita-
tions associated with the use of scat surveys to estimate abundance. Among these
limitations is the possibility for vestiges to be concentrated at certain sites. As
described in Equation 5.4, the use of a negative binomial distribution for vestige
counts provides a possible solution to this issue. Another of these limitations is the
relatively small amount of a sample area that tends to be covered by transects.
The triple Poisson model as detailed in Equation 5.2 incorporates the transect
coverage rate in the vestige count Y , which allows us to take into account the
fact that very small sections of the study area are visible during transect surveys,
though as we will discover in section 5.5.2, very small transect coverage may lead
to inflated estimates of abundance, and this should be taken into account at the
experimental design phase. A final limitation is the possibility for vestiges pro-
duced at certain times of the year to decompose more quickly than those produced
at other times. It is true that the triple Poisson model as described in this chapter
assumes that vestiges decay at a constant rate. A subject of planned future work
will allow vestiges to decay at different rates, possibly incorporating the effect of
covariates into the rate of decay, which may allow us to model the transient phase
of the population.

5.4 Simulation Studies
In this section we describe simulation studies which were conducted with the aim
of determining the effect on abundance estimates of varying the choice of prior
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distribution used for individual vestige surplus α. To this end, vestige count data
was simulated from a triple Poisson model, and models were fitted in JAGS with
different options for α. We wished to compare abundance estimate from scenar-
ios when α is given a weakly-informative Uniform prior to scenarios when α is
known and supplied correctly to the model as data, and when α is “known” but
is incorrect, and is supplied as data.

The results are presented in Figure 5.1, in which the true value for α is 35 vestiges
and the true abundance is 86. The small crossbar in Figure 5.1 represents the 95%
Credible Interval for the estimate of abundance when α is known correctly. From
this we can see that when the true value for α is known, estimates of abundance
are highly accurate and precise. The large crossbar represents the 95% Credible
interval for the estimate of abundance when a Uniform(10, 50) prior is supplied for
α. When α is unknown and is given a Uniform prior, the estimate for abundance
has still got a high degree of accuracy, but is now imprecise. The ribbon represents
the 95% Credible Interval when incorrect values in the range {20, 50} are supplied
for α. In this case, the estimate for abundance is still precise (i.e., the credible
interval is still quite narrow), but is now highly inaccurate.

Another possible scenario that we have assessed is that in which no prior infor-
mation is available for the value of α, and a non-informative prior must be used.
Results of these simulations are available in Appendix 5.A, and from these results
we conclude that if no information is available for the value of α, then informative
prior distributions are required for λN and λG.

Further to this, simulation studies wherein data is simulated from a triple Poison
model were run to assess model estimation for different prior distributions on λG

and λN , the effects of using a Poisson distribution on vestige count versus using
a negative binomial distribution, an the effect on abundance estimation of using
temporally replicated vestige counts (i.e. transects that are visited on multiple
occasions). The full details and results of all simulation studies can be found in
Appendix 5.A.
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Figure 5.1: Abundance mean estimates and 95% Credible intervals when the true
value of α is known correctly (short crossbar), when α is known incorrectly (ribbon)
and when α is supplied a Uniform prior (long crossbar), with the true abundance
denoted by the dashed horizontal line.

In addition to the simulation studies described above, studies were run to compare
the accuracy of abundance estimates produced by the triple Poisson model to
those produced by a distance sampling model (both in a frequentist and Bayesian
framework), when data is scarce.

The Bayesian distance sampling model was implemented following the example of
Kéry and Royle (2015). The distance sampling model involves employing counts
of observed vestiges Y to estimate the true number of vestiges per transect z,
and subsequently estimating vestige density, animal density, and finally animal
abundance.
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Data used for the distance sampling model is composed of J total vestiges, each
collected from one of R transects, along with the distance between each vestige
and the transect.

The observed vestige count at transect i (i = 1, ..., R) is given by

Yi ∼ Binomial(zi, pi)

zi ∼ Poisson(βi)

where zi us the actual number of vestiges present, and pi is the vestige detection
probability at transect i.

The maximum distance from each transect at which vestiges might be observed is
denoted as B, and this distance B is divided into k = 1, ..., K intervals. πi,k is the
probability of detecting a vestige within each of these K intervals around transect
i, and is as follows.

πi,k =
(

−m2
k

2σ2
i

)(
d

B

)

where m is the midpoint of each interval, σ is the half-normal scale parameter,
− m2

k

2σ2
i

is the half-normal detection function evaluated at m, and d is the length of
each interval. The overall probability of detection for transect i is then:

pi =
K∑

k=1
πi,k

Because we are working with K distance intervals (labelled 1, . . . , K) the original
continuous distance values must be converted into the corresponding distance in-
terval. For observation j, we model this distance interval Cj using a categorical
distribution as follows:

Cj ∼ Categorical
(
π̂*j

)
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where π̂*j
is a vector of length K that contains the probabilities associated with

vestige j being observed within each interval. Given that we know which transect
each vestige is observed at, this parameter is calculated for all R transects as the
R×K matrix πi,k

pi
, and the probabilities associated with the appropriate transect

are then utilised in the categorical distribution above.

The vestige density can be calculated as Dvestiges =
∑

i
zi

A
, where A is the area

of the sample space. This vestige density can now be used to determine animal
abundance (Marques et al., 2001). The total number of vestiges produced per day
is calculated as

Tdaily vestiges = Dvestiges

δ
,

where δ is the time until vestige decay. The animal density D can then be given
as:

D = Tdaily vestiges

λ
,

where λ is the vestige production rate. This density can then be used to calculate
abundance as

T = D × A,

Data was simulated from this distance sampling model, which required the spec-
ification of the size of the study area, the number of vestiges within the study
area, the distance between transects, the truncation distance (the distance from
a transect within which vestiges may be observed), the detection function (which
is used to model the distribution of vestiges given their distance from a transect),
the vestige production rate (which was specified as 15 vestiges per day), and the
time to vestige decay (which was specified as 10 days). Data was simulated using
the DSsim package (Marshall, 2020) using the R statistical software version 4.0.2
(R Core Team, 2022). Each simulation had a total of 5000 vestiges contained
within a 2 × 5km area, with vestige density constant across the study area. A
truncation distance of 10m was chosen, and transects were specified at a distance
of 1km from each other, which ensured that each simulation contained only two
transects, each 5km long. As a result, the data used in the triple Poisson model
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is comprised of just two values, i.e., the total number of vestiges observed at each
transect. A half-normal detection function was used to model the probability of
observing vestiges, given their distance from the transect.

Triple Poisson models, with combinations of informative and non-informative λG

and λN were fitted to these simulations. Simulation studies typically involve the
true abundance given as a fixed value across all simulated datasets. However,
because we are simulating from a distance sampling model, we first simulate 5000
total vestiges, and then use a probability detection function to determine which of
these are visible near the transect, and finally calculate the true abundance. The
result is that the true abundance T was slightly different for each simulated dataset
(T ∈ {25, 45}). For this reason, in order to provide informative priors for λN and
λG, it was assumed that the mean number of animals per group might be between
three and seven, and the mean number of groups in the area might be between
one and ten. This allowed us to use the informative priors λN ∼ gamma(5, 1) and
λG ∼ gamma(10, 1).

The non-informative priors for λN or λG were specified using a gamma(0.01, 0.01)
distribution. Data was simulated with 5000 vestiges present in the study area, so
the individual vestige surplus of the triple Poisson model α was given a weakly-
informative Uniform(10, 10000) prior, where α represents the number of new ves-
tiges produced per individual per day plus the number of vestiges still present
in the area from previous days. These models were implemented through JAGS
(Plummer, 2003), using the R2jags package (Su and Yajima, 2020).

Subsequently, distance sampling models were fitted to these simulations, using
both frequentist and Bayesian frameworks. The frequentist model was fitted using
the Distance (Miller et al., 2019) package, with combinations of δ and λ specified
correctly and incorrectly. The aim of the frequentist application of the distance
sampling model was to determine the effect on abundance estimates of slight inac-
curacies in the values supplied for these parameters. The Bayesian implementation
of the distance sampling model was then performed so that the distance sam-
pling model might be fairly compared with the Bayesian implementation of the
triple Poisson model, and this involved the use of informative and non-informative
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gamma prior distributions for δ and λ.

The full list of models fitted are given in Table 5.1. The accuracy of abundance
estimates was assessed using relative bias for the true abundance T , averaged over
all simulations, calculated as

Relative mean bias = T̂ − T

T
.

The smaller the value for relative bias, the closer to the true value our estimated
abundance values were.
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(a) Triple Poisson Models
Model λN λG Abundance Relative Bias
TP1 Informative Informative 0.109
TP2 Informative Non-Informative 0.142
TP3 Non-Informative Informative 0.186
TP4 Non-Informative Non-Informative 0.104

(b)(i) Frequentist Distance Sampling Models
Model λ δ Abundance Relative Bias
DS1 15 10 0.000
DS2 16 10 0.091
DS3 15 11 0.062
DS4 16 11 0.147
DS5 17 12 0.265
DS6 18 13 0.359
DS7 19 14 0.436

(b)(ii) Bayesian Distance Sampling Models
Model λ δ Abundance Relative Bias
DS8 Known Known 0.003
DS9 Informative Informative 0.022
DS10 Informative Non-Informative 1.592
DS11 Non-Informative Informative 2.523
DS12 Non-Informative Non-Informative 36.146

Table 5.1: (a) Triple Poisson models fit with informative and non-informative
gamma priors on mean group size λN and mean number of groups λG (b)(i) Dis-
tance Sampling models fit using a frequentist framework, with individual vestige
production (λ) and time to vestige decay (δ) supplied correctly (λ = 15, δ = 10)
and incorrectly, with incorrect values for λ ∈ (16, 19) and incorrect values for
δ ∈ (11, 14) (b)(ii) Distance Sampling models fit using a Bayesian framework fit
with informative and non-informative gamma priors on individual vestige produc-
tion λ and time to vestige decay δ.

In Figures 5.2, 5.3 and 5.4, we present the results of the comparison of true abun-
dances with estimates obtained using triple Poisson models and distance sampling
models. In the case of the Bayesian implementation of the distance sampling model
(Figure 5.4), the model in which vestige production rate (λ) and time to vestige
decay (δ) are assigned non-informative priors is not displayed. This is because
- with estimates of abundance of approximately 12,000 individuals - it produces
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estimates of abundance that are on a much larger scale than the other Bayesian
distance sampling models, which makes results from the other models difficult to
read.
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Figure 5.2: A scatter plot comparing the abundance estimates from triple Poisson
models (TP1 – TP4) with varying priors on λN and λG to the true abundances.

130



5.4. Simulation Studies

30

40

50

20 30 40 50
Frequentist Distance Sampling Models

Tr
ue

 A
bu

nd
an

ce

Model

DS1

DS2

DS3

DS4

DS5

DS6

DS7

Figure 5.3: A scatter plot comparing the abundance estimates from frequentist
implementations of the distance sampling model (DS1 – DS7, as described in
Table 5.1) to the true abundances.
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Figure 5.4: A scatter plot comparing the abundance estimates from Bayesian
implementations of the distance sampling model (DS8 – DS11, as described in
Table 5.1) to the true abundances.

5.5 Case Studies
As discussed in Chapter 2, we have three different case studies with which we
demonstrate various aspects of the triple Poisson model. Initially this modelling
framework was applied to each case study, assuming that the observed vestige
count Y could be appropriately described using a Poisson distribution. Subse-
quently the models were re-run, assuming a negative binomial distribution for Y .
For each case study the results of each of these models was compared using BIC
and DIC values, and this comparison is presented in Appendix 5.C.

5.5.1 Collared Peccary
As described in Chapter 2, we first examine a case study regarding the collared
peccary, (Dicotyles tajacu), using vestige data collected in southeast Brazil (Assis,
2012). The data collected as part of this case study is comprised of vestige counts
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collected on a single sampling occasion from only two transects. As a result, the
sample size is very small, as it contains only two counts: (7, 1).

In order to implement the triple Poisson model on this dataset, we must first
determine the prior distributions that we will assign to the mean group size λN

and mean number of groups λG. In order to do this, we take any prior information
available to us regarding these parameters into account. Collared peccary are
estimated to live in groups of between seven and nine individuals (Sowls, 1997),
and the number of groups in the area is estimated at between three and five. This
information allowed us to place informative priors on λG and λN . However, for
this case study, information is not available on the individual vestige surplus, so
we are unable to place an informative prior on α in this case. For this reason
we place a non-informative prior on vestige surplus: α ∼ gamma(0.01, 0.01). As
is demonstrated in Appendix 5.A, if a non-informative prior distribution must be
used for vestige surplus α, and particularly if sample size is small, it is required
that we specify informative prior distributions for λN and λG.

The transect along which seven vestiges were found was 8km long, while the other
transect was 12km long. In order to estimate v, the transect coverage rate, we
require the distance around the transect within which vestiges might be observed.
This distance was not measured, so we make a conservative estimate that vestiges
within 2m on either side of the transect are visible. This results in transects whose
area are 32, 000m2 and 48, 000m2 respectively. The study area is 43.65km2, and
we can therefore estimate the transect coverage rate as v ∈ {0.00073, 0.0011}.

Our model was fitted with first a Poisson distribution on the vestige count Y , and
then a negative binomial distribution, and the results were compared using DIC
values. The model with the lower DIC value was the one with a negative binomial
distribution on the observed number of vestiges Y . This model was chosen as the
best fit, of the models available. The results obtained from this model were a
mean estimate of a population of 44 collared peccaries within the study area, with
a 95% Credible Interval of (16, 87).
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5.5.2 Sika Deer
As described in Chapter 2, the data analysed in this section (Marques et al., 2001)
is available as part of the Distance R package (Miller et al., 2019). This data con-
tains counts of sika deer (Cervus nippon) vestiges located in eight different regions
in Scotland, as well as the distance from each vestige to the transect, measured in
centimetres. Because this distance information is available, this case study pro-
vides an ideal opportunity to compare estimates produced using a triple Poisson
model to those produced using a modification of a distance sampling model, as
described by Marques et al. (2001).

As detailed briefly in Section 5.2, the implementation of this modified distance
sampling model to estimate abundance using vestige data requires estimates of the
rate at which vestiges are produced, and time to vestige decay. Our implementation
of this modelling framework follows one described by Marques et al. (2001) and so
we utilise their provided estimate that sika deer produce approximately 25 vestiges
per day. The paper by Marques et al. (2001) provides estimates and standard errors
for the time to vestige decay for this data. However, they provide these estimates
based on the habitat groups for the data, and the month during which data is
collected, neither of which we have access to within the dataset provided as part
of the Distance R package (Miller et al., 2019). For this reason, we base this value
upon analysis presented in Rexstad (2022) and obtain an estimate of 163.4 days
(with a standard error of 14.2) for vestiges to decay.

We then implement a triple Poisson model on this data, and can compare es-
timates provided by these two methodologies. In order to implement our triple
Poisson model, we must determine the prior distributions that should be assigned
to estimate the mean group size λN and the mean number of groups λG. The
prior information that we possess is that sika deer may live in groups of up to
ten animals (Ratcliffe, 1987), and that territory size of sika deer is in the range of
0.02−0.12km2. For this reason, we place an informative prior on λN ∼ gamma(5, 1)
which can allow for group sizes of up to approximately 15 individuals. Our knowl-
edge of the typical territory size allows us to also place an informative prior on
λG. Each of the eight regions has a different area, and so we can use each area and
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the known territory size to provide a different prior distribution for λG for each
region. The details of model implementation per region are available in Appendix
5.B.

From the estimates provided for the distance sampling implementation, we know
that sika deer produce approximately 25 vestiges per day. We also assume that
vestiges may take several months to decompose, and so we place a weakly infor-
mative prior distribution on α, i.e. α ∼ Uniform(0, 4000). The use of this prior
distribution implies that we assume that there are between 0 and 4000 vestiges
present in the study area due to each individual, which, at a rate of 25 vestiges
produced per day, allows vestiges to remain for up to approximately 5 months
before becoming close to fully decomposed.

We know that the largest distance at which vestiges were observed from the tran-
sect was two metres. For this reason, the triple Poisson models are run assuming
that vestiges are visible within two metres on either side of the transect, which
allows us to estimate the transect coverage rate ν for each area.

Initially, each model was run assuming that the vestige count is adequately de-
scribed using a Poisson distribution. This was then compared to a model in which
the vestige count is assigned a negative binomial distribution. The model of best
fit for each area was chosen using DIC values (the details of which are available
in Appendix 5.C), and a comparison of abundance estimates produced using these
triple Poisson models of best fit and the distance sampling model can be found in
Table 5.1.

In this table we see that point estimates obtained using a triple Poisson model for
areas A and B are very close to those obtained using a distance sampling model,
while there is a greater difference in point estimates obtained for other areas. In
particular, we see a large difference in abundance estimates for areas H and J. For
these areas, the distance sampling model produces quite small estimates, while
the triple Poisson model produces larger point estimates. This can be explained
by a combination of factors. The first is the amount of data available for these
areas. In each of areas H and J, only one transect is surveyed. This means that the
triple Poisson models fitted to these regions are fitted to data that contains only
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one observation. The simulation studies that we have performed for scarce data
contain data collected from two transects, and so the models fitted to areas H and
J are run using data that is more scarce than even the most scarce simulations
performed. A further reason for the inflated point estimates obtained for these
areas is the very small transect coverage rate associated with them. Areas A and
B, for which triple Poisson point estimates are closest to distance sampling point
estimates, have a coverage rate of 0.00048 and 0.00042 respectively. The transect
coverage rates associates with areas A and B are twice as large as the next largest
transect coverage rate (associated with area C), and over 10 times larger than
those associated with areas H and J, which have coverage rates of 0.000071 and
0.000041 respectively. Due to the formulation of this model, the abundance T

is confounded with transect coverage ν, and very small values for ν may lead to
inflated estimates for abundance T .

Area Distance Sampling Triple Poisson
Estimate 95% CI Estimate 95% CI

A 1027 (690, 1528) 1028 (584, 1952)
B 382 (219, 667) 409 (167,982)
C 33 (15, 74) 106 (20, 451)
E 29 (8, 99) 71 (19,312)
F 209 (173, 252) 340 (128, 1036)
G 125 (18, 856) 281 (78, 834)
H 17 (14, 21) 95 (11, 431)
J 69 (57, 83) 165 (35, 622)

Table 5.1: Mean estimates and their 95% confidence (distance sampling) or credible
(triple Poisson) intervals for sika deer abundance per area from a distance sampling
model and the triple Poisson model.

5.5.3 Red Foxes
As detailed in Chapter 2, the final case study examined as part of this chapter
involves vestige data collected from the red fox (Vulpes vulpes) by Cavallini (1994).
This data was collected from nine transects in central Italy. In the paper by
Cavallini (1994), an index of abundance is obtained, estimated as the number of
vestiges per kilometre. This data was collected once every month over the course
of a year, and so it is a good candidate for our triple Poisson modelling framework
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that takes into account temporal replication. As detailed in Section 5.3, here the
observed vestige count Y is allowed to vary by transect and month. However, in
our model implementation we assume that the true abundance T varies only by
transect.

Before we can implement the triple Poisson model on this case study, we must first
determine the prior distributions that to be assigned to the mean group size λN

and mean number of groups λG. We possess prior knowledge on common group
sizes for red foxes, as well as their territory size, which will allow us to place
informative priors on λG and λN .

Red foxes may have as many as nine cubs in a litter, which means that a group of
red foxes may contain as many as 11 individuals Baker and Harris (2004). Their
territory ranges from 5 to 12km2. This case study is contained within a study area
of size 2448km2, and so in this area there could be as many as 490 groups of red
foxes.

Transect coverage in this case was again calculated using transect length and study
area, assuming that vestiges within 2m of the transect are visible. To inform our
prior distribution of vestige surplus α, we know that red foxes may produce eight
vestiges per day (Webbon et al., 2004). This data was collected monthly over a 12
month period, so we remove the initial observations (April 1992) for each region, as
we do not know how long these vestiges may have been present in the environment.
The original paper (Cavallini, 1994) mentions that at each sampling occasion the
vestiges observed were collected and taken for laboratory analysis. For this reason,
counts collected disregard counts initially collected in previous months, and so we
assume that the longest time that the vestiges observed may have been present in
the environment was approximately 30 days. The prior distribution used for vestige
surplus α reflects this belief that each individual might produce eight vestiges per
day, and these vestiges are only present for approximately one month until the
following sampling occasion: α ∼ Uniform(0, 240).

The model was fitted initially with a Poisson distribution on the vestige count,
and then a negative binomial distribution. The results were compared using DIC
values, and the model with the lower DIC value was the one with a negative
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binomial distribution on the vestige count. This model was chosen as the best
fit for this data. The details of the comparison via DIC values are available in
Appendix 5.C. The result obtained from this model was a mean estimate of 3304
red foxes in the study area, with a 95% Credible Interval of (2603, 4442).

5.6 Discussion
In this chapter, we have presented a novel modelling framework that allows for
the estimation of animal abundance using vestige data. We have presented the re-
sults of an extensive simulation study, which demonstrates the performance of this
model under a range of conditions. Full details of these simulations are available
in Appendix 5.A.

As part of the simulation study, we simulated scarce data from a distance sampling
model, and fitted various distance sampling and triple Poisson models to this data
to compare abundance estimates. While distance sampling models consistently
produce accurate estimates of abundance when vestige production rate λ and time
to vestige decay δ are known precisely (Table 5.1 (b)), small inaccuracies in λ and
δ produce estimates of abundance with relative bias that increases quite rapidly.
Triple Poisson models were fitted with priors on λN and λG both informative and
non-informative. These models produced estimates of abundance with relative bias
∈ (0.1, 0.2) regardless of prior choice for λN or λG. In Figure 5.2, the triple Poisson
model with informative priors on λG and λN better reflects the true abundances,
while models for which information is unavailable to inform λN and λG do not
perform quite as well.

While these scarce data simulation studies (detailed in Section 5.4) reveal that the
triple Poisson model can produce unbiased abundance estimates when even very
few transects are available for surveying, having more data is always preferable.
Simulation studies designed to examine the effect of sample size on abundance
estimates reveal that scenarios in which a greater number of sites are available
for survey produce less biased abundance estimates, as might be expected. Model
formulation suggests that abundance estimates T may be confounded with transect
coverage rate ν. The results obtained using the sika deer case study in Section
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5.5 demonstrate this. When the amount of the study area covered by transects
is very small, estimates of abundance will be inflated, as can be seen in Table
5.1. This highlights the need at the experimental design phase to ensure the use
of appropriately sized study areas for which adequate transect coverage can be
obtained.

Simulations reveal that vestige surplus α is confounded with abundance T , which
is also to be expected given model formulation. If α is known, estimates for abun-
dance are not dependent on prior distributions used for λG and λN . When α is
not known precisely, but enough information is available to provide a prior distri-
bution that is weakly informative, dependence on λG and λN increases. Finally,
if no information is available and a non-informative prior must be supplied for α,
to avoid producing abundance estimates that are highly biased, informative priors
are required for both λG and λN .

The assumption that vestige count Y can be adequately described using a Poisson
distribution relies on vestige deposition constant across the study area. In many
cases, this can prove to be an unrealistic assumption. In such cases, a simple
alternative is the use of a negative binomial distribution to describe the vestige
count. This allows for overdispersion in vestige counts, which could be attributed
to the occurrence of vestiges at higher rates in some areas, due to factors such as
resource allocation, animal behaviour, or non-constant rates of vestige production.
The use of a negative binomial distribution for vestige counts was examined by
simulation study. A notable finding of this study was that even a small level of
overdispersion in vestige counts can cause quite a large increase in relative bias of
abundance estimates, when compared to the Poisson model for vestige count. This
impact is seen most strongly when both sample size is small and non-informative
prior distributions are used for both λG and λN . This occurs even when α is known.
Consequently, if overdispersion is expected in vestige count, and prior knowledge
that may inform λG and λN is not available, it is advisable that larger sample sizes
are collected, either by increasing numbers of transects established, or by visiting
transects on multiple occasions.

In this study we assumed vestiges experience an exponential rate of decay. How-
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ever, in the future we plan to examine alternative scenarios, in which vestiges may
decay according to different distributions, to allow us to model the transient phase
of the population, as mentioned in Section 5.3. In the future, we intend to perform
agent-based modelling simulations of animal movement, while incorporating ves-
tige deposition and decay probabilities. By assuming different sampling designs,
we will then be able to estimate the abundance T and compare with the true
number of animals in the environment. This might facilitate field work on data
collection and improve cost-efficiency of animal counting.

The decision-making process concerning wildlife management is usually based
on the cost-efficiency relations of survey/monitoring methods available (Nichols,
2014). Traditional methods involving capturing and/or direct sight seen of ani-
mals tend to be invasive, time-consuming, and relatively expensive (Verdade et al.,
2013, 2014). In addition, traditional methods of animal counting tend to have low
precision and unknown accuracy (Verdade et al., 2014). The use of vestiges on
the estimation of actual abundance or population density simplifies the process
of animal counting; therefore, improving the decision-making process concerning
wildlife management.
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5.A Simulation Studies
In this section, we present the results of simulations that were run to examine the
effect on abundance estimates of varying parameter values and prior distributions.
To assess abundance estimates for different population sizes, we assigned true
values for group size λN ∈ {5, 10}, and number of groups λG ∈ {5, 10}. We
also examine the effect of our level of prior knowledge of vestige surplus α, using
scenarios in which α is presumed somehow “known”, and can be supplied to the
triple Poisson model as data, and comparing this to scenarios in which a level
of prior information allows us to place weakly informative uniform priors on α,
and scenarios in which we possess no prior information for α and must assign it
a non-informative gamma prior. To examine the effect of sample size, we present
abundance estimates when data is collected on a single visit to 10 transects, and
compare these to estimates obtained using data collected on a single visit to 100
transects. We then briefly examine the effect of temporal replication by estimating
abundance using data collected on 10 visits to 10 transects.

The effect on abundance estimates of prior information on mean group size λN

and mean number of groups λG is assessed using combinations of informative
Gamma(7,1) and non-informative Gamma(0.01, 0.01) prior distributions, where
the gamma distributions are parameterised in terms of their shape and rate.

To assess abundance estimates when overdispersion is present in our data, we
first perform simulations which allow for overdispersion in the number of vestiges
observed at each transect Y as follows.
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Y |T,G, ν ∼ Negative Binomial(αTν, ϕ)

where ϕ ∈ {0.2, 2} is the overdispersion parameter. The smaller the value of ϕ,
the greater the degree of overdispersion present in the vestige counts. This allows
us to account for situations in which an aggregated process of resource allocation
or animal behaviour cause vestiges to be produced at a non-constant rate.

Finally, we present simulation results for a “triple negative binomial” model, for-
mulated as follows.

Y |T,G, ν ∼ Negative Binomial(αTν, ϕ)

G ∼ Negative Binomial(λG, ϕG)

T ∼ Negative Binomial(GλN , GϕN)

This formulation allows for overdispersion in all layers of the model hierarchy,
which allows for a non-constant vestige production, and allows for variability in
group size and numbers of groups.

Overall, the simulation study examined for the triple Poisson model contained a
total of 288 variable combinations, each of which was simulated 100 times. In each
case we estimated mean group size λN , mean number of groups λG, abundance T
and the vestige surplus α.

The accuracy of abundance estimates was assessed using relative bias for the true
abundance T , averaged over all simulations, calculated as follows.

Relative bias = T̂ − T

T
.

The smaller the value for relative bias, the closer to the true value our estimated
abundance values were. Figures 5.A.1 to 5.A.7 present results for each of the
previously described simulations. Each is divided into four sub-figures, (a) to (d)
corresponding to varying prior distributions assigned to λN and λG.

142



5.A. Simulation Studies

(a) This sub-figure corresponds to a scenario in which prior information is avail-
able for group size (λN ∼ Gamma(7, 1)) but not number of groups (λG ∼
Gamma(0.01, 0.01))

(b) This sub-figure corresponds to a scenario in which prior information is avail-
able for number of groups (λG ∼ Gamma(7, 1)) but not group size (λN ∼
Gamma(0.01, 0.01))

(c) This sub-figure corresponds to a scenario in which prior information is avail-
able for both group size (λN ∼ Gamma(7, 1)) and number of groups (λG ∼
Gamma(7, 1))

(d) This sub-figure corresponds to a scenario in which prior information is not
available for group size (λN ∼ Gamma(0.01, 0.01)) or number of groups
(λG ∼ Gamma(0.01, 0.01))

Within each sub-figure we present relative biases for the mean estimate estimate
and the 95% credible interval for the abundance, using data collected on a single
visit to 10 transects, data collected on a single visit to 100 transects, and data
collected on 10 visits to 10 transects. The true value for vestige surplus α in all
cases is 20 vestiges.

In Figure 5.A.1, we present results when observed vestige count Y ∼ Poisson(αTν),
and vestige surplus α is known and correctly supplied to the model as data. Rel-
ative bias in abundance estimates in each case are very small, and there are no
obvious differences in relative bias across sub-figures (a) to (d). This suggests that
when α is known, prior distributions used for λN and λG have little effect on abun-
dance estimation. In each case, relative bias is largest when using data collected
on a single visit to 10 transects, and results for data collected on a single visit to
100 transects are comparable to those collected on 10 visits to 10 transects.
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Figure 5.A.1: Relative bias in mean estimate and 95% credible intervals for abun-
dance T , for Poisson Y and α known, with true values for λN and λG ∈ {5, 10},
at varying sample sizes, and for different prior distributions on λN and λG.

In Figure 5.A.2, we present results when observed vestige count Y ∼ Poisson(αTν),
and vague prior knowledge of vestige surplus allows us to specify α ∼ Uniform(1, 100).
Relative biases are larger when α must be estimated, when compared with those in
Figure 5.A.1. Relative biases for Figures 5.A.2(a), 5.A.2(b) and 5.A.2(c) are very
similar to each other, and display very little difference due to sample size. However,
a difference in relative bias is obvious in Figure 5.A.2(d), when non-informative
gamma prior distributions are used for both λN and λG. In this case, relative bi-
ases are larger, and appear dependent on sample size, with the largest relative bias
associated with the smallest sample size, which contains data collected on a single
visit to 10 transects, and the smallest relative bias associated with data collected
over 10 visits to 10 transects. This suggests that when α must be estimated with
a weakly-informative uniform prior, best results are obtained when information is
available for at least one of λG and λN .
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Figure 5.A.2: Relative bias in mean estimate and 95% credible intervals for abun-
dance T , for Poisson Y and uniform α, with true values for λN and λG ∈ {5, 10},
at varying sample sizes, and for different prior distributions on λN and λG.

In Figure 5.A.3 we present results when observed vestige count Y ∼ Poisson(αTν),
and no prior information is available for vestige surplus, and so it must be specified
as α ∼ Gamma(0.01, 0.01). In this case we can see that there is large variability
present in relative bias for abundance estimates,and that relative biases are much
larger than the scenarios presented in Figure 5.A.1 and Figure 5.A.2. This is
particularly evident in Figure 5.A.3(d), which corresponds to a situation in which
no information is available for α, λN or λG, and all are estimated using non-
informative gamma priors. In this case,relative biases of up to approximately 110
tell us that abundance estimates are unreliable when no information is available
for α, λN or λG, and the triple Poisson model should not be used to produce
abundance estimates in this case. Relative biases are also very high in Figure
5.A.3(a) and Figure 5.A.3(b), when information is only available for either λN or
λG, but not both. Figure 5.A.3(c), which corresponds to a situation in which prior
information is available for both λN and λG produces much smaller relative biases,
and is the only scenario in which abundance estimates may be relied upon. From
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this we may conclude that if no information is available for α, the triple Poisson
model may be used to estimate abundance, provided that information is available
for λN and λG, and both can be specified by informative prior distributions.
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Figure 5.A.3: Relative bias in mean estimate and 95% credible intervals for abun-
dance T , for Poisson Y and α estimated using a non-informative gamma distribu-
tion, with true values for λN and λG ∈ {5, 10}, at varying sample sizes, and for
different prior distributions on λN and λG.

In Figure 5.A.4, we present results when Y ∼ Negative Binomial(αTν, ϕ), overdis-
persion levels in vestige counts are small (ϕ = 2), and vestige surplus α is known
and correctly supplied to the model as data. Results in Figures 5.A.4(a)-(c) are
very similar to those observed in Figure 5.A.1, when Y ∼ Poisson(αTν) and α is
known. However, relative bias presented in Figure 5.A.4(d) is much larger than
relative bias presented in the corresponding Figure 5.A.1(d). This is most evident
when data collected on a single visit to 10 transects means that sample size is
small. This suggests that when overdispersion is present in vestige counts, even if
levels of overdispersion are small, that larger sample sizes are required for reliable
abundance estimation.
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Figure 5.A.4: Relative bias in mean estimate and 95% credible intervals for abun-
dance T , for negative binomial Y with small levels of overdispersion and α known,
with true values for λN and λG ∈ {5, 10}, at varying sample sizes, and for different
prior distributions on λN and λG.

In Figure 5.A.5, we present results obtained when Y ∼ Negative Binomial(αTν, ϕ),
overdispersion levels in vestige counts are large (ϕ = 0.2), and vestige surplus
α is known and correctly supplied to the model as data. Results are similar to
those presented in Figure 5.A.4, though the issues with relative bias encountered in
Figure 5.A.4(d) are worsened in Figure 5.A.5 by the greater levels of overdispersion
present in this data. The conclusions that we can draw from this simulation are
similar to those from Figure 5.A.4. When overdispersion is present in vestige counts
Y , due to animal behaviour or non-constant vestige production, the ideal situation
involves prior information available to inform prior distributions for λN and/or λG,
and larger samples are preferable to obtain accurate estimates for abundance.
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Figure 5.A.5: Relative bias in mean estimate and 95% credible intervals for abun-
dance T , for negative binomial Y with large levels of overdispersion and α known,
with true values for λN and λG ∈ {5, 10}, at varying sample sizes, and for different
prior distributions on λN and λG.

In Figures 5.A.6 and 5.A.7, we present results obtained when Y ∼ Negative Binomial(αTν, ϕ),
and vestige surplus is estimated as α ∼ Uniform(1, 100). Figure 5.A.6 contains
small overdispersion in vestige counts (ϕ = 2) and 5.A.7 contains vestige counts
with greater overdispersion (ϕ = 0.2). The scenarios presented here are similar to
the previous negative binomial simulations presented in Figures 5.A.4 and 5.A.5.
The issue of very large relative bias when non-informative gamma prior distribu-
tions are used for λN and λG are again worsened by both the estimation of α and
the increase in the degree of overdispersion present in the counts.
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Figure 5.A.6: Relative bias in mean estimate and 95% credible intervals for abun-
dance T , for negative binomial Y with small levels of overdispersion and α esti-
mated with a uniform distribution, with true values for λN and λG ∈ {5, 10}, at
varying sample sizes, and for different prior distributions on λN and λG.

Finally, simulation studies were performed to assess estimates obtained using a
triple negative binomial model, in which the observed vestige count Y , the number
of groups G and the abundance T are all assumed to contain overdispersion. Data
was simulated from three different models: a triple Poisson model (TP), a triple
negative binomial model with small levels of overdispersion in Y , T and G (TNB-
1) and finally a triple negative binomial model with large levels of overdispersion
in Y , T and G (TNB-2). Six different triple Poisson and triple negative binomial
models were then fitted to each of these sets of simulated data. These models were
fitted with varying specifications in terms of the vestige surplus α and the mean
number of groups λG. The models fitted were as follows:

(A) A triple negative binomial model, for which α is known, and a non-informative
Gamma(0.01, 0.01) prior distribution is provided for λG;
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Figure 5.A.7: Relative bias in mean estimate and 95% credible intervals for abun-
dance T , for negative binomial Y with large levels of overdispersion and informa-
tion available to inform a uniform α, with true values for λN and λG ∈ {5, 10}, at
varying sample sizes, and for different prior distributions on λN and λG.

(B) A triple negative binomial model, for which α is known, and an informative
Gamma(7, 1) prior distribution is provided for λG;

(C) A triple negative binomial model, for which α is estimated using a uniform
distribution, and a non-informative Gamma(0.01, 0.01) prior distribution is
provided for λG;

(D) A triple negative binomial model, for which α is estimated using a uniform
distribution, and an informative Gamma(7, 1) prior distribution is provided
for λG;

(E) A triple Poisson model, for which α is known, and a non-informative Gamma(0.01,
0.01) prior is provided for λG;

(F) A triple Poisson model, for which α is estimated using a uniform distribution,
and a non-informative Gamma(0.01, 0.01) prior is provided for λG.
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In Figure 5.A.8, results for data simulated from a triple Poisson model (TP) are
very similar to results for data simulated from a triple negative binomial model
with small overdispersion (TNB-1). This indicates that if the true data had small
amounts of overdispersion, that fitting a triple Poisson model would suffice, and
that if the true data were triple Poisson, that fitting a triple negative binomial
model would provide similar results. As we have seen in simulation studies de-
scribed above, relative bias in abundance estimates is larger when α is estimated
(models C and D) than when it is known and provided as data. When α is esti-
mated using a Uniform distribution, an informative gamma prior on λG (model D)
produces less uncertainty in abundance estimates than a non-informative gamma
prior on λG (model C). For both of these simulations, when α is known and pro-
vided as data, relative bias in abundance estimates is very small regardless of the
model fitted or the prior distribution provided to λG.

When data is simulated from a triple negative binomial model with higher levels of
overdispersion (TNB-2), relative bias in abundance estimates are larger in almost
all scenarios. When α must be estimated (models C, D and F), relative bias in
abundance estimates are considerably higher for this data. When α is known
and an informative gamma prior is supplied for λG (model B), relative bias in
abundance estimates are similar to those associated with the triple Poisson and
triple negative binomial with small overdispersion simulations. However, when α

is known and a non-informative prior is supplied for λG (model A), relative bias
in abundance estimates increases again. From this we can conclude that when
overdispersion levels in our data are high, that an informative prior for λG and
prior information on α are required to reduce uncertainty in abundance estimates.
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Figure 5.A.8: Relative mean bias in abundance estimates for triple negative bino-
mial models (A-D) and triple Poisson models (E-F), fitted to data simulated from
triple negative binomial models (denoted by the green and red lines) and triple
Poisson models (denoted by the blue line).

5.B Case Studies
In this section we present the details of model implementation for each of our three
case studies. In order to choose a prior distribution for the number of groups of
animals in an area, in each case study we use the size of the study area and prior
information regarding the species’ territory size to obtain a theoretical maximum
number of groups that might be in the area.

5.B.1 Sika Deer
The sika deer dataset contains vestige counts collected from eight different areas,
each of a different size with sizes ranging from 8km2 to 15.2km2. For this reason,
we obtain a separate theoretical group maximums per area. In order to determine
the prior to use for λG, we use the size of the region, and prior knowledge that the
territory of sika deer lies between two and twelve hectares. Table 5.B.1 contains the
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area of each region, the theoretical maximum number of groups it might contain,
and the gamma prior chosen for our analysis.

Region Area Max. Groups Prior
A 13.9km2 700 gamma(1, 72)
B 10.3km2 500 gamma(1, 45)
C 8.6km2 430 gamma(1, 40)
E 8km2 400 gamma(1, 40)
F 14km2 700 gamma(1, 72)
G 15.2km2 760 gamma(1, 75)
H 11.3km2 565 gamma(1, 52)
J 9.6km2 480 gamma(1, 50)

Table 5.B.1: This table presents the area of each of the eight regions in the sika
deer dataset, as well as the theoretical maximum number of groups of sika deer
that each area could contain, and the prior assigned for λG during our analyses

5.B.2 Red Foxes
Similar to the sika deer dataset, we know that the size of the study area in this
case is 2448km2. We also possess prior information on the average territory size
of a red fox, which ranges from 5km2 to 12km2. For this reason we estimate that
the theoretical maximum number of groups of red foxes within this study area is
490. We can now specify that λG ∼ gamma(1, 50), which allows a maximum of
between 400 and 500 groups.
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5.C. DIC Values

5.C DIC Values
Table 5.C.1 provides the DIC and BIC values associated with a model with a
Poisson vestige count and a negative binomial vestige count for each of the case
studies examined as part of this chapter. In each comparison, the DIC values and
BIC values were in agreement as to the model of best fit. For each case study, the
model with the lower DIC/BIC value was chosen as the optimal fit.

DIC BIC
Model Poisson Negative Binomial Poisson Negative Binomial

Collared Peccary 16.12 15.14 15.54 14.44
Red Fox 1195.94 629.33 1427.36 759.74

Sika Deer A 555.63 145.10 561.37 151.39
Sika Deer B 283.9 94.40 288.82 99.69
Sika Deer C 14.92 15.52 16.37 17.62
Sika Deer E 46.25 36.34 48.41 34.94
Sika Deer F 7.29 8.41 5.32 6.26
Sika Deer G 34.839 27.52 36.22 25.72
Sika Deer H 5.07 5.50 3.34 3.52
Sika Deer J 5.82 6.34 3.96 4.35

Table 5.C.1: DIC and BIC values for models fitted to case studies in which we
compare a Poisson vestige count to a Negative binomial vestige count.
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CHAPTER 6
Final Remarks

In this chapter, we review and summarise the work presented in this manuscript, exam-
ine any obstacles or difficulties encountered, and provide recommendations for possible
extensions to the work described.

In this thesis, we have introduced modelling frameworks that allow us to estimate
animal abundance using different types of data and in a range of scenarios. In
this final chapter, we briefly re-examine the work presented in previous chapters,
examining some advantages and limitations to these modelling frameworks, pro-
viding final remarks, and discussing further work and possible extensions in each
case.

Methods such as those detailed in this thesis that allow us to utilise indirect animal
data to estimate abundance facilitate the implementation of wide-scale, long-term
animal monitoring programmes. This is due to the relative affordability with which
these indirect surveys can be carried out, the reduced risk of harm or disturbance
posed to both animals and humans, and the fact that these indirect surveys may
be carried out by individuals with very little training requirements.

The ability to estimate animal abundance using this data can consequently be
of great value to those working within the wildlife monitoring space, including
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statisticians, ecologists and policy-makers. Wildlife monitoring programmes are
vitally important if we wish to determine when species are beginning to decline
towards a possible extinction, and when species are beginning to increase to levels
which could cause issues, either economical or societal. The aim of the work
presented as part of this thesis was to provide modelling frameworks that might
contribute to the literature in regard to estimating animal abundance and improve
upon this ability to monitor wildlife populations. Taking Chapter 3 as a starting
point, here we provide an extension the N-mixture model developed by Royle
(2004) by considering observational counts collected for multiple species, through
the addition of a species-level random effect. This random effect in turn allows us
to estimate inter-species correlations, which may allow for inferences to be made
as to the relationships that species have with one another.

We then examine further extensions to this model. The first of these extensions
allows us to estimate abundances using data that has a large proportion of zero
counts. This is a scenario that is very commonly encountered when working with
data composed of counts of animal sightings, and so is an important aspect to
consider when building methodologies that might be used with this data. A second
extension allows us to estimate abundances using data collected over long time
periods through the addition of a first-order autoregressive term on the abundance.
The ability to utilise data collected over long time frames to estimate abundance
is a vital component in the establishment of long-term monitoring programmes.

Finally we provide a straightforward combination of these two extensions, which
allows us to examine data which is collected over long time periods and also has a
large proportion of zero counts. Through an extensive simulation study, we show
that estimates consistently demonstrate high levels of accuracy. We also explore
the performance of this family of MNM models on a real-world application which
contains both zero-inflated data and data collected over long time frames, using
data collected as part of the North American Breeding Bird programme.

A limitation of note associated with the MNM model is the computational intensity
involved in running these models. It is possible that in future, improvements may
be made which could significantly increase the speed of our implementations, which
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we believe would prove invaluable in facilitating wider-scale use of this modelling
framework.

We note also that in the models that contain an autoregressive component, while
we obtain separate Corr(Ns, Ns′) per year, a feature of model formulation means
that the correlation between two species cannot change sign from year to year.
We can accommodate a change in sign by allowing for an unstructured covariance
matrix of the autocorrelation coefficient Σϕ, and this particular extension is subject
of ongoing work. Furthermore, the models presented in this paper assume that
sites are independent of one another. A further extension we are currently working
on is the incorporation of spatial dependence in the abundances estimated by the
MNM model.

We then present in Chapter 4 the original N-mixture model that our multi-species
N-mixture model is based on, along with a number of alternative N-mixture model
extensions that have been developed since the publication of the original. We then
present an implementation of the N-mixture model by Royle (2004) and a further
implementation of our MNM model detailed in Chapter 3, using a dataset of bee
sighting collected as part of the BeeWalk Survey. This chapter is written with the
intention of providing instruction in the use of various N-mixture models, to an
audience who may not have a background in Bayesian statistics. To this end, sev-
eral appendices are provided which contain R code that may be used to reproduce
this analysis. It is hoped that providing ecologists and other practitioners with
the information required to perform their own data analysis will further facilitate
the implementation of wildlife monitoring programmes.

Finally in Chapter 5, we propose a new class of models which use animal vestige
data to estimate animal abundance. Through simulation studies which involve
data simulated from a distance sampling model, and using a dataset collected
by Marques et al. (2001) composed of sika deer vestiges, we demonstrate that
the performance of the triple Poisson model is comparable to the performance
of a distance sampling model, the only other modelling framework that we have
encountered that has been used to estimate abundance using this type of scat data.
Via these simulation studies which saw datasets simulated that contained only
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two counts, we also discover that the triple Poisson model is capable of estimating
abundance even when data is very scarce. This method of data collection (the use
of vestiges rather than animal sightings) is of particular use for many animal species
which may otherwise go un-monitored for various reasons that might include the
animal’s reclusive behaviour, or the animals habitat being one that does not lend
itself easily to obtaining animal counts (e.g. a dense woodland). For this reason
we hope that modelling frameworks such as the one detailed in Chapter 5 might
open up new opportunities for wildlife monitoring.

We have thus far assumed for this modelling framework that vestiges experience
an exponential rate of decay. However, in the future we plan to examine alter-
native scenarios which will involve vestige decay occurring according to different
distributions, to allow us to model the transient phase of the population. In the
future, we also plan to examine the effect on abundance estimates of using conve-
nience sampling rather than randomly placed transects. It is anticipated that this
development might improve the cost-efficiency associated with carrying out this
type of vestige survey.

In addition to the work presented in this thesis, we have explored other areas in
estimating animal abundance and occupancy. For example, we have spent time
exploring a spatial multi-species occupancy model, which might allow for the es-
timation of occupancy for multiple species, while taking spatial dependence into
account through the incorporation of a site-level random effect with a covari-
ance matrix that has a multivariate Matérn structure, as proposed by Gneiting
et al. (2010). However, our implementation of this approach has thus far failed
to converge to the posterior distribution in a manner that we find satisfactory. In
particular, we noticed that while the spatial correlation of each species converges
well, the inter-species spatial correlation struggles to converge.

Finally, we note that the implementation of the methods presented in this work
are freely available at https://github.com/niamhmimnagh in public repositories
named insect_populations_ch11, mnm, and triple_poisson. Thus, all analy-
ses presented as part of this thesis are reproducible and methodologies are freely
available to interested parties.
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