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Abstract
Useful hindcast skill of meteorological drought, assessed with the 3-month standardized
precipitation index (SPI3M), has been so far limited to one lead month (time horizon of the
prediction). Here, we quadruple that lead time by demonstrating useful skill up to lead month 4.
To obtain useful hindcast skill of meteorological drought at these long lead times, we exploit
well-known El Niño-Southern Oscillation (ENSO)–precipitation teleconnections through
ENSO-state conditioning. We condition initialized seasonal SPI3M hindcasts, derived from the
Max-Planck-Institute Earth SystemModel (MPI-ESM) over the period 1982–2013, on ENSO states
by exploring significant agreements between two complementary analyses: hindcast skill
ENSO–composites, and observed ENSO–precipitation correlations. Such conditioned hindcast
skill of meteorological drought is in MPI-ESM significant and reliable for lead months 2 to 4 in
equatorial South America and southern North America during these regions’ dry ENSO phases.
When a region’s dry ENSO phase is present at the initialization in autumn (ASO), predictions of
meteorological drought show useful hindcast skill for the upcoming winter (DJF) in the respective
region. The area of this useful hindcast skill is further enlarged in both regions when the respective
region’s dry ENSO phase is already present in the antecedent summer (conditioning on ENSO
states in JJA). Active ENSO events constitute windows of opportunity for drought predictions that
are insufficiently covered by typical predictability analyses. For these windows, we demonstrate
predictive skill at unprecedented lead times with a single model whose output is not bias corrected.
This contribution exemplifies the value of ENSO-state conditioning in identifying these windows
of opportunity for regions that are arguably most affected by ENSO–precipitation teleconnections.
During these regions’ dry ENSO phases, reliable predictive skill of meteorological drought is at
long lead times particularly valuable and moves the frontier of meteorological drought predictions.

1. Introduction

Reliable seasonal meteorological drought predictions
can alleviate the harm caused by droughts through
timely and accurate warnings, resulting in increased
preparedness. However, the time horizon of reliable
meteorological drought predictions is currently con-
fined to one lead month (Yuan and Wood 2013).
Here, we analyze the potential to increase this time

horizon by evaluating our predictions at times and
in regions known to be influenced by El Niño-
Southern Oscillation (ENSO) teleconnections. While
the imprint of ENSOon regional precipitation is well-
known, current evaluations of dynamical seasonal
predictions of meteorological drought still insuffi-
ciently utilize the window of opportunity that arises
from this statistical insight. Exploiting this window,
the present study scrutinizes the idea that dynamical
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Figure 1. Useful hindcast skill identified in previous studies. Initialization is performed at lead month 0. Negative (positive) lead
months employ observed (predicted) precipitation to compute the predicted SPI.

seasonal predictions of meteorological drought are
during active ENSO states more skillful at larger lead
times than expected.

The predictive skill of precipitation is usually
unreliable over land on seasonal timescales (Kim
et al 2012).Nevertheless, ENSO teleconnections affect
regional precipitation and are known to generate sea-
sonal prediction skill (Kumar et al 2013). Nowadays,
ENSO–precipitation teleconnections are recognized
as dominant forcing of regional precipitation over
many areas in observations (Ropelewski and Halpert
1986, 1987, Dai and Wigley 2000, Seager et al 2005)
and simulations (Schubert et al 2008, 2016). Unsur-
prisingly, ENSO-conditioned seasonal predictions of
hydrological drought demonstrate skill at compar-
ably long lead times (Wood and Lettenmaier 2006).
Surprisingly, in contrast to hydrological drought, the
predictive skill of ENSO-conditioned seasonal pre-
dictions of meteorological drought has to authors’
best knowledge not yet been investigated at long lead
times; although teleconnections between ENSO and
meteorological drought indices, such as the standard-
ized precipitation index (SPI) (McKee et al 1993), are
nowadays well established for observations (Hallack-
Alegria et al 2012, Manatsa et al 2017) and simu-
lations (Mo et al 2009, Ma et al 2015) over many
regions.

SPI is recommended by the WMO (Hayes et al
2011) and widely used for meteorological drought
predictions (e.g. Yoon et al 2012, Ma et al 2015, Mo
and Lyon 2015). The index quantifies the standard-
ized deficit (or surplus) of precipitation during a pre-
defined accumulation period. Here, we analyze SPI
with an accumulation period of 3 months to invest-
igate the hindcast skill of meteorological drought.

Most of the previous studies that investigated SPI
hindcast skill evaluated the hindcast skill of overall
SPI variability; rather than the intuitively more use-
ful hindcast skill ofmeteorological drought (figure 1).
However, attaining useful hindcast skill ofmeteorolo-
gical drought, extreme SPI values, ismore challenging
(and arguably more relevant) than attaining useful
hindcast skill of overall SPI variability (Ma et al 2015).
The present contribution tackles this challenge of pre-
dicting the occurrence of meteorological drought.

A remaining key challenge for seasonal predic-
tions of meteorological drought is to increase the lead

time of skillful seasonal precipitation and drought
index predictions (Wood et al 2015). At currently
skillful lead times, initial conditions massively con-
tribute to the evaluated hindcast skill (figure 1). Sev-
eral studies (Quan et al 2012, Yoon et al 2012, Yuan
and Wood 2013, Mo and Lyon 2015) have demon-
strated significant SPI hindcast skill up to lead month
1 with an accumulation period of 3 months and
up to lead month 3 with an accumulation period
of 6 months. In these studies, hindcast skill is only
significant if the lead time is about half as long as
SPI’s accumulation period. Consequently, only one
half of the predicted SPI stems from the precipita-
tion output of the model, while observations account
for the other half. Demonstrating useful, significant
hindcast skill of SPI that is derived only from the
predicted precipitation output of the model consti-
tutes the next frontier of meteorological drought pre-
dictions (Wood et al 2015). This study tackles that
frontier.

Meteorological drought predictions need to
merge several sources of information to be skillful
(Wood et al 2015). Merging the dynamical predic-
tion with observed precipitation is a valid, typical
approach to exploit the memory of the drought index
introduced by its accumulation period. However, this
approach introduces two major drawbacks. First, the
chosen accumulation period of the drought index
prescribes scrutable lead times of the prediction.
That confines the lead time at which predictions
can demonstrate skill. Second, using observations
in the calculation of the predicted drought index
obscures the quantification of the model’s predict-
ive skill. That may lead to over-confidence in the
performance of the model because the actual skill
might originate from observations. Depending on
the prediction time, these observations may impact
the predicted drought index stronger than predicted
precipitation. To avoid such obscurities and over-
confidence, our predicted drought index is solely
forecast-based and does not use observations. That
also facilitates the investigation of ambitious lead
times. Thus, the present contribution investigates
dormant opportunities to reliably predict meteoro-
logical drought at large lead times through exploring
the predictive potential of dynamical seasonal fore-
cast systems during active ENSO years.
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Instead of relying on a blend of observations
and simulations in the predicted drought index, we
attempt to extend predictive skill through ENSO tele-
connections. Thus, we merge the dynamical pre-
diction with ENSO as a second source of inform-
ation. We investigate the lagged impacts of an act-
ive ENSO state on meteorological drought hindcast
skill during winter (DJF) for the period 1982–2013
in seasonal hindcasts of the Max-Planck-Institute
Earth System Model (MPI-ESM), which were initial-
ized each start of November. The analysis conditions
our prediction on active ENSO states by exploring
significant agreements between two complementary
analyses: hindcast skill composites of ENSO states,
and ENSO–precipitation correlations. In this pro-
cess, we investigate the sensitivity of our ENSO-
state-conditioned prediction by considering different
lead times of the ENSO signal and determine which
of those lead times maximizes the area of reliable,
ENSO-state-conditioned hindcast skill of meteorolo-
gical drought in our analysis. To showcase the poten-
tial of ENSO-state conditioning, we use SPI with
an accumulation period of 3 months to investigate
the prediction’s lead time of 2–4 months. With this
investigation, we attempt to quadruple the time hori-
zon of skillful SPI3M predictions.

2. Data andmethods

2.1. Data
Our seasonal prediction system (Baehr et al 2015,
Bunzel et al 2018) is based on MPI-ESM, which is
also used in theCoupledModel IntercomparisonPro-
ject 5 (CMIP5).MPI-ESMcouples general circulation
components for the ocean (Jungclaus et al 2013) and
the atmosphere (Stevens et al 2013). Moreover, MPI-
ESM additionally contains subsystem components
for terrestrial processes (Hagemann and Stacke 2015)
and the marine bio-geochemistry (Ilyina et al 2013).
For this study themodel runs with 10 ensemblemem-
bers in the same resolution as in CMIP5—MPI-ESM-
LR (low-resolution): T63 (approx. 1.875◦× 1.875◦)
with 47 vertical layers in the atmosphere between the
surface and 0.01 hPa, and GR15 (maximum 1.5◦×
1.5◦) with 40 vertical layers in the ocean. Except for
an extension of the simulation to cover the period
1982–2013, the analyzed simulations are identical to
the ensemble investigated by Bunzel et al (2018). In
hindcasts, initialized each start of November, we eval-
uate the precipitation output fromDecember till Feb-
ruary (lead months 2–4).

The German Weather Service used the seasonal
prediction system employed in this study to issue
operational forecasts until recently; when a suc-
cessor version with a higher resolution was imple-
mented (Fröhlich et al 2021) that is based on
MPI-ESM1.2 (Mauritsen et al 2019). This increased
resolution requires new parameterization schemes
to estimate large-scale and convective precipitation

amounts. Since these new schemes still need refine-
ments, we test the conservative model version in
this study.

Observed monthly precipitation is obtained from
the global precipitation climatology project (GPCP).
GPCP’s dataset combines observations and satellite
precipitation data into a 2.5◦× 2.5◦ global grid span-
ning 1979 to present (Adler et al 2003). To evaluate
our hindcasts against these observations, the precip-
itation output of the model is interpolated to GPCP’s
grid.

2.2. Methods
ENSO conditioning explores significant agreements
between two complementary analyses. First, obtain-
ing significant Brier-Skill-Scores (BSS) hindcast skill
in an ENSO composite analysis ensures the qual-
ity of the model’s prediction. Attaining also signific-
ant observed correlations in an ENSO–precipitation
correlation analysis safeguards the afore ascertained
quality of the model. Correlation and composite ana-
lyses are both linked to a sound, well-understood
physical mechanism and, thus, complement each
other in our study. Moreover, while the correla-
tion analysis quantifies precipitation variations relat-
ive to fluctuations in the signal, the composite ana-
lysis investigates the response of hindcast skill of dry
extremes to extremes in the signal. By exploring grid-
cell-wise significant congruences of both analyses, we
establish robustness for our investigation.

We calculate the 3-month SPI duringDJF (SPIDJF)
(McKee et al 1993) for observations and simulations
to evaluate modeled against observed SPIDJF timeser-
ies. SPI timeseries ought to be normally distributed
and it is important to note that non-normally dis-
tributed SPIDJF timeseries would impair our evalu-
ation process; same as differences between observa-
tions’ and simulations’ goodness of fit in SPI’s cal-
culation algorithm. Consequently, SPI’s calculation
algorithm ought to establish comparability between
observed andmodeled SPIDJF timeseries by maximiz-
ing their normality both individually as well as con-
currently. To ensure such comparability, we employ
the methodology proposed by Pieper et al (2020),
which uses the exponentiatedWeibull distribution, to
compute SPI3M timeseries.

While evaluating hindcast skill of meteorolo-
gical drought, we differentiate between two target
regions that display strong ENSO–precipitation tele-
connections: the southern USA and northern Mex-
ico (henceforth referred to as North America), and
northern South America (henceforth referred to as
South America). It is noteworthy that all global data
sets of observed precipitation data carry consider-
able uncertainties over South America (Mo and Lyon
2015). We address these uncertainties in the discus-
sion of the results. Technical details howwe condition
our hindcast skill on active ENSO states can be found
in appendix A.
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3. ENSO-state-conditioned hindcast skill
of meteorological drought

In agreement with prior studies (Yoon et al 2012, Mo
and Lyon 2015, Wood et al 2015), hindcast skill of
meteorological drought, assessed with BSS, is poor
for lead months 2 to 4 in climate models such as
MPI-ESM-LR almost everywhere around the globe
(figure 2(a)). Still, the best hindcast skill of met-
eorological drought emerges in North and South
America (black boxes in figure 2(a)). In particu-
lar, those parts of North and South America, where
observed precipitation is strongly coupled to vari-
ations of the ENSO-index (figure 2(b)). Grid cells
that demonstrate comparable high hindcast skill con-
currently show large correlation values between the
ENSO-index and precipitation (compare figures 2(c)
with (d)). The more skillful the model’s prediction
of meteorological drought, the higher is the cor-
relation value between observed precipitation and
ENSO-index. This co-occurrence affirms our pre-
sumption that MPI-ESM-LR captures strong ENSO–
precipitation teleconnections in our target regions.
Yet, neutral ENSO states might conceal significant
skill during active ENSO states.

Confining our hindcast skill analysis to start
years that exhibit La Niña (figure 2(e)) or El Niño
(figure 2(f)) conditions in ASO (the latest inform-
ation available at the initialization at the start of
November) substantially improves hindcast skill of
meteorological drought. However, some grid cells
(e.g. in western South America, and East North
Central USA) show significant BSS hindcast skill
(tested at the 5% confidence level; see appendix A
for more information) in this composite analysis
but weak ENSO–precipitation correlations. In those
grid cells, we cannot maintain the claim that ENSO–
precipitation teleconnections depict the physical basis
for the skill improvement. Therefore, ENSO-state
conditioning safeguards our analysis against over-
confidence. To condition our hindcast skill ofmeteor-
ological drought on ENSO states, we highlight grid
cells (figures 2(g) and 1(h)) exhibiting both: signi-
ficant correlations (also tested at the 5% confidence
level; see appendix A for more information) between
ENSO-index with precipitation (figure 2(d)) and sig-
nificant hindcast skill of meteorological drought in
the respective ENSO composite analysis (figures 2(e)
and (f)). Thereby, we achieve reliable (significant in
both analyses) ENSO-state-conditioned hindcast skill
of meteorological drought (figures 2(g) and (h)).

Because a specific ENSO state contributes to
either drying or wettening of our target regions, we
separate our results into two cases. First, we obtain
reliable hindcast skill of meteorological drought dur-
ing a region’s dry ENSO phase (indicated by brown-
ish colored grid cells in figures 2(g) and (h)). Second,
we obtain reliable hindcast skill of meteorological

drought during a region’s wet ENSO phase (indic-
ated by greenish colored grid cells in figures 2(g)
and (h)). We focus on the dry ENSO phase for the
remainder of this study because skillful meteorolo-
gical drought predictions are particularly important
during this phase (Wilhite 1992, Wood et al 2015,
Crimmins and McClaran 2016, Madadgar et al 2016,
Baek et al 2019).

Next, we maximize the area of reliable hindcast
skill of meteorological drought during the dry ENSO
phase of our target regions. Wemaximize that area by
examining its sensitivity to the prescribed lead time of
the ENSO signal in our analysis. Instead of selecting
composites based on (and correlating DJF precipita-
tion with) the ASO ENSO signal, this sensitivity ana-
lysis investigates the ENSO signal in an earlier season
than ASO. In this process, we identify that condition-
ing our hindcast skill of meteorological drought on
JJA-ENSO states maximizes the area of each region’s
reliable hindcast skill of meteorological drought (the
count of brown grid cells in figure 2(g) and (h)).

In North America (figures 3(a)–(c)) and South
America (figures 3(d)–(f)), ENSO-index variabil-
ity imprints similar during JJA as during ASO on
observed DJF precipitation (compare figures 3(a)
and (d) against figure 2(d)). This result agrees
well with the lag identified by other studies (Red-
mond and Koch 1991, Harshburger et al 2002). Yet,
when an ENSO event is present in the preceding
boreal summer (JJA), MPI-ESM-LR captures ENSO–
precipitation teleconnections better (see next para-
graph). As a result of exploiting this lagged rela-
tionship, the count of grid cells showing significant
BSS-assessed hindcast skill of meteorological drought
increases in figure 3 relative to figure 2 by 60% (42%)
in North (South) America. Consequently, also the
count of grid cells in which ENSO-state condition-
ing ascertains reliable hindcast skill of meteorological
drought during ENSO’s dry phase (brownish colored
grid cells) increases in figure 3 relative to figure 2 by
44% and 46% in North- and South America, respect-
ively. Consequently, ENSO-state conditioning leads
to reliable hindcast skill of meteorological drought at
lead months 2 to 4 in large parts of our target regions
during their respective dry ENSO phases.

But why does MPI-ESM-LR represent ENSO–
precipitation teleconnections better when they are
already present in JJA relative to when they present in
ASO? Active JJA ENSO events typically develop into a
stronger ENSO signal by the end of the year than act-
ive ASO ENSO events. Thus, they lead to more pro-
nounced precipitation signals that affect larger parts
of our target regions. Since MPI-ESM-LR generally
under-represents spatial precipitation variability (not
shown), the model benefits from these more pro-
nounced signal after JJA ENSO events that uniformly
affects a larger area than the signal of ENSO events
that developed in between JJA and ASO.
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Figure 2. The BSS-assessed skill of the model in predicting meteorological drought at lead-months 2 to 4 and Pearson correlations
between DJF precipitation and ASO ENSO-index on a global map ((a) and (b), respectively) and in our target regions ((c) and
(d), respectively). BSS-assessed skill of predicting dry SPIDJF extremes for a composite analysis which only considers years
exhibiting La Niña (e) or El Niño (f) states present in ASO. Dots indicate BSS values significantly greater than 0 (which translates
to Brier-Scores significantly greater than the ones of the random reference prediction) and Pearson correlations that significantly
differ from 0. Reliable hindcast skill of dry SPIDJF extremes achieved through conditioning the prediction on La Niña (g) or El
Niño (h) states in ASO (i.e. significant correlations (d) that spatially coincide with significant BSS (e)/(f)). Colors indicate
whether reliable hindcast skill is obtained during the region’s wet (greenish) or dry (brownish) ENSO phase.

Between 1983–2013, La Niña and El Niño events
observable in JJA became the strongest events in ASO.
In contrast, comparable weak ASO events developed
later than JJA (compare figure 4(a) against 4(d)).
These comparable weak events, that developed in
between JJA and ASO, often coincided with ordin-
ary drought-prone conditions (SPI values close to−1
in figures 4(b) and (c)). The classification of these
ordinary drought-prone conditions as drought or
non-drought sensitively depends on SPI’s threshold
used in the BSS calculation. Such threshold sens-
itivity is highly unfavorable for any model tasked
with the demonstration of BSS-assessed predictive
skill. Consequently, omitting these comparably weak

events from our analysis maximizes the area of reli-
able hindcast skill of meteorological drought as seen
before. As a result of omitting these weak events,
the ensemble mean prediction of SPIDJF demon-
strates a better agreement with observations during
the remaining stronger events (compare highlighted
years in figures 4(b) and (c) against 4(e) and (f)). This
improved agreement during strong events is appar-
ent e.g. inNorth America during the years 1999, 2000,
and 2011 and in SouthAmerica during the years 1983,
1992, 1998. During these years also the most intense
meteorological droughts occurred in both regions,
coincidingwith particularly strong LaNiña or ElNiño
events. The model seems to skillfully capture distinct

5
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Figure 3. Correlations between DJF precipitation and JJA ENSO-index over North America (a) and South America (d).
BSS-assessed skill of predicting dry SPIDJF extremes for a composite analysis that only considers years exhibiting La Niña (b) or El
Niño (e) states present in JJA. Dots indicate again BSS (Pearson correlations) significantly greater than (different from) 0. Reliable
hindcast skill of SPIDJF achieved through conditioning the prediction on La Niña (c) and El Niño (f) states present in JJA.

Figure 4. ENSO-index during JJA (a) and ASO (d). SPIDJF averaged and standardized over the brownish colored grid points in
figure 3(c) (b), 3(f) (c), 2(g) (e), and 2(h) (f). Observed averaged SPIDJF is depicted by solid lines, while the ensemble mean is
indicated by dashed lines. In JJA, the Pearson correlation between ENSO-index and observed (predicted) averaged SPIDJF
amounts to−0.67 (−0.7) in South and 0.56 (0.7) in North America, while the correlation between the ensemble mean and
observed average SPIDJF is 0.86 and 0.79 in South and North America, respectively. In ASO, the correlation between ENSO-index
and observed (predicted) averaged SPIDJF amounts to−0.75 (−0.77) in South and 0.57 (0.73) in North America, while the
correlation between the ensemble mean and observations is 0.83 and 0.77 in South and North America, respectively.
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teleconnections during these strong events. Yet, these
distinct teleconnections may still vary inter-annually
and do not necessarily cause meteorological droughts
(see also Patricola et al 2020). These inter-annual vari-
ations are also captured by themodel. Themodel cor-
rectly predicts normal conditions e.g. in South Amer-
ica during the strong El Niño event of 1988 or in
North America during the phase-out of a strong La
Niña event in 1990.

Despite capturing these inter-annual variations,
the results beg the question whether the dynam-
ical prediction provides any additional value beyond
the statistical ENSO–SPI relationship. To answer this
question, we tested the predictive skill of our ENSO-
state-conditioned prediction against the prediction
of a statistical model for all highlighted grid cells of
figures 3(c) and (f). This statistical model linearly
regresses the JJA ENSO index onto precipitation in
each grid cell separately (not shown; see appendix B
for more information). It is noteworthy that this stat-
istical model does not separate between training and
test period and derives individual regression coeffi-
cients for each grid cell. Thus, the results from the
statistical model likely over-estimate the predictive
skill of the statistical relationship due to over-fitting.

Averaged over all highlighted grid cells of
figures 3(c) and (f), the dynamical model conclus-
ively out-performs the statistical model despite the
explained over-estimation. Over the entire time
series, the statistical model predicts in North (South)
America overall SPIDJF variability with a correlation
of 0.56 (0.67). In contrast, the ensemble mean of the
dynamical SPIDJF prediction exhibits over the entire
time-series correlations of 0.79 and 0.86 in North and
South America, respectively. The dynamical model
also out-performs the statistical model in the predic-
tion of meteorological droughts. Averaging their pre-
dictions over North (South) America, the statistical
model predicts meteorological drought during the
dry phase of ENSO with a BSS of 0.54 (0.31), while
the dynamical, ENSO-state-conditioned prediction
demonstrates BSS of 0.64 (0.68). In North (South)
America, correlations (and BSS) of the dynamical
model are significantly (tested at the 1% signific-
ance (99% confidence) level; see appendix B for
more information) higher than those of the statistical
prediction.

4. Discussion

ENSO-state conditioning reliably improves hind-
cast skill of meteorological drought in MPI-ESM-
LR over North and South America during their
respective dry ENSO phases. For ENSO-state con-
ditioning to improve hindcast skill of meteorolo-
gical drought, strong, large-scale ENSO–precipitation
teleconnections need to be present. We confirm
their existence through significant correlations

between local precipitation and a lagged ENSO-
index. Moreover, the forecast system needs to cap-
ture these ENSO–precipitation teleconnections. We
ascertain this ability through significant hindcast skill
of meteorological drought in an ENSO composite
analysis. ENSO-state conditioning classifies hindcast
skill of meteorological drought in those grid cells as
reliable that concurrently pass significance tests of
both analyses.

We condition our prediction on the state of ENSO
in two different seasons (ASO and JJA). Depending
on the season, on which we condition, the meteor-
ological drought prediction of MPI-ESM-LR exhib-
its different strengths. Since La Niña and El Niño
events generally occur more often in ASO (7 and 10
times in between 1983 and 2013, respectively) than
in JJA (5 and 6 times, respectively), MPI-ESM-LR
demonstrates reliablemeteorological drought predic-
tions more often when the prediction is conditioned
on ASO-ENSO states. Yet, when active ENSO events
are already present in JJA, they typically develop into
stronger events by December that usually cause more
distinct teleconnections covering a larger area. There-
fore, MPI-ESM-LR captures the teleconnections of
these stronger events (which are detectable in JJA) in
more grid cells than the teleconnections of the weaker
events (which are only detectable in ASO).

This explanation agrees with previous studies
(Redmond and Koch 1991, Harshburger et al 2002)
andwithNOAAClimate Prediction Center’s definition
of an ENSO event: 5 consecutive overlapping seasons
of ±0.5 ◦C in the 3-month running mean Niño3.4-
index (ONI) (Climate Prediction Center 2015). Act-
ive ENSO events detected at initialization in ASO
may demonstrate an exceedance of this threshold only
in four consecutive overlapping seasons by our pre-
diction time in DJF. Since ENSO events generally
peak around December, events present in JJA usually
strengthen over the following months. Those events,
present in JJA, universally demonstrate an exceedance
of the threshold in at least six consecutive overlap-
ping seasons by DJF, our prediction time. In the time-
period analyzed here, we identify a single exception
to this pattern in 1990. In 1990, one La Niña event
was still present in JJA, while a neutral ENSO state
emerged by ASO later that year. Still, this La Niña
event persisted for more than 5 consecutive overlap-
ping seasons beforehand. According to previous stud-
ies, the imprint of this La Niña event on precipitation
over the American continent should be notable dur-
ing our prediction time in DJF (Redmond and Koch
1991, Harshburger et al 2002).

Unsurprisingly, we identify strong ENSO–SPIDJF
teleconnections over the target regions investigated
here. Yet, despite probable over-fitting, a statistical
linear regression model predicts SPIDJF distinctly
worse than the dynamical model. For the entire time
series, the statistical model predicts overall SPIDJF
variability significantly worse in both target regions.
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In South America during the dry ENSO phase,
the dynamical model demonstrates significantly bet-
ter skill in predicting meteorological drought than
the statistical model. While the dynamical model
also better predicts meteorological drought than
the statistical model South America, the improve-
ment does not pass significance tests. These insights,
that the ENSO-state-conditioned prediction conclus-
ively out-performs the statistical prediction, addi-
tionally accentuate the potential value of ENSO-state
conditioning.

It seems noteworthy that we do not perform
any bias correction to the precipitation output of
the model. The aim of this study is to demonstrate
the skill of the ENSO-state conditioning. As a con-
sequence of not performing any bias correction, the
identified useful hindcast skill can be fully attributed
to ENSO-state conditioning.

Our seasonal hindcasts span 31 years. The com-
posite analysis, which considers only years exhibit-
ing a certain ENSO state, further reduces our data-
set to a minimum of 5 to 6 independent years, which
arguably constitutes a scarce database. This issue is
partially mitigated by the fact that BSS evaluates the
entire probabilistic ensemble space of the prediction.
Since our ensemble space is spanned by 10 different
ensemble members, we rely on at least 50 to 60 events
for our BSS-evaluation. Yet, an increasing ensemble
size cannot arbitrarily compensate for a limited tem-
poral length of dynamical seasonal hindcasts, because
different ensemble members are not independent of
each other. Thus, the problem of a scarce database
would have been further exacerbated if we had con-
ditioned our analysis on different ENSO flavors or
on several climate oscillations. Different ENSO fla-
vors and additional climate oscillations are certainly
promising to capture a variety of precipitation tele-
connections. However, such conditioning approaches
are not feasiblewith current dynamical seasonal hind-
casts initialized with satellite observations.

One way to alleviate the issue of statistical reli-
ability is to decrease the SPI threshold that BSS uses
to classify meteorological drought conditions. The
thresholdwe use here is disputedwithin the literature.
Svoboda et al (2002) proposed to identify meteorolo-
gical drought conditions in the US Drought Monitor
by an SPI threshold of−0.8—instead of−1, as used in
this study. On one hand, a lower absolute value of this
threshold would increase the number of (modeled
and observed) meteorological droughts and would
thereby increase statistical reliability. On the other
hand, a lower absolute value of that threshold would
result in a reduced extremity of the analyzedmeteoro-
logical droughts. Disentangling these two competing
effects has to the authors’ best knowledge not been
investigated up to now and is beyond the scope of this
study.

While GPCP’s precipitation data set is generally
reliable, estimating South American precipitation is

principally delicate. Observational datasets are not-
ably sparse in South America. Consequently, uncer-
tainties might be too large to reliably classify meteor-
ological droughts (Mo and Lyon 2015). Despite these
uncertainties, monthly precipitation analyses remain
one of our most powerful tools for the task at hand.

This contribution attempts to highlight the
potential and prove the concept of ENSO-state con-
ditioning. During our analysis, we also checked
for reliable ENSO-state-conditioned hindcast skill
of meteorological drought outside of our target
regions. Elsewhere in the world, ENSO-state con-
ditioning only leads in single, scattered grid cells
to reliable hindcast skill of meteorological drought
during ENSO’s dry phase (not shown). Thus, there
appears to be little scope to extend ENSO-state
conditioning to other regions that are character-
ized by strong ENSO–precipitation teleconnections
with MPI-ESM-LR. MPI-ESM-LR seems to insuffi-
ciently capture these teleconnections elsewhere. Still,
multi-model ensembles might compensate for emer-
gent deficiencies through averaging which would
lead to a better representation of teleconnections
in these ensembles than in MPI-ESM-LR. Therefore,
ENSO-state conditioning may improve meteorolo-
gical drought predictions of multi-model ensembles
also in other regions than those scrutinized in this
investigation. Additionally, our analysis that uses
ENSO-state conditioning to identify hotspots of met-
eorological drought predictability could be extended
to soil-moisture drought (also known as agricultural
drought). The Standardized Precipitation Evapotran-
spiration Index (SPEI; Vicente-Serrano et al 2010)
measures soil-moisture drought but is calculated
similarly as SPI and, thus, their substitution would
require few methodological adjustments. Yet, an ana-
lysis of both indices can illuminate further windows
of opportunity for predicting the propagation from
meteorological to soil-moisture drought.

5. Conclusions

This study investigates hindcast skill of meteorolo-
gical drought duringDJFwith 3-month SPIDJF, which
comprises lead months 2 to 4 of an initialized MPI-
ESM seasonal hindcast ensemble. In previous studies,
the predicted drought index usually merges predicted
and observed precipitation. This approach artificially
generates predictive skill. Additionally, this approach
also links scrutable lead times to the chosen accu-
mulation period of SPI. In contrast, our evaluation
strictly separates simulations and observations and,
thereby, quantifies genuine hindcast skill of the fore-
cast system. To demonstrate reliable hindcast skill of
meteorological drought despite this more challenging
evaluation process, we exploit well-known ENSO–
precipitation teleconnections. During ENSO’s dry
phase—when skillful meteorological drought predic-
tions are particularly valuable—we achieve reliable
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hindcast skill of meteorological drought up to four
lead months ahead with SPIDJF. Disentangling the
accumulation period of SPI from the lead time of the
prediction enables us to quadruple the lead time of
reliable hindcast skill of dry SPI3M extremes, meteor-
ological droughts. At this unprecedented lead time for
skillful meteorological drought predictions, the area
of reliable hindcast skill of meteorological drought
is further extended to cover large parts of northern
South America and southern North America when
the dry ENSO phase is already present in the pre-
ceding JJA. Thereby, this study reveals the poten-
tial of ENSO-state conditioning in uncovering the
predictive potential of dynamical models by exploit-
ing ENSO–precipitation teleconnections. During act-
ive ENSO states, dynamical seasonal meteorological
drought predictions are more skillful at larger lead
times thanwidely expected from typical predictability
analyses. Exploiting this window of opportunity, we
quadruple the lead time of skillful seasonal drought
predictions with a single model whose output is not
bias corrected. That revelationmight encourage other
analyses into windows of opportunities for meteor-
ological drought predictions and excite further pro-
gress towards reliable and timely drought warnings.
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Appendix A. ENSO-state conditioning

To quantify the strength of the ENSO signal, we cal-
culate an ENSO-index by averaging SST anomalies,

from the ERA-Interim reanalysis (Dee et al 2011), in
the Niño3.4 region (5◦ S–5◦ N, 120◦ W–170◦ W). El
Niño and La Niña events, used in the process of con-
ditioning our prediction on active ENSO states, are
identified analog toNOAA Climate Prediction Center,
based on a threshold of±0.5 ◦C in the 3-month run-
ningmean Niño3.4-index (ONI) (Climate Prediction
Center 2015).

We condition our prediction on active ENSO
states by exploring significant agreements between
hindcast skill composites of active ENSO states and
ENSO–precipitation correlations. In this process,
we calculate Brier-Skill-Scores (BSS) (Murphy 1973)
and Pearson correlations. BSS needs to distinguish
between a drought and a non-drought event to
quantify the hindcast skill. For this differentiation a
threshold is set in accordance with WMO’s SPI User
Guide (Svoboda et al 2012) to an SPI value of −1.
Significances of BSS (Pearson correlations) are com-
puted with a one- (two-)sided 500-sample bootstrap
which is evaluated at the 5% significance level against
a null-hypothesis. The null-hypothesis for Pearson
correlations assumes that the correlation is zero. The
null-model for the Brier-Score is a random predic-
tion that uses theoretical climatological occurrence
probabilities to predict the likelihood of drought and
non-drought conditions.We usewell-known theoret-
ical occurrence probabilities of the standard normal
distribution for this random prediction since Pieper
et al (2020) demonstrated the normality of the here
employed calculation algorithm of SPI3M.

Obtaining significant BSS hindcast skill in an
ENSO composite analysis ensures the quality of
the model’s prediction. Attaining also significant
observed correlations in an ENSO–precipitation cor-
relation analysis safeguards the afore ascertained
quality of the model. Correlation and composite ana-
lyses are both linked to a sound, well-understood
physical mechanism and, thus, complement each
other in our study. Moreover, while the correlation
analysis quantifies precipitation variations relative
to fluctuations in the signal, the composite analysis
investigates the response of hindcast skill of dry SPIDJF
to extremes in the signal. By exploring grid-cell-wise
significant congruences of both analyses, we estab-
lish the robustness of our investigation. We refer to
this procedure as conditioning our hindcast skill on
ENSO states. Since the hindcasts are initialized at the
start of November, we consequently use the ENSO
information available by November to condition our
hindcast skill.

Appendix B. Evaluating the dynamical
against a statistical prediction

We construct a linear regression model. Using this
model we compute a statistical SPI prediction by lin-
early regressing the ENSO index time series onto
the time series of observed local SPI. We perform
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this regression for each brownish colored grid-cell
in figures 3(c) and (f). Without any differentiation
between training and test period, we use the entire
time series to find the optimal regression coefficients
for each grid cell.

To obtain single time series for all North (South)
American grid cells, we average the statistical and the
dynamical predictions over all brownish colored grid
cells in figures 3(c) and (f). After the averaging pro-
cess, we standardize the resulting time series (divi-
sion by the resulting standard deviation). To evalu-
ate these standardized time-series of our predictions
against observations, we also average and standardize
the observed SPI (derived from GPCP’s precipitation
analysis).

We evaluate the statistical and the dynamical
prediction against observations by computing two
different skill metrics. First, Pearson correlations
over the entire time series indicate the skill of each
model to predict overall SPI variability. Second, a
BSS composites analysis evaluates the skill of each
model to predict dry SPI extremes, meteorological
drought, during the respective region’s dry ENSO
phase.

To evaluate whether the identified skill difference
between the dynamical and the statistical prediction is
significant, we compute one-sided 500-sample boot-
straps. We evaluate these bootstraps at the 1% con-
fidence level against the null-hypotheses that both
predictions are identical. We test the significance in
both directions. First, by bootstrapping the dynam-
ical prediction, we evaluate whether the dynamical
prediction is significantly better than the statistical
prediction. Second, by bootstrapping the statistical
prediction, we evaluate whether the statistical predic-
tion is significantly worse than the dynamical predic-
tion. Significance tests of both directions deliver the
same results.
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