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Abstract

Dense visual simultaneous localisation and mapping (SLAM) systems can produce 3D

reconstructions that are digital facsimiles of the physical space they describe. Systems that

can produce dense maps with this level of fidelity in real time provide foundational spatial

reasoning capabilities for many downstream tasks in autonomous robotics. Over the past

15 years, mapping small scale, indoor environments, such as desks and buildings, with a

single slow moving, hand-held sensor has been one of the central focuses of dense visual

SLAM research.

However, most dense visual SLAM systems exhibit a number of limitations which

mean they cannot be directly applied in collaborative or outdoors settings. The contribution

of this thesis is to address these limitations with the development of new systems and

algorithms for collaborative dense mapping, efficient dense alternation and outdoors

operation with fast camera motion and wide field of view (FOV) cameras. We use

ElasticFusion, a state-of-the-art dense SLAM system, as our starting point where each of

these contributions is implemented as a novel extension to the system.

We first present a collaborative dense SLAM system that allows a number of

cameras starting with unknown initial relative positions to maintain local maps with the

original ElasticFusion algorithm. Visual place recognition across local maps results in

constraints that allow maps to be aligned into a common global reference frame, facilitating

collaborative mapping and tracking of multiple cameras within a shared map.

Within dense alternation based SLAM systems, the standard approach is to fuse

every frame into the dense model without considering whether the information contained

within the frame is already captured by the dense map and therefore redundant. As the

number of cameras or the scale of the map increases, this approach becomes inefficient. In

our second contribution, we address this inefficiency by introducing a novel information

theoretic approach to keyframe selection that allows the system to avoid processing

redundant information. We implement the procedure within ElasticFusion, demonstrating

a marked reduction in the number of frames required by the system to estimate an accurate,

denoised surface reconstruction.

Before dense SLAM techniques can be applied in outdoor scenarios we must

first address their reliance on active depth cameras, and their lack of suitability to fast

camera motion. In our third contribution we present an outdoor dense SLAM system. The
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system overcomes the need for an active sensor by employing neural network-based depth

inference to predict the geometry of the scene as it appears in each image. To address the

issue of camera tracking during fast motion we employ a hybrid architecture, combining

elements of both dense and sparse SLAM systems to perform camera tracking and to

achieve globally consistent dense mapping.

Automotive applications present a particularly important setting for dense visual

SLAM systems. Such applications are characterised by their use of wide FOV cameras and

are therefore not accurately modelled by the standard pinhole camera model. The fourth

contribution of this thesis is to extend the above hybrid sparse-dense monocular SLAM

system to cater for large FOV fisheye imagery. This is achieved by reformulating the

mapping pipeline in terms of the Kannala-Brandt fisheye camera model. To estimate depth,

we introduce a new version of the PackNet depth estimation neural network (Guizilini et

al., 2020) adapted for fisheye inputs.

To demonstrate the effectiveness of our contributions, we present experimental

results, computed by processing the synthetic ICL-NUIM dataset of Handa et al. (2014) as

well as the real-world TUM-RGBD dataset of Sturm et al. (2012). For outdoor SLAM we

show the results of our system processing the autonomous driving KITTI and KITTI-360

datasets of Geiger et al. (2012a) and Liao et al. (2021) respectively.
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CHAPTER 1

Introduction

To build autonomous robots - robots that can think and act on their own - requires that we

also build robots with the capability for perception. In the context of robotics, perception

is the automatic analysis and structuring of sensor data into a model of the world. A world

model makes explicit certain useful information implicitly encoded within the sensor data,

for example the location and geometry of surfaces in the scene (Marr, 1982), that, once

acquired, makes advanced forms of autonomy, like independent path planning in unknown

environments, possible. The foundation of advanced perception, and, indeed, advanced

autonomy, is the ability to build a geometric map of an environment and to simultaneously

localise relative to that map. This problem is known as simultaneous localisation and

mapping (SLAM).

SLAM derives its name from the problem’s circular nature. When performing

SLAM, a robot attempts to integrate local, relative measurements from onboard sensors into

a global map of the environment. However, in order to integrate each local measurement,

the precise location of the robot, relative to the map, is required. In SLAM, the map is a

representation of the geometry of the scene in a global coordinate system, though some

works represent the scene as a series of relative locations without a single privileged global

coordinate frame (e.g., Mei et al., 2010). Other perceptual information can be layered on

top of the map’s geometric base layer such as colour, semantics, object boundaries and so

forth.

The interdependence between mapping and localisation is one of SLAM’s features
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that makes it a challenging problem to solve. Given perfect prior knowledge of a robot’s

trajectory as it explores an environment, an optimal map that explains the robot’s sensor

readings can be computed. Similarly, a precise map of an environment’s geometry, known

prior to exploration, can be used to track the robot’s motion. However, when a robot is

tasked with exploring an a priori unknown environment, neither map nor camera trajectory

are, by definition, known in advance, and the full SLAM problem must be solved. In this

case, simply alternating between tracking the robot’s motion and updating the map does

not account for correlations between the estimated robot trajectory and environment map

caused by estimation errors. When a sensor measurement is integrated into the map using

an estimate of the robot’s position that contains a quantity of error, then the robot position

estimate and the portion of the map related to that update become correlated. This has led

to the development of joint estimation frameworks based on probabilistic filtering (e.g.,

Leonard and Durrant-Whyte, 1991), and smoothing (e.g., Dellaert, 2005), that take into

account correlations between the estimated robot pose and map.

When the robot’s sensor is a camera, SLAM is referred to as visual SLAM (VS-

LAM). Initial developments within VSLAM research focused on extracting a small number

of robust, salient features in each image for camera tracking and map building. This ap-

proach allowed systems to estimate sparse maps consisting of collections of geometric

primitives such as points and lines (e.g., Davison, 2003; Klein and Murray, 2007, 2008).

Although the sparse maps estimated by these systems provided a sufficient level of detail to

facilitate accurate camera tracking, they were ultimately limited in their ability to capture

the full extent of the geometry of the scene being explored.

Driven by the limited representational power of sparse maps, as well as advances

in general purpose GPU (GPGPU) technology and the availability of commodity depth

sensors such as the Microsoft Kinect, dense methods have become a central focus of

VSLAM research. In contrast to feature-based systems, dense systems attempt to use as

many of the pixels in each new camera frame as possible for camera tracking and map

building. A prominent feature of dense systems is a direct approach to camera tracking,

where tracking is performed directly on image intensities rather than on extracted features.

2



1.1. Dense SLAM in Constrained Environments

However, what really distinguishes dense systems from their sparse counterparts, is that

they attempt to model the geometry of the underlying continuous surface in a dense fashion.

In some dense systems this is achieved by estimating a collection of geometric primitives

that, while densely populated and high resolution, ultimately represent a discrete sampling

of the scene’s surface (e.g., Henry et al., 2012; Keller et al., 2013; Stühmer et al., 2010). In

contrast, other dense systems attempt to estimate the topological structure of the scene’s

surface (e.g., Dai et al., 2017; Newcombe and Davison, 2010; Newcombe et al., 2011a;

Schöps et al., 2020).

1.1 Dense SLAM in Constrained Environments

SLAM has become a mature research field in recent years. So much so that the question

of whether SLAM is solved is a legitimate question that requires considerable knowledge

of the field to answer (Cadena et al., 2016; Frese, 2010). Naturally, the act of trying to

answer this question has brought into sharp focus what is, and what is not, solved in

SLAM. In their answer to the “is SLAM solved?” question, Cadena et al. (2016) argue that

SLAM is only solved for specific combinations of robots, environments and performance

requirements, e.g., 2D SLAM in a static indoor environment with a laser scanner. When

considered in the context of what is required for long-term autonomous function of a robot,

it is evident that for many other combinations of robot/environment/performance, such as

mapping highly dynamic environments with a fast moving camera, SLAM remains largely

unsolved (Cadena et al., 2016).

A particular case in point is dense visual SLAM, where indoor mapping with a

single RGBD sensor undergoing slow hand-held camera motion has been the focus of

research. This relatively constrained scenario has played an important, if not necessary,

role in the development of initial solutions to dense VSLAM by reducing the complexity

of the problem being faced. Consider each component of the scenario in turn:

Indoor mapping: Environmental factors that create challenges for SLAM systems, such

as variable lighting and scene dynamics, are easier to control or eliminate in indoor

3



1.1. Dense SLAM in Constrained Environments

environments. The scale of the space being mapped is also an important factor. Mapping

large-scale outdoor spaces, such as towns and suburbs (e.g., Geiger et al., 2013; Liao et al.,

2021), presents challenges, in terms of system scalability and efficiency, beyond what is

involved in mapping room and building sized interior spaces (e.g., Handa et al., 2014;

Sturm et al., 2012).

Single sensor: Although the framing of the SLAM problem given in the previous section

considers only a single robot operating in isolation, the problem definition can be broadened

to include multiple robots localising against, and contributing to the construction of, a

shared map. As will become evident through Chapters 1 to 3 of this thesis, solving

single-sensor SLAM is, to a large degree, a prerequisite to solving the multi-sensor SLAM

problem. Therefore, it is reasonable that early developments in dense visual SLAM have

focused on solving the single-sensor SLAM problem.

RGBD sensor: Prior to the widespread availability of active depth sensors, sparse vi-

sual SLAM systems relied on multi-view stereo techniques to estimate scene geometry

themselves by integrating information from the camera as it moved (e.g., Davison et al.,

2007; Klein and Murray, 2007). Estimating dense scene geometry at frame-rate with this

approach proved to be challenging (e.g., Newcombe and Davison, 2010; Newcombe et al.,

2011b; Stühmer et al., 2010). In addition, the overall scale of the scene cannot be estimated

by a monocular camera which limits the usefulness of the resultant map in real-world

applications that involve physical interactions with the environment. The introduction

of active depth sensors, such as the Microsoft Kinect, simplified the SLAM process by

providing accurate, dense, metric-scale estimates of the scene’s geometry at frame-rate.

Slow, hand-held motion: The relatively slow motion of a hand-held camera results in

small amounts of inter-frame displacement between subsequent frames which is favourable

to SLAM performance. The reasons for this are manyfold and will be discussed at length

in Section 5.1. However, for now, it suffices to say that, by moving slowly, sensor data

is less affected by processes that hinder SLAM performance, such as rolling-shutter and

motion-blurring (see for example Tourani et al., 2016), and estimating important quantities,
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1.2. Motivation

such as camera motion and scene geometry, is rendered much simpler.

Indoor mapping with a slow moving, hand-held RGBD camera has been doubly

important in developing dense SLAM solutions for real-world applications. Firstly, this

scenario is itself an important domain of application, with many potential use cases across

robotics, augmented reality and 3D reconstruction involving such conditions. Secondly,

the dense SLAM solutions developed for this domain have provided the basis for further

developments under less constrained conditions. Of this second point, we will have much

more to say throughout the remainder of the thesis.

1.2 Motivation

Although important in the development of initial solutions to dense visual SLAM, indoor

mapping with a slow moving hand-held RGBD camera represents only a small fraction of

the possible conditions that a robot capable of long-term autonomy will be expected to

operate in. However, as a result of focusing on this scenario, some or all of the conditions

listed in Section 1.1 have been built into the particular algorithms and techniques employed

by many state-of-the-art dense visual SLAM systems, inhibiting their application under

different conditions. The motivation for this thesis is to address the limited scope of dense

visual SLAM, so that its capabilities may be brought to bear on a number of new domains

including collaborative and outdoor scenarios. We propose to do this in four ways:

From Single-Sensor to Collaborative: Much of the developments within dense SLAM

have focused on scenarios where a single sensor must map the environment in isolation.

However, in reality it is often the case that multiple mobile agents must work together in

the same space. In order to collaborate on a task, each robot requires a map of the world

around it and knowledge of how it, and its collaborators, are positioned relative to that map.

While it would be possible for each robot to solve this problem independently, the question

that naturally arises is how can mobile agents collaborate in the construction of a shared

map? This is the problem of multiagent or collaborative SLAM. An early motivation for

the work in this thesis was to begin to address the limited scope of dense visual SLAM
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1.2. Motivation

through the design and implementation of a collaborative dense visual SLAM system, i.e.

to design a system that overturns the single-sensor limitation outlined above. Cooperative

robotics, multi participant augmented reality and human-robot interaction are all examples

of situations where a collaborative mapping system can be leveraged for greater agent

autonomy.

From Every-Frame to Informative Keyframes: Scalability is a further motivation

for the work in this thesis. Scalability is the problem of ensuring that the SLAM system

continues to perform accurately and in real time as the scale of the space being mapped

increases, or as the level of detail with which the space is represented increases. More

broadly, scalability overlaps with the concepts of resource-awareness, i.e. the idea that the

SLAM system can modulate the complexity of the map representation based on available

resources, and task-driven perception, i.e. the idea that the SLAM system can filter out

perceptual information that is irrelevant to the task at hand (Cadena et al., 2016). Our

research in this direction is motivated by the following observation: many dense visual

SLAM systems operate on the assumption that every pixel in every frame should be used

to produce as accurate and as dense a reconstruction as possible. While such a data

hungry approach may not present a problem when mapping a room or building size space,

when mapping in large-scale environments, or within a collaborative setting with many

cameras, it may not be tenable, or even desirable, to do so. We investigate an alternative,

information-based approach that allows a surfel-based dense visual SLAM system to first

quantify the amount of novel information in each incoming frame with respect to the

map and then discard uninformative frames. This capability allows for map accuracy

and completeness to be traded-off, in a principled manner, against the computational cost

incurred by updating the map.

From Indoor to Outdoor: The use of active depth sensors and direct camera tracking

methods limits, for the most part, the application of dense visual SLAM systems to indoor

environments and relatively slow camera movement. However, dense mapping systems,

and their resultant high fidelity 3D reconstructions, could potentially confer many benefits

to autonomous driving and other outdoors robotics applications. Autonomous driving
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in particular acts as a motivating context for the work contained in Chapters 5 and 6 of

this thesis. The conditions present in autonomous driving are somewhat antithetical to

those found while mapping an indoor space with a hand-held RGBD camera, i.e. we

can expect fast camera motion, global illumination changes in the scene and large-scale,

outdoor spaces. Before dense visual SLAM systems can be used effectively in autonomous

driving, the limitations induced by the sensors and algorithms employed in dense mapping

need to be addressed. A further motivation for the work in this thesis is to overcome

these limitations through the design of dense SLAM systems that can operate in outdoor

autonomous driving scenarios.

From Pinhole to Fisheye: In automotive applications, a single monocular camera with

a wide viewing angle offers many potential benefits. Fisheye cameras have become

increasingly popular given their wide field of view allowing a much larger portion of the

scene to remain in view of the camera at any one time. Surround view sensing is essential

in applications where sensory blind spots are a safety hazard (Hughes et al., 2009). It is

important to note that increasing the FOV of an imaging device while holding all other

characteristics fixed decreases the angular resolution of a pixel and increases the level of

distortion in the image. When it comes to localisation and mapping, the loss of angular

resolution and degree of distortion can have an effect on performance (Zhang et al., 2016).

However, when taking a holistic view of a robot platform, such as an autonomous car,

the benefits of the increased FOV to downstream safety critical modules may outweigh

the negative impact on SLAM performance. Thus, there is a strong need for a robust

dense SLAM system that can cater for fisheye camera geometries. The fourth and final

motivation for the work in this thesis is the design and implementation of a dense visual

SLAM system that supports operation with wide FOV fisheye cameras.

1.3 VSLAM and Its Applications

There are increasing examples of technologies that can operate autonomously and with

spatial-awareness due to the perceptual capabilities built into them. In this section we give

7



1.3. VSLAM and Its Applications

a brief overview of some key advancements in VSLAM research and the applications they

have enabled.

Robotic Space Exploration

One of the earliest, and most well known, efforts to incorporate spatial awareness into an

autonomous robotic platform began in the 1960s and 1970s when NASA’s Jet Propulsion

Laboratory began conducting exploratory research into remote controlled rover designs for

future unmanned missions to Mars. The inherent low bandwidth and high latency nature

of inter-planetary communications meant that remote manual control of rover functions

would be neither efficient nor precise, as real-time decision making based on up-to-date

information would not be possible. At best, the rover would be commanded intermittently,

once per Martian sol. At the end of the day the rover would upload sensor and telemetry

data for planning the next sol’s activities. Any rover sent to Mars would require semi-

autonomous navigation and perception capabilities. The rover would be required to operate

autonomously between remote commands in order to avoid obstacles, correct for wheel

slippage and interact with rock samples. Ultimately, for the rover to be able to complete

its mission and carry out science experiments, it would have to be able to automatically

understand the shape and 3D position of rock samples and other objects, and its motion

relative to these parts of the environment, such that it could manipulate them (O’Handley,

1973).

This work culminated with the Mars Exploration Rover (MER) mission which

saw stereo visual odometry (VO) deployed on an interplanetary rover for the first time.

Added as an ‘extra credit’ capability, VO was not initially relied on for precision control of

the rover. However, VO soon proved invaluable for correcting for wheel odometry errors

caused by the wheels slipping on certain types of terrain. This effectively increased the

rover’s speed and precision, allowing the operations team to command longer traverses,

knowing the rover would arrive close to the target (Maimone et al., 2007). Figure 1.1

shows the rovers deployed to Mars during the MER mission. Figure 1.2 shows outputs

from the MER stereo vision pipeline.
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Figure 1.1: Twin rovers, Spirit and Opportunity, deployed to Mars during the MER mission.
The two cameras at the top of each rover’s central mast are set up in a stereo configuration
and used for calculating visual odometry NASA (2022).

The stop-process-move-repeat approach to exploratory robotics was permissible

for the MER mission. The mission specification was not very demanding in terms of

minimum driving distance per sol and the barren surface of Mars is, for the most part,

not a particularly dynamic environment. This was convenient as these early stereo VO

techniques were not real-time and not very robust. Each stop-process-move sequence

required 2− 3 minutes of VO computation time (Maimone et al., 2007). For a more

expansive discussion of the early history of computer vision research for Mars rovers see

Matthies et al. (2007).

Contemporaneously to early Mars rover research, mobile robotics with more

terrestrial aims such as self-driving vehicles and deployment in challenging conditions

were being pursued (e.g., Bares and Wettergreen, 1999; Pomerleau and Jochem, 1996;

Thorpe et al., 1991a,b; Wettergreen et al., 1993). During this period, it became apparent

that for a robot to be deployed in unknown environments, it would need to be capable

of performing SLAM, i.e. it would need to be capable of building a persistent, globally

consistent map of its surroundings in real time (Smith et al., 1990; Smith and Cheeseman,

1986). Although early work on SLAM focused on active ranging sensors such as sonar and

LiDAR, SLAM methods based on visual sensors have become a central focus of SLAM

research.

9



1.3. VSLAM and Its Applications

(a) (b)

Figure 1.2: Examples of outputs from the MER stereo system. Figure (a) adapted from
Matthies et al. (2007) showing a dense stereo disparity map from which range information
can be calculated. Figure (b) adapted from Maimone et al. (2007) showing stereo feature
tracking between pairs of frames. The blue lines and red dots show features matched
between successive frames.

Augmented Reality

In an offline setting, VSLAM from a set of images can be formulated as a bundle adjustment

(Triggs et al., 2000). The goal of bundle adjustment (called Structure from Motion in

computer vision) is to estimate a set of 3D world points and a set of camera matrices

that minimises the distance (i.e. error) between world points projected back onto the

image plane of each camera as described by their respective camera matrices, and their

corresponding measured 2D image locations. Estimates of the 3D points and cameras can

be iteratively refined within a non-linear optimisation framework until the reprojection

error is considered sufficiently low. Under the assumption that the measured locations of

the 3D points in the images are perturbed by noise with a Gaussian distribution, bundle

adjustment can lead to a maximum likelihood reconstruction with respect to the world

points and camera matrices. Hartley and Zisserman (2003); Szeliski (2010); Triggs et al.

(2000) offer quite expansive discussion on this topic.

VSLAM and SfM are essentially the same problem, the principle difference being

that VSLAM requires real-time operation, which is necessary in many robotics appli-

cations. Although SfM allows us to gain some purchase on the seemingly intractable

joint estimation of structure and motion underlying the SLAM problem, its emphasis

on accurate reconstructions over run-time efficiency limits its usefulness as a paradigm

for solving SLAM in real-time applications. For example, COLMAP, a modern state-of-
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(a) (b)

Figure 1.3: Outputs of PTAM. (a) A sparse map. The red and green axes represent
keyframe camera poses. Black dots represent 3D points in the sparse map. (b) The map
projected into the current camera frame. Note the sparsity with which the map represents
the desk. Figure adapted from Klein and Murray (2007).

the-art SfM system, takes over 3 hours to reconstruct a scene with 74394 images which

equates to a frame-rate of 6.8hz, well below the 20−30hz frame-rate of a standard camera

(Schönberger and Frahm, 2016). Importantly, SfM systems typically require all frames

up front before it can compute its solution. This further limits the use of SfM to offline

and batch, rather than real time, settings. While in some robotic applications maps can

be constructed offline using SfM and then used by a robot to localise and navigate in real

time, in other applications such as exploratory robotics, mapping must be performed in

real time. For example, during a natural or man-made disaster, prior maps are either not

available or cannot be safely retrieved, and, even if they can be, may quickly become

inaccurate. In this instance one could again exploit SfM by performing bundle adjustment

over the frames accrued so far in the robot’s exploration, allowing up-to-date maximum

likelihood estimates of both a map and a set of camera poses, one for each frame. However,

in practice the rapid growth in the number of points and camera poses that need to be

estimated renders such an approach infeasible when real-time operation is required. This is

a central requirement of SLAM algorithms given that they must be capable of maintaining

real-time operation, even at large-scales.

As such, much of the focus within the field of visual SLAM has been on increasing

the robustness, accuracy and extensiveness of mapping systems while keeping the practi-
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calities and constraints of real-time performance in mind. Initial approaches to VSLAM

utilised probabilistic frameworks such as Bayesian filtering and incremental graphical

model smoothing as underlying state estimators, allowing the construction of sparse maps

consisting of geometric primitives such as points and lines. Systems such as MonoSLAM

(Davison et al., 2007) and Parallel Tracking and Mapping (PTAM, Klein and Murray,

2007) are good examples of the former and latter approaches to SLAM respectively. In

order to maintain real-time operation, these frameworks sparsify the problem, each in

their own way. Filtering approaches marginalise out previous poses, representing the

map and the most recent pose estimate with a joint probability distribution conditioned

on motion constraints and feature measurements. Smoothing approaches solve a sparse

bundle adjustment, considering only a subset of keyframes in the optimisation. Strasdat

et al. (2010b) offer an excellent discussion of the relative trade-offs between these two

approaches.

PTAM showed how mapping and tracking can be decoupled into a real-time camera

tracking frontend and a more accurate and expansive, but also more computationally costly,

map constructing backend. PTAM carries out efficient model predictive camera tracking at

frame rate while building a globally consistent map from historical keyframes with sparse

bundle adjustment in a lower priority background thread (Klein and Murray, 2007). PTAM

proved to be a paradigmatic shift in SLAM research. Indeed, many modern SoTA sparse

SLAM systems, such as ORB-SLAM (Campos et al., 2021; Mur-Artal and Tardós, 2017b;

Mur-Artal et al., 2015), still follow the frontend/backend divide. Figure 1.3 shows an

example of a mapping session with PTAM.

Although VSLAM systems have broad applicability across a number of domains,

the potential to drive applications in real-time augmented reality is a prominent motivation.

In augmented reality, a users visual experience is mediated by a device that can virtually

overlay augmentations on their visual feed. Ensuring that augmentations are fused into the

scene in a way that is consistent with the scene’s actual geometry, and that augmentations

stay anchored in place as the user moves about, requires that the device can perform SLAM.

Davison et al. (2007) were among the first to demonstrate a real-time augmented reality
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(a) (b) (c)

Figure 1.4: Dense models produced by systems described in this thesis. (a) map
produced by system described in Chapter 3. Figure shows results of a 3 camera session. (b)
map produced by system described in Chapter 5. (c) map produced by system described in
Chapter 6.

application using a hand-held camera operating in an a priori unknown space. The system

uses MonoSLAM to quickly build a feature map of the space and track the motion of the

camera. Users can insert virtual objects into the feature map by using a GUI to manually

attach the objects to planes in the scene. Once placed in the map, objects can be rendered

on top of live tracked frames, appearing anchored to the map as the camera moves. Klein

and Murray (2007) offer a similar capability. Using PTAM instead of MonoSLAM, the

system can automatically extract the dominant scene plane from among the points in

PTAM’s more expansive map. This dominant plane is then used to host augmented reality

experiences such as games and scene annotation. The augmented reality setting highlights

the importance of PTAM’s frontend/backend divide. During extended exploration of the

scene, the map size necessarily increases while the rate at which the mapping thread

can integrate new keyframes decreases until the mapping thread can no longer keep up

with keyframe creation, essentially precluding further exploration. However, since the

tracking thread is dependent on the number of features in view of the camera, more so

than the overall number of points in the map, real-time augmented reality can continue in

established parts of the map.

In the introductory passages of the current chapter we noted that the limited

representational power of sparse maps led to the development of systems for incrementally

constructing dense surface models of scenes in real time. Recently, the state-of-the-art in

the field has come to include a multitude of systems offering large-scale, high-precision

dense mapping and tracking capabilities (Dai et al., 2017; Engel et al., 2014; Henry et al.,
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2012; Keller et al., 2013; Kerl et al., 2013; Mur-Artal and Tardós, 2017b; Newcombe et al.,

2011a,b; Whelan et al., 2014a, 2015). As with sparse SLAM, increasing the extensiveness

with which a space can be mapped, while maintaining real-time performance, is one of

the central challenges in dense SLAM. This is made even more challenging by the sheer

number of parameters required to represent the geometry of even the smallest spaces

such as rooms and buildings. Several approaches to scalable dense SLAM have been

explored, including; space and time efficient map data-structures (e.g., Niessner et al.,

2013; Vespa et al., 2018); shifting volume data-structures, that only keep on hand the

volume of space in the immediate vicinity of the camera (Whelan et al., 2012); geometry

simplification strategies that reduce the number of parameters required to represent the

scene (e.g., Salas-Moreno et al., 2014; Whelan et al., 2014b); keyframe approaches that

isolate a small number of salient frames from which the map is built (e.g., Kerl et al., 2013;

Newcombe et al., 2011b); and, compact map representations that don’t explicitly represent

free or unobserved space (e.g., surfels, Keller et al., 2013). Figure 1.4 shows examples of

dense maps produced by systems described in this thesis.

Newcombe et al. (2011b) demonstrated how it was possible to more accurately

reason about occlusions and interactions between virtual objects and the geometry of

the space with a dense map than a sparse map. The basis of their approach is a dense

SLAM system (called DTAM, short for Dense Tracking and Mapping) that recovers the

full complexity of the scene’s geometry, and can track camera motion against it, in real

time. An example augmented reality application involves a virtual car driving on the

surface defined by the dense map with simulated physics. When the car is rendered

from the viewpoint of the camera, as estimated by DTAM, and composited with live

images, it gives the effect of the virtual car interacting with the physical environment and

disappearing behind occluding geometry. Izadi et al. (2011) present a similar approach

based on KinectFusion (Newcombe et al., 2011a).

Dense Tracking and Mapping (DTAM, Newcombe et al., 2011b) is a notable early

dense mapping system. DTAM builds dense surface models from monocular images in

real time, i.e. it does not use a depth sensor. The dense model is composed of dense depth
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keyframes. Each keyframe is estimated from images with overlapping views of the scene

using multi-view stereo techniques. DTAM highlights the fact that while a depth sensor

simplifies the task of estimating dense scene geometry, the use of such a sensor is not

essential to achieving dense maps. With a depth sensor, the SLAM system only has to

refine estimates of the surface geometry, rather than compute a solution to the full problem

of estimating 3D geometry from 2D images. In turn this frees up computing resources.

However, DTAM relies heavily on the brightness constancy constraint and short baseline

frames during depth estimation and direct camera tracking, which renders it unsuitable for

outdoors environments and fast camera motion.

Autonomous Driving

The work in this thesis, particularly the work in Chapters 5 and 6 on outdoor and fisheye

SLAM, has potential to be applied to problems in the automotive domain. Following on

from earlier efforts in autonomous rover research, SLAM has played an important role in

the development of infrastructure-free autonomous driving and advanced driver assistance

systems. SLAM finds application in the automotive domain as it is an essential component

of autonomous navigation and exploration in unknown environments (Makarenko et al.,

2002; Stachniss, 2009). There has been a continuity of work in this area evidenced by the

large number of grand challenges, such as the DARPA autonomous vehicles challenges

(Buehler et al., 2009; DARPA, 2014) and the Grand Cooperative Driving Challenge

(Englund et al., 2016; Lauer, 2011), and large-scale research projects, such as the V-Charge

project (Furgale et al., 2013).

Despite the fact that many types of sensors, and suites of complimentary sensors,

have been used during this research, cameras have demonstrated an enduring appeal. This

appeal might seem counter-intuitive, at first; many scene properties, such as depth, cannot

be immediately inferred from a single image (without the help of a prior, such as can

be captured by a neural network trained to predict depth from images), instead the same

surface point must be repeatedly measured, and associated, across multiple frames before

its 3D position can be inferred. However, if the initial difficulties of using a monocular
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camera can be overcome, cameras confer a host of benefits; they are inexpensive, small,

ubiquitous, energy efficient, can be deployed in harsh environments and produce rich

measurements at high frame rates.

With the introduction of the KITTI autonomous driving benchmark dataset, Geiger

et al. (2012a) ask “Are We Ready For Autonomous Driving?” The question was directed

at a number of problems in computer vision, including VSLAM. Prior to KITTI, direct

comparison between different VSLAM systems within the context of autonomous driving

was difficult without a dataset that was both large-scale and came with accurate ground

truth labels. Since KITTI’s inception, a number of sparse monocular visual SLAM systems

have had their performance evaluated on autonomous driving conditions (e.g., Ming et al.,

2023; Mur-Artal et al., 2015). A number of additional large-scale autonomous driving

datasets have followed KITTI, including for fisheye cameras (Liao et al., 2021; Yogamani

et al., 2019) and for dense depth estimation (Guizilini et al., 2020), facilitating further

research in the application of VSLAM to autonomous driving.

Janai et al. (2020), Bresson et al. (2017) and Cheng et al. (2022) offer in-depth

surveys of the many examples of VSLAM being applied to the automotive domain. Here

we will describe a few recent examples. A common approach among recent autonomous

driving applications is to build highly accurate maps using offline techniques, then use the

pre-built map for localisation and path planning during operation (e.g., Franke et al., 2013).

However, this approach is onerous as transient changes in the environment require the

environment to be remapped from scratch. In a system for automated parking, (Grimmett

et al., 2015) stay closer to a real-time SLAM methodology. A base map is constructed by

first manually driving the car around the target car park. Then, during automated parking,

the base map is used for localisation and path planning. The base map is updated with

new map points during subsequent visits to the car park using multi-session visual SLAM

techniques, making the system somewhat robust to structural changes in the scene (see

below for description of the multi-session SLAM problem).

Tripathi and Yogamani (2021) describe a trained trajectory automated parking

system based on VSLAM. The system is concerned with the case where a person repeatedly
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(a) (b)

Figure 1.5: Examples of sensors used in single and multi-sensor dense mapping. (a) The
Asus Xtion Pro Live and (b) the Intel Realsense R200, both examples of commodity depth
sensors, each costing approximately US$100. The depth measurements from such sensors
are very noisy. However, when multiple overlapping measurements are fused a de-noised
and accurate surface reconstruction emerges.

parks in the same place, e.g., at home or at work. Two distinct phases of operation are

described. In the first phase, a human driver trains the system by manually parking the car

in the desired location. While the car is being manually parked, a visual SLAM system

extracts the cars trajectory and a sparse feature map of the surrounding environment. In

the second phase, the trained map and trajectory are used to automatically park the car.

This is done by matching features in the live camera feed to features in the trained map.

Once matches have been found the current pose of the car relative to the desired parking

trajectory can be determined and fed to the path planner. Dahal et al. (2022) leverage the

trained trajectory approach in their system for automatically aligning an electric vehicle to

a charge-pad based on a multitask near-field perception pipeline (object detection, semantic

segmentation and distance estimation). The system uses VSLAM to greatly extend the

range at which automatic alignment can be initiated by recording the location of the

charge-pad relative to a sparse feature map. Once the car is within the area included in the

sparse map automatic alignment with the charge pad can begin, even if the charge-pad is

not in view of the car’s cameras.

Collaborative Applications

All the dense SLAM systems mentioned so far in this section assume a single camera

mapping in isolation. While it is the case that many systems that address the issue of
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collaborative SLAM in the context of sparse mapping have been presented in the literature,

relatively few systems that address the problem of dense collaborative mapping have been

presented. Saeedi et al. write of multi-robot mapping that,

“While single-robot SLAM is challenging enough, moving to a platform of

multiple robots adds another layer of challenge. In a multiple-robot environ-

ment, robots must incorporate all available data to construct a consistent global

map, meanwhile localize themselves within the global map. Multiple-robot

SLAM has benefits such as performing missions faster and being robust to

failure of any one of the robots; however, these benefits come at the price of

having a complex system which requires coordination and cooperation of the

robots." - (Saeedi et al., 2016)

These complexities are amplified in dense collaborative SLAM where the size

of dense maps and the amount of data coming from each robot’s sensors present unique

challenges. Questions around what data should be shared between robots and whether

this data should be processed in a centralised or decentralised manner, or a mixture of

the two, have important implications for a collaborative SLAM system’s performance

which we will explore further in Chapter 2. It is also necessary to consider the manner

in which a collaborative mapping system’s performance can be quantified and compared

to the performance of other collaborative and single-camera mapping systems. Although

many datasets are available for benchmarking single camera mapping few exist that can be

used to measure the performance of a collaborative system (Saeedi et al., 2016).

One of the central problems of collaborative SLAM is that, in general, the relative

starting positions of each of the agents is unknown. Therefore, there is no immediately

obvious single global coordinate system within which sensor data from all robots can

be combined. Instead, each robot must start off in its own map with a local coordinate

system. A shared coordinate system must then be inferred online as mapping proceeds.

This is typically done by finding data associations (i.e. overlap) between maps which act

as constraints on the relative position of each map’s local coordinate systems. Once the

relationship between sub-maps is known, data from each agent can be combined within a
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single map. Once a common map has been established updates to the map from multiple

cameras must be facilitated and coordinated to avoid corrupting the map.

Collaborative mapping can also be used to address the issues of scalability and

extensiveness of SLAM. When operating in large scale environments, one way of making

the large-scale SLAM problem tractable, in terms of the time taken to map a space and in

terms of the computational complexity of the problem faced by the robot’s SLAM system,

is to distribute the mapping effort across a team of collaborating robots. Each robot is then

tasked with mapping in a smaller area (Cadena et al., 2016).

Collaborative SLAM is related to the problem of multi-session SLAM. In collabo-

rative SLAM multiple agents operate contemporaneously while in multi-session SLAM a

single robot makes repeated missions through the same environment. Therefore, multi-

session SLAM can be seen as collaborative SLAM unrolled over time. One of the key

issues of multi-session mapping is relating the current session’s map to the global map

from previous sessions so that a single coherent map is reused, updated and extended to

new regions over time (McDonald, 2013). This is precisely the same problem as finding

inter-map constraints in collaborative mapping. The principal difference between col-

laborative and multi-session SLAM is that a collaborative SLAM system must facilitate

concurrent updates from multiple-agents whereas a multi-session SLAM system typically

operates with a single agent.

Collaborative SLAM has the potential to be applied to many problems across

robotics including multi-robot exploration, collaborative robotics and augmented reality

based human-robot interaction. In multi-robot exploration the goal is to distribute the

exploration of a space among a number of robots efficiently and such that each of the

robots spends as little time as possible re-routing to avoid collisions with other robots

(Stachniss, 2009). Doing this in a general way where no assumptions are made about the

robots relative starting positions or the structure of the environment requires solving the

multi-robot SLAM problem (Fox et al., 2006).

An emerging application domain, where SLAM is only beginning to be applied, is

augmented reality based Human-Robot Interaction (HRI). Many recent HRI approaches
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rely on infrastructure, such as motion capture systems, to localise the robot and the AR

headset in a shared coordinate system. However, many works note how SLAM could be

used to solve this problem in an infrastructure-free way (e.g., Walker et al., 2018, 2019).

Qiu et al. (2020) create a shared augmented reality workspace where both the robot and the

AR headset run their own local SLAM pipelines. The robot then finds the transformation

between its own map and the AR headset map by detecting the human user in its visual feed.

See Suzuki et al. (2022) for a survey of augmented reality based human robot interfaces.

1.4 Thesis Scope

The goal of this thesis is to close the gap between the state-of-the-art in dense visual SLAM

and what is required for outdoor, multiagent dense mapping. To this end we address two

key challenges in SLAM; (i ) the development of a collaborative dense mapping system for

multi-camera mapping and tracking in shared workspaces; and (i i ) the development of

dense mapping systems that are suitable for outdoor automotive scenarios. Whelan et al.

(2015)’s ElasticFusion (EF) system forms the foundation of our approach. Our work goes

beyond what the initial EF system is capable of, introducing several novel contributions:

• A Collaborative Dense SLAM System: The system permits multiple cameras to

collaboratively build a single coherent global model of a shared workspace. The

system does not require knowledge of the initial relative positions of the cameras.

This work was published under the title "Collaborative Dense SLAM" in the pro-

ceedings of the Irish Machine Vision and Image Processing (IMVIP) conference,

2018 (Gallagher and McDonald, 2018).

• An Information Theoretic Approach to Keyframe Selection. The approach,

implemented as an extension to ElasticFusion, allows the system to avoid processing

redundant information. This is achieved by leveraging the dense map to quantify the

amount of novel information in incoming camera frames. This work was published

at the Computer Vision and Pattern Recognition (CVPR) workshop on 3D Scene

Understanding for Vision, Graphics, and Robotics, 2019 under the title "Efficient
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Surfel Fusion Using Normalised Information Distance" (Gallagher and McDonald,

2019).

• A Hybrid Sparse-Dense Monocular SLAM System: We extend EF to allow

operation on passive cameras operating in outdoor environments, in high speed

scenarios such as autonomous vehicles. This is achieved through a combination of

sparse and dense SLAM techniques and neural network based depth prediction. The

resulting system was published under the title "A Hybrid Sparse-Dense Monocular

SLAM System for Autonomous Driving Year" in the proceedings of the European

Conference on Mobile Robots (ECMR), 2021 (Gallagher et al., 2021).

• A Dense Monocular Fisheye SLAM System: The system extends the above hybrid

system, reformulating key aspects of the system’s pipeline in terms of the Kannala-

Brandt fisheye camera model. The system was published under the title "A System

for Dense Monocular Mapping With a Fisheye Camera" in the proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Workshops, 2023 (Gallagher et al., 2023).

1.5 Thesis Structure

In this chapter, we have introduced the two problems of outdoor and collaborative mapping

and placed them within the wider contexts of SLAM and robotics. The remainder of the

thesis is structured as follows. In Chapter 2 we will give a formal definition of the SLAM

problem, in both its sparse and dense form, and discuss solutions to the problem that have

been presented in the robotics literature. We will also discuss the problem of collaborative

mapping and review the literature on early sparse collaborative SLAM systems through to

more recent dense collaborative SLAM systems. In Chapter 3 we describe our approach

to dense collaborative mapping, starting with an in-depth discussion of ElasticFusion

and then present our approach to multiagent mapping and tracking. In Chapter 4, we

present our information theoretic method for keyframe selection. In Chapter 5 we will

present a monocular dense SLAM system designed to operate on passive cameras in
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automotive scenarios. In Chapter 6 we build on this initial system, reformulating its

geometry estimation, mapping, and tracking modules in terms of a fisheye camera model

more suited to the requirements of the automotive domain. Quantitative and qualitative

experimental findings on each system’s performance are presented in their respective

chapters. Conclusions specific to each system are also presented in their respective

chapters. Finally, in Chapter 7 we present our overall conclusions of the work to date, as

detailed herein, and propose promising avenues for future research to take.
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Background

Visual SLAM is the problem of estimating a map of an environment being explored by a

camera while simultaneously tracking the motion of the camera relative to that map. The

camera can be attached to a mobile platform, such as a robot or vehicle, or attached to a

human user in some way, be it hand-held or embedded in a wearable device such as an AR

headset. Visual SLAM systems can be organised into different taxonomical hierarchies

depending on what classification criteria are used. For example sensor type (monocular,

RGBD, stereo), camera model (pinhole, fisheye, omnidirectional), map representation

(points, surfels, implicit surfaces), and optimisation backend (filtering, graphical model

smoothing, dense alternation). In this chapter, we categorise SLAM systems according to

the particular SLAM paradigm they belong to. There are three main SLAM paradigms

that are relevant to the work of this thesis; sparse visual SLAM, dense visual SLAM and

collaborative SLAM. This chapter provides a technical introduction and a brief survey of

the literature for each paradigm. The aim of this chapter is to act as a general background

by giving an overview of key developments in visual SLAM across the three paradigms.

Some additional background material that is more specific to the contributions of this

thesis is deferred to the relevant chapters (Chapters 3 to 6). It is worth noting that other

SLAM paradigms exist, for example multi-session SLAM (e.g., McDonald, 2013), SLAM

with heterogeneous sensors (e.g., Leutenegger et al., 2013), and dynamic SLAM (e.g.,

Newcombe et al., 2015), to name just a few. We recommend referring to Cadena et al.

(2016), and the references therein, for a comprehensive review of research on the SLAM
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problem.

The chapter is organised as follows: Sections 2.1, 2.3 and 2.5 are concerned with

technical aspects of sparse, dense and collaborative SLAM respectively. Each of these

sections are then immediately followed by a brief survey of relevant literature (Sections 2.2,

2.4 and 2.6).

2.1 Sparse Visual SLAM

Consider the problem of landmark-based visual SLAM. In this version of SLAM, a camera

moves through a scene taking images (I0, ..., Im) at discrete time steps t ∈ [0, ...,m). At each

time step t , the SLAM system must estimate the pose of the camera Pt , which we will

take to be a matrix representing a 6-DOF rigid body motion i.e. Pt ∈ SE(3), and the scene

structure, consisting of a collection of 3D landmarks L= (l0, ..., ln). For the purposes of

this discussion, we will take each landmark l j ∈L, j ∈ [0, ...,n) to be a 3D point i.e. l j ∈R3.

At time step t , the camera measures a number of the landmarks in the current image It .

Each measurement is of the form z̄t j , where subscript t denotes that the measurement was

made in image It , and subscript j denotes the measurement is of landmark l j ∈L. Using a

generative model of the image formation process, the error between the measured location

of the landmark and its predicted location, in the image domain, can be calculated

et j = z̄t j −C
(
Pt , l j

)
(2.1)

where C is a generative function that computes the expected location of landmark l j in

It given the camera pose Pt , z̄t j is the actual measurement of the landmark in the image,

et j is the error between the actual measurement z̄t j and the generative model prediction.

Landmark measurements are corrupted by zero-mean Gaussian noise. Thus, measurements

are modelled by the following equation

zt j =C
(
Pt , l j

)+nt j (2.2)
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2.1. Sparse Visual SLAM

where nt j is drawn from a zero mean Gaussian distribution. The probability of making a

specific measurement z̄t j of landmark l j in image It is given by

ρ
(
z̄t j |Pt , l j

)∝ exp

(
1

2
eT

t jΣ
−1
t j et j

)
(2.3)

where Σt j is the Gaussian distribution’s covariance matrix. By summing the measurement

errors across all images and taking the negative log of the summands we get the following

cost function

f (x) =
∑

t

∑
j
− log

(
exp

(
1

2
eT

t jΣ
−1
t j et j

))
(2.4)

here x is a state vector that encapsulates the camera poses Pt and landmarks L. Note that

in Equation (2.4) we assume that only those landmarks that are visible in It are included

in the summation. By minimising 2.4 with respect to x we find the maximum likelihood

(ML) set of camera poses and landmark positions

xML = argmin
x

f (x) (2.5)

to minimise f , iterative non-linear optimisation methods are used. Second-order Newton

methods approximate the local region of f about the current estimate of x as a quadratic

curve using a Taylor series expansion up to the 3r d term (i.e. the Hessian matrix of second

order partial derivatives of f ). During each iteration k of the optimisation procedure, a

displacement δx is found such that xk = xk−1 +δx reduces the cost function f

f (x+δx) = f (x)+gTδx+ 1

2
δxT Hδx (2.6)

for gradient vector g = d f
dx (x) and Hessian matrix H = d 2 f

dx2 (x). The update δx can then be

found by setting d f
dx (x+δx) equal to zero, yielding

δx =−H−1g (2.7)
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starting from an initial estimate of x and iterating leads to quadratic convergence to the

minimum, assuming the function is smooth, and the optimisation is well initialised. If

some prior information about the camera positions or scene structure is available this can

be incorporated into the cost function and the maximum a posteriori (MAP), rather than

ML, estimate of x is computed.

The above describes a naive version of what is essentially bundle adjustment.

Bundle adjustment is a general geometric parameter estimation framework with application

beyond SLAM, and indeed beyond visual reconstruction. It is naive in the sense that

there are a vast number of considerations to take into account when implementing bundle

adjustment for a particular problem. For a full discussion of these considerations see Triggs

et al. (2000) and the references therein. Here we are concerned with a number of these

considerations that are pertinent from the point of view of deriving a formulation of sparse

visual SLAM from generalised bundle adjustment; (i ) initialisation (i i ) correspondences

and (i i i ) scalability.

Firstly, the above procedure assumed the availability of an initialisation point x0

for the structure and motion parameters. In practice, such an initialisation point can be

found through multi-view reconstruction techniques, for example, by finding the funda-

mental matrices between pairs of views or the trifocal tensor connecting triplets of views,

recovering subsets of motion and structure parameters. Hartley and Zisserman (2003, Ch.

18) provide a detailed procedure for initialising bundle adjustment.

Both initialisation and bundle adjustment assume knowledge of correspondences.

For initialisation, one must have knowledge of 2D ↔ 2D image correspondences. For bun-

dle adjustment one must have knowledge of 2D ↔ 3D image to landmark correspondences.

In order to find such correspondences, salient features, designed to be matched across

changes in view point, are extracted from images and matched. In SoTA SfM systems

such as COLMAP (Schönberger and Frahm, 2016), initialisation and bundle-adjustment,

are performed in an iterative loop. As better estimates of the scene structure and camera

parameters are found, better estimates of 2D ↔ 3D correspondences can be computed,

which bundle adjustment needs in order to converge to an accurate solution.
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The issue of scalability is particularly relevant to landmark-based visual SLAM. In

theory, we could take the above procedure and for each new camera frame we could re-

compute the solution to Equation (2.5). However, in practice this is not a feasible approach.

At a minimum a real-time SLAM system should provide real-time camera tracking and,

ideally, scene structure estimates should not be too far behind. Bundle adjustment requires

either inversion or factorisation of large matrices. In our particular naive bundle adjustment

described above, the Newton Method requires the calculation, and then inversion of the

Hessian matrix of second order derivatives. Using the Gauss-Newton method, one can

avoid explicitly calculating the Hessian, instead approximating it as

H ≈ JT WJ (2.8)

for weight matrix W and Jacobian matrix of partial derivatives J. Note that this approxima-

tion is only valid if the residual errors et j are small and the generative function C is close

to linear. However, in either case, the Jacobian and Hessian matrices for a given sequence

of input images tend to exhibit a sparsity pattern. This pattern arises from the particular

co-visibility of landmarks across the image sequence in question. The key to leveraging

bundle adjustment to achieve landmark-based SLAM is to be judicious about exploiting

the problem structure and sparsity pattern of the underlying Jacobian and Hessian matrices.

Generalised bundle adjustment in its most abstract sense of geometric parameter

estimation can be seen as inference over a graph (Dellaert, 2005). To naively solve the

full bundle adjustment graph from scratch upon every new camera frame is clearly not a

scalable approach to real-time SLAM. The two primary frameworks for solving the real-

time VSLAM problem are filtering methods and smoothing methods. Filtering methods

sparsify the problem by marginalising out all poses but the current one and any features

deemed to be redundant, poorly constrained by the set of measurements or otherwise

spurious. All the information in the model is summarised in a probability distribution over

the remaining parameters. This probability distribution is then propagated forwarded to the

next time-step (i.e. it is filtered). However, there are many limitations of filtering methods,

not least that the marginalisation that seems to be the source of the efficiency ultimately
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(a)

(b) (c)

Figure 2.1: Graphical representations of the SLAM problem. (a) A toy SLAM problem
represented as a Bayesian network. Landmarks in the map are conditionally independent
given camera poses. The unknown poses and landmarks are given by the coloured circular
nodes. The known measurements are given by black circles. (b) Graph structure of filtering
approach to the same SLAM problem without explicitly representing the measurements.
Only the current pose is being estimated and landmarks become connected. (c) Graph
structure of keyframe bundle adjustment. Only a subset of frames is being used, and no
marginalisation means no dense fill in between the nodes.

leads to dense fill-in of the state-space covariance matrix as the number of images increases

which means that sparse factorisation techniques are no longer applicable. Many works

attempting to deal with this problem have been presented (Eustice et al., 2006; Thrun et al.,

2004; Walter et al., 2007). However, further work has shown that Kalman filter-based

SLAM is inherently inconsistent, meaning that over the course of a long enough mapping

session the map and robot pose estimates will diverge from the true robot pose and feature

locations (Julier and Uhlmann, 2001).

Smoothing approaches are concerned with the full SLAM problem where the object

is to recover the full robot trajectory as well as a map of landmarks (though some works

on pose graph relaxation focus on recovering the trajectory only e.g, Newman et al., 2009;
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Thrun and Montemerlo, 2006). Full SLAM smoothing methods do not marginalise out

prior poses or map points and therefore the underlying covariance structure of the problem

does not become densely connected. Internally, updates to the solution δx are ultimately

computed via solving the normal equations

AT Aδx = AT b (2.9)

for system Jacobian matrix A and residual vector b. Typically, this system is solved via

sparse Cholesky factorisation. The specific column ordering of the Jacobian matrix A can

lead to improvements in performance of the sparse Cholesky decomposition (Dellaert,

2005). Incremental SAM methods improve efficiency even further by updating a running

QR factorisation of A, rather than updating A then re-factorising it (Kaess et al., 2008). A

further set of smoothing approaches sparsify the problem by considering only a subset of

keyframes. Keyframes can be selected based on their being salient or based on their being

within a fixed temporal window around the current frame (i.e. fixed lag smoothing, see for

example Kaess and Dellaert (2006), and windowed bundle adjustment, see for example

Strasdat et al. (2011)). Once a subset of frames has been identified, what is essentially

a sparse bundle-adjustment is solved to update the motion and structure parameters of

the current active keyframe selection (e.g., Campos et al., 2021; Klein and Murray, 2007;

Mur-Artal and Tardós, 2017b; Mur-Artal et al., 2015).

Current experimental results indicate that smoothing methods offer the best accu-

racy per unit of compute time when compared to filtering methods (Strasdat et al., 2010b).

The graphical structure of both filtering and smoothing approaches to SLAM is visualised

in Figure 2.1.

2.2 Review of Sparse Visual SLAM Methods

This section reviews relevant literature on sparse visual SLAM. There are many important

works in the literature that predate what are considered to be the first real-time visual

SLAM systems. Here we start with a brief overview of this earlier body of work, including
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works on visual odometry and passive navigation. From there we review more recent

developments in sparse visual SLAM. This section does not serve as a comprehensive

review of the literature, rather we provide a brief summary of important developments that

helped support later advances in real-time dense reconstruction systems.

During the 1980s, Moravec (1980) developed the first robots that could navigate

using stereo visual odometry (VO). In this setup, the robot is tasked with autonomously

navigating through a cluttered environment from its start location to a user designated end

location. The robot has no prior knowledge of the obstacles in the environment, it must

discover them on its own, based on live sensor data, and plan its route accordingly. In

order to do this the robot would have to be able to monitor its own progress towards the

end point as well as infer the position and general shape of obstacles relative to it.

Periodically, the robot would stop to take a stereo capture with its onboard camera.

By isolating salient feature points in the images and triangulating their 3D position a local

map of the robots surroundings is estimated. At the next capture site a new local map

is constructed in the same way. Corresponding points in the old and new local maps are

found by matching their respective image space features. The ego-motion of the robot is

inferred by bringing the old and new local maps into alignment in an iterative non-linear

least-squares procedure based on Newtons method. Residuals in the underlying cost

function are weighted in proportion to the inverse of the combined scalar uncertainty of

the point as measured in both the new and the old local maps.

Matthies and Shafer (1987) improved on this technique by first noting that error

in stereo triangulation of 3D points was better modelled by a normal distribution than

a scalar value. A Kalman filter is then used to update the 3D landmark positions with

measurements from the new local model. The authors propose using the method of spatial

uncertainty propagation (Smith and Cheeseman, 1986) for extracting an estimate of the

global 3D robot position and bearing in the x y ground plane from the relative pose offsets

computed by VO (Matthies and Shafer, 1987). Speed-ups and improvements brought

stereo range estimation into the realm of near real-time operation (Matthies, 1992; Okutomi

and Kanade, 1993) and increased robustness of stereo VO algorithms (Olson et al., 2003).
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Bruss and Horn (1983) devised a method for passive navigation, i.e. tracking the

motion of a hand-held camera, by extracting parameters describing the motion of the

camera from the optical flow between successive images. This work proved to be prescient

in two ways: (i) the framing of the problem as one of passive navigation of a hand-held

camera i.e. there is no robot control inputs and motion can be loopy and irregular; and

(ii) the proposed tracking function would be considered dense in the sense that it operates

over the whole image optical flow field. Dense methods later re-emerged as a paradigm as

dense tracking costs were developed for dense visual SLAM systems.

Issues of real-time performance experienced by early methods aside, VO as a

paradigm has two important caveats worth mentioning. Firstly, errors during feature

matching, triangulation of 3D points, and from other sources, inevitably bleed through and

become errors in estimates of the robot’s position and orientation, no matter how robust

the underlying algorithm. Accumulating error frame-by-frame leads to the robot pose

estimate drifting over time. The pose estimate deviates without bound from the true pose.

The degree of accumulated drift often becomes obvious when the robot closes a loop with

its own trajectory; even though in reality the robot has come back to a place it has already

been its estimated pose is way off. It has been shown that orientation error accounts for

a large proportion of the total error in a robot’s pose. In certain domains, the particular

axis (or axes) of rotation (e.g., roll, pitch and yaw) contributing most significantly to error

can be further identified. An additional signal is needed to periodically correct the robot

position estimate. Therefore, readings from a sun sensor, compass, gyroscope or other such

sensor can be used to reduce the error rate of a VO algorithm (Olson et al., 2003). Another

option is to keep a map summarising historical data. The system can then periodically

compare live data against the map data to see if a loop has been closed in the robot’s path.

If it has, the displacement of the robot’s current estimated pose from its pose relative to the

historical map data can be used to reduce accumulated drift. The problem of identifying

loops and reducing drift is referred to as the loop closure problem in SLAM literature.

The second caveat worth mentioning is that VO methods lack such a persistent

map that summarises historical sensor measurements. VO methods only build maps of 3D
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points to the extent that those points help to track the robot. Once points fall out of view of

the camera they are no longer considered useful and are discarded. In many scenarios this

is not a problem, the robot may never revisit the same location twice, so a persistent map

is of little use. However, for applications where a robot operates in a confined space or

where a robot periodically revisits locations (i.e. closes loops in its trajectory) keeping a

persistent map makes sense. While VO has its place within an autonomous system, the

full problem of SLAM is of particular importance to robotic platforms that are capable of

long-term autonomy.

Harris and Pike (1988) introduced an early visual tracking and mapping system

that built a 3D point cloud from images. Each point in the map was represented as an

independent 3D probability distribution. 3D map point covariances are used to constrain

the search for feature matches. Once a set of feature matches has been established, an

iterative model predictive camera tracking procedure tracks the motion of the camera,

again using the 3D map point and feature location uncertainties. Features in each frame

were used to update the map points using Kalman filtering. Critically, theoretical results

show that map points are independent only if the camera pose is known, thus the per-point

probability distributions are only justified if the camera tracking is correct (Montemerlo

et al., 2002; Murphy, 1999).

Davison et al. (2007); Davison (2003) introduced a seminal visual SLAM system

that played a pivotal role in bridging the gap between real-time structure-from-motion

research of the computer vision community and the already well-developed literature on

real-time SLAM of the robotics community, by showing how the Extended Kalman Filter

(EKF) could be applied to the case of pure vision SLAM with a hand-held camera. By

using features capable of long-term stability and propagating the full joint uncertainty over

camera and map state, the system was capable of achieving accurate and repeatable camera

localisation. Even after periods of neglect, the system could revisit old regions of the map

and reuse landmarks for localisation, reducing the effects of drift in long sessions where

the camera moves to poorly mapped regions and then back to well mapped regions.

Aside from the O(n2) complexity of the EKF, and possible issues around incon-
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sistency, the system had two main limitations during system initialisation and feature

initialisation. To initialise the system a fiducial marker of known size is placed in front of

the camera. This served two purposes: (i ) to fix the scale of the scene, which is otherwise

not observable from projections of a general scene into a monocular camera, and (i i ) to

allow the system to enter its main SLAM loop immediately by inserting known features

of essentially zero uncertainty directly into the map. The reason for purpose (i i ) above

becomes more obvious when we consider the systems need for a feature initialisation

procedure. Since the depth of new features cannot be known from a single image, they

must go through an initialisation procedure before they can be inserted into the map. The

procedure uses a 1D particle filter to refine the feature’s depth over several frames. Once

the particle’s density assumes a Gaussian profile, the feature is added to the map as a

normal 3D point. Starting with a map with no features in it would greatly hinder tracking

and mapping accuracy until enough features could be resolved to reduce map and camera

uncertainty. As the system relied heavily on top-down processing to limit the amount of

computation required at each step, one would expect the system to perform more slowly in

such a start-up.

From a Bayesian point of view, the need for a separate feature initialisation protocol

is a direct consequence of the parameterisation of map points as 3D X Y Z Euclidean points.

During feature initialisation the direction of point is known but not its position. Therefore,

a semi-infinite line extending from the camera to infinity with large uncertainty must be

represented during initilisation. Such uncertainties are not well captured by Gaussian

distributions and do not perform well during the linearisation step of the EKF formulation.

(Montiel et al., 2006) showed that, using an inverse depth representation features can be

immediately inserted into the map and used for SLAM.

Klein and Murray (2007) introduced a parallel tracking and mapping (PTAM)

SLAM system. As was noted in the introduction to this thesis, PTAM represented a

paradigmatic shift in SLAM research. MonoSLAM focused on probabilistic filtering of the

joint camera pose and map state, delivering updated camera pose and map estimates every

frame. One of the key insights of PTAM was to notice that while camera tracking needs
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to operate in real time, mapping, in some applications (like augmented reality), does not.

The two problems of localisation and mapping could be decoupled; given a map, find the

pose of the camera; given the pose of the camera, update the map. By decoupling the two

problems their computations could be separated into a camera tracking frontend running

on a high priority real-time thread, and a map building back-end running on separate low

priority background thread. With separation, and the consequent increase in available

resources and compute time budget, a tracking procedure, based on non-linear optimisation

of a robust cost function, could be used to track the camera during rapid movements.

Mapping also benefited, no longer coupled to the hard real-time constraints of camera

tracking, expensive batch bundle adjustments could be performed producing larger, more

accurate maps.

Instead of operating over the full stream of tracked images, the frontend identifies

and passes a sparser set of keyframes to the backend. This helped to curb the growth

in complexity of the bundle adjustment, especially during sequences where the camera

stays in well mapped regions of the scene. During such sequences the system runs an

expensive full bundle adjustment over all keyframes and map points. However, during

exploratory sequences where new keyframes are identified at a much higher frequency,

the system runs a bounded local bundle adjustment. Local BA optimises only the most

recent keyframe, its 5 nearest neighbours in the map, all the map points observed in those

keyframes and all the keyframes that contain a measurement of those points. To bootstrap

the map, two keyframes with an approximately 10cm baseline are captured in a user

guided initialisation procedure. The essential matrix, encoding the geometric relationship

between corresponding points in the two images, is estimated using a technique called

random sample and consensus (RANSAC Fischler and Bolles, 1981). An initial map is

then triangulated and further refined via bundle adjustment.

Klein and Murray (2008) introduced several extensions to the original PTAM

algorithm aimed at improving tracking during rapid camera motions and tracking recovery

from failure. Edgelet landmarks, i.e. 1D line segments, which are more resilient to

motion blur than point features, are added to the mapping and tracking optimisations. A
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procedure for estimating the rotational component of inter-frame camera displacement is

proposed. The procedure minimises the sum-of-squared differences (SSD) directly over

pixel intensity values. This procedure replaces the motion model used by the previous

version of the system to initialise camera tracking.

Despite the additional measures put in place, tracking failures were still inevitable.

When tracking fails, incoming frames are downsampled and compared to a downsampled

version of each keyframe (again using the SSD). The pose of the live image in the coordinate

frame of the matched keyframe is then found using the rotation prealignment procedure

from which point full SLAM mode can be restarted.

One of the main challenges faced by monocular SLAM systems is the unobserv-

ability of the scale of the reconstruction. Scale can only be introduced by some additional

source of information, by either observing an object of known scale or distance, or by

using non-holonomic constraints (Scaramuzza et al., 2009). Scale is one of 7 degrees

of gauge freedom in monocular SLAM (the other 6 correspond to a 6DOF rigid body

transformation of the whole map). In many applications in virtual reality and robotics

the map needs to be of the same scale as the environment in order to be useful. This led

to the need for additional map initialisation procedures in monocular SLAM pipelines

such as those used in MonoSLAM and PTAM. In large-scale mapping, even with such

initalisation procedures in place, drift in the unconstrained scale gauge is inevitable. If left

unacknowledged this drift in scale can lead to difficulties when a loop is closed.

Strasdat et al. (2010a) introduced a keyframe-based monocular SLAM system

suitable for large-scale mapping. The chief insight is that loop closure correction can

be split into a pose graph optimisation and a structure-only bundle adjustment. Once a

loop has been identified, all keyframe camera poses are treated as members of the Lie

group of 7DOF similarity transforms Si m(3), which incorporates a scaling parameter. The

loop closure constraint is the similarity transform between the live frame and the matched

keyframe ∆Sk
l ∈ Si m(3). Each absolute camera pose and the relative poses between pairs

of cameras, including ∆Sk
l , are optimised with pose graph optimisation. Once optimisation

is finished, points are corrected with the updated keyframe poses. In a final step, the map
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is optimised with structure-only BA. The effect of this is that, upon a loop closure, the drift

in scale that has occurred can be measured and corrected, allowing the robot to revisit and

reuse old portions of the map.

Keyframing works well to reduce growth in BA complexity in local, small scale

sequences, such as a camera hovering over a desk. However, keyframing does not help

substantially during large scale, exploratory sequences such as a robot mapping a city.

Many approaches to dealing with this scalability issue were proposed including pose graph

optimisation and sub-mapping. However, each of these approaches comes with its own

problems. In any case, during loop closure both of these approaches have to perform a

global update of all parameters to stay close to the optimal solution. Sibley et al. (2009)

introduced the concept of relative bundle adjustment (RBA) which was later used as the

basis for large scale SLAM (Mei et al., 2010; Sibley et al., 2010). Instead of defining

a single privileged Euclidean coordinate system like classical BA, RBA represents the

scene using a Riemannian manifold implemented as a graph. Nodes in the graph represent

frames and their measurements of landmarks in the map. Edges in the graph represent

relative transformations between frames. Landmarks are stored relative to a single base

frame but can be measured from many frames. During optimisation the full kinematic

chain of relative poses connecting a landmark’s source frame to subsequent frames it is

measured in must be composed in order to compute measurement Jacobians. Due to the

relative formulation, an active region of the graph containing parameters that might need

to be updated can easily be computed. Breadth-first search from the current frame finds

frames whose average reprojection error changes above a threshold. Such reprojection

error quickly dissipates as the search moves away from the source frame, revealing the

active region of the map. This effectively limits the size of the bundle adjustment problem

that needs to be solved, especially during loop closures.

One issue with the RBA approach as discussed above is that, although its map is

a Riemannian manifold (i.e. locally it should be Euclidean but not necessarily globally),

the active region is not explicitly constrained to be Euclidean which could have negative

effects when performing SLAM in localised small scale environments. Strasdat et al.
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(2011) attempt to overcome this with a double window optimisation scheme. Constraints

between 3D points and camera poses are harvested from an inner window. Relative

pose-to-pose constraints are harvested from an outer window. Both sets of constraints

are jointly optimised in a single cost function which is essentially a combination of a

bundle adjustment and pose graph optimisation. The map consists of keyframes organised

in a covisibility graph. Nodes represent keyframes and consist of a pose and the map

points which are visible in the frame, as well as their projections in the image. Edges

between nodes are weighted, representing covisibility between the two keyframes, that

is, the number of map points they both observe. The inner window consists of the subset

of keyframes that are most visible, while the outer loop consists of a wider subset of less

covisible keyframes. Incoming frames are tracked relative to the local map around the

reference (latest) keyframe. The system searches for both local metric loop closures and

global loop closures. Local loop closures bring the current keyframe back into alignment

with what is the true local map by searching for map points that are visible in the keyframe

but are not considered part of the current local map. Global loop closures are found via an

appearance-based mechanism and can find loop closures between more distant keyframes.

In either case, a loop closure results in a new edge constraint on the relative transformation

between the current reference keyframe and an existing keyframe.

The SLAM systems presented up to this point are feature-based. 2D → 2D image

correspondences and 2D → 3D data-associations, found through feature matching, are

the basis for the optimisations being performed by these systems. Features are useful for

several reasons. For one, they can be matched in an image without any prior assumptions

about the cameras pose (although priors can be used to limit the extent of the search). This

allows for mapping and tracking even when the camera is undergoing large inter-frame

displacements and some degree of illumination variation is present in the scene. It is

also the basis for many approaches to camera relocalisation and loop closure detection.

However, there are also several drawbacks to using a feature-based approach. Extracting

and matching features every frame is computationally expensive and systems that use

features tend to underutilise the gradient information in the image. Features are designed

37



2.2. Review of Sparse Visual SLAM Methods

to detect points that can serve as landmarks (i.e are likely to be detected in other images

from other view points), not for precise localisation of those landmarks within an image

(Triggs et al., 2000). Feature matching and localisation implicitly depend on the image

intensities of the underlying pixels. To match a known feature to a new image one must

compare its descriptor (a function of image intensities) to patches of image intensity of the

new image. Additionally, in order to precisely localise a feature in an image, non-linear

sub-pixel refinement must be performed (Lowe, 2004).

Engel et al. (2014) introduced a feature-less visual SLAM system. Similar to

PTAM and the SLAM system of Strasdat et al. (2010a), the map consists of a collection

of Keyframes. Each keyframe consists of a colour image, a camera pose in Si m(3) and

a dense depth map. A depth map is a frame of the same dimension as the image frame

where each pixel site stores the depth from the image plane to the corresponding source

surface in the scene. Keyframes are collected together in a pose graph. Keyframes are

nodes in the graph while relative similarity transforms connecting two keyframes are

edges. Using similarity transforms in this way ensures that scale drift between keyframes

is explicitly modelled and can be reduced during loop closure. Instead of extracting

and tracking features, the system performs direct alignment of the current frame to most

recent keyframe directly over the image intensities. The keyframe depth map provides the

information necessary to perform projective data-association between the two frames (also

called image warping). The pose of the previous frame is used as an initalisation point for

tracking the current frame. Once the frame is tracked, it is used to refine and fill in the

keyframe depth map using the depth map filtering method of Engel et al. (2013). If the

camera moves too far away from existing keyframes a new keyframe is inserted, with its

depth map initialised from the previous keyframe.

Whenever a new keyframe is added to the map, constraints between it and the

existing keyframes must be added to the pose graph. The new keyframe is aligned to

each of its neighbouring keyframes via direct image alignment w.r.t the space of Si m(3)

transformations. Matching keyframes from further away in the map are searched for using

an appearance-based (i.e. image-based) loop closure detection mechanism. Such matches
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represent large scale loop closure constraints. The pose graph is continuously optimised in

the background.

Mur-Artal et al. (2015) presented ORB-SLAM, a feature-based monocular visual

SLAM system. Prior to ORB-SLAM’s introduction, many insights and advances had been

made on the various sub-problems in visual SLAM; tracking, mapping, relocalisation

and loop closure. However, a SLAM system that incorporated the best solutions and

most up-to-date understanding of the SLAM problem had yet to be presented. The value

of ORB-SLAM was to do exactly this. ORB-SLAM has its roots in PTAM and in the

keyframe BA SLAM paradigm. Instead of PTAM’s two threads, operating a tracking

frontend and a mapping backend, ORB-SLAM runs three threads; a real-time camera

tracking frontend thread, a local mapping backend thread, and a global mapping full BA

thread. ORB-SLAM’s map consists of a collection of 3D points and set of keyframes,

collected together in a covisibility graph similar to Strasdat et al. (2011). Each 3D point

is described with an ORB descriptor (Rublee et al., 2011). ORB features are used for all

tasks in each of the three threads.

Camera tracking is initalised with a constant velocity motion model and motion

only BA w.r.t the previous frame. If the camera is lost, a global relocalisation procedure

finds a matching keyframe using image-based matching technique. Data-associations

between ORB features in the map and in the lost frame are then used to resolve the pose of

the camera in the coordinate frame of the matched keyframe by solving the perspective-n-

point problem (PnP Lepetit et al., 2009) wrapped in a RANSAC loop. Finally, the initial

estimate of the camera pose is refined with motion only BA w.r.t a local map. The local

map is constructed from keyframes that share map points with the live frame and keyframes

that share map points with those keyframes. Covisibility information is retrieved from the

covisibility graph defined similarly to Strasdat et al. (2011).

If the current frame is well tracked and contains sufficient amount of new infor-

mation relative to its most similar keyframe in the map, it is inserted as a new keyframe.

Keyframes are added liberally and then pruned if they contain redundant information.

This enables good camera tracking performance during periods of exploration but miti-
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gates against unbound growth in complexity by removing large numbers of overlapping

keyframes. In contrast, PTAM’s more conservative approach to keyframing insertion,

based on distance to nearby keyframes, negatively affects tracking performance as the

camera moves away from the map.

Local BA optimises the new keyframe, all the keyframes connected to it in the

covisibility graph, and all the map points observed by these keyframes. All keyframes that

see those points but are not directly connected to the new keyframe are also included in

the optimisation but are kept fixed. Once a keyframe has been included in the map via

local mapping, it is used to search for loop closure candidates. Similar to relocalisation, an

image-based matcher finds candidate keyframes. For each candidate, the 7DOF similarty

transform from the current keyframe to the candidate is found. To do this, a set of 3D → 3D

correspondence between map points in view of each frame is found, using the map points

ORB descriptors. A similarity transform aligning the two point clouds is then found using

Horn’s method (Horn, 1987) in a RANSAC loop. To correct the loop, a scale drift aware

pose graph optimisation is performed, similar to Strasdat et al. (2010a). The similarity

transform found above acts as the loop closure constraint during optimisation. Instead

of operating over the full covisibility graph during loop closures, ORB-SLAM uses the

essential graph. The essential graph is composed of the spanning tree of the covisibility

graph, strongly connected edges and loop closure edges.

An interesting result from this work shows that the feature-based localisation

of ORB-SLAM outperforms the direct alignment method used by LSD-SLAM. This

discrepancy is partially explained by the viewpoint and illumination invariance of the ORB

features being used. Also, the susceptibility of direct methods to visual artefacts caused

by rolling shutter and automatic camera functions such as auto-exposure can cause issues

during camera tracking. Torr and Zisserman (2000) present a deeper analysis comparing

direct and feature-based methods. Their work shows that incorrect correspondences have

a much worse effect on direct methods than they do on feature-based methods. This is

due in large part to the fact that the reprojected position of features in the image domain is

going to be invariant to photometric and geometric distortions between images. While such

40



2.3. Dense Visual SLAM

distortions can lead to incorrect matches, with robust optimisation techniques and iterative

recalculation of matches, they have little effect on optimisation. Cost functions used by

direct methods need to be invariant to these distortions, or they will fail. Although some

methods attempt to remove these distortions by more completely modelling the image

formation pipeline (e.g Engel et al., 2017), if the model does not account for all sources of

distortion, it will lead to systematic degradation of tracking performance and will need to

be further extended (e.g Schubert et al., 2018). Torr and Zisserman (2000) also highlight

that for BA to converge to the ML solution, the error residuals must be independently

distributed. While this is true of feature-based methods, it is not necessarily true of direct

methods, potentially leading to biased estimates. However, semi-direct methods have

shown that both approaches, feature-based and direct, can be combined in a single tracking

procedure to great effect (Forster et al., 2014).

Mur-Artal and Tardós (2017b) extended ORB-SLAM to include RGB-D and stereo-

based SLAM and a localisation only mode. Sparse systems such as those presented in

Mur-Artal and Tardós (2017b) and Campos et al. (2021) continue to provide state-of-the-art

SLAM capabilities. The feature-based approach taken by ORBSLAM-3 makes accurate

camera tracking possible even during adverse lighting conditions and fast camera motion.

In Chapters 5 and 6 we leverage ORBSLAM-3’s robust camera tracking capabilities in

the development of dense visual SLAM systems suitable for outdoor applications, such as

in the automotive domain, where lighting is not fixed and the camera may move at speed.

One of the main limitations of ORBSLAM-3, and the other sparse visual SLAM systems

discussed in this section, is that they produce sparse maps which limit their usefulness

in some applications. In Sections 2.3 and 2.4 we shift our focus to dense VSLAM and

systems that can produce high fidelity 3D maps.

2.3 Dense Visual SLAM

In comparison to sparse SLAM systems, dense SLAM systems aim to estimate a high

fidelity 3D reconstruction of the environment being explored. Typically, this involves

using as many of the pixels in each frame as possible to fit a model of the 2D surface that
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underlies the scene being viewed. As we shall see in Section 2.4, some dense systems

estimate a discrete sampling of geometric primitives that lie on this surface (e.g Keller

et al., 2013; Kerl et al., 2013). While being densely populated, these representations are

ultimately discrete and, therefore, do not capture higher-level properties of the scene’s

surface geometry than what is, in principle, possible with a sparse system. In Section 2.4

we shall also discuss other types of dense systems that do go beyond representing the

scene as geometric primitives and attempt to model the topological structure of the surface

itself (e.g Newcombe et al., 2011a; Schöps et al., 2020). This section starts by introducing

the mathematical notion of a surface and then proceeds to discuss how early work on

offline surface reconstruction formed the foundation for later developments in dense visual

SLAM.

A surface M embedded in 3D space can be seen as a 2D manifold (see O’Neill,

2006, for a detailed explanation). The goal of dense visual reconstruction is to recover

a surface S that that approximates the true surface M from a set of noisy measurements

X = (x0, ...xn) of M . Each measurement point xi ∈ X is a perturbation of a point yi lying

on the true surface M , and takes the form

xi = yi +ei (2.10)

where each ei ∈R3 is a zero mean normally distributed noise vector. The measurements X

could, for example, be from a laser range finder or a sparse SfM system such as COLMAP

(Schönberger and Frahm, 2016). Given an appropriate estimate of the upper-bound on

measurement error δ and the sampling density ρ, with which X was captured, it is possible

to make reasonable estimates of which points p ∈ R3 lie on M (Hoppe et al., 1992). A

point p ∈R3 with d(p, X ) > δ+ρ, where d is distance between p and the closest point to it

in X , clearly does not lie on M (Hoppe et al., 1992).

To compute S, the data points X can be used to construct a truncated signed

distance function (TSDF). The TSDF maps each point p ∈ D, where D ⊂ R3 is some

bounded space around X , to its signed distance to the nearest point on M . Distances

outside the surface are given a negative sign while distances inside the surface are given a
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Figure 2.2: An example of a 2D TSDF approximated as discrete grid. In 3D each
grid cube is referred to as a voxel (volume element) and the grid is referred to as a voxel
grid. The number of voxels and their side length determine the resolution and size of the
reconstruction the voxel grid can support.

positive sign. The surface S estimating M is then implicitly defined as the zero level set of

the TSDF. In reality M is unknown. However, it can be approximated in piece-wise linear

fashion. To do so, each point, and its neighbours, are used to estimate the tangent plane

of best fit (in the least squares sense) to the surface M . The TSDF can then be found by

computing the distance of each point in D to the nearest tangent plane. The zero level set

of the TSDF can then be extracted with a contour tracing algorithm for example marching

cubes (Lorensen and Cline, 1987). For more details see Hoppe et al. (1992), and Hoppe

(1994) for an extended treatment. A visualisation of a TSDF can be seen in Figure 2.2.

The above discussion does not take into account any specific features of the visual

SLAM problem. Rather it considers the general problem of inferring a surface model

from unorganised point clouds. In visual SLAM, the data comes from a camera, i.e.

measurements are arranged on the image plane in a regular grid pattern and related to

the 3D world by a well-defined camera projection function. This regularity can be taken
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advantage of to simplify the reconstruction process. Further to this, in SLAM the scene is

imaged in an incremental fashion, thus a procedure that can incrementally refine a surface

reconstruction based on new information is required.

Given a set of depth maps Dt : φ→ R, for discrete depth map domain φ ⊂ N2,

with known global poses Pt ∈ SE(3), a maximum likelihood surface S can be estimated

(Curless, 1998; Curless and Levoy, 1996). Per-frame surfaces can be estimated by fitting a

piece-wise linear mesh to the depth values in the depth map. Per-frame weighted TSDF

volumes st and weight functions wt can be extracted, updating the TSDF along the lines

of sight of the sensor. The overlapping frame surfaces can then be fused within a single

global cumulative weighted TSDF in incremental fashion

D(x)t+1 = D t (x)Wt (x)+dt+1(x)wt+1(x)

Wt (x)+wt+1(x)

W (x)t+1 =Wt (x)+wt+1(x)

(2.11)

for cumulative TSDF D, cumulative weight function W and 3D point x. The weight

functions wt express variations in uncertainty between different depth maps due to noise

in the formation of the depth maps. By fusing multiple overlapping frames, the effects

of this noise, and the effects of slight misalignment of the frames, on the final surface

reconstruction can be reduced. As before, S can be retrieved as the zero level set of D using

marching cubes (Lorensen and Cline, 1987), or a similar contour tracing algorithm. TSDF

updates along a given ray direction are only considered within a restricted zone around the

surface hence truncated. This prevents opposite sides of a surface along a ray influencing

each other. It also helps to maintain a level of computational efficiency during processing

as surface updates need only occur within the vicinity of the surface. The truncation region

is set to accommodate the expected degree of sensor noise. See Curless and Levoy (1996)

and Curless (1998) for more details.

A standard voxel grid implementation of a TSDF exhibits a large degree of sparsity.

Most of the voxels are used to represent either free or unobserved space. The sparsity

of the TSDF can be exploited to represent the surface more compactly by only explicitly

storing voxels with surface measurements (Niessner et al., 2013).
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The above procedure assumed known sensor poses which, in the context of real-

time dense visual SLAM, cannot be known a priori and must be estimated in real time.

An early paradigm for full dense visual SLAM utilised existing sparse SLAM methods

such as PTAM to perform the essential SLAM operations of tracking, sparse mapping,

loop closure and relocalisation. Dense reconstruction schemes were layered on top of

this sparse backbone, utilising the camera poses and points, but the dense geometry itself

did not feed back into the SLAM system (Newcombe and Davison, 2010; Pollefeys et al.,

2008; Stühmer et al., 2010).

Later, visual SLAM systems based on dense alternation removed the dependency

on sparse SLAM systems. Unlike sparse joint optimisation, dense alternation splits the

SLAM problem into two separate steps. In the first step, the map is assumed to be correct

and is used to track the motion of the camera. This is typically done with direct, whole

image alignment between the current live frame and rendering of the model into a virtual

frame. Once aligned, the camera pose is assumed to be correct and used to extend the

map by integrating measurements from the current live frame. DTAM is representative

of this class of algorithms (Newcombe et al., 2011b). Such a decoupling is clearly a

departure from the more probabilistically principled joint estimation frameworks of sparse

SLAM, built on the knowledge that scene points are only probabilistically independent if

the camera pose is known perfectly which is rarely the case in reality. However, thus far it

has proved necessary in order to cope with the amount of data involved. Indeed, it appears

that it is the shear amount of data being used in a dense SLAM system that enables it to

overcome the lack of joint estimation (Platinsky et al., 2017).

Though the above discussion talked mainly of the use of TSDFs as the representa-

tion of the dense surface models, the question of representation in dense SLAM is very

much an open research problem. A suitable representation of dense surfaces must meet

many requirements including efficiency (it must support real-time operation), scalability (it

must extend to large scenes and high resolutions), usability (it must be straightforward for

downstream software to extract relevant information) and the ability to represent complex

surfaces with arbitrary topologies. Many representations have been proposed including;
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dense depth keyframes (Newcombe et al., 2011b), surfel lists (Keller et al., 2013), im-

plicit functions (Newcombe et al., 2011a), occupancy grids (Loop et al., 2016), planes

(Salas-Moreno et al., 2014) and neural radiance fields (Sucar et al., 2021). However, there

is no ‘one size fits all’ representation that is suitable for all application domains as each

representation imposes trade-offs in performance.

The question of how per-frame depth maps are computed in the first place was also

left largely unaddressed. Many multi-view stereo techniques to infer dense depth maps

have been proposed e.g., Gallup et al. (2007) propose an efficient plane-sweeping algorithm

which can be used for this task. However, active depth sensors like the Microsoft Kinect

drastically simplified the depth acquisition process. An emergent approach uses deep

neural networks that leverage global and local cues in RGB images to estimate per-pixel

depth values (Eigen et al., 2014; Zhou et al., 2017). In this thesis, we demonstrate dense

mapping with both active depth sensors and neural network-based depth prediction.

2.4 Review of Dense Visual SLAM Methods

In this section we review key contributions in the literature surrounding dense visual

SLAM. For a comprehensive review of the broader SLAM literature see the survey of

SLAM presented Cadena et al. (2016). Here we are interested in systems that perform live

dense surface reconstructions.

One of the earliest dense visual SLAM systems to offer what would be considered

a full SLAM pipeline was that of Henry et al. (2012). In their system, the authors combine

visual feature-based RANSAC alignment with dense iterative closest point (ICP) for joint

photometric and geometric frame-to-frame tracking of a RGBD camera. A subset of

keyframes that form discriminative views of the scene are kept in a vocabulary tree for use

in a visual place recognition system. This allows loop closure candidates to be identified by

comparing new keyframes to spatially nearby keyframes that are already in the vocabulary

tree. Once potential loop closures have been detected the rigid body transformation that

closes the loop is determined by aligning the matching keyframes with a RANSAC-based

3-point algorithm. They compare the use of sparse bundle adjustment and pose graph
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optimisation for correcting the estimated camera poses and 3D map points in accordance

with the loop closure. In a post-processing step a dense surfel map is generated from the

intermediate keyframes. While the possible extent of mapping and the inclusion of a loop

closure mechanism is impressive, the system operates at a low frame-rate (less than the

30hz at which many commodity RGBD sensors operate). On top of this, the final map

representation is only made available after mapping is complete, which makes it unsuitable

for many robotics applications that require an up-to-date map in real time.

Newcombe et al. (2011a) were among the first to put forward an approach that

combined active depth sensing cameras and general purpose GPU computing for online

and incremental estimation of a single dense volumetric reconstruction of a room-sized

environment. Central to the approach is a dense frame-to-model predictive alignment

scheme for tracking the pose of the camera in every frame. Once the camera’s pose has

been resolved the current frame can be fused into the global model. Internally the system

represents this global model with a volumetric truncated signed distance function (TSDF).

The TSDF itself stores the signed distance from each point in its volume to the nearest

point on the surface it is representing. Positive distances indicate that a point is ‘outside’

the surface and negative distances indicate that a point is ‘inside’ the surface. The surface

itself occurs at the zero-crossings of the TSDF. Visible points that are greater than some

distance threshold from the nearest surface are clipped to a maximum allowable distance

set to match the region of uncertainty around the estimated surface location. In order to

store the TSDF in GPU memory it is discretised at a certain resolution into a voxel grid,

with a voxel being the 3D analogue of a pixel.

During camera tracking, model-based predictions of the view of the scene are made

by ray casting the TSDF volume into a vertex map and a normal map using the camera

matrix from the previous time step. The camera’s pose is then estimated by aligning

the predicted frame to the current live frame using a variant of the ICP algorithm that is

embedded in a 3 level coarse-to-fine vertex and normal map pyramid. The new camera

pose estimate is then used to fuse the latest frame into the TSDF model. Voxels in the

global TSDF that need to be updated are found by projecting each voxel into the current
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camera frame. If a voxel projects to a valid pixel location then the ray emanating from that

pixel and passing through the camera’s optical centre can be computed using the camera’s

inverse calibration matrix. Voxels that lie on this ray and are within the truncation region

are updated in accordance with the corresponding depth measurement, using a simple

running average that, over the course of multiple measurements, acts to denoise the TSDF.

Newcombe et al. (2011a) and their KinectFusion system marked a pivotal point in

the evolution of visual mapping, showing that live dense volumetric reconstructions were

possible and in doing so their work excited a flurry of follow-on research. In particular, it

initiated several tracts of research aimed at improving on certain aspects of the original

algorithm’s performance and removing a number of its limitations. One of the fundamental

limitations of the system was that the scale of the physical spaces that could be mapped

was limited to room-sized scenes since the TSDF volume was fixed in size, by the amount

of GPU memory available and the chosen voxel grid resolution, and in space, by the initial

position of the camera. Related to this is that while the predictive frame-to-model camera

tracking pipeline of the system was capable of maintaining locally consistent trajectories,

it had no explicit loop closure mechanism and so could not correct for camera drift over

trajectories of a larger scale.

A further limitation of the system was its handling of scene dynamics. The running

average used to fuse measurements did provide some level of robustness to transient levels

of dynamic object motion, however, the system by and large assumed a static scene and

so did not attempt to actively model scene dynamics. This had an impact on both camera

tracking, which relied solely on scene geometry, and model accuracy. Even in situations

where dynamics were not an issue the tracking process’s reliance on scene geometry made

it prone to failure in cases where the camera was facing surfaces with low geometric

diversity. Such surfaces could not sufficiently constrain the underlying ICP objective

function along each of its 6 degrees of freedom (3 for translation and 3 for rotation) leading

to poor camera pose estimates in such cases.

Prior to KinectFusion the focus of dense mapping was on the recovery of the

low level geometric structure of scenes, however, the advent of KinectFusion and the
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capabilities it brought allowed research in the area to focus on other aspects of dense

mapping. Naturally the question of how can mapping at higher levels of abstraction, such

as at the level of objects or at the level of semantics, be incorporated into a dense mapping

pipeline became a focal point of subsequent research in the area.

Whelan et al. (2014a) addressed a number of these problems with the development

of the Kintinuous mapping system, including the problems of mapping scalability (Whelan

et al., 2012), global drift (Whelan et al., 2013b) and robustness of camera tracking (Whelan

et al., 2013a). First, the authors showed how the volume within which mapping is taking

place can be unanchored from its initialisation position and dynamically recentred around

the camera as it moves by storing the TSDF in a cyclical buffer on the GPU. This allows

KinectFusion style volumetric fusion on a scale orders of magnitude larger than what is

possible with the original KinectFusion algorithm. The system gathers portions of the

TSDF that have ‘moved out’ of the volume that is currently being used for mapping and

segments them into slices which are streamed to the CPU where they are used to construct

a mesh representation of the map (Whelan et al., 2012).

The susceptibility of camera tracking to drift in scenes where the geometry does not

provide adequate constraints is addressed by adding a photometric error term to the camera

tracking objective function. The photometric term minimises the frame-to-frame pixel

intensity error which acts together with the frame-to-model geometric error to provide

a more robust tracking algorithm, exploiting all the frame data in a principled manner.

As with the original KinectFusion algorithm, the optimisation is performed iteratively by

embedding it in a 3 level course-to-fine pyramid scheme (Whelan et al., 2013a).

While the joint visual and geometric odometry of Kintinuous is robust across local

camera trajectories, it was not designed for, nor was it capable of, maintaining globally

consistent trajectories. To deal with this problem Whelan et al. (2013b) instituted a backend

module that is responsible for incrementally building both a pose graph of every camera

pose estimate and running a visual place recognition system to identify loop closures.

When a loop closure is identified a RANSAC-based algorithm is used to make a course

grained estimate of the rigid transformation between the current camera coordinate frame
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and the actual coordinate frame, according to the place recognition system. This initial

rough estimate is refined through Levenberg-Marquardt minimisation. The refined estimate

is then added as a constraint to the pose graph which is maintained and optimised by the

iSAM system of Kaess et al. (2008). The corrected pose graph is then used to bootstrap a

deformation graph with surface-to-surface constraints. The map is non-rigidly deformed in

accordance with the loop closure by applying the optimised deformation graph directly to

the surface (Whelan et al., 2013b).

Whelan et al. (2014a) were not the only ones to address the limitations of the

KinectFusion algorithm. Izadi et al. (2011) introduced novel additions to the core Kinect-

Fusion pipeline for modelling scene dynamics. Motion within the scene that is independent

of the camera’s motion is identified as patches of connected outliers in the projective data

association stage of camera tracking. Outlier patches are segmented from the background,

which is assumed to be largely static, and excluded from tracking using a outlier mask

image. KinectFusion’s camera tracking is resilient enough to transient levels of scene

dynamics such that tracking can continue while dynamic scene regions are identified and

masked. However, without this extension extended periods of dynamic scene motion would

cause irrecoverable degradation in camera tracking.

Keller et al. (2013) showed the benefits of foregoing a volumetric map represen-

tation in favour of a flat list of surfels (surface elements that have scale and orientation).

At a coarse-grained level, the pipeline of the system closely resembles that of Newcombe

et al. (2011a), different map representations aside, alternating between model predictive

camera tracking and depth map fusion. Here, for every frame the system performs iterative

frame-to-model ICP alignment to track the motion of the camera, however, in contrast

to Newcombe et al. (2011a), the authors take advantage of the explicit point list map

representation, using a standard graphics pipeline to efficiently render a predicted model

view and perform projective data association between the frames. Following this the

live frame is fused into the model, using a weighted average to fuse intersecting points.

The averaging scheme used is similar to that used by Newcombe et al. (2011a) but goes

a step further, explicitly modelling the uncertainty of measurement points as Gaussian
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distributions parameterised by their radial distance from the camera centre. By fusing

intersecting model points in this way, the memory footprint of the map is reduced and

the underlying map denoised at the same time, increasing the scale at which mapping can

proceed and capturing the denoised characteristics of KinectFusion’s maps.

Building on the work of Izadi et al. (2011), Keller et al. (2013) use outliers from

the projective data association stage of ICP to find candidate points in the input frame

that potentially lie on dynamically moving objects. Then in a hierarchical region growing

step (using the coarse-to-fine image pyramid constructed in the camera tracking stage)

connected regions of candidate dynamic points are identified and are used to build a

dynamics map which segments the frame into static and dynamic regions. Over time

confidence is lost in model points that are too frequently associated with dynamic points,

and they are marked as unstable and so are not used for camera tracking making it more

stable in the face of dynamic scenes. Despite the large scale over which it can map and

its robustness to dynamic scene motion, the system has no explicit method for combating

camera drift, leading to significant mapping and tracking errors over time.

Whelan et al. (2015) and their ElasticFusion system focuses on exploiting the

benefits of a point-based fusion approach demonstrated by Keller et al. (2013) but within

a more complete mapping framework that incorporates online map optimisation through

local and global loop closures. By defining a temporal window that segments the map into

an active and inactive region, Whelan et al. (2015) attempt to apply non-rigid deformation-

based surface loop closures frequently, as the camera transitions between the active

and inactive regions, maintaining local map consistency and facilitating loopy camera

trajectories. To reduce global camera drift keyframes are harvested and kept in a fern

encoding database, then as each new frame is processed it is checked against the database

for frames containing a similar view. If such a match is found then the two frames are used

to constrain a deformation graph which, when applied to the surface, non-rigidly ‘closes

the loop’. On top of estimating each surfel’s position, normal and radius, ElasticFusion

also estimates each surfel’s colour, again using a weighted running average to fuse multiple

measurements. During camera tracking colour information in the map is used to predict a
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full colour image which is used to perform photometric frame-model tracking alongside

geometric frame-model tracking, similar to Kintinuous.

More recently Dai et al. (2017) try to better approximate the maximum likelihood

reconstruction characteristics of a bundle adjustment framework within a volumetric fusion

mapping pipeline by performing a hierarchical global optimisation over the complete set

of camera poses, allowing on-the-fly removal and reintegration of frames into the volume

based on continually improving camera pose estimates. Corresponding SIFT features are

found between each new frame and all previous frames. Subsequently, the correspondences

go through a series of filters designed to decrease the number of false positive matches,

after which they are used to hierarchically optimise camera poses over the entire sequence.

At the lowest level in the hierarchy the sequence of input frames is divided into chunks

of consecutive frames with some overlap between neighbouring chunks (similar to the

concept of a window in bundle adjustment and sparse visual SLAM). The first frame in

each chunk defines the coordinate frame for the entire chunk. Then, intra-chunk feature

correspondences and dense photometric and geometric matches are used to construct a

local intra-chunk energy function that, upon minimisation, aligns frames within a chunk.

At the next level of the hierarchy, each chunk puts forward a keyframe (the first frame in

the sequence) and an aggregate keyframe feature set which define an energy functional

that, upon minimisation, globally aligns all chunks. At each level the final non-linear

energy function is minimised with respect to the camera poses using a novel parallel

optimisation framework that exploits the specific sparsity characterisitics of the energy

function’s Jacobian.

Schöps et al. (2019) combined a direct whole image alignment RGBD camera

tracking frontend with a novel direct bundle adjustment backend optimisation. The frontend

to their BAD-SLAM system tracks the camera and extracts keyframes. Keyframes are

then sent to a backend which performs a global optimisation of the keyframe poses and a

surfel map. The direct BA cost function is defined over both geometric and photometric

constraints. In order to maintain efficiency, the optimisation alternates between updating

the different parameters during each iteration. During each iteration, new surfels are
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created, overlapping surfels are merged and spurious surfels are deleted. Updates on surfel

normals and radii are performed outside the BA procedure to simplify optimisation. Surfel

position updates are constrained to move only in the direction of the surfel normal to

prevent input points with poor local gradient information from corrupting the map.

Surfel map representations confer many benefits from a SLAM point of view; they

are easily updated with new information, they are easily deformed to account for loop

closures and they can handle a range of scene scales. However, surfel maps are essentially

discrete, which makes them unsuitable for many downstream applications which assume a

continuous surface model. Schöps et al. (2020) introduce an online meshing algorithm to

incrementally build meshes of surfel maps, such as those built by ElasticFusion (Whelan

et al., 2015). For meshing, the surfel map is streamed to the CPU and organised in

an octree to enable spatial accessing of the map, necessary for quick retrieval of surfel

neighbourhoods during mesh triangulation. The basis of the mesh triangulation step is a

projective mesh growing algorithm (Marton et al., 2009). When new surfels are added or

old surfels are updated (either through loop closure or fusion of a new frame), a remeshing

step marks locally affected regions of the mesh for remeshing. Methods for intensive

regularisation of the surfel map and denoising of the input depth maps are included as

mesh triangulation is highly sensitive to noisy surfels.

Other tracts of research in dense mapping includes work on more directly modelling

scene dynamics and semantics. Newcombe et al. (2015) attempt to model dynamic non-

rigidly deforming scenes, more comprehensively than is done in the works of Keller

et al. (2013) and Izadi et al. (2011), using a per surface element warp field to map the

surface back to a canonical pose upon each new frame from which point the frame can

be fused into the reconstruction with the resultant effect being the online generation of

dense models of highly dynamic scenes. Innmann et al. (2016) propose a similar approach

to dynamic mapping, adding that sparse image based features can help improve surface

tracking stability.

McCormac et al. (2016) use an encoder-decoder convolutional neural network

(CNN) to perform per pixel semantic labelling of image pixels with class membership
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probabilities in the frontend of a variant of ElasticFusion. Probabilities of pixel labels are

fused into the probabilities of surfel labels using a Bayesian update rule over the probability

of a label for a surfel conditioned on the previous images and the probability of pixel

having that label conditioned on the current image.

Salas-Moreno et al. (2013) demonstrated dense mapping at the level of objects with

their SLAM++ system. In this paradigm of dense SLAM a set of domain specific objects

are presupposed to occur frequently in a specific scene. 3D models of these objects are

captured using KinectFusion and stored in a database. Frame-to-model camera tracking

proceeds much like it does in KinectFusion, however, in contrast, a model-based view

prediction is made by rendering the predicted object level view of the scene using the

estimated camera matrix from the previous time-step. Once the camera’s pose has been

resolved, objects in the object model database are searched for in the current frame. Pose

estimates for cameras and objects form camera-camera and camera-object edges in a pose

graph which is used to jointly optimise the historical camera pose estimates and object pose

estimates. One drawback of their approach was strong prior assumptions about the object

categories expected in the scene and their respective 3D geometries. McCormac et al.

(2018) presented a similar method that relaxes these restrictive assumptions. Mask-RCNN

(He et al., 2017) is used to identify object instances across a broad range of object categories

and geometries in incoming images. Detections are fused into per-object instance TSDFs,

aligned within a common global coordinate frame. The object TSDFs are joined together

with a pose graph to perform object level loop closure detection and correction. Many

similar works have also been presented: Rünz and de Agapito (2018) use ElastiFusion

to build an object level of map of multiple moving objects; Pham et al. (2019) perform

volumetric semantic mapping followed by conditional random field (CRF) refinement over

higher order object level constraints to produce an instance level semantic map; Sünderhauf

et al. (2017) build an instance aware semantic mapping algorithm on top of ORB-SLAM2.

More recently, SLAM systems have been proposed that explore the full scope of

the representational power of neural networks. Tateno et al. (2017) propose to combine

CNN-based monocular depth estimation and semantic segmentation with a LSD-SLAM
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derived backend. Bloesch et al. (2018) propose a compact representation of dense scene

geometry based on variational auto-encoders. During a training phase, an optimisable

latent space encoding of dense geometry is learned. Following this, the latent space is used

within a PTAM-like SLAM system. Keyframe poses and latent vectors representing dense

scene geometry are jointly optimised. The application of learned depth codes in the context

of SLAM is further explored in Czarnowski et al. (2020). Sucar et al. (2021) represent

the scene as a radiance field, implemented using a multi-layer perceptron (MLP). During

operation, incoming images are used to train the weights in the MLP via a reconstruction

loss between the input image and a prediction rendered from the MLP. Historic keyframes

are repeatedly replayed through the MLP to prevent the network from ‘forgetting’ old parts

of the scene.

2.5 Collaborative SLAM

In Sections 2.1 to 2.4 we discussed single-robot SLAM. In this section, we switch focus

to collaborative, or multi-robot, SLAM. Collaborative SLAM is an important SLAM

paradigm. In the same way that a team of people can out-perform a single person on

some tasks, a team of robots can out-perform a single robot. For example, in large scale

search and rescue, a team of drones can split up and cover ground more quickly than a

single robot could. Provided there is a channel through which information can be shared

between robots, SLAM can also benefit from the addition of multiple robots. Multiple

robot systems present many challenging research questions such as the distribution of

sub-tasks and coordination between robots. In this section and in Section 2.6 we focus

specifically on challenges surrounding collaborative SLAM.

In particular, when a team of robots is deployed in an a priori unknown environment,

each robot must perform SLAM so that they can understand, and localise themselves within,

their environment. Multi-robot SLAM systems are generally built on top of single-robot

SLAM systems but must solve additional problems so that they can take advantage of the

additional robots. Saeedi et al. (2016) identify the following pertinent multi-robot SLAM

problems:
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Figure 2.3: Challenges in collaborative multi-robot SLAM (I): unknown relative
poses of robots. A hypothetical collaborative SLAM session. Two robots, R1 and R2

begin mapping a space. (i ) Neither robot has prior knowledge of the pose of the other
robot relative to itself. More precisely, this means that the quantity T 2

1 , representing the
transformation between the two robots’ local frames of reference, is initially unknown. T 2

1
could be, for example, a rigid body transformation, or it could be a similarity transform
if the robots cannot directly measure the scale of the environment (e.g., if they only have
single monocular camera). During the mapping session, T 2

1 can be determined either
directly when two robots encounter each other (i i , red line), or indirectly, when two robots
make overlapping observations, e.g., of the star (i i i ).

• Relative Poses of Robots: In a general multi-robot scenario the relative transfor-

mation between robot specific coordinate systems will be unknown at the start of

mapping. The other way of stating this problem is that there is no way of knowing, a

priori, a global coordinate system and the pose of each robot within that coordinate

system. Therefore, each robot must start in its own local coordinate system and a

global coordinate system must be inferred via observations shared by multiple robots

as mapping proceeds (Figure 2.3, (i )).

• Loop Closure: Loop closures in single robot SLAM require a robot to identify when

it has revisited a place, irrespective of even the most catastrophic tracking failures.

In a multi-robot session, inter-robot loop closures are also possible. Inter-robot

loop closures occur when one robot recognises a location that has previously been

visited by another robot (Figure 2.3, (i i i )). This type of loop closure is the basis

for inferring relative robot-robot poses during mapping. They are also useful even

56



2.5. Collaborative SLAM

when relative robot poses are known, as multiple loop closures can be combined to

remove the effects of outliers and noise.

• Robot-Robot Observations: During mapping, two or more robots may directly

observe each other. Observations of this kind provide a strong constraint on the

relative transformations between robots (Figure 2.3, (i i )). This is due in part to

the use of salient tags that allow robots to easily identify one another. However,

the true benefit of robot-robot observations, is that, when robots meet, they can

actively verify the estimated relative transformation by arranging to rendezvous at a

second location. However, relying solely on direct robot-robot observations ignores

constraints on relative transformations that arise when observations from two robots

overlap, i.e. indirect encounters.

• Uncertainty of Relative Poses: In a single robot setting, uncertainty from many

sources is represented via a covariance matrix. The covariance matrix includes

pose-pose correlations (over poses in the robot’s own trajectory), pose-landmark

correlations and landmark-landmark correlations. In multi-robot settings, the total

covariance of the system must also include uncertainty in the relative poses between

each robot’s local coordinate system.

• Updating Maps and Poses: Once a robot-robot loop closure has been identified

and relative transformation computed, the robot local maps must be aligned and

overlapping geometry merged. Robot sub-maps can be combined within a single

map structure (Figure 2.4(b)) or kept in separate sub-maps joined together in a

loosely coupled manifold structure (Figure 2.4(a)). In the former case, duplicated

geometry is more easily identified and eliminated, but the loop closure constraint

is ‘baked’ into the map. This can corrupt the map in the case of a false positive

loop closure. In the later case, the map will more likely contain duplicated geometry

but the global coordinate frame estimate can be refined with further loop closure

constraints. False positive loop closures are less catastrophic with this approach. In

either case, once multiple robots have been joined together in a shared map, fusion

57



2.5. Collaborative SLAM

R2 local 
map

R1 local 
map

R1

S1

R
2

S2

(a)

S1

R
2

S2
R1

(b)

Figure 2.4: Challenges in collaborative multi-robot SLAM (II): map representations.
Consider the same hypothetical collaborative SLAM session as in Figure 2.3. Each robot
initially builds its own local map. Once an inter-map loop closure has occurred, robot
specific local maps need to be combined into a unified map. Local maps can be either (a)
kept separate using a manifold structure, for example a pose graph, or (b) merged together
into a single global map. (a) Although manifold approaches can recover from false positive
inter-map loop closures, since the maps are never explicitly combined, this robustness
comes at a cost. Specifically, the unified map contains duplication of structures in the
environment where the local maps overlap (dashed border). (b) merging local maps avoids
duplicate representations in the unified map, but the inter-map loop closure is effectively
baked into the map. This makes it difficult to correct the inter-map transformation, if
the initial loop closure is wrong, or if subsequent robot-robot encounters or overlapping
observations become available.

of the latest sensor measurements from each robot as well as intra-map loop closures,

must be carried out in such a way that the map is not corrupted.

• Complexity: A SLAM system must run in real time. A multi-robot SLAM system

is no different. A critical issue in single robot SLAM is the scalability of the system

as the mapping session extends over large spaces and long periods of time. A new

dimension of scalability must also be considered in multi-robot systems - the number

of robots.

• Communications: Multi-robot teams must communicate over some kind of network.

This network may not always be reliable. Thus, multi-robot SLAM algorithms must

be robust in the face of an unreliable network. Other communication challenges

include: deciding whether robots should share raw sensor data or filtered/smoothed

map and pose data; implementing the SLAM algorithm as either centralised or

decentralised/distributed process.
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• Heterogeneous Platforms: In many multi-robot applications the robot teams may

consist of robots with differing sensor platforms and capabilities. For example,

teams of ground robots supported by drones flying overhead have been developed

in several domains. From a multi-robot SLAM perspective such heterogeneity can

represent a significant challenge. In the drone/ground robot team from our example,

the drone’s perspective is significantly different from that of the ground robot. This

can make finding data associations between their respective sensor readings and

maps difficult.

A multi-robot SLAM system that addresses these challenges (or at least a critical

subset of them, e.g., solving the unknown initial relative poses of each robot, facilitating

map and pose updates from multiple robots and maintaining real-time performance), can

allow a team of robots to map an unknown space more efficiently. By combining all sensor

data into a single, shared map representation, individual robots gain a more complete

model of the environment as a whole, even if they have not directly explored each region.

What’s more, the unified map can be used to facilitate downstream collaborative tasks. For

example, robots can use the shared map to coordinate further exploration of the scene (e.g.,

Fox et al., 2006).

2.6 Review of Collaborative SLAM Methods

In this section we review relevant literature on collaborative SLAM. We start with a brief

discussion of the emergence of early multi-sensor SLAM systems from existing traditional

single-sensor SLAM frameworks. We then focus on systems that offer solutions to the

key challenges in collaborative SLAM that we face with our work in dense collaborative

mapping. These challenges include; unknown initial relative poses; updating maps and

poses; and solving loop closures. A recent and comprehensive review of collaborative

mapping can be found in Saeedi et al. (2016). We will also cover some more recent research

on multi-session SLAM, a problem that is closely related to multi-sensor SLAM and can

be viewed as multiple SLAM ‘missions’ through the same area. Many of the systems
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discussed here perform sparse and, or, low dimensional planar mapping and in most cases

do not use vision based sensors like RGBD cameras or even monocular colour cameras.

However, we focus on the representations used by these systems and the mathematical

frameworks they use for solving the different constituent collaborative mapping problems.

Many early attempts at collaborative SLAM took pre-existing frameworks from

single-sensor SLAM and extended them such that they could represent multiagent mapping.

One of the earliest collaborative SLAM systems was that of Nettleton et al. (2000), who

were the first to propose using the information filter to represent the multi-robot SLAM

problem. In this work the authors simplify the problem by constraining the robotic

platforms to 1-DOF Brownian motion and linear observations of a set of continuously

observable landmark features. The key contribution of this work was the insight that the

collaborative SLAM problem could be naturally represented in information space, since

the final map information was simply the sum of the information gained from each robot.

Fenwick et al. (2002) use an Extended Kalman Filter (EKF) as the state estimator

in a collaborative mapping system. In their algorithm, one agent starts building a feature

based map using a SICK laser scanner, which a second agent will attempt to find itself in

using a joint compatibility branch and bound data association algorithm (Neira and Tardos,

2001). Once the second agent is localised in the map of the first agent an augmented state

and covariance matrix, representing the conjoint state of all vehicles and map points and

the covariance between them, is maintained using an EKF in the same way as proposed by

Fenwick (2001).

Continuing this pattern of extending pre-existing SLAM frameworks, Williams

et al. (2002) build upon the Constrained Local Sub-map Filter. In this framework, a global

map is built by fusing together a series of globally aligned local maps. Periodically local

maps are added to the global map and a new local sub-map is initialised with the sensor’s

current global pose. The main benefits of this approach are that local sub-map points can

be maintained in decorrelated fashion, meaning their local state estimation accuracy is

independent of the global map and their initialisation pose, and that data fusion can be

delayed until local sub-map accuracy is sufficiently high to support robust data association
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between points in the local map and points in the global map. Intuitively, this framework

is amenable to collaborative mapping with multiple agents. In their extended framework,

Williams et al. (2002) maintain a single global state, consisting of a map of feature points

and the position of each agent within the map. New independent sub-maps are spawned for

each vehicle in the system. As each agent maps within its own local sub-map it remains

uncorrelated with the other sub-maps and with the global map. Once an agent has built up a

map of its local environment it can be fused into the global model. If an agent’s initial pose

relative to the global map is unknown then it is resolved by finding a set of corresponding

map points between the agent’s local map and the global map. The transformation between

the agent’s local map and the global map can then be found through a non-linear least-

squares optimisation over the correspondences, with respect to the translation and rotation

of the coordinate frames.

Thrun and Liu (2005) go back to considering the collaborative SLAM problem

in information space, this time using a sparse Extended Information Filter (EIF), but

again noting that the additivity and locality of information updates makes it a natural and

convenient way of representing the collaborative mapping problem. Their approach permits

multiple agents with unknown initial relative poses to collaboratively build a single map of

the environment. Given two sub-maps the relative transformation between them is found

by matching features between them to get an initial estimate of the alignment. Features

for each landmark are calculated based on the relative angles and distances between

configurations of triples of points that fall within a radius of the landmark in question.

Triples are stored in a Sphere/Rectangle-tree for efficient matching later (Katayama and

Satoh, 1997). An initial alignment estimate is calculated by matching similar configurations

between maps and using geometric techniques to derive the rotation and translation

between the two coordinate frames. Using the candidate alignment the space of possible

correspondences between the two maps is searched for the optimal configuration. This

search is guided by trying to balance the reduction in the likelihood of the map due to

associating two landmarks, with the increase in likelihood due to the negative information

that would be gained by both robots seeing just one landmark if in actual fact there were
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two separate landmarks. During fusion, duplicate point measurements are easily collapsed

into one measurement by adding the corresponding information matrix and information

vector rows and columns.

Howard (2006) uses a Rao-Blackwellised particle filter as their starting point for

a collaborative SLAM system. A particle filter represents the potentially non-Gaussian

posterior distribution of the map and trajectory with a weighted set of sample maps

and trajectories, where the weight of a sample represents its likelihood conditioned on

its trajectory and the map. More specifically each particle represents a complete robot

trajectory, up to the current point in time, and a separate map conditioned on that particle’s

trajectory. At each time step all particles are updated independently using the latest action

updates and sensor measurements in a Bayesian update step. The general idea is that the

weights of particles that are inconsistent with respect to their measurements and the map

decrease over time. Particles with a low weight can be pruned and replaced by resampling

the particle sample set, following a resampling scheme, such as randomly initialising

particles in the vicinity of the most highly weighted particle.

The authors note how readily this framework can be extended to allow collaborative

SLAM. Namely, by expanding the posterior distribution being estimated to include trajec-

tories and sensor measurements of the additional agents. Like before, each particle consists

of a weight and a map but now also contains multiple trajectories, one for each agent. To

account for the unknown initial relative poses of agents the authors employ a rendezvous

strategy, whereby one agent starts mapping and subsequent agents are added to the particle

filter once they directly encounter the mapping agent and measure their pose relative to it.

Observations made by the newly inserted agent are divided into those made prior to being

inserted and those made subsequently. During the particle update step the first set are fed

into the update in a reversed time ordering, acting as a virtual agent travelling backwards

through the map, while the second set are fed into the update as normal. The updates to

the map, trajectories and weights for each particle are themselves carried out in essentially

the same manner as in the traditional single-agent particle filter. However, there are some

notable differences; a reverse action model is required for updating the estimated trajectory
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of the virtual reversed-time agent; the weight of each particle is now the product of the

weights of each agent, both virtual and real; and the map is updated from the observations

of all agents, again both virtual and real.

Howard et al. (2006) present a novel manifold map representation consisting of a

series of overlapping patches. Each patch has an extent and a planar coordinate system.

Objects on the manifold can be described by the patch they lie on and their pose relative to

the patch. Patches on the manifold overlap and represents points on the underlying planar

map with duplicity, however, the projections between the manifold patches and the planar

map, and thus the relationships between patches, is not known a priori. Using a scan

matching algorithm, a set of relations between corresponding points on two patches can be

found. The maximum likelihood set of patch-to-plane transformations that minimises the

projection error over point-to-point relations is computed using the Levenburg-Marquardt

non-linear least squares technique. The manifold representation naturally lends itself to

multiagent mapping, where initially each agent’s map consists of an unconnected island in

the manifold’s topology, reflecting the fact that the relative pose of each agent is initially

unknown. Islands are merged by identifying inter-island point correspondences. Howard

et al. (2006) follow a robot rendezvous strategy to generate these correspondences.

Each agent localises itself independently of the other agents. This is done by

initialising a new manifold patch around the agent’s current pose estimate (incorporating

odometry updates). A local map consisting of well localised nearby patches is predicted

from the manifold. Note here that the notion of ‘nearby’ is in the context of the planar

projection of the manifold patches. Relations between points in the new patch and points

from the local map are found by feature matching. As described above the new patch

is located with respect to local map according to the planar projection parameters that

minimise the point-to-point error over the relations. The agent’s pose with respect to the

manifold can be found by projecting the patch back into the manifold map and finding the

patch in the local map that is closest to the new patch and overlaps with it. The agent’s

pose with respect to this patch is the composition of the new patches pose and the inverse

of the pose of the selected manifold patch. The new patch is itself added to the manifold
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map if it covers a significant area of the manifold not already covered by the local map.

Loops are closed by identifying relations between unrelated patches. These rela-

tions are identified by mutual agent-to-agent observations. Identifying new relations in this

way causes topological changes to propagate throughout the manifold. The loop closure

mechanism alternates between identifying new relations and optimising the manifold by

refitting patch parameters. This process is iterated until no new relations are identified.

Islands are merged by identifying inter-island relations. Islands are formed by sets of

patches that are connected, either directly or indirectly, to one another through relations.

Thus the set of intersections of two islands is empty. Once inter-island relations have been

identified topological changes are propagated throughout the manifold and are optimised

in the same manner as loops are closed.

In the context of multi-robot SLAM, one of the main benefits of the manifold map

representation is that it can be used to allow robots to directly participate in confirming

inter-map loop closure candidates before they are used to correct the manifold’s topology.

Given that a robot-robot encounter has occurred, the two robots can agree to rendezvous

at a second location. If both robots arrive at the second location and there is another

direct encounter, then there is additional evidence that the inter-map loop closure is correct.

Conversely, if no direct encounter occurs, then the loop closure candidate can be discarded

as spurious.

Zhou and Roumeliotis (2006) use an EKF as the underlying state estimator in

a collaborative mapping system. Initially each agent maintains an independent state

vector and covariance matrix consisting of a pose and set of landmark feature points.

Like Howard et al. (2006), a rendezvous strategy is used for aligning agent specific local

coordinate frames into a single shared global coordinate frame. The relative transformation

between two agents measured during the rendezvous is used to transform one agent into

the coordinate frame of the other agent. Once in the same coordinate frame the local maps

of each agent can be merged. During map merging duplicate landmarks are identified by

considering the Mahalanobis distance (Mahalanobis, 1936) between pairs of landmarks. If

the distance is less than some threshold then the landmarks are considered the same and

64



2.6. Review of Collaborative SLAM Methods

averaged together to increase the accuracy of the resultant map. The duplicate landmark is

removed by deleting the corresponding row of the state vector and the row and column of

the covariance matrix.

Castle et al. (2008) extend the original PTAM map representation to multiple

sub-maps. Each sub-map is anchored to a place of interest such as a particular room. As

the target domain is AR with a wearable camera, the geometric relationship between each

of the sub-maps is not considered hugely important. A human can navigate between the

regions of interest themselves. Rather, when the camera becomes lost (perhaps because it

has ‘gone off the edge’ of the current map), an appearance-based relocaliser searches the

keyframes of each map for a matching view. This allows the camera to switch between

sub-maps if the person has moved from one interest region to another. PTAM’s split

between tracking and mapping naturally permits extension to multiple cameras. Each

camera corresponds to its own tracking frontend while a single mapping backend builds

and maintains the sub-map database. Though multiple cameras could potentially submit

keyframes for addition to the same sub-map, the mapping process can easily decide to

reject one in the case that both keyframes are too close together. In comparison to other

multi-camera SLAM systems, provided an existing map or set of maps exist, additional

cameras do not perform local mapping. Instead, they merely relocalise with respect to the

existing database of maps from which point they can start tracking and mapping.

Kim et al. (2010) extend the iSAM system of Kaess et al. (2008) to formulate

collaborative mapping as a pose graph optimisation problem. A pose graph consists of

nodes, which represent poses, and edges between nodes which represent spatial constraints

between nodes. The map can be recovered by optimising the spatial configuration of nodes

in the graph. Initially each agent’s trajectory is represented with what is essentially an

independent pose graph. Two new edge types are introduced into the graph to encode direct

encounters, which occur when two agents observe each other, and indirect encounters,

which occur when two agents observe the same scene. These inter-graph edges connect

nodes between two agents pose graphs. The spatial and encounter constraints encoded

in the graph edges are used to solve a non-linear optimisation in the agent poses using
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iSAM. To solve the problem of unknown initial relative poses an anchor node is prepended

to each pose graph. The anchor for a pose graph encodes its offset from some canonical

global coordinate frame. With the inclusion of anchor nodes, encounter constraints must

pass through each of the corresponding anchor nodes such that the encounter is specified

in the global coordinate frame.

The works discussed so far use either direct encounters (Howard, 2006; Howard

et al., 2006; Zhou and Roumeliotis, 2006), indirect encounters (Castle et al., 2008; Fenwick

et al., 2002; Thrun and Liu, 2005), or both direct and indirect encounters (Kim et al., 2010)

to estimate the unknown initial relative pose of each robot. Although direct encounters

may result in a very clear and unambiguous estimate of the relative pose of two robots,

relying solely on such encounters has a couple of drawbacks. First, direct encounters, as

the name suggests, rely on two robots meeting at the same point in time and mutually

recognising each other. In practice, guaranteeing that such a meeting occurs requires

solving a circular problem - both robots would need a map to agree on where to meet.

Thus, such an approach leaves a lot to chance. Second, robots need to be equipped with a

means of recognising each other. For example, Kim et al. (2010) fit each robot with an

easily detected checkerboard while Howard (2006) and Howard et al. (2006) fit each robot

with a tag that can be easily identified by a robot’s laser scanner.

Indirect encounters do not rely on individual robots being able to recognise each

other. Rather, robots attempt to match their observations with observations made by other

robots. All available observations, including historical ones, can be used for this task,

increasing the possibility for an encounter. One of the main drawbacks of this approach is

that observations can exhibit aliasing; if two observations, taken from distant regions of the

environment, appear identical when measured by a robot’s sensor then an incorrect match

is possible, which, in turn, can lead to a corrupted map. While not impossible, incorrect

matches are far less likely in direct encounter mechanisms that use markers specifically

designed for accurate detection. In the dense collaborative SLAM system developed in

Chapter 3 of this thesis we take an indirect approach. Each agent keeps a database of

distinctive keyframes. Individual agents can search the keyframe databases of other agents
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for a view that matches their current frame. If a match is found then an indirect encounter

has occurred and the relative pose of the agents involved can be estimated. Matching in

our system is based on both texture and structure, witch mitigates the risk of aliasing in

texture-less scenes or scenes with low structural variation.

Forster et al. (2013) introduce a centralised algorithm for collaborative SLAM

with multiple MAVs. Each MAV performs its own feature detection, visual odometry and

keyframe extraction. Keyframes and their initial pose, calculated via VO, are streamed

from each MAV to a central server running collaborative SfM. The central server integrates

each MAV’s keyframes into a local map and begins searching for inter-map loop closure

constraints. Scale drift in the per-MAV VO and scale drift in the centralised SfM module

occur at different rates. This scale divergence is tracked and accounted for during map

building. Once an inter-map loop closure has been detected, the two triggering sub-maps

are geometrically aligned with 7-DOF similarity transformed and merged into a single

map. Intra and inter-map loop closures are corrected with a scale drift aware pose graph

optimisation similar to Strasdat et al. (2010a). In a merged map, where keyframes from

more than one MAV are used to update the map, mutex locks around keyframes are used to

facilitate coherent multi-threaded updates to the map.

Riazuelo et al. (2014) devise a cloud-based collaborative SLAM system called

C2TAM. Built on PTAM, the system runs a local tracking frontend client on each edge

node and a global BA mapping backend on a server in the cloud. Frontend nodes send

tracked keyframes to the mapping server which responds, at a much lower frequency,

with an updated map. Initially, separate maps are maintained for each frontend node.

Visual place recognition across all maps in the database provides inter-map loop closure

candidates. If a loop is accepted, the two maps are aligned and fused into a single map.

Once a merge is complete, each frontend client receives a map delta update, consisting of

the keyframes and map points of the other map. In the case of tracking failures, Riazuelo

et al. (2014) distinguish between a robot that is lost due to a transient issue, such as an

occlusion, and a robot that is catastrophically lost. In the former case, the robot is likely to

still be in the same sub-map and, therefore, the relocalisation module can limit its search to
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this sub-map. In the latter case, the robot has been lost for some time or has just joined the

mapping session, therefore, it can be in any one of a number of maps. In this case, a two

stage relocalisation scheme allows the frontend client to relocalise against all maps in the

database. The first stage finds the most relevant keyframe across all maps in the database

and sends this keyframe, along with a set of neighbouring keyframes, to the client. The

second stage searches among the keyframe neighbourhood for a more accurate location in

case of camera movement during server-side relocation.

Some recent work on the problem of multi-session mapping is relevant to this

thesis. The multi-session system of McDonald et al. (2013) is representative of this

work, and we will discuss it here. Labbé and Michaud (2014) is similar, but includes a

memory management strategy to reduce the computational load and maintain real-time

performance. McDonald et al. (2013) present a system that is somewhat similar to that

of Kim et al. (2010) in that the underlying state estimator is a pose graph and that anchor

nodes are used to specify the relative constraints between mission specific pose graphs.

However, McDonald et al. (2013)’s pose graph representation extends that of Kim et al.

(2010) to 6-DOF mapping and tracking with a stereo camera. The system is split into a

frontend responsible for intra-session visual odometry and windowed bundle adjustment

optimisation. A separate backend is responsible for place recognition and pose graph

optimisation, performing the multi-session aspects of the system. Frame-to-frame visual

odometry is calculated in three phases. First a GPU-based implementation of the Kanade-

Lucas-Tomasi (KLT) tracker is employed to track a set of features into the current frame.

Next a RANSAC model fitting is used to compute an initial estimate of the camera’s pose.

This initial estimate is refined using Levenberg-Marquardt to minimise the reprojection

error. Sequences of consecutive frames are segmented into windows which are either

incrementally or batch-wise optimised with respect to the poses, map and features. Once a

window grows to a certain size it is passed to the backend where it is used to extend the

inter-session pose graph and a new frontend window is initialised around the current camera

pose. Both the frontend window optimisation and the backend pose graph optimisation are

performed using the iSAM system.
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Similar to the approach of Kim et al. (2010), each agent’s trajectory is represented

by a separate pose graph. Session specific pose graphs are related to each other via anchor

nodes within a common global coordinate frame. Inter and intra-session loop closures are

identified using a visual place recognition system. The loop itself is closed in the same

way as frame-to-frame camera tracking is performed. Intra-session loop closures induce

constraints between nodes within a single pose graph, whereas inter-session loop closures

induce constraints between nodes in separate pose graphs and so are connected through

their anchor nodes such that they are specified in the global coordinate frame.

ORBSLAM-Atlas proposes a multi-mapping extension to ORB-SLAM (Elvira

et al., 2019). The Atlas data structure contains multiple sub-maps where each sub-map

contains its own map data similar to the original ORBSLAM algorithm (Mur-Artal et al.,

2015). Intra-sub-map loop closures can be found by searching the currently active sub-

map’s place recognition database for loop closure. Inter-sub-map loop closures can be

found by searching for loop closure candidates within the place recognition database of

other non-active sub-maps. Once a inter-map loop closure has been identified the two

triggering maps are aligned together and overlapping map points are merged. A local BA

in the region of overlap helps to fuse the two maps together. This provides the basis for

multi-session mapping with ORBSLAM-Atlas allowing for ORB-SLAM to be initialised

with sub-maps relevant to the current mapping session. ORBSLAM-Atlas was included as

part of the ORBSLAM3 release (Campos et al., 2021).

Collaborative mapping has come back into focus in SLAM research in recent times.

Golodetz et al. (2018) propose a novel approach to dense collaborative mapping that uses

the InfiniTAM system of Prisacariu et al. (2017) to construct separate voxel-based maps

for each camera. The system uses a random forest relocaliser to find estimates of the

relative transforms between each of these camera specific maps. These relative transforms

act as constraints in a pose graph which, once optimised, yields a set of optimal global

poses, one for each of the sub-maps. Although these global poses align the sub-maps into

a common reference frame they are never merged directly, instead each camera maintains

its own sub-map throughout. This allows for the inter-map loop closure constraint between
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two sub-maps to be refined with subsequent observations (Golodetz et al., 2018).

Dubois et al. (2020) propose a decentralised multiagent dense mapping framework

based on peer-to-peer sharing of sub-maps. Each mapping agent builds a series of TSDF

sub-maps and a factor graph of odometric and inter-sub-map constraints. When two agents

are within communication range they synchronise map information with one another,

transferring any sub-map information they acquired since their last rendezvous. Initially,

agents keep the map information from each of the other agents they encounter in a separate

reference frame. Once sufficient overlap between the agent’s map and its copy of another

agent’s map has been detected, the maps are merged. It is important to note that, since this

algorithm is decentralised, each agent runs its own instance of the algorithm and builds its

own local copy of the full multiagent map.

As noted above, the system proposed by Golodetz et al. (2018), uses a pose graph

to encode the relative transformation between agent specific sub-maps while keeping the

sub-maps themselves separate. Although this representation may be beneficial when the

objective is to quickly map a large space, and it is the final model itself that is of interest,

it has one main drawback; it leads to replication of structures where multiple cameras

traverse the same regions of the environment, even after inter-map loop closures have

been corrected. For example, if multiple agents all map the same chair, then there are

multiple chairs in the final map. The fact that there is, in actuality, only a single chair can

only be discovered when all instances of the chair are dereferenced to a single frame of

reference. This level of indirection could potentially be cumbersome in scenarios where

robots are using the collaborative SLAM system to facilitate collaborative operation within

a shared workspace. Since the pose graph is subject to refinement, this dereferencing

operation may need to be repeated multiple times and would be much simplified if there

was only one map, shared by all robots. Additionally, in large-scale mapping, the additional

storage required by the system due to duplication in the map would be more pronounced.

In contrast, our system, and the system of Dubois et al. (2020), performs map merging,

allowing multiple cameras to fuse their measurements into a single shared reconstruction.

This allows cameras to directly exploit and update regions of the environment previously
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mapped by other cameras within the system, avoiding duplication of structures. One of the

limitations of this approach is that inter-map loop closures are ‘baked’ into the map once

sub-maps are merged.

The network architecture of a dense collaborative SLAM system has a significant

impact on its performance characteristics. Dubois et al. (2020) implement a fully decen-

tralised architecture where each agent runs its own instance of the full algorithm. Agents

then synchronise their map data with other agents that are within communication reach.

On the one hand, this approach is fault-tolerant, where failures of individual agents are

guarded against by redundantly replicating the full map across all agents. On the other

hand, synchronising map data across all agents requires sharing a significant amount of

information. Each agent must then process all the map data it receives. Doing this across

multiple agents requires a significant amount of compute resources, albeit in a distributed

manner. Our algorithm, described in Chapter 3, and that of Golodetz et al. (2018), opt

instead for a centralised approach. Golodetz et al. (2018) follow a client-server architecture.

Clients are responsible for producing accurate local poses (poses in the frame of reference

of the clients sub-map), then sending frame-pose pairs to a central mapping server. The

central mapping server is responsible for fusing the posed frames into dense sub-maps

for each agent as well as building the pose graph that connects all the sub-maps together.

Splitting responsibilities between clients and the server in this way frees server resources

so that they can be focused on building a global scene representation. The main drawback

of this approach is that there is no mechanism for reflecting local intra-map loop closures

(i.e. loop closures within a sub-map) in the global map being built by the central server.

This essentially limits clients to running some form of accurate visual, or visual-inertial,

odometry pipeline for real-time operation. If a client, running a full SLAM pipeline, were

to undergo a loop closure correction, then its poses would become misaligned from its

corresponding server-side dense sub-map. However, without closing loops agents have no

way of reducing drift or understanding the true topology of the world, i.e. each sub-map

will be homotopic to a long corridor (Cadena et al., 2016), no matter how accurate the

odometry pipeline being used is.
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In our system, we take a fully centralised approach. Clients send raw and un-posed

frame data to a single central SLAM server that performs all mapping and tracking opera-

tions. The system does not require complex peer-to-peer synchronisation and processing

of map data across mapping agents, as is the case in Dubois et al. (2020). Additionally, in

contrast to Golodetz et al. (2018), our system performs intra-map loop closures on local,

agent-specific sub-maps, prior to inter-map loop closures, and on global maps shared by

multiple agents, once inter-map loop closures have been solved.

2.7 Summary

The goal of this thesis is to close the gap between the state-of-the-art in dense visual

SLAM and what is required for outdoor, multiagent dense mapping. In order to put

this goal into context, in this chapter we reviewed key developments in three SLAM

paradigms: sparse visual SLAM, dense visual SLAM and collaborative SLAM. For each

paradigm, a description of the central problems presented by the paradigm was provided

and then followed by a review of key developments from the relevant literature. First,

in Sections 2.1 and 2.2, we reviewed sparse VSLAM. Sparse VSLAM systems tend

to perform probabilistically principled joint estimation of scene geometry and camera

motion. Although both feature-based and direct approaches to sparse VSLAM have been

explored, feature-based approaches in particular offer accurate camera tracking even during

challenging outdoor conditions and fast camera motion.

One of the main limitations of sparse systems is the sparsity of the scene represen-

tations they produce. In Sections 2.3 and 2.4 we reviewed dense VSLAM. While visually

impressive, early dense VSLAM systems have a number of limitations; they either don’t

perform loop closures (Newcombe et al., 2011a,b; Pollefeys et al., 2008), don’t propagate

loop closures to dense geometry if they do perform them (Newcombe and Davison, 2010;

Stühmer et al., 2010, to the extent that the underlying PTAM system closes loops), or

don’t actually produce a dense map in real time (Henry et al., 2012). Later, dense VSLAM

systems were developed that did close loops, correct dense surface geometry and produce

dense maps in real time (e.g., Dai et al., 2017; Schöps et al., 2019; Whelan et al., 2014a,
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2015). These systems are not suitable for outdoors applications where scene lighting may

be adverse, camera motion fast, and potentially non-standard fisheye cameras are being

used, for example automotive applications. This is in large part due to their reliance on

active depth sensors, use of direct camera tracking techniques (in the case of Schöps et al.,

2019; Whelan et al., 2014a, 2015), and their assumption that the camera can be modelled

using the pinhole camera model. In Chapter 5 we present a dense visual SLAM system

that can operate in challenging outdoor conditions by combining the robust feature-based

camera tracking of ORBSLAM-3 (Campos et al., 2021) with the dense SLAM provided by

ElasticFusion (Whelan et al., 2015) in a hybrid SLAM architecture. Reliance on an active

RGBD sensor is eliminated by using a convolutional neural network to predict a depth

map for every image. In Chapter 6, we build on this system so that it can support fisheye

camera geometries.

A further limitation of the dense VSLAM systems discussed in Sections 2.3 and 2.4

is that they are inherently single-sensor systems. They do not allow for multiple inde-

pendently moving sensors to collaboratively reconstruct a unified representation of the

environment being explored. In Sections 2.5 and 2.6 we introduced the problem of mul-

tiagent collaborative SLAM and discussed developments in the area, starting with early

developments on sparse collaborative SLAM and finish on more recent developments on

dense collaborative SLAM. In Chapter 3 we present a novel dense collaborative SLAM

system that is the first contribution of this thesis.
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Collaborative Dense SLAM

In this chapter we present the first contribution of this thesis: a system for multi-camera

collaborative dense SLAM. The system extends ElasticFusion (Whelan et al., 2015), a

state-of-the-art surfel-based dense-alternation VSLAM system. The chapter starts with

an in-depth description of ElasticFusion in Section 3.1. Following this, in Section 3.2,

we describe how we extended ElasticFusion to support collaborative SLAM. Finally, in

Section 3.3, we provide both quantitative and qualitative analyses of our approach to

collaborative mapping using the synthetic ICL-NUIM dataset (Handa et al., 2014) and the

real-world Freiburg dataset (Sturm et al., 2012). In our analyses we measure the impact

of multi-camera mapping on surface reconstruction accuracy, camera pose estimation

accuracy and overall processing time. We also include qualitative results in the form

of sample reconstructions of room-sized environments with up to 3 cameras undergoing

intersecting and loopy trajectories.

Our system builds on ElasticFusion to allow a number of cameras starting with

unknown initial relative positions to maintain local maps utilising the original algorithm.

Carrying out visual place recognition across these local maps the system can identify when

two maps overlap in space, providing an inter-map constraint from which the system can

derive the relative poses of the two maps. Using these resulting pose constraints, our

system performs map merging, allowing multiple cameras to fuse their measurements into

a single shared reconstruction. The advantage of this approach is that it avoids replication

of structures subsequent to loop closures, where multiple cameras traverse the same regions

74



3.1. Dense SLAM With ElasticFusion

of the environment. Furthermore, it allows cameras to directly exploit and update regions

of the environment previously mapped by other cameras within the system.

The work in this chapter was published in

• L. Gallagher and J. McDonald. Collaborative Dense SLAM. In Proceedings of the

2018 IPRCS, Irish Machine Vision and Image Processing Conference, 2018

3.1 Dense SLAM With ElasticFusion

This section will describe the EF dense mapping algorithm (Whelan et al., 2015, 2016).

The aim of this section is to equip the reader with an understanding of the core EF algorithm

necessary for full appreciation of the dense collaborative mapping algorithm that will be

presented in the remainder of the chapter. However, we recommend the reader refer to the

original sources listed above for a more comprehensive treatment.

3.1.1 RGB-D Sensors

A key component of EF is the sensor it uses to make measurements of its surroundings.

These measurements are the inputs from which the system incrementally builds a model

of the scene. Many types of input sensor have been used in SLAM research from passive

sensors, such as monocular colour cameras (e.g., Davison et al., 2007), to active sensors,

such as sonar (e.g., Leonard and Durrant-Whyte, 1991). The type of sensor used by EF is of

the later type. More specifically it uses an active depth sensing colour camera (or RGB-D

sensor for short) which consists of an integrated colour camera and infrared radiation (IR)

projector and sensor pair, offset from one another by a short baseline B . Depth values for

each pixel are estimated using the principle of structured light whereby a known pattern

is projected onto the scene using the IR projector and then imaged with the IR sensor.

Disparities (i.e. horizontal motions) between the image of the projected pattern and a

reference image of the pattern at a known depth are calculated. Using these disparities the
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Figure 3.1: An example of an RGB-D frame captured by the ASUS Xtion Pro Live. On
the right we see a colour image of the scene. On the left we see a depth map visualised as
a greyscale image. Lighter grey levels represent greater distances. Black indicates that no
depth was measured for that pixel location.

depth, Z ∈R, of a pixel can be retrieved using the following relationship

d = f
B

Z
(3.1)

where B is the baseline separating the projector and sensor, f is the focal length of the

sensor, and d is the disparity. See Szeliski (2010, § 12.2 & §11) for more details of active

range finding techniques. Both of the sensors shown in Figure 1.5 are examples of RGB-D

sensors that can be used with EF. An example of an RGB-D frame is depicted in Figure 3.1.

The input to EF is a series of RGB-D frames Ft , t ∈ [0, ...,m). Each frame Ft is

a tuple of the form 〈It ,Dt 〉 for colour image It and depth map Dt . A colour image I is

a mapping from image domain φ⊂N2 to colour channels {r, g ,b} ∈N3 where r , g and b

represent the red, green and blue spectral responses of a given pixel location. A depth

map D is a mapping from the image domain to depth values d ∈R. The value of the depth

map at each pixel location corresponds to the perpendicular distance from the X Y plane

of the camera coordinate frame to the 3D point that maps to that pixel under perspective

projection (see below).
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3.1.2 Camera Geometry

The camera’s estimated trajectory is represented within a global frame of reference centred

at the origin of a 3-dimensional Cartesian coordinate system. The camera’s trajectory

consists of sequence of camera matrices, Pt , representing the camera’s internal and external

orientation within the global reference frame at each point in time t . Each camera matrix

Pt is a 3×4 homogeneous matrix of the form

Pt = K[Rt |tt ] (3.2)

the matrix K ∈R3×3 is the camera’s calibration matrix, and it describes the internal orienta-

tion of the camera, meaning it describes the orientation of the image plane with respect

to the camera’s coordinate frame. The matrix Rt ∈ SO(3) and the vector tt ∈R3 describe

a rotation and a translation, respectively, representing the camera’s external orientation

at time t , that is, the orientation of the camera’s coordinate frame with respect to the

world coordinate frame. ElasticFusion assumes a pinhole camera model and therefore the

structure of the calibration matrix K is as follows

K =


f mx 0 cxmx

0 f my cy my

0 0 1

 (3.3)

where f is the focal length of the camera, my and mx are the number of pixels per unit

length in the x and y directions respectively. The point (cxmx ,cy my ) is the principal point

of the image plane and is the origin of the camera’s sensor array with respect to the image

plane. It is given in units of pixels.

In EF, it is assumed that all frames are captured by a single pre-calibrated moving

camera, thus during the tracking phase of the pipeline only the external orientation, also

known as the pose, of the camera, is estimated. Therefore, K can be factored out of the
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Figure 3.2: Perspective projection of a point xc , specified with respect to the camera’s
coordinate frame, onto the image plane defined by the camera calibration matrix K, re-
sulting in the image point xi . Note that the origin of the image plane coordinate system
is here assumed to be coincident with the principal point of the camera coordinate frame,
i.e. (cx ,cy )T = (0,0)T , which is not the case in general but is convenient for visualisation
purposes. The reader should direct their attention to Hartley and Zisserman (2003, Ch. 6)
for more details of camera calibration where it is discussed at great length.

definition of Pt , leaving the following simplified form

Pt =

 Rt tt

0 0 0 1

 (3.4)

where Rt ∈ SO (3) and tt ∈ R3 are a rotation and a translation as before. The set of

orientation preserving orthogonal matrices {R ∈ R3×3|RT R = RRT = I3×3,det (R) = +1}

form what is called the special orthogonal group, or SO(3) for short, and together they

describe the space of possible 3D rotations. Taking SO(3) together with the set of possible

3D translations forms the special Euclidean group SE(3), the space of all possible rigid

body motions where SE(3) = {
(

R t
0 1

)|R ∈ SO(3),t ∈R3}. SE(3) is a Lie group and as such it is

also a differentiable manifold. An important characteristic of Lie groups is that they can be

locally linearised at a point P ∈ SE(3) to produce a Lie algebra ζ̂ ∈ se(3), which corresponds

to the tangent space of the manifold at P. The exponential map exp : se(3) → SE(3) maps

elements of the Lie algebra onto corresponding elements of the Lie group. Ultimately, a

Lie algebra gives a first order linear approximation to the manifold of the Lie group at a

given point, which, as we discuss further in Section 3.1.3, offers a means of incrementally

estimating the transformation undergone by a camera between two frames by composing
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Figure 3.3: Looking at the Y Z plane of Figure 3.2 we can see that the y component, ycam ,
of xi can be found since f

Zc
= ycam

Yc
=⇒ ycam = f Yc

Zc
. A similar argument can be applied to

find xcam , the x component of xi .

a series of infinitesimal linearised transforms, using exp to map them back into SE(3).

A more detailed discussion of the algebraic structure of SE(3) and its utilisation in 3D

reconstruction can be found in Ma et al. (2003).

During the imaging process a 3D point is mapped from the 3D world onto the 2D

image plane of the camera. EF models this imaging as a perspective projection through

an idealised pinhole camera. Given a point x̃w = [x, y, z,1]T , represented in homogeneous

world coordinates, its 2D image x̃i , also represented in homogeneous coordinates, on

a camera plane, represented by Pt , defined as in Equation (3.4), can be found by first

transforming x̃w into the camera’s coordinate frame, yielding xc , and then finding the point

of intersection between the image plane and the ray that starts at xc and passes through the

camera’s centre of projection. The point of intersection can be found by way of similar

triangles as shown in Figure 3.3. This computation can be performed directly using the

matrix expression

x̃i = K[R|t]x̃w (3.5)

to get the final 2D image point in inhomogeneous coordinates we define the dehomogin-

isation operation π which rescales the image space coordinate vector such that the final

coordinate is equal to 1 and then drops it

π(x̃i ) = (xcam/zcam , ycam/zcam)T = xi (3.6)
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where xcam , ycam and zcam are the x, y and z components respectively of x̃i . This

process is visualised in Figure 3.2 along with the layout of the camera’s coordinate frame.

Conversely, using a metric depth map Dt , the 3D back-projection of a 2D image point xi

in a camera frame with pose Pt can be found by first inverting the perspective projection

of the point onto the image plane and then transforming it from the camera’s coordinate

frame into the global coordinate frame. Again, this calculation can be succinctly expressed

in matrix algebra

xc = (K−1[xi |1]T )D(xi ) (3.7)

xc , now in camera centred coordinates, can be transformed to homogeneous world coordi-

nates

x̃w = P−1 [xc |1]T (3.8)

3.1.3 Main Processing Loop

Over time successive frames are fused into a single model, or map. This map is represented

as an unordered list of surface elements (surfels), M. Each surfel is an estimate of a discrete

patch centred around a point that lies on the continuous surface underlying the scene. A

surfel is characterised by its position p ∈R3, normal n ∈R3, radius r ∈R, weighting w ∈R,

colour c ∈ N3, initialisation time t0 and the time it was last observed t . The attributes

of position, normal, radius and colour describes a surfel’s physical location, orientation,

scale and colour. The weight of a surfel is intended to signify the level of confidence in

its estimation. M is split along temporal lines into two non-intersecting sub-lists Θ and

Φ. Θ contains surfels that are considered active, meaning they have been observed by the

camera within a fixed period of time prior to the current timestep. Similarly, Φ contains

those surfels that have not been observed within this same period of time. Visualisations

of a surfel and of a surfel map are presented in Figure 3.4

Frames are processed sequentially, in the order that they are captured and one at a

time. Initially, the camera’s centre of projection is assumed to be at the origin of the global

coordinate frame with its principal axis (i.e. Z -axis) coincident with the Z -axis of the

global coordinate frame. The main processing pipeline is as follows.
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p

r

nS

Figure 3.4: A visualisation of a single surfel lying on a hypothetical surface S in an
idealised situation. The main plane of the surfel is tangent to S at the point p, that is,
p lies on S and n is normal to S at p. The radius of the surfel r determines the extent
of the region in which the surfel is said to represent the local geometry of S. The value
of r is set to minimise visible holes and is determined by the resolution of the sensor.
During fusion, the radius, and the surfels other geometric and photometric properties, are
refined by moving the sensor closer to S or by viewing the point p from a less acute angle.
However, conversely, measurements viewing the surface point from further away or from a
more acute viewing angle, are not used to update the surfels geometric and photometric
properties as they would coarsen the model. The surfels time t and confidence weighting
w are updated in either case.

Tracking

Camera tracking is the first stage of the pipeline, the aim of which is to compute an initial

estimate of the pose, P̂t ∈ SE(3), assumed by the camera at that frame. Note that it is only

an initial estimate since the estimated pose of the camera is subject to change in subsequent

stages of the pipeline. To track the camera EF employs a frame-to-model alignment scheme.

A predicted view of the model, consisting of a depth map and a colour image, is rendered

from Θ, the active region of the map, using Pt−1, the pose of the camera at the previous

timestep, to define the image plane. The predicted frame is aligned to the current live frame

by finding an estimate of T ∈ SE(3), the rigid body transformation between them. The

alignment itself is expressed as an energy minimisation over the following joint geometric
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and photometric error between the two frames

E j oi nt (ζ) = Eg eom (ζ)+wr g bEphoto (ζ) (3.9)

Eg eom (ζ) =
∑
k

((
vk −exp

(
ζ̂
)

Tvk
t

)
·nk

)2
(3.10)

Ephoto (ζ) =
∑
k

(
g

(
uk, I l

t

)
− g

(
π

(
Kexp

(
ζ̂
)

Tp
(
uk ,Dl

t

))
, I p

t−1

))2
(3.11)

T ∈ SE(3) is the current estimate of the transformation from the previous camera pose to the

current one, ζ= (ω,x)T ∈ se(3) is a 6-vector in the tangent space of SE(3) at T, consisting

of rotational component ω and translational component x. In matrix form ζ is given by

ζ̂=

[ω]× x

0 0

 (3.12)

where [ω]× is the skew symmetric form of ω and 0 is a column 3-vector of zeros. The

function exp(ζ̂) is the matrix exponential that maps members of the Lie algebra se(3)

to members of the Lie group SE(3). The weighting wr g b is used to control the relative

importance of the photometric term in the optimisation. The vectors vk and nk are the k th

model predicted vertex and normal respectively, vk
t is the k th vertex from the current frame.

The model normal is used here since it is deemed to be of a higher quality (Newcombe,

2012). The function p performs the 3D back-projection of image point uk ∈ φ using a

depth map D. The function g computes the grey level of image I at pixel site uk from the

pixels r , g and b components.

E j oi nt is iteratively minimised with respect to ζ using the Gauss-Newton non-linear

least squares method. At the start of each iteration correspondences are found using the

projective data association technique of Blais and Levine (1995). The basic assumption

behind projective data association is that the frames are initially roughly aligned meaning

that vertices in the source frame can be easily associated with vertices in the destination

frame by projecting them into the destination image plane, using the current estimate

of T to transform them into the destination coordinate frame. Within each iteration an

incremental update that descends the error surface defined by the cost function is found
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Figure 3.5: ElasticFusion’s processing pipeline (Whelan et al., 2016).

by computing the tangent space of SE(3) at the point T, which is the vector space of

directional derivatives of SE(3) at T. The tangent space offers a linear Euclidean space

over which small, incremental updates to T can be computed and the overall cost function

minimised. Setting the gradient of the linearised cost function with respect to ζ to zero

leads to the normal equations

JT Jζ=−JT r (3.13)

for Jacobian J and residual vector r, which can be solved for ζ using Cholesky decompos-

tion to exploit the sparsity of the final Jacobians.

The minimisation is embedded in a three level Gaussian pyramid, constructed from

the input depth map and colour image. This ensures that in cases of large inter-frame

displacement the minimisation will still converge. Corresponding images at each level in

the pyramid are aligned. Each level uses the alignment computed in the previous level

to initialise its own alignment, starting at the coarsest level in the pyramid and working

towards the original full resolution image, performing a number of minimisation iterations

at each pyramid level. To initialise the first level the two images are assumed to be

coincident and so the initial transformation between them is set to the 4×4 identity matrix

(i.e. no translation or rotation).

The result of this minimisation is a transformation T ∈ SE(3) that when applied to

Pt−1 yields an up to date estimate of the global pose of the camera for this time step.
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Global Loop Closures

Over time, as the camera moves through the scene and it is tracked, the estimation of its

pose tends to drift from its true pose in the world. This drift is a consequence of many

factors interacting, such as the limitations of the numerical computation techniques used

to track the camera and the noisy nature of sensor measurements, that ultimately leads

to an accumulation of error in the estimation of the cameras pose and of the map. This

error becomes most apparent when the camera loops back around on its own trajectory.

Even though the camera has come back to the same place in the world, due to drift the

system estimates the camera to be in a different location which leads to a duplicated

representation in the map of what is, in reality, the same surface. This is not an issue

specific to ElasticFusion. Indeed, many SLAM systems (if not all that have been published

to date) exhibit this problem. The attempt to first identify when a camera has looped

back on its own trajectory in this way and then reduce the accumulated error by rectifying

the map and camera poses is what is meant by the term global loop closure. There are

three main phases of operation in closing loops. Firstly, a mechanism for recognising

when the camera is revisiting a previously mapped location is required. This can be,

for example, a visual place recognition system that stores visually distinctive keyframes

and then periodically attempts to match incoming frames with keyframes in the store. A

mechanism of this kind is what is used by EF, as we will discuss below. Once a loop

has been identified a way of globally repositioning the camera based on the loop closure

candidate is needed. Finally, the geometric constraints imposed by the loop closure must be

propagated throughout the map and the full trajectory of camera poses in order to correct

them.

In EF global loop closures are identified with a fern-based visual place recognition

system as proposed by Glocker et al. (2015). In brief, a fern encoding is a way of

encoding an RGB-D image into a binary code which allows for frames to be efficiently

compared with one another, where the similarity of frames is measured in terms of the

hamming distance between their respective fern encodings. To encode frames, each fern

of a conservatory of ferns is assigned a fixed location uniformly sampled from the image
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domain. A fern consists of 4 nodes, one for each image channel, and each node in turn

carries a randomly sampled binary threshold parameter. The conservatory of ferns is

embedded into incoming frames and the thresholded response at each node of each fern is

computed resulting in a series of binary codes, one for each fern. These binary codes are

used to index into a look-up table that maps from fern code blocks to the ids of frames that

have the same fern code. This table along with the corresponding frame poses constitutes

what is referred to as a fern-encoding database. One can think of this process as being akin

to feature extraction and matching, where the fern codes correspond to features and the

table look-up corresponds to feature matching. By counting the number of co-occurring

blocks one can compute the block-wise hamming distance between frames, or between

a frame and a set of frames, and can thus get a measure of the similarity between them.

Incoming frames that are sufficiently dissimilar to all previously encoded frames (i.e. the

hamming distance is large) are harvested and kept in the database as keyframes. Similarly,

where the hamming distance between an incoming frame and a frame in the fern database

is low a potential loop closure has been found.

After the global pose of the camera has been tracked in the current time step, it

is used to render an updated predicted view of the active model. The new active model

predictions are then used to search the fern database for a matching view. If one is found

then the two views are registered together in the same way that the camera pose is updated,

bringing the current active model prediction into alignment with the matched fern. The

final transformation from this registration is used to generate a set of surface-to-surface

constraints. These constraints in turn are used to optimise the nodes in a space deforming

graph, which is similar to the one put forward by Sumner et al. (2007) but connects nodes

temporally and includes two additional cost functions, one to pin the inactive model in

place and the other to ensure previous deformations are not ‘undone’ by subsequent ones.

Once optimised, the graph can be applied directly to the surface. To do this for each

surfel the set of graph nodes nearest to it in time are found, from which the closest nodes

to it in space are taken. This set of nodes forms what is called the influence region for

that surfel. The final pose of a surfel is given by the weighted application of the affine

85



3.1. Dense SLAM With ElasticFusion

transformations held in each of the nodes in the surfel’s influence region. The weight

of a given node is a function of its distance from the surfel, with nodes that are further

away having less influence. A deformation is accepted if two conditions are met: (i) the

alignment between the current model active prediction and the matched fern is successful;

(ii) the deformation requires a significant realignment of the maps geometry and that

realignment is consistent with the map’s geometry as defined by the cost function for the

deformation graph optimisation. If the deformation is accepted then the pose of the camera

is updated as per the registration with the fern view.

Local Loop Closures

Local loop closures between Θ and Φ are sought, assuming that a global loop closure has

not occurred at the current time step. The result of a local loop closure is the alignment of

the active and inactive portions of M and the reactivation of inactive surfels. Applying

local loop closures regularly helps to maintain local surface consistency during locally

loopy trajectories. Local loops are closed by performing a surface registration between

the portion of Θ in view of Pt to the portion of Φ in the same view. Similar to global

loop closures this registration yields a set of surface-to-surface constraints that are used

to optimise the nodes of a deformation graph. The deformation graph is optimised in the

same way as in global loop closures except the cost function that ensures the integrity of

past deformations is not included in the optimisation. Once the deformation graph has

been applied the inactive and active portions of the map are brought into alignment and

as before the pose of the camera is updated in accordance with its registration with the

inactive view.

Fusion

Fusion of the current frame can proceed once the camera has been tracked and all loop

closures have been resolved. Surfels in Θ are projected onto the image plane of the camera

using Pt and K and are stored in an index map. Vertices in the current frame can then be

associated with surfels in the current active model by searching the index map for valid
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surfels in the neighbourhood of the respective vertex image coordinates. Validity here is

determined by the angle between the normal of the surfel and the normal of the camera

vertex, along with the distance of the surfel from the ray defined by the vertex. The normals,

vertices, colours and radius of associated points are merged with a simple weighted average

of the model surfel and the newly measured surfel. The weight of the surfel is updated in

accordance with the normalised radial distance of the measured surfel from the camera

centre, under the assumption that measurements increase in accuracy the closer they are

to the camera centre and the assumption that any inaccuracy in measurements follows a

Gaussian distribution. If there is no corresponding surfel for a vertex then a new unstable

surfel is initialised and inserted into the model. Surfels become stable after their confidence

counter has reached a certain threshold through repeated measurement, from which point

they can be used for camera tracking.

3.2 Collaborative ElasticFusion

In this section we present the principle contribution of this chapter whereby we extend

the original single-camera ElasticFusion dense mapping system to allow for multi-camera

collaborative mapping. In extending ElasticFusion to permit collaborative mapping we

identify two distinct phases of processing for any given input stream. In the initial phase,

the system assumes that each camera is positioned at the origin of a frame of reference

that is independent to that of other cameras, essentially processing via an independent EF

mapping pipeline. As mapping progresses the aim is for inter-camera loop closures to

occur, thereby providing the necessary transformations between each camera’s sub-map.

These transformations permit alignment of sub-maps into a common frame of reference

which makes it possible to fuse the measurements from each camera into a single global

map. Figure 3.6 shows a visualisation of a collaborative mapping session consisting of two

cameras mapping a small desk environment with our system.
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(a) (b)

(c)

Figure 3.6: A two camera collaborative mapping session in our system. All cameras started
in general position with no a priori knowledge of the relative poses between them. Two
cameras (a) and (b) compute local maps using EF. (c) A fern based visual inter-map loop
closure allows the local maps of (a) and (b) to be merged.

3.2.1 Centralised Collaborative SLAM Architecture

We implement our collaborative dense SLAM system using a centralised client-server

architecture. During a collaborative mapping session, a set of n camera client nodes

{Ci }, i ∈ [1..n] explore a shared space. As they explore, they send raw RGBD frames to a

central server that runs the full collaborative SLAM process. Communication between

clients and the server is handled by a flexible data interface subsystem built on top of

Lightweight Communications and Marshalling (LCM; Huang et al., 2010). The purpose

of the data interface is to provide a layer of abstraction between the specific number and

type of physical cameras and the SLAM system. Two types of clients are supported by our

data interface: (i ) Untethered clients consisting of an RGBD camera attached to a mobile

computer, e.g., a laptop; and (i i ) log files containing previously captured exploration
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Figure 3.7: Centralised collaborative SLAM architecture. (i ) A hypothetical collabora-
tive mapping session involving two live camera clients, C1 and C2, and two pre-recorded
exploration sequences, is used to illustrate our centralised architecture. As C1 and C2

explore, they send frames to a central server using LCM’s publish/subscribe semantics.
(i i ) Frame F i

1 , i.e. the i th frame from camera client C1, is encoded using the specification
outlined in Figure 3.8 and published on a known channel. (i i i ) The server-side LCM
listener node, which subscribes to that channel, intercepts F i

1 . (i v) The value of F i
1‘s

‘senderName’ field is used to place F i
1 in the frame queue corresponding to camera C1. (v)

Each frame queue is encapsulated by a separate LiveLCMLogReader object, which is used
by the SLAM system to access the frames from each camera. (vi ) Two log files, contain-
ing previously captured sequences are loaded up from server storage and encapsulated in
RawLCMLogReader objects. (vi i ) MultiCameraManager collates all RawLCMLogReader
and LiveLCMLogReader object instances into a single vector, polymorphically converting
the data type of each object to the LogReader parent class type. MultiCameraManager
then exposes this vector of LogReader objects to the SLAM system, thereby decoupling
the SLAM system from the specific type and number of cameras.

sequences. Untethered clients and the central mapping server are assumed to be connected

to the same local area network. Any combination of untethered clients and log files can

be used together to map a space. For example, a session could consist of an untethered

client and a log file, or two untethered clients, and so on. The data interface consists of

three components:
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(i) Message type specification: We use LCM’s type specification language to define a

common format for all messages passed between untethered clients and the server, and for

encoding data from exploration sequences into log files. We define a ‘Frame’ message type,

laid out according to the specification given in Figure 3.8. This specification is known and

agreed upon ahead of time by both the clients and the server. Based on this specification,

LCM automatically generates language specific bindings that include efficient methods for

encoding Frame objects into a binary format suitable for transmission over the network

and, subsequently, for decoding binary messages back into Frame objects.

(ii) Message passing: Frame messages are passed between untethered clients and the

server using LCM’s publish/subscribe semantics (Huang et al., 2010). During mapping,

clients package frame data into Frame objects and publish them on a known channel (e.g.,

‘DenseSLAM’). Internally, LCM publishes a message by first encoding the Frame object

and then broadcasting it over the local area network via UDP multicast. Meanwhile, the

SLAM server runs a listener end-point on a separate thread that subscribes to the same

channel. When the server intercepts messages on the channel it attempts to decode them

back into Frame objects. To handle the fact that multiple cameras will be connected during

a collaborative mapping session, the server listener node stores a hash table, mapping

each camera to a queue of Frame objects. Each queue stores the frames received from the

corresponding camera. Each client is assigned a different name, which it uses to fill out

the ‘senderName’ field of the Frame objects it sends. The server-side listener then uses the

value of the ‘senderName’ field to query the hash table and retrieve the correct queue to

store the frame.

In addition to publishing messages on the network, clients can also compile Frame

messages into a log file using LCM’s log file functionality (Huang et al., 2010). Log files

can then be used in two ways. Firstly, the log file can be played back over the network

to simulate a live, untethered camera. Secondly, the log file can be stored directly on the

server and used as a data-stream (see below).

(ii) Data-stream abstraction: Our data-stream abstraction layer extends ElasticFusion’s
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existing mechanism for encapsulating data sources1. In short, ElasticFusion uses an

abstract interface called LogReader to avoid having a dependency on a specific type of data

source, e.g., a log file or a live camera connected to the computer via USB. The LogReader

class exposes two key members; (i ) member buffers containing the current RGB and depth

frame in the image sequence, and; (i i ) a getNext member method that loads the next frame

in the sequence into those buffers. The concrete implementation of getNext is left to child

classes that derive the abstract LogReader interface. ElasticFusion depends only on the

LogReader abstraction and not on any specific concrete implementation of LogReader.

We provide two concrete implementations of LogReader; RawLCMLogReader,

for LCM log files, and LiveLCMLogReader, for Live cameras connecting to the server

via the message passing mechanism outlined above. When working together, the server

listener node and the LiveLCMLogReader establish a producer-consumer relationship.

The listener node, running on its own thread, acts as a producer by placing incoming Frame

messages onto queues. The first message received by a client is used to instantiate a new

LiveLCMLogReader that contains a reference to its corresponding Frame queue. The

SLAM system then consumes the frames in these queues through the getNext method of

each LiveLCMLogReader instance.

The multiple, and potentially varied, clients used during a collaborative mapping

session are handled by a MultiCameraManager class. This class is responsible for instanti-

ating concrete LogReaders based on the data sources being used in the current mapping

session. MultiCameraManager exposes a vector of LogReaders that the SLAM system

iterates through, calling the getNext method of each LogReader to retreive the next frame in

the stream for processing. This effectively decouples the SLAM system from the specific

type and number of data sources. An illustration of how the architecture achieves its

decoupling effect is given in Figure 3.7.

This architecture is extremely modular and can be easily extended to support many types

of client - provided the camera intrinsics are known, and the camera client can package its

frame data into Frame objects. In theory, any number of camera nodes can come online

1https://github.com/mp3guy/ElasticFusion
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1 package eflcm;
2

3 struct Frame
4 {
5 boolean trackOnly; // if true, then this frame is for camera

tracking purposes only and is not fused.
6 boolean compressed; // is the frame data compressed or not.
7 boolean last; // is this the last frame in the input stream.
8

9 int32_t depthSize; // the size in bytes of the depth data for the
frame

10 int32_t imageSize; // the size in bytes of the image data for the
frame

11

12 byte depth[depthSize]; // the depth data for the frame
13 byte image[imageSize]; // the image data for the frame
14

15 int64_t timestamp; // the wall time of the frame
16

17 int32_t frameNumber; // monotonic timestamp for this frame, i.e its
position in the current input stream

18

19 string senderName; // the LCM channel name of the sender.
Distinguishes frames coming from different cameras.

20 }

Figure 3.8: LCM Packet structure for encapsulating frame data. Each data field is accom-
panied by a brief explanatory comment (green text opposite the data field).

and join the collaborative mapping session by publishing their frames on the shared LCM

channel.

3.2.2 Multi-Camera Mapping

Given that there are multiple cameras, each incoming frame is of the form F t
i where the

superscript t indicates the frame’s timestamp and the subscript i denotes that this frame is

from camera Ci . We note that the cameras need not be synchronised in time.

If we assume momentarily that all cameras are globally aligned then multi-camera

fusion proceeds in essentially the same way as in the original EF algorithm. At each

time-step t the frames from each camera for that time-step are processed in sequence by

EF. That is, each frame is processed in full by EF before the next camera’s frame for that

time-step is processed. Note that the ordering of the cameras here is arbitrary.

An important difference between our system and EF is that each camera has its

own active and inactive map regions, {Θi } and {Φi }. This allows a camera to close local
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loops in situations where it transitions to regions of the map that are in the active regions

of other cameras, but that are inactive with respect to itself. To achieve this, the previously

scalar last seen time attribute of a surfel takes the new form of an vector t = {t0, ..., tn}

where ti contains the time that the surfel was last seen by camera Ci , for i ∈ [0..n]. When a

measurement from frame F t
i is fused into surfel Ms then the last seen time of that surfel

is updated as Ms
ti
= t . Each camera uses its own active and inactive regions for mapping

and tracking. For global loop closure detection, all cameras in a given reference frame (see

below) collectively maintain a single Fern database which they use to independently check

for and close global loops.

Returning now to the initial phase of processing where cameras are operating

independently and the transformations of each camera relative to a shared coordinate frame

are unknown. Periodically, loop closures between camera specific sub-maps are sought. In

Section 3.2.3 we outline our strategy for determining inter-map loop closures. Once a loop

between two sub-maps has been identified and the transformation between them computed

the two sub-maps can be merged into a single map from which point multi-camera fusion

can proceed as described above. We capture this situation with a reference frame, which

is a tuple of the form R j = {M j , {Ci }}, for surfel map M j and set of cameras {Ci } which

incrementally update and track against M j through multi-camera fusion. Additionally,

each R j maintains its own fern database for inter and intra-map loop closures to which all

cameras {Ci } under R j contribute.

Each camera connects to the central mapping server by sending its first frame over

the shared channel. A hash map is used to track the relationship between cameras and

their reference frames. Upon connection to the server, a camera is assigned a unique key

value. Initially, this key value points to a newly initialised reference frame for that camera.

As inter-map loop closures are corrected, the hash map is updated to reflect the fact that

multiple cameras may share each reference frame.
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Figure 3.9: Geometry of a fern based inter-map loop closure. Camera C j
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its current view of M j to a fern in Rk’s fern database. The surfaces in each frame are
geometrically consistent and so a loop is closed between R j and Rk . The loop closure
itself results in Ck

i , the pose of Ci in Rk , the reference frame of map Mk . However, by
composing transformations as follows we can transform the pose of Ci and the surfels of
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3.2.3 Fern-based Inter-Map Loop Closures

Our approach to inter-map loop closures is an extension of EF’s existing intra-map global

loop closure mechanism described in Section 3.1. For each current active frame prediction

Fa
i , we search the fern databases of all the other reference frames for a matching view.

If one is found then we compute the transformation between the reference frame of the

corresponding camera, Ci , and the reference frame of the matched fern using the camera

odometry from Section 3.1. For example, if we find a loop closure between reference

frames R j and Rk by matching frame Fa
i , captured by camera C j

i in reference frame R j ,

to a fern in the fern encoding database of Rk then the result of aligning the fern and the

frame is a transformation T
Ck

i

Ck
f

∈ SE(3) that aligns the matched fern and Fa
i . For clarity, we
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have added the superscripts to the camera to denote the frame of reference of the camera.

T
Ck

i

Ck
f

gives an initial estimate of the transformation that aligns R j with Rk as follows

T
Ck

i
Rk

= T
Ck

f

Rk
T
Ck

i

Ck
f

(3.14)

T̂Rk
R j

= T
Ck

i
Rk

(
T
C j

i
R j

)−1

(3.15)

T
Ck

i
Rk

in Equation (3.14) represents the pose of camera Ci in reference frame Rk . When

composed with
(

T
C j

i
R j

)−1

in Equation (3.15) we get the transformation from R j to Rk .

To further refine the transformation and verify that it is valid, we first predict a full

resolution frame, kFa
i using map Mk and Ck

i , which is the camera Ci in frame of reference

Rk . That is, we predict the view that Ci has of map Mk . Taking this predicted frame we

align it to the original frame Fa
i , again using the camera odometry described in Section 3.1.

The result of this is a refined estimate, Tk
j , of the transformation from R j to Rk . Before

accepting the loop closure as a valid one we inspect the final error and inlier count of

the camera tracking cost function. For the loop closure to be accepted the error must be

low while the number of inliers must be high. Inliers here refer to depth measurements

in Fa
i which have been associated with a corresponding depth value in kFa

i . As per the

original EF algorithm the final state of the cost function covariance matrix is also checked

to ensure that the cost function was sufficiently constrained along each of the 6 axes of

camera motion. If all these conditions are met then the inter-map loop closure is accepted

and the maps are merged.

To merge the two maps we apply Tk
j to the positions and normals of all the surfels

Ms ∈M j , and all the camera poses TCi
R j

in frame of reference R j as follows

Ms
kp

= Tk
j M

s
jp

Ms
kn

= Rk
j M

s
jn

T
Ck

i
Rk

= Tk
j T

C j
i

R j

(3.16)

where Rk
j ∈ SO(3) is formed from the upper left 3× 3 sub-matrix of Tk

j . Vector Ms
jp
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3.2. Collaborative ElasticFusion

represents the original position of surfel Ms in reference frame R j , while vector Ms
kp

represents the surfel’s position once it has been merged into reference frame Rk , post

inter-map loop closure. Similarly, vectors Ms
jn

and Ms
kn

represent the surfel’s normal

vector before and after merging respectively. Note that we have not explicitly shown

conversions to and from homogeneous representations for brevity’s sake. This process

is visualised in Figure 3.9. The algorithm is listed in Algorithm 1. The full system’s

architecture is visualised in Figure 3.10.
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3.2. Collaborative ElasticFusion

Algorithm 1 Dense collaborative mapping.
Input: a set of n cameras c = {Ci }

Output: a set of m maps {M j } where m ≤ n

1: HashMap C_to_R←;
2: for Ci ∈ c do //initialise a new map for each camera.

3: C_to_R[Ci ] ← new ReferenceFrame()

4: end for

5: loop //main collaborative SLAM loop

6: for 〈Ci ,R j 〉 ∈ C_to_R do

7: track_and_map(Ci , R j ) //track camera and update map

8: end for

9: for Ci ∈ c do //search for inter-map loop closures

10: Map M j ← C_to_R[Ci ].map()

11: Mat4×4 C j
i ← Ci .cur r entPose()

12: Frame Fa
i ← predictView(C j

i , M j )

13: for Rk ∈ C_to_R do

14: if Ci ∉Rk then

15: Mat4×4 T̂ k
k ← findFern(Fa

i , Rk) //compute initial alignment

16: Frame kFa
i ← predictView(T̂ k

j , Rk)

17: T k
j ←rgbdOdometry(kFa

i , Fa
i , T̂ k

j ) //refine initial alignment

18: if rgbdOdometry was successful then

19: M j ←merge(R j , Rk , T j
k ) //merge reference frames

20: C_to_R[Ci ] ←R j

21: end if

22: end if

23: end for

24: end for

25: end loop
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3.3. Experimental Results

3.3 Experimental Results

In benchmarking our system we aim to do two things: (i) quantitatively measure the impact

of multiple sensors on mapping and tracking performance in terms of both accuracy and

processing time; (ii) qualitatively demonstrate the capability of our system. To achieve

this we use two standard SLAM benchmark datasets, the ICL-NUIM dataset of Handa

et al. (2014) and the RGB-D dataset of Sturm et al. (2012). All experiments were run on a

machine equipped with an NVidia GeForce GTX 1080 Ti GPU, 11GB of GDDR5 VRAM,

a 4 core Intel i7-7700K CPU running at 4.20GHz and 16GB of DDR4 system memory.

We performed a quantitative analysis of the performance of the system using the

living room scene from the ICL-NUIM datasetf (Handa et al., 2014). There are four

trajectories through this scene accompanied by both ground truth camera poses for each

trajectory and a synthetic ground truth surface model. In our experiments, we used three of

the four living room trajectories, kt0, kt1 and kt2. We note that we have not included kt3

in our results due to the fact that kt3 exposes a failure mode of the system. kt3 is one of

the more challenging sequences in the ICL-NUIM dataset, as is reflected in the results of

both Dai et al. (2017) and Whelan et al. (2016). We found that including kt3 in any of the

combinations in our experiments resulted in significantly reduced reconstruction quality.

With the remaining trajectories we looked at the surface reconstruction accuracy and

camera trajectory estimation accuracy of the system. To measure the surface reconstruction

accuracy we processed an exhaustive set of combinations of the living room trajectories.

For each combination we then computed the average per-vertex error in metres using the

reference ground truth model. Table 3.1 reports the results of these mapping sessions.

To measure the estimated trajectory accuracy we computed the average trajectory error

root mean square error (ATE RMSE) in metres between each of the estimated trajectories

in each of the combinations and the corresponding reference ground truth trajectories.

Table 3.2 reports the results of these experiments. Additionally, we have provided pose

estimation accuracy results using the TUM-RGB-D datatset (Sturm et al., 2012). We

used the ‘fr3/office’ sequence, as it is a long and challenging sequence. See Figure 6.7

99



3.3. Experimental Results

Sequences Surface Reconstruction Accuracy
kt0 0.007m
kt1 0.008m
kt2 0.009m
kt3 0.058m

kt0 & kt1 0.007m
kt0 & kt2 0.009m
kt1 & kt2 0.01m

kt0 & kt1 & kt2 0.009m

Table 3.1: Dense collaborative SLAM surface reconstruction accuracy on ICL-NUIM
dataset. Each row represents the results of an independent mapping session. The first
column in each row gives the specific combination of living room trajectories used in that
session. The second column gives the per collaboration surface reconstruction accuracy in
metres. The reader will note that in the one camera sessions our results are not exactly as
reported in Whelan et al. (2016). This is for a number of reasons; (i) the system is sensitive
to the specific GPU of the machine it is deployed on; (ii) as fern encoding is a random
process loop closures will not always occur at exactly the same point. In addition, while
we have made an effort to tune EF’s parameters appropriately we have intentionally tried to
avoid overfitting, albeit at the cost of decreased performance in certain sequences. Indeed,
the approach of parameter tuning becomes impractical as the number of parameters that
must be tuned grows in proportion with the number of collaborators in a session.

and its caption for details of how we generated collaborative mapping sessions with this

dataset. The models shown in Figure 3.12 demonstrate the quality of the maps produced

by our system. For a visualisation of a dense collaborative mapping session please see the

accompanying video (https://youtu.be/GUtHrKEM85M).

These quantitative and qualitative results demonstrate that our system is capable of

dense mapping and tracking with up to 3 cameras with accuracy that is on par with the

original single-sensor ElasticFusion algorithm. Surface reconstruction accuracy (Table 3.1)

shows no significant variation between one, two and three camera sessions. While trajectory

estimation accuracy shows some minor variation between one, two and three camera

sessions on the synthetic ICL-NUIM dataset, this variation is not reflected by the real-

world TUM-RGBD sequence, where no significant variation in accuracy has occurred

(Table 3.2).

Next, we again used the ‘fr3/office’ sequence, this time to measure the processing

time of the different components of the system during a 2 camera and then a 3 camera

collaborative session. The results of this experiment are shown in Figure 3.11. From
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3.3. Experimental Results

Sequences Individual Trajectory ATE RMSE
ICL-NUIM

kt0 0.0143m
kt1 0.0127m
kt2 0.0191m
kt3 0.2219m

kt0 & kt1 0.0147m | 0.5950m
kt0 & kt2 0.1112m | 0.0191m
kt1 & kt2 0.0124m | 0.7212m

kt0 & kt1 & kt2 0.0340m|0.5954m|0.0043m

TUM-RGB-D
o f f i ce0 0.018m

o f f i ce0 & o f f i ce1 0.019m | 0.015m

o f f i ce0 & o f f i ce1 & o f f i ce2 0.014m | 0.015m | 0.014m

Table 3.2: Dense collaborative SLAM trajectory estimation accuracy on ICL-NUIM
and TUM-RGB-D datasets. Similar to Table 3.1, each row represents the results of an
independent mapping session. The first column in each row gives the specific combination
of trajectories used in that session. The second column gives the per collaboration absolute
trajectory error (ATE).

these timings we can see that for 2 and 3 camera sessions the system maintains efficient

performance, operating just outside hard real-time rates of 30hz (i.e. ∼ 33ms per frame)

for the TUM-RGBD dataset (Sturm et al., 2012). However, we can also see that adding

more cameras to the SLAM session leads to a corresponding decrease in frame-rate. This

highlights what is not only a bottleneck in our system, but an open area of research in

collaborative dense SLAM in general: in addition to scaling in proportion to the size of the

space being mapped, and the resolution of the sensor being used, a multi-camera system

must also scale in proportion to number of cameras that are mapping.
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Figure 3.11: System timings for (a) a 2 camera and (b) a 3 camera collaborative
mapping session with the ‘fr3/office’ sequence. The original sequence contained 2487
frames. For graph (a) we split these frames into two subsequences of equal length, similarly,
for graph (b) we split them into three subsequences of equal length. The subsequences
were then processed collaboratively. For example, in (a) Camera 1 corresponds to the first
half of the frames from the original sequence while Camera 2 corresponds to the second
half of the frames. The spike at frame 942 in graph (a) is caused by an inter-map loop
closure between the two cameras. Similarly, the two spikes in graph (b) at frames 449 and
826 are both caused by inter-map loop closures.

102



3.3. Experimental Results

(a)

(b)

(c)

Figure 3.12: Examples of maps produced by the system. The left column shows the final
models produced by the system. The right column shows the contributions of each camera
to the final model. (a) and (b) correspond to the ICL-NUIM kt0 & K t2 and kt0 & kt1 &
kt2 sessions respectively. (c) corresponds to the 2 camera session using the TUM-RGBD
dataset.
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3.4 Summary

This chapter has described our system for collaborative dense SLAM that allows multiple

independently moving RGB-D cameras to collaboratively build a shared map of space

and simultaneously track against that shared map. Each camera is initialised in its own

reference frame where it begins building its own local map and keyframe database. Inter-

map loop closure candidates are found by matching a camera’s current view of its local

map to keyframes in the databases of the other cameras. Once a loop closure candidate has

been identified, the two triggering submaps are aligned and merged together. In contrast to

related multi-camera systems, our system is centralised and allows all cameras to perform

full SLAM operation directly on the same model - once inter-map loop closures have been

corrected.

The system described in this chapter is fundamentally limited to operating with

slow hand-held camera motion and in indoors environments. These limitations are inherited

from ElasticFusion, a single-sensor dense visual SLAM system, that acted as the foundation

upon which we built our collaborative SLAM system. In Chapters 5 and 6 we describe

systems that also build on ElasticFusion, but with the aim of permitting dense visual SLAM

in automotive scenarios, and with pinhole and fisheye monocular cameras.

One of the main bottlenecks of the system, as indicated by our experiments, is

the number of cameras in the collaborative mapping session. Going from a two camera

session to a three camera session results in a drop in the frame-rate of the system from

approximately 25ms/frame to approximately 12.5ms/frame (see Figure 3.11). Motivated

by the observation that ElasticFusion treats every frame with equal importance, and

therefore processes every frame in full, in Chapter 4 we consider the original single sensor

ElasticFusion algorithm and present a novel information theoretic approach to keyframing

with the goal of improving the system’s computational efficiency. Our approach is to

implement a mechanism that selects only those keyframes that carry novel information for

updating and extending the map. Conversely, this allows the system to discard frames with

redundant information, thereby avoiding unnecessary computation.
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CHAPTER 4

Information Theoretic Keyframe

Selection

Chapter 3 described our approach to collaborative dense SLAM, which built on Elastic-

Fusion, a single sensor dense SLAM system (Whelan et al., 2015). Our experimental

results (Section 3.3) indicated that the number of collaborating sensors participating in

the mapping session represents a bottleneck of the system. In the context of centralised

collaborative dense SLAM, where the central mapping server has finite computational

resources, standard techniques for increasing a system’s throughput such as parallelisation,

while potentially helpful (e.g., by allowing the tracking of each camera to proceed in

parallel), would not address a more fundamental bottleneck in the ElasticFusion algorithm

itself; that as the number of surfels in the map increases, so too does the system’s per-frame

processing time.

In this chapter, we focus on this bottleneck within the ElasticFusion architecture.

Specifically, we introduce a novel information theoretic approach to keyframing, that

allows for selectively switching between performing full SLAM and a tracking only mode

within ElasticFusion, based on how accurately the dense map models live camera data.

Keyframing has proved to be an effective method for curbing growth of computational

complexity in both sparse and dense SLAM, however previous dense keyframing methods

do not make full use of the dense map when selecting keyframes. Using our approach

to keyframing, ElasticFusion can track how well the map models live camera imagery
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4.1. Background

by measuring the normalised information distance (NID) between live frame data and a

map prediction based on rendering map data into a virtual camera placed at the current

pose estimate. We then adapt ElasticFusion such that when a region of the environment is

well modelled by the current map, the system does not fuse live camera data into the map,

avoiding computationally costly and unnecessary map updates. However, when the map’s

prediction accuracy deteriorates, either due to the camera exploring unseen regions of the

scene or due to structural changes in the scene, the map is updated with live frame data,

ensuring it remains up-to-date and accurate. Our approach exposes a tunable parameter

that allows a user to balance the trade-off between the completeness of the map and the

computational cost of maintaining a more dense map in a principled manner.

In Section 4.5, we provide both quantitative and qualitative analyses of our approach

to keyframing again using the ICL-NUIM and Freiburg datasets. In these experiments, we

focus on keyframing in the context single-session dense SLAM with ElasticFusion as it

is conceptually simpler, but we note that the conclusions also apply in the context multi-

camera collaborative mapping with the system described in Chapter 3. In collaborative

SLAM, the effects of this bottleneck are amplified by the shared map, which, often times,

will be more extensive than if each robot were to build its own individual map.

The work in this chapter was published in

• L. Gallagher and J. McDonald. Efficient Surfel Fusion Using Normalised Informa-

tion Distance. In Computer Vision and Pattern Recognition (CVPR) workshop on

3D Scene Understanding for Vision, Graphics, and Robotics, 2019

4.1 Background

Dense reconstruction algorithms take advantage of multiple overlapping surface measure-

ments to estimate a denoised surface model. BundleFusion (Dai et al., 2017), ElasticFu-

sion (Whelan et al., 2016), Kintinuous (Whelan et al., 2014a) and KinectFusion (New-

combe et al., 2011a) are all exemplars of this class of algorithms. Common to each of

these algorithms is a focus on maximising the accuracy of both the reconstructed models
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4.1. Background

and estimated 6-DOF motion of the camera without considering the relationship between

the cost of processing and its impact on model quality. In this section we propose a general

information theoretic approach to modelling this relationship and demonstrate its potential

in significantly reducing the processing requirements of dense surfel fusion with limited

impact on accuracy.

Although such considerations are not typically required in the context of a high-end

GPU processing the output from a single camera, they become critical when applying these

algorithms in both collaborative settings and in compute limited scenarios. For example,

the work in Section 3.2.3 on the development of collaborative dense SLAM showed that

increasing the number of sensors in the fusion process rapidly leads to a degradation

in system performance, which drops from real-time processing rates of more than 25hz

for 1 and 2 camera sessions to interactive rates of just 12hz for 3 camera sessions (see

Figure 3.11). In compute limited scenarios common in much of robotics and augmented

reality, additional costs such as battery usage and heat dissipation highlight the need for

more efficient approaches.

Since the seminal KinectFusion algorithm was introduced there has been a pro-

fusion of methods proposed that use scalable data structures, such as hierarchical trees

and hash tables, for efficiently storing the underlying TSDF volume (Niessner et al., 2013;

Vespa et al., 2018). Geometric simplification methods that reduce the number of parameters

used to represent the map, such as incremental meshing have also been proposed (Whelan

et al., 2014b). These methods, however, must maintain complexity around surface discon-

tinuities and regions of high frequency detail and require intermediate map representations

from which they infer simpler models.

Methods that leverage efficient algorithms for camera tracking and fusion, compact

map representations and geometric simplifications for optimising the whole SLAM pipeline

have also been proposed (Kahler et al., 2015; Whelan et al., 2014a).

In comparison, relatively little attention has been paid to increasing the efficiency

of surfel-based SLAM methods. In model-predictive frameworks, like ElasticFusion, as

map size and complexity increase so too does the cost of updating the map with the current
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4.2. Normalised Information Distance

frame. In the presence of sensor noise and drift in camera tracking simply fusing every

frame can lead to spurious surfels and regions of the surface being over-represented by

the map. Though the above approaches could potentially be helpful in improving the

efficiency of surfel fusion it is the purpose of the work in this chapter to explore a mode of

keyframing that is based on quantifying the novelty of the information in incoming frames.

The method we propose more optimally balances the accuracy of dense surfel models

against the computational cost of dense surfel fusion. To demonstrate the effectiveness

of the method we place it in the pipeline of the ElasticFusion dense mapping system

(Whelan et al., 2015) and report empirical evidence that this leads to good precision

and scalability characteristics in comparison to the original algorithm. We report results

of the technique’s scalability and the accuracy of the resultant maps by applying it to

both the ICL-NUIM (Handa et al., 2014) and TUM RGB-D (Sturm et al., 2012) datasets.

These results demonstrate the capabilities of the approach in performing accurate surface

reconstructions whilst utilising a fraction of the frames when compared to the original

algorithm.

4.2 Normalised Information Distance

In this section we recount concepts from the field of information theory that are relevant to

the discussion.The information content of the outcome of a random event x is given by

h (x) = log2
1

P (x)
(4.1)

h (x) is a measure of how surprising the outcome was. Here information is given in units

of bits, however, it can alternatively be given in other units, such as nats if natural log

is used instead of l og2. The entropy of a random variable X is the average information

content of an outcome

H (X ) =
∑

x∈AX

P (x) log2
1

P (x)
(4.2)
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4.2. Normalised Information Distance

the joint entropy of two random variables X and Y is defined as

H (X ,Y ) =
∑
x,y

P
(
x, y

)
log2P

(
x, y

)
(4.3)

The joint entropy of X and Y is less than or equal to the sum of X and Y ’s individual

entropies

H (X ,Y ) ≤ H (X )+H (Y ) (4.4)

with equality iff X and Y are independent. Using these quantities we can specify the

mutual information between two random variables X and Y

I [X ;Y ] = H (X )+H (Y )−H (X ,Y ) (4.5)

There are many ways of describing the nature of mutual information in a way that appeals

to our intuitions. For instance, mutual information is a measure of the average reduction in

uncertainty about x that results from learning y (Bishop, 2007). It can also be seen as a

measure of the degree to which two random variables are independent of one another.

Perhaps, from the point of view of optimal model estimation, a more insightful way

of thinking about mutual information is in terms of the Kullback-Leibler divergence of two

probability distributions. Namely, if we have P (X |θ), a probability distribution conditioned

on some parameter set θ (i.e the state estimated by the SLAM system), and P (X ,Y |θ) the

joint distribution of two random variables X and Y (which one can roughly think of as live

and model predicted camera frames respectively) then the mutual information between X

and Y is given by the divergence between their joint distribution and the product of their

marginals, where P (X ,Y ) = P (X )P (Y ) =⇒ X ⊥ Y (Bishop, 2007)

I [X ;Y ] = K L (P (X |θ,Y ) ||P (X |θ)P (Y )) (4.6)

The Normalised Information Distance (NID) between two random variables X and Y is

defined as follows

N I D (X ,Y ) = H (X ,Y )− I [X ;Y ]

H (X ,Y )
(4.7)
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4.2. Normalised Information Distance

NID is a measure of the relative similarity of two random variables. In this work we

propose using the NID between a live camera frame and a model predicted camera frame

as a basis for deciding whether the current frame should be fused into the reconstruction.

Normalised information distance (NID) is a true metric over information space in

the sense that it satisfies the four conditions of a metric (non-negativity, identity, symmetry

and triangle inequality, Vinh et al., 2010). Information theoretic quantities such as mutual

information (MI) and variation of information (VI) have been used to solve problems

in computer vision involving heterogeneous sensor modalities, such as aligning medical

imagery (Studholme et al., 1999). The benefit of such measures is that they are functions

of the joint probabilities of the two signals rather than of the signals themselves. Both

quantities, however, are problematic from a state estimation perspective. MI is not a true

metric as it does not satisfy the triangle inequality condition. VI, on the other hand, is

a true metric, but it exhibits an unfortunate ambiguity; if one were to decrease the joint

entropy between two random variables and correspondingly decrease the cardinality of

one of them one could maintain the same VI between the two random variables. The NID

solves both these problems; it is a true metric, and it is not ambiguous.

NID has been used in the context of SLAM before. Stewart and Newman (2012)

use NID to localise a moving camera against an a priori known 3D map. The geometry in

view of the camera is predicted. The pose of the camera is then estimated by minimising

the NID between the live camera frame and the camera frame predicted from the prior

model (Stewart and Newman, 2012). In the same line of work, Pascoe et al. (2017) propose

to use NID directly for camera odometry in a monocular SLAM system. NID provides a

level of robustness to lighting, weather and structural changes in the scene not possible

with standard ICP-based tracking algorithms. After long periods of neglect variations in

the scene can make it impossible to update keyframes directly. The authors again use NID.

This time the keyframe update is computed such that it minimises the NID between the

reference frame and the current frame (Pascoe et al., 2017).

Our approach is inspired by two lines of research that use information theoretic mea-

sures extensively; Active Vision (Chli and Davison, 2008; Davison, 2005) and Normalised
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4.3. Reducing Redundancy in Dense SLAM

Information Distance-based SLAM. In active vision the mutual information between image

features is used to efficiently guide the search for correspondences. As features are matched

the uncertainty in the location of other correlated features collapses, thus reducing the

remaining search space.

Active Vision attempts to turn the problem of feature matching on its head. Tradi-

tional solutions to this problem follow a ‘bottom up’ process of extracting features from

image intensities, then attempting to match descriptors across images. In contrast, the

active vision approach is ‘top down’. The process starts with matching and not with

feature extraction, using the correlations between expected feature locations in the image

to determine what features to search for next (Davison, 2005). What these works give us is

a precedent for making decisions on what computations to perform based on information

theoretic principles such as mutual information.

In Normalised Information Distance-based SLAM the normalised information

distance between a model predicted reference image and a live camera image is used to

construct an optimisable objective function for camera tracking and measurement fusion,

that is robust to drastic changes in scene illumination (Pascoe et al., 2015, 2017; Stewart and

Newman, 2012).What these works give us are the computational mechanics for calculating

the normalised information distance between two frames in a direct and dense setting.

4.3 Reducing Redundancy in Dense SLAM

In model-predictive camera tracking, once the current pose of the camera, Pt ∈ SE(3), has

been estimated it is used to render a synthetic view of the map, Fp
t . For each frame, we

compute the N I D between the appearance distribution of Fp
t and that of the live frame,

F l
t ,

N I D
(
Fp

t ,F l
t

)
= H

(
Fp

t ,F l
t

)− I
[
Fp

t ;F l
t

]
H

(
Fp

t ,F l
t

) (4.8)

where, H (X ,Y ) and I [X ;Y ] are the joint entropy and mutual information, respectively, of

two random variables X and Y . When the NID is high this implies that the live camera

frame is not well explained by the current model estimate, and hence the system should
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4.3. Reducing Redundancy in Dense SLAM

fuse that frame.

For each frame we compute two NID scores, one for the RGB component of the

frame, N I Dr g b , and one for the depth component, N I Dd . The final NID is the weighted

sum

N I D
(
F l

t ,Fp
t

)
= (1−λd ) N I Dr g b

(
I l

t ,Ip
t

)
+λd N I Dd

(
Dl

t ,Dp
t

)
(4.9)

where, λd ∈ [0..1] denotes the relative weighting between the RGB and depth components

of the NID, I denotes the intensity image derived from the colour channels of the frame,

and D denotes the depth component.

It is, in general, quite difficult to achieve a low NID score in either photometric

or depth space for a number of reasons. Firstly, we are comparing live intensities to

those produced via splatted rendering, which is only a rough approximation of the image

formation process. Live camera images include other effects such as white balancing,

barrel distortion and rolling shutter. Even if all these effects could be modelled by the

SLAM system, the integration of light onto the camera sensor plane during an exposure

is an inherently random process. The depth measurements are also corrupted by noise

introduced by the finite resolution of the camera, its motion and the influence of interfering

natural light.

Recall Equation (2.11), the equation for surface fusion. In our system the fusion

process is governed by the following equation

Mt+1 =


WMl

t +Mt if N I D
(
F l

t ,Fp
t

)> τ
Mt otherwise

(4.10)

the map at time t +1, Mt+1, is the fusion of the map at time t , Mt , and the map estimate

contained within the current live frame F l
t , Ml

t , if the normalised information distance

exceeds a threshold τ ∈ [0..1], otherwise the frame is skipped and the map is simply

carried over. To emphasise this point; we fuse only those frames that are sufficiently

dissimilar to our current model predictions. Figure 4.2 shows how the parameter τ effects

the completeness of the final model.
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To compute both NID scores we follow the approach outlined in Stewart and

Newman (2012), except we drop the cubic spline weighting as we do not require a

differentiable histogram. We compute a joint appearance intensity histogram and a joint

2.5D depth histogram. Each of the bins in the histograms corresponds to a range of values

in F l
t co-ocurring with a range of values in Fp

t . The histogram P is computed in a SIMD

fashion on the GPU using CUDA atomic instructions then the marginal entropies and,

ultimately, the NID is derived on the CPU by marginalising over the histogram’s rows and

columns.

4.4 Accounting for Time

The map in our system is divided into two subsets; θt , containing all active surfels that

have been fused within a window of time δt , and φt containing all the inactive surfels.

Surfels in θt are used for tracking and fusion. As the camera loops back around into old

regions of the map local loops are closed between θt and φt and the surfels in φt that are

viewed from the triggering frame are reactivated.

To accommodate long sequences of frames without fusion it is important that we

adjust δt in our system so that θt grows and shrinks, and local loop closures are triggered in

much the same way as in the original EF algorithm. This is achieved by letting δt = δt +δn

where δn is the number of frames since the last frame that was fused. Additionally, if

a loop closure (local or global) is triggered then we proceed with fusion for that frame

irrespective of the NID.

We take the current active frame, used for camera tracking and current inactive

frame, used for closing local loops, as our reference frame for NID calculation. The depth

maps for both frames are used to determine which values are visible from the current

viewpoint. Doing so allows us to avoid a costly re-rendering of a single joint active/inactive

frame, thereby making NID calculation a constant-time cost.
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4.5. Experiments

4.5 Experiments

In this section we provide experimental results of the application of the system to a

number of datasets. Though the presented keyframing method is equally applicable in

both collaborative and single-camera mapping, here we focus on the latter. The addition

of multiple cameras adds significant complexity in the form of additional input streams,

inter-map loop closures and multi-camera map updates. While analysing the behaviour of

NID keyframing with these additional factors intact presents a valid experimental question,

their presence does not help us quantify the behaviour of NID keyframing and its effect on

the core mapping and tracking algorithm.

Figure 4.2 provides a qualitative example of how the NID threshold τ effects model

completeness. The figure shows how setting τ to progressively higher values leads to

increasingly sparser reconstructions. However, it is important to note that this sparsity is

induced in a principled manner, by only discarding redundant frames, and can be easily

tuned, using τ, to trade-off map density for computational efficiency on a per application

basis. Figure 4.1 shows different points during the reconstruction of the Freiburg 3 office

sequence (Sturm et al., 2012). Here, the effectiveness of NID keyframing in striking

a balance between reducing the number of redundant frames fused and maintaining an

accurate and complete reconstruction can be seen on a real-world sequence.

To provide a quantitative evaluation of the system’s performance we use the ICL-

NUIM synthetic living room dataset (Handa et al., 2014) where we measure the impact of

varying both the NID threshold τ and the relative weighting factor, λd . Specifically, for

each setting of τ and λd we processed each of the four living room sequences from the

dataset and recorded a number of metrics, including: the average N I D score for the session,

the number of frames fused during the session, the final number of surfels in the map, the

ATE (as per Section 3.3), and the surface reconstruction accuracy (as per Section 3.3).

The results are displayed in Figures 4.3 and 4.4. These results allow direct comparison

to the original EF algorithm and show that our system can maintain comparable accuracy

whilst using significantly fewer frames and producing significantly fewer surfels in the
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final model. We can see that for τ ∈ [0.7,0.9] there is a significant reduction in the number

of frames being fused and the number surfels in the final map across all sequences. At

the same time, there is no significant change in system accuracy for K t0, K t1 and K t2.

While there is some decrease in accuracy for K t3, for some values of λd , e.g., λd = 0.5,

the decrease in accuracy is not significant.

From the plots in Figures 4.3 and 4.4, we can see that weighting the N I D score

towards either N I Dr g b (i.e. λd = 0 and λd = 0.25) or N I Dd (i.e. λd = 1 and λd = 0.75)

leads to worse tracking and surface reconstruction accuracy than taking the average (i.e.

λd = 0.5). Determining why this is the case will require further investigation, however, one

possible explanation for this effect is the potentially different rates at which the photometric

and geometric properties of surfels in the map converge to accurate values. In fact, from

the plots, we can see that by weighting the N I D towards N I Dd leads, in general, towards

fewer frames being fused and fewer surfels in the final maps than weighting towards

N I Dr g b does. Note also how higher values of λd result in lower average N I D scores.

Together, these two trends indicate that, on average, geometric predictions are rendered

more faithfully by ElasticFusion, using less input frames, than photometric predictions.

In general, whether a specific surfel is accurately reconstructed is a function of the

scene’s geometry, lighting, texture, the specific trajectory taken by the sensor, as well as its

resolution and noise characteristics. For example, a relatively textureless but geometrically

variable surface might require only a few frames, taken from oblique viewing angles, in

order for photometrically accurate renderings of the surface to be made, but many frames,

taken from a variety of view points, in order to accurately capture the surface’s geometry.

In this example, setting λd to a low value (e.g., 0.25), could lead to many frames being

discarded that carry a large amount of novel information about the scene’s geometry, but

relatively little novel information about the scene’s colour, resulting in poor geometry

estimates. Therefore, taking the average of N I Dd and N I Dr g b would balance the need for

a reconstruction that is both geometrically and photometrically accurate more optimally

than simply focusing on either geometric or photometric properties of the scene. And this

is indeed what we see in the surface reconstruction accuracy and ATE plots in Figures 4.3
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and 4.4.

Finally, to measure the scalability of our approach we used the Dyson lab sequence

(Whelan et al., 2016) which consists of over 6500 frames captured during a scan of an

office environment. The sequence contains a mix of segments where the camera explores

new regions and where the camera closes local loops and re-visits already scanned regions

of the office. These results are shown in Figure 4.5. Note that in this plot the NID fusion

time includes the time for computing the NID. Furthermore, whilst the EF fusion time

increases steadily over the log, the rate of increase for the fusion component of the NID

fusion approach is negligible. This is both due to the NID based frame selection, and the

consequent reduction in surfels. It can be seen that the rates of growth are very different.

4.6 Summary

In this chapter we presented a novel approach to keyframe selection, an important feature

of any SLAM system, that allows cameras to selectively switch to a tracking only mode

when in well mapped regions of the model. We integrated our keyframe selection method

into ElasticFusion, where it leverages the dense map to decide which incoming frames

contain novel information about the scene, allowing the system to avoid processing overly

redundant frames. Our experiments showed that our approach to keyframe selection

allows the system to reconstruct accurate dense maps with a fraction of the frames, when

compared to the original ElasticFusion algorithm.

By requiring that frames exceed a minimum threshold in terms of the quantity

of novel information they contain before they can be fused into the map, the presented

keyframe selection method can be used to control the completeness of ElasticFusion’s

surfel map. Our experiments showed that increasing the minimum information threshold

resulted in fewer frames being fused and, ultimately, fewer surfels in the final map. At the

same time, map accuracy, when compared to the original EF algorithm, remained largely

unaffected. Our experiments also showed that, over longer mapping sessions, our keyframe

selection method can lead to shorter frame processing times. This effect can be attributed

to the slower growth in map size resulting in slower growth in frame prediction time, one
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of EF’s main bottlenecks.

As discussed in Section 1.2, it is the goal of this thesis to address certain key

limitations of dense visual SLAM so that dense systems and methods can be applied in a

wider range of less constrained scenarios. In this chapter, and in Chapter 3, our discussion

has focused on extensions to ElasticFusion, a dense visual SLAM system built for mapping

indoor spaces with a single slow moving hand-held, RGBD camera. First, in Chapter 3,

we addressed ElasticFusion’s single sensor limitation, opening the door to multi-camera

collaborative dense SLAM applications. Our experiments showed that one of the main

bottlenecks in collaborative dense SLAM is the number of cameras in the session. This

prompted an investigation into the keyframe selection method that was the focus of the

current chapter. In the next chapter, we describe the design and implementation of a hybrid

SLAM system that combines elements of sparse and dense visual SLAM with the goal of

moving beyond indoor mapping with slow moving hand-held RGBD cameras. In particular,

in Chapter 5, we focus on the case of dense mapping in outdoor automotive scenarios

with monocular cameras as a representative example of a less constrained environment.

Following this, Chapter 6 describes how we integrated a wide-angle fisheye camera model,

more suited to applications where safety is critical than the standard pinhole camera model

used initially by the hybrid system.
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(a) (b)

(c)

Figure 4.1: A hand-held camera explores a scene taken from the TUM RGB-D dataset
(Sturm et al., 2012). Green frustums represent the pose of the camera for fused frames. (a)
Initially the NID between frames predicted from the incomplete model and live frames
is quite high, so all frames are fused. (b) The camera continues exploring but selectively
decides not to fuse frames that the NID deems are well explained by the model. (c) The
camera closes a loop and transitions fluidly to purely tracking against reactivated portions
of the model as there is now no need for fusion.
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(a) τ= 0.95 (b) τ= 0.9

(c) τ= 0.8 (d) τ= 0.7

Figure 4.2: NID qualitative results for Kt1 sequence from ICL-NUIM (Handa et al.,
2014). For these experiments we set λd = 1−α= 0.75. A restrictive setting of τ (a) means
only a few highly informative frames are fused into the model, leading to an accurate but
less complete map. (b) - (d) by steadily decreasing τ more frames are fused into the model
leading to more complete models but at a higher computational cost.
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Figure 4.3: NID keyframing results for ICL-NUIM sequences Kt0 and Kt1. We
measured the model accuracy, trajectory accuracy, number of surfels in the final model,
number of frames fused and the average NID score for each sequence as we varied the
NID threshold τ and the relative weighting λd between N I Dd and N I Dr g b .
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Figure 4.4: NID keyframing results for ICL-NUIM sequences Kt2 Kt3. We measured
the model accuracy, trajectory accuracy, number of surfels in the final model, number of
frames fused and the average NID score for each sequence as we varied the NID threshold
τ and the relative weighting λd between N I Dd and N I Dr g b .
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(a) (b) (c) (d)
Figure 4.5: Break down of frame processing time for the single session Dyson robotics lab
sequence. Red curves correspond to a NID threshold τ= 0 (i.e. NID keyframing turned
off). Blue curves correspond to an NID threshold of τ= 0.86. (a) Frame processing time
as a function of frame number. As mapping proceeds, the per-frame processing time of
the session running without NID keyframing steadily increases. The per-frame processing
time of the session running NID keyframing remains relatively flat. (b) While there is an
overhead to computing the NID this cost is amortised over the course of the exploration
of the office. (c) Whether a specific frame was fused in each of the two sessions. (d) The
total number of surfels in the map at each point in the sequence.
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CHAPTER 5

A Hybrid Sparse-Dense Monocular

SLAM System

The use of active depth sensors and direct camera tracking methods limits, for the most part,

dense mapping systems, such as ElasticFusion, upon which the developments of Chapters 3

and 4 were based, to indoor environments and relatively slow camera movement. How-

ever, dense mapping systems, and their resultant high fidelity 3D reconstructions, could

potentially confer many benefits to outdoors robotics applications, such as autonomous

driving, facilitating higher-level scene understanding, perception, and planning. However,

before they can be used effectively in outdoors environments, the limitations induced by

the sensors and algorithms employed in dense mapping need to be addressed.

In this chapter we present a system for incrementally reconstructing a dense 3D

model of the geometry of an outdoor environment using a single monocular camera

attached to a moving vehicle. Our system employs neural network-based dense depth

prediction with a hybrid mapping architecture combining state-of-the-art sparse features

and dense fusion-based visual SLAM algorithms within an integrated framework. Our

novel contributions include the design of hybrid sparse-dense camera tracking and loop

closure mechanisms. We use the motion estimates from the sparse method to overcome

the large and variable inter-frame displacement typical of outdoor vehicle scenarios. Our

system then registers the live image with the dense model using whole-image alignment.

This enables the fusion of the live frame and dense depth prediction into the model. Global
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consistency and alignment between the sparse and dense models are achieved by applying

pose constraints from the sparse method directly within the deformation of the dense

model.

We use outdoor autonomous driving as a representative example of a setting that is

less constrained than the indoor setting targetted by ElasticFusion and other contemporary

dense visual SLAM systems. Results of qualitative and quantitative experiments, for both

trajectory estimation and surface reconstruction accuracy, demonstrate that our system

achieves competitive performance on the KITTI autonomous driving dataset. The work in

this chapter was published in

• L. Gallagher, V. Kumar, S. Yogamani, and J. McDonald. A Hybrid Sparse-Dense

Monocular SLAM System for Autonomous Driving. In 2021 European Conference

on Mobile Robots (ECMR), pages 1–8, 2021. doi: 10.1109/ECMR50962.2021.

9568797

5.1 Background

Over the past decade, approaches to fusion-based dense visual SLAM have demonstrated

the ability to build high fidelity dense 3D models of an environment facilitating higher-level

scene understanding, perception and planning (Dai et al., 2017; Newcombe et al., 2011a;

Whelan et al., 2014a, 2015). However, given that these techniques typically require active

RGB-D sensors, their applicability in outdoor scenarios has been limited. At the same time,

sparse and semi-dense monocular systems have found a large degree of success in these

environments but are limited in their resulting sparse or partially dense representations

(Campos et al., 2021; Engel et al., 2014, 2017; Forster et al., 2014, 2017; Mur-Artal and

Tardós, 2017a,b; Mur-Artal et al., 2015). In this chapter, we investigate the potential of re-

cent results in monocular dense depth prediction in combining these approaches’ strengths.

In particular, we employ dense depth prediction in developing a monocular SLAM system

that achieves comparable accuracy to sparse camera tracking algorithms while allowing

dense fusion-based modelling of the environment. We demonstrate the effectiveness of
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this approach by tracking and mapping an environment from a single monocular camera

attached to a moving vehicle. In this section, we discuss the considerations that motivate

the design of our system for outdoor dense monocular SLAM.

Visual SLAM systems based around the concepts of dense alternation, every pixel fusion,

and direct whole-image alignment-based camera tracking, have shown that it is possible to

build dense, high-fidelity models of indoor scenes in real time with active depth sensors

such as the Microsoft Kinect. These systems and the models they produce have many

benefits in downstream machine perception and spatial reasoning tasks. They can produce

‘watertight’ maps that model the continuous surface that underlies the scene. For example,

this allows them to synthesize accurate novel views and realistically fuse augmentations

into the scene for AR effects (Dai et al., 2017; Newcombe et al., 2011a; Schöps et al.,

2019; Whelan et al., 2014a, 2015). High-resolution dense models may become more

necessary for robot planning in the future to accommodate a broader range of scenarios

(e.g., analyzing surface geometry in unevenly paved roads Fallon et al. (2015), obstacle

detection and avoidance Wang et al. (2019b), etc.).

In this chapter we focus on ElasticFusion (see Section 3.1), a dense visual SLAM

system built around the idea that decoupling the processing of each frame into two alter-

nating steps - direct every pixel camera tracking and fusion of the current frame into the

map - can lead to accurate dense visual SLAM. Though contrary to the well established

theory that accuracy in visual SLAM necessitates joint estimation of both camera trajectory

and scene geometry, the alternation approach taken by ElasticFusion, and many other

dense SLAM systems, has proven to be necessary in order to cope with the large amount

of data required for by dense mapping. It has also proven effective within the relatively

constrained setting of indoor, hand-held, RGBD visual SLAM.

Different principles for active RGBD sensing have been proposed, with structured

light and time-of flight (ToF) principles being two of the most common. In both cases, light

is actively projected into the scene in order to measure the distance of the surface from the

sensor. During outdoor operation, external light from the sun interferes with light projected

by the sensor leading to noisy depth images (El-laithy et al., 2012; Fankhauser et al., 2015).
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In addition, fast motion of the camera and dynamic scene elements, which one would

expect in autonomous driving (Geiger et al., 2012a, 2013), leads to rolling shutter and

motion blur artefacts in the depth maps produced by active depth sensors (Guo et al., 2018;

Tourani et al., 2016). Since ElasticFusion relies on an RGBD camera to estimate scene

geometry, its effectiveness in outdoors settings is limited.

Using passive vision sensors over active sensors, such as RGBD cameras and

LiDAR, in autonomous driving SLAM systems has many advantages. A calibrated monoc-

ular camera is inexpensive, lightweight, energy efficient, can be deployed in a diverse range

of environments, such as in underwater (Kim and Eustice, 2013) and space applications

(Matthies et al., 2007), and can be used as a direction sensor, providing rich photometric

and geometric measurements of the scene at every frame. In contrast, LiDAR, for example,

although highly accurate, is expensive, heavy, and produces a relatively sparse signal

compared to the dense measurements provided by a vision sensor. Indeed, current research

on monocular depth estimation and object detection indicates the potential for cameras to

either match or exceed the performance of LiDAR on these tasks (Wang et al., 2019b; You

et al., 2020).

Multi-sensor platforms attempt to leverage the combined advantages of monocular,

inertial, stereo, LiDAR, and GPS sensors. However, such platforms need careful internal

and external calibration, which can be done online to maintain synchronisation and geo-

metric alignment between the sensors and, ultimately, achieve accurate performance. In the

autonomous driving domain, even the most carefully calibrated rig will move and warp in

real time due to the effects of heat, wear and tear of mechanical parts like tires, variations in

loading of the vehicle, and the knocks and bumps inherent in driving on roads (Dang et al.,

2009; Mueller and Wuensche, 2016, 2017). GPS comes with its complexities, requiring

line-of-sight with at least four satellites to infer position, which can prove challenging in

urban environments (Abel and Chaffee, 1991). Physical challenges aside, fusing sensor

signals from different modalities is often non-trivial (e.g., visual-inertial Leutenegger et al.,

2015).

In addition to the limitations imposed by active sensors, the direct approach to
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camera tracking, favoured by many dense SLAM systems, typically assumes that inter-

frame displacement of the camera is relatively small. When it comes to dense mapping

for autonomous driving, large inter-frame displacement of the camera, caused by the fast

motion of the vehicle, violates this important assumption. For example, in the KITTI

autonomous driving dataset (Geiger et al., 2012a), the vehicle, at times, exceeds speeds

of 80km/h. Since the cameras attached to the vehicle operate at 10hz this means that the

inter-frame displacement of the cameras can exceed 2.22m. For accurate direct camera

tracking, the optimisation procedure must be initialised with a camera pose that lies within

the basin of convergence of the globally optimal solution. If it is not, convergence to a

non-optimal local minimum is possible. In practical terms, without a good initialization

pose, camera tracking performance deteriorates. The closer inter-frame displacement

is to zero the better tracking performance is going to be. While increasing the camera

frame-rate can help bring the displacement closer to zero, doing so only helps up to a

point. Increasing the frame-rate decreases the exposure time wherein the camera sensor

integrates light. Irrespective of the quality of camera hardware, the less exposure time a

sensor has the more susceptible it is to photon noise (Hasinoff, 2014). In a poorly lit scene,

decreasing exposure time hits the point of diminishing returns much quicker. At some

point, the negative effect of image noise is going to outweigh the positive effect a small

baseline has on camera tracking performance (Handa et al., 2012).

Highly variable outdoor lighting, due to changing weather and lighting conditions,

breaks the fundamental constraint of direct photometric tracking, the photo-constancy

constraint. This fundamental constraint says that a surface point, when imaged with a

moving camera, will result in the same pixel value at corresponding pixel sites. This

constraint is at the best of times a gross simplification of the reality of imaging a scene.

However, if it is approximately true, deviations in the colours of corresponding pixels, due

to systematic and non-systematic (random) sources of error, can be modelled and accounted

for or annealed by robust estimation methods. If such sources of error cannot be accounted

for, or the light in the scene behaves in an inherently non-Lambertian way (i.e. the

brightness of points on the surface are dependent on the point of view of the observer) then
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direct camera tracking optimisation procedures based on the photo-constancy constraint

will fail.

In contrast to dense systems, sparse visual SLAM systems, based on joint estimation

of scene structure and camera motion, have proven to be effective in outdoors settings

and during fast camera motion. Recently, several systems have emerged that represent

the state-of-the-art in traditional monocular SLAM, and visual-odometry performance

(Campos et al., 2021; Engel et al., 2014, 2017; Forster et al., 2014, 2017; Gao et al.,

2018; Mur-Artal and Tardós, 2017b). The ORB-SLAM open-source SLAM frameworks

(Campos et al., 2021; Mur-Artal and Tardós, 2017b; Mur-Artal et al., 2015) in particular

represent the state-of-the-art in monocular SLAM. Similar to PTAM, ORB-SLAM (Mur-

Artal and Tardós, 2017b) splits the SLAM problem into sub-problems that can be solved

in different threads; (i) a feature-based camera tracking thread that runs in real time; (ii)

a local mapping thread that takes keyframes extracted by the first thread and optimizes a

local area of the map around this keyframe using bundle-adjustment (BA); and (iii) a global

mapping thread that integrates loop closure constraints and maintains global consistency.

However, in the absence of prior information, monocular vision systems suffer

from ambiguity and drift in the estimated scale of the reconstruction (Strasdat et al., 2010a),

and are not as robust as stereo and multi-sensor systems in texture-less regions and during

fast camera motion (Campos et al., 2021; Mur-Artal and Tardós, 2017a). Furthermore,

with the exception of a few techniques for dense and semi-dense map representations

(Engel et al., 2013, 2014, 2017; Newcombe et al., 2011b), these systems produce sparse

reconstructions which only offer a coarse-grained description of the scene’s geometry

(Campos et al., 2021; Davison et al., 2007; Eade and Drummond, 2008; Klein and Murray,

2007; Mur-Artal and Tardós, 2017b; Mur-Artal et al., 2015).

More and more deep learning is being used to improve the performance of SLAM

systems. Broadly speaking, neural networks have been applied in two critical areas within

the SLAM problem; in the representation of geometric and visual information (Bloesch

et al., 2018; Costante et al., 2016; Sucar et al., 2021), and in overcoming the ill-posedness

of many of SLAM’s sub-problems, for example, depth estimation from monocular images
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(Eigen et al., 2014; Godard et al., 2017; Ravi Kumar et al., 2020; Zhou et al., 2017).

Recent results on neural network-based depth estimation has shown that it is possible

to train a network to predict accurate metric depth from a single image, with only weak

supervision on the predicted depth’s scale (e.g., Guizilini et al., 2020; Ravi Kumar et al.,

2020), which, as we show in this chapter, and in Chapter 6, paves the way for metric-scale

dense monocular SLAM.

Several systems have been presented that demonstrate hybrid approaches to monoc-

ular visual SLAM and VO (Bloesch et al., 2018; Czarnowski et al., 2020; Tateno et al.,

2017; Yang et al., 2020), while other approaches implement a fully learned SLAM pipeline

(Wang et al., 2017; Zhou et al., 2018). In comparison to this work, these systems have

either not been designed with large-scale fast, outdoor camera motion in mind (Bloesch

et al., 2018; Czarnowski et al., 2020; Tateno et al., 2017; Zhou et al., 2018), or do not

produce dense models (Wang et al., 2017; Yang et al., 2020).

The work most similar to our approach is the dense surfel-based fusion system

of Wang et al. (2019a), combining camera tracking from a sparse SLAM system (ORB-

SLAM2 (Mur-Artal and Tardós, 2017b)) with a dense fusion-based back-end. The sub-

stantial difference with the current work is the degree to which they couple the sparse

and dense maps. In Wang et al. (2019a), a sub-mapping approach is employed where

each surfel is anchored to a reference keyframe from the sparse system. Local and global

optimisations of the keyframe poses by the sparse system are reflected in the dense map by

ensuring the pose of a surfel relative to its anchor keyframe remains constant. In contrast,

our system maintains a much looser coupling between the sparse and dense representations.

The sparse pose is used to initialise a dense alignment that registers the camera to the dense

map allowing for fusion of the current frame. Loop closures from the sparse system are

used to constrain a deformation graph that non-rigidly deforms the surfels themselves. In

this way, the benefits of each system are leveraged, while the systems themselves are only

indirectly connected through 6-DOF transformations and 3D constraints. Furthermore,

we quantitatively demonstrate the effectiveness of our approach in outdoor automotive

environments using deep learning-based depth estimation.
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The main contribution described in this chapter is the development of a system

for live dense metric 3D reconstruction in outdoor environments using a single RGB

camera attached to a moving vehicle. Although other researchers have reported dense and

semi-dense SLAM or dense VO approaches, to the best of our knowledge, this is the first

fully dense SLAM system quantitatively evaluated on automotive scenarios. The novelty

of our approach lies in the use of a dense depth prediction network (Ravi Kumar et al.,

2020) within a hybrid architecture, combining state-of-the-art sparse feature tracking and

dense fusion-based visual mapping algorithms in a loosely coupled fashion.

Using the motion estimates from the sparse method to overcome the large and

variable inter-frame displacement typical of outdoor vehicle scenarios, our system then

registers the live image with the dense model using whole-image alignment. This allows

dense depth prediction and fusion of the live frame into the model. Global consistency and

alignment between the sparse and dense models are achieved by applying pose constraints

from the sparse method directly within the deformation of the dense model. We evaluate

the method over the KITTI benchmark dataset, providing qualitative and quantitative

results for both the trajectory and surface reconstruction accuracy.

5.2 A Hybrid Approach

We take a hybrid approach to dense monocular tracking and mapping. A feature-based

SLAM system, ORB-SLAM3 (Campos et al., 2021), is used to provide an initial estimate of

the camera’s pose for each frame. The pipeline then follows a dense alternation architecture,

extending the ElasticFusion (EF) SLAM system (Whelan et al., 2015), in which the map is

first held fixed. At the same time, the camera is tracked against it, using the initial pose

estimate from the previous step. Once the camera pose has been estimated, it can fuse the

current frame into the map. We densely predict per pixel metric depth estimates using a

SoTA self-supervised convolutional neural network, UnRectDepthNet (Ravi Kumar et al.,

2020). The various sub-systems predominantly operate on different processors; the GPU is

used extensively by the dense alternation and depth prediction network, while ORB-SLAM

operates on the CPU. Our hybrid architecture is summarised as follows:
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1. A scale-aware depth prediction network is used to estimate a metric depth map for

each frame. An initial estimate of the camera motion is made using ORB-SLAM’s

feature-based camera tracker, which is suited to the fast motion of the vehicle.

2. The initial pose estimate is further refined by aligning it to the current active model

in view of the camera.

3. Live RGB images and corresponding predicted metric depth maps are fused into a

global dense surfel model of the scene. The surfel model is divided into an active

and an inactive portion as per the original EF algorithm.

4. When ORB-SLAM identifies a loop closure, we use the resulting loop closure

constraint within the EF deformation graph to correct the geometry of the dense

surfaces. This brings the previously visited inactive portion of the map back into

alignment with the current active portion. Importantly, this also keeps the different

map and camera trajectories of ORB-SLAM and EF consistent.

Figure 5.1 shows the architecture of our system. In the remainder of this section, we

will describe how these key elements are combined into one system that builds consistent

dense surfel models from a monocular camera attached to a moving vehicle. The section

provides complete coverage of the system where the main system components are covered

in Section 5.2.1, Section 5.2.4, and Section 5.2.5. We then present and discuss experimental

results that demonstrate the efficacy of our system in Section 5.3.

5.2.1 Scale-aware depth estimation

The system employs UnRectDepthNet to make per-pixel depth estimates at known scale

(Ravi Kumar et al., 2020). While the core depth estimation algorithm used here is the

same as reported in Ravi Kumar et al. (2020), several novel innovations to the base method

were introduced in Gallagher et al. (2021). However, these novel innovations are not

contributions of this thesis. A description of the depth estimation module is included here

for completeness.
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UnRectDepthNet establishes a structure-from-motion (SfM) framework for self-

supervised depth estimation. In particular, separate depth and pose estimation networks

are jointly trained with a novel view synthesis loss function. Training examples consist of

an unlabelled reference image along with several source images taken from overlapping

points of view. The depth network takes as input the target image and predicts a depth

estimate for each pixel site. The pose network takes as input the target image and the

source images and, for each source image, predicts the relative transformation from the

target image to the source image.

Given known camera intrinsics, per-pixel depth estimates from the depth network,

and relative poses between cameras, each pixel in the source image can be warped to

each of the target images. The basis for self-supervised depth estimation supervision is

the photometric similarity between each target pixel and the source pixels it warps to.

Additional loss terms on depth smoothness, feature space representations of the input

images (Shu et al., 2020) and cross-sequence depth consistency help to regularize the

network. Scale ambiguity is a challenging problem in monocular depth estimation (Garg

et al., 2016; Zhou et al., 2017). As a result, an absolute value is needed to serve as an

anchor point, provided through a measurement from another dedicated sensor to obtain

actual depth estimation. In this work, UnRectDepthNet was trained with weak supervision

on a combination of Velodyne point cloud and calibration information to improve the

estimation of scale. Velodyne Lidar serves as proxy for ground truth and the scale factor of

predicted depth maps is estimated by associating the calculation with the correct pixel in

the image plane, minimizing ℓ2 loss.

UnRectDepthNet supports a number of camera models for standard pinhole and

wide FOV fisheye cameras. For this system, we carried out the view synthesis by employing

the pinhole camera projection model. In Chapter 6 we go into more detail on self-supervised

depth estimation where we introduce a novel reformulation of a self-supervised depth

network in terms of the Kannala-Brandt camera model. For the interested reader the

seminal work of (Zhou et al., 2017) and references therein provide more details.
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5.2.2 ORB-SLAM3 - Feature-based RGBD Tracking

ORB-SLAM3 (Campos et al., 2021) builds a sparse map of a scene, represented using a

covisibility graph where each node in the graph corresponds to a keyframe consisting of

a pose and a set of 3D points. When two keyframes view common map points, an edge

between them is added to the graph. The system has 3 main threads. The camera tracking

thread receives RGB-D frames from the camera, extracts ORB features, and computes

an initial pose estimate via motion only BA with the previous frame. The estimate is

further refined by aligning the current frame to a local map of covisible keyframes. New

keyframes are detected and sent to a background thread. Here the local map in the vicinity

of the new keyframe is optimized with a full bundle adjustment. Loops between the latest

keyframe and historic keyframes are detected with DBoW (Galvez-López and Tardós,

2012). If geometric alignment between the new keyframe and the matched keyframe

succeeds, then a loop is closed, and an edge between the two keyframes is added to the

graph. The local map in the vicinity of the keyframe is rigidly transformed into place. The

rest of the keyframe graph is corrected using pose graph optimisation. A final full BA is

performed to recover the MAP estimate of all keyframe poses and structure.

5.2.3 Dense Surfel Fusion

The dense map representation and estimation pipeline used by our system builds on

ElasticFusion (Whelan et al., 2015), which we described in detail in Section 3.1. Our

system estimates a dense surfel map M of a scene as viewed from a monocular RGB

camera. The map M is a flat list structure containing a set of surfels Ms . As before, each

Ms contains a 3D position, a normal, a radius r indicating its extent, a confidence value

indicating the quality of its estimation, an RGB colour, a timestamp t when it was last

fused, and a timestamp to when it was inserted into the map. During operation, M is

divided into two disjoint subsets; an active portion containing surfels that have recently

been measured by the live camera data and an inactive portion containing those surfels

that have not been measured in a threshold amount of time. in Section 5.2.4, we detail the
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systems hybrid camera tracking procedure, which combines direct whole image alignment

with feature-based camera tracking. RGB frames, and their corresponding dense depth

estimates, are fused into the global model by back projecting each pixel to a 3D point using

the depth map and the camera’s intrinsic matrix. ElasticFusion also has a visual place

recognition loop closure mechanism based on fern encoding; however, we do not utilize

this module. As with ElasticFusion, local loops are identified by aligning views of the

active and inactive portions of Ms in the current camera view, allowing inactive surfels to

be reactivated. Both global and local loop closures provide surface-to-surface constraints

to optimize a space deforming graph, which is then applied to Ms . In Section 5.2.5, we

describe how we bootstrap the dense deformation graph from loop closure constraints

coming from the sparse system.

5.2.4 Hybrid Camera Tracking

In our system, at each time-step, t , the current live camera frame Ft , consisting of colour

image It and predicted depth map Dp
t , is passed to ORB-SLAM to compute an initial

estimate of the camera pose Pt . Note that this is the camera pose before any refinement by

the local mapping thread in the case that Ft is extracted as a keyframe. Though this initial

pose is accurate (as can be seen in Table 5.1), it cannot be used directly for the fusion of

Ft into M. ORB-SLAM continues to improve its local map, while the dense surfel map

does not undergo any significant correction until a local or global loop closure is triggered.

This can lead to Pt , and therefore the live frame, becoming misaligned from the dense map.

Our goal is to track the camera and to build an accurate model, and so we need to balance

the accuracy of Pt against the need to stay aligned with the dense model in order to fuse

Ft accurately.

To bring the camera back into alignment with the model, we perform a frame-

to-model refinement of Pt . The active map around Pt is rendered into a virtual camera

positioned at Pt . A 6DOF transformation T ∈ SE(3) that aligns the live frame to the

virtual one is then estimated in an iterative non-linear least-squares joint photometric and

geometric optimisation embedded in a 3 level image pyramid. Composing T with Pt yields
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a refined pose estimate for the current frame that can now be used to fusion as per the

original EF algorithm (Whelan et al., 2015).

5.2.5 Hybrid Loop Closures

When ORB-SLAM identifies a loop closure between the latest keyframe K fi and a historic

keyframe in the map, K fh , a transformation Th
i that aligns K fi with K fh is computed.

This yields a pose pair; the uncorrected pose of the new keyframe Pi
k f and the pose of the

keyframe after loop correction P̂i
k f . ORB-SLAM’s loop closure mechanism proceeds to

apply the loop closure and optimize its sparse map as per the original algorithm (Campos

et al., 2021).

To update the dense surface to reflect the loop closure Pi
k f → P̂i

k f , we non-rigidly

deform each surfel using a deformation graph G in the same way as EF (Whelan et al.,

2015). G consists of a set of nodes Gn sampled from the surfels in M. Each node consists

of a position (i.e. the sampled surfel’s position), a timestamp (also sampled surfel’s

timestamp), an affine transformation Gn
T , and a set of temporally nearby neighbour nodes.

The temporal connectivity of the nodes prevents interference between multiple passes of

the same surface at different points in time. To apply G to M, a set of temporally and

spatially nearby influencing nodes is computed for each Ms ∈M. A weighted sum of the

Gn
T in these nodes are applied to the surfel to deform it into place.

To optimize the Gn
T , a set of surface-to-surface correspondences are generated from

a loop closure, mapping surface points from the active region to the inactive region of the

model. Cost function terms on the distance between correspondences, as well as terms

that maximize the rigidity and smoothness of the deformation, ensure that, when applied

to the surface, it brings the correspondences together. A pinning term holds the inactive

map in place, ensuring that it is the active map that is deformed into the inactive map.

Further constraints on the relative position of historical correspondences from previous

loop closures prevent new deformations from breaking the old loop closures. The final

cost is optimized using Gauss-Newton gradient descent to retrieve the set of deforming

affine transforms Gn
T . See Whelan et al. (2015) for more details.
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Sequence O
tr el (%)

H
tr el (%)

H+L
tr el (%)

D3
tr el (%)

ORB
tr el (%)

01 31.17 24.49 25.34 1.07 1.39
02 2.97 3.11 2.38 0.80 0.76
06 1.16 1.42 1.34 0.67 0.51
08 1.90 2.14 2.11 1.00 1.05
09 1.85 2.02 1.62 0.78 0.87
10 1.24 1.50 1.41 0.62 0.60

Table 5.1: Results on test set of KITTI odometry. Results from ORB-SLAM stereo
(Mur-Artal and Tardós, 2017b) and a SOTA VO system D3VO (Yang et al., 2020) are
shown for comparison. Though not SOTA, these results show that our system’s camera
tracking achieves a level of accuracy necessary for building a fused 3D surfel model. It
can be seen that using predicted depth leads to accurate RGBD tracking with ORB-SLAM
(O). We show the effect of introducing pre-fusion alignment (H) and applying global loop
closures to the dense model (H+L).

In order to reflect ORB-SLAM loop closures in the dense model in our system

using the deformation graph, we first generate a set of surface-to-surface correspondences

from Pi
k f → P̂i

k f . To do so, the active surfels Ma ∈M in view of Pi
k f are computed, as are

the timestamps of the inactive surfels in view of P̂i
k f . These timestamps are used during

optimisation of Gn
T to pin the inactive surfels of M in place. Each of the active surfels Ma

s

generates a constraint consisting of a source point, computed by composing Ma
s with Pi

k f ,

and a destination point computed by composing Ma
s with P̂i

k f . These constraints are then

used to optimise the deformation in the same way as Whelan et al. (2015).

Note that K fi is not necessarily the current live camera frame. It could therefore

fall outside the current active region of the map. If it is outside the active region of the map,

then this will hinder the system’s ability to generate surface-to-surface constraints. We

found that by setting the active time window appropriately (δt = 200 f r ames), the system

could find sufficient constraints during loop closures.

Closing loops in this way achieves two goals; adjusting the dense surface geom-

etry to stay consistent with the real world; and keeping the dense map consistent with

ORB-SLAM’s sparse map and camera pose estimates. It also balances the need for this

consistency against the computational intensity of correcting dense geometry. Figure 5.2

illustrates each of the steps involved in the hybrid loop closure process.
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5.3 Evaluation

We show quantitative and qualitative results of our system tested on the KITTI odometry

benchmark dataset (Geiger et al., 2012a). We have evaluated the accuracy of trajectory

estimation and surface reconstruction and provide a breakdown down of the computational

performance of the system. All processing was done on a machine equipped with an Intel

Core i 7−7700K CPU, 16GB of RAM, and an NVIDIA GTX 1080 Ti GPU. Qualitative re-

sults of the proposed approach are illustrated in https://youtu.be/Pn2uaVqjskY.

Source code for the project is publicly available at the following repository https:

//github.com/robotvisionmu/DenseMonoSLAM. A qualitative example of our

system’s outputs is shown in Figure 5.3.

5.3.1 KITTI - Tracking

The KITTI odometry benchmark dataset provides 11 sequences with ground truth poses.

We show results for sequences 01,02,06,08,09 and 10. The remainder of the sequences

are used during training of the depth prediction network and hence omitted from our

evaluation. For each test sequence we use the relative translational error tr el averaged

over sequences ranging in length from 100m to 800m (Geiger et al., 2012a). Table 5.1

shows the results alongside a SOTA SLAM system, ORB-SLAM2 (Mur-Artal and Tardós,

2017b), and D3VO (Yang et al., 2020), a SOTA VO system. Interestingly, our experiments

show that using the dense depth predictions and the RGBD operating mode of ORB-SLAM

(O) results in accurate metric-scale camera tracking with a monocular camera. While

introducing hybrid tracking (H) increases error w.r.t the ground truth, it allows the current

frame to be fused into the model. Introducing hybrid loop closures (H+L) helps bring the

sparse and dense models back into alignment and reduces global error in the model and

trajectory. Sequence 01 is challenging for our system. Scenes with little structure lead to a

degradation in depth prediction and camera tracking. Figure 5.4 shows qualitative results

of this sequence.
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(a) (b)

(c)

Figure 5.3: Trajectory and dense reconstruction of an odometry sequence from Geiger
et al. (2012a, 2013). (a) shows the final surfel model produced by our system. The model
contains approximately 16m surfels. (b) shows the estimated trajectory alongside the
ground truth trajectory. (c) shows an up-close view of the reconstruction as the vehicle
passes through an intersection contained in (a).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Sequence 01 from the KITTI odometry dataset is challenging for monocu-
lar systems. (a) and (b) show the live colour image from the camera and UnRectDepthNet’s
depth prediction respectively. (c) and (d) show ElasticFusion’s corresponding model pre-
dictions. (e) shows a portion of the final global model. (f) shows a comparison between
the estimated and ground-truth trajectories.

5.3.2 KITTI - Surface Reconstruction

We evaluate surface reconstruction accuracy on several sequences from the KITTI odometry

benchmark. As KITTI does not include ground-truth surface models, we compare against

models constructed from the Velodyne point clouds that accompany each sequence. To

do so, we transform each point cloud in the sequence into a global coordinate system

using the corresponding ground truth poses. We then apply a voxel filter to down-sample

the resultant point cloud. In Table 5.2, we show the surface-to-surface mean distance

between points in the estimated model and the nearest point in the Velodyne point cloud

model. Before computing the score, the two models are rigidly aligned. We use the labels

from Behley et al. (2019) to filter out dynamic objects from Velodyne point clouds. Our
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5.3. Evaluation

Sequence O
(m)

H
(m)

H+L
(m)

02 5.95 6.40 4.03
06 1.23 0.97 0.64
08 2.70 2.46 2.72
09 1.23 1.18 0.71
10 0.89 0.79 0.82

Table 5.2: Surface accuracy of our system on KITTI. Entries represent the mean
surface-surface distance between points in the estimated map and the closest point in the
aligned ground truth surface model. Sequence 01 has been omitted due to poor tracking
performance (see Table 5.1)

experiments show that, in most cases, hybrid tracking (H) improves surface reconstruction

accuracy over ORB only tracking (O) by bringing the current frame into tight alignment

with the dense model before surface fusion. Introducing hybrid loop closures (H+L)

further improves surface accuracy across a number of sequences by correcting global error

in the dense surface.

Our system does not achieve optimum tracking performance, with ORB-SLAM

stereo and D3VO achieving better relative translational error (last two columns in Table 5.1).

However, our surface reconstruction accuracy results demonstrate that tracking accuracy

is sufficient for building a fused dense surface model, the main benefit of our system in

comparison to ORB-SLAM stereo and D3VO. Although ORB-SLAM could be used to

construct a dense point cloud, i.e. by back-projecting the full depth map estimated by

UnRectDepthNet for each keyframe (as has been demonstrated for depth maps captured

by a real RGBD sensor, Mur-Artal and Tardós, 2017b), it does not include a mechanism

for incrementally denoising the reconstruction by fusing overlapping measurements of

surface points, as our system does. Similarly, while D3VO leverages a monocular depth

estimation network capable of estimating dense depth maps, the backend bundle adjustment

optimisation itself is sparse. Importantly, D3VO, is a VO system and not a SLAM system,

as such, its focus is on maintaining accurate tracking over a local sliding window of

keyframes, and not on solving the full SLAM problem. By including the hybrid loop

closure mechanism (Section 5.2.5), our system can estimate a persistent, globally consistent

dense map.
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Figure 5.5: Breakdown of time taken by our system to process each frame in sequence
09 the KITTI odometry benchmark Geiger et al. (2012a). Our system falls just outside of
true real-time rates of 10hz for KITTI. In future work we hope to utilize hardware with
half precision support to improve system run-time.

5.3.3 System Resource Usage

In Figure 5.5 we show a breakdown of the frame processing time for sequence 09 in

the KITTI odometry benchmark (Geiger et al., 2012a). Mapping time (blue) goes up in

accordance with the number of surfels (purple) as reported in Whelan et al. (2015). The

system operates between 8−9hz. The spike at the end of the sequence is due to a global

loop closure. Table 5.3 shows the distribution of run-time performance over the test set of

the Eigen split of the KITTI odometry dataset.
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Operation Median(ms) Mean(ms) std. dev.(ms)

ORB-SLAM Tracking 40.04 41.93 25.13
Dense Mapping 30.97 35.61 15.82

Depth 60.32 61.14 3.84
Overall 136.48 140.29 31.76

Table 5.3: Mean, median and standard deviation of system run-time over test se-
quences from the Eigen split of the KITTI odometry dataset

5.4 Summary

In this chapter we presented a hybrid SLAM system that combines dense depth prediction

with sparse feature tracking and dense surfel fusion techniques. The system permits live-

dense metric reconstructions of outdoor scenes using a monocular camera in automotive

scenarios. Sparse tracking provides camera pose estimation capable of operating robustly

at vehicle speeds. The resulting poses are used within the dense fusion tracking step to

initialise a whole image alignment refinement process. Global consistency in the model is

maintained through visual place recognition and pose to pose constraints from the sparse

system, which again are passed to the dense fusion algorithm where they are integrated with

a deformation graph-based map correction step. Our results show competitive performance

with SOTA techniques while providing dense fused surface models. We believe our system

to be the first dense monocular fusion-based visual SLAM system quantitatively evaluated

on automotive scenarios. Although the focus of this chapter is automotive, the system

could easily be adapted to other scenarios by retraining the depth prediction network.

The SLAM system presented in this chapter assumes that the input sensor can be

modelled by the pinhole camera model. This limits the system to cameras with a narrow

field of view (FOV). However, in many domains, including the automotive domain, wide

FOV fisheye cameras are becoming increasingly popular due to their ability to keep large

portions of the scene in frame at all times, making them suitable for safety critical systems.

Although there are several SLAM systems that support fisheye cameras, these existing

systems either don’t provide dense reconstructions, don’t support loop closures or use

multi-camera rigs. In Chapter 6 we take the system presented in this chapter and extend it
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5.4. Summary

to operate with large FOV fisheye cameras, reformulating the depth prediction and dense

surface fusion stages of the pipeline in terms of the Kannala-Brandt fisheye camera model.

The extended system supports operation with a single monocular fisheye camera, requiring

less calibration effort than a multi-camera rig. Furthermore, the system supports loop

closures for globally consistent dense mapping. As with the systems of Chapters 3 to 5 of

this thesis, the goal of the system to be presented in the next chapter is to broaden the scope

of dense visual SLAM so that it can be used in applications beyond the typical constrained

setting of indoor mapping with a slow moving hand-held RGBD camera. To that end, we

again evaluate the system’s performance in the automotive domain, which acts as both a

representative example of a less constrained setting, and as an example of a setting where

a fisheye SLAM system has many potential benefits beyond what a SLAM system that

supports only the pinhole camera model can offer.
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CHAPTER 6

Dense Fisheye SLAM

In the previous three chapters, we have presented several extensions and adaptations to

ElasticFusion, a state-of-the-art dense visual SLAM system. Although these extensions

have enabled ElasticFusion’s dense mapping capabilities to be brought to bear in a number

of new environments and situations beyond what was previously possible, its utility is

still limited by its requirement that the input sensor must be well modelled by the pinhole

camera model.

In this chapter, we introduce the final contribution of this thesis; a novel dense

mapping system that uses a single wide field of view (FOV) monocular fisheye camera as

the sole input sensor and produces a dense surfel representation of the scene’s 3D geometry.

In Chapter 1, we discussed the benefits of monocular fisheye cameras in the context of

safety critical systems in the automotive domain. In this chapter, We extend the hybrid

sparse-dense monocular SLAM system of Chapter 5 to use large FOV fisheye imagery.

This is achieved by reformulating the mapping pipeline in terms of the Kannala-Brandt

fisheye camera model. Each frame is processed in its original undistorted fisheye form,

with no attempt to remove distortion. To estimate depth, we introduce a new version of

the PackNet depth estimation neural network (Guizilini et al., 2020) adapted for fisheye

inputs. We reformulate PackNet’s multi-view stereo self-supervised loss in terms of the

Kannala-Brandt fisheye camera model. To encourage the network to learn metric depth

during training, the pose network is weakly supervised with the camera’s ground-truth

inter-frame velocity. To improve overall performance, we additionally provide sparse
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6.1. Background

(a)

(b)

(c)

Figure 6.1: Fisheye inputs to our system. Images from KITTI-360 (Liao et al., 2021). (a)
shows the original uncropped fisheye image (1400×1400). (b) shows the cropped region
used by our system. We crop the image to remove the car, camera housing and the sky (c)
shows the live depth estimate of (b).

depth supervision from dataset LiDAR and SICK laser scanners during training. We

demonstrate our system’s performance on the real-world KITTI-360 benchmark dataset.

Our experimental results show that our system is capable of accurate, metric camera

tracking and dense surface reconstruction within broad but local windows on the order of

160m. Our system operates within real-time processing rates and in challenging conditions.

The work in this chapter was published in

• L. Gallagher, G. Sistu, J. Horgan, and J. B. McDonald. A system for dense monocular

mapping with a fisheye camera. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR) Workshops, pages 6478–6486,

June 2023

6.1 Background

Several SLAM systems have been presented that leverage alternate camera models to allow

the use of fisheye and omnidirectional camera imagery. Caruso et al. (2015) reformulate

the direct whole image alignment camera tracker and depth map filtering of LSD-SLAM

(Engel et al., 2014) in terms of the unified omnidirectional camera model (Geyer and

147



6.1. Background

Daniilidis, 2000). However, the system only estimates a semi-dense map. Similarly,

Matsuki et al. (2018) implement an omnidirectional extension to DSO (Engel et al., 2017),

reformulating the underlying optimisation in terms of the unified camera. The system

presented by Matsuki et al. (2018) is a visual odometry system, not a SLAM system, and

so it does not perform loop closure detection and correction. Schöps et al. (2017) use

motion stereo to predict depth frames which are then integrated into a truncated signed

distance function. Aggressive filtering of the depth estimates and low input resolution

limits the accuracy and completeness of the resultant models. Furthermore, the system does

not include a loop closure mechanism which is vital for large-scale long-term mapping

and tracking. Cui et al. (2019) use a multiple-view sweeping planes-based algorithm to

estimate a dense depth map for a reference camera in a multi-camera rig. Dynamic objects

are detected and removed to prevent trailing artefacts from being integrated into the map.

Only a local volume of space around the car is held in the map at any one point in time

and no loop closure mechanism is included. Won et al. (2020) present an omnidirectional

dense SLAM system where a sensor platform consisting of four 220° FOV cameras is used.

The system uses a light weight omnidirectional MVS depth estimation neural network,

based on the architecture proposed by Won et al. (2019), to estimate a 360° depth map for

each frame. Each frame is then tracked using ROVO (Seok and Lim, 2019). Platform poses

and depth maps are then fused into a dense TSDF map. Loop closures are identified using

a feature-based vocabulary tree where a geometric consistency check verifies proposed

matches. Once identified, loops are closed via pose graph optimisation. ORB-SLAM3 is a

sparse visual SLAM framework that supports operation with fisheye cameras (Campos

et al., 2021). The feature-based approach of ORB-SLAM3 lends itself to robust camera

tracking during fast camera motion and in challenging conditions, such as variable lighting.

We use ORB-SLAM3’s feature-based camera tracking capabilities to estimate the frame-

to-frame motion of the camera in our system. We also use ORB-SLAM3’s loop closure

mechanism to bootstrap a deformation-graph-based correction of the dense surfel map

during loop closure. However, as we are interested in building dense maps in real time we

go beyond ORB-SLAM3 and its low resolution reconstruction of the scene’s geometry.
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In contrast to these works, we focus on large-scale monocular dense mapping with

loop closures. Our system uses a single fisheye camera where the incoming camera frames

are integrated into a dense global surfel map. We avoid undistorting the incoming imagery

and instead operate directly on the distorted fisheye images. One of the main benefits of

fisheye images is their increased FOV which inevitably gets diminished during undistortion

procedures. For every frame, our system detects and, if necessary, closes, loops in the

vehicle’s trajectory. To summarise, our contributions include:

• Fisheye PackNet: Reformulated PackNet (Guizilini et al., 2020) training procedure

for Fisheye images, where we include velocity supervision, sparse LiDAR supervi-

sion, and the Kannala-Brandt fisheye model for multi-view stereo loss function.

• Generic Camera Model: Redesigned ElasticFusion’s mapping pipeline to be

generic (in the software engineering sense of the word) with respect to camera

model. Within this genericised framework, we implemented the Kannala-Brandt

camera model, allowing fusion of fisheye depth maps.

• A Hybrid Sparse-Dense Fisheye SLAM system: Combining ORB-SLAM3 feature-

based tracking with ElasticFusion dense mapping with fisheye cameras.

• Kitti-360 Analysis: We provide quantitative analysis of our system’s depth esti-

mation and local surface reconstruction accuracy, using the KITTI-360 benchmark

dataset. Additionally, we provide qualitative results that demonstrate the overall

performance of our proposed fisheye SLAM system.

An overview of our system’s inputs and outputs can be seen in Figure 6.1 and

Figure 6.3, respectively. In this work we emphasise local map accuracy over global

consistency. Though they are not mutually exclusive, we argue that local surface recon-

struction accuracy is, in many robotics applications, just as important as achieving global

consistency, one of the main objectives of SLAM. Dense monocular mapping with a

fisheye camera is a challenging problem, however, as our experimental results show locally

accurate reconstructions are possible.
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6.2. Dense Monocular Fisheye SLAM

6.2 Dense Monocular Fisheye SLAM

The hybrid system described in Chapter 5 consists of 6 main elements: (i ) neural network-

based metric depth prediction; (i i ) sparse feature-based tracking with ORBSLAM-3

providing estimates of the initial camera pose; (i i i ) refinement of the initial sparse pose

estimate through direct whole image alignment against the dense map ; (i v) loop closure

detections from ORB-SLAM’s pipeline to bootstrap a deformation graph which is applied

to reflect the loop closure in the dense map; (v) local, model-to-model loop closures in the

dense map reactivate inactive surfels used for data-association and camera tracking; and

(vi ) fusion of the current live camera frame and depth prediction into the dense model. At

the foundation of this SLAM system is the pinhole camera model limited to narrow FOV

cameras. In this chapter, we go beyond this initial system, developing a novel system that

takes advantage of large FOV fisheye imagery. The architecture of the proposed system is

summarised as follows:

1. Monocular Depth Estimation: PackNet (Guizilini et al., 2020) is trained to predict

metrically-scaled depth maps for fisheye cameras. Metric scaling is achieved by

training the network with a weak velocity supervision on the camera pose. At

inference time the velocity is not required. The network is used to infer metric scale

depth maps using only the current live RGB image as input.

2. Sparse Camera Tracking: ORB-SLAM3 is used to provide the camera pose in each

frame where we use the live RGB for monocular camera tracking. Internally ORB-

SLAM uses the Kannala-Brandt fisheye model to process fisheye images without

undistorting them.

3. Dense Surface Fusion: The ORB-SLAM3 estimated camera pose is used to fuse

the current RGB and depth information into a dense surfel-based map, similar to the

map representation of Whelan et al. (2015). Our fusion operation incorporates the

Kannala-Brandt fisheye camera model.

4. Loop Closure Correction: Global and local loop closures are identified and used to
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6.2. Dense Monocular Fisheye SLAM

correct the dense surface’s geometry, thereby reducing the effects of accumulated

drift, and allowing the system to reuse old parts of the map for mapping.

Our full pipeline is visualised in Figure 6.2

6.2.1 Kannala-Brandt Camera Model

The model of image formation that has been most widely used in SLAM has been the

pinhole camera model based on a perspective projection and minor distortion correction.

However, in order to induce such a large receptive field, and project all the light within it

onto a flat sensor plane, fisheye lenses introduce distortions which are not well captured by

this model. This distortion of the image is relative to a hypothesised rectilinear image in

which straight lines in the world are projected to straight lines in the image. To understand

the limits of the pinhole camera model, note that pinhole projection can be written as

r = f tanθ, where r is the distance of the projected point from the camera’s principal point

and θ is the angle of incidence of the incoming ray with respect to the camera’s principal

axis. It is the case that limθ→(π/2)+πk tanθ does not exist. In simple terms, it is impossible

to project points with large θ onto a finite image plane. As noted above, a large number of

camera models more suited to capturing the distorting effects of fisheye lenses have been

proposed (Kumar et al., 2023). Deciding which of the available fisheye models is optimum

for dense fisheye SLAM, although an important open research question, is beyond the

scope of this thesis. Instead, in this work we opt to use the Kannala-Brandt model. The

Kannala-Brandt camera model is used by both ORB-SLAM3, which is a dependency of

our system, and OpenCV, which provides an accurate fisheye calibration procedure.

We use the 8-parameter Kannala-Brandt camera similar to OpenCV’s implementa-

tion and the implementation used in ORB-SLAM3. The first 4 parameters of the model

are the focal lengths in the x and y direction fx and fy and the principal point (cx ,cy ). The

final 4 parameters are the coefficients of a 5th degree polynomial for correcting the point

of projection as a function of angle of incidence (κ0, ...,κ3). In particular, the projection
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6.2. Dense Monocular Fisheye SLAM

function is given by,

xi =π (xw ) =

 fx · r (θ) · cos
(
ψ

)+ cx

fy · r (θ) · si n(ψ)+ cy

 (6.1)

where,

θ = at an2
(√

X 2 +Y 2, Z
)

ψ= at an2(Y , X )

r (θ) = θ+κ0θ
3 +κ1θ

5 +κ2θ
7 +κ3θ

9

here, xw = (X ,Y , Z ) ∈R3 denotes a 3D point in camera coordinates, with the corresponding

image point given by xi ∈R2 ⊂φ, where φ is the image domain. To re-project an image

point to world coordinates, the function π can be inverted. The inverse of the mapping

from Cartesian coordinates to pixel coordinates (i.e the application of fx , fy , cx , cy in Equa-

tion (6.1) above) and from ray view direction to Cartesian coordinates (
(
cos

(
ψ

)
, si n

(
ψ

))
in Equation (6.1) above) is straightforward to compute. The radial distortion component

can be inverted by solving for the roots of r (θ) using Newton’s method. See Kannala and

Brandt (2006) for more details.

In this chapter, we aim to adapt the hybrid system from Chapter 5 to support

fisheye cameras. As noted above ORB-SLAM3 already supports the Kannala-Brandt

fisheye camera model, ElasticFusion, however, does not. In this chapter we are interested

in ElasticFusion’s map building functionality, i.e. we do not make use of, and therefore do

not adapt, ElasticFusion’s camera tracking functionality (see Section 6.2.3).

ElasticFusion’s mapping functionality is implemented using OpenGL’s shader

pipeline. Since a core assumption of ElasticFusion is that the input camera can be modelled

by the pinhole camera model, pinhole projection and unprojection code is diffuse, with

reimplementations at multiple sites throughout the mapping shaders, resulting in a tight
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6.2. Dense Monocular Fisheye SLAM

coupling between ElasticFusion and the pinhole camera model. Our approach to adapting

ElasticFusion to support fisheye cameras is to first make the map building pipeline generic

with respect to the specific camera model being used, and then, within this genericised

pipeline, implement the Kannala-Brandt camera model. To do this, we first centralised all

pinhole projection/unprojection operations. We then abstracted the specific camera model

implementation in the fusion process by introducing an interface that exposes camera

model agnostic projection and unprojection functions. The fusion process then depends

functionally on this interface and not on the specific camera model being used. The

requirements of the projection function are, pr o j : Xw → xi for homogeneous 3D world

point Xw ∈ R3 and homogeneous image point xi ∈Ω⊂ R2, and an unprojection function

unpr o j : xi → Xw . Note that Xw is specified in the camera’s coordinate frame. With

this interface, it is possible to easily extend the dense map building pipeline to support

additional camera models without having to adapt the mapping shaders themselves. For

example, the system now supports switching between mapping with the pinhole camera

model and mapping with the Kannala-Brandt camera model. In the remainder of this

chapter we focus on using the Kannala-Brandt camera model.

6.2.2 Scale-Aware Fisheye Depth Estimation

For depth estimation, we propose a variant of PackNet (Guizilini et al., 2020). The network

is composed of two sub networks; a depth estimation network Fd : I → 1
d(I) (that is, the

network outputs an inverse depth map) and a pose estimation network FP : (It , IN ) → Pt→n

that predicts the pose of each frame In in the frame of reference of It . We use a lightweight

version of the depth network, containing fewer packing and unpacking layers, that is

more suited to real-time operation. Both networks are trained simultaneously in a self-

supervised manner by establishing a structure-from-motion loss function over a small

temporal window around the current training frame. To do so, the pixels of each context

frame In ∈N (It ) are warped into the target frame It , producing a set of warped frames

În . The basis of the self-supervised loss function is photometric error induced between

the target frame and each of the warped frames. We reformulate the multi-view warping
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6.2. Dense Monocular Fisheye SLAM

function of PackNet to employ the Kannala-Brandt camera model, allowing the network to

estimate dense depth maps for fisheye camera imagery. The function to warp an image

point xn in a context frame to its corresponding location xt in the target frame is given by

xt =π
(

Pt
n ·

[
dn ·π−1

(
xn

)])
(6.2)

where, π is the Kannala-Brandt projection model from Section 6.2.1, Pt
n is the rigid body

pose from context frame In to target frame It and d−1
n is the inverse depth estimate for image

point n. Note that for simplicity we have left out homogenisation and de-homogenisation

operations.

We take additional measures to enforce metric scale depth estimates and to improve

overall training and inference performance. Firstly, we apply weak velocity supervision

loss on the pose network. Secondly, we perform sparse LiDAR supervision. For example,

when using the KITTI-360 dataset, we render the LiDAR and SICK laser scanner point

clouds into each fisheye frame using the ground-truth camera poses. This produces a set

of sparse ground-truth depth maps which we use to supervise the training. The full loss

function is

L=Lp +λ1Lr eg +λ2Lvel +λ3Ldepth (6.3)

where, Lp , Lr eg and Lvel are, respectively, the photometric loss, depth smoothness loss

and velocity supervision loss as per the original PackNet paper (Guizilini et al., 2020).

Ldepth is an L1 loss over ground-truth and predicted depth estimates (see Guizilini et al.

(2019) for more details).

6.2.3 Hybrid Sparse-Dense Mapping With Kannala-Brandt Cam-

era Model

To compute a dense model of the environment, we extend the hybrid sparse-dense SLAM

system of Gallagher et al. (2021). ORB-SLAM3 is used for camera tracking and global
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loop closure detection (Campos et al., 2021). To achieve dense mapping, Gallagher

et al. (2021) combines ORB-SLAM3 with ElasticFusion (Whelan et al., 2015). As in

ElasticFusion, the dense map is represented as an unordered list of surfels M where each

surfel consists of a position p ∈R3, a normal n ∈R3, a radius r ∈R, a confidence c ∈R and

a colour. As before, at each point in time, the map is divided into two non-overlapping

subsets of surfels; an active map Θ representing surfels that have been fused with live data

within the last δt iterations and; an inactive map Φ representing surfels that have not been

fused with live camera data within the last δt iterations. For each live colour image It our

system runs a number of steps detailed below.

Depth estimation. The system computes a depth map Dt = Fd (It ) using the depth

estimation network described in Section 6.2.2.

Sparse camera tracking. It is passed to ORBSLAM-3 which performs feature-

based camera tracking as per the original ORB-SLAM algorithm (Campos et al., 2021).

Note that we run the full ORB-SLAM pipeline in the background including camera

tracking, local mapping and loop closure detection and global optimisation. The output of

this phase is the pose of the camera for the current time-step Pt ∈ SE(3).

Global Loop Closures We close global loops in a two-stage hybrid process sim-

ilar to Gallagher et al. (2021). ORB-SLAM3 extracts novel and informative frames as

keyframes, using a background thread to search for loop closures between keyframes. Once

a loop closure candidate is found, it is geometrically verified and a constraint T
K j

Ki
∈ SE(3)

between the two triggering keyframes is calculated. ORB-SLAM corrects its sparse map

with a pose graph optimisation followed by a bundle adjustment. To correct the dense map,

our system renders the dense model into two virtual frames located at the same poses as

the two triggering keyframes. The pose of the newly added keyframe Ki is used to render

the active portion of the model Θ, while the pose of the matched keyframe K j , transformed

by the loop closing constraint T
K j

Ki
, is used to render the inactive portion of the model Φ.

This ensures that it is the newer, active portion of the model that is brought into registration

with the old part of the model during loop correction. From these two frames, a set of

3D → 3D surface-surface correspondences are calculated. The surface correspondences
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are used to optimise a deformation graph which, when applied to the dense model, corrects

its geometry to reflect the loop closure.

Local Loop Closures. Assuming no global loop closure has occurred during the

current iteration, the system looks for a local loop closure within the dense model. A local

loop closure seeks to align the active and inactive portions of the model in view of the

current camera pose. Local loop closures help keep the camera aligned with the dense map

during locally loopy camera motion. To do so, we render two views of the scene, one each

for the active and inactive map regions, using Pt . The loop closure constraint is calculated

via a robust ICP non-linear optimisation, as per the original EF algorithm. The result is

a 6-DOF rigid body transformation Ti
a aligning the active frame with the inactive frame.

Since local loops are purely model-to-model, instead of using π to project Θ and Φ into Pt ,

we render instead to virtual pinhole images. This allows us to take advantage of the EF’s

RGB-D alignment. To correct the dense geometry, Ti
a is used to compute a set of 3D → 3D

surface-surface point correspondences, in the same way as during a global loop closure.

The loop is then corrected with a deformation graph in the same manner as a global loop

closure.

Fusion. Once the camera has been tracked and all loop closures have been iden-

tified, the current live camera frame It and estimated depth map Dt are fused into the

active region of the map Θ. To do so, data-associations between Θ and It are found by

rendering a high resolution index map of Θ using Pt and π. Once the current frame has

been associated, fusion proceeds in the same way as in Whelan et al. (2015).

6.2.4 Accounting for Scale

The overall scale of a scene is unobservable by a single monocular camera with no prior

information. Therefore, a monocular mapping system can only estimate the motion of

the camera and the geometry of the scene up to a scale factor. What’s more, the scale of

the reconstruction tends to drift over time. For long and loopy mapping sessions, scale

consistency can be enforced by observing and correcting scale drift during loop closures

(Strasdat et al., 2010a). In our system, before we can use Pt to fuse the current frame and
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depth map, we must recover the scale ratio s ∈R between the sparse reconstruction and the

dense reconstruction. We estimate the scale ratio between the metric dense depth estimate

at the current time step Dt and the sparse ORB-SLAM map points MORB in view of the

current pose Pt . First, we render a sparse depth map DORB from MORB using Pt . The

scale difference at time step t is given by median ratio st = med(Dt )
med(Dor b ) . To ameliorate noise

and to account for the fact that scale drifts over time, we keep a rolling buffer of scale

estimates over the last n frames S. The final scale ratio s ∈R estimate is then taken as the

average over {si ∈ S|si ∈
[
µS ±2σS

]
}. Once the scale ratio s has been recovered we use it

to scale the translational component of the current pose, lifting it into metric scale and

allowing fusion of the current frame into the metric scale dense model.

6.3 Experimental Results

To investigate the suitability of our proposed approach to dense monocular fisheye SLAM,

we performed a qualitative and quantitative analysis on the KITTI-360 benchmark dataset

(Liao et al., 2021). KITTI-360 is a follow-on to the well known KITTI benchmark dataset

(Geiger et al., 2013). The dataset consists of 9 public access sequences of a car driving

through a sub-urban environment where the car is equipped with two lateral facing fisheye

cameras pointing in opposite directions. The sequences also include 3D LiDAR and a 2D

SICK laser scanner. Dataset annotations include ground-truth poses, per-frame LiDAR

and SICK point-clouds, accumulated point-clouds and calibration parameters. Semantic

labels, GPS/IMU data, and bounding boxes are also included, however we do not make

use of these additional annotations in this work.

Note that KITTI-360 provides a different camera model for the fisheye cameras

to the one used in our SLAM system. To utilise KITTI-360 with our system we calibrate

the fisheye cameras using the chessboard detector of Geiger et al. (2012b) and the fisheye

calibration optimisation of OpenCV (Bradski, 2000). An overview of our system’s inputs

and outputs can be seen in Figure 6.1 and Figure 6.3, respectively.
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(a) (b)

(c)

Figure 6.3: Trajectory and dense reconstruction of a sequence from Liao et al. (2021).
(a) shows the final surfel model produced by our system. The model contains approximately
7.5m surfels. (b) shows the estimated trajectory (projected onto the x y plane) alongside
the ground truth trajectory. (c) shows an up-close view of the reconstruction as the vehicle
passes through an intersection contained in (a). Inset in (c), from top to bottom: the current
live image, the corresponding estimated depth map from the network, the model predicted
RGB image and the model predicted depth map. Note that these results were captured
using an accurate high resolution version of our network that allows our SLAM system
to operate at approximately 2hz. We trained a slim version of the network for real-time
operation.

6.3.1 Depth Estimation Training Results

We trained Fisheye PackNet described in Section 6.2.2 on the fisheye images of the KITTI-

360 dataset. Each of the 9 KITTI-360 sequences vary in length, ranging from ∼ 1k frames

to ∼ 20k frames. We use both left and right images during training but treat them as
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Method Absr el Sqr el RMSE RMSElog

PackNet Fisheye 0.127 0.605 2.422 0.204

Table 6.1: Evaluation of depth estimation on the proposed KITTI-360 test split. Results
are computed over depth estimates up to 80m.

separate samples. For training, we end up with ∼ 45k training images, ∼ 45k testing

images and ∼ 20k validation images. Sparse depth map training labels are produced in

a pre-processing step by rendering the LiDAR point clouds and SICK point clouds into

the ground truth camera frame. We train the network on a GPU server with 4 Nvidia

RTX-3090 cards for 66 epochs. Each epoch takes approximately 1hrs40mins. In Table 6.1

we establish a first baseline of depth estimation results on KITTI-360 fisheye, reporting

the accuracy of the trained depth estimation on the KITTI-360 test split with respect to the

ground truth LiDAR scans. In Figure 6.4 we report qualitative results of our network’s

performance on the test split of KITTI-360.

6.3.2 Dense Fisheye Mapping Results

In this section, we present the results of experiments that investigate the effectiveness,

at a local level, of our hybrid approach to dense monocular fisheye SLAM in estimating

de-noised surface reconstructions. We also provide a number of qualitative examples of the

system’s overall performance, including side-by-side comparison of estimated and ground

truth trajectories (e.g., Figures 6.5 and 6.6).

All Mapping experiments are run on an i7 CPU using an NVIDIA 1080ti using

the test splits outlined in Section 6.3.1. Within the testing split of each sequence, we

use chunks of contiguous frames for benchmarking our system. In our experiments, we

demonstrate that, while global consistency can be difficult to achieve, our system still

consistently achieves accurate local mapping over windows up to > 300m in size. In

Figure 6.5 we report surface reconstruction accuracy results. In particular, for a given

test sequence, we retrieve nearby ground truth LiDAR scans to construct a local model.

We then align this local model to the model estimated by our system. We take the mean

distance between each point in our model and its corresponding closest point in the aligned
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Figure 6.4: Qualitative results of Fisheye PackNet on test split of KITTI-360. The left
column shows the input RGB fisheye image, the right column shows the estimated depth
maps. Top row; note that while the gross geometry of the scene is well estimated, finer
grained details, on the garage door and on the rear of the car, are smoothed out. Middle
row; the prominent building corner highlights instabilities in depth estimation of sharp
details in the scene. Bottom row; foliage represents a particularly challenging input for the
network.

local model as a measure of the local mapping accuracy of our system. Figure 6.5(a)

shows how incrementally increasing the neighbourhood region from 10−300m within

which LiDAR scans are gathered results in local mapping accuracy of ∼ 13cm−∼ 42cm.

In Figure 6.5(b) we show how estimating scale is challenging for our system given the

use of monocular ORBSLAM and the scale ratio (see Section 6.2.4). Figure 6.5(b) shows

the trajectory estimated by our system (lifted into metric scale during mapping) alongside
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Figure 6.5: Windowed dense surface reconstruction accuracy from test splits from
Liao et al. (2021). Figure 6.5(a) shows the mean surface-surface error as a function of
local window size. For each of the sequences in figure 6.5(a), we average the results across
5 uniformly selected locations from trajectory. Figure 6.5(b) shows our system’s estimated
trajectory alongside the ground truth trajectory for KITTI-360 sequence 4. The blue curve
shows the estimated trajectory aligned and scaled to the ground truth. Note how, even
though tracking exhibits significant scale drift, within relative large local areas (∼ 300m)
mapping is accurate.

the ground truth trajectory. We note that despite the exhibited scale drift, the overall

morphology of the trajectory is captured in the output, and as shown in Figure 6.5(a),

the resulting map remains highly accurate over ranges of 150m. In Figure 6.7 we report

a breakdown of our system’s run-time performance. The system runs at ∼ 5hz. Note

that as the number of surfels increases, the time taken to fuse new frames into the dense

model also increases. Depth estimation is the main bottleneck in the system. Figure 6.6

qualitatively demonstrates loop closures in our system.

6.4 Summary

We presented a monocular fisheye dense mapping system that combines dense depth

prediction with sparse feature tracking and dense surfel fusion techniques. Fisheye depth

prediction is achieved by integrating the Kannala-Brandt camera model into PackNet. With

a combination of weak velocity supervision and sparse LiDAR-based depth supervision,

we trained PackNet to predict dense depth maps on the fisheye images of the KITTI-360
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Figure 6.7: A breakdown of our system’s run-time performance. We used a test split
subsequence of KITTI-360 Sequence 00 for this experiment. The subsequence consists of
∼ 4500 frames.

dataset. The proposed SLAM system permits live-dense reconstruction of outdoor scenes

using a fisheye camera in automotive scenarios. Sparse tracking provides camera pose

estimation capable of operating robustly at vehicle speeds and in outdoor environments

with variable lighting. Global loop closures are identified by ORB-SLAM3’s appearance-

based place recognition module with the resultant constraints passed to the dense fusion

algorithm where they are integrated with a deformation graph-based map correction step

Our results demonstrate dense, metric visual mapping with a single fisheye camera

over local windows of up to 300m, with accuracy on the order of 13−42cm, depending on

window size. The integration of loop closure constraints within a SLAM based approach

permit leveraging of repeated passes of regions of the environment within a globally

consistent framework. Although our system exhibits accurate mapping over extended

scales, globally accurate mapping remains a challenge. Within the context of KITTI-360,

the lateral, sideways facing positioning of the fisheye cameras, combined with the fast
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motion of the vehicle, represents a difficult input for ORB-SLAM3. Furthermore, while

we have incorporated measures to address scale ambiguity inherent in monocular SLAM,

it remains a significant challenge over long sequences where the scale of the sparse map is

bound to drift

In KITTI-360, the sideways facing orientation of the fisheye cameras on the vehicle

means that the focus of expansion is to the image edge. This is in contrast to the forward

facing pinhole cameras, where the focus of expansion is towards the image centre. The

effect of the orientation of the camera, in relation to its direction of travel, on camera

tracking and map fusion, especially in the context of wide FOV fisheye cameras, is an

interesting question for future work.

Supporting a wide range of camera models within a single mapping system is a

challenging problem. Projection and re-projection functions can vary drastically between

different camera models. Often the Jacobian of the camera model is required for integrating

the model into non-linear camera tracking and mapping optimisations. Furthermore, each

camera model requires calibration, which itself can involve a complicated procedure that

may fail or produce a poor calibration. This limits a SLAM systems suitability as a

research and consumer grade tool. In future work, we aim to investigate Neural Ray

Surfaces (Vasiljevic et al., 2020) and their ability to recover a ray surface for a camera

without known calibration parameters, as the basis for a unified approach to dense, CNN-

based mapping.

Another aspect of future work is to redesign the fisheye tracking function to

leverage the dense model, similar to how it is leveraged by the hybrid tracking procedure

of Section 5.2.4. This would involve reformulating the Jacobians of the direct tracking cost

function in terms of the Kannala-Brandt camera model similar to (Matsuki et al., 2018).
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CHAPTER 7

Conclusion

7.1 Discussion

The aim of this thesis was to bridge the gap between the state-of-the art in real-time

dense 3D reconstruction and what is required for operation in the challenging conditions

of outdoor environments and multi-camera collaborative mapping. Application to the

automotive domain acted as representative context for our work, where several limitations

have prevented SoTA dense VSLAM systems from being applied. In Chapter 3 we

introduced a novel dense collaborative SLAM system that allowed multiple independently

moving hand-held RGBD cameras to collaboratively map an indoor space. We identified

two distinct phases of operation during collaborative mapping; an initial phase where

cameras maintain local maps independently of one another, and a multi-camera fusion

phase where cameras whose local maps overlap have been merged. We used fern-based

visual recognition to identify overlap between camera specific local maps and ICP to find

the transformations between the coordinate frames of the matched local maps, allowing

processing to enter the multi-camera fusion phase of operation (for cameras in these two

maps at least). The process of matching views and merging maps continues until either

processing ends or there is only one global map left.

A significant limiting factor of collaborative mapping is the number of cameras

that can be processed simultaneously. To address this issue, in Chapter 4, we explored

the potential for switching between tracking and full scale SLAM processing using an
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information theoretic keyframing approach. The approach estimates the quantity of

novel information contained in live sensor data with respect to the dense map. Frames

whose novelty exceeds a threshold are used for both mapping and tracking, while frames

considered redundant are used to track the camera and are then discarded. By putting

a threshold on how novel a frame needs to be before it is fused, this method exposes a

tunable parameter that allows the complexity of the underlying surfel map to be controlled

on a per-application basis. This level of control is an important aspect of next generation

robust and versatile SLAM systems (Cadena et al., 2016).

Dense mapping is challenging in outdoor environments, especially when the camera

is attached to a moving vehicle. The fast motion of the vehicle results in large displacement

between successive frames which is antithetical to what is required for direct camera

tracking. In general, what is required for direct camera tracking is a good initial estimate

of the camera pose in the current frame. Initializing the optimisation at this estimated

pose allows the tracking procedure to avoid local minima in the non-convex error surface

defined by the tracking cost function.

Furthermore, environmental factors, like changing weather, lead to highly variable

light conditions, making the estimation of dense scene geometry using classical multi-view

reconstruction techniques, such as those used by DTAM (Newcombe et al., 2011b) and by

active RGB-D sensors like the Kinect, extremely challenging. Underlying many approaches

to direct camera tracking is the brightness constancy constraint. This constraint captures

the assumption that the same point (with Lambertian reflectance properties) imaged by

two cameras from two different perspectives, results in the same pixel brightness value

in both cameras (albeit at different pixel sites). Of course, this constraint takes an overly

simplistic view of things, even when applied to the most idealistic real-world scenes. In

outdoor SLAM, all it takes is for a cloud to pass in front of the sun during the time between

the capture of successive frames to alter the intensity of projected points. However, when

combined with robust cost functions, it has been shown that the constraint only needs to be

approximately correct in order to provide accurate camera tracking performance.

In the latter half of this thesis, we described a dense mapping system that overcomes
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these challenging conditions to reconstruct outdoor spaces from a moving camera, in real

time. ElasticFusion formed the foundation of this system, providing direct camera tracking

and dense surface fusion capabilities. To overcome the challenges of large inter-frame

displacement induced by the fast motion of the car we incorporate elements of ORB-

SLAM, a sparse SLAM system. As opposed to ElasticFusion, which performs direct

camera tracking, ORB-SLAM finds correspondences between highly salient feature points

in successive frames. This feature-based approach to tracking makes ORB-SLAM far less

susceptible to large inter-frame displacement and transient changes in scene illumination.

The hybrid design of this system brings into question a potentially false dichotomy in

SLAM research. Platinsky et al. (2017) ask the following question with the title of their

paper - “Sparse joint optimisation or dense alternation?" However, the SLAM system of

Chapter 5 represents a third option - that the strengths of both sparse and dense SLAM can

be combined within one system.

In Chapter 6 we extended our hybrid system to operate on large FOV fisheye

cameras. The highly distorted nature of fisheye images makes them challenging inputs

for a SLAM system to process and cannot be modelled by the pinhole camera model

that underlies the hybrid SLAM system. We reformulated the depth prediction and dense

surface fusion stages of the pipeline in terms of the Kannala-Brandt camera model, allowing

the system to process images in their original distorted fisheye form.

Taken as a whole, the contributions of this thesis have addressed key limitations

of the state-of-the-art in dense VSLAM. Prior to this work, these limitations prevented

techniques from this field from being applied to multi-camera collaborative mapping and

outdoors environments, where they may be of potentially enormous benefit. Table 7.1 lists

artefacts and video demonstrations created during the production of this thesis.

7.2 Future Work

The main task of future research in this area is to fully integrate the collaborative and

outdoor SLAM systems of this thesis. In Appendix A, we demonstrate, with a simulated

urban canyon dataset, that the collaborative SLAM system presented in Chapter 3 could, in
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Artefact Link

Open source code
for Chapters 3
and 5

https://github.com/
robotvisionmu/DenseMonoSLAM

Chapter 3 demo https://youtu.be/GUtHrKEM85M
Chapter 3 - urban
canyon demo

https://youtu.be/Uy7wYHbdPV8

Chapter 5 demo https://youtu.be/Pn2uaVqjskY
Chapter 6 demo https://youtu.be/EU7WYRuklJo

Table 7.1: A list of artefacts and demonstrations created during the research of this
thesis.

principle, facilitate multi-camera mapping with outdoors autonomous vehicles. However,

before the technique can be applied in the real world, the hybrid sparse-dense SLAM

architectures, presented in Chapters 5 and 6, would need to be integrated, in order for

the system to overcome the challenges of outdoor automotive scenarios. One of the main

technical challenges that needs to be addressed in order to achieve this integration is that

ORBSLAM-3, which is a dependency of both the hybrid sparse-dense system of Chapter 5

and the fisheye system of Chapter 6, is itself not a collaborative SLAM system. Extending

it in this way would require careful engineering.

While this thesis, with the above-mentioned integration, would go some way

to bringing the potential of collaborative dense SLAM to autonomous vehicles, there

remains a wide chasm between the capabilities these SLAM systems provide and what

will ultimately be required to build truly autonomous multi-robot systems. Traversing that

chasm requires addressing other key problems.

The question of relaxing the static scene assumption is one such key problem and a

promising direction for future research. As discussed earlier in the thesis, this assumption

forms part of the limit of what many SLAM systems can handle. Some works try to identify

dynamic scene elements in the input stream so they can be down weighted or removed

from the optimisation (Keller et al., 2013). More interesting though is how they can be

captured and included in the model. Newcombe et al. (2015) uses a surface warp-field to

warp the current (dynamically deformed) frame to its canonical form as it appeared in the
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first frame. While this system is both dense and real-time it has not demonstrated dynamic

mapping of large complex scenes.

Are the models dense SLAM systems produce truly dense, or at least as dense as

they could be? In many instances the resultant models contain many ’holes’; areas that

through occlusion, noise or lack of input data have not been mapped. However, across

many categories of objects, and even in general scenes, there are potentially strong priors

that can be leveraged to fill the holes with plausible guesses of what form the unseen

surface might take. There are many works on in-painting 3D models of objects to fill in

missing data. However, exactly how these networks and their predictions can be placed in

the loop of a SLAM system is a largely unexplored question.

Neural networks are a flexible computing tool with potentially many benefits

for SLAM. As predictors, they can be used to estimate useful quantities for a SLAM

system such as visual odometry, depth frames, uncertainty, motion segmentation, semantic

segmentation and much more besides. As encoders, they can be used to represent both

whole scenes and individual keyframes. The breakthrough NeRF system (Mildenhall

et al., 2020) achieved state-of-the-art novel view synthesis performance. Since then several

follow-on works have extended the system to operate like a full Structure From Motion

system (Lin et al., 2021; Wang et al., 2021), and even a full SLAM system (Sucar et al.,

2021; Zhu et al., 2022). The issue of scalability surrounding NeRFs has begun to be

addressed. Frameworks that allow neural-network based representations, like NeRF, to

be trained in a matter of seconds have been proposed (Müller et al., 2022). Other works

extend classic NeRF architectures to cover multiple city blocks (Tancik et al., 2022).

NeRF represents the scene implicitly using a multilayer perceptron (MLP). The

MLP maps input 3D query points to the emitted radiance at each point in space. Colour and

depth predictions from specific viewpoints can be made by querying the NeRF at points

sampled from along the camera’s lines of sight (i.e. the direction rays emanating from each

pixel site in the image array). The resulting radiances from each ray can then be combined

in a volumetric rendering step. This representation is extremely flexible. When it comes to

SLAM, NeRF style representations offer a route to truly dense 3D models, without the
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discretisation artefacts of signed distance functions and occupancy grids. During mapping

one can operate at potentially any scale or resolution. The MLP representation allows for

plausible interpolation of unseen portions of the scene (Sucar et al., 2021).

Systems such as Kimera (Rosinol et al., 2021), SemanticFusion (McCormac et al.,

2016) and Fusion++ (McCormac et al., 2018) estimate semantic labels for each patch of

the surface. Many depth estimation networks can be augmented and trained to estimate

semantics for each pixel site in the input images. These observations can then be integrated

into the map to produce dense 3D semantic map as is done by SemanticFusion. However,

the question of how to leverage such a semantic map is a particularly promising avenue for

future research that has not been fully explored. It seems that, in principle, the relationship

between model predicted semantic labels and the semantic labels of the input image can

be leveraged in the underlying SLAM optimisation, as a form of regularisation or bias, to

guide the optimsation to the correct structure and motion parameters.

It is our hope that the work of this thesis can act as a strong foundation for comput-

ing a geometric base layer upon which semantic and truly dense neural representations of

challenging, dynamic scenes can be built.
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APPENDIX A

Urban Canyon Simulation

In this appendix, we provide qualitative results of our approach to collaborative SLAM

applied to the domain of autonomous driving within a simulated urban environment. Elas-

ticFusion, and therefore our system, was designed with a hand-held camera exploring an

indoor environment in mind. Neither system can be directly applied to outdoors environ-

ments and scenarios that involve fast camera motion due to two primary limitations: (i)

ElasticFusion requires that the input device is an RGB-D camera. While this is not a limi-

tation in indoors environments, when operating outdoors, natural light causes and increase

in sensor noise beyond what ElasticFusion is capable of tolerating; (ii) ElasticFusion’s

tracking procedure assumes that inter-frame displacement is relatively small and that scene

lighting is consistent. This assumption is violated in the domain of outdoor, automotive

applications where the camera will be moving at speed and lighting is highly variable. For

the experiments in this appendix, we extend the Urban Canyon dataset (Zhang et al., 2016),

creating a series of overlapping camera trajectories, where each trajectory consists of a

sequence of RGB-D frames rendered from a simulation of a vehicle traversing synthetic

model of a city. During rendering, sensor noise, scene lighting and inter-frame displace-

ment are tightly controlled allowing us to demonstrate that our collaborative SLAM system

can be applied to automotive applications if ElasticFusion’s underlying limitations can

be addressed. In Chapters 5 and 6 we revisited ElasticFusion’s limitations, and presented

dense SLAM systems that can operate outdoors and with cameras attached to moving

vehicles.
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For this experiment, we establish a simulated multi-vehicle automotive scenario

in an urban environment based on the Urban Canyon dataset (Zhang et al., 2016). Urban

Canyon consists of a neighbourhood-sized section of city and includes a number of roads

meeting at intersections and surrounded by buildings. The scene is generated within

Blender using the SceneCity add-on. The original dataset simulates a single forward-

looking camera attached to a moving vehicle. For our experiments, we wish to simulate

multiple vehicles moving through the city. To do so, we split the original trajectory of

the vehicle, defined using splines in Blender, into two overlapping sub-trajectories. We

further reverse the direction of one of the sub-trajectories. This ensures that there is ample

opportunity for inter-map loop closures, but that computing the inter-map constraint is

non-trivial as the vehicles have significantly different viewing directions. We then render

depth and colour images for each sub-trajectory. During rendering, we ensure that frames

are sampled close enough so that inter-frame displacement is suitably small and that scene

lighting remains consistent for the duration of the render. We further note that depth maps

are not corrupted by noise due to natural light. The camera is modelled as a pinhole camera

and all sub-sequences are rendered with Blender’s Cycle ray-tracing engine as per the

original Urban Canyon dataset (Zhang et al., 2016). The collaborative Urban Canyon

dataset can be seen in Figure A.1

To demonstrate our system’s applicability to automotive scenarios, we process the

collaborative Urban Canyon dataset in a two-vehicle collaborative mapping session. The

results of this collaborative mapping session are detailed in Figure A.2 and its caption. The

system allows two vehicles, starting in separate local sub-maps, to successfully find and

correct an inter-map loop closure and build a single shared model of a neighbourhood-

sized section of a city. These results demonstrate that if scene lighting and inter-frame

displacement can be accounted for, and accurate depth maps can be computed then our

system can be used in automotive scenarios.
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Figure A.1: Collaborative urban canyon dataset. The orange curve describes full
trajectory of the car through the synthetic city scene as described in Zhang et al. (2016).
For collaborative experiments, we divide this trajectory into 2 main segments overlaid in
purple and green. Arrows along the curves point in the direction of travel of the car. Note
that the two sequences overlap substantially but that the car travels in opposite directions
in each of them.
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(a)

(b)

(c)

(d)

(e) ( f )

Figure A.2: Collaborative dense SLAM with synthetic urban canyon dataset. (a) and
(b) two cameras, corresponding to the two sequences outlined in Chapter A, begin mapping
within their own relative local maps. (c) and (d) visual place recognition across the two
sub-maps triggers an inter-map loop closure, bringing the two sub-maps into alignment.
(e) the two maps are merged into a single global coordinate frame. Each camera can now
use the map data produced by the other map. Primary coloured green and blue surfels
correspond to surfels that have been measured by a single camera, while the teal coloured
surfels have been fused with surfels from both cameras, signifying map sharing. ( f ) final
global model produced collaboratively in the urban canyon environment.
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