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Skilful prediction of cod stocks in the North and
Barents Sea a decade in advance
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Reliable information about the future state of the ocean and fish stocks is necessary for

informed decision-making by fisheries scientists, managers and the industry. However,

decadal regional ocean climate and fish stock predictions have until now had low forecast

skill. Here, we provide skilful forecasts of the biomass of cod stocks in the North and Barents

Seas a decade in advance. We develop a unified dynamical-statistical prediction system

wherein statistical models link future stock biomass to dynamical predictions of sea surface

temperature, while also considering different fishing mortalities. Our retrospective forecasts

provide estimates of past performance of our models and they suggest differences in the

source of prediction skill between the two cod stocks. We forecast the continuation of

unfavorable oceanic conditions for the North Sea cod in the coming decade, which would

inhibit its recovery at present fishing levels, and a decrease in Northeast Arctic cod stock

compared to the recent high levels.
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C limate variability has been a subject of interest for ecolo-
gists primarily because variations in climate often have a
strong impact on ecological systems1. Marine resources,

such as fish stocks, have been shown to be strongly influenced by
climate variability2–4, with changes in productivity resulting in
huge consequences for socio-economic systems relying on such
resources5,6. In the Anthropocene, with the impending threat of
climate change, understanding the impact of climate variability
on marine ecosystems and resources has become even more
central, since climate variability at interannual to decadal time-
scales can alter the magnitude of ongoing long-term climate
change7,8. Hence an integration of climate information into
modeling of exploitable resources is necessary not only to
understand ecological processes but also to forecast future states
of the system at interannual to decadal timescales9. The latter is
particularly fundamental for management, since forecasting fish
abundance depending on decadal climate variability is necessary
to devise timely interventions to ensure sustainable use of
resources10. Nevertheless, the application of climate models to
predict ecosystem processes at decadal timescales remains a
challenge11–13.

In many cases the impact of climate on fish stocks has been
studied through experiments and modeling, and empirical rela-
tions have been established. Climate has been shown to influence
fish directly or indirectly through recruitment, food availability,
fecundity, growth, and migration14–16. Still, climate variables
are rarely included in the management-oriented modeling and
forecasting of fish populations17. This is not only due to his-
torically large impact of fishing mortality on commercial stock
biomass18–20 but also due to forecasting being complicated by
frequent transient and non-stationary properties of climate
impacts on fish stocks21–23. Moreover, the fish experience the
cumulative impacts of different drivers; fishing pressure and cli-
mate can have combined effects inducing non-linear dynamics in
fish stocks. Strong synergistic effects can lead to management
failures and abrupt collapses of socio-ecological systems22,24,25.
With anthropogenic climate change superposed on natural cli-
mate variability, including environmental variables in the mod-
eling and forecasting of fish stocks is becoming increasingly
important from both scientific and management points of
view5,26.

One of the key limitations impeding the integration of climate
information in fisheries forecasts originates from inadequate
representation of shelf seas in coupled global circulation models
(GCMs) providing future climate information. Pioneering-
approaches have used bioclimate envelope models27,28 or detailed
ecosystem and population dynamics models29,30 forced with cli-
mate projections from GCMs to examine the impact of climate
change on fisheries. However, GCMs lack a proper representation
of shelf-sea dynamics, mainly due to their coarse resolution, and
they have limited representation of trophic interactions and asso-
ciated energy transfers. Other approaches have combined GCM
output with highly resolved physical–biological shelf-sea models
accounting for trophic interactions6. These approaches focus on
long-term (>30 years) changes and thus do not provide information
on decadal (1–10 years) fisheries forecasts. Moreover, since decadal
forecasting usually involves an ensemble of predictions, high
computational costs associated with the aforementioned approaches
also motivate exploration of novel approaches towards fisheries
predictions using GCM-based decadal climate predictions.

The prospect of decadal prediction of fish stocks emerging
from decadal predictability of the physical environment is enti-
cing. Specifically in the North Atlantic, where decadal variability
of the physical environment is highly predictable using
GCMs31–33. This prospect emerges not only from the influence of
Atlantic inflow on both hydrography34,35 and marine ecosystem

of the North Atlantic shelf seas, such as the North and Barents
Sea15,16 but also from the impact of anthropogenic warming on
marine ecosystems13. In these climate-driven marine ecosystems,
statistical climate–fisheries models36 provide a promising
approach for transforming GCM-based ensembles of decadal
climate predictions into reliable fisheries forecasts.

In this article we assess predictability of two Atlantic cod
(Gadus morhua) stocks in the northeastern North Atlantic shelf
seas. Atlantic cod is a commercially, historically, socially, and
ecologically important species. There are many stocks of Atlantic
cod and they are widely distributed on the shelf seas off the
northern North Atlantic. Some of these stocks have been severely
reduced in the last decades, largely due to unfavorable climate
and intense fishing20,22. Thus, being able to predict the
stock biomasses is important to guide sustainable management
decisions. We investigate two stocks with opposite status: (1)
the North Sea cod, a stock close to the upper temperature limit
of distribution of this species, over-exploited for many decades
and in a very low productive state over the last 20 years, and
(2) the Northeast Arctic cod, residing in the Barents Sea
close to the species’ lower temperature limit and recording
record-high biomass levels in recent years37–39. The average age
at first maturation is 3 for North Sea cod and 7 for Northeast
Arctic cod.

In order to provide decadal predictions of cod stocks, we use a
linear regression model to transform dynamical prediction of sea
surface temperature (SST) into the prediction of total stock bio-
mass (TSB). TSB was used because it reflects the integrated
impact of climate and fishing36. The dynamical prediction of SST
is provided by 10-year long initialized forecasts (and hindcasts)
from a decadal prediction system based on the Max Planck
Institute Earth System Model (MPI-ESM, see “Methods”). The
initial conditions for decadal hindcasts are taken from an
assimilation experiment which assimilates observed atmospheric
and oceanic information into MPI-ESM. In order to isolate the
prediction skill due to external forcing, an ensemble of non-
initialized historical simulations of the same size as that of
initialized hindcasts and driven by observed external boundary
conditions is also analyzed (see “Methods”). Our forecasts for the
period 2020–2030 suggest continued unfavorable environmental
conditions for the North Sea cod with no significant recovery
under any of the three different fishing mortality scenarios. For
the Northeast Arctic cod, assuming fishing at the current sus-
tainable level is continued, we forecast a decline in TSB in the
coming decade compared to the last decade, attributed mainly to
a decline in temperature.

Results
Variability in cod stocks and their physical environment. The
time series of SST in the North Sea and Barents Sea Opening
highlight key differences in the two regions: While SST has an
increasing trend both in the North Sea and in the Barents Sea
Opening, the absolute values are very different from each other,
highlighting that the cod stocks reside at the two extreme ends of
the thermal habitat available for cod40 (Fig. 1a). The TSB time
series of the two stocks also show opposite development: North
Sea cod has declined continuously since the 1960s, with very low
and stable biomass levels since the beginning of the twenty-first
century (Fig. 1b). Northeast Arctic cod exhibits multi-annual to
decadal variability for the same period, with a recent record high
level of TSB (Fig. 1b). However, multi-decadal variability in
North Sea stock biomass has been reported for a longer period41.
Fishing mortality (F) trends are similar in these two stocks,
increasing in the central period of the time series and recently
declining as stricter management measures started to be enforced
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(Fig. 1b). Interestingly, while the decline in fishing mortality of
Northeast Arctic cod seems to have resulted in an increase in
TSB, in the North Sea, the cod stock did not manage to recover
even after the management measures were in place. This has been
attributed to the effect of an interacting driver (i.e. warming)
which has inhibited the productivity of North Sea cod22.

In the North Sea SST, the magnitude of warming over the
period 1960–2019 (1.68 °C) is more than twice the year-to-year
variability (σ= 0.65 °C), indicating that the increasing tempera-
ture trend is part of how the North Sea has changed under natural
and anthropogenic forcing, and thus the trend cannot be
excluded from the analysis. Temperature increase corresponds
to decrease in TSB, thus there is a negative correlation between
the two variables. Linearly detrended North Sea temperature
maintains the same negative effect on TSB the following year (r
=−0.48, p= 0.0025, see Supplementary Figs. S1 and S2 for
detailed statistical analysis). Interestingly, the fishing mortality of
2–4-year-old cod does not exhibit a monotonous trend and does
not show a strong correlation with TSB (r=−0.19, p > 0.05). This
weak signal might partly be due to the fact that a decline in
fishing mortality in the last years did not correspond to an
increase in TSB (Fig. 1b). The low correlation exhibited by fishing
mortality may limit its usage as a predictor for TSB using linear
models and could indicate a time-varying F–TSB relationship
typical of systems presenting discontinuous dynamics.

The TSB of Northeast Arctic cod does not exhibit a long-term
trend (Fig. 1b). This stock exhibits multi-annual to decadal
variability manifested as multiple cycles of decline and increase.
Similar low-frequency variability is visible in the surface
temperature of the North Atlantic subpolar gyre (SPG),
suggesting a possible linkage. Statistically, this linkage is
supported by the high correlation between the surface tempera-
ture of the SPG and TSB of Northeast Arctic cod (r= 0.78, p=
0.0435) with the SPG-temperature leading TSB by 7 years
(Supplementary Figs. S1 and S2), and consistent with previous

work36. Dynamically, this linkage points to the influence of SPG
circulation on the properties of Atlantic water crossing the
Greenland–Scotland ridge heading towards downstream shelf
seas34,35,42.

After removing respective trends from time series of the SPG
temperature and Northeast Arctic cod TSB, the correlation
remains high (r= 0.77, p= 0.0425), suggesting a dominating
signature of decadal variability. The effect of temperature is
opposite on this stock compared to the North Sea, since in the
Barents Sea, temperature has a positive impact on cod biomass.
These opposite impacts of temperature on biomass reflect the
different temperature regimes in which the stocks reside22,43. In
the case of Northeast Arctic cod, fishing mortality of 5–10-year-
old cod is strongly correlated with TSB (r=−0.88, p= 0.00351).
This correlation is higher than the one between temperature and
TSB, and peaks at lag-2 years (Supplementary Fig. 2). For our
purpose of decadal prediction of cod biomass this finding has two
implications. First, the predictability horizon for TSB from a
statistical point of view would be shorter with fishing mortality as
a predictor compared to temperature. Second, the higher
explanatory power in fishing mortality might constrain the
uncertainty in the first few years of forecasts.

Statistical models for cod prediction. Once the predictors for the
two cod stocks are identified, we assess various cross-validated
statistical models (see “Methods”) to analyze the retrospective
skill arising from the impact of temperature and fishing on the
TSB and to select a model to issue forecasts. We test three dif-
ferent models, two simple linear regression models based on
temperature and fishing mortality separately and one multiple
linear regression model based on temperature and fishing mor-
tality as explanatory variables.

As expected from the correlational analysis, the results for the
North Sea cod and the North-East Arctic cod are quite different.

Fig. 1 Observed variability in temperature and cod stocks. a Time series of annual mean sea surface temperature from observations and the assimilation
experiment (see “Methods”) for the North Sea (NOR, red lines), subpolar gyre (SPG, orange lines), and the Barents Sea Opening (BSO, purple lines).
b Time series of total stock biomass (TSB, green and blue circles) and fishing mortality (F, green and blue lines) for the cod stocks in the North and Barents
Sea. The inset in a shows regions over which the temperature is averaged (boxes) and the ICES ecoregions (color-filled) for delimiting cod stocks.

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-021-00207-6 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2021) 2:140 | https://doi.org/10.1038/s43247-021-00207-6 | www.nature.com/commsenv 3

www.nature.com/commsenv
www.nature.com/commsenv


For North Sea cod, the linear model using just fishing mortality
has no predictive power (Fig. 2a and Supplementary Fig. S3 for
analysis of skill from detrended variables). When the impacts of
fishing and temperature are modeled together, the skill is
comparable to the linear model based on temperature alone,
suggesting that no additional information is gained by adding
fishing mortality. For the Northeast Arctic cod, although the
fishing-only model provides a better fit to the TSB data (adjusted
R2= 0.77) than the temperature-only model (adjusted R2= 0.62),
the difference in skill between these two models is not statistically
significant (p= 0.15, Fig. 2b and Supplementary Fig. S3 for skill
from detrended variables).

Out of the three models, the model which uses both
temperature and fishing has the best fit to the TSB (adjusted
R2= 0.84) and is the most suited model considering the
information gained by combining SST and F (Table S1).
However, both the fishing-only and the combined fishing and
temperature-based models do not allow for a longer prediction
horizon than the temperature-only model. This is because fishing
mortality leads TSB by 2 years while temperature leads TSB by 7
years. Since our focus is on long prediction horizons, we choose
the temperature-only model for the hindcast period, and for the
forecast period (2020–2030), we complement the temperature-
based forecasts of cod biomass with forecasts from the combined
fishing and temperature-based model.

Decadal prediction of the physical environment. We now assess
the prediction skill of North Sea and SPG temperature in the
MPI-ESM (see “Methods” for a detailed description of this model
and the decadal prediction system). In general, the skill degrades
as the prediction horizon moves farther from the year of initi-
alization (i.e. at longer lead times). However, in the North Sea,
prediction skill remains high until lead year-10, and is matched
by the skill from the historical simulations (Fig. 3a). This can be
explained by the long-term linear trend in the underlying time
series (Fig. 3b), which is present in all lead year time series. This
points to the long-term trend (driven by anthropogenic external

forcing) in the North Sea temperature as the source of prediction
skill. Noticeable exception is the SPG where the skill is largely
intact irrespective of the trend, and is higher for initialized
hindcasts than historical simulations (Fig. 3c, d and Supple-
mentary Fig. S4).

The observed and predicted time series of SPG temperature
suggests that during the hindcast period, most of the skill in the
initialized hindcasts is derived from the ability of the model to
capture the decadal cooling and warming trends (Fig. 3d). The
16-member historical simulation does not capture the full extent
of the decadal variability in SPG temperature. Thus, it appears
that initialization of oceanic conditions is the dominant source of
predictability of SPG temperature33, while the long-term trend,
mainly arising from external forcing, dominates predictability in
the North Sea. The robustness of the decadal prediction skill of
subpolar North Atlantic SST in the MPI-ESM-LR based decadal
prediction systems has been thoroughly analyzed and is
consistent with other decadal prediction systems33,44.

Dynamical–statistical cod prediction. Now, we combine the
dynamical prediction of temperature with the statistical
temperature–cod relationship. We choose the simplest model
with temperature as the explanatory variable for both the North
Sea and Northeast Arctic cod to model and forecast TSB. The
utilization of temperature, derived from the dynamical model,
allows us to extend the predictability horizon of cod stocks. We
also include forecasts using a multiple linear regression model
with fishing and temperature, and we use various scenarios of
fishing mortality based on current management advice from the
International Council for the Exploration of the Sea (ICES).

The dynamical–statistical prediction model shows robust skill
(correlation as well as mean square error skill) in simulating the
North Sea cod biomass (Fig. 4a). Note that the regression
coefficients for the statistical models are not calculated from the
hindcast time series of temperature, but from the observed TSB
and assimilated temperatures (see “Methods”). The similarity in
hindcast skill obtained from initialized hindcasts and historical

Fig. 2 Statistical models for cod prediction. a Cross-validated correlation skill from three linear regression models (two simple and one multiple) for TSB
of North Sea cod based on North Sea surface temperature (TNOR) and fishing mortality (F). b Same as (a) but for Northeast Arctic cod and using SPG
temperature (TSPG) as one of the predictors. The number in square bracket is the prediction horizon in years for each model. The dots show median skill
and the whiskers show the 95% confidence limits (see “Methods”).
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simulations provides another piece of evidence that the skill is
mainly due to the trend in the North Sea temperature (Fig. 4b).
Our forecast of North Sea temperature for the period
2020–2030 suggest a continuation of the warm anomalies (Fig. 3c)
which translates into a further decline of North Sea cod (Fig. 4a).

In order to make our predictions of cod biomass usable in
fisheries management, we provide both an SST-based forecast (for
2020–2030) and forecasts under different fishing scenarios (using
the SST+F model). In particular we chose three scenarios: an
FMSY scenario, in which the biomass is fished at the maximum
sustainable yield (FMSY= 0.3), an FSQO scenario in which F is the
mean over the last three years (FSQO= 0.5), and an FLIM
precautionary scenario which is the maximum F applicable
before collapse (FLIM= 0.54). The predicted total biomass of
North Sea cod shows similar trends under all these scenarios,
modulated in magnitude by fishing. Lower fishing initially favors
a stock increase, but the constant increase of temperature leads to
a further decline of the stock over time, keeping the stock in a low
productivity regime. This indicates that deteriorating environ-
mental conditions will hinder a substantial stock recovery, even
with strong limitation on the fishery.

For assessing the retrospective prediction skill of Northeast
Arctic cod biomass, we combine the statistical model with lead-
year-4 initialized hindcasts of SPG temperature from MPI-ESM.
Beyond lead-year-4, the dynamical hindcast skill degrades and is

comparable to the skill from the historical simulation (Supple-
mentary Fig. S4). Our dynamical–statistical prediction model
performs well in reproducing past variability in the TSB of
Northeast Arctic cod (Fig. 4c, d). Both the 1970s decline as well as
the recent decadal shift in the TSB is captured by the initialized
hindcast, quantified by the mean square error skill score (Fig. 4d).
The correlation skill associated with historical simulation is lower
but not statistically different from the hindcast skill (p= 0.164).
However, the variability in the reconstructed TSB time series of
Northeast Arctic cod using historical simulation is suppressed
(Fig. 4c). This reconstructed time series fails to capture the recent
decadal shift in the Northeast Arctic cod stock, which, as
discussed above, likely follows variability in SPG temperature and
is not captured by the historical simulation. This lack of
variability in the reconstructed TSB time series using the
historical SPG temperature is reflected in the mean square error
skill score (MSESS, Fig. 4d), which suggests that this type of
prediction is not significantly better than predicting a long-term
mean value for the TSB.

For the Northeast Arctic cod, future predictions based on
initialized hindcasts suggest a climate-driven decline of biomass
in the coming decade compared to the present stock size (Fig. 4c).
The RCP8.5 scenario based forecast, however, suggests a biomass
level close to the long-term mean. Since the historical simulation-
based hindcasts of cod biomass do not capture the full extent of

Fig. 3 Dynamical predictions of temperature. Anomaly correlation coefficient (ACC) as a function of lead year for initialized hindcasts (red), lagged-
persistence (blue), and historical simulation (magenta dot) for annual mean (a) North Sea surface temperature and (c) subpolar gyre surface temperature
with respect to the assimilation experiment for the period 1971–2019. Time series of (b) North Sea surface temperature and (d) subpolar gyre surface
temperature anomalies (with respect to 1970–2019 mean) from the assimilation experiment (circles), initialized hindcast (dark colored line), forecast and
historical+RCP8.5 simulation (light colored line). The solid lines in (b and d) are the respective ensemble mean predictions (or simulations) and the
shading is the entire range of the respective 16-member ensemble. The regions for computing area averaged surface temperatures of the North Sea and
subpolar gyre are shown in Fig. 1a. The lagged-persistence (LP)-based skill is provided for 1-, 4-, 7- and 10-year lags. The shading and whiskers in (a and c)
depict 95% confidence intervals.
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past variability (MSESS for historical simulation is not signifi-
cantly different than climatology), the extent of future decline in
cod biomass based on RCP8.5 scenario is likely underestimated.
The purely climate-driven decline in initialized forecasts is larger
than in the FSQO- and FMSY-based fishing scenarios but is
comparable to the decline under the FLIM scenario. Given the
recent management history of this stock, the FLIM scenario is very
unlikely. This could be explained by the fact that even if we are
just using climate to predict cod stocks, the forecast is based on
TSB levels wherein the impact of fishing is implicitly included.
Cold periods in the past also coincide with periods of high F
(around FLIM). This influences the forecast made using just the
temperature because the statistical part of the dynamical-
statistical model is trained on past TSB values. This explains
why models with both fishing and temperature, where fishing is
relatively low (FSQO= 0.42 and FMSY= 0.4) can maintain the
stock at a higher biomass level. The forecast declining tendency
(compared to the present level) in TSB of Northeast Arctic cod in
all scenarios is due to the delayed (advective) impact of
2010–2016 cooling of the SPG (Fig. 1a). The future prediction
of the Northeast Arctic cod is thus similar to that of North Sea
cod concerning fishing mortality, indicating that a sustainable
fishing pressure is necessary to maintain the stocks, but very
different concerning productivity, highlighting again how climate
has opposite impact on the two stocks in the next 10 years. These

results provide evidence that GCM-based initialized decadal
climate predictions can be deployed for prediction of marine
resources through climate–ecosystem linkages.

Discussion
Sustainable management of fish stocks in the eastern North
Atlantic shelf seas requires a reliable assessment of their future
abundance. Incorporating environmental information in such
assessment models has not always shown an improvement in
prediction skills due to large uncertainties associated with
recruitment–climate relationship, and also because these uncer-
tainties might increase in a warming climate11,21. Here, we show
that cod stock abundance, represented by TSB, can be successfully
predicted on a decadal scale. We assess the feasibility of decadal
predictions of cod stocks in the North- and Barents Sea using
climate predictions from the MPI-ESM. Such an extended pre-
diction relies on two conditions: (a) that there is a robust rela-
tionship between cod and the physical environment and (b) that
the physical environment is predictable at multiyear lead
times. For the North Sea, we find strong negative correlations
between temperature and cod biomass, which can be explained
by non-linear dynamics of the stock20,22. Ocean warming has
been indicated as an important factor affecting cod in the
North Sea through direct and indirect mechanisms, such as high
temperatures causing low recruitment and changes in prey

Fig. 4 Decadal prediction of cod stocks. a Time series of retrospective predictions of total stock biomass (TSB) of North Sea cod using the
dynamical–statistical prediction model (retrospective predictions of North Sea surface temperature combined with the linear statistical temperature–cod
relationship) for the period 1971–2019 using the initialized hindcast and historical simulation of North Sea surface temperature. The observed TSB is shown
by blue circles. Also provided is the forecast for the period 2020–2030 comprising three fishing mortality scenarios: status quo (FSQ= 0.50), maximum
sustainable yield (FMSY= 0.30), and precautionary approach (FLIM= 0.54). The bars and whiskers show the 95% confidence limits (2.5th, 25th, 50th,
75th, and 97.5th percentiles are shown) for the respective forecasts for the whole period (2020–2030). The historical North Sea surface temperature
is extended using the RCP8.5 scenario for issuing forecasts of cod biomass. b Anomaly correlation coefficient (ACC) and mean square error skill
score (MSESS) for the retrospective North Sea cod TSB prediction (1971–2019) with respect to observations. The whiskers show 95% confidence limits.
c, d Same as (a, b) but for Northeast Arctic cod and using initialized hindcasts and historical simulation of SPG temperature. For the forecast, assumed
fishing mortality scenarios are FSQ= 0.42, FMSY= 0.4 and FLIM= 0.74. The shadings in (a and c) show 95% confidence limits.
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availability15,23,45. Fishing, on the other hand, has brought the
stock close to collapse and now fishing restrictions may not be
able to make the stock recover due to the detrimental effect of
warming22.

We find that the long-term trend in surface temperature
explains a large part of variance in the North Sea cod biomass,
and consequently the high hindcast skill is largely due to the
trend (externally forced). Since the detrended interannual varia-
bility in the North Sea surface temperature is not skilfully pre-
dicted by the MPI-ESM-LR (Supplementary Fig. S4), the
2020–2030 forecast for the North Sea cod biomass is mainly
indicative of the long-term trajectory of the cod biomass and not
of year-to-year variations around the trend. Also, future work on
predictions for North Sea cod could take into account observa-
tions showing that the decline in cod abundance in the North Sea
is much more pronounced in the southern North Sea than in the
northern part, and there may be separate populations of cod
within the North Sea management area.

The strong positive correlation between temperature and
Northeast Arctic cod biomass is justified through the effect of
temperature on life history traits of this stock37. While the details
of how the temperature influences Northeast Arctic cod are well
described16,37, the importance of the pronounced decadal varia-
bility in the SPG46, which lends predictability to the Northeast
Arctic cod, is worth highlighting here. We hypothesize that the
volume of Atlantic water, modulated by the SPG strength,
entering the Barents Sea plays an important role. The hydro-
graphy of Norwegian–Barents Seas is related to the Atlantic
inflow across the Greenland–Scotland Ridge47. When the SPG
circulation is weak, the proportion of subtropical waters in the
Atlantic inflow through the Faroe Shetland Channel
increases35,48. The resulting increase in the volume of Atlantic
water in the Barents Sea can influence the extent of sea-ice in this
region, which can lead to increased productivity through exten-
ded periods of increased primary production and also due to
expansion of feeding grounds. This hypothesis is consistent with
the present understanding of the relationship between Atlantic
heat transport and extent of sea-ice in the Barents Sea49,50 and its
predictability using global coupled models51; however, the sta-
tionarity of this relationship needs to be further explored.

Interestingly, when the respective time lags between SST and
cod are taken into account, the annual mean SSTs in the SPG
region explain around 65% variability in the Northeast Arctic cod
biomass while the local SSTs at the Barents Sea opening explain
only around 12% variability. The SPG temperature is character-
ized by pronounced decadal variability46 while local SSTs at the
Barents Sea opening prominently reflect the high-frequency
atmospheric variability52 and the strong surface warming trend
characteristics of these latitudes. However, the SPG signal is
present in subsurface waters at the Barents Sea opening (Figs. S5
and S6). Thus local SSTs fail to capture the variability in eco-
system variables, such as the TSB, which integrate high-frequency
atmospheric variability and resemble decadal temperature varia-
bility of the SPG.

A 7-year prediction horizon in Northeast Arctic cod stock has
been shown to emerge from observations of SSTs in the North
Atlantic but excluding the fishing mortality, and such a prediction
horizon is also consistent with the length of the life cycle of
Northeast arctic cod36. In the present study, we extend the pre-
dictability horizon further to a decade by using dynamically
predicted SPG temperature as a predictor. Further value in our
results is derived from the fact that our forecasts are based on a
16-member ensemble dynamical–statistical prediction system
(see “Methods”) and various fishing mortality scenarios, which
take into account the uncertainty associated with future evolution
of the climate system and fishing pressure. We have also been able

to identify the source of decadal prediction skill in cod stocks in
the two cod habitats. In contrast to the North Sea where the
externally forced trend dominates, our results emphasize decadal
variability in SPG temperature as the dominant source of pre-
diction skill in Northeast Arctic cod biomass. The predictions
based on historical simulations do not capture the full extent of
the decline in the cod stock in 1970s and its increase from 2005
to 2014, and hence, in terms of MSESS, these predictions do
not match or outperform the predictions based on initialized
hindcasts.

The approach used in this study, although novel, has certain
caveats. First, the underlying climate variability that influences
Northeast Arctic cod biomass has a low-frequency character.
Thus, prediction skill and its uncertainty estimation is based on
the assumption that the training period is representative of the
climate variability associated with the subpolar North Atlantic. In
case this is not so, then the skill might drop. Second, the utili-
zation of ICES stock assessment outputs (total biomass and
fishing mortality) as observations is a concern. These quantities
are model outcomes, and are not entirely independent53. Third,
the linear models examined here are applicable to cod stocks in
our regions of interest, where the underlying oceanic variability
and its impact on marine ecosystems is well understood and the
stocks situated near the extremes of the species’ overall dis-
tribution range. Our models do not cover the complex issues such
as those related to the impact of temperature on carrying capacity
and lifetime reproductive output. This could be the subject of
future work. Finally, we have assumed that the statistical models
and the variables analyzed here implicitly account for possible
ecosystem processes. While ecosystem processes such as species
interactions are definitely important in shaping fish stocks, they
are often not taken into account in management processes54,
although they are to some extent taken into account in man-
agement of Barents Sea capelin (Mallotus villosus)55.

Our study attempts to bridge the gap between environmental
and fisheries prediction. Through the present work, we demon-
strate how decadal prediction of climate can be used to provide
extended prediction horizons for fisheries combined with various
fishing scenarios. Various incentives as well as the lessons learnt
from past failures have motivated this effort. Foremost is the
added value that such predictions can bring to the sustainable
management of fish stocks. For example, at present, many fish
stocks, including those considered in this article, are managed by
setting annual quotas based on annual assessments of present
stock size and short-term predictions (1–2 years) combined with
harvest control rules based on target exploitation rates. Reliable
predictions of fish biomass on a decadal scale could enable the
adjustment of future catch targets (exploitation rates) to account
for climate-driven fluctuations in productivity56,57. Also, pre-
dicting catch levels on a decadal scale will be important to the
fishing industry, as investments in vessels, processing plants, etc.
are made with a time horizon of several decades.

Climate-informed fishery management is also poised to benefit
from rapid advances in multiyear prediction of other fishery-
related variables such as net primary production by Earth system
models58. In the North Atlantic, proper representation of open
ocean-shelf connections in such models would attract further
research in decadal predictions of fish stocks towards realizing a
climate resilient sustainable fisheries management.

Methods
Dynamical model. The MPI-ESM is used in its low-resolution setup in the present
study (MPI-ESM-LR59). The ocean general circulation component of MPI-ESM-
LR, the Max Planck Institute Ocean Model (MPIOM60), is a free surface model
with primitive equation solved on an Arakawa C-grid with hydrostatic and
Boussinesq approximations. The MPIOM has a total of 40 z-levels in the vertical
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and the surface layer thickness is 12 m. The MPIOM setup used in the study has a
rotated grid configuration (GR15) with one of the poles over Greenland. This
enhances the horizontal resolution north of 50°N (15 km near Greenland). The
resolution increases gradually to 1.5° towards the equator. Embedded in MPIOM is
also the ocean biogeochemistry component, the Hamburg Ocean Carbon Cycle
model (HAMOCC61). The HAMOCC incorporates oxygen and phosphate cycles,
and defines the marine food web based on nutrients, phytoplankton, zooplankton,
and detritus (NPZD)-based approach. The atmospheric general circulation com-
ponent of MPI-ESM1.2-LR is the European Center-Hamburg (ECHAM62). The
ECHAM is run at a horizontal resolution of T63 and with at total of 47 vertical
levels and the model top is at 0.01 hPa. In MPI-ESM1.2-LR, the land
surface–atmosphere interactions are simulated by the land vegetation module
JSBACH63 which is embedded in ECHAM.

Decadal prediction system. We use one set of retrospective initialized decadal
predictions (hindcasts) from the MiKlip project64, carried out with the MPI-ESM-
LR. Ten-year long ensemble hindcasts with 16 members are started on 1st
November every year from 1960 to 2019 (ref. 33). The initial conditions for each
member come from an assimilation experiment (1960–2019) with an oceanic
ensemble Kalman filter (EnKF) and atmospheric nudging. The oceanic EnKF in
MPI-ESM-LR33,65 assimilates monthly profiles of temperature and salinity from
EN4 (ref. 66). Simultaneously, atmospheric vorticity, divergence, temperature, and
surface pressure are nudged to ERA40/ERAInterim re-analyses67. It should be
noted that neither SST from satellite observations nor atmospheric temperature
below 900 hPa are assimilated in order to allow for a model-consistent assimilation
across the atmosphere–ocean boundary. The assimilation experiment as well as the
initialized hindcasts use observed solar irradiation, volcanic eruptions, and atmo-
spheric greenhouse gas concentrations (RCP4.5 concentrations from 2006 onward)
as boundary conditions, taken from CMIP6 (ref. 68).

An additional 16-member historical simulations (1850–2005) of surface
temperature taken from the MPI-ESM-LR Grand Ensemble69 are analyzed to
compare the skill with the initialized hindcasts. The historical simulations are
performed under natural and anthropogenic forcings derived from observations
covering a total of 156 years (1850–2005). For comparison with initialized hindcasts,
these historical simulations are extended with a future RCP8.5 concentrations from
2006 onward. Note that the difference between RCP8.5 and RCP4.5 scenario only
emerges towards the mid of this century and hence we expect no significant impact
on our short-term analysis if RCP4.5 scenario is used. The natural forcing includes
solar insolation, variations of the Earth orbit, tropospheric aerosol, stratospheric
aerosols from volcanic eruptions, and seasonally varying ozone. The anthropogenic
forcing includes the well mixed gases CO2, CH4, N2O, CFC-11, and CFC-12 as well as
O3, and anthropogenic sulfate aerosols. Atmospheric CO2 concentrations are
prescribed and the carbon cycle is not interactive. It must be noted that this historical
simulation is started from a pre-industrial control run and is not initialized from
observations. Therefore, the internal variability in this model simulation may not be
in phase with observations, and hence may not reproduce the observed timing of
certain climatic events which are related to internal (natural) variability.

Linear regression models. In order to predict the time series of the TSB of cod
stocks (CTSB), we construct a simple and multiple linear regression model with sea
temperature (T) and fishing mortality (F) as predictors (independent variables) and
the TSB as the predictand (dependent variable). For predicting North Sea cod, local
oceanic surface temperature is used while for the Northeast Arctic cod, the SPG
temperature is used. Both temperature time series are taken from the assimilation
run as the area average of temperature of the first model layer (mid-point at 6 m
depth). The time series of temperature from the assimilation run with MPI-ESM-
LR compares very well with the widely used observations/re-analyses datasets, the
AHOI dataset70 for the North Sea and HadISST71 for the SPG and the Barents Sea
Opening (Fig. 1a). The TSB and F are taken from latest stock assessment reports
from the ICES. The simple and multiple linear regression model fed with T and F
anomalies (mean over 1970–2019 is removed from all variables) as predictors, for
example, takes the form

CTSBðyÞ ¼ βo þ β1Tðy � LT Þ;
CTSBðyÞ ¼ βo þ β1Tðy � LT Þ þ β2Fðy � LF Þ;

where CTSB is the statistical TSB prediction at year y, LT and LF are the lags in years
at which the respective correlations between TSB and T or F are maximum, βo is
the intercept, and β1, β2 are the slopes obtained from fitted observations.

Cross-validation of statistical models. In order to identify the best performing
model, we applied the 80–20 cross-validation method. The regression coefficients
are computed between time series of temperature from the assimilation run and the
observed cod biomass. In the first step, the respective temperature and cod biomass
time series are divided into training and testing sets by randomly selecting with
replacement blocks of 80% of the parent time series as the training set and the
remaining 20% as the testing set. The regression coefficients are calculated from the
training set and applied to the testing set. Correlation coefficients are then calcu-
lated between the predictions made with the training set and observations as well as
between the testing set and observations. This process is repeated 1000 times, and

each time the 80% training set is selected randomly. The 95% confidence interval
for the training and test set is the 2.5th and 97.5th percentile range of the respective
1000 correlation coefficients. Note that the lag (L) in the above equation is cal-
culated separately for each predictor before testing various simple and multiple
linear regression models based on these predictors. This procedure gives the
uncertainty bounds presented in Fig. 2a, b.

Dynamical–statistical predictions. For hindcasts and forecasts, the regression
model is trained on output from the assimilation run (and fishing mortality for the
multiple regression model) and the resulting regression coefficients are applied to
temperatures from the initialized hindcasts and historical simulation (and the
fishing mortality scenarios for multiple regression models). The statistical model is
fed with anomalies of each variable and the mean is added to the predicted TSB
anomalies at the end. Mathematically this takes the form

C0
TSBðyÞ ¼ βo þ β1T

0ðy � LT Þ;
C0
TSBðyÞ ¼ βo þ β1T

0ðy � LT Þ þ β2Fðy � LFÞ;
where C0

TSB is the dynamical-statistical TSB prediction at year y, T 0 is the dyna-
mically predicted temperature (lead-year-10 predictions for the North Sea and
lead-year-4 for the SPG), LT and LF are the lags in years at which the respective
correlations between observed TSB and T or F are maximum, βo is the intercept,
and β1 and β2 are the slopes obtained from fitted observations.

The uncertainties in regression coefficients (slopes and intercepts) are also
estimated using a bootstrapping methodology. First, 1000 new predictor and
predictand time series of same length as the original time series are constructed by
random sampling with replacement from the parent time series, while preserving
their relationship. These new time series are then used to get 1000 estimates of
regression coefficients. These 1000 regression coefficients are then applied to each
of the 16 ensemble members (for temperature as the predictor). The 95%
confidence interval is the 2.5th and 97.5th percentile range of these 16,000
predictions. This procedure gives the uncertainty bounds presented in Fig. 4a, c

Hindcast skill and hindcast uncertainty. We use anomaly correlation coefficient
(ACC) and the MSESS as measures of skill of initialized hindcasts and historical
simulations against observations (stock assessment for TSB and assimilation output
for temperature) for the period 1960–2019. The MSESS is defined as

MSESS ¼ 1�MSE=MSEREF

where MSE is the mean square error of prediction and MSEREF is the mean square
error of reference forecast (here, climatology is used as reference)

Prior to calculating ACC and MSESS (and also prior to feeding the statistical
model for TSB), the initialized hindcasts are corrected for the lead-time-dependent
drift72, and lead-year-dependent climatology (mean over 1970–2019) is removed. The
uncertainty in hindcast skill is determined using a block bootstrapping approach. The
bootstrapping is done both in time and across ensemble members. We use a 6-year
overlapping block bootstrap to account for the autocorrelation in the time series. The
estimated uncertainties are not sensitive to a reasonable choices of block length that
allow sufficient number of blocks for sampling. Through random resampling with
replacement, 1000 new block-bootstrapped time series of predictions and observation
are used to obtain 1000 new estimates of ACCs. The 95% confidence interval is the
2.5th and 97.5th percentile range of these 1000 ACCs or MSESSs. This procedure
gives the uncertainty bounds presented in Figs. 3a, c and 4b, d.

Data availability
The observation-based ocean surface temperature datasets (AHOI and HadISST) are
publicly available (AHOI: https://www.thuenen.de/en/sf/projects/a-physical-statistical-
model-of-hydrography-for-fishery-and-ecology-studies-ahoi/, HadISST: https://www.
metoffice.gov.uk/hadobs/hadisst/index.html). The cod biomass and fishing mortality data
used in this study are publicly available from the ICES reports (www.ices.dk). The
historical simulations from the Max Planck Institute Grand Ensemble are publicly
available from the ESGF. The assimilation experiment and decadal predictions analyzed
in this study are accessible publicly at the DKRZ (http://cera-www.dkrz.de/WDCC/ui/
Compact.jsp?acronym=DKRZ_LTA_1075_ds00004).

Code availability
The bash scripts for post-processing model output and NCL code used for generating
figures is available from the corresponding author upon request.
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