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a b s t r a c t

Semantics has become a key topic of research in Genetic Programming (GP). Semantics refers to the
outputs (behaviour) of a GP individual when this is run on a dataset. The majority of works that focus
on semantic diversity in single-objective GP indicates that it is highly beneficial in evolutionary search.
Surprisingly, there is minuscule research conducted in semantics in Multi-objective GP (MOGP). In this
work we make a leap beyond our understanding of semantics in MOGP and propose SDO: Semantic-
based Distance as an additional criteriOn. This naturally encourages semantic diversity in MOGP. To do
so, we find a pivot in the less dense region of the first Pareto front (most promising front). This is then
used to compute a distance between the pivot and every individual in the population. The resulting
distance is then used as an additional criterion to be optimised to favour semantic diversity. We
also use two other semantic-based methods as baselines, called Semantic Similarity-based Crossover
and Semantic-based Crowding Distance. Furthermore, we also use the Non-dominated Sorting Genetic
Algorithm II and the Strength Pareto Evolutionary Algorithm 2 for comparison too. We use highly
unbalanced binary classification problems and consistently show how our proposed SDO approach
produces more non-dominated solutions and better diversity, leading to better statistically significant
results, using the hypervolume results as evaluation measure, compared to the rest of the other four
methods.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Genetic Programming [1], one of the four canonical Evolution-
ry Algorithms paradigms, was popularised by Koza in the early
990s. Over the years, researchers have been interested in making
P more amenable to evolutionary search. A key element that has
een proven to make GP more robust is semantics. The latter has
ecome a key topic of research in GP. Semantics can be seen as
he behaviour of a GP program. This behaviour is the output of a
P program when executed on a set of fitness cases.
The number of scientific publications in GP semantics has in-

reased significantly thanks to promising results found by the re-
earch community. We discuss in Section 2 some relevant works
f semantics in GP. Interestingly, the vast majority of these work
ave concentrated on Single-objective GP (SOGP), with minus-
ule progress in Multi-objective GP (MOGP), with the excep-
ion of [2–5]. Thus, this scientific work extends significantly
his line of research and uses three forms of semantics in a
OGP setting. Each of these are compared independently against
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two well-established Evolutionary Multi-objective Optimisation
(EMO) approaches: the Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) [6] and the Strength Pareto Evolutionary Al-
gorithm (SPEA2) [7]. The semantic-based MOGP approaches used
in this study are:

Semantic Similarity-based Crossover. (SSC). This is motivated
by the SOGP approach presented in [8]. This approach
was one of the early methods in SOGP semantics where
the authors were able to promote it in continuous search
spaces. We extended this well-known method in MOGP.

emantic-based Crowding Distance. (SCD). Here, the main idea
is to replace the crowding distance, commonly used in
EMO algorithms, by a semantic-based distance, originally
studied in the first author’s MOGP works [3,4].

emantic-based Distance as an additional criteriOn. (SDO). This
approach draws from SCD and uses the resulting semantic
distance as another component to optimise by an EMO
algorithm, briefly studied in [5].
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Using these three semantic-based methods allow us to show
the following:

Firstly, by using SSC, we show how the semantic distance com-
puted in the crossover operator and used to successfully
promote semantic diversity in single-objective GP does not
have the same positive impact in MOGP.

Secondly, by using SCD, inspired by the crowding distance com-
monly used in EMO, we show that a semantic distance
can be naturally computed between every GP tree in the
population and a ‘‘pivot". The latter is an individual in
the sparsest region of the first Pareto front. SCD then
moves away from SSC, which tries to promote semantic
diversity by forcing diversity to emerge by using crossover
repeatedly, as proposed in [8].

Finally, we build from our understanding drawn from SSC and
SCD in semantics and propose a robust mechanism for the
emergence of semantic diversity in MOGP. Particularly, we
use the semantic distance value as an additional indicator
to evolve the population. This naturally promotes semantic
diversity in MOGP leading to better, statistically signifi-
cant results based on the average hyper-volume of the
evolved Pareto approximations with respect to the other
four methods (two semantic-based methods and two EMO
methods) in a range of highly imbalanced datasets.

1.1. Main contributions of this scientific study

In our previous work [5], we carried out an initial limited study
on semantics in Multi-objective Genetic Programming (MOGP).
Specifically, we initially proposed and used three semantic-based
methods, named Semantic Similarity-based Crossover (SSC),
Semantic-based Distance as an additional criteriOn (SDO) and
Pivot Similarity Semantic-based Distance as an additional crite-
riOn (PSDO).

The main conclusions from our initial investigation is that the
use of a semantic-based distance value as computed in either SDO
or PSDO to be used as another objective to be optimised in an
EMO setting is robust enough to outperform the results yield by
the well-known NSGA-II and SPEA2 approaches. Furthermore, in
our initial research, we found out that the distance computed
from a pivot, which is the furthest point in the search space,
to every individual in the population and used as an additional
criterion to be optimised in a EMO setting tends to improve the
performance of our semantic-based approaches. Moreover, we
were able to fine-tune how this distance can be computed to
significantly improve the evolutionary search. This is attained
using the SDO approach, which is used again in this work. It is,
however, worth saying that these conclusions were drawn from
an initial limited study including a restricted statistical analysis
impeding drawing general conclusions, limited results as well as a
lack of explanation that help us to clearly indicate why SDO yields
better results compared to their respective canonical methods as
well as the other two semantic-based approaches. Furthermore,
in our initial study [5], we omitted to discuss the limitations of
SDO.

In this work, we have addressed all these issues. More specifi-
cally, the main contributions of this scientific study are as follows:

• We consistently show how Semantic Similarity-based
Crossover (SSC) used in single-objective GP and widely re-
ported to be beneficial in GP does not have the same positive

impact in a multi-objective GP (MOGP) setting.
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• From this, we show how a semantic-based distance ap-
proach can enhance the evolutionary search in MOGP. To
this end we use two semantic-based approaches: Semantic-
based Crowding Distance (SCD) and a Semantic-base Dis-
tance as an additional criteriOn (SDO).
• We demonstrate how SDO yields better results against all

the approaches used in this work, including the semantic-
based methods and canonical EMO approaches.
• Another major contribution of this scientific study is to

include detailed results using two well-established EMO
approaches NSGA-II and SPEA2. By doing so, as opposed to
the limited results reported in [5], we are now in a position
to draw sound conclusions by carrying out a systematic
statistical analysis, explained in detail in Section 6.
• Another important contribution in this work is that we

are able to explain why the semantic-based technique em-
ployed in SDO tends to improve evolutionary search. We
do so by extensively analysing the behaviour of the SDO in
terms of number of unique solutions, duplicate frequency of
solutions over generations, etc.
• Finally, another major contribution of this work is the

discussion of the limitations of this work by using a Multi-
objective Evolutionary Algorithm Based on Decomposition
[9].

This work is organised and presented as follows. Relevant
studies to this work are presented in Section 2. The fundamental
background in semantics and in MOPG is discussed in Section 3.
Section 4 presents the MOGP semantic methods proposed and
used in this work. The setup of experiments is presented in
Section 5. Section 6 presents in detail the results yield by all
the MOGP semantic approaches (SSC, SDO and SCD) and by the
EMO methods (NSGA-II and SPEA2). It also offers an explanation
as to why SDO finds better results compared to all the other
algorithms. Section 7 discusses the limitations of SDO in Multi-
Objective Evolutionary Algorithms based on Decomposition. In
Section 8, we draw some conclusions.

2. Relevant work

2.1. Semantics

Semantics has become a key topic of research in GP and mul-
tiple definitions have been proposed. Semantics can be seen as
the behaviour (recorded outputs over a dataset) of a GP program.
We give a formal definition of semantics in Section 3. Research in
semantics in GP has grown substantially in the last decade as a
consequence of the research community reporting better results
when semantics has been promoted in evolutionary search as
compared to those GP approaches that do not promote it explic-
itly. The focus of these studies range from dealing with direct
semantic methods, such as the use of geometric operators [10], to
the analysis of indirect semantic methods [3,8]. Next, we discuss
some relevant works in this area.

The analysis of McPhee et al. [11] laid the foundations for
indirect semantic works. Their research focused on analysing the
semantics of program subtrees and contexts (a context being the
remaining portion of a program after a subtree has been removed)
for Boolean problems. A key outcome from this research demon-
strated that the commonly used ratio 90–10 crossover produced
a high proportion of individuals which were semantically equiv-
alent. In other words, the majority of crossover events do not
result in an effective search of the semantic space and conse-
quently limits the potential performance benefits of performing

this operation.
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To overcome this, Beadle and Johnson [12] proposed an op-
erator that would help promote semantic diversity dubbed Se-
mantically Driven Crossover (SDC). To verify whether parents
and corresponding offspring are equivalent or not, the authors
used reduced ordered binary decision diagrams to this end. In
their studies, the authors applied crossover multiple times when
both parents and offspring were semantically equivalent. Later,
Beadle and Johnson [13] also explored a similar technique for the
mutation operator, called Semantically Driven Mutation (SDM).
This verifies the semantic equivalence between a parent and a off-
spring, where the latter is generated by replacing a subtree with
another randomly generated subtree. This equivalence analysis is
carried out by reducing the offspring to a canonical form which
then can be easily compared to its parent, that has also been
reduced. They reported that both techniques increased semantic
diversity and led to improved evolutionary search.

A drawback of these methods is that they use discrete fitness-
value cases, hence limiting their applicability to continuous search
spaces. Uy et al. [14] overcame this limitation by using a moti-
vational approach which involves employing ingenious semantic
crossover operators in continuous search spaces. The semantics
are approximated by evaluating a predefined sample of points
from a given problem domain. The semantic equivalence there-
fore of two expressions (two trees or two subtrees) can be
calculated from the absolute difference between the outputs of
these expressions. If the difference of these two expressions
fall within the bounds of a predefined threshold (a parameter
referred to as Semantic Sensitivity) then these expressions can
be deemed to be semantically equivalent. Uy et al. proposed four
different scenarios for implementing this form of semantics, the
first two of which dealt with the semantics of sub-trees. Scenario
I sought to promote semantic diversity by checking the semantic
equivalence of subtrees used in a crossover operation and if
they were deemed to be equivalent, the parents were retained.
Otherwise, the crossover was applied again, but now using two
different randomly selected crossover nodes. In Scenario II, the
subtrees are picked if these are equivalent to each other. The
later two scenarios consider semantics by taking into consider-
ation the full program trees. Scenario III checks the semantics
of the parents in relation to their offspring. That is, if the child
and parent trees are found to be semantically equivalent the
offspring are discarded and the parent is retained into the next
generation. Scenario IV is the same as Scenario III but in this
case the condition is reversed, in other words the offspring are
retained into the next generation if the semantic equivalence
criteria is met. Scenario I was shown to produce better results
on symbolic regression problems when compared with the other
three methods.

There is no guarantee that a semantically equivalent offspring
will be found immediately after performing the crossover oper-
ation and an extension of the above method introduced a trial
and error mechanism to perform the crossover operation multiple
times until a suitable candidate is found or until some predefined
iteration is reached [8]. However, a significant downside is that
the Uy et al. method can be computationally high-intensive. To
address this drawback, Galván et al. put forward a cost-effective
approach by trying to promote semantic diversity through the
tournament selection operator. The first parent is selected as
usual. The second parent is selected by considering: semantic
dissimilarity and fitness, in that order. If there is no individual
that is dissimilar to the first parent, then the second parent is
selected as commonly done in tournament selection. The seman-
tic dissimilarity is obtained in the same manner as done by Uy
et al. [14] and described above in Scenario I. This cost-effective
approach performs similar to Uy el al. method with the benefit of

removing the expensive trial and error mechanism.
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Forstenlechner et al. [15] investigated the use of semantics
for program synthesis, a different domain from those discussed
before (Symbolic Regression and Boolean problems). A variety of
different data types are used in this approach as opposed to just a
single data type. The semantics of two GP subtrees are stored in a
pair of vectors. In their work, the authors used two conditions for
checking semantic similarity (1) ‘Partial change’ which denotes
a vector whose semantics have stayed the same for at least one
entry but have changed for another entry; and (2) ‘Any change’
which denotes a vector where any entry is different. Two subtrees
undergo crossover if a partial change occurs. If this is not present,
then the ‘any change’ is checked. The authors reported better
results when adopting these two conditions in four out of the
eight problems used in their studies. An analysis of semantic
methods have also been applied to local search methods in re-
spect to indirect semantics. For example, Dou and Rockett [16]
tested a mixture of various GP and local search variants, including
three subtree selection methods and four replacement strategies.
The authors found that a semantic-based local search following
a steady-state or generational GP performed significantly better
compared to baseline GP methods with statistically smaller tree
sizes.

Direct semantic approaches have also received attention in
the GP community thanks to the improvement on search perfor-
mance compared to a standard GP system. The driving motivation
by incorporating direct semantics is that previous indirect meth-
ods were deemed to be wasteful [8,14]. To tackle this issue,
Moraglio et al. [10] used his previous theoretical results [17] to
allow modifications on the genotype of GP trees to correlate to
geometric operators. This had the consequence of inheriting their
properties. This results in having a cone landscape by construc-
tion, providing to the evolutionary process an ‘‘easier’’ search
direction. One potential limitation of this approach, however, is
that it allows for the presence of neutrality. This can be beneficial
or detrimental depending on the features of the problem at
hand — see, for example, [18–21] where Galván and Poli give
an in-depth explanation on the effects of neutrality in different
type of problems. One more limitation in the approach proposed
in [10] is that this modification to GP trees tends to produce
larger individuals. To deal with the latter, Vanneschi et al. [22]
proposed a cache implementation of Moraglio’s approach. To
this end, the authors store the semantics of GP trees in a table
making the process efficient indeed. However, one limitation
in Vanneschi et al. approach is that the reconstruction of GP
individuals is cumbersome and difficult to obtain in some cases.
This is a drawback specially for applications where the expression
is required. Uy et al. [23] took a different approach compared to
Vanneschi et al. [22] to deal with the size of individuals. Uy et al.
proposed subtree semantic geometric crossover (SSGX) operator
that allows them to control the size of individuals. However, their
approach has some limitations too such as determining the right
values for multiple parameters that are needed to apply SSGX in
a GP system. Moreover, it is also based on an expensive trial-and-
error mechanism (a maximum of 20 trials is set in their work to
search for suitable subtrees).

In [5], we proposed semantic-based methods to integrate them
into a MOGP system. In this preliminary study, we were able to
promote semantics naturally in a MOGP framework by using a
pivot taken from the best Pareto front to compute the semantic
distance between this and every individual in the population. We
found that this distance and a variant of it tend to produce better
results compared to its canonical evolutionary multi-objective
variant, in this case, against the well-known NSGA-II [6] and
SPEA2 [7] algorithms. However, the findings reported in [5] were
limited: a lack of explanation as to why SDO tends to yield better

results compared to the other methods used in the initial study,
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lack of an in-depth statistical analysis and of a discussion on
he limitation of the SDO approach. In contrast, the current work
ddresses all these issues, as we should see in the next sections.
n particular, we incorporated in detail the results yielded by the
PEA2 algorithm as well as the semantic-based variants using this
MO approach, we explain in detail why SDO works by using
ifferent elements such as the frequency of duplicated individuals
n the population over generations. We also carried out a detailed
tatistical analysis of the results. Finally, we also incorporate our
ain proposal within a Multi-objective Evolutionary Algorithm
ased on Decomposition [9] to demonstrate the limitations of the
roposal.

.2. Multi-objective genetic programming

The objective of a multi-objective optimisation problem is to
iscover candidate solutions based on the simultaneous consider-
tion of multiple, potentially conflicting, objectives. In the context
f GP there are a number of ways that this can be achieved.
roadly speaking there are two primary methods. One is to incor-
orate multiple objectives into a single fitness function. Another
ethod is to consider the objectives separately making use of the
areto dominance relationship between candidate solutions [24–
6]. Since the aim of Evolutionary Multi-objective Optimisation
EMO) is to discover the best balance of solutions amongst the
bjectives of an evolutionary run, Pareto dominance allows for
n intuitive approach to handle multiple (conflicting) objectives.
he details of EMO will be explained further in Section 3.2. EMO
s one of the most popular and active research area in EAs, with
any applications and often achieves impressive results [24–26].
ext, we discuss just a few works that have been adopted EMO
ithin GP systems.
Bleuler et al. [27] proposed an EMO approach to naturally

ontrol bloat on even-n-parity problems. The authors defined
wo objectives to be optimised simultaneously within a MOGP
ramework; the first objective being the fitness of a program and
he second objective being the size of the program tree. This
ethod was compared against other well-known techniques for
ontrolling bloat, such as using an aggregated single-objective
unction that includes both fitness and parsimony pressure (both
onstant and Adaptive Parsimony Pressure were tested) and also
ia a two stage optimisation process. This approach was not only
ovel at the time, but also demonstrated how to successfully con-
rol for GP bloat, leading to solutions which could be evaluated
aster when compared with the other methods.

Related to this study is the work carried out by Bhowan
t al. [28], where the authors used a MOGP to find high accuracy
n binary unbalanced classes achieving good results compared to
ell-established machine learning classification methods. Galván
t al. also used MOGP for the same type of problems [2–4]. In
he same vein, Zhao showed how MOGP can be successfully em-
loyed to define partial preferences on the objectives by carefully
nserting this bias into the fitness function [29]. The motivating
eason to incorporate this embedding is that classification errors
re often cost-sensitive in real life scenarios, where the benefits
f a correct prediction on one class may significantly outweigh
he correct prediction on another. For example, it is more costly
o approve a bad loan than denying a good loan.

Shao et al. [30] demonstrated how images can be classified
sing domain-adaptive global features that are automatically gen-
rated. Similar to how Bleuler et al. [27] implemented their
ptimisation process, Shao et al. use the length of the individuals
s an objective to be optimised in their MOGP framework, where
he second objective is the classification error rate. Shao et al.
eported that their MOGP approach consistently yielded better
erformance when compared against fourteen other methods,
ncluding two neural network-based approaches.
4

3. Background

This section defines some of the basic concepts relevant to this
work, namely semantics, MO and EMO algorithms.

3.1. Semantics

We use a well-established definition of semantics originally
defined in [31]. For a supervised learning task in general, and
for GP in specific, the problem is normally specified as a set
of input–output pairs, also known as fitness cases, of the form
T = {(ini, oi)}, where ini ∈ I are the inputs and oi ∈ O are the
desired outputs, and i = {1, . . . , l}, where l is the number of
the fitness cases. The semantics s(p) of a program p is defined
as the vector of output values computed by this program based
on the inputs given in the set of fitness cases of a problem. This
is formally defined as,

s(p) = [p(in1), p(in2), . . . , p(inl)] .

3.2. Multi-objective optimisation

The goal in Multi-objective optimisation (MO) is to simultane-
ously optimise two or more objective functions. When multiple
objective functions are considered, often these will be in conflict,
so the focus then is to search for a set of trade-off solutions as
a global optimum becomes unattainable. A natural form to solve
this problem is to use the Pareto dominance relation: a solution
x1 in the search space is said to Pareto-dominate solution x2 if x1
is at least as good as x2 for all objectives and strictly better for at
least one of the objectives.

In this work, the objectives are to be maximised. The class of
problems used in this work, defined in Section 5, is binary clas-
sification problems where the goal is to maximise the classifica-
tion accuracy of two conflicting objectives. The Pareto dominance
concept is defined as in Eq. (1):

Si ⪰ Sj ←→ ∀m[(Si)m ≥ (Sj)m] ∧ ∃k[(Si)k > (Sj)k] (1)

where (Si)m denotes the value of solution Si in the mth objective.
Conversely, solutions are considered to be non-dominated if no
ther solution in the population dominates them. The set of
ptimal trade-off solutions of a MO problem at hand is referred to
s the Pareto optimal set. Thus, the objective of an EMO algorithm

is to find (a good approximation) of this set. The Pareto optimal
front is the objective space representation of the Pareto optimal
set.

Pareto-dominance has been used in different ways to handle
such criterion to bias the search in an EMO algorithm. Some of
the most widely-known are dominance rank [6] and dominance
count [27]. Dominance rank is based on the number of solutions
that dominate another within a population, this means that a
lower value is desirable. On the other hand, dominance count
is the number of solutions that a particular solution dominates,
in this case a higher value is preferable. There are two popular
EMO algorithms that include the aforementioned ways to use
Pareto-dominance and they are adopted in this study: the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [6] that uses
dominance rank, and the Strength Pareto Evolutionary Algorithm
(SPEA2) [27] that uses dominance rank and dominance count.

In NSGA-II, dominance rank is used as a fitness value for
solution Si. This is expressed as

NSGA-II(Si) = {∄j, j ∈ Pop|Sj ⪰ Si} . (2)

SEA2, on the other hand, uses and dominance count and dom-
inance rank when computing the fitness value of an individual.
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irst, a strength value D is given to every candidate solution in
he population. This is formally defined by,

(Si) = |{j|j ∈ Pop ∧ Si ⪰ Sj}|. (3)

D then determines the number of solutions that a particular
solution (Si) dominates. To determine the fitness value of a can-
didate solution i in SPEA2, we then use the strengths of all the
solutions that dominate solution i. This is expressed as,

PEA2(Si) =
∑

j∈Pop,Sj⪰Si

D(Sj) . (4)

3.2.1. Diversity preservation in multi-objective optimisation through
the use of the crowding distance

A total order is not provided by Pareto dominance, such that
another criterion is required to effectively compare different
points in the search space, which is necessary to perform se-
lection and survival during evolution. One approach is to use a
crowding distance measure, such that regions that are sparsely
populated are preferable compared to denser regions. The crowd-
ing distance is normally used in objective space to differentiate
between individuals having the same Pareto rank, preferring
those that are in the less populated regions. Algorithm 1 shows
how this crowding distance is computed, adapted from [6].

Algorithm 1 Crowding distance. Adapted from [6].

1: procedure Crowding-distance-assignment(I)
2: l← |I| ▷ number of solutions in I
3: for each i do
4: I[i]distance ← 0 ▷ initialise distance
5: end for
6: for each objective m do
7: I ← sort(I ,m) ▷ sort using each objective value
8: I[1]distance ← I[l]distance ←∞ ▷ so that boundary points

are
always selected

9: for i← 2 to (l− 1) do ▷ for all other points
0: I[i]distance ← I[i]distance +

(I[i+1].m-I[i-1].m)/(f max
m -f min

m )
1: end for

12: end for
13: end procedure

3.2.2. MOGP algorithm
The MOGP framework employed in this work is based on

SGA-II, which is described next. This is the framework that we
se for all our experiments and we only change the way fitness
f individuals is computed by using either NSGA-II or SPEA2,
ormally defined in Eqs. (2) or (3), respectively.

Both populations (parents and offspring) are joint at every
eneration. The best individuals from this overall population are
opied into the archive population, which contains the same
umber of individuals as the original population. The archive
opulation then serves as the parent population for the next
eneration. The archive population provides elitism preserving
he set of non-dominance solutions throughout the evolutionary
rocess.

. Semantic-based MOGP methods

Next, we present the semantic-based approaches employed
n this work that are incorporated into the baseline MOGP algo-

ithms, namely NSGA-II and SPEA-2.

5

Fig. 1. Semantic-based Distance as an Additional CriteriOn. First, we get non-
dominated solutions using either dominance rank (see Eq. (2)) or the dominance
rank and dominance count to determine the strength of a given solution (see
Eq. (4)) and store these in Rt . Second, once the non-dominated fronts have
been found, we proceed to find a pivot from the first non-dominated front. To
do so, we use the crowding distance defined in Section 3.2.1. This pivot is in the
sparsest region of the front (the dotted red rectangle depicts this idea). Third, we
compute the semantic distance (either using Eq. (5) or Eq. (6)), from the pivot
to each individual in Rt . Fourth, the distance values are used as an additional
criterion for the EMO to optimise, along with conflicting objectives, O1 and O2 ,
amely the TPR and the TNR for unbalanced binary classification problems used
n this work.

.1. Semantic similarity-based crossover MOGP

The first approach that we consider to incorporate semantics
ithin MOGP is the Semantic Similarity-based Crossover (SSC),
riginally proposed by Uy et al. [8] for single-objective genetic
rogramming.
SSC requires a semantic distance. The distance is computed as

he average of the absolute difference of values for every in ∈ I (or
a partial set of inputs) between parents and offspring. When the
distance value falls within a specific range, defined by one or two
bounds, an offspring is generated by way of crossover. Given that
this may be difficult to meet, the original approach encourages
diversity by repeating crossover with a maximum of 20 attempts.
If the condition is not satisfied, then crossover is execute as usual.

SSC was a notable contribution to GP since it showed that it
was feasible to promote semantic diversity in continuous search
spaces, leading to several subsequent studies [2,32–35]. In this
work we implement SSC as proposed in [8], but for the first time
the method is evaluated as part of a MOGP framework, using
both NSGA-II and SPEA2 as the baseline algorithms. Our results,
discussed in Section 6, show that unlike for single-objective GP,
MOGP SSC did not lead to notable performance improvements.

4.2. Semantic-based Crowding Distance

In Semantic-based Crowding Distance (SCD), the key element
is to define an individual (pivot) that can be used to compute a
semantic distance between this and some elements from the pop-
ulation. Algorithm 2 shows how the SCD MOGP works. It creates
a new population Pt+1 using the non-dominated sorted solutions
from the parent population Pt and the offspring population Qt ,
hich are merged into population Rt (Lines 2–3). This continues
ntil the size of P is equal to the size of P (Lines 4–12). It may
t+1 t
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e the case that a particular front does not fit entirely into the
ew population and a second criterion is necessary to complete
t+1. If this is the case, we proceed to store (Fr ), the remaining
f those individuals that have not been used to complete the
opulation (Lines 13–24). We then use the semantic distance as a
riterion to select those points from Fr to complete Pt+1. To do so,
we proceed to find a pivot v which is the furthest point from the
first front using the crowding distance, explained in Section 3.2.1
(Lines 15–16). The dotted red rectangle in Fig. 1 exemplifies how
the pivot (red dot) is chosen from the first front.

The semantic distance between every point in Fr and the
pivot is computed (Line 17). Thus, only one pivot is necessary to
compute this distance. Formally, this distance is computed as in
Eq. (5):

d(pj, v) =
l∑

i=1

1 if LBSS ≤ |p(ini)− v(ini)| ≤ UBSS (5)

where pj is an individual in Rt , l is the number of fitness cases,
and LBSS and UBSS are the lower bound and upper bound for the
semantic similarity values, respectively. These last two values are
used to promote semantic diversity within a range, as reported
beneficial in [8].

There is also a number of studies that have concluded that only
one bound is necessary to promote semantic diversity [2,3,23].
We can compute the semantic distance between the pivot v

and every individual in Rt using the following distance formally
described in Eq. (6),

d(pj, v) =
l∑

i=1

1 if |p(ini)− v(ini)| > UBSS (6)

We then use the semantic distance values on the stored Fr
(Line 18) and select the individuals that are in sparse regions of
the search space, until we complete Pt+1 (Lines 20–23).

Algorithm 2 Semantic-based Crowding Distance

1: procedure Forming New Population
2: Rt ← Pt ∪ Qt
3: F← non_dominated_sort (Rt )
4: Pt+1 ← 0; i← 1;
5: while |Pt+1| ≤ |P| do
6: if |Pt+1| + |Fi| < |P| then
7: Pt+1 ← Pt+1 ∪ Fi
8: i← i+1
9: else

10: break
11: end if
12: end while
13: if |Pt+1| < |P| then
14: Fr ← F ∩ {F1 · · · Fi}
15: CD1 ← crowding_distance(F1)
16: pivot← furthest_point(CD1)
17: SV← compute_semantics(Fr , pivot)
8: Fr ← crowding_distance(SV(Fr ))
9: j← 0
0: for j + |Pt+1| < |P| do

21: Pt+1 ← Pt+1 ∪ Fr[j]
22: j← j + 1
23: end for
24: end if
25: end procedure
6

Algorithm 3 Semantic-based Distance as an Additional Criterion

1: procedure Forming New Population
2: Rt ← Pt ∪ Qt
3: F← non_dominated_sort (Rt )
4: CD1 ← crowding_distance(F1)
5: pivot← furthest_point(CD1)
6: Rt ← compute_semantics(Rt , pivot)
7: F← sort (Rt )
8: Pt+1 ← 0; j← 0
9: for j < |P| do
0: Pt+1 ← Pt+1 ∪ F[j]
1: j← j + 1
2: end for
3: end procedure

4.3. Semantic-based distance as an additional criterion

We further expand SCD by now using the resulting semantic
distance values as another indicator to select solutions by the MO
process. We refer to this approach as Semantic-based Distance
as an additional criteriOn (SDO). As with SSC, we continue using
the MOGP framework described above, for SDO. This approach is
described in detail in Algorithm 3.

First, we merge the parent population Pt and the offspring
population Qt into Rt . We then get the non-dominated sorted
solutions (Lines 2 – 3). To compute the semantic distance for each
point contained in Rt we proceed as follows. We first compute
the crowding distance from the first front and select the point
that is the furthest away. We use this as pivot v to then compute
the semantic distance between v and each individual contained
in Rt (Lines 4 – 5). We then use the resulting distance value, using
either Eq. (5) (two bound values are required) or Eq. (6) (one
bound value is necessary), as another criterion to be computed
(Line 6). Next, we sort Rt (Line 7) and form the new population
Pt+1 (Lines 8 – 12). In case the size of Pt+1∪ F[j] is greater than
|Pt |, we proceed to take only the individuals needed to complete
Pt+1. Fig. 1 depicts this idea.

5. Experimental setup

The use of benchmark problems has allowed the research
community to test, validate and explain a plethora of evolution-
ary algorithms. In this work, we also adopt well-known, robust
and tested benchmark problems used in other studies [5,28,36]
that will allow us to (i) test the algorithms used in this work,
(ii) to use well-defined metrics that allow us to compare one
method against another one, (iii) to allow us to explain why
one particular method behaves better than others, (iv) to draw
sound conclusions on the results reported in the following sec-
tions. Thus, for this study, the impact of semantics in MOGP are
analysed using several unbalanced binary classification problems,
taken from the UCI Machine Learning repository [37]. Table 1,
adapted from [28], gives the details of all datasets used in this
work. These binary classification problems have various degrees
of class imbalance, from 1:3 to 1:130, for the Ion and the Abal2
dataset, respectively. The 50%–50% training/test sets also range
from being well-represented (Abal2 has around 2,100 instances)
to sparsely represented (Spect has around 133 instances, where
around 27 are from the minority class). Moreover, these datasets
range between low dimensionality (Yeast1 has 8 features) to high
dimensionality (Ion has 34 features). Finally, our datasets include
binary and real-valued features. Thus, these datasets represent
class imbalance problems of various degrees of difficulty, size,
dimensionality and types of features reasonably well. Moreover,
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Table 1
Summary of the binary unbalanced classification datasets.
Dataset Positive/Negative Class Number of examples Ratio Features

Brief description Total/Positive(%)/Negative(%) No.(Type)

Ion Good/Bad: 351/126(35.8%)/225(64.2%) 1:3 34(Real)
Ionosphere radar signals

Spect Abnormal/Normal 267/55(20.6%)/212(79.4%) 1:4 22(Binary)
Tomography scan

Yeast1 MIT/Other 1482/244(16.5%)/1238(83.5%) 1:6 8(Real)
Protein sequences

Yeast2 ME3/Other 1482/163(10.9%)/1319(89.1%) 1:9 8(Real)
Protein sequences

Abal1 9/18 731/42(5.7%)/689(94.2%) 1:17 8(Real)
Biology of abalone

Abal2 9/Other 4177/32(0.77%)/4145(99.2%) 1:130 8(Real)
Biology of abalone
S

Table 2
Confusion Matrix.

Predicted positive Predicted negative

Actual positive True Positive (TP) False Negative (FN)
Actual negative False Positive (FP) True Negative (TN)

we carefully choose these benchmark problems so that our eval-
uations on the three semantic-based methods (SSC, SCD and
SDO) and the two EMO approaches (NSGA-II and SPEA2) are
not-problem dependent.

The terminal and function sets used in this work are as follows.
he terminals are the problem features. The function set contains
he most common arithmetic operators, namely F = {+,−, ∗, /},
here the division operator is protected by returning the nu-
erator when the denominator has a value of zero. The models
volved by GP map each input pattern in a dataset to a single
utput value. When the output of a GP model is greater than, or
qual to, zero the pattern is labelled as part of the minority class,
nd it is labelled as a majority class pattern, otherwise.
The common way to measure fitness in a classification task

s to use the overall classification accuracy: for binary classifi-
ation, the four possible cases are shown in Table 2. Assuming
he minority class is the positive class, the accuracy is given by
cc = TP+TN

TP+TN+FP+FN , where TP are the true positives, TN are the
true negatives, FP are the false positives and FN are the false
negatives. The drawback of using Acc alone is that it rapidly biases
the evolutionary search towards the majority class [28]. A better
approach is to treat each class ‘separately’ using a MO approach.
Two objectives considered are thus the true positive rate, given
by TPR = TP

TP+FN , and the true negative rate given by TNR = TN
TN+FP .

They measure the distinct accuracy for the minority (TPR) and
majority class (TNR), respectively.

The experiments were conducted using a generational ap-
proach. Tree size was controlled by using a maximum length or
a maximum final depth, whatever happens first. When a child
tree exceeds any of these, the offspring is generated again until
these conditions are satisfied. The parameters used are shown
in Table 3. These include the use of different bounds, defined as
Upper Bound Semantic Similarity (UBSS) = {0.25, 0.50, 0.75, 1.0}
values and Lower Bound Semantic Similarity (LBSS) = {0.001, 0.01,
0.1} values, to compute the semantic distances defined in Eqs. (5)
and (6). This results in conducting a thorough analysis: for each
of the semantic-based approaches and for each of the datasets
used, we have 16.1 independent results, each being the result of
50 independent runs. To obtain meaningful results, we carried

1 4 values for UBSS and 4 cases for LBBS: 3 values and 1 case where LBSS is
ot defined.
 E

7

Table 3
Summary of parameters.
Parameter Value

Population size 500
Generations 50
Type of crossover 90% internal nodes, 10% leaves
Crossover rate 0.60
Type of mutation Subtree
Mutation Rate 0.40
Selection Tournament (size = 7)
Initialisation method Ramped half-and-half
Initialisation depths:

Initial depth 1 (Root = 0)
Final depth 5

Maximum size 800 nodes
Maximum final depth 8
Independent runs 50
Semantic bounds UBSS = {0.25, 0.5, 0.75, 1.0}

LBSS = {0.001, 0.01, 0.1}

out an extensive empirical experimentation (29,400 independent
runs in total).2

The results reported in the following section are based on the
testing dataset.

6. Results and analysis

6.1. Diversity

Diversity in GP can be quantified in many different ways, in
this work we focus on phenotypic diversity, based on the number
of unique fitness values [38,39]. This measure of diversity is par-
ticularly relevant in a MO problem, since the spread of solutions
in the Pareto front is a desired feature of the optimisation process.
Specifically, we quantify diversity by computing the number of
unique solutions produced in objective space, considering the TPR
and the TNR (see Section 5) of each solution found by either a
canonical EMO approach (NSGA-II or SPEA2) vs. a semantic-based
approach (SDO, SSC or SCD) for each of the six datasets used in
this work (see Table 1). A unique solution is defined as a solution
that was obtained by a particular approach (for instance NSGA-
II) but not obtained by another approach (for instance SDO).
Consequently, a non-unique solution is one that was obtained by
two approaches.

We know from Section 5 that we used 16 different config-
urations of values to compute the semantic distance for each
of the semantic-based approaches in each of the datasets used.
We summarised these by computing the average and standard

2 50 independent runs, 6 datasets, 3 semantic-based MOGP approaches (SSC,
CD, SDO), 16 different combination of values for UBSS and LBSS, 2 canonical
MO methods (NSGA-II, SPEA2).
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Table 4
Number of unique solutions (average and standard deviation) found by NSGA-II vs. SDO, SSC or SCD.
Data NSGA-II

Set Canonical SDO Canonical SSC Canonical SCD

Ion 162.5 ± 20.1 751.1 ± 187.9 269.7 ± 11.2 252.8 ± 20.5 270.0 ± 25.8 245.4 ± 27.5
Spect 81.1 ± 13.9 331.7 ± 56.7 151.8 ± 9.5 155.8 ± 14.3 156.7 ± 9.1 159.5 ± 24.0
Yeast1 798.5 ± 33.3 1991.5 ± 149.0 1166.5 ± 26.1 1050.4 ± 30.6 1168.7 ± 19.4 1058.0 ± 44.5
Yeast2 235.9 ± 15.53 855.1 ± 138.5 418.8 ± 13.3 414.9 ± 16.9 418.0 ± 9.9 398.1 ± 16.7
Abal1 128.6 ± 13.2 485.8 ± 55.3 192.6 ± 5.9 205.1 ± 9.1 193.4 ± 6.0 204.5 ± 6.2
Abal2 183.5 ± 21.3 1034.7 ± 284.8 248.9 ± 2.4 187.9 ± 11.8 244.4 ± 4.2 215.7 ± 13.2
Table 5
Number of unique solutions (average and standard deviation) found by SPEA2 vs. SDO, SSC or SCD.
Data SPEA2

Set Canonical SDO Canonical SSC Canonical SCD

Ion 147.8 ± 15.7 775.5 ± 161.9 247.2 ± 9.1 82.6 ± 14.0 242.1 ± 6.6 273.9 ± 18.3
Spect 95.5 ± 18.1 334.1 ± 45.2 169.8 ± 16.0 168.8 ± 16.5 183.5 ± 12.5 147.8 ± 13.4
Yeast1 749.1 ± 40.7 2076.6 ± 189.5 1144.0 ± 22.8 1067.5 ± 36.9 1131.9 ± 35.6 1087.6 ± 44.4
Yeast2 253.1 ± 21.4 886.3 ± 153.1 439.1875 ± 14.3 399.8125 ± 10.1 430.25 ± 8.6 411.5 ± 26.
Abal1 149.3 ± 12.7 498.1 ± 70.9 213.7 ± 6.6 198.8 ± 7.7 213.7 ± 8.1 205.0 ± 11.6
Abal2 166.1 ± 13.9 1120.4 ± 233.3 218.8 ± 2.5 198.1 ± 14.7 216.6 ± 3.8 230.5 ± 14.3
T
A
f
s

deviation of these 16 values and compared it against a canonical
MO approach. Table 4 reports the number of unique solutions
found by either NSGA-II or SDO, NSGA-II or SSC and NSGA-II or
SCD. As can be seen from this table, our proposed SDO approach,
which treats semantic distance values as an additional criterion,
third column from left to right of Table 4, produces more unique
solutions compared to canonical NSGA-II for any of the datasets
used. For example, the lowest ratio of SDO vs. NSGA-II is ≈2.4 on
he Yeast1 dataset. That is, there are 2.4 more solutions produced
y SDO compared to NSGA-II (1991.5± 149.0 vs. 798.5± 33.3). At
he opposite end, we have that the highest ratio of SDO vs. NSGA-
I is ≈5.6 on the Abal2 dataset (183.5 ± 21.3 vs. 1034.7 ± 284.8).
hen we then turn our attention to the other two semantic-
ased approaches, we can see that there is no real advantage for
SC or SCD over NSGA-II, in terms of producing more solutions
n the two conflicting classes.
Table 5 also reports the number of unique solutions found

y either SPEA2 vs. any of the semantic-based approaches used
n this work. Similarly to what has been reported in Table 4,
s well as discussed before, we can observe that our proposed
DO produces significantly more solutions compared to canonical
PEA2. For example, the lowest ratio of SDO vs. SPEA2 is ≈2.7
n the Yeast2 dataset (253.1 ± 21.4 vs. 886.3 ± 153.1) and the
ighest ratio of SDO vs. SPEA2 is ≈6.7 on the Abal2 dataset
166.1 ± 13.9 vs. 1120.4 ± 233.3). Similarly to what can be seen
n Table 4, the other two semantic-based approaches (SSC and
CD) do not show a significant improvement when compared to
PEA2.
From this analysis, it is clear that our proposed SDO produces

ore unique solutions compared to any of the canonical MO
pproaches used in this work, regardless of the dataset used.
owever, we cannot say whether these unique solutions found
y our approach are better or worse compared to those obtained
y NSGA-II or SPEA2. To address this, we provide further analysis
f the approximated Pareto fronts in Section 6.3. Figs. 2 and 3
how the evolved solutions that were exclusively found by (i)
ither NSGA-II or NSGA-II SDO, and (ii) either SPEA2 or SPEA2
DO, respectively, for all the datasets used in this work. It is clear
o see from Figs. 2 and 3, that the unique evolved solutions that
ere found by SDO (setting UBSS = 0.5 to be used in Eq. (6)),
epresented by green hollow square symbols, are more numerous
nd more spread than those produced by the canonical EMO
pproaches: NSGA-II (Fig. 2) or SPEA2 (Fig. 3), represented by
lack hollow circles. This is particularly clear for the Ion, Spect,
east2, Abal1 and Abal2 datasets. The situation is less clear for the
east dataset.
1

8

able 6
verage (± standard deviation) hypervolume of evolved Pareto-approximated
ronts and PO fronts for NSGA-II and SPEA2 over 50 independent runs. No
ignificant differences were found in any single dataset.

Dataset
NSGA-II SPEA2

Hypervolume Hypervolume

Average PO front Average PO front

Ion 0.766 ± 0.114 0.938 0.786 ± 0.094 0.948
Spect 0.534 ± 0.024 0.647 0.544 ± 0.032 0.659
Yeast1 0.838 ± 0.011 0.876 0.838 ± 0.008 0.877
Yeast2 0.950 ± 0.009 0.976 0.946 ± 0.015 0.978
Abal1 0.847 ± 0.058 0.961 0.832 ± 0.078 0.960
Abal2 0.576 ± 0.122 0.842 0.544 ± 0.147 0.834

6.2. Hypervolume comparison

To further compare the three semantic-based methods and
the two EMO methods employed in our study, we calculate the
hypervolume [40] of the approximated Pareto fronts, which is a
commonly used performance metric for MO techniques. For bi-
objective problems such as the unbalanced binary classification
problems employed in this work, the hypervolume is computed
as the sum of all the trapezoidal areas fitted under each point
in objective space, where the set of points represent the can-
didate solutions. Moreover, the hypervolume explicitly captures
the underlying goals of the MOGP, to concurrently maximise
the accuracies of both the majority class and the minority class.
Additionally, the accumulated Pareto-optimal (PO) front, which
is the set of non-dominated solutions after merging the Pareto-
approximated fronts for all the independent runs, set at 50 in this
study, is also computed.

Tables 6–8 show the average hypervolume across 50 runs and
the hypervolume of the accumulated PO front of these runs for
each of the problems shown in Table 1. In Table 6, we show
these hypervolume values for the two EMO approaches used in
this work: NSGA-II and SPEA2. In the same manner, Tables 7 and
8 show these hypervolume values yield by the three semantic-
based methods using NSGA-II and SPEA2, respectively. Further-
more, for Tables 7 and 8, these hypervolume values are given for
each of the 16 different configurations of each semantic methods
(based on the upper and lower bounds). Bold text in the tables in-
dicates an average performance that is superior than the average
performance of the baseline method (NSGA-II or SPEA2). The re-
sults suggest that, on average, our proposed method SDO (upper
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Fig. 2. Evolved solutions that were exclusively found by either NSGA-II, represented by black hollow circle symbols, and its SDO variant, represented by green hollow
quare symbols, setting UBSS = 0.5, for all the datasets used in this work.
Fig. 3. Evolved solutions that were exclusively found by either SPEA2, represented by black hollow circle symbols, and its SDO variant, represented by green hollow
quare symbols, setting UBSS = 0.5, for all the datasets used in this work.
art of Tables 7 and 8) consistently outperforms the baselines,
hile this is not clearly the case for SSC and SCD (middle and
ottom of these tables, respectively).
The following statistical analysis was performed. For each

aseline method, NSGA-II and SPEA2, we perform three blocks
f comparisons, one for each semantic variant, namely SDO, SSC
nd SCD (six blocks in total). In each block we perform a multi-
roup test with N configurations, where N = 16 represents
ach of the configurations tested based on different UBSS and
BSS bound values which are compared with one of the baseline
ethods (NSGA or SPEA2). We use the Friedman test in our
nalysis, comparing based on all 6 problems and considering 50
eplicates (runs) for each problem. The null hypothesis is that the
edian performance of all groups in the same block is the same,
nd we reject the null hypothesis at the α = 0.01 significance
evel. For both SSC and SCD, the null hypothesis of the multi-
roup tests was not rejected considering each of the baselines,
ith p-values above the significance level of the test. However,
9

the null hypothesis was rejected in the multi-group tests for
the SDO configurations relative to both baselines. In these cases,
a post-hoc test was conducted, once again using the Friedman
test to perform N pairwise tests between each SDO configuration
and the baseline method (NSGA-II and SPEA2). The Bonferroni–
Dunn correction of the p-value was performed to account for
the family-wise error of performing multiple comparisons. Once
again, in all pairwise comparisons the null hypothesis was re-
jected at the α = 0.01 significance level, comparing each SDO
configuration and the respective baseline. Based on these results,
we found that the SDO method outperforms each of the baseline
methods, while SSC and SCD did not. Moreover, we can see that
SDO performance is robust to how it is parameterised, relative to
the LBSS and UBSS values.

From this statistical analysis, it is evident that SDO behaves,
in average, better compared to any of the approaches used in
this work (two canonical EMO approaches and the two other
semantic-based methods). To illustrate the performance of the
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Table 7
Average (± standard deviation) hypervolume of evolved Pareto-approximated fronts and PO fronts for the NSGA-II semantic-based methods (SDO,
SSC, SCD) over 50 independent runs. Bold indicates better performance compared to the baseline NSGA-II results reported in Table 6.

LBSS Hypervolume

Average PO front

UBSS UBSS

0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

NSGA-II SDO

Ion

— 0.860 ± 0.033 0.869 ± 0.037 0.869 ± 0.033 0.845 ± 0.057 0.948 0.958 0.962 0.950
0.001 0.817 ± 0.087 0.819 ± 0.104 0.857 ± 0.057 0.861 ± 0.047 0.942 0.957 0.954 0.958
0.01 0.825 ± 0.084 0.843 ± 0.073 0.861 ± 0.045 0.861 ± 0.038 0.946 0.956 0.957 0.944
0.1 0.846 ± 0.070 0.848 ± 0.068 0.844 ± 0.075 0.864 ± 0.044 0.950 0.956 0.953 0.960

Spect

— 0.591 ± 0.027 0.593 ± 0.025 0.594 ± 0.023 0.600 ± 0.019 0.684 0.679 0.689 0.694
0.001 0.562 ± 0.021 0.558 ± 0.025 0.561 ± 0.019 0.560 ± 0.016 0.668 0.653 0.660 0.644
0.01 0.564 ± 0.025 0.560 ± 0.023 0.566 ± 0.024 0.559 ± 0.016 0.672 0.650 0.669 0.643
0.1 0.563 ± 0.022 0.563 ± 0.024 0.567 ± 0.018 0.561 ± 0.024 0.664 0.658 0.655 0.658

Yeast1

— 0.850 ± 0.006 0.849 ± 0.008 0.849 ± 0.006 0.849 ± 0.006 0.881 0.881 0.882 0.881
0.001 0.845 ± 0.007 0.847 ± 0.006 0.848 ± 0.004 0.848 ± 0.005 0.879 0.882 0.879 0.880
0.01 0.848 ± 0.006 0.849 ± 0.005 0.848 ± 0.005 0.850 ± 0.005 0.881 0.881 0.879 0.881
0.1 0.847 ± 0.005 0.848 ± 0.005 0.848 ± 0.005 0.850 ± 0.005 0.878 0.879 0.879 0.883

Yeast2

— 0.961 ± 0.007 0.961 ± 0.007 0.960 ± 0.008 0.962 ± 0.007 0.978 0.979 0.979 0.979
0.001 0.959 ± 0.008 0.958 ± 0.007 0.961 ± 0.006 0.961 ± 0.006 0.981 0.978 0.979 0.978
0.01 0.955 ± 0.009 0.959 ± 0.007 0.960 ± 0.009 0.961 ± 0.007 0.979 0.980 0.979 0.978
0.1 0.958 ± 0.009 0.960 ± 0.007 0.961 ± 0.007 0.962 ± 0.006 0.978 0.978 0.981 0.979

Abal1

— 0.849 ± 0.081 0.862 ± 0.087 0.847 ± 0.089 0.849 ± 0.085 0.964 0.970 0.966 0.967
0.001 0.892 ± 0.051 0.905 ± 0.036 0.907 ± 0.036 0.906 ± 0.034 0.970 0.968 0.969 0.971
0.01 0.908 ± 0.038 0.900 ± 0.056 0.919 ± 0.022 0.919 ± 0.026 0.969 0.973 0.970 0.972
0.1 0.910 ± 0.037 0.911 ± 0.046 0.912 ± 0.049 0.916 ± 0.031 0.970 0.972 0.969 0.970

Abal2

— 0.591 ± 0.102 0.623 ± 0.138 0.634 ± 0.115 0.617 ± 0.137 0.862 0.878 0.881 0.873
0.001 0.729 ± 0.070 0.722 ± 0.063 0.709 ± 0.080 0.735 ± 0.074 0.877 0.870 0.879 0.885
0.01 0.721 ± 0.067 0.725 ± 0.075 0.721 ± 0.074 0.723 ± 0.066 0.881 0.879 0.884 0.880
0.1 0.724 ± 0.076 0.739 ± 0.065 0.736 ± 0.063 0.756 ± 0.065 0.888 0.883 0.886 0.890

NSGA-II SSC

Ion

— 0.761 ± 0.108 0.749 ± 0.161 0.763 ± 0.152 0.744 ± 0.137 0.941 0.937 0.951 0.949
0.001 0.765 ± 0.134 0.753 ± 0.124 0.699 ± 0.188 0.803 ± 0.103 0.954 0.935 0.928 0.946
0.01 0.760 ± 0.125 0.751 ± 0.123 0.710 ± 0.161 0.802 ± 0.104 0.947 0.929 0.928 0.947
0.1 0.775 ± 0.095 0.738 ± 0.184 0.746 ± 0.141 0.778 ± 0.099 0.957 0.951 0.945 0.936

Spect

— 0.525 ± 0.025 0.532 ± 0.029 0.537 ± 0.020 0.535 ± 0.029 0.633 0.634 0.634 0.634
0.001 0.530 ± 0.029 0.539 ± 0.030 0.542 ± 0.023 0.540 ± 0.025 0.651 0.635 0.638 0.654
0.01 0.535 ± 0.029 0.537 ± 0.027 0.541 ± 0.027 0.540 ± 0.028 0.655 0.633 0.658 0.651
0.1 0.532 ± 0.029 0.531 ± 0.026 0.534 ± 0.027 0.533 ± 0.022 0.632 0.641 0.635 0.635

Yeast1

— 0.819 ± 0.041 0.829 ± 0.023 0.835 ± 0.014 0.834 ± 0.017 0.874 0.875 0.878 0.878
0.001 0.825 ± 0.031 0.834 ± 0.029 0.834 ± 0.019 0.826 ± 0.039 0.877 0.877 0.877 0.877
0.01 0.827 ± 0.027 0.835 ± 0.016 0.836 ± 0.019 0.830 ± 0.030 0.874 0.877 0.877 0.879
0.1 0.831 ± 0.027 0.828 ± 0.034 0.831 ± 0.028 0.835 ± 0.014 0.879 0.876 0.876 0.875

Yeast2

— 0.950 ± 0.013 0.948 ± 0.010 0.945 ± 0.032 0.947 ± 0.009 0.978 0.977 0.978 0.977
0.001 0.946 ± 0.013 0.944 ± 0.028 0.947 ± 0.013 0.950 ± 0.011 0.976 0.976 0.977 0.979
0.01 0.947 ± 0.014 0.944 ± 0.024 0.946 ± 0.015 0.949 ± 0.012 0.978 0.978 0.978 0.978
0.1 0.948 ± 0.014 0.948 ± 0.012 0.946 ± 0.009 0.947 ± 0.016 0.978 0.978 0.977 0.977

Abal1

— 0.844 ± 0.084 0.839 ± 0.083 0.834 ± 0.070 0.824 ± 0.099 0.963 0.967 0.962 0.962
0.001 0.851 ± 0.062 0.812 ± 0.086 0.845 ± 0.077 0.844 ± 0.079 0.964 0.961 0.959 0.967
0.01 0.850 ± 0.076 0.833 ± 0.091 0.829 ± 0.096 0.836 ± 0.090 0.972 0.957 0.959 0.963
0.1 0.869 ± 0.064 0.838 ± 0.083 0.844 ± 0.075 0.834 ± 0.084 0.963 0.965 0.965 0.962

Abal2

— 0.521 ± 0.121 0.532 ± 0.103 0.529 ± 0.128 0.511 ± 0.118 0.810 0.802 0.841 0.801
0.001 0.561 ± 0.082 0.534 ± 0.102 0.542 ± 0.104 0.502 ± 0.161 0.823 0.865 0.829 0.820
0.01 0.494 ± 0.147 0.536 ± 0.114 0.533 ± 0.134 0.547 ± 0.123 0.844 0.826 0.841 0.850
0.1 0.513 ± 0.132 0.549 ± 0.120 0.514 ± 0.112 0.532 ± 0.131 0.806 0.820 0.785 0.831

NSGA-II SCD

Ion

— 0.788 ± 0.114 0.800 ± 0.109 0.771 ± 0.145 0.791 ± 0.111 0.943 0.946 0.932 0.952
0.001 0.542 ± 0.127 0.789 ± 0.110 0.789 ± 0.110 0.766 ± 0.120 0.876 0.955 0.955 0.940
0.01 0.772 ± 0.119 0.801 ± 0.099 0.801 ± 0.099 0.756 ± 0.158 0.946 0.941 0.941 0.941
0.1 0.770 ± 0.109 0.771 ± 0.124 0.771 ± 0.124 0.756 ± 0.097 0.947 0.951 0.951 0.940

Spect

— 0.542 ± 0.022 0.537 ± 0.027 0.538 ± 0.037 0.537 ± 0.037 0.642 0.658 0.652 0.643
0.001 0.539 ± 0.032 0.538 ± 0.026 0.538 ± 0.027 0.535 ± 0.036 0.650 0.643 0.644 0.648
0.01 0.537 ± 0.037 0.538 ± 0.026 0.538 ± 0.027 0.535 ± 0.036 0.650 0.643 0.644 0.648
0.1 0.542 ± 0.025 0.535 ± 0.027 0.536 ± 0.024 0.538 ± 0.024 0.652 0.643 0.632 0.644

Yeast1

— 0.836 ± 0.014 0.826 ± 0.038 0.838 ± 0.008 0.837 ± 0.011 0.877 0.874 0.876 0.877
0.001 0.834 ± 0.026 0.836 ± 0.015 0.837 ± 0.016 0.834 ± 0.016 0.877 0.873 0.875 0.876
0.01 0.834 ± 0.015 0.836 ± 0.011 0.834 ± 0.018 0.835 ± 0.015 0.876 0.877 0.875 0.878
0.1 0.836 ± 0.014 0.826 ± 0.038 0.838 ± 0.008 0.837 ± 0.011 0.879 0.875 0.877 0.876

(continued on next page)
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Table 7 (continued).
LBSS Hypervolume

Average PO front

UBSS UBSS

0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

Yeast2

— 0.948 ± 0.013 0.950 ± 0.009 0.947 ± 0.011 0.946 ± 0.011 0.978 0.977 0.976 0.976
0.001 0.947 ± 0.016 0.946 ± 0.016 0.946 ± 0.016 0.950 ± 0.012 0.976 0.976 0.976 0.979
0.01 0.950 ± 0.010 0.949 ± 0.009 0.949 ± 0.009 0.947 ± 0.011 0.979 0.979 0.979 0.977
0.1 0.948 ± 0.010 0.947 ± 0.009 0.947 ± 0.009 0.952 ± 0.008 0.977 0.978 0.978 0.978

Abal1

— 0.841 ± 0.089 0.838 ± 0.073 0.838 ± 0.080 0.847 ± 0.071 0.963 0.960 0.964 0.961
0.001 0.828 ± 0.074 0.830 ± 0.103 0.830 ± 0.103 0.799 ± 0.114 0.958 0.963 0.963 0.961
0.01 0.842 ± 0.082 0.839 ± 0.083 0.839 ± 0.083 0.825 ± 0.070 0.964 0.962 0.962 0.964
0.1 0.864 ± 0.062 0.833 ± 0.076 0.833 ± 0.076 0.837 ± 0.071 0.962 0.958 0.958 0.964

Abal2

— 0.561 ± 0.120 0.542 ± 0.110 0.534 ± 0.150 0.570 ± 0.104 0.831 0.824 0.862 0.830
0.001 0.533 ± 0.131 0.577 ± 0.074 0.577 ± 0.074 0.580 ± 0.092 0.831 0.815 0.815 0.823
0.01 0.572 ± 0.121 0.577 ± 0.097 0.577 ± 0.097 0.565 ± 0.138 0.842 0.830 0.830 0.845
0.1 0.529 ± 0.127 0.574 ± 0.085 0.574 ± 0.085 0.566 ± 0.097 0.811 0.831 0.831 0.817
Fig. 4. Pareto fronts for Spect, Abal1 , Abal2 datasets using NSGA-II and its semantic-based variants (top) and using SPEA2 and its variants (bottom). Semantic-based
variants set UBSS = 0.5.
proposed semantic methods, Fig. 4 shows the Pareto fronts ob-
tained by each approach, setting UBSS at 0.5, as well as the Pareto
fronts obtained by NSGA-II and SPEA2. The figure shows the
fronts for the Spect, Abal1 and Abal2 datasets, as representative
examples. From this figure, it is easy to see how SDO, repre-
sented by blue hollow squares connected by a solid line, achieves
better coverage of the objective space compared to the other
approaches. This is particularly clear for the Abal datasets, using
either NSGA-II (top) or SPEA2 (bottom) as well as for the Spect
dataset when using SPEA2 and less clear when using NSGA-II.

6.3. Discussion on results and why SDO works

Tables 9 and 10 show the average number of distinct solutions,
which are defined as solutions that exclude duplicates, across all
50 independent runs, in the first approximated Pareto front for
Generations 1, 10, 20, 30, 40 and 50 for the canonical EMO meth-
ods (top of Tables 9 and 10) and the and SDO methods (bottom
part of these tables). For simplicity in our analysis, we use a single
upper bound of 0.5 for the SDO method. By selecting the pivot as
an individual from the sparsest region of the first front, we hope
to attract new individuals to the surrounding region of sparsity,
the concept of which has been discussed in greater detail in
Section 4.3 and depicted in Fig. 1. As a consequence of attracting
new individuals to these sparse regions, it is expected that the
11
number of solutions should increase in the first approximated
Pareto front for subsequent generations. This is precisely what it
is observed in Tables 9 and 10, although it is fair to say that the
increase in the numbers of individuals in the best Pareto front is
minimal going, for instance, from 8.28 distinct solutions in the
last generation when using the Ion dataset and NSGA-II to 10.16
distinct solutions when using NSGA-II SDO (top-right column of
Table 9). Even when this increase is small, the trend is consistent
for all the datasets used in this work, regardless of using NSGA-
II SDO or SPEA2 SDO. This small increase in the number of
distinct solutions partially explain why our proposed semantic-
based method yields better results compared with their canonical
EMO algorithms. As we have articulated in Section 2, multiple
studies have reported the benefits of promoting semantics in
evolutionary search leading to have diversity. If the same is true
for our proposed semantic-based approach, dubbed ‘‘Semantic-
based Distance as an additional criteriOn" (SDO for short), then
we believe that a reduction in the number of duplicated solutions
should be observed. To verify and help us further understand why
our method yields better results, we focus on this next.

Tables 11 and 12 show the number of duplicated solutions,
averaged over 50 independent runs, in multiple generations (1,
10, 20, 30, 40 and 50). We can see that the number of duplicates
substantially decreases for SDO in each generation for multiple

datasets. For example, a fourth of the number of duplicated
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Table 8
Average (± standard deviation) hypervolume of evolved Pareto-approximated fronts and PO fronts for the SPEA2 semantic-based methods (SDO, SSC,
SCD) over 50 independent runs. Bold indicates better performance compared to the baseline SPEA2 results reported in Table 6.

LBSS Hypervolume

Average PO front

UBSS UBSS

0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

SPEA2 SDO

Ion

— 0.859 ± 0.031 0.869 ± 0.029 0.862 ± 0.034 0.865 ± 0.047 0.951 0.952 0.950 0.961
0.001 0.858 ± 0.041 0.852 ± 0.075 0.870 ± 0.055 0.874 ± 0.055 0.946 0.955 0.952 0.956
0.01 0.837 ± 0.097 0.851 ± 0.077 0.875 ± 0.032 0.863 ± 0.049 0.956 0.951 0.953 0.959
0.1 0.852 ± 0.071 0.856 ± 0.053 0.873 ± 0.035 0.862 ± 0.038 0.947 0.949 0.952 0.950

Spect

— 0.591 ± 0.020 0.599 ± 0.021 0.597 ± 0.018 0.595 ± 0.022 0.678 0.688 0.686 0.695
0.001 0.569 ± 0.021 0.565 ± 0.024 0.566 ± 0.023 0.563 ± 0.023 0.668 0.666 0.672 0.658
0.01 0.568 ± 0.023 0.567 ± 0.024 0.564 ± 0.025 0.563 ± 0.023 0.666 0.674 0.664 0.658
0.1 0.566 ± 0.023 0.560 ± 0.020 0.567 ± 0.027 0.561 ± 0.022 0.666 0.654 0.673 0.658

Yeast1

— 0.850 ± 0.007 0.850 ± 0.006 0.849 ± 0.008 0.849 ± 0.004 0.882 0.881 0.881 0.881
0.001 0.848 ± 0.006 0.847 ± 0.007 0.848 ± 0.004 0.850 ± 0.006 0.880 0.883 0.880 0.883
0.01 0.848 ± 0.006 0.847 ± 0.006 0.850 ± 0.005 0.850 ± 0.005 0.881 0.880 0.882 0.879
0.1 0.847 ± 0.005 0.849 ± 0.006 0.848 ± 0.005 0.849 ± 0.006 0.879 0.882 0.880 0.882

Yeast2

— 0.962 ± 0.007 0.962 ± 0.006 0.962 ± 0.006 0.963 ± 0.008 0.979 0.979 0.979 0.977
0.001 0.958 ± 0.008 0.960 ± 0.007 0.960 ± 0.005 0.960 ± 0.005 0.980 0.979 0.979 0.977
0.01 0.959 ± 0.008 0.961 ± 0.007 0.961 ± 0.005 0.962 ± 0.007 0.979 0.980 0.978 0.978
0.1 0.961 ± 0.007 0.961 ± 0.007 0.960 ± 0.007 0.964 ± 0.007 0.980 0.979 0.979 0.980

Abal1

— 0.875 ± 0.059 0.868 ± 0.081 0.875 ± 0.059 0.873 ± 0.069 0.965 0.974 0.968 0.972
0.001 0.895 ± 0.061 0.911 ± 0.031 0.905 ± 0.044 0.903 ± 0.036 0.974 0.973 0.972 0.972
0.01 0.903 ± 0.038 0.906 ± 0.042 0.901 ± 0.048 0.910 ± 0.039 0.966 0.969 0.972 0.974
0.1 0.888 ± 0.067 0.918 ± 0.032 0.910 ± 0.046 0.916 ± 0.027 0.974 0.970 0.968 0.967

Abal2

— 0.620 ± 0.148 0.633 ± 0.124 0.651 ± 0.146 0.630 ± 0.138 0.874 0.861 0.879 0.876
0.001 0.717 ± 0.069 0.709 ± 0.079 0.722 ± 0.083 0.733 ± 0.075 0.868 0.883 0.886 0.891
0.01 0.706 ± 0.084 0.720 ± 0.067 0.726 ± 0.067 0.747 ± 0.070 0.884 0.880 0.877 0.887
0.1 0.732 ± 0.064 0.733 ± 0.066 0.749 ± 0.063 0.737 ± 0.081 0.880 0.876 0.883 0.877

SPEA2 SSC

Ion

— 0.724 ± 0.157 0.767 ± 0.081 0.743 ± 0.120 0.764 ± 0.100 0.935 0.924 0.939 0.939
0.001 0.747 ± 0.173 0.767 ± 0.121 0.755 ± 0.155 0.790 ± 0.101 0.951 0.936 0.934 0.947
0.01 0.741 ± 0.172 0.765 ± 0.117 0.757 ± 0.147 0.790 ± 0.101 0.955 0.942 0.940 0.947
0.1 0.787 ± 0.106 0.782 ± 0.108 0.778 ± 0.124 0.787 ± 0.119 0.939 0.942 0.956 0.961

Spect

— 0.521 ± 0.045 0.536 ± 0.021 0.543 ± 0.028 0.533 ± 0.027 0.639 0.648 0.657 0.650
0.001 0.533 ± 0.028 0.536 ± 0.022 0.530 ± 0.035 0.536 ± 0.021 0.644 0.659 0.634 0.634
0.01 0.530 ± 0.027 0.534 ± 0.029 0.535 ± 0.023 0.538 ± 0.028 0.648 0.644 0.636 0.660
0.1 0.537 ± 0.021 0.542 ± 0.025 0.536 ± 0.034 0.533 ± 0.028 0.640 0.650 0.641 0.645

Yeast1

— 0.824 ± 0.030 0.824 ± 0.042 0.831 ± 0.020 0.828 ± 0.030 0.877 0.876 0.877 0.874
0.001 0.826 ± 0.029 0.824 ± 0.062 0.828 ± 0.025 0.833 ± 0.017 0.877 0.875 0.876 0.877
0.01 0.830 ± 0.020 0.829 ± 0.033 0.832 ± 0.021 0.832 ± 0.020 0.874 0.876 0.876 0.876
0.1 0.828 ± 0.032 0.836 ± 0.015 0.830 ± 0.028 0.836 ± 0.014 0.875 0.877 0.877 0.876

Yeast2

— 0.950 ± 0.010 0.947 ± 0.011 0.950 ± 0.010 0.951 ± 0.010 0.977 0.976 0.978 0.979
0.001 0.947 ± 0.015 0.947 ± 0.010 0.948 ± 0.011 0.948 ± 0.010 0.978 0.977 0.978 0.976
0.01 0.948 ± 0.012 0.948 ± 0.013 0.943 ± 0.022 0.950 ± 0.010 0.978 0.979 0.977 0.978
0.1 0.944 ± 0.024 0.943 ± 0.017 0.947 ± 0.010 0.945 ± 0.015 0.976 0.977 0.975 0.975

Abal1

— 0.831 ± 0.071 0.856 ± 0.088 0.822 ± 0.080 0.851 ± 0.061 0.960 0.960 0.966 0.961
0.001 0.812 ± 0.094 0.854 ± 0.082 0.836 ± 0.076 0.847 ± 0.065 0.963 0.965 0.966 0.963
0.01 0.819 ± 0.098 0.824 ± 0.106 0.841 ± 0.070 0.851 ± 0.063 0.969 0.965 0.964 0.962
0.1 0.844 ± 0.083 0.833 ± 0.088 0.853 ± 0.095 0.837 ± 0.090 0.965 0.967 0.963 0.965

Abal2

— 0.548 ± 0.120 0.500 ± 0.139 0.515 ± 0.137 0.532 ± 0.107 0.819 0.790 0.815 0.802
0.001 0.515 ± 0.135 0.518 ± 0.125 0.541 ± 0.111 0.521 ± 0.127 0.812 0.829 0.836 0.807
0.01 0.537 ± 0.105 0.500 ± 0.163 0.527 ± 0.152 0.521 ± 0.095 0.820 0.817 0.816 0.816
0.1 0.561 ± 0.111 0.556 ± 0.094 0.516 ± 0.142 0.558 ± 0.098 0.840 0.838 0.838 0.838

SPEA2 SCD

Ion

— 0.804 ± 0.100 0.785 ± 0.138 0.785 ± 0.116 0.819 ± 0.073 0.956 0.951 0.948 0.944
0.001 0.790 ± 0.093 0.786 ± 0.103 0.786 ± 0.103 0.790 ± 0.088 0.950 0.942 0.942 0.952
0.01 0.765 ± 0.156 0.803 ± 0.074 0.803 ± 0.074 0.794 ± 0.098 0.962 0.938 0.938 0.949
0.1 0.806 ± 0.110 0.794 ± 0.096 0.794 ± 0.096 0.773 ± 0.142 0.956 0.941 0.941 0.955

Spect

— 0.541 ± 0.027 0.547 ± 0.020 0.548 ± 0.023 0.533 ± 0.027 0.656 0.652 0.663 0.632
0.001 0.546 ± 0.024 0.544 ± 0.024 0.543 ± 0.026 0.540 ± 0.027 0.645 0.659 0.655 0.651
0.01 0.545 ± 0.023 0.544 ± 0.024 0.543 ± 0.026 0.540 ± 0.027 0.647 0.659 0.654 0.651
0.1 0.546 ± 0.018 0.543 ± 0.025 0.542 ± 0.025 0.541 ± 0.025 0.646 0.653 0.657 0.655

Yeast1

— 0.835 ± 0.015 0.836 ± 0.011 0.836 ± 0.014 0.837 ± 0.016 0.878 0.876 0.879 0.880
0.001 0.835 ± 0.020 0.835 ± 0.014 0.834 ± 0.014 0.836 ± 0.020 0.874 0.878 0.876 0.878
0.01 0.838 ± 0.008 0.832 ± 0.023 0.832 ± 0.017 0.836 ± 0.011 0.876 0.879 0.875 0.874
0.1 0.835 ± 0.015 0.825 ± 0.061 0.834 ± 0.023 0.835 ± 0.012 0.877 0.875 0.879 0.876

(continued on next page)
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Table 8 (continued).
LBSS Hypervolume

Average PO front

UBSS UBSS

0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

Yeast2

— 0.949 ± 0.008 0.946 ± 0.015 0.948 ± 0.009 0.948 ± 0.009 0.977 0.978 0.976 0.978
0.001 0.948 ± 0.012 0.948 ± 0.009 0.948 ± 0.009 0.947 ± 0.011 0.978 0.977 0.977 0.977
0.01 0.948 ± 0.010 0.948 ± 0.011 0.948 ± 0.011 0.948 ± 0.015 0.975 0.977 0.977 0.977
0.1 0.949 ± 0.010 0.950 ± 0.012 0.950 ± 0.012 0.945 ± 0.036 0.977 0.978 0.978 0.977

Abal1

— 0.829 ± 0.086 0.834 ± 0.072 0.840 ± 0.083 0.835 ± 0.074 0.961 0.955 0.960 0.968
0.001 0.829 ± 0.072 0.834 ± 0.069 0.834 ± 0.069 0.819 ± 0.088 0.959 0.957 0.957 0.960
0.01 0.834 ± 0.084 0.800 ± 0.078 0.800 ± 0.078 0.816 ± 0.097 0.962 0.960 0.960 0.952
0.1 0.841 ± 0.085 0.827 ± 0.071 0.827 ± 0.071 0.842 ± 0.067 0.965 0.955 0.955 0.964

Abal2

— 0.572 ± 0.111 0.577 ± 0.103 0.562 ± 0.127 0.560 ± 0.094 0.828 0.837 0.856 0.839
0.001 0.557 ± 0.094 0.578 ± 0.103 0.578 ± 0.093 0.554 ± 0.116 0.838 0.852 0.852 0.853
0.01 0.569 ± 0.117 0.576 ± 0.105 0.576 ± 0.105 0.580 ± 0.070 0.838 0.837 0.837 0.834
0.1 0.535 ± 0.128 0.567 ± 0.118 0.567 ± 0.118 0.586 ± 0.077 0.816 0.823 0.823 0.842
Table 9
Average number of distinct solutions (± std. deviation) occurring at the first front of generations 1, 10, 20, 20, 40 and 50 for canonical NSGA-II and
NSGA-II SDO methods.
Data Generation

set 1 10 20 30 40 50
mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std

NSGA-II

Ion 11.32 ± 2.3 9.98 ± 3.57 8.42 ± 3.44 8.38 ± 2.91 8.68 ± 2.95 8.28 ± 3.14
Spect 13.78 ± 2.14 21.36 ± 2.23 21.22 ± 2.09 19.84 ± 2.19 19.12 ± 2.4 17.34 ± 2.67
Yeast1 15.84 ± 2.21 40.66 ± 11.6 47.44 ± 13.19 51.72 ± 9.94 50.28 ± 8.85 46.5 ± 10.63
Yeast2 8.56 ± 1.7 15.18 ± 6.71 20.24 ± 6.87 24.34 ± 4.76 22.46 ± 4.25 20.84 ± 4.63
Abal1 8.7 ± 1.58 10.98 ± 1.8 10.56 ± 2.09 10.02 ± 1.87 9.58 ± 1.47 9.12 ± 1.77
Abal2 8.76 ± 1.51 6.68 ± 1.77 6.18 ± 1.44 5.7 ± 1.83 5.98 ± 1.73 7.08 ± 2.59

NSGA-II SDO 0.5

Ion 11.32 ± 2.3 12.86 ± 2.01 12.2 ± 2.02 11.3 ± 1.58 11.34 ± 1.93 10.16 ± 1.5
Spect 13.78 ± 2.14 21.96 ± 2.13 21.42 ± 2 20.84 ± 2.28 19.78 ± 2.12 19.2 ± 1.86
Yeast1 15.84 ± 2.21 46.24 ± 5.82 54.98 ± 4.65 54.9 ± 5.34 54.56 ± 7.1 52.3 ± 6.99
Yeast2 8.56 ± 1.7 18.48 ± 3.51 23.82 ± 2.96 25.18 ± 2.57 25.22 ± 2.94 24.4 ± 3.2
Abal1 8.7 ± 1.58 11.46 ± 1.5 11.2 ± 1.7 11.04 ± 1.28 10.42 ± 1.47 10.14 ± 1.57
Abal2 8.76 ± 1.51 13.86 ± 1.85 13.86 ± 2.89 10.88 ± 4.02 9.54 ± 4.3 9.54 ± 4.79
Table 10
Average number of distinct solutions (± std. deviation) occurring at the first front of generations 1, 10, 20, 20, 40 and 50 for canonical SPEA2 and
SPEA2 SDO methods.
Data Generation

set 1 10 20 30 40 50
mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std

SPEA2

Ion 11.32 ± 2.3 10.6 ± 3.45 9.94 ± 3.32 9.42 ± 2.89 8.78 ± 2.94 8.46 ± 2.72
Spect 13.78 ± 2.14 21.6 ± 2.93 20.88 ± 2.31 19.56 ± 2.05 18.76 ± 2.21 17.92 ± 2.35
Yeast1 15.84 ± 2.21 41.82 ± 12.01 48.42 ± 11.65 46.18 ± 14.32 46.14 ± 15 47.12 ± 11.44
Yeast2 8.56 ± 1.7 15.58 ± 5.96 21.7 ± 5.73 23.06 ± 4.65 22.32 ± 3.85 20.7 ± 5.32
Abal1 8.7 ± 1.58 11 ± 1.88 10.86 ± 1.96 10.14 ± 1.73 9.38 ± 1.87 9.08 ± 1.59
Abal2 8.76 ± 1.51 6.8 ± 2.02 6.76 ± 2.14 6.98 ± 3.08 6.9 ± 2.73 6.3 ± 2.32

SPEA2 SDO 0.5

Ion 11.32 ± 2.3 13.24 ± 2.58 12.3 ± 2.22 11.2 ± 2.17 11.02 ± 1.95 10.18 ± 1.78
Spect 13.78 ± 2.14 22.1 ± 2.31 21.44 ± 2.52 21.34 ± 2.06 20.46 ± 1.89 20.12 ± 1.85
Yeast1 15.84 ± 2.21 46.52 ± 4.83 55.52 ± 4.48 56.96 ± 5.11 55.78 ± 5.1 54.48 ± 5.64
Yeast2 8.56 ± 1.7 18.14 ± 3.34 23.94 ± 3.11 25.66 ± 2.38 25.6 ± 2.47 25.36 ± 2.88
Abal1 8.7 ± 1.58 11.28 ± 1.41 11.44 ± 1.28 10.98 ± 1.29 10.16 ± 1.61 9.92 ± 1.54
Abal2 8.76 ± 1.51 14.22 ± 1.87 13.28 ± 3.15 11.08 ± 4.52 10.5 ± 4.52 9.62 ± 4.53
s
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solutions are reported when using the Ion dataset and NSGA-II
SDO compared to NSGA-II (right column in Table 11). The same
is observed in other datasets such as the Spect and Yeast2, where
he number of duplicates for the semantic-based method is half
ompared to the NSGA-II.
When we turn our attention to Table 12, reporting the dupli-

ates when using the SPEA2 algorithm and our proposed SDO, we
an observe the same trend as before: the number of duplicates
s drastically reduced in the semantic-based method compared
 h

13
to the canonical SPEA2 in all the datasets used in this study,
except in the Yeast1 dataset, where a marginally reduction is ob-
erved for the semantic-based method going from 8.51 (canonical
PEA2) to 6.52. It is important to note that our proposed SDO
educes the number of duplicates thanks to its mechanism to
romote diversity through the use of another objective to be op-
imised, rather than having an explicit mechanism, for example,
o penalise individuals already present in the population with the

ope to eliminate this undesired effect during evolution.
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Table 11
Average number of duplicates (± std. deviation) occurring at the first Pareto front of generations 1, 10, 20, 20, 40 and 50 for canonical NSGA-II and
NSGA-II SDO methods.
Data Generation

set 1 10 20 30 40 50
mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std

NSGA-II

Ion 1.73 ± 2.75 29.49 ± 104.89 37.08 ± 117.41 36.18 ± 113.71 35.36 ± 106.18 43.58 ± 114.89
Spect 1.10 ± 0.55 2.51 ± 3.53 4.31 ± 10.14 7.09 ± 20.36 11.30 ± 34.19 15.11 ± 44.10
Yeast1 2.00 ± 3.72 5.09 ± 32.11 6.07 ± 31.44 6.73 ± 23.29 8.47 ± 26.10 9.77 ± 31.91
Yeast2 3.03 ± 5.67 12.49 ± 68.64 6.88 ± 37.38 8.62 ± 31.64 14.65 ± 48.69 19.27 ± 61.88
Abal1 1.15 ± 0.46 12.23 ± 56.19 25.61 ± 78.06 33.68 ± 88.88 43.86 ± 106.38 46.55 ± 111.15
Abal2 5.39 ± 12.21 74.85 ± 174.41 79.33 ± 180.00 87.72 ± 187.83 80.33 ± 181.22 64.54 ± 164.32

NSGA-II SDO 0.5

Ion 1.73 ± 2.75 5.70 ± 25.70 6.53 ± 33.30 9.13 ± 36.99 10.40 ± 37.92 11.49 ± 40.81
Spect 1.10 ± 0.55 2.33 ± 2.64 3.47 ± 5.48 5.24 ± 11.63 6.59 ± 12.26 7.53 ± 14.85
Yeast1 2.00 ± 3.72 2.29 ± 3.56 3.30 ± 5.37 4.70 ± 12.37 5.86 ± 16.10 6.89 ± 19.75
Yeast2 3.03 ± 5.67 2.07 ± 3.32 3.35 ± 9.78 5.45 ± 17.62 8.12 ± 23.76 10.98 ± 27.64
Abal1 1.15 ± 0.46 4.46 ± 14.61 8.73 ± 36.10 13.59 ± 39.66 23.00 ± 59.09 29.88 ± 74.32
Abal2 5.39 ± 12.21 9.87 ± 39.35 19.20 ± 78.21 34.11 ± 114.74 39.46 ± 123.19 39.61 ± 120.37
Table 12
Average number of duplicates (± std. deviation) occurring at the first Pareto front of generations 1, 10, 20, 20, 40 and 50 for canonical SPEA2 and
SPEA2 SDO methods.
Data Generation

set 1 10 20 30 40 50
mean ± std mean ± std mean ± std mean ± std mean ± std mean ± std

SPEA2

Ion 1.73 ± 2.75 24.26 ± 90.64 28.76 ± 92.82 33.69 ± 101.81 38.58 ± 109.38 42.00 ± 109.99
Spect 1.10 ± 0.55 2.23 ± 2.84 4.14 ± 8.53 7.13 ± 25.50 10.93 ± 35.49 17.01 ± 46.47
Yeast1 2.00 ± 3.72 5.13 ± 32.33 6.31 ± 30.91 8.29 ± 37.45 8.69 ± 32.28 8.51 ± 27.74
Yeast2 3.03 ± 5.67 8.24 ± 54.33 6.07 ± 29.75 11.18 ± 41.72 16.48 ± 54.99 19.68 ± 64.16
Abal1 1.15 ± 0.46 9.39 ± 45.68 16.60 ± 67.21 35.25 ± 93.86 46.58 ± 110.93 48.44 ± 116.32
Abal2 5.39 ± 12.21 72.51 ± 172.07 68.04 ± 167.64 68.05 ± 167.39 70.25 ± 169.38 76.40 ± 176.26

SPEA2 SDO 0.5

Ion 1.73 ± 2.75 4.60 ± 20.22 8.21 ± 29.47 10.38 ± 38.35 13.95 ± 48.19 15.54 ± 53.57
Spect 1.10 ± 0.55 2.10 ± 2.26 3.33 ± 4.11 4.64 ± 6.97 5.85 ± 8.66 7.25 ± 10.74
Yeast1 2.00 ± 3.72 2.17 ± 3.16 3.32 ± 5.09 4.79 ± 11.62 5.21 ± 10.52 6.52 ± 16.93
Yeast2 3.03 ± 5.67 2.34 ± 6.28 2.91 ± 4.72 4.32 ± 6.68 6.68 ± 15.05 8.01 ± 17.53
Abal1 1.15 ± 0.46 4.43 ± 15.34 8.32 ± 28.41 14.34 ± 42.79 20.03 ± 52.82 27.40 ± 71.82
Abal2 5.39 ± 12.21 9.24 ± 33.99 24.37 ± 93.08 33.17 ± 111.46 37.14 ± 118.02 41.74 ± 125.53
There is one more element worth noting from Tables 11 and
2, which is the standard deviation of duplicated solutions. The
tandard deviation is notably large when compared to its re-
pective mean, however, again these standard deviations drop
ignificantly for the semantic method compared to the canonical
ethod. These comparatively large standard deviations suggest

hat while the number of distinct individuals that experience
arge levels of duplication in the population is somewhat low,
here may be a small subset of individuals which experience a
evel of duplication on an order of magnitude greater than the
est of the population. There are further ramifications of having
uch large standard deviations in duplication size, which will
e discussed in greater detail when further analysing the plots
epicted in Figs. 5, 6, 7 and 8.
To explain how the semantic distance-based method is pro-

oting diversity we will briefly return to some of the core func-
ionality of the EMO framework. NSGA-II and SPEA2 are partial
rdering methods, that is that when the new population is being
ormulated, the new population is filled with individuals from
he entire approximated fronts first (that is the full Pareto front
f a given dominance rank) and subsequently the remainder of
he population is filled based on either the crowding distance
peration, in the case of canonical methods, or by the semantic
rowding-distance for the semantic distance-based methods. An
mportant aspect of this mechanism is that the population size
s fixed, therefore removing duplication from the lower domi-
ance rank Pareto fronts allows more individuals from the higher
14
ranked Pareto fronts to be retained in the population at each
generation. This in turn leads to a greater spread in the available
genetic material for the algorithm to work with, thus promoting
diversity. Furthermore, since the pivot is attracting more unique
solutions to the first front, this in combination with the decreased
duplication of solutions lead to greater overall performance in the
semantic distance-based approach. Figs. 5 and 6 show solutions
from the first approximated Pareto front for NSGA-II and NSGA-II
SDO, for the Ion, Spect and Yeast1 datasets and for the Yeast2,
Abal1 and Abal2 datasets, respectively, and likewise, Figs. 7 and
8 for SPEA2 and SPEA 2 SDO, respectively, show solutions from
the first approximated Pareto front for generations 1, 10, 20, 30,
40 and 50, represented with different coloured hollow circles.
All plots represent results from a single seeded run, chosen at
random, in order to avoid a biased analysis of the results. The
left-hand column and right-hand column of Figs. 5 to 8 show
the results of the canonical EMO method and the SDO method,
respectively.

The marker size represents the number of candidate solutions
found at a particular location in the objective space and thus is
an indication of the frequency of duplication. Since the results
are for a single run there is some variability when compared to
our analysis of Tables 9–12, as these results are based on the
average across 50 independent runs, but in general they tend
to conform. In particular Yeast2 and Abal1 demonstrate clearly
the increase in duplication, with markers of much greater area
being observed in the EMO canonical methods. The Ion and Abal
2
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Fig. 5. Duplicate frequency of individuals at first Pareto front for Ion, Spect and Yeast1 dataset for generation 1, 10, 20, 30, 40 and 50 for NSGA-II and NSGA-II SDO
for a single run.
datasets for NSGA-II and Abal2 dataset for NSGA-II SDO exhibit
rather unusual behaviours in terms of the evolution of their
respective approximated Pareto fronts. It would be expected that
fronts of subsequent generations ought to move towards and
ideal region of maximisation, i.e closer to point [1,1], as clearly
observed with Spect data. In other words, the expected behaviour
is that generation 50 (black hollow circle) is closer to [1,1] as
opposed to generation 1 (purple hollow circle) being closer to
[1,1], however the is not the case in with the aforementioned
datasets. This can again be explained by the duplication of re-
sults. In Fig. 5 for the Ion dataset NSGA-II method (top left),
the point at [1,0] has a large number of duplicates with 472
solutions at this location, as shown in the plot. However, the total
population size is set at 500. Therefore as a result of the large
duplication occurring at this point preferable solutions are being
‘pushed’ out of the solution set as the first front is exceeding the
population size. This causes the approximate front to gradually
recede and leads to a decrease in performance. This behaviour
15
can be implicitly understood from the standard deviation of the
duplicates Tables 11 and 12. In particular, both Ion, Abal1 and
Abal2 have standard deviations greater than 100 for both NSGA-
II and SPEA2. Since the semantic distance-based methods reduce
the overall duplication and better promote individuals to the first
approximated Pareto front this issue is not as readily observed for
these methods but does still occur. For instance, if we look at the
semantic approach for Ion NSGA-II SDO (top-right of Fig. 5) we
see that point [0.93, 0.72] grows to a total number of duplicates
of 341 (as shown in the plot) at that location for generation
40 but by generation 50 all of these points have been removed
as more recently created candidate solutions now dominate this
point. Abal2 was the only one notable dataset for the semantic
method that failed to tackle this issue adequately (bottom row in
Figs. 6 and 8). Even though Abal2 saw a drop in the duplication
averages and standard deviation from the canonical to semantic
methods, the poorer performance of Abal can be attributed to
2
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Fig. 6. Duplicate frequency of individuals at first Pareto front for Yeast2 , Abal1 and Abal2 dataset for generation 1, 10, 20, 30, 40 and 50 for NSGA-II and NSGA-II
DO for a single run.
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he relatively large standard deviation in duplication average still
resent (Tables 11 and 12).

.4. Size of GP solutions

Bloat, increase in average tree size without a corresponding
ncrease in performance, is a phenomenon commonly observed
n GP variable length representations, such as the one used in
his study. Fig. 9 shows the average number of nodes per run for
ach one of the 50 independent runs for each dataset and for each
pproach used in this work, including NSGA-II and SPEA2, shown
n the left and in the right of Fig. 9, respectively, including their
emantic-based variants, setting UBSS = 0.5 for each of these three
ariants (SDO, SSC and SCD).
We have grouped, for each of the six datasets used in this work

see Table 1), the average number of nodes evaluated by either
SGA-II/SPEA2, SDO, SSC or SCD. From Fig. 9, it is easy to observe
hat when we compare the semantic-based approaches (last three
 t

16
ox-plots, from left to right, for each of the six datasets groups)
ither using NSGA-II (left) or SPEA (right), SDO (second box-plot,
rom left to right) tends to evaluate more nodes, hence larger
rees, compared to the other two semantic-based approaches (last
wo box-plots for each of these six groups) as well as their EMO
ounterparts (first box-plot for each of these groups). This is
articularly visible in the Abal2 dataset.
When we compare the number of nodes evaluated by SDO vs.

SGA-II or SPEA2, left and right of Fig. 9, respectively, we can
ee that SDO does not evaluate many more nodes compared to
he two canonical EMO approaches when using the Ion, Spect
nd Yeast2 datasets. From this analysis, it is interesting to note
hat there is a tendency to get a better Pareto front when more
odes are evaluated. For example, see in Fig. 4, how the Pareto
ront by the SDO approach is better compared to the other three
pproaches in the Abal2 dataset (right-hand side of the figure).
DO evaluates significantly more nodes compared to the other
hree approaches in this dataset (see right-hand side of Fig. 9).
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a

Fig. 7. Duplicate frequency of individuals at first Pareto front for Ion, Spect and Yeast1 dataset for generation 1, 10, 20, 30, 40 and 50 for SPEA2 and SPEA2 SDO for
single run.
The same tendency is observed when using the Abal1 dataset.
SDO evaluates more nodes compared to NSGA-II (left of Fig. 9)
and achieves a better Pareto front (see middle-top of Fig. 4).
This analysis suggests that evaluating more nodes leads to better
results in the objective space, which means this additional code
growth should not be characterised as bloat.

7. Limitation of semantic-based distance as an additional cri-
terion

7.1. Using MOEA/D

To highlight some of the limitations of the SDO approach we
also look at a decomposition approach known as Multi-Objective
Evolutionary Algorithm with Decomposition (MOEA/D) [9] . With
MOEA/D we decompose the optimisation problem into a set of
scalar optimisation problems. A scalar optimisation function g ,
17
along with a uniform distribution of weight vectors λi are used
to define each sub-problem. It is important to note that each
sub-problem relies only on neighbouring sub-problems for evo-
lution, that is crossover, mutation and selection only occur for
individuals within a given neighbourhood. In the original MOEA/D
approach, three aggregation approaches are discussed, namely
the Weighted sum, Tchebycheff and Penalty-based Boundary In-
tersection (PBI) approach. To demonstrate that our approach is
best suited to Pareto dominance-based approaches, we use one of
these three MOEA/D methods. As such, the Tchebycheff approach
was selected as (i) it does not require any additional parameters,
unlike the PBI approach and (ii) since it performed better than
the Weighted Sum approach in baseline tests.

The scalar optimisation of the Tchebycheff approach g tch is
given by Eq. (7)

min(g tch(x|λ)) = max {λ|fj(x)− zj|} (7)

1≤j≤m
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f

Fig. 8. Duplicate frequency of individuals at first Pareto front for Yeast2 , Abal1 and Abal2 dataset for generation 1, 10, 20, 30, 40 and 50 for SPEA2 and SPEA2 SDO
or a single run.
Fig. 9. Average size of GP individuals, computed by using the entire population per generation for each independent run, using NSGA-II (left) and SPEA2 (right) and
their corresponding semantic-based variants (SDO, SSC and SCD, setting UBSS = 0.5).
18
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Table 13
Average (± standard deviation) hypervolume of evolved Pareto-
approximated fronts and PO fronts for MOEA/D over 50
independent runs.
Dataset MOEA/D

Hypervolume

Average PO front

Ion 0.823 ± 0.031 0.932
Spect 0.537 ± 0.024 0.652
Yeast1 0.837 ± 0.008 0.877
Yeast2 0.945 ± 0.013 0.978
Abal1 0.808 ± 0.097 0.959
Abal2 0.602 ± 0.100 0.798

where j = {1, 2...m} are the dimensions of the objective space, fj
s the objective function and zj is the ideal point representing the
est objective function value found in the population so far for
he jth objective. For a more detailed step through of the method,
he original paper by Zhang et al. [9] describes the algorithm in
etail.
Only one additional step is required for implementing the

DO approach in MOEA/D. The inclusion of this step can occur
t any stage prior to implementing the aggregation and selection
rocess but after mutation and crossover operations have been
erformed. Since, the dominance relation is not naturally used in
he MOEA/D algorithm, we instead create a dummy population.
hat is, the child and offspring populations are joined together
nd the pivot is derived from this joint population as is the case of
he framework used in our NSGA-II and SPEA2 approaches. Once
he semantic distances have been calculated, this joint population
s discarded and the MOEA/D algorithm works as expected.

.2. Results for SDO in MOEA/D

As was the case in Section 6.2, the average and accumulated
ypervolumes are calculated for each of the six datasets (see Ta-
le 1) and have been produce in Table 14. A fixed neighbourhood
ize of 20 was used for all experiments. As before the Friedman
est is used to test the null hypothesis that the median perfor-
ance of all groups in the same block are the same. We reject the
ull hypothesis at the α = 0.01 significance level, concluding that
he median performance for all groups differs. When we perform
ultiple comparisons against the baseline results (using MOEA/D
nly), from Table 13, and each of the SDO configurations, from
able 14, we found that the baseline method outperformed the
DO method, for most datasets, except for the Abal2.
In Table 14 when looking at the average and accumulated

ypervolumes, barring Abal2, we can see that none of the datasets
erform better than their respective canonical results, shown in
able 13. In fact, it was found that for these datasets the canonical
pproach performed better. The results for Abal2, highlighted in
oldface, are performing better for all UBSS and LBSS values. The
eemingly conflicting results are due to the high level of variance
n the canonical results, where the standard deviation is ± 0.100.
This unexplained variance is accounted for in the Friedman test.

In order to understand why MOEA/D fails to produce similar
results to NSGA-II and SPEA2 when using SDO, it is important to
highlight how these algorithms differ in terms of searching for
solutions in objective space. Both NSGA-II and SPEA2 rely on the
dominance relationship to sort preferential solutions to be re-
tained, MOEA/D instead decomposes the multi-objective problem
into sub-problems and each sub-problem is assigned a weight
vector which represents a specific direction or location for that
particular sub-problem to be optimised to. The weight vectors are
typically initialised so that they are evenly distributed, with the
ultimate aim of producing a representative spread of solutions
19
in objective space. Fig. 10 illustrates the distinction between
decomposition (left-hand side diagram) and Pareto dominance
(right-hand side diagram) based approaches. Both diagrams have
three numbered regions separated by a dashed line. Region 1
represents the initially randomised solutions, Region 2 represents
the solutions midway through optimisation and Region 3 repre-
sents solutions towards the end of the optimisation process when
maximising a potential solution.

On the left diagram, solutions have been colour coded to
highlight how they optimise towards particular localities in the
objective space. For simplicity sake only 3 neighbourhoods have
been represented and we will assume these three neighbour-
hoods are from a subset of a much larger set of neighbourhoods
such that none of the individuals in each neighbourhood overlap.
Each neighbourhood has been colour coded with blue, yellow and
red circles. Even though the solutions are initially mixed in objec-
tive space (left diagram, Region 1), as the optimisation progresses,
newly produced offspring will converge towards their respective
locations in objective space based on the initial weighting (left
diagram, Region 2). In the final stages, the offspring will likely
converge on a single point, leading to duplication of solutions (left
diagram, Region 3).

In the Pareto dominance approach (right diagram, Region 1),
the selection process is determined by the dominance relation.
For simplicity sake only non-dominated solutions with domi-
nance Rank 0 have been highlighted (purple circle) along with
the dominated solutions with dominance rank greater than 0
(orange circle). Under the assumption that diversity is actively
being promoted, as the optimisation progresses, the solutions will
become more evenly spread with the dominated solutions reduc-
ing over time and subsequently more non-dominated solutions
being assigned within the population (right diagram, Regions 2
and 3).

This illustrated behaviour allows for an intuitive distinction
between the search mechanism in the Pareto dominance-based
algorithms and the decomposition algorithm. In the Pareto
dominance-based approach new solutions are free to occupy any
location in the objective space as long as they satisfy the domi-
nance relationship and crowding distance criteria, and therefore
these algorithms search the objective space globally. However
in the MOEA/D algorithm, search is localised, for a given sub-
problem in conjunction with its weights and once the algo-
rithm converges the diversity of solutions are constrained by the
initialised weights.

Given that the pivot behaves as a point of semantic attraction,
it is possible to show how this is problematic: the semantic
relationship between individuals in a specific neighbourhood and
the pivot may not provide beneficial updates as the selection
process is determined by the aggregation function, which behaves
as a localised search mechanism when the neighbourhood size
is small relative to these overall population size. In other words,
assuming the neighbourhood is far away from the pivot, the
direction a particular sub-problem in objective space is being op-
timised to, will likely not correspond to the direction of attraction
in semantic space and as such the aggregation function negates
any benefit from drawing a semantic relationship to the pivot. To
get an intuitive understanding of this, if we look at left diagram
of Fig. 10, we can see that if the pivot (green triangle) is always
selected in the bottom left neighbourhood (red circles), then it
will not be possible to draw individuals to this neighbourhood
from the other neighbourhoods (blue and yellow circles) and
subsequently using the semantic relationship between the pivot
and these individuals is redundant. Furthermore, as the algorithm
converges, the number of duplicates in each neighbourhood in-
crease significantly meaning the semantic distance will be the

same for all individuals in a particular neighbourhood.
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Table 14
Average (± standard deviation) hypervolume of evolved Pareto-approximated fronts and PO fronts for the MOEA/D semantic-based method for SDO
with over 50 independent runs. Bold indicates better performance compared to the baseline MOEA/D results reported in Table 13.

LBSS Hypervolume

Average PO front

UBSS UBSS

0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

MOEA/D SDO

Ion

— 0.689 ± 0.039 0.702 ± 0.038 0.708 ± 0.032 0.691 ± 0.030 0.848 0.847 0.850 0.850
0.001 0.753 ± 0.032 0.738 ± 0.038 0.727 ± 0.033 0.729 ± 0.031 0.885 0.879 0.866 0.860
0.01 0.747 ± 0.039 0.725 ± 0.035 0.735 ± 0.036 0.727 ± 0.031 0.906 0.880 0.872 0.859
0.1 0.749 ± 0.033 0.749 ± 0.035 0.734 ± 0.033 0.734 ± 0.032 0.885 0.892 0.865 0.869

Spect

— 0.472 ± 0.028 0.474 ± 0.027 0.474 ± 0.024 0.473 ± 0.024 0.601 0.604 0.599 0.585
0.001 0.439 ± 0.047 0.441 ± 0.038 0.461 ± 0.040 0.458 ± 0.030 0.597 0.589 0.612 0.575
0.01 0.456 ± 0.040 0.436 ± 0.050 0.447 ± 0.037 0.447 ± 0.035 0.588 0.582 0.611 0.609
0.1 0.451 ± 0.051 0.444 ± 0.043 0.453 ± 0.033 0.449 ± 0.028 0.603 0.588 0.606 0.578

Yeast1

— 0.748 ± 0.036 0.743 ± 0.037 0.746 ± 0.030 0.749 ± 0.032 0.848 0.845 0.846 0.843
0.001 0.764 ± 0.030 0.767 ± 0.035 0.776 ± 0.028 0.781 ± 0.027 0.850 0.848 0.850 0.852
0.01 0.755 ± 0.040 0.765 ± 0.034 0.764 ± 0.028 0.768 ± 0.031 0.847 0.847 0.848 0.849
0.1 0.758 ± 0.032 0.754 ± 0.041 0.743 ± 0.037 0.755 ± 0.037 0.846 0.846 0.840 0.844

Yeast2

— 0.833 ± 0.075 0.846 ± 0.064 0.825 ± 0.067 0.825 ± 0.060 0.968 0.959 0.958 0.956
0.001 0.772 ± 0.092 0.800 ± 0.080 0.833 ± 0.077 0.859 ± 0.075 0.960 0.959 0.968 0.969
0.01 0.778 ± 0.091 0.771 ± 0.073 0.794 ± 0.087 0.801 ± 0.083 0.957 0.952 0.963 0.960
0.1 0.770 ± 0.083 0.778 ± 0.081 0.755 ± 0.086 0.766 ± 0.076 0.950 0.948 0.953 0.953

Abal1

— 0.705 ± 0.087 0.707 ± 0.099 0.700 ± 0.100 0.698 ± 0.110 0.938 0.927 0.932 0.941
0.001 0.719 ± 0.072 0.736 ± 0.089 0.765 ± 0.068 0.794 ± 0.066 0.920 0.928 0.931 0.944
0.01 0.678 ± 0.078 0.722 ± 0.073 0.738 ± 0.076 0.769 ± 0.068 0.882 0.908 0.899 0.936
0.1 0.678 ± 0.086 0.672 ± 0.086 0.692 ± 0.066 0.720 ± 0.080 0.898 0.894 0.884 0.895

Abal2

— 0.672 ± 0.061 0.665 ± 0.046 0.666 ± 0.053 0.658 ± 0.075 0.844 0.840 0.836 0.851
0.001 0.666 ± 0.042 0.660 ± 0.041 0.676 ± 0.043 0.676 ± 0.034 0.851 0.829 0.852 0.838
0.01 0.666 ± 0.035 0.664 ± 0.035 0.676 ± 0.044 0.663 ± 0.039 0.846 0.834 0.849 0.815
0.1 0.672 ± 0.046 0.661 ± 0.036 0.652 ± 0.040 0.656 ± 0.046 0.850 0.831 0.830 0.828
Fig. 10. Diagram illustrating search behaviour for decomposition and Pareto dominance based approaches when maximising a solution. Numbers 1., 2. and 3. denote
typical spread of solutions in objective space at initial, intermediate and latter generations respectively. The green triangle represents a typical pivot selection.
While each individual sub-problem engages in a localised
search of the objective space, when we consider all sub problems
in unison MOEA/D is effectively searching globally. The real issue
arises from the trade-off of exploitation versus exploration when
selecting the neighbourhood size relative to the population size
and specifically its incompatibility when using a pivot in this
manner. Selecting a neighbourhood size of 20 was required in
the baseline models to garner reasonable results and when we
compare Tables 6 (results using NSGA-II and SPEA2) and Table 13
(results using MOEA/D), we can see these results are compara-
tively similar. If we increased the neighbourhood size so that it
was substantially larger, this would likely improve exploration
and make the pivot mechanism more effective, however, doing
so would come at the cost of the exploitative aspects of the
algorithm. It is however important to note, that using semantic
distance can still be useful in decomposition approaches when
we operate internally within the neighbourhood structure. In
20
our previous research we integrated a semantic distance based
approach that semantically orders solutions prior to the selection
process [41]. This method reduced duplication, as well as showing
some promising results when the feasible search space were
discontinuous or jagged.

8. Conclusions

This work proposes a new approach, named Semantic-based
Distance as an additional criteriOn (SDO), which consists of using
semantic distance values as another criterion to optimise and
preferences solutions that are semantically attracted to the spars-
est region of the first approximated Pareto front. We also use
this distance in lieu of the crowding distance at the heart of the
aforementioned EMO algorithm. Results for the new approach
were tested against the canonical frameworks of NSGA-II and
SPEA2 and additionally two semantic-based methods were use
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s baselines, namely Semantic Similarity-based Crossover and
emantic-based Crowding Distance. It was found that SDO pro-
uced significantly better results when compared against each of
hese methods in terms of the hypervolume metric.

Our analysis shows that the SDO method produces more
nique individuals compared to the other methods. A comparison
f the first approximated Pareto fronts at specific generations
howed that SDO not only attracts new individuals to the sparsest
egions of the front but also reduces the amount of duplication,
hus improving diversity.
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