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Abstract- Small Flow Completion Time (FCT) of short-lived be congested) by receiving lossless service. Second, if two or
flows, and fair bandwidth allocation of long-lived flows have been more flows are bottlenecked at the same link they must receive
two major, usually concurrent, goals in the design of resource nonuniform loss rates that are function of their aggressiveness
allocation algorithms. In this paper we present a framework that
naturally unifies these two objectives under a single umbrella; (roumnd-tri times, TCPimle entato queuingvdela etc)
namely by proposing resource allocation algorithm Markov Assuming that the router has access to the individual flow
Active Yield (MAY). Based on a probabilistic strategy: "drop rates, or the existence of multiple queues that are appropriately
proportional to the amount of past drops", MAY achieves very scheduled, a number of solutions to these two problems exist,
small FCT among short-lived flows as well as max-min fair and are described in previous works [25], [11], [17], [5], [20].
bandwidth allocation among long-lived flows, using only the However, in our case it is highly nontrivial to make the drop
information of short history of already dropped packets. It turns l
out that extremely small amount of on-chip SRAM (roughly 1 (mark) decision without any explicit information. On the other
bit per flow in Pareto-like flow size distributions) is enough for hand, existing router-based algorithms for minimizing of FCT,
storing this drop history. Analytical models are presented and require either cooperation from the TCP sender [3], [10], or
analyzed and accuracy of results is verified experimentally using full state information [19] for every arriving flow, making them
packet level ns2 simulations.

not scalable at very high speeds.
I. INTRODUCTION The main contributions of this paper are the following:

Resource allocation in communication networks has been a
major topic of interest for some time. Many current proposals * A novel queue management scheme Markov Active Yield

haveas hei pefomane ojetiv a anwidh aloatin tat(MAY) that unifies two major design principles: small FCT
hav asther prfrmace bjetie abanwidh lloatin tatof short-lived flows and max-min fair bandwidth sharing ofis max-mmn fair [25], [5], [20], [11], [2], [26]. However, from ofh-lived flows and maxm fairndth sharingbo

the user point of view, a major (arguably the most important) mAYliongi flows hesoy state irmatio tatsk
performance metric is Flow Completion Time (FCT) [6]. A o a ro p
number of schemes that minimizes FCT exist in the literature
[19], [3], [6], [10]. These require either state for every arriving * An analysis of the randomized algorithm MAY that shows
flow, or cooperation from end-to-end users. Note, also, that that the bandwidth allocation of the long-lived elastic flows
max-mmfair proposals can harm FCT ofshort-livedflowsa in the network of MAY queues is max-min fair. On the other

theirxsending rate isalimiebn theTofa share.lived flows ashand, we show that nonelastic CBR flow receives (virtually)
Oueir goalnisrte dsign of aue management lossless service if its sending rate is less than max-min fair

that will integrate the design principles satabe:e(1 max- share, and asymptotic denial of service otherwise. Severalthtwl* nert h einprnilssae bv:()mx representative packet level simulations are presented to verifymin fairness of long-lived flows, and (2) small FCT of short- r l s a s
lived flows without use of explicit per-flow statel and without our analytical findings.
change of the existing TCP/IP infrastructure.changeou desi istingbased

Ponftherobservation thatcoun Analysis and evaluation of effects of MAY on FCTOur esin ibaed n te oseratin tat ouning of short flows. MAY can reduce the FCT of TCP flowsdrops (and acting accordingly) provides enough information ofishot fows.rMA ca reducesthemFC of TCP flw
for achieving our goal. We propose a resource allocation inicant ly-comparet oblviusschemes (like RED) and
algorithm, called Markov Active Yield (MAY), that satisfies instantaneously-fair packet schedulers (like DRR) and thealoitm cale Mako Aciv Yil (MY) tha saife

FCT's are just slightly higher than those of LAS, a statefulboth of our design principles yet is simple to implement, uses scae jgf
a single queue, scales for speeds of over 40Gbps and requires scheme
roughly one bit per flow of on-chip SRAM in Internet-like
flow size distributions. The fact that one can enforce max-mm fairness by only

counting past drops is not only theoretically surprising but
A. Paper contributions is also of important practical interest. Namely, MAY memory

Why is reaching the goal stated above hard? First, recall that requirements are roughly one bit (of on-chip SRAM2) per flow
in the max-min fair regime, a flow f experiences drops at one in Pareto-like flow size distributions (see Section III-D). Since
and only one link If at its path (we say that f is bottlenecked computational complexity of the scheme is extremely low,
at Ifi), and therefore must be protected at other links (that can MAY scales well at speeds greater than 40Gbps and several

dozens of millions concurrent flows, with currently available
1Under explicit per-flow state we consider any method that can give an

estimate of flow's arrival rate or number of previously arrived packets. 2Static RAM. Current implementations have access times of 2-6nts.
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hardware devices and state-of-the-art implementations of hash iOnPacketArival(pkt, FlowID)
2 if FlowID C H

tables [21] and statistics counters [23]. 3 with probability v* d(FlowID) do
4 drop(pkt);
5 ND(FlowID) + +;

B. Related work 6 TS(FlowID) = now;
7 enddo

Both of the problems that we study here have been studied 8 else with probability qo do
extensively in the past. Here we classify existing proposals create(FlowID ;H)
in two categories: (1) end-to-end transport protocols require 11 ND(FlowID) 1;
change to cooperate with the routers; (2) end-to-end transport 12 TS(FlowID) now;to cooperate ~~~~~~~~~13if CurxrentUtilization > uio;
protocols do not require any change (routers are fully respon- 14 drop(pkt);
sible for the resource allocation). 15 enddoif

(1A) Bandwidth allocation of long-lived end-to-end users
that cooperate with intermediate routers attracted a large 18 if ow - LastUpdate> A
attention in the last decade [22]. Examples include XCP [11], 19 > = > + K(CturrentUtilization - uo);
REM [2], MaxNet [26], etc. 21 if ow - TS(FID) > To

(IB) Short FCT's of short-lived flows has been subject of 22 remove(FID, H)
23 else

interest of several recent studies. In [6], the authors propose an 24 e(FID) = (1 - qw)6(FID) + qwND(FID);
end-to-end protocol for reducing the FCT of short-lived flows. 25 ND(FID) = 0;

26 endelse
RuN2C [3] is a two-queues strategy, that cleverly exploits 27 endfor
the 32-bit TCP-sequence-number space to reduce the FCT, 28 LastUpdate = now;
by requiring a slight change in the TCP stack (Initial TCP- 29 endif
sequence-number must be set to an appropriate value in order Fig. 1. Pseudocode of MAY.
to be prioritized by RuN2C).

(2A) In a similar manner to (1A), enforcing fairness "in the
middle" without cooperation of end-to-end users has been a orders of magnitude, with minor performance degradation (in
very active research area. Various algorithms exists: DRR [20], terms of FCT and max-min fairness):
FQ [5], FRED [13], CSFQ [25], AFD [17], PD-RED [14] etc., (*) Drop proportionally to the amount of past drops
all requiring explicit state information. A queue management scheme that follows (*) is a feedback

(2B) Size-aware scheduling policies like Shortest Job First system: the more drops a flow experiences the higher will be
(SJF), Shortest Remaining Processing Time (SRPT) or Least the drop probability of that flow in the future. Sometimes,
Attained Service (LAS) [12] have been used extensively in the such feedback systems can diverge, but self-regulatory nature
area of operating systems to prioritize short jobs. However, in of TCP makes systems based on (*) stable (in terms of drop
the Internet links, strategies that require knowledge of flow probabilities), as we shall see in Section III.
(job) sizes (such as SJF or SRPT) are not suitable, since We will call flow f new if it has not experienced any
that information is generally unavailable. On the other hand, loss until time t; otherwise we will say that f is old. A
stateful approaches have been shown to significantly improve natural question that arises is what happens to new flows
FCT of short lived flows [19], [10]. under strategy (*). As we said, ideally we would like that

all flows with size smaller than So, receive a lossless service
II. MARKOV ACTIVE YIELD (MAY) and that all flows with size greater than So join the "battle"

In order to enforce fairness among long-lived users with for fair bandwidth share. Since we want to avoid the use of
is per-every-flow counters, we use a probabilistic argument to

diffearent loreves aggressiveandless,a responsivensersmus, i allow a few losses among short-lived flows and to enforce that
flows with length greater than So packets receive most lossespunished more than others. The question is "by how much"

and ow hisstraegyshold e imlemnte in n eficentin congested environments. To this end, we keep track of all
mannerhow wouldstraleyshoulkete soplemenkidofanpteictionfold flows, and drop new-flow's packets with probability (of at
manner. We would also like to have some kind of protection for ' 3most) qo = 3. This will be the input to the feedback system
"sh moret-lvd fo Hacker a w defined by (*). As we will see in the next sections, a statelessnot more than So packets.

Ideally, for a given So, all short-lived flows should be strategy for dropping a new-flow's packets, enforces very few

protected at a congested link, by receiving a lossless service losses among flows with size less than So. On the other hand,
On the other hand, flows with more than So packets should easily implementable strategy (*) makes bandwidth allocations

receive nonuniformloss rates that willresulamong arbitrary set of long-lived AIMD flows asymptoticallyreceive nonuniform loss rates that will result in fair bandwidth nininintfncctviinrini-rmdtltnti ci-inp-share..Hoevr thi idaie goli adyfesbe(e ndependent of additive increase or multiplicative decrease

[19])~~~~athg.pes( 0bs)snei ol eur Now we proceed with a detailed description of MAY. As
keeping packet counters for each flow, strictly. The base for our
discussion is the following powerful probabilistic paradigm 3Rationale for this strategy is fact that expected number of prioritized
that can reduce state information needed for more than two packets of new flow is ql So.
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uo desired utilization III. ANALYSIS OF MAY
A length of update period
qw weighted average parameter A. Bandwidth allocation of long-lived elastic AIMD flows
K controller gain
To Timeout value In this subsection we prove that in steady-state an arbitrary

TABLE I set of AIMD flows [27] (flows with arbitrary linear increase
PARAMETERS OF MAY. parameter and arbitrary multiplicative decrease parameter),

asymptotically obtain equal amount of throughput in a single
bottleneck scenario (Corollary 3.1). Formally, throughout this
subsection we assume the following.

we have said the basic idea is to keep information of recently Assumption 3.1: There are N long-lived flows fl,.. fN
dropped packets and to use that statistics to regulate the drop that use a congested link and all of them employ AIMD
probability for each of the flows. The complete pseudo-code congestion control algorithms with an additive increase pa-
is given in Figure 1. rameter -Yi > 0 and a multiplicative decrease 3i C (0,1),
The data structure used is a hash table H that stores quadru- i = 1, 2, ... , N.

ples (FlowID, 5(FlowID), TS(FlowID), ND(FlowID)) Under the previous assumption we can prove that MAY
for flows that have experienced some drops. Here 6(FlowID) stabilizes v and 6i = 6(fi) (frequency of drops of flow fi) in
is the drop frequency of the flow given by the fingerprint the model presented below.
FlowID, TS(FlowID) is the time stamp that tracks the time Let U) be the throughput of flow fi measured after k
of last update of the given hash table entry and ND(FlowID) units of time A0 (say a millisecond; We assume that A0 <
is the number of dropped packets from the flow FlowID A). Denote the loss probability for a packet from flow (i)
during the current update interval of length A. At each packet in time step k, between t-th and t + 1-st hash-table update
arrival a packet's FlowID is calculated. If there exists an (kAo C (tA, (t + 1)A)), by pi (k) = 6i(t)v(t). Having this,
entry in H that corresponds to FlowID, the arriving packet we can consider U) as a Markov chain on R+ given by the
is dropped with probability proportional to the frequency transition:
of past drops: v 6(FlowID). The frequency of losses is
calculated using weighted averaging (see line 24) with weight
qw. Finally the control variable v determines the size of drop k+1 k+ k'with probability
probabilities and therefore the utilization: if current utilization
is less than desired (uo) u should be decreased to allow lower = U with probability 1 c- k

drop probabilities and increase utilization, while if current
utilization is greater than uo, then v should be increased to From [7] we have that expected number of sent packets of
allow higher drop probabilities and decrease utilization. flow i in time interval (tA, (t + 1)A) is

A. Implementation issues I( )(t) -ii .A (1)
State-of-the-art algorithms for high-speed hash table im-

plementations presented in [21] allow implementations that for a constant A, that does not depend on i (note that (1) is
run on line speeds greater than 40Gbps, assuming that hash a generalized version of square root formula [16]). Denote by
table is stored in on-chip SRAM. In order to keep the whole 6i(t) the number of dropped packets of flow fi during time
hash table size small, we use the implementation of statistics interval (tA, (t + 1)A). Each of U(i)(t) packets is dropped
counters architecture proposed in [23]. The size of MAY hash with same probability 6i(t)v(t), and we use the mean field
table entry can be made to be 10 bytes: 10 bits per counters approximation to estimate 6i(t):
5(FlowID), TS(FlowID) and ND(FlowID)); 30 bits for
FlowID fingerprint, and 20 bits for hash-table pointer. This ointi_
would allow 16K hash-table entries on IMbit on-chip SRAM 6i(t) = U()(t)i(t)v(t) 1 - V t Ai(t)u(t)=
and 128K hash-table entries on 8Mbit SRAM. Probability of 1
a hash collision is then 2-30K-1 where K is the number of
hash-table entries. 1 - /3 jA -(t)v(t) = aiV6-(t)v(t), (2)
As we will se in the next Section, the memory requirements

in Pareto-like flow-size distribution is around 1 bit per active where we denoted by ai = Vd A. On the other hand,
flow. On the other hand, various publicly available OC192c we know that v(t) is regulated to achieve utilization u0C,
and OC48c traces shows that the demand equivalent to 1Gbps where C is the link capacity. Thus we have:
is generated by few hundred thousands of active flows (with
timeout value of 64 seconds). Therefore, the memory require- N 1 1
ments in the current internet flow-size distributions is roughly S U(t (t) 5uHEa / 0C. (3)
equivalent to one Mbit of on-chip SRAM per Gbps of line i=1 () 2=
speed. From (2) and (3), we obtain
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U
N 1 1 Having that r(t) < 1 and that r(t) is monotone, nonde-

dil V (t) u0C creasing, we know that r(t) converges to r* < 1. Next lemma
shows that r* is indeed 1.

Since at the t + 1-th update we use the weighted averaging: Lemma 3.3: The sequence r(t) converges to 1.
6(t + 1) = (1 - qw)6(t) + qw6j(t), we conclude that the Proof: Suppose it is not true. Then there exist d > 0,
evolution of d(t) is given by: such that for all t, r(t) < 1 - 6. From the definition of r(t),

we have:

sstem =(1-q()i j(t)+qaabl.(t) (4) r(lt+1) VZ1 V1Z)N(t)
Bfrwepoednoeta ystigz(t)=oc r(t q( NqwC (t))

1+ >1+ E>1N~~~~~~~~~~~~~~~~~~~~~~~~V'N1q)+ t

ziThere 31) SuposWinitially, 1 Tu, sumnthat r(t (I1- , for allt,impie qw)
1~~~~~~~~~~~~~~=...E1N., Then iin turnmanil modlprsntedabitove wthe 7r(t)>< ~ r t

system (3)-(4) is stable. (1T-eqe) 3.1zN(t)(1n -wq)zN(t)+ qw
Before we proceed, note that by setting zi(t) 6i (t) UO(t) +a.

equation (4) becomes equivalent to qw( a -1) o
> 1+ (1- qED q > 1.

N 1I-q)D+q
z(t + 1) =(I-qw1)- z(t) + qw Vz(t) S<(5) Thus, assuming that r(t) < 1 - 6, for all t, implies r(t) >

jD1 e\zot b(t) r(1)Eti1 -tw oc, which is in turn a contradiction with =t) .
1. U

Without loss of generality, we can order zi at time t 1. Proof: (Theorem 3.1) Since Zl(t)/ZN(t) converges to
Zl(1) ._ Z2(1) ._ <_. N(1). Directly from (5) we get that 1, we have that for every i', VFzj((t)s(t) converges to N,
fOr all t >I and therefore, from (5) zlm(t) converges to N. Now, from the

Zft . Z2i o ZN definition of zi(t) we obtain that

Denote by r(t) the ratio between the smallest and the fnlimu(t) = N (1 N
ZN t.) tzoo t-oxoi Clargest component of vector z(t), and by s(t) =~EN (Y Fo () ecncueta

function of t. 2
Lemma 3.1: Ratiors(t) z1(t) is nondecreasing function ( b e N

of t. ZN B rn v(t) ai o o a p C w
Proof:(Since the order of zuis preserved we have that

zi(t + 1) (1- qw)zi (t) + qw iz(t)s(t) Corollary 3.1: In steady state, expected throughput of flow
t+1) ZN(t + 1) (1-qw)ZN(t) + qw Fz`N(t~)s(t) f. does not depend on AIMD parameters, /3i and -~j

/roof:1irst, noe ha / 1" 1 < uta0 wthMY uee eciv,asmpotcalProof:- From (1),

ZN(t 1 qw) + q ~Z()s(t)} ZN(t) I-Q3i *Na N

Lem 3.2. .the sequenceZ(t)s bouAndted fhromgpuaofoglve:on

Lemm.3.2Thesequnce N(t is oundd frm abve:

B. Bandwidth allocation of non-responsive CBR flows
N

ZN (t) . ZN (1) + SD. In the previous subsection we have seen that set of N long-
VT,r-( 1I) N lived elastic AIMD flows bottlenecked at link with through-

Proof:- First, note that VZN (t) Zi=1 VZ (L) < put u0C with MAY queue receive, asymptotically, the same
N - N N theoghlemma IN.In this subsection we are gigtoexlr

zN(t) zi(t) = (t1q) (m1l)No we prove n dntrouhpt: oC/N goin pexsplore.
by mathematical~ induction. Fo-r t- 1,o staempoenthilemarl the effects of MAY on the throughput of long-lived non-
true Suppoemathcat inutisovli For t m, stthmenfrt ms +le1:l responsive CBR flows. Suppose that a link is shared by Ntru. Sppsehatitis ali fr t= m ten or =m +1: elastic AIMD flows with AIMD parameters -yj > 0 and

j1Zv Theorem 3.2. In steady-state, the throughput of all AIMD

(l-qw)(N(l)+_N N N()_N flows is1(6

(1 qw)(N(l)+(1)+ ,,(1) r(1)+,/ =*.U 6
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For the throughput of CBR flow T* we have: so = 1000
0 SO =2000

T:, x -j if xj < (7) 16

11.4

T =O if xj > (8) E

Here v* is the steady-state value of v. E

Proof: From the proof of the Theorem 3.1 we have
(6). On the other hand denote by 6j(t) weighted average of 6
frequencies of drops from CBR flow cj, and by 6j(t) the e( --c3---- _ _
amount of drops from the same flow during the time step , -
t. Then if 5j(to)v* > 1 for some to, all packets starting after 0 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

period to will be dropped and T 0= O. If Qj(t)v* < 1 Paretoshape-k
Fig. 2. Expected memory consumption (in bits per flow). Pareto shape

5j(t + 1) = (1 - qw)j(t) + qw j(t) k E [1, 2], mean ,t = 10, 500 < So < 2000.

q(1-qw)j(t) + qwxj6j(t)v* = Qj(t)((l -qw)0 qxjv*). D. Memory consumption

Thus, for xj > V*1 we have that ((1qI ) +qw xjv*) > 1 Let the sizes of flows be distributed according to the
and j (t + 1) is exponentially increasing until it becomes distribution G(x):
greater than *, and after that all packets from that flow
are dropped. If xj < 6,dj(t + 1) -* 0 as t -* oc, and P[f .x G(x)
therefore CBR flow gj receives asymptotically lossless service, - J Y
and T* =1jandTj*= xj. Then the number of hash-table entries needed for a popu-

lation of n flows: (fi)1<i<k is given by the random variable

C. Max-min fairness of the elastic AIMD flows n
Z(n) = z(fi),

The next theorem proves that, in steady-state, bandwidth i1
allocations of elastic AIMD users is max-mmn fair.alloction oflastc AID usrs i maxmin air.where: z(fi) = I if flow fi has been hashed (experienced atTheorem 3.3: Let G be a network topology, with queues were: z(fi)=1if flow fhas been hashed

conesio least one loss), and Z(fi) 0 if flow fJi has not been hashedemploying MAY and end users employing AIMD congestn (had no losses)
control. For every flow r with steady-state rate x< there exist
a link on its path, such that the steady-state rates of all flows
which~~trves thog htln r este reult * Denote by 1i the length of flow fi. The probability thatwhich traverse through that link are less then or equal to .r z(f ) 0 is:

Proof: Let L be the number of links in the network and
N the number of flows. We label flows by i = I,2,...,N = 1 __i
and links by s = 1, 2,. ..,L. By R we denote the routing P[zfi) =O= (1 -qo)'= (1- SO

matrix: R 1 if flow i uses link s otherwise
.

0. By The expected memory consumption is then given by6s denote the frequency of drops of flow t at link s, and by
v* steady-state value of v at link s. Then for arbitrary flow
r there must exist link I for which V)* > 0. On the other f -e

* (s)*~~ E(Z(n)) = nE(z(f)) = n g(y)(1-eC )dy,hand, from the definition of 6s we have that it satisfies the Jd
following equation.

and the variance of Z(k) is:

(S* (1 ) + =(s)*(1 qw+qwxris). Var(Z(n)) = nVar(z(f)) = n g(y)(I - O )e dy.
Since we picked I such that > 0, from (9) we conclude
that~~ ~ ~ ~~~~~~'1-qlw,wihimle ~ Nw o The expected memory consumption (EMC) in bits per flow

(s) vl , 1iS given by M(G) =80E(Z(n))/n (we assume that each
any other flow r1 that uses link 1, 6}r) > 0 implies <rl hash-table entry have l0bytes =80bits). Figure 2 contains
vl*=r hie (S* 0implies xr < v (see proof of EMC for Pareto distributions, with Pareto shape in [1, 2] and

Theorem 3.2). * mean 10 packets.
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12. FCFS
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Fig. 3. Proportion of lossless short-lived flows. Pareto shape k c [1, 2], Fig. 4. Flow sizes versus FCT (measured in RTTs) in FIFO (with drop rate
mean ,t = 10, 500 < So < 10000. po = 0.01), MAY (SO = 1000) and LAS cases. Top plot has no slow start

limitations, while the bottom plot corresponds to sstrhesh_ = 2.

E. FCT of short-lived TCP flows
IV. EXPERIMENTAL RESULTS

A major factor that determines the FCT of a flow f is In this section we briefly describe results of packet level
the congestion control algorithm (and its implementation) .s2simulations that demonstrate the behavior of MAY. We
used by f. For example, in standard TCP, the parameters look at two issues:
that directly determine the FCT are: the slow start threshold
(sstresh_), the advertised window, the maximum congestion * fairness of long-lived flows
window (maxcwnd_), the delayed acknowledgements option,
etc. In the simplest case (without sstresh_ and maxcwnd- flow completion times of short-lived flows
limitations) most short flows will complete quickly (in slow
start phase), if they do not experience loss. In Pareto flow
size environments, the proportion of short-lived flows that To c evhow fa r bandwidth allocat
experience loss is very small. Namely, in population of k flows UN)devat from ma-m fi bandwidthaloa
with Pareto distributed sizes, with shape k C [1, 2], and mean tion bm
size ,u proportion of short-lived flows that do not experience gvN uib2
drops is ((U) Ei= Ui,<) (10)

L(k, ,,So) = Prob[z(f) = O°f < SO]. NZd=1 Ui

Clearly, j(U) has a global maximum 1 that is attained at
For ,u 10 and k E [1, 2] (standard values in the U = Umm and since it is continuous, by measuring how far

Internet) the value of L(k, u, So) > 0.98 for So > 500 and the index is from 1, one can get some intuition as to how far
L(k, ,u SO) > 0.99 for So > 1000; see Figure 3. the vector U is from Umm. The MAY parameters used in the

To see how the FCT of TCP flows is affected by MAY one experiments are: A = Is, uo = 0.98, , = 0.1, qw = 0.05,
can consider a simple model of TCP with delayed acknowl- To = 64sec. The DRR parameters are No-buckets- =

edgements (one ack per two packets) and without (upper) limi- 100, blimit_ = 100Kbytes, quantum_ = 1000bytes. The
tation in cwnd_ where each packet is dropped with probability self configuring Adaptive RED [9] is used to determine the
p. Figure 4 depicts the mean FCT (numerically obtained by RED parameters. TCP version is the standard TCP-SACK,
averaging 100 runs) of short-lived TCP flows (So = 1000) in with a packet size lOOOB and delayed acknowledgements
three cases LAS (p = 0), MAY (p = 4 ) and FIFO with drop switched on. The aggressiveness of each flow is, thus, mainly
rate p = po = 0.01. Both ssthresh_ 2 and ssthresh_ determined by its RTT.
oc are included. We can observe a slight increase in FCT
between MAY and LAS, which is the consequence of the A. Fairness - Single bottleneck
(stateless) probabilistic nature of MAY and price that must The first set of simulations are designed to demonstrate the
be paid for not keeping per-flow packet counters as in LAS. fairness properties of the proposed AQM schemes in single
Figures are produced using the standard mathematical model bottleneck scenario. Specifically, we present results for a single
of additive increase - multiplicative decrease cwnd_ control link with service rate of 80Mbps that services 100 long-
and constant loss rate; see [16] or [7] for more details. lived TCP users with round trip times uniformly distributed in
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Fig. 5. Average throughput for 100 long-lived TCP flows over congested Fig. 7. Bandwidth obtained by each of 30 flows in multiple bottleneck
link employing RED, DRR and MAY. topology. Congested links use RED, DRR, MAY.

p1 p2 p3 p4 pS

n0 C<Ct (i)j3/0 0 ql shares are 0.5Mbps for 20 flows that uses link c2 - c3, and
c2 \\ |//c4//q2 lMbps for other 10 flows (n(i) - m.(i) and p(i) -+ q(i)).

n3 q3 The bandwidth allocations are evaluated with each link
n=\q4 cl - c2, c2 - c3 and c3 - c4 using: RED, DRR and MAY,

n5 C)/ // \\ \° q5 respectively, with a queue size of 100 packets.
d1 d2 '3 4 .5

bFigure 7 depicts 3 scenarios, one for each dropping scheme
used. We plot the amount of throughput taken by each of 30

Fig. 6. Network topology flows during 2-minute simulations. The doted line represents
the max-min fair share of bandwidth. We can see significant
unfairness in oblivious (RED) scheme and close-to-max-min-

range 40- 440rms. To provide baseline results, we include the fair resource allocation in DRR and MAY case. Jain's indices,
performance of RED and DDR for the same scenario. Share defined by (10) are:
of the total throughput taken by each of 100 flows in these 3
schemes is depicted in Figure 5 during 2-minute simulations. i(URED) = 0.731, j(UDRR) = 0.987, j(UMAy) = 0.985

Jain's fairness indices for these three schemes are:
C. Throughput of nonelastic flows

j(URED) = 0606, j(UDRR) = 0.997, j(UMAy) = 0.993. In this subsection we present simulations that support our
analytical findings from the Theorem 3.2. The basic setup

It can be seen from Figure 5 that the fairness of RED in is the following: N = 19 TCP flows with RTTs uniformly
approximately proportional to the inverse of RTT This is in distributed in [20 ms, 220ims] share a MAY link with capacity
accordance with square root formula [16]. 40Mbps with a single CBR flow with sending rate xl. We

B. Fairness - Multiple bottleneck topology vary x1 in the interval [0.5Mbps,8Mbps] and evaluated
Our second set of simulations demonstrate the fairness the throughput in each case. The results are presented in

Figure 8. Each simulation lasted for 5 minutes, with first
properties of MAY in network with multiple bottlenecks. The mnt elce.I hscnet arsaei ipyxminute neglected. In this context, fair share iS simply xf=network topology that we considered is given in Figure 6. 40720Mbps 2Mbps. From Figure 8, we can see that for xi
Here, we consider a network of 24 nodes: nl - n5, ml -

less than xf = 2Mbps throughout is identical to the sendingm5, pl -p5, ql - q5, and cl, c2, c3, c4 and 30 flows traversing rate, > xf CBR flow is shut down, by receiving
the network as follows: n(i) -* p(i);n(i) --* ql(i),rm(i)

zero throughput.
p(i); Tn() - q(i); n(i) T n(i);p(i) - q(i) where - (
1, 2, 3, 4, 5. D. Flow sizes versus FCT of short-lived flows
The delays on each of the links in ms are defined as follows: In this subsection we present results that show how the FCT

ni -> cl 40 i + 1; pi -> c3 40 i + i of short-lived flows (here we use So 1000) is impacted by
mi -* c2 : 40. i + 1; qi -> c4 . 40.i + 1 the queue management algorithm used at a congested link.

' ~~~~~~~~Thebasic setup is the following: 250 short-lived TCP flows
and the delays cil-c2, c2-c3, c3-c4 are lOins. The capacities share a 40Mbps bottleneck link with 50 long-lived TCP flows.
Of all links are 10Mbps. With this topology, the max-mmn fair Each connection has no ssthresh_ nor cwnd_ limitations,
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2.5

V. DISCUSSION OF MAY

2 Estimating the fair share and the number of bottlenecked
, X, flows. From the analysis in section III we know that max-min

1.5 - t 1, fair share x* can be estimated with

2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,~~~~~~~~~~~~~~~~

0.5 _ From the proof of Theorem 3.3, we also know that a flow
f is bottlenecked at the link I if and only if 6* is asymp-

o() 1 2 3 4 5 6 7 8 totically positive. In practice, we can estimate the number of
UDP ...nding rate (Mbps)

bottlenecked flows at link I at time t as
Fig. 8. Sending rate versus Throughput of the nonelastic UDP-CBR flow.

NB(l) = #{ff H: 6f(t) > E}
35 * MAY

0 RED for some e > 0.
v DRR
A LAS

30 V v Isolating the high-rate nonelasticflow. Nonelastic flows that
VV V have sending rate higher than responsive flows bottlenecked at

25 v V v given link would get asymptotically full denial of service by
v v v O v MAY. One may argue that this is not desirable feature of MAY,

20 o- but since the nonelastic flows (with high sending rate) have
vvw,v0(~ O v X few orders of magnitude higher drop rates compared to elastic

15 - 7 7 v O 7 °XW°CWV vflows they can be easily identified and can receive additional
6),c processing by the router if required.

10 74'X°V f OO 9 Variable packet size. Throughout this paper we assumed

sL j ~~~~~~~~~~~~~uniformpacket sizes (to ease the exposition). The problem of
*o V* * * * * V * * * variable packet size can be easily solved by employing byte-

10 20 30 4j siz A0 00 800 90 100 based approach instead packet-based approach.
Flowsize(inpackets) Control of i. In the present implementaion the control of

va is rate based, rather than queue-based. This means that
Fig. 9. Flow sizes versus FCT (measured in seconds) in RED, DRR, MAY congestion indicator is arrival rate at the queue, rather than
and LAS cases.

queue length. Queue based control of his possible as well
without affecting the main features of MAY.

delayed acknowledgements are switched on and packet sizes Definition of short-lived flow. In our terminology a flow is
are 1000bytes. RTT's of short-lived flows are lOOms (we use short-lived if it has length not greater than So packets. The
the same value in order to compare the FCTs of different flows, quantity S0 determines memory consumption as well as the
which are RTT-dependent), and RTT's of long-lived flows are amount of traffic prioritized. S0 should be chosen to allow
uniformly distributed in [2Oms, 200ms]. The sizes of short- small FCT of majority of flows, but not to harm performance
lived flows are picked randomly with uniform distribution in Of long-lived flows. Our measurements over real Internet traces
the interval [1,1000] packets, and are initiated at rate of one indicate, for example, that S0o 1000 implies roughly 10-20%
per second (-- 10% of total load corresponds to short-lived Of traffic generated by short-lived flows. The Figure 10 depicts
flows). We evaluated the FCT of short lived flows obtained the proportion of short-lived-flow traffic as function of So at
by four different queue management algorithms used by the two real internet traces [15]: Leipzig and Abilene. We can see,
bottleneck link: RED, DRR, LAS and MAY. The results are for example, that picking S0o 1000 corresponds to 10% of
depicted in figure 9. Numerically, the average FCT (AFCT) trafic in the Abilene trace and 24% in the Leipzig trace. We
for 250 short-lived flows in this four cases are: also note that it is possible to self-tune the parameter 5o to

allow certain, prescribed, proportion of traffic to be prioritized.
AFCTRED =8.14s, AFCTDRR =10.34s, Parameter calibration. Initial tests show that MAY is highly

robust to the choice of parameters. The update interval A\
AFCTLAS= 1.26s, AFCTMAY 1.72s. should be taken to cover several "typical" RTT values, thus

to belong to interval [500,5000]ms. The weighted average
Note the slight increase of the FCT in MAY, compared qCshould be chosen to allow averaging over several update

to stateful scheme - LAS. The oblivious scheme (RED) and intervals: qb e [0.01, 0.11. Timeout To depends on the defini-
instantaneously fair packet scheduler (DRR) achieve signifi- tion of persistence of a flow. Standard value used in Internet
cantly larger FCT. In RED no packet is prioritized while in measurements is T= 64sec, and here we use the same value.
DRR the instantaneous sending rate is limited and most of Self tuning of parameters is possible but is out of scope of the
short-lived flows experience loss during the slow-start phase. present paper.
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