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1 	 | 	 INTRODUCTION

Use	of	Big	Data	has	exploded	thanks	to	increasing	computer	processing	power,	falling	storage	costs,	and	improving	acces-
sibility	to	software.	This	is	enabling	advances	in	economic	forecasting	(Choi	&	Varian,	2012;	Woo	&	Owen,	2019),	disease	
prediction	and	health	care	(Arora	et	al.,	2019;	Carneiro	&	Mylonakis,	2009;	Ginsberg	et	al.,	2009;	Seifter	et	al.,	2010),	as	
well	as	consumer	modelling	(Du	et	al.,	2015;	Silva	et	al.,	2019).	Big	Data	analytics	paired	with	real-	time	data	streaming	
from	devices	connected	to	the	Internet	of	Things	has	the	potential	 for	realising	the	“smart	city	dream”	by	improving	
decision-	making	and	reducing	costs	for	public	services	(Mohamed	&	Al-	Jaroodi,	2014;	Silva	et	al.,	2017,	2018).	The	last	
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Abstract
Google	Trends	(GT)	offers	a	historical	database	of	global	internet	searches	with	
the	potential	to	complement	conventional	records	of	environmental	hazards,	es-
pecially	in	regions	where	formal	hydrometeorological	data	are	scarce.	We	evalu-
ate	the	extent	to	which	GT	can	discern	heavy	rainfall	and	floods	in	Kenya	and	
Uganda	during	the	period	2014	to	2018.	We	triangulate	counts	of	flood	searches	
from	GT	with	available	rainfall	records	and	media	reports	to	build	an	inventory	
of	 extreme	 events.	 The	 Spearman	 rank	 correlation	 (ρ)	 between	 monthly	 mean	
search	 interest	 for	 flooding	 and	 monthly	 Climate	 Hazards	 Group	 InfraRed	
Precipitation	with	Station	(CHIRPS)	rainfall	totals	was	ρ = +0.38	(p < 0.005)	for	
Kenya	and	ρ = +0.64	(p < 0.001)	for	Uganda.	Media	reports	of	flooding	were	used	
to	specify	a	threshold	of	detectability	to	give	the	same	overall	frequency	of	floods	
based	on	GT	search	interest.	When	the	GT	search	index	threshold	was	set	at	≥15	
and	≥29,	the	correct	detection	rate	was	75%	and	64%	within	a	five-	day	window	of	
known	flood	events	in	Kenya	and	Uganda,	respectively.	From	these	preliminary	
explorations	we	conclude	that	GT	has	potential	as	a	proxy	data	source,	but	greater	
skill	may	emerge	in	places	with	larger	search	volumes	and	by	linking	to	historical	
information	about	environmental	hazards	at	sub-	national	scales.	Wider	applica-
bility	of	the	GT	platform	might	be	possible	if	there	is	greater	transparency	about	
how	Google	algorithms	determine	topics.
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decade	saw	the	price	of	mobile	electronic	devices	fall,	resulting	in	an	exponential	rise	in	the	number	of	smartphone	users	
to	3.6	billion	in	2020	(Statista,	2021).	Meanwhile,	Google	increased	worldwide	market	share	of	internet	searches	to	77%	
in	2019,	establishing	it	as	the	dominant	search	engine	platform	(Statcounter,	2019).	Google	is	a	prime	example	of	the	
rapid	growth	in	Big	Data	processing,	with	an	estimated	76,000	searches	per	second	in	2019	compared	with	40,000	in	2012	
(InternetLiveStats,	2019).	Twitter	is	another	social	media	platform	that	has	witnessed	rapid	growth,	with	over	320 million	
users	(Statista,	2019).

In	2006,	Google	Trends	(GT)	was	launched.	This	allows	analysis	of	search	terms	and	topics	for	specified	time	periods	
and	regions.	The	 tool	has	been	applied	 in	medicine,	business,	economics,	and	social	science,	where	 there	are	shared	
interests	in	real-	time	data	to	detect	and	interpret	social	trends	(Jun	et	al.,	2018).	For	example,	GT	data	use	for	research	
expanded	after	the	US	Centers	for	Disease	Control	and	Prevention	demonstrated	more	rapid	tracing	and	predicting	of	in-
fluenza	than	traditional	surveillance	systems	(Ginsberg	et	al.,	2009;	Jun	et	al.,	2018).	GT	has	also	been	used	to	detect	signs	
of	diabetes	by	monitoring	keywords	and	search	terms	(Tkachenko	et	al.,	2017),	recognising	that	citizens	are	increasingly	
turning	to	online	sources	as	a	means	of	self-	diagnosis.	In	economics,	search	data	demonstrate	better	skill	than	structural	
models	at	predicting	directional	changes	in	exchange	rates	(Bulut,	2018).	Similarly,	search	information	has	been	used	
in	forecasting	models	to	complement	consumer	sentiment	indexes	(Woo	&	Owen,	2019),	outperforming	survey-	based	
measures	in	predicting	private	expenditure	(Vosen	&	Schmidt,	2011).

Benchmarking	the	frequency,	severity,	and	impact	of	environmental	hazards	is	an	important	step	towards	the	man-
agement	of	 future	 threats	 (Wilby,	2019).	Hazards	 including	 floods,	heatwaves,	and	droughts	are	expected	 to	 increase	
in	frequency	and	severity	with	climate	change	(Watts	et	al.,	2015).	GT	offers	an	historical	database	of	global	searches	
with	the	potential	to	complement	historical	records	of	environmental	hazards.	Furthermore,	Google	affords	real-	time	
monitoring	capabilities	that	could	eventually	support	emergency	responders	and	strategic	planning	for	hydrological	haz-
ards.	As	the	UN	Office	for	Disaster	Risk	Reduction	observes	“acquiring	qualitative	and	quantitative	baseline	informa-
tion	in	poorly	gauged	regions	should	be	prioritized	to	provide	the	necessary	robust	foundation	for	adaptation	planning”	
(Ballesteros-	Cánovas	et	al.,	2019,	p.	2).	Historical	data	are	important	sources	of	information	about	flood	frequency	that	
contribute	to	flood	risk	assessment	and	management	(Longfield	et	al.,	2019).

GT	has	previously	been	used	to	investigate	internet	search	frequency	in	East	Africa	for	flooding	associated	with	the	
2015/16	El	Niño	(Gannon	et	al.,	2018;	Siderius	et	al.,	2018).	We	build	on	such	analyses	by	evaluating	the	utility	of	GT	
over	a	longer	timescale	in	two	countries	with	limited	conventional	meteorological	data.	More	specifically,	we	evaluate	
the	extent	to	which	GT	data	can	discern	heavy	rainfall	and	flood	events	in	Kenya	and	Uganda	at	the	national	scale.	We	
triangulate	flood	search	information	from	GT	with	rainfall	records	and	media	reports	to	build	an	inventory	of	extreme	
events	that	were	so	impactful	as	to	be	deemed	newsworthy.	By	working	through	these	cases,	we	uncover	a	range	of	con-
founding	factors	that	must	be	considered	when	interpreting	results.	We	begin	by	describing	the	methods	used	to	acquire	
then	process	GT	and	precipitation	data.	Next,	we	show	comparisons	between	search	interest	and	reported	flood	events,	
correlations	between	search	interest	and	rainfall	data,	and	a	flood	event	search	threshold.	Finally,	we	discuss	the	utility	
of	GT	data	for	analysing	historical	hydrological	hazards	more	generally.

2 	 | 	 DATA AND METHODS

Kenya	and	Uganda	were	chosen	as	the	study	areas	because	they	are	both	relatively	data-	sparse	nations	with	rapid	popu-
lation	and	urban	growth,	with	high	exposure	to	seasonal	flooding	(Weeser	et	al.,	2018).	According	to	the	United	Nations	
Office	for	the	Coordination	of	Humanitarian	Affairs,	nearly	6 million	people	in	East	Africa	were	affected	by	devastating	
flood	episodes	in	2020.	Meanwhile,	the	World	Bank	(2020)	estimated	that	18%	and	24%	of	the	population	of	Kenya	and	
Uganda,	respectively,	had	access	to	the	internet	in	2017.	Google	has	a	95%	market	share	in	Kenya	and	Uganda	based	on	
volume	of	searches	compared	with	other	search	engine	platforms	like	Bing,	Firefox,	and	Internet	Explorer	(Statcounter,	
2019).	This	means	the	majority	of	search	traffic	from	both	nations	is	captured	by	Google.

Google	Trends	is	a	publicly	available	sample	of	search	data	that	are	anonymised,	categorised,	and	aggregated	across	all	
Google	products,	including	YouTube	(Google	Trends,	2019).	This	allows	users	to	gauge	interest	in	a	search	term	or	topic	
by	period	and	domain	(even	to	city-	scale	for	countries	with	sufficient	search	volumes).	GT	has	two	filters	for	real-	time	
and	historical	datasets.	Real-	time	gives	searches	covering	the	past	seven	days,	compared	with	non-	real	time,	which	is	a	
sample	of	the	entire	Google	dataset	from	2004	up	to	36 hours	ago.	Real-	time	search	trends	update	every	minute,	high-
lighting	trending	events	within	the	last	24 hours,	by	location.	Absolute	search	data	would	return	billions	of	entries	every	
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day,	which	would	be	too	large	to	process	quickly.	Hence,	data	are	presented	as	a	proportion	of	all	searches	on	all	topics	
on	Google	for	the	specified	period	and	location.	This	also	accounts	for	changing	numbers	of	internet	users	through	time.

Google	Trends	has	two	search	filters:	search	terms	and	search	topics.	Topics	were	introduced	by	the	company	as	a	way	
of	bundling	all	searches	related	to	a	given	subject.	For	example,	the	topic	“flood”	would	include	searches	for	flooding	in	
other	languages	and	searches	that	Google's	algorithm	considers	to	be	related	to	flooding.	A	drawback	is	that	“flooding	
the	market”	or	other	non-	flood-	related	searches	could	be	included	in	results.	Furthermore,	it	is	unclear	how	exactly	these	
topics	are	defined	by	Google,	which	introduces	some	uncertainty	to	their	interpretation.

Regardless	of	the	period	queried,	GT	always	returns	around	200	data	points.	This	is	a	major	limitation	of	the	interface	
that	constrains	the	resolution	of	search	interest,	especially	over	long	time	frames,	hindering	the	detection	of	flood	events	
because	daily	peaks	and	troughs	in	search	interests	are	trimmed.	To	overcome	this,	shorter	timeframes	can	be	queried	
at	higher	resolution,	but	these	shorter	periods	have	to	be	bridged	with	one	another.	This	was	undertaken	in	four	steps.

First,	monthly	search	interest	in	the	topic	“flood”	was	queried	between	2014	and	2018	in	Kenya	and	Uganda.	Second,	
the	month	with	the	highest	search	interest	was	identified	for	both	nations	during	the	time	period,	then	used	to	rescale	
interest	in	all	other	months.	For	example,	the	month	with	the	highest	search	interest	is	indexed	at	a	value	of	100	by	GT,	
giving	a	weighting	of	1.	Third,	daily	data	on	search	interest	under	the	topic	of	“flood”	was	acquired	on	a	single	month-	by-	
month	basis	for	2014–	2018	for	each	nation.	Fourth,	daily	data	were	scaled	by	multiplying	every	search	interest	value	by	
the	corresponding	monthly	weighted	value.	This	procedure	was	applied	to	all	months	to	create	a	daily	series	of	search	in-
terest	between	2014	and	2018	(with	data	retrieved	on	29	September	2019).	Additionally,	monthly	series	were	expressed	as	
anomalies	from	the	monthly	five-	year	mean	search	interest	to	enable	comparison	of	the	series	between	the	two	countries.

Precipitation	 data	 were	 obtained	 from	 the	 Climate	 Hazards	 Group	 Infrared	 Precipitation	 with	 Stations	 (CHIRPS)	
archive	(Funk	et	al.,	2014).	These	data	provide	monthly	precipitation	series	representing	Kenya	and	Uganda	between	
1981	and	2020.	Monthly	totals	were	extracted	for	both	countries	within	our	study	period	2014–	2018.	This	source	and	time	
period	were	chosen	to	demonstrate	what	can	be	achieved	with	publicly	available	data	alone.

A	 flood	 inventory	 was	 assembled	 from	 multiple	 media	 sources,	 including	 the	 Dartmouth	 Flood	 Observatory,1	
FloodList,2	DesInventar,3	and	Emergency	Events	Database	 (EM-	DAT),4	 to	 triangulate	known	events	 (see	Table 1	and	
Supplementary	Information).	The	lists	were	then	compared	with	the	search	interest	series	compiled	independently	for	
the	topic	of	“Flood”	for	both	countries.	Spearman	rank	correlations	(ρ)	were	calculated	between	the	two	national	anom-
aly	series	in	search	interest,	as	well	as	between	monthly	mean	search	interest	and	monthly	precipitation	for	Kenya	and	
Uganda.	The	flood	inventory	was	also	used	to	eliminate	background	“noise”	in	searches	by	calibrating	a	threshold	of	
search	interest	against	known	events.	This	was	achieved	by	identifying	thresholds	of	search	interest	that	give	the	same	
number	of	above-	threshold	events	as	the	frequency	of	observed	floods	in	each	country,	during	the	study	period.

Finally,	using	daily	data,	we	test	the	sensitivity	of	GT	correct	and	false	detection	rates	to	the	length	of	the	search	win-
dow	(spanning	the	actual	day	and	up	to	five	days	after	the	date	of	a	known	flood)	against	events	recorded	by	DesInventar.	
A	correct	detection	is	when	the	search	threshold	and	daily	interest	value	signal	a	flood	within	a	specified	number	of	days	
of	the	observed	flood;	false	detection	is	when	the	search	interest	is	above	the	threshold,	suggesting	a	flood,	yet	none	was	
captured	by	the	media	within	the	specified	period.

T A B L E  1 	 Media	reports	and	disaster	records	of	flooding	in	Kenya	and	Uganda	between	2014	and	2018

Year

Media reports of flooding DesInventar reports of flooding
EM- DAT reports of 
flooding

Kenya Uganda Kenya Uganda Kenya Uganda

2014 2 1 6 60 0 0

2015 17 0 80 38 3 0

2016 9 1 6 38 1 1

2017 3 1 NA 93 1 1

2018 7 4 NA 113 1 0

Notes: Media	reports	refer	to	FloodList,	Dartmouth	Flood	Observatory,	and	media	outlets	covering	floods,	details	of	which	are	available	in	the	Supplementary	
Information.	DesInventar	(2019)	is	sponsored	by	the	UN	Office	for	Disaster	Risk	Reduction.	This	disaster	database	applies	a	geographical	resolution	equivalent	
to	a	municipality	so	is,	therefore,	more	likely	to	detect	localised	events	than	the	country-	level	granularity	of	EM-	DAT	(see	Panwar	&	Sen,	2020).	Note	that	the	
criteria	required	for	an	event	to	be	logged	by	EM-	DAT	and	DesInventar	differ.	EM-	DAT	specifies	that	an	event	must	meet	at	least	one	of	four	criteria	before	
being	recorded:	equal	to	or	greater	than	10	deaths;	equal	to	or	greater	than	100	people	affected;	state-	level	declaration	of	emergency;	a	call	for	international	
help.	At	least	one	of	the	following	must	be	met	to	be	recorded	in	DesInventar:	one	or	more	death;	one	US	dollar	of	economic	loss.
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3 	 | 	 RESULTS

Comparison	of	daily	search	interest	(Figure 1)	with	media	reports	of	flooding	had	mixed	success.	In	Kenya,	peaks	in	search	
interest	coincided	with	notable	floods	then	decayed	over	time	as	flood	waters	receded.	For	instance,	high	search	inter-
est	on	10	May	2015	coincided	with	nine	fatalities	after	a	mosque	collapsed	amid	flooding	in	Nairobi	(see	Supplementary	
Information).	Peaks	in	December	2015	followed	reports	of	heavy	rain	across	the	country,	with	hundreds	of	thousands	of	
people	reportedly	displaced	(FloodList,	2019;	ReliefWeb,	2019).	Search	interest	again	peaked	in	late	April	2016	after	at	
least	ten	people	were	killed	by	another	building	collapse	during	flooding	in	Nairobi	(FloodList,	2019).	High	search	inter-
est	in	early	and	mid-	March	2018	matched	with	flooding	in	the	capital	that	killed	an	estimated	13	people	following	heavy	
rain	on	2	March	(FloodList,	2019).	Further	peaks	on	14	March	2018	were	likely	associated	with	heavy	rainfall	across	
much	of	the	country	that	resulted	in	11	reported	fatalities	(FloodList,	2019).	Multiple	flood	events	were	recorded	between	
mid-	April	and	early	May	2018,	resulting	in	112	reported	dead	(see	Supplementary	Information)	and	tracked	by	the	GT	
peak	in	Kenya	in	April–	June	2018.	Unsurprisingly,	events	with	multiple	fatalities	tend	to	receive	more	search	interest.	
Additionally,	floods	in	neighbouring	Ethiopia	and	Rwanda	appeared	to	be	reflected	in	heightened	search	interest	in	both	
Kenya	and	Uganda	during	May	2018	(FloodList,	2019)	(see	Supplementary	Information).

Overall,	there	is	a	weak	correlation	(ρ = 0.18,	p < 0.1)	between	normalised	GT	search	interest	in	Kenya	and	Uganda	
(Figure 2).	This	suggests	that,	for	most	of	the	time,	search	interest	in	flooding	occurs	independently	in	the	two	countries.	
However,	the	two	highest	values	in	search	interest	in	Kenya	(November–	December	2015	and	May	2018)	correspond	with	
peaks	in	Uganda,	confirming	the	view	that	these	particular	flood	episodes	affected	East	Africa	more	generally.	Average	
interest	in	flooding	also	follows	the	seasonal	rainfall	regime	of	each	country	(Figure 3,	left	panels).	In	both	cases,	search	
interest	peaks	during	April–	May	(long	rains	period),	falls	to	a	minimum	during	the	drier	summer	months,	then	rises	to	a	
second	peak	in	November	in	Kenya	and	September	to	November	in	Uganda	(during	the	short	rains).	Monthly	series	show	
on	average	more	search	interest	in	floods	coinciding	with	periods	of	unusually	heavy	rainfall	(Figure 3,	right	panels).	
The	correlation	between	search	interest	and	CHIRPS	is	significant	in	both	countries	but	stronger	in	Uganda	(ρ = 0.64,	
p < 0.0001)	than	in	Kenya	(ρ = 0.38,	p < 0.005).

DesInventar	(2019)	only	lists	floods	up	to	2016	in	Kenya.	Here,	there	were	92 days	with	reported	floods	between	2014	
and	2016.	The	nearest	equivalent	frequency	(87 days)	requires	a	GT	search	index	≥15	(Figure 4).	This	GT	interest	thresh-
old	achieves	a	38%	correct	and	60%	false	detection	rate	for	the	same	day	as	the	observed	flood,	rising	to	75%	correct	and	

F I G U R E  1  Daily	search	index	for	the	topic	“flood”	between	2014	and	2018	in	Kenya	(upper	panel)	and	Uganda	(lower	panel)
Note:	On	1	January	2016,	Google	notes	an	improvement	in	the	GT	data	collection	system.	Daily	search	interest	for	the	topic	of	“flood”	is	
measured	as	a	proportion	of	all	searches	on	Google	for	Kenya	and	Uganda	between	2014	and	2019.
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21%	false	within	a	five-	day	window	(Figure 5).	For	Uganda,	there	were	342 days	with	reported	floods	between	2014	and	
2018,	and	closest	frequency	(350 days)	from	a	GT	search	index	≥29	(Figure 4).	This	yields	48%	correct	and	53%	false	de-
tection	rates	for	the	same	day	of	the	observed	flood	(Figure 5).	As	with	Kenya,	this	improves	with	longer	windows	up	to	
five	days,	for	which	the	detection	rates	are	64%	correct	and	37%	false.

4 	 | 	 DISCUSSION

Google	Trends	tracks	search	interest	during	floods.	Interest	tends	to	spike	for	events	with	widespread	media	cover-
age,	or	where	fatalities	are	reported.	This	is	unsurprising	as	news	stories	appear	online	in	the	aftermath	of	floods	
and	internet	users	would	likely	see	these	in	their	timelines.	Additionally,	as	flood	reports	are	posted	online,	users	are	
more	likely	to	share	these	across	social	networks,	further	increasing	search	interest	in	the	topic	(Bakshy	et	al.,	2012).	

F I G U R E  2  Search	index	expressed	as	a	monthly	anomaly	relative	to	the	respective	2014–	2018	means	for	Kenya	and	Uganda

F I G U R E  3  Monthly	mean	search	index	for	topic	“flood”	compared	with	monthly	rainfall	totals	for	Kenya	and	Uganda	between	2014	
and	2018
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Compared	with	nations	with	more	internet	infrastructure,	Kenya	and	Uganda	have	relatively	low	search	volumes,	
limiting	the	amount	of	 information	at	regional	scales,	especially	 in	Kenya.	This	 is	reflected	by	the	 lower	baseline	
search	interest	scores	in	Kenya.

Search	interest	expressed	as	monthly	anomalies	gives	further	insights	(see	Figure 2).	In	Kenya,	high	search	interest	
during	November	2015	coincided	with	heavy	rainfall,	flash	floods,	and	multiple	fatalities.	This	was	the	same	in	May	2018,	
when	heavy	rainfall	caused	flash	flooding	with	over	100	fatalities	and	an	estimated	200,000	people	displaced.	For	Uganda,	
an	anomaly	in	August	2017	overlapped	with	severe	flooding	in	the	north	that	killed	two	people	and	displaced	over	2000	
(see	Supplementary	Information).	Similarly,	search	interest	anomalies	in	March,	May,	and	October	2018	are	explained	
by	reported	flood	events.

There	were	statistically	significant	correlations	between	monthly	mean	search	interest	and	monthly	precipitation	in	
both	Kenya	and	Uganda	during	the	five-	year	study	period	(ρ = 0.38	and	0.64	respectively).	The	long	and	short	rainfall	
periods	are	also	reflected	by	intra-	annual	variations	in	flood	search	interest	(Figure 3),	indicating	that	GT	can	be	used	as	
a	proxy	for	heavy	rainfall.	This	could	be	a	valuable	source	of	information	for	countries	that	are	relatively	data	sparse	in	
terms	of	historical	rainfall	and	flood	records.	Moreover,	GT	could	offer	additional	information	about	the	impacts	of	ex-
treme	events,	thus	yielding	more	robust	estimates	of	flood	frequencies.	Similar	techniques	have	been	used	with	historical	
archives	to	reconstruct	flood	frequencies	elsewhere	(e.g.,	Kjeldsen	et	al.,	2014;	Macdonald	et	al.,	2006;	Neppel	et	al.,	2010).	
As	flood	records	improve,	GT	search	interest	could	be	re-	visited	to	better	specify	local	thresholds	for	flood	detection.

In	 the	 absence	 of	 historical	 and	 consistent	 rainfall	 time	 series	 for	 Kenya	 and	 Uganda,	 satellite	 data	 products	 like	
CHIRPS	 are	 critical	 for	 climate	 analyses	 and	 monitoring	 changes	 in	 precipitation	 patterns	 (Dinku	 et	 al.,	 2018).	 The	

F I G U R E  4  Inverse	cumulative	frequency	of	search	index	values	between	2014	and	2018	for	Kenya	and	Uganda

F I G U R E  5  Correct	and	false	detection	rates	for	known	floods	in	Kenya	(2014–	2016)	and	Uganda	(2014–	2018)	when	the	GT	interest	
thresholds	are	≥15	and	≥29,	respectively.
Note:	The	“correct”	rate	is	given	by	the	ratio	of	the	number	of	days	with	floods	detected	by	GT,	divided	by	the	number	of	days	with	observed	
floods.	The	“false”	rate	is	the	proportion	of	days	with	floods	detected	by	GT	that	did	not	coincide	with	an	observed	flood.	Window	length	1	is	
the	day	of	the	known	flood,	2	is	the	day	of	the	flood	as	well	as	the	one	following,	and	so	forth
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quality	of	CHIRPS	data,	therefore,	underpins	any	comparative	analysis.	Recent	evaluations	of	satellite-	derived	rainfall	
products	for	eastern	Africa,	including	Kenya	and	Uganda,	showed	that	CHIRPS	performs	better	than	similar	products	
like	ARC2	and	TAMSAT3	(Dinku	et	al.,	2018;	Macharia	et	al.,	2020;	Maidment	et	al.,	2017).	Validation	against	existing	
networks	of	rain	gauges	in	Kenya	and	Uganda	reveals	that	CHIRPS	accurately	predicts	rainfall	over	low-	lying	regions	but	
may	underestimate	precipitation	in	high	elevation	areas	(such	as	Mt.	Kenya)	(Macharia	et	al.,	2020).

Google	search	data,	like	hydrological	measurements,	are	prone	to	errors	and	biases	(Wilby	et	al.,	2017).	Although	data	
gathered	by	GT	can	be	referenced	by	geographical	area,	searches	made	by	users	may	be	for	events	that	are	occurring	(or	
have	happened)	in	places	remote	from	the	physical	location	of	the	browser.	This	effect	may	confound	associations	be-
tween	local	rainfall	and	search	interest,	since	rainfall	data	relate	to	specific	places	through	time,	whereas	search	interest	
is	aggregated	by	where	a	search	occurs,	not	where	the	search	is	about.	For	example,	by	researching	the	utility	of	GT	for	
this	paper	we	have	been	adding	to	the	UK	count	of	searches	on	the	topic	of	flood,	yet	our	interest	has	been	about	floods	
in	East	Africa.	These	uncertainties	may	account	for	some	of	the	false	alarms.

Hence,	detection	of	extreme	rainfall	and	flood	events	is	challenging	for	GT.	Previous	applications	to	the	spread	of	dis-
ease	or	consumption	patterns	benefit	from	large-	scale	population	behaviour	or	phenomena	that	are	not	physically	con-
strained.	Other	work	also	shows	that	GT	can	track	drought	awareness	at	national	and	regional	scales	(Kam	et	al.,	2019;	
Kim	et	al.,	2019).	Perhaps	regular	dissemination	of	forecasts	by	meteorological	agencies	like	the	Kenya	Meteorological	
Department	 or	 seasonal	 outlooks	 from	 the	 Intergovernmental	 Climate	 Prediction	 and	 Applications	 Centre	 (ICPAC)	
stimulate	search	interest.	In	comparison,	floods	tend	to	be	more	localised	and	with	rapid	onset	when	compared	with	
droughts,	which	generally	affect	larger	areas	and	can	persist	for	years	(Dutra	et	al.,	2013).	Nonetheless,	we	assert	that	
there	is	sufficient	information	to	triangulate	data	sources	for	flood	events	even	in	data	sparse	regions	and	for	quality-	
assuring	historical	events.	Utility	of	GT	may	be	greatest	at	a	regional	level	where	flood	events	cause	multiple	fatalities	–		as	
in	Ethiopia	and	Rwanda	during	May	2017.	Regional	events	will	likely	have	greater	media	coverage	due	to	their	impacts	
and	thus	receive	higher	volumes	of	search	interest	too.

Google	Trends	offers	a	freely	available	and	expanding	dataset	that	could	augment	conventional	data	streams	and	be	
applied	to	other	weather-	related	hazards.	Moreover,	words	like	“landslide”	have	greater	specificity	than	“flood,”	because	
there	is	less	ambiguity	about	the	term.	Hence,	GT	could	provide	an	invaluable	data	source	for	hazard	and	impact	assess-
ment	with	the	possibility	of	real-	time	monitoring	as	Google	continues	to	develop	the	platform.	When	considering	the	
context	of	expected	increases	in	climatic	variability	for	many	parts	of	the	world,	especially	East	Africa	(Nicholson,	2017),	
a	region	impacted	by	frequent	drought	and	flooding,	the	value	of	baseline	data	cannot	be	over-	stated.

GT	search	data	could	be	interpreted	as	a	“social	hydrograph.”	Interest	is	likely	to	be	highest	either	on	or	after	the	day	
of	a	flood	event	as	a	result	of	surges	in	media	reporting,	followed	by	a	decay	in	attention	as	flood	waters	recede.	By	ana-
lysing	this	trace,	the	type	of	flood	could	be	determined	by	discriminating	between	a	flash-	flood,	short-	,	or	long-	rains	flood	
signatures.	Furthermore,	it	could	help	distinguish	the	seasonality	of	some	flood	types.	By	analysing	this	in	the	long	term,	
it	may	be	possible	to	categorise	the	dominant	flood	type(s)	for	a	region	and	how	these	change	through	time.

Twitter	also	gives	insight	to	hazard	impacts,	such	as	temperature-	related	mortality	during	heatwaves	(Cecinati	et	al.,	
2019).	However,	a	major	limitation	of	Twitter	data	is	that	tweets	do	not	have	a	linked	geolocation	and	there	is	currently	
no	openly	accessible	platform	to	analyse	Tweets,	unlike	GT.	It	is	estimated	that	15%	of	all	Twitter	accounts	(48	million)	
are	automated.	For	example,	some	bots	automatically	post	breaking	news	or	emergency	information,	while	others	have	
been	used	to	disseminate	fake	news,	manipulate	Twitter	trends,	or	steer	public	perception	(Jones,	2019;	Rodríguez-	Ruiz	
et	al.,	2020).	Despite	these	limitations,	Twitter	has	the	potential	to	be	a	complementary	tool	for	GT	data	since	individual	
tweets	can	be	analysed	and	time-	stamped.

As	search	volumes	increase	with	growing	access	to	mobile	and	electronic	devices	with	internet	support,	as	well	as	im-
proved	internet	access,	there	could	be	potential	in	analysing	search	interest	on	district	scales.	This	is	already	feasible	for	
the	USA	and	offers	the	possibility	of	matching	search	interest	with	locally	recorded	rainfall	data,	potentially	supporting	
flood	event	detection	on	a	district	scale.	However,	this	presumes	good	internet	connectivity	(despite	potential	outages	
of	IT	services	during	extreme	weather)	and	additional	support	from	Google	through	data	visualisation	at	a	district	level	
across	East	Africa.

5 	 | 	 CONCLUSIONS

We	investigated	the	feasibility	of	using	GT	to	analyse	historical	floods.	Preliminary	findings	for	Kenya	and	Uganda	show	
promise	–		associations	were	found	between	the	volume	of	GT	searches,	seasonal	patterns	of	rainfall,	and	incidence	of	
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significant	flood	episodes	at	national	scales.	We	found	that	search	interest	correctly	detects	a	newsworthy	flood	within	a	
five-	day	window	for	75%	of	events	in	Kenya	and	64%	in	Uganda.	These	detection	statistics	partly	depend	on	the	criteria	
followed	by	online	media	and	DesInventar	when	reporting	floods	in	each	country,	which	influence	the	number	of	days	
with	floods	in	the	news.	Some	reports,	such	as	on	the	television	or	radio,	may	be	overlooked.

The	correct	detection	rate	is	expected	to	improve	as	search	volumes	grow.	However,	querying	search	interest	for	the	
topic	“flood”	also	captures	non-	flood-	related	searches	and,	until	Google	releases	detailed	information	about	how	topics	
are	determined,	this	will	remain	an	uncertainty.	Furthermore,	removal	of	background	noise	or	non-	flood	event-	related	
queries	 is	 not	 straightforward	 via	 the	 current	 platform.	 We	 tested	 various	 thresholds	 of	 search	 interest	 in	 flooding	
matched	to	the	number	of	days	with	official	records	and	news	articles	about	flooding,	and	people	and	property	affected,	
recognising	that	there	is	a	level	of	background	searches	from	browsers	in	neighbouring	countries.	Hence,	there	is	un-
certainty	in	both	the	true	number	of	days	with	floods	and	the	true	amount	of	national,	flood-	related	search	interest.

Google	Trends	is	a	unique	dataset	that	could	be	explored	in	more	exacting	ways	to	gain	deeper	insights	into	societal	
search	behaviour	during	extreme	events	such	as	floods,	droughts,	heatwaves,	wildfires,	and	landslides.	This	study	illus-
trates	the	potential	for	GT	to	complement	official	hydrological	records	in	data-	scarce	regions,	with	mixed	success	in	areas	
that	have	limited	internet	infrastructure.	Future	studies	could	apply	GT	in	places	with	more	detailed	hydrological	records	
to	evaluate	the	factors	affecting	thresholds	of	detectability	within	search	metrics.	Additionally,	future	research	for	East	
Africa	might	evaluate	rising	 lake	 levels	and	associated	 flood	events	via	concurrent	and	 lagged	correlation	analysis	of	
Google	data.	Insights	from	GT	will	only	become	more	powerful	and	accurate	as	the	dataset	continues	to	grow	with	every	
search	we	make.
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ENDNOTES
	1	 Dartmouth	Flood	Observatory.	Available	from:	http://flood	obser	vatory.color	ado.edu	(accessed	March	2021).

	2	 FloodList.	Available	from:	http://flood	list.com	(accessed	March	2021).

	3	 DesInventar.	Available	from:	https://www.desin	ventar.net	(accessed	March	2021).

	4	 EM-	DAT.	Available	from:	https://www.emdat.be	(accessed	March	2021).
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