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ABSTRACT
Accurate predictions of water surface elevation (WSE) in rivers at high spatial and temporal resolution are 
important for flood/drought risk assessment and flood/drought forecasting and management. WSE in 
a river is controlled by three main factors: discharge, riverbed geometry, and hydraulic roughness. In 
remote and poorly instrumented rivers, discharge and riverbed geometry are highly uncertain and WSE is 
therefore hard to predict. ICESat-2 laser altimetry provides accurate elevation transects across the river at 
very high spatial resolution (70 cm along track). This paper demonstrates how ICESat-2 elevation 
transects can be used to parameterize a basin-scale hydraulic model of a continental-scale river. The 
workflow is demonstrated for the transboundary Amur River in North-East Asia. Simulated WSE is 
subsequently validated against a large dataset of in situ and satellite altimetry observations, and we 
demonstrate that the model can reproduce available WSE observations throughout the basin with an 
accuracy of 1–2 m.
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1 Introduction

Rivers are highly vulnerable to climate extremes and, at the 
same time, essential for biodiversity and economic develop
ment. As a consequence of the 2022 drought and heat wave, 
which simultaneously affected all three major world econo
mies (EU, US and China), the economic importance of rivers 
as transport waterways and cooling water reservoirs has come 
into increased focus. Improved quantitative tools for river 
management are thus important and timely.

State-of-the-art global-scale inland water modelling and 
forecasting systems (e.g. Global Flood Awareness System 
(GLOFAS), Alfieri et al. 2013; European Flood Alert System 
(EFAS), Alfieri et al. 2014; DHI Global Hydrological (DHI 
GHM), Murray et al. 2023) rely on the combination of numer
ical weather prediction systems and simulation models with 
observational datasets from in situ sensors and satellite earth 
observation (EO). The hydrological compartment of such sys
tems typically includes two sub-models, one representing the 
rainfall-runoff phase of the inland water cycle, and the second 
being a hydraulic model representing flow and inundation 
processes in rivers and floodplains. The hydraulic model is 
essential to transform runoff predictions provided by the rain
fall-runoff model into predictions of water level along the 
river. Water level, in turn, is the controlling variable for 
flood risk assessment and flood early warning (Winsemius 
et al. 2013).

Parameterizing hydraulic models at continental to global 
scale remains challenging (Neal et al. 2012, Bjerklie et al. 2018, 
Pujol et al. 2020). A number of approaches have been 

developed, many of which exploit the increased availability of 
water surface elevation (WSE) observations from multiple 
satellite altimetry missions from databases such as Hydroweb 
(Crétaux et al. 2011) and Dahiti (Schwatke et al. 2015), and use 
these datasets to fit simple conceptual river cross-section 
shapes (e.g. Neal et al. 2012, Garambois et al. 2017, 
Schneider et al. 2017, Jiang et al. 2019). Problems that com
monly arise in such workflows include parameter trade-offs 
between cross-sectional shape parameters and hydraulic 
roughness as well as rapid changes in flow width occurring 
around the bankfull depth of the river, which cannot be cap
tured with simple conceptual shapes. To resolve the inherent 
non-uniqueness of the hydraulic inverse problem, additional 
hydraulic observations from satellite EO, such as surface water 
extent and water surface slope, have been used (Bjerklie et al.  
2018, Pujol et al. 2020).

The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) 
mission (Markus et al. 2017) provides new opportunities for 
the parameterization of large-scale hydraulic river models, 
because it delivers very high-resolution elevation datasets 
with an along-track resolution of just 70 cm (Neumann et al.  
2019). ICESat-2 elevation transects across the river, taken 
during the low-flow season, thus map the river cross-section 
at a very high level of detail, with the exception of the sub
merged portion. While ICESat-2 can directly map submerged 
bathymetry in clear coastal waters (Parrish et al. 2019), in most 
cases, the submerged portion of the riverbed cannot be 
mapped from ICESat-2 data, because river water transparency 
is low and the laser beams do not penetrate through the water 

CONTACT Peter Bauer-Gottwein pbau@env.dtu.dk Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs. Lyngby 
2800, Denmark

HYDROLOGICAL SCIENCES JOURNAL                 
https://doi.org/10.1080/02626667.2023.2245811

© 2023 IAHS 

http://orcid.org/0000-0002-9861-4240
http://orcid.org/0000-0001-7907-1677
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/02626667.2023.2245811&domain=pdf&date_stamp=2023-09-12


down to the river bed. However, during low-flow periods, the 
submerged portion of the riverbed is small. Rather than fitting 
the entire river cross-section using conceptual shapes, one only 
has to extrapolate a small portion of the cross-section that is 
submerged at ICESat-2 acquisition time. This reduces para
meter trade-offs between cross-section shape and friction 
parameters.

This paper demonstrates how ICESat-2 elevation data
sets can be used for the development of continental-scale 
hydraulic models and illustrates the workflows for the 
example of the Amur River. We show that a hydraulic 
model parameterized using ICESat-2 elevation transects 
across the river can reproduce water level observations 
from in situ stations and the available inland water satel
lite altimetry record, consisting of more than 100 virtual 
station time series placed along the river course. The 

workflows developed here are applicable at global scale 
and provide a consistent methodology for the simulation 
of WSE in global rivers that can be combined with the 
global inland water record available from satellite 
altimetry.

2 Materials and methods

2.1 The Amur River

The Amur (or Heilong Jiang in Chinese) is the world’s 10th 

longest river, with a total drainage basin of ca. 1.89 million 
km2 and a total length of ca. 4440 km. The vast majority of 
the basin is located in Russia (53%) and China (45%). 
Mongolia hosts the remaining 2% of the basin area 
(Fig. 1). Over a total distance of ca. 2500 km, the Amur 

Figure 1. Base map of the Amur River system, indicating (a) geographic location and (b) main rivers. Panel (c) shows reservoirs (blue triangles), routing branches of the 
model (thin blue lines), hydrodynamic branches (thick blue lines) and sub-catchments of the model (green dotted shapes). Background shading indicates Shuttle Radar 
Topography Mission (SRTM) elevation.
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River forms the border between China and Russia, and on 
this entire stretch of the river, no in situ discharge obser
vations are available. The Amur River ultimately drains 
into the Tatar Strait between the Sea of Okhotsk and the 
Sea of Japan. River width varies from a few hundred 
metres in the upstream reaches to several kilometres in 
the downstream portions of the river. The Amur River is 
a global biodiversity hotspot hosting endemic fish species 
and large migratory fish populations as well as huge wet
land systems (Egidarev et al. 2016, Simonov et al. 2019). 
While floodplains on the Chinese side of the river have 
been severely affected by river regulation (Jia et al. 2020), 
wetlands in the Russian portions of the basin remain 
largely intact.

Because it is located in a latitude range from 41 to 56 
degrees north, the basin is dominated by cold continental 
weather with dominant snowfall in winter. Large portions 
of the river are ice-covered during the winter months. Ice- 
cover monitoring using satellite imagery and satellite alti
metry datasets (Zakharova et al. 2021) confirms that the 
river is frozen from end November to end April. The Amur 
River has several large tributaries (Fig. 1), the largest of 
which is the Songhua River, joining the Amur from the 
right-hand side near the town of Tongjiang in China. 
There are 19 large dams in the Amur River Basin 
(Simonov et al. 2019). Seven reservoirs have a storage capa
city larger than 1 km3, of which two are located in Russia 
and five in China (Fig. 1). Flooding is common in the Amur 
basin, and seasonal and inter-annual variations of river flow 
can be related to large-scale atmospheric patterns 
(Tachibana et al. 2008). The most recent disastrous flood 
occurred in 2013 (Danilov-Danilyan et al. 2014), and 
another large flood occurred in 2019. The evolution of 
flood risk in a changing climate is of concern (Nohara 
et al. 2006, Yu et al. 2013).

2.2 Rainfall-runoff modelling

In order to estimate spatio-termporally distributed runoff for
cings for the hydraulic model of the Amur River, we set up and 
calibrate a basin-scale rainfall-runoff model, because available 
in situ discharge records are sparse and unevenly distributed. 
Kalugin and Motovilov (2018) report the only basin-scale 
rainfall-runoff modelling effort for the Amur in the open 
literature. We used the Nedbør-AfstrømningsModel (NAM) 
rainfall runoff model (Nielson and Hansen 1973), which is 
integrated into DHI’s Mike Hydro River package, for rainfall- 
runoff simulation. The NAM rainfall-runoff model has been 
used and discussed in many hydrological modelling studies 
reported in the international peer-reviewed literature (e.g. 
Andersen et al. 2006, Zhu et al. 2008, Vansteenkiste et al.  
2014). The Amur River basin was divided into 43 individual 
sub-catchments (Fig. 1), using the Multi-Error-Removed 
Improved-Terrain (MERIT) hydro Digital Elevation Model 
(DEM) (Yamazaki et al. 2019) and the hydrographic DEM 
processing software TauDEM (Tesfa et al. 2011). The rainfall- 
runoff model does not include the areas contributing to Lake 
Hulun in Mongolia, which is essentially endorheic and only 
occasionally overflows into the Argun River.

As precipitation forcing for the NAM rainfall-runoff 
model, we used National Aeronautics and Space 
Administration NASA’s Global Precipitation Measurement 
(GPM) Integrated Multi-satellitE Retrievals for GPM 
(IMERG) product, more specifically the final precipitation 
L3 half hourly 0.1 degree × 0.1 degree product, version 06 
(Huffman et al. 2019), aggregated to daily values. IMERG 
precipitation was evaluated against a few available in situ 
precipitation stations, provided by the Russian 
Hydrometeorological Service, using a straightforward grid- 
to-point comparison in the time period 2008–2019. The 
resulting double-mass plots are shown in Fig. 2. The double- 

Figure 2. Double-mass plots for selected in situ precipitation stations. The right panel (b) shows the locations of the stations. The left panel (a) plots cumulative station 
precipitation versus cumulative IMERG precipitation for the pixel on which the station falls. The in situ observation period is 2008–2019 for all stations except 31884, for 
which it is 2016–2019.
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mass plots indicate inconsistencies and shifting biases 
between the stations and the IMERG product, which may 
be due to the IMERG product or due to issues with the 
in situ instrumentation. Because we do not have access to 
a spatially dense and quality-assured precipitation product 
based on in situ monitoring networks in the region and 
because the IMERG product has been shown to perform 
on par with in situ precipitation when used as hydrological 
forcing in neighbouring regions of China (Jiang and Bauer- 
Gottwein 2019), we force the rainfall-runoff model of the 
Amur river basin with the IMERG product.

Gridded land surface (2 m) temperature estimates were 
obtained from European Re-Analysis 5 (ERA5)-Land hourly 
data, provided through the Copernicus Climate Data Store 
(Muñoz Sabater 2019). Hourly temperature data were aggre
gated to daily maximum, minimum and average temperatures. 
Daily temperature statistics were used to estimate reference ET 
using the approach of Hargreaves and Samani (1985). In the 
NAM model, daily average temperature further controls snow 
accumulation and snowmelt via a threshold temperature for 
snow fall and a temperature index parameterization of snowmelt 
(Hock 2003).

For the 10 in situ river discharge stations reported in 
Table 1, the NAM model was automatically calibrated assum
ing uniform parameters across the entire sub-catchment cor
responding to the station. Daily discharge data for the period 
2008–2019 was obtained from the Russian 
Hydrometeorological Service for these stations. Daily dis
charge is obtained from daily water level observations using 
rating curves, which are seasonally variable and are confirmed 
and updated with regular river gauging surveys. The accuracy 
of the discharge time series is not specified by the data provi
der, but is likely around 10%. In total, nine NAM parameters 
(Umax, Lmax, CQOF, CKIF, CK1,2, TOF, TIF, TG and CKBF; 
refer to Nielson and Hansen 1973, Madsen 2000 for 
a description of NAM parameters) were automatically adjusted 
between reasonable a priori bounds to minimize overall root 
mean square error between simulated and observed runoff and 
overall water balance error, using a global search algorithm as 
described by Madsen (2000). Performance was benchmarked 
against the mean of all observations using the Nash-Sutcliffe 

Efficiency (NSE). NSE produces optimistic skill scores for 
seasonal rivers, and we therefore also report a skill score in 
which runoff climatology (i.e. the average of all historical run
off observations for a given day of the year) was used as the 
benchmark. The climatology index (CI) is calculated as follows 
(see also Bennett et al. 2013): 

CI ¼ 1 �
RMSENAM

RMSEClim
(1) 

where RMSENAM is the root mean square error between the 
observations and the NAM simulation and RMSEClim is the 
root mean square error between the observations and the 
runoff climatology.

Transfer of NAM parameters to ungauged sub-catchments 
was based on catchment similarity, using an approach 
described by Kittel et al. (2020). We used average rainfall, 
average temperature and average terrain slope as the attributes 
defining similarity. Ungauged catchments inherited para
meters from the gauged catchment that was closest in terms 
of total normalized distance between the attributes of the two 
catchments. The standard deviations of the attributes across all 
43 sub-catchments were used to normalize the distances. 
Parameter transfer relationships between catchments are illu
strated in Fig. 3.

2.3 Processing of ICESat-2 land elevation datasets

ICESat-2 is a spaceborne green lidar mission (532 nm), map
ping the Earth’s surface at an unprecedented spatial resolution 
of approx. 70 cm along track since 2018 (Markus et al. 2017). 
ICESat-2 is configured with three beam pairs that allow for 
across-track slope determination (90 m between pair members 
and 3.3 km between pairs). Each beam pair includes a strong 
beam (right with respect to orbit direction) and a weak beam 
(left with respect to orbit direction) with a power ratio of 4:1. 
ICESat-2 is on a 91-day repeat orbit; for this reason, the 
ground sampling pattern is very dense, while the temporal 
resolution is low. We used two different ICESat-2 data pro
ducts: ATL08, which is a low-resolution terrain elevation pro
duct (Neuenschwander and Pitts 2019), and ATL03, which is 
the native-resolution geolocated photon product (Neumann 

Table 1. Rainfall-runoff model calibration and validation results. RMSE is the root mean square error, WBE the water balance error or bias, and NSE the Nash-Sutcliffe 
model efficiency.

Station
Catchment 

ID

IMERG 
runoff 

coefficient
Calibration 

period
Validation 

period

RMSE (m3/s) 
calibration 

(% of mean 
flow)

RMSE (m3/s) 
validation (% 

of mean 
flow)

WBE 
(%) 
Cal.

WBE 
(%) 
Val.

NSE 
Cal.

NSE 
Val.

Calibration 
climatology 

index

Validation 
climatology 

index

Novomikhai- 
lovka

23 0.39 2008–2014 2015–2018 37.3 (74) 66.8 (133) 0.07 −3.70 0.57 0.49 0.17 0.42

Tynda 28 0.49 2008–2014 2015–2018 54.3 (127) 45.9 (107) −1.00 2.71 0.54 0.55 0.30 0.34
Zvenievoy 22 0.45 2008–2014 2015–2018 159.6 (65) 183.1 (74) −0.11 −3.70 0.65 0.68 0.31 0.49
Khor 37 0.71 2008–2014 2015–2018 341.8 (74) 351.3 (76) 22.30 20.70 0.54 0.48 −0.05 −0.07
Gouda 24 0.63 2008–2014 2015–2018 350.6 (61) 295.8 (52) 3.10 1.20 0.72 0.75 0.22 0.32
Ust-Niman 26 0.45 2008, 2010, 2011 2012, 2013 353.6 (109) 497.3 (153) −2.20 17.50 0.42 0.42 −0.15 0.33
Birobidjan 25 0.63 2008–2014 2015–2018 98.1 (80) 97.5 (79) 11.20 7.70 0.60 0.45 0.21 0.06
Ust-Ulma 27 0.49 2008–2014 2015–2018 776.6 (100) 771.1 (99) 2.43 −7.00 0.52 0.48 0.01 0.17
Krasnoya- 

rovo
15 0.26 2008–2014 2015–2018 104.6 (85) 101.8 (83) 27.60 3.30 0.51 0.76 0.08 0.69

Dalai 33 + 34 0.12 2016–2018 2019 183.60 (40) 427.7 (93) 0.29 3.63 0.80 0.85 0.62 0.83
Mean 0.59 0.59 0.17 0.36
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et al. 2019). We used version 5 of both products and accessed 
the data through the online portal of the US National Snow 
and Ice Data Center (https://nsidc.org/data/atl08/versions/5).

The Amur riverbed geometry was extracted from ICESat-2 
elevation transects across the Amur River following the workflow 
outlined in Fig. 4. ATL08 ground tracks were manually inspected 

Figure 3. Parameter transfer from gauged to ungauged sub-catchments. NAM parameters calibrated for the numbered catchments were transferred to all catchments 
with the same colour code.

Figure 4. Flowchart for the delineation of river cross-section geometry from ICESat-2 data products.
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to find crossings, spaced approximately every 10–20 river-km, 
with sufficient data density over the area of interest, which were 
directed approximately perpendicularly to the river centreline. 
The ICESat-2 laser is sensitive to cloud cover and mist, which 
strongly reduces the number of crossings that can be used to 
extract cross-section geometry. Moreover, we only used crossings 
during the dry and frozen season (i.e. November to April), when 
water levels in the river are low and a large portion of the cross- 
section geometry is therefore exposed and observable by ICESat-2. 
The selected ATL08 transects were used to pre-filter the corre
sponding ATL03 transects, and ATL03 data points with elevations 
outside ±10 m of the interpolated ATL08 elevation were rejected. 
The remaining ATL03 data was smoothed with a Savitzky-Golay 
filter (Savitzky and Golay 1964) using a third-degree polynomial 
to fit the ATL03 points and a variable window length to achieve 
appropriate smoothing of the ATL03 point cloud. Variable win
dow length was necessary, because cross-sections had different 
absolute length, ranging from hundreds of metres in the upstream 
portions of the river to tens of kilometres in the large floodplains, 
and because ATL03 point density varied greatly with atmospheric 
conditions. All ATL03 points falling more than 1 m from the 
filtered line were removed.

The surface elevation geometry was created with a smoothing 
spline function from the remaining ATL03 points. The degree of 
smoothing was controlled manually for each cross-section to 
achieve an appropriate representation of the elevation profile. 
Using the spline interpolation, cross-section geometry was 
resampled to 5 m spatial resolution. Open water surfaces were 
identified in the cross-section as entirely flat and smooth surfaces. 
In the ATL03 datasets for the Amur cross-sections used here, we 
have been unable to detect useable returns from the submerged 
riverbed. In some sections, we see scattered photons returned 
from below the water surface, which may be reflected from the 
riverbed, but the signal-to-noise ratio is too low to enable robust 
retrieval of submerged riverbed geometry. For this reason, sub
merged riverbed elevation was extrapolated using the power 
channel model (Leopold and Maddock 1953). The power channel 
model can be written as 

A ¼ α � dβ 

w ¼
@A
@d
¼ α � β � dβ� 1 (2) 

where A is the flow cross-sectional area, w is the flow surface 
width, and d is the flow depth. The parameters α and β are 
empirical fitting parameters. We assumed a uniform value of 
the shape parameter β (= 0.2). Depths were estimated as 0.7 
times the bankfull depths reported by Andreadis et al. (2013) 
and available online at http://gaia.geosci.unc.edu/rivers/. In the 
downstream reaches of the Amur River, which are affected by 
backwater from the ocean, depths for ICESat-2 cross-section 
acquisition dates were assumed to be equal to the bankfull depths 
reported by Andreadis et al. (2013). Parameters α were subse
quently determined for each cross-section from the assumed 
depth and β and the observed flow width from ICESat-2.

Once the parameters of the power channel model were 
determined, we estimated the submerged riverbed elevation 
at 5 m along-track spacing from the power channel model, and 

prepared the final cross-section for input into the hydraulic 
model. This included tagging each cross-section with the cor
responding river chainage and the angle of intersection with 
the river centreline, and sorting the elevations in the direction 
from left bank to right bank. For selected cross-sections, 
a priori estimates of depth were subsequently manually 
updated to match simulated spatio-temporally distributed 
WSE to observed WSE data from in situ stations and satellite 
radar altimetry (see the section 2.5 on model validation below).

2.4 Hydraulic modelling

Hydraulics in the main branches of the Amur and Songhua rivers 
(thick blue lines in Fig. 1) were simulated using the fully dynamic 
version of the one-dimensional St Venant equations. Tributary 
flow (i.e. the thin blue reaches in Fig. 1) was simulated using 
Muskingum routing (Chow 1988), assuming a kinematic wave 
speed of 100 km per day and Muskingum’s X = 0.25. The estimates 
for the Muskingum routing parameters are reasonable but cannot 
be validated with the available field observations. Muskingum 
parameters were varied manually, but showed low sensitivity to 
the simulated WSE in the main Amur and Songhua rivers.

The seven major reservoirs in the basin (Fig. 1) were imple
mented as storage nodes in the Muskingum routing scheme. 
Evaporation from the open reservoir water surface was 
neglected and, in the absence of information on reservoir 
operation, the regulated outflow was determined using 
a standard operation policy (SOP, Maass et al. 1962) with the 
target release equal to the annual average runoff and the flood 
control volume equal to the reservoir storage capacity. This 
very approximate representation of reservoir regulation will 
cause significant errors in simulated river flow locally, but, 
because only a small fraction of total runoff is regulated, the 
impact on simulated flows in the main Amur and Songhua 
River reaches is expected to be moderate. As an alternative, 
target volume regulation was implemented based on reservoir 
water storage changes observed with satellite EO. The results 
obtained from these runs showed that reservoir regulation 
only affects water levels in the low-flow period and that differ
ences in simulated water levels are generally less than a metre.

A numerical hydrodynamic model for the main Amur and 
Songhua river reaches was implemented in the Mike Hydro 
River software (Havnø et al. 1995), which uses a six-point finite 
difference scheme on a staggered grid to solve the coupled 
continuity and momentum equations (Abbott and Ionescu  
1967). We used a maximum grid spacing of 5 km and a fixed 
time step of 5 minutes in the numerical solution. The hydro
dynamic model was forced with boundary runoff from the 
rainfall-runoff model and the tributary routing reaches. At the 
ocean boundary, a constant water level at 0 mamsl was assumed. 
This will introduce significant model errors locally, because the 
coastal water level in the Tatar Strait, into which the Amur River 
flows, is subject to significant tidal variations. However, bound
ary errors only affect simulated water levels a few tens of km 
upstream of the boundary. Cross-section geometry was 
imported from the ICESat-2 processing results described in 
section 2.3. We parameterized the friction between the flow 
and the river bed using Manning’s equation, which expresses 
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the friction slope as dependent on the roughness parameter 
(Manning’s n), the cross-section geometry, and the water level 
(Chow 1988). We assumed a global uniform value of Manning’s 
n equal to 0.033 s/m1/3 during the unfrozen period, except for 
the most downstream 200-km section of the Amur River, where 
n = 0.013 s/m1/3 was assumed. Moreover, Manning’s n during 
the frozen period of the river (end November to end April) was 
assumed to be 3 times as high as during the unfrozen period, and 
a transition period of 15 days was assumed between frozen and 
unfrozen states, over which Manning’s n was assumed to vary 
linearly in time. The factor of 3 between the Manning numbers 
for frozen and unfrozen states was derived from the inspection 
of in situ rating curves prepared by the Russian 

Hydrometeorological Service, which uses different rating curves 
in the frozen and unfrozen periods (Kouraev et al. 2004).

2.5 Validation with satellite-derived and in situ WSE 
datasets

In order to validate the hydraulic model and demonstrate 
its value for water level prediction, simulated water levels 
were compared with in situ station datasets from 12 sta
tions (seven in Russia and five in China, see Fig. 5) and 
dozens of satellite altimetry virtual stations (VS, Fig. 5). We 
included all satellite altimetry time series available on the 
Hydroweb database (Crétaux et al. 2011, https://hydroweb. 

Figure 5. Overview of in situ and virtual stations in the Amur River Basin. (a) In situ stations; (b) hydroweb virtual stations labelled with the river-kilometres used in the 
hydroweb database (https://hydroweb.theia-land.fr/).
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theia-land.fr/) for the simulated domain, i.e. 116 virtual 
station time series in total. For all in situ and virtual 
stations, water level time series were extracted from the 
hydrodynamic model results and were directly compared 
with the observations. Because we referenced the ICESat-2 
cross-sections to the Earth Gravitational Model 2008 
(EGM2008) geoid model (Pavlis et al. 2012), simulated 
WSE was also referenced to EGM2008, as were all the 
satellite altimetry observations at VS. The vertical reference 
of the in situ stations was unknown and we therefore 
expect time-constant bias between the model and the 
in situ observations.

3 Results and discussion

3.1 Hydrological model calibration and validation results

Table 1 reports the calibration and validation results for the 
calibration catchments. Locations of in situ stations are reported 
in Fig. 5. Runoff coefficients are reasonable and consistent across 
the calibration catchments, with the exception of catchment 37, 
which shows an unreasonably high runoff coefficient when 

compared to the gauging data from station Khor. This could 
indicate problems with the IMERG precipitation estimates in this 
region or problems with the in situ data (e.g. outdated rating 
curves). Performance during the calibration period is generally 
satisfactory for all catchments (average NSE is 0.59) and perfor
mance does not degrade significantly between calibration and 
validation periods, with the average NSE of all catchments 
remaining at 0.59, also for the validation period. This indicates 
that the model calibration is robust and model parameters are 
not over-fitted in the calibration. Climatology indices for the 
individual catchments are mostly positive for both the calibration 
and the validation period and, for some catchments, approach 
a value of 1. This indicates that the calibrated NAM rainfall- 
runoff models forced with IMERG precipitation perform signifi
cantly better than runoff prediction based on the long-term 
average observed runoff. The rainfall-runoff models were further 
validated at a number of downstream stations as reported in 
Table 2. These stations integrate runoff from a number of sub- 
catchments, including ungauged sub-catchments that inherited 
rainfall-runoff model parameters from similar calibration catch
ments, and results indicate satisfactory performance in the down
stream regions of both the Songhua tributary and the main Amur 

Table 2. Rainfall-runoff model validation at a number of in situ discharge stations along the main Amur and Songhua rivers.

Station Validation period Average discharge (m3/s) RMSE (m3/s) RMSE (% of avg discharge) WBE (m3/s) WBE (% of avg discharge)

Khaborovsk 2008–2018 8384 3305 39 1058 13
Komsomolsk 2012–2019 10 259 3587 35 1227 12
Bogorodskoe 2008–2019 11 459 3657 32 305 3
Harbin 2007–2014, 2019 1156 633 55 −60 −5
Xiadaiji 2016–2020 922 476 52 200 22
Tonghe 2007–2014 1265 726 57 61 5
Yilan 2007–2014 1595 931 58 −212 −13
Jiamusi 2007–2014 1756 884 50 −30 −2
Mean 47 4

Figure 6. The 217 river cross-sections delineated from ICESat-2 datasets along the main Amur River and the Songhua tributary.
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River. Overall, the evaluation of the rainfall-runoff models shows 
that the models predict runoff reliably; however, model errors 
due to the coarse spatial disaggregation, the uncertain climate 
forcings, and insufficient representation of human interventions 
(reservoir regulation, water abstractions) are significant, as is 
common for large-scale hydrological models of this type.

3.2 Results of river cross-section delineation from 
ICESat-2

In total, 217 river cross-sections were prepared from 
ICESat-2 datasets for the main Amur River and the 
Songhua tributary (Fig. 6). The distance between cross- 
sections varies, because the orientation of the river with 
respect to the ICESat-2 ground tracks is variable. In some 
south–north-orientated river reaches, useable ground tracks 
are sparse and the cross-sections are therefore less densely 
spaced. Fig. 7 illustrates the cross-section processing work
flow and its results for one selected cross-section on the 
Songhua River (Songhua chainage 960 km). Panel A of 

Fig. 7 shows the ATL03 and ATL08 datasets along this 
ground track, passing over the river, which is braided in 
this location, and over the adjacent floodplains. Because the 
spatial resolution of ATL08 is relatively coarse, the product 
does not resolve important features such as dikes and 
levees, which control the hydraulic characteristics of the 
cross-section. This is evident from Panel B in Fig. 7, and 
clearly illustrates the added value of using the ATL03 
product in the cross-section retrieval workflow. Panel 
C shows the retrieved riverbed geometry after filtering 
and smoothing, including the submerged portion of the 
river, which is extrapolated using the power channel rela
tionships. In this case, the cross-section for the hydraulic 
model was limited to the region between the first major 
dikes on each side of the river, and Mike Hydro River 
assumes vertical banks beyond the first and last points of 
the mapped cross-section. This implies that the model 
would not correctly simulate extreme events in which the 
river overflows the dikes in this river reach. In this loca
tion, two major river channels are visible in the ICESat-2 

Figure 7. Illustration of the ICESat-2-based river cross-section processing workflow and its results. (a) ATL03 and ATL08 cross-section across the lower Songhua River 
(chainage 960 km). (b) Zoomed-in view of panel A showing a levee running along the Songhua River, which is clearly mapped by ATL03 but not sampled in ATL08. (c) 
Processed cross-section for inclusion into the hydrodynamic model. Note the reverse cross-section orientation in (c) to comply with ascending coordinates from left to 
right bank. ATL03 data is interpolated to 5 m spatial resolution as described in section 2.3 of the paper. The submerged portions of the cross-section are extrapolated 
using the power channel relationships.
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dataset, and extrapolation of the submerged portion was 
thus applied to both submerged sections of the transect, 
assuming equal WSE and depth in both channels.

3.3 Hydraulic model results

Using the ICESat-2-derived river cross-sections and the para
meterization of Manning’s roughness coefficient described in 
the methods section, the hydraulic model was run for the 
period 2001–2021, using the runoff and tributary flow forcings 
provided by the rainfall-runoff models and the reservoir/river 
routing routine. Simulated WSE and discharge is thus available 
for a 20-year simulation period at any location of interest on 
the river network. Fig. 8 compares selected examples of simu
lated WSE time series at in situ and virtual stations with the 
corresponding in situ and satellite radar altimetry observa
tions. Generally, the fit to in situ and satellite WSE is satisfac
tory, with RMSE ranging from less than 1 to about 2.5 m, 
depending on station location (Fig. 9, Table 3). The vast 

majority of VS show RMSE values between 1 and 2 m and 
bias values between −1 and +1 m (Fig. 10). The accuracy of the 
satellite altimetry observations is expected to be variable across 
the domain. For the wide rivers in the downstream portions of 
the basin, the accuracy of the altimetric WSE observations is 
probably around 0.5 m or better, while accuracy in the 
upstream, more narrow reaches is likely lower (Jiang et al.  
2017, 2020).

It is important to note that this performance was achieved 
without the use of any in situ cross-section geometry observa
tions and without extensive calibration of the hydraulic model. 
Moreover, the error of the modelled WSE integrates errors in 
the rainfall-runoff/routing model, including reservoir regula
tion, and the hydraulic model. The only in situ dataset used in 
model development is the in situ gauging dataset used for 
calibration of the rainfall-runoff models. Spatial maps of 
RMSE and bias for the different VS clearly indicate spatial 
correlation of model errors (Fig. 9), which could be mitigated 
by local adjustment of the Manning coefficient and flow depth. 
However, calibration of the hydraulic model is challenging, 

Figure 8. Comparison of simulated and observed WSE time series from selected in situ stations (left) and virtual stations (right).
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given the size of the model and the resulting computational load 
(ca. 30 minutes of calculation time for a 20-year simulation 
period on a 3 GHz Intel i5-9500 CPU with 16 GB RAM), and 
local refinement and calibration of the model should thus pre
ferably be implemented using smaller-scale sub-models. 

Moreover, in view of potential global application of this model
ling workflow, we would like to focus on a calibration-free 
cross-section delineation workflow in this study and demon
strate that such a workflow can deliver WSE predictions with 
satisfactory accuracy.

Figure 9. Overview of the spatial distribution of performance characteristics at the different hydroweb virtual stations. The root mean square error of water surface 
elevation prediction is shown in (a) and distribution of mean error or bias of water surface elevation prediction in (b).
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3.4 Model applications

Prospective model applications include the densification of 
satellite-derived WSE time series in space and time, the esti
mation of river discharge from satellite altimetry data, and the 
joint use of satellite EO data and the hydraulic model for 
operational hydraulic modelling and forecasting, using data 
assimilation (Schneider et al. 2018). Earlier studies focused on 
the densification of WSE datasets from satellite altimetry using 
statistical interpolation techniques (Nielsen et al. 2022) or river 
width observations from satellite imagery (Tourian et al.  
2016). Because such approaches do not require the develop
ment of a hydraulic model, they are efficient and suitable for 
global-scale application. However, the availability of ICESat-2 
cross-sections at global scale enables the parameterization of 
global-scale hydraulic models from satellite remote sensing 
data only. Unlike statistical WSE densification workflows, 
densification using a hydraulic model respects the physical 
processes and phenomena occurring in the river and thus 
provides a physically consistent interpolation result.

The hydraulic model also provides rating relationships 
along the entire river course, as illustrated in Fig. 11, includ
ing in situ station locations and virtual station locations. 
Simulated rating relationships show two distinct branches, 
which correspond to the frozen and unfrozen periods with 
different Manning numbers. As shown in Fig. 11 for the 
stations Khaborovsk and Komsomolsk, these two distinct 
branches of the rating relationship are also observable in 
the in situ data. Because river gauging requires access to 
both banks of the river, no in situ discharge data is available 
for the Amur River along a stretch of more than 1000 km, 
over which the river forms the border between Russia and 
China. Modelled rating relationships can be used to translate 
in situ WSE records into estimated discharge in the trans
boundary river reach. The same can be done for any virtual 
station situated in the domain of the hydraulic model. 
Moreover, the hydraulic model can be used to investigate 
the shape and uniqueness of the rating relationship for 
different in situ and virtual stations. For instance, the rating 
curve at Blagoveschensk is strongly affected by backwater 
effects originating from the confluence of the Amur and 
Zeya rivers (Liu et al. 2022), which is located a few kilo
metres downstream of the station. Such effects can also 
occur at virtual stations, and the hydraulic model can be 
used to screen the available virtual stations for their suit
ability for discharge estimation using different types of rating 
relationships.

Finally, the basin-scale hydraulic model described here can 
provide boundary conditions for smaller-scale nested models of 
selected reaches and floodplains along the river. Local models 
can be refined using hydraulic inverse modelling techniques and 
can include interactions with the floodplains, using a coupled 
one-dimensional/two-dimensional (1d–2d) simulation 
approach. Prospectively, the workflow demonstrated here can 
be used to prepare a global-scale hydraulic model by combining 
riverbed geometry datasets from ICESat-2 with global-scale 
rainfall-runoff simulation models.

Table 3. Hydraulic model performance (after adjustment of depth) for in situ 
stations along the Amur-Songhua.

RMSE of simulated WSE (m) Bias of simulated WSE (m)

Nikolaevsk 0.44 0.08
Khaborovsk 1.54 0.83
Bogorodskoe 0.85 0.26

Komsomolsk 2.68 2.30
Innokentievka 1.45 0.87

Blagoveschensk 1.11 0.40
Jalinda 1.32 −0.54

Jiamusi 0.92 0.29
Yilan 0.85 0.08

Tonghe 1.49 −0.97
Harbin 0.92 0.13
Xiadaiji 2.47 2.16

Figure 10. Histograms of water surface elevation RMSE and bias for all hydroweb virtual stations.
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4 Conclusions

This paper demonstrates a hydraulic modelling workflow for 
continental-scale rivers. Achieving suitable availability and 
quality of river cross-section geometry datasets is a common 
problem for hydraulic model development at this scale, espe
cially in remote and poorly instrumented rivers, and this study 
demonstrates that ICESat-2 elevation datasets provide impor
tant new information in this context. ICESat-2 elevation data
sets allow for the retrieval of reliable effective river cross- 
section geometry and thus enable WSE predictions along 
entire river courses at continental scale, which can be validated 
against the global spatio-temporally resolved WSE record 
available from inland water satellite altimetry. The hydraulic 
modelling workflow developed here for the Amur is suitable 
for global-scale application and provides building blocks for 
operational, global-scale river water level prediction systems 
based on a combination of rainfall-runoff models, ICESat-2 
elevation datasets, and satellite-based WSE observations.
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