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A B S T R A C T   

Direct application of pig slurry to agricultural land, as a means of nutrient recycling, introduces pathogens, 
antibiotic resistant bacteria, or genes, to the environment. With global environmental sustainability policies 
mandating a reduction in synthetic fertilisation and a commitment to a circular economy it is imperative to find 
effective on-farm treatments of slurry that maximises its fertilisation value and minimises risk to health and the 
environment. We assessed and compared the effect of storage, composting, and anaerobic digestion (AD) on pig 
slurry microbiome, resistome and nutrient content. Shotgun metagenomic sequencing and HT-qPCR arrays were 
implemented to understand the dynamics across the treatments. Our results identified that each treatment 
methods have advantages and disadvantages in removal pollutants or increasing nutrients. The data suggests that 
storage and composting are optimal for the removal of human pathogens and anaerobic digestion for the 
reduction in antibiotic resistance (AMR) genes and mobile genetic elements. The nitrogen content is increased in 
storage and AD, while reduced in composting. Thus, depending on the requirement for increased or reduced 
nitrogen the optimum treatment varies. Combining the results indicates that composting provides the greatest 
gain by reducing risk to human health and the environment. Network analysis revealed reducing Proteobacteria 
and Bacteroidetes while increasing Firmicutes will reduce the AMR content. KEGG analysis identified no sig-
nificant change in the pathways across all treatments. This novel study provides a data driven decision tree to 
determine the optimal treatment for best practice to minimise pathogen, AMR and excess or increasing nutrient 
transfer from slurry to environment.   

1. Introduction 

Antibiotic use in human and veterinary medicine plays a key role in 
antibiotic resistance (AMR) dissemination. In 2015 the World Health 
Organisation released their Global Action Plan on AMR to tackle the 
AMR crisis in both human and animal health. The European Medicines 
Agency encourages the careful use of antibiotics in humans and animals 
and started a programme to collate data concerning antibiotic use. 
Globally, tetracyclines, penicillins and macrolides are the most 
commonly utilised antibiotics in pig production (Lekagul et al., 2019). 
The presence of antibiotics at very low concentrations (up to several 

hundred-fold less than the breakpoint concentrations for pathogens) can 
select for antibiotic resistance (Gullberg et al., 2011). The antibiotic 
resistance genes (ARGs) present on mobile genetic elements (MGEs) in 
antibiotic resistant bacteria (ARB) can be transferred to antibiotic sus-
ceptible bacteria within a wide range of biomes (Rasschaert et al., 2020). 

The use of animal slurry as organic fertilisers has been shown to 
impact the soil microbial communities and be the main factor shaping 
the antibiotic resistome therein (Jechalke et al., 2014; Udikovic-Kolic 
et al., 2014). According to the One Health concept, environmental bi-
omes connect with human and animal biomes, thus the ARB and ARGs in 
slurry can transmit to humans and animals and transfer to 
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environmental niches when slurry used as soil fertilisers. High abun-
dances and diversities of ARGs have been detected in pig slurry 
(Zalewska et al., 2021). The application of pig slurry may result in 
serious environmental issues such as the risk of introducing pathogens, 
ARB, and ARGs to the soil, crop, and increased nutrients such as nitrogen 
in water sources (Peu et al., 2006; Rasschaert et al., 2020; Zhu, 2000). 
Slurry treatment methods such as composting, anaerobic digestion (AD) 
and storage have been used to reduce the antibiotic residues, ARB, and 
ARGs in slurry before application to soil as organic fertilisers (Li et al., 
2020; Tran et al., 2021; Zhou et al., 2019). The microbial community 
dynamics and the fate of ARGs were strongly associated with the initial 
inoculum in the treatment materials and different conditions set up 
during compost, AD, or storage treatment processes (Cao et al., 2020; 
Hwang et al., 2016; Lim et al., 2018; Selvam et al., 2012; Zhi et al., 
2021). 

Previous studies of microbiota and resistome changes in pig slurry 
were explored either within one treatment method, within modified 
treatment conditions or without any treatments. However, a compara-
tive study across different treatment methods of the same initial slurry 
has not been previously undertaken. Here, we present the first study 
globally comparing the impact of three treatments (storage, compost, 
and AD) of pig slurry on the microbial community dynamics and resis-
tome. We hypothesised that different treatments applied to pig slurry 
would result in the substantial changes in the human pathogen content, 
resistome, microbial community composition, functional pathways, and 
nutrient content in pig slurry. We used a combination approach of 
-omics and molecular biology techniques (shotgun metagenomic 
sequencing and HT-qPCR arrays) to explore and compare the effect of 
storage, compost, and AD treatments on the dynamics of microbial 
community composition, functional and metabolic pathways, and 
resistance gene profiles of the same initial pig slurry. Correlation anal-
ysis was applied to identify the links within microbial communities, 
between the microbial taxa, functional pathways, and resistance genes 
in slurry samples. We aimed to identify the most applicable and effective 
treatment currently available to farmers to reduce AMR transmission 
and minimise the onward risk to the environment, animals, and humans. 
Based on the data generated we aimed to also provide a matrix decision 
tree to determine the optimum treatment depending on the most sig-
nificant problem to be addressed or by addressing a combination of all 
problems, but with the chance of compromise increasing with each 
additional problem tackled. 

2. Materials and methods 

The pig slurry samples were collected from a commercial pig farm in 
Ireland in agreement with the farm owner. The history of antibiotic use 
in the farm was provided by the farm owner. The samples were subjected 
to three treatments, storage for 4 months, compost for 8 weeks, and AD 
for 90 days. Six potential pathogens (E. coli, Klebsiella spp., Acinetobacter 
spp., Pseudomonas spp., Enterococcus spp., and Staphylococcus spp) were 
enumerated from samples collected every two weeks during all treat-
ments. The dry matter, organic matter, and nutrient analysis was carried 
on samples prior to treatment and products of each treatment. 

The total genomic DNA extracted from collected samples were sent 
for metagenomic sequencing and HT-qPCR for further analysis of the 
microbiome and resistome. Details of microbiological and molecular 
biology testing, and data analysis are available in Supplementary 
information. 

3. Results and discussions 

3.1. Microbial analysis of pig slurry during different treatments 

In this study, E. coli, Klebsiella spp., Acinetobacter spp., Pseudomonas 
spp., Enterococcus spp., and Staphylococcus spp. were detected in the pig 
slurry prior to treatment and a reduction in abundance was observed in 

all treatments over the experimental period, to varying extents (Fig. 1). 
Previous works detected major food-borne pathogens such as Campylo-
bacter, Salmonella, and Listeria in pig slurry by culture-based techniques 
(Farzan et al., 2010; Mieszkin et al., 2009; Peu et al., 2006). In addition 
to analysis of faecal indicators, we also enumerated other critically 
important pathogens which pose risks to human and animal health 
(Acinetobacter, Klebsiella, Pseudomonas, and Staphylococcus). To the best 
of our knowledge the enumeration of these bacteria has not been pre-
viously reported in pig slurry under different treatments. 

Enterococcus spp. were the only bacterial species to persist to the final 
timepoints during storage and compost treatment. Acinetobacter spp., 
Staphylococcus spp., and Klebsiella spp. were detected in storage samples 
collected until week 12, while E. coli was detected until week 10, and 
Pseudomonas spp. was detected in all samples until week 8 (Fig. 1a). The 
significant decrease of faecal indicator bacteria (enterococci and E. coli) 
during storage was observed during the storage of pig slurry previously 
(between storage tank and the pond, and in batch studies) (Munch et al., 
1987; Olsen, 1988; Peu et al., 2006). Storing waste in general reduced 
the abundance of enteric bacteria and could also significantly alter the 
compositions of enteric bacterial populations (Duriez and Topp, 2007). 

Among compost samples, Klebsiella spp., Acinetobacter spp., Pseudo-
monas spp., and Staphylococcus spp. were all absent in the week 6 sam-
ple. E. coli was detected in the week 2 sample only (Fig. 1c). Most 
bacterial pathogens analysed were not detected at week 6 of compost 
except for Enterococcus spp. Microbial analysis of compost at different 
time points in the work of McCarthy et al. (2011) showed that E. coli 
decreased below the limit of detection by day 14 and remained under 
detection limits until day 56, while enterococci were found to day 28 
and below the limit of detection by day 56 (Mc Carthy et al., 2011). In 
the compost procedure, temperature plays an important role in the 
product sanitation to ensure it is generally regarded as safe to use 
(Malińska et al., 2014). The temperature in all compost treatment rep-
licates was above 50 ◦C for more than 10 consecutive days, indicating a 
thermophilic phase. In this phase, the thermophilic microorganisms take 
part in the degradation of complex compounds such as cellulose, lignin, 
and fats (Bernal et al., 2009). 

The AD treatment led to a rapid (week 1), substantial initial reduc-
tion of all analysed bacterial species in pig slurry, compared to the 
control samples. However, unlike in the storage and compost treat-
ments, the six bacterial pathogens were present in all samples collected 
during AD treatment, including the final timepoint at week 16, meaning 
that the AD treatment had the highest putative pathogen load of all 
treatments post treatment. There was little reduction in the cfu/g of each 
pathogen in the AD samples from week 1 to week 16 (Fig. 1b). At week 
16 there was a minimum of 103 cfu/g of each pathogenic species 
detected in the samples. Few bacterial colonies were detected on se-
lective agars that were supplemented with antibiotics, indicating a low 
level of AMR in the species tested present in the slurry initially and 
throughout the treatments. AD treatment has been reported to result in 
significant reductions of bacteria counts including coliforms (Costa 
et al., 2017). 

Our results showed the reduction in bacterial counts in all treat-
ments, which agreed with previous findings for faecal indicators and 
food-borne pathogens (Costa et al., 2017; Demirel and Scherer, 2008; 
Mc Carthy et al., 2011; Olsen, 1988; Zhu, 2000). The greater reduction 
of enumerated bacteria was found in storage and compost samples 
compared with AD samples, considering the bacterial counts in control 
and in the final treated products in our work. It was also noted that the 
levels of AMR in the bacteria tested were extremely low in all sample 
types, indicating that the detected potential pathogenic species were 
antibiotic susceptible. 

3.2. Microbial composition changes due to treatments 

Previous studies on pig manure treatment mainly focused on ana-
lysing the microbial communities under one treatment, such as different 
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storage conditions (Lim et al., 2018) or using different raw material 
contents, or at different stages of AD or composting procedures (Demirel 
and Scherer, 2008; Liu et al., 2020; Partanen et al., 2010; Ros et al., 
2017). Here, we presented a first study investigating the dynamics of 
microbial communities during different treatments (storage, compost-
ing, and AD) on the same pig slurry. A major expectation of this study 
was to compare the microbial response across all treatments to address 
the efficiency and molecular basis behind the result of each treatment 
process. 

After quality trimming and assembling, 40.34–78.44% of the meta-
genomic sequencing reads could be assigned to Bacteria, Archaea, Virus 
and other unclassified organisms with Kaiju (Table S1). The composition 
of microbial communities was assessed at the phylum level for all 
samples (Fig. 2a). The three phyla Firmicutes, Bacteroidetes, and Pro-
teobacteria, were dominant in all samples. These phyla were the most 
abundant in the gut microbiome of pigs (Tang et al., 2020; Wang et al., 
2019a). The phylum Firmicutes was the most abundant phylum among 
control (30.67%–55.75%), and storage (30.62%–38.8%) samples, fol-
lowed by Bacteroidetes (from 19.72% to 53.56% across control and 
storage samples), Proteobacteria (5.07%–67.25%), and Actinobacteria 
(2.2%–8.3%) (Data S1). The dominance of these phyla detected during 
storage was reported previously (Kumar et al., 2020). In AD samples, 
Firmicutes was the most abundant phylum (49.99%–60.34%), followed 
by Bacteroidetes (11.4%–20.56%), Proteobacteria (6,26%–8.54%), and 
Euryarchaeota (3.55%–9.56%). These phyla were commonly detected 
during AD in different works (Di Maria and Barratta, 2015; Ros et al., 
2017; Stolze et al., 2015). Similar to other studies (Jiang et al., 2020; Liu 
et al., 2020; Zhang et al., 2018), the most abundant phylum in the 
compost samples was Proteobacteria (48.5%–67.2%), followed by Bac-
teroidetes (10.24%–41.2%), Firmicutes (5.26%–18.98%), and Actino-
bacteria (1.27%–3.49%). 

Different profile in microbial communities of pig slurry under tested 
treatments indicating that each treatment created distinct microbial 
communities in slurry. In storage, relative abundances of some phyla 
were decreased such as Firmicutes, Spirochaetes, and Euryarchaeota; 

while other phyla showed an increase (Bacteroidetes, Proteobacteria) or 
were consistent throughout (Actinobacteria, Spirochaetes) (Data S1). 
The reduction in relative abundances of Firmicutes and the increase of 
Bacteroidetes were previously detected in other studies of pig slurry 
during storage and chicken guts at different growing time (Kumar et al., 
2020; Mohd Shaufi et al., 2015). 

The decrease in relative abundances was found for Bacteroidetes and 
Actinobacteria during AD, while Firmicutes and Euryarchaeota were 
increased. Firmicutes were reported as the dominant bacteria in the 
mesophilic reactor at 37 ◦C (Zamanzadeh et al., 2017). This phylum 
consists of bacteria involved in the degradation of various volatile fatty 
acids detected in AD and activated sludge systems (Garcia-Peña et al., 
2011). The increase of Firmicutes and the decrease in relative abun-
dance of Bacteroidetes, Proteobacteria, and Actinobacteria detected 
here was also reported by different authors when studying AD (Di Maria 
and Barratta, 2015; Nelson et al., 2011; Ros et al., 2017; Stolze et al., 
2015). The Euryarchaeota was the most abundant Archaea, which was 
also frequently identified in other AD studies (Leclerc et al., 2004; 
Pampillón-González et al., 2017; Rabii et al., 2019). 

The bacterial community composition underwent a succession from 
Firmicutes dominance before composting to an abundance of Proteo-
bacteria and Bacteroidetes within the first two weeks. Proteobacteria, 
Bacteroidetes, and Actinobacteria have been reported to play important 
roles in the degradation of organic matter in composting (Awasthi et al., 
2017), while Firmicutes participate in the decomposition of lignin, 
cellulose, and hemicellulose (PANDEY et al., 2013). The decrease in the 
relative abundance of Firmicutes along with the increase of Proteobac-
teria and Bacteroidetes in our work was in line with previous studies 
(Jiang et al., 2019; Li et al., 2020). Firmicutes can grow at high tem-
peratures, thus these bacterial phyla may dominate in the beginning of 
composting. Proteobacteria and Bacteroidetes can likely exist at lower 
temperatures in the late composting stages. 

The heat map of the genus profile, based on their relative abundance, 
also revealed the prevalence of a distinct pattern based on the treatment 
groups (Fig. S1a). In control and storage, Prevotella and Bacteroides were 

Fig. 1. Bacterial enumeration during storage (a), AD (b), and compost (c) treatments of pig slurry. The bacteria were enumerated on agar without selective anti-
biotics. Fresh: raw slurry before treatments; Solid: solid fraction of pig slurry, which was used for composting with sawdust; W2–W16: weeks when the samples were 
collected e.g. W2 = week 2. 
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Fig. 2. Microbial composition at phylum level (a) and Chao 1 (b) and Shannon (c) indexes of microbial communities in control, storage, AD, and compost treatments. 
Samples were divided into 4 groups: Control (F0-1, F0-2. F0-3, F0-4, and F0-5) contained raw pig slurry samples collected before any treatment; Storage (PS–W2 to 
PS-W16): samples collected during the storage treatment at weeks 2, 4, 6, 8, 10, 12, 14, and 16; AD (AD-W1 to AD-W16): samples collected every 2 weeks during 16 
weeks of AD process; and Compost (CP–W2 to CP-W8): samples collected during pig slurry composting at weeks 2, 4, 6, and 8. 
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the most prevalent. These bacteria were previously reported in pig slurry 
under storage conditions (Chen et al., 2017; Hwang et al., 2016; Peu 
et al., 2006; Snell-Castro et al., 2005; Zhu, 2000). Hungateiclostridium 
and Syntrophomonas were dominant among AD samples, while Pseudo-
monas was dominant in compost samples. Pseudomonas was found to be 
highly productive at different composting stages. These bacteria dissolve 
minerals, produce nutrients, and play an important role in lipid degra-
dation. Thus, they contribute to the quality of the compost product as 
soil fertilisers. 

A linear discriminant analysis (LDA) effect size (LEfSE) was per-
formed to characterise the microbiota of pig slurry in different sample 
groups. The LDA model predicts the features most likely different be-
tween treatment samples groups, based on their abundances and esti-
mates the effect size of significant different features (Segata et al., 2011). 
The microbial taxa at the genus level with LDA score [log 10] > 2 among 
50 of the most prevalent taxa were calculated (Fig. S1b). LEfSE identi-
fied 49 representative genera, which displayed statistically significant 
differences of microbiota between different sample groups. The control 
group was characterised by 11 genera with the most enriched genera 
being Prevotella, Lactobacillus, and Clostridium. Among 12 representative 
genera in the storage sample group, Bacteroidetes, Parabacteroidetes, and 
Corynebacterium were the most abundant. Syntrophomonas, Hungatei-
clostridium, and Methanobacterium were the most enriched among 15 
genera designated to AD samples, while the compost samples indicated 
10 differential genera with the most abundance of Pseudomonas, Alca-
ligenes, and Brevundimonas. These data identify the specific genera 
changes due only to the treatments applied and the resulting fingerprint 
of the treated slurry samples. 

The microbial community composition of the AD samples at the 
genus level was dominated by 3 bacteria genera Syntrophomonas, Hun-
gateiclostridium, Clostridium (belonging to Firmicutes), and 2 Archaea 
genera Methanoculleus, and Methanobacterium (belonging to Eur-
yarchaeota). These bacterial phyla participate in syntrophic meta-
bolism, substrate hydrolysis, and fermentation (Bosshard et al., 2002; 
Chen et al., 2010; Vanwonterghem et al., 2014). Clostridium is known to 
dominate the hydrolytic and acidogenic stages of AD (Fontana et al., 
2016). It is important to address the presence of any potential patho-
genic species in this genus in AD products, which could pose risks to the 
agricultural environment, humans, and animals. Both archaea genera 
are hydrogenotrophic methanogens (Ros et al., 2017). 

The LEfSE analysis identified the microbial fingerprints in our data of 
genus abundances for each treatment sample group. These fingerprints 
can describe the treatment-specific taxa by comparing the taxa abun-
dances between different sample types (Segata et al., 2011). The LEfSE 
results indicated that the microbial taxa present could be used to 
differentiate treatment samples from each other and from control 
groups. These also determined different responses of microbial com-
munities to different conditions between control and all treatment 
groups, establishing the unique characteristic microbiota in each sample 
group. These highlighted the important role of treatment-specific taxa as 
major factors driving the microbiome functions in each treatment type. 

3.3. Microbial diversity 

The microbial diversity of all samples was analysed based on relative 
abundances of identified taxa with detailed taxonomic paths. In total 
7776 taxa were assigned across all samples. The richness and diversity of 
the microbial communities were assessed using Chao 1 and Shannon 
indexes (Fig. 2b and c). These alpha diversity indexes can be used to 
identify the variation of microbial diversity between samples. The Chao 
1 indexes showed significantly higher richness of the microbial com-
munity in the pig slurry control and storage sample groups, in com-
parison with AD and compost samples (p < 0.05). The relatively rich 
nutrient environment in the storage samples would be responsible for 
the increase of microbial richness by promoting copiotrophic microor-
ganisms (Medina-Sauza et al., 2019). 

The AD and compost treatments led to a decrease in the Shannon 
diversity indexes. The decrease of Shannon diversity was also reported 
by Wan et al., (2021) (Wan et al., 2021) when analysing the microbial 
composition during composting, and Zealand et al. studying anaerobic 
co-digestion of dairy manure with rice straw (Zealand et al., 2018). In 
contrast, the Shannon index increased in storage, and this value was 
higher in the storage sample group than those in the control. The dif-
ference in alpha diversity across different sample groups may be due to 
the availability of nutrient contents (Shehata et al., 2021). Indeed, the 
increase of Shannon index in the storage is likely due to the rich nutrient 
contents during the treatment, while the lowest alpha diversity indexes 
in compost samples could relate to the lowest nutrient contents in this 
process. 

The microbial communities from all samples were also visualised by 
principal coordinate analysis (PCoA) based on the Bray-Curtis dissimi-
larity matrices (Fig. S2a). The PCoA plot displayed 4 differential clusters 
formed by 4 sample groups, indicating the significant difference in the 
microbial community structures across sample groups. This confirmed 
the individual microbial profile of pig slurry in each treatment, which 
aligned with the relative abundance of microbial taxa. There is an 
overlap only between 2 clusters of control and storage samples, con-
firming the prevalent order of microbial phyla within the samples. The 
PCoA result again demonstrates the unique microbial populations 
within the AD and compost treated samples and the similarity between 
the stored and control slurry. These results indicated that the sample 
classification can be established based on the microbial community in 
the sample and that the treatments each alter the microbial content of 
the slurry in a unique manner, except storage. 

3.4. Characteristics of pig slurry resistome under different treatments 

A total of 181 genes comprising 154 ARGs and 27 MGEs were 
detected across all samples. The detected ARGs included 11 main 
resistance groups: aminoglycoside, beta-lactam, MDR, macrolide- 
lincosamide-streptogramin B (MLSB), polymyxin, phenicol, quinolone, 
sulfonamides, tetracycline, trimethoprim, and vancomycin. Four iden-
tified MGE groups were integrons, transposons, insertional sequences, 
and plasmid-associated genes. The total detected genes (both ARGs and 
MGEs) in pig slurry increased during storage and compost treatments 
(Fig. 3). In control samples, the most abundant ARGs were tetracycline, 
aminoglycosides, sulfonamides, and MLSB (Data S2). These ARG classes 
were also dominant among storage samples. The relative abundance of 
the total detected genes in pig slurry decreased during AD treatment. In 
comparison with the control samples, the AD final product showed a 
decrease in the relative abundance of analysed resistance gene classes 
(except polymyxin resistance genes, which showed an increase from 
0.0004 to 0.0008 and trimethoprim resistance genes remained at the 
same level of abundance). The greatest abundances were identified 
across aminoglycoside, tetracycline, vancomycin, and beta-lactam ARGs 
in the AD sample group. 

The most prevalent gene classes in all compost stages were resistance 
to sulfonamides, followed by aminoglycoside, and tetracycline. The in-
crease in total ARGs during pig slurry composting was reported previ-
ously. Cao et al. identified an increase by 0.19–1.62 logs of the relative 
abundance of total ARGs after composting (Cao et al., 2020). Most of the 
gene classes (sulfonamides, aminoglycosides, trimethoprim, MLSB) 
were increased at week 2 and week 4 of composting compared with 
control samples, then reduced toward the end of the process, but 
remained at a higher level than the other treatments. Similar results 
were also reported by other authors in studying pig slurry and sewage 
sludge composting (Cao et al., 2020; Su et al., 2015; Wang et al., 2015). 
However, few other studies showed decrease in ARGs in pig slurry 
composting (Chen et al., 2007; Selvam et al., 2012). The effect of 
compost procedures on ARG removal efficiency has differed among 
many studies (Chen et al., 2007; Selvam et al., 2012; Wang et al., 2015; 
Zhang et al., 2017). The fate of different kinds of ARGs varied and the 
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abundances of some ARGs increased while others decreased during/-
after composting (Zhang et al., 2017). The behaviour of ARGs in the 
same class was also different, for instance, tetM, tetO, tetQ, and tetW were 
decreased while tetA, tetC, tetG and tetL increased after pig slurry com-
posting (Wang et al., 2015). The increase of aminoglycoside and sul-
fonamide resistance here is also in agreement with other studies (Cao 
et al., 2020; Wang et al., 2015). It is important to note that, the compost 
in this study was kept at 50 ◦C for over 10 days, but higher temperatures 
were applied by other authors, which may alter the ARG removal effi-
ciency. The efficiency of compost in removing ARGs was not always 
satisfactory; it strongly depends on the properties of the compost 
mixture and the control conditions. 

The relative abundance of detected MGEs varied in all samples. The 
MGEs were found at a different level across control samples. The most 
prevalent MGE was insertional sequences, followed by transposons, 
integrons, and plasmid-associated genes. A decrease of total detected 
MGEs were found at weeks 6, 8, 12, and 14 among storage samples. The 
relative abundance of insertion sequences decreased after 16 weeks of 
the storage, while an increase was found for other MGE classes. These 
data suggest that, with a reduction in insertion sequences, a concurrent 
increase in transposon and integrons occurs at week 16. The MGE trend 
in storage samples does not mirror the ARG data, suggesting that the 
MGEs contribute only partially to the resistome and ARGs could also be 
carried on non-mobile elements in these samples. AD led to a decrease in 
total MGE relative abundance in pig slurry compared with the storage 
and control sample groups. Among AD samples, the most prevalent MGE 
class was integrons, followed by plasmid-associated genes, insertional 
sequences, and transposons. 

Composting of pig slurry resulted in an increase in total MGE relative 
abundance compared with other sample groups. The MGEs’ relative 
abundance increased from week 2 to week 4, then decreased in the later 

timepoints, but remained relatively high. The composition of MGEs in 
compost samples was dominant by integrons, followed by transposons, 
insertional sequences, and plasmid-associated genes (Data S2). The 
resistome data of AD and compost samples (weeks 6 and 8) mirror the 
MGE data suggesting an important role for the MGEs in the resistome of 
these samples. This contrasts with the storage samples where more 
fluctuation in the MGE data occurred in comparison with the resistome 
data. 

The richness (Chao1) of ARGs decreased in AD and storage samples 
(Fig. S3a). However, the differences in ARGs richness were not statisti-
cally significant (p > 0.05). The Shannon indexes showed significant 
distinction among sample groups (p < 0.05), with an increase of ARG 
diversity in compost and AD samples and a decrease in storage samples 
in comparison with the control group (Fig. S3b). A significant reduction 
in the MGE richness was observed in all treatment groups (Fig. S3c) (p <
0.05). The MGE Shannon indexes were also significantly different be-
tween all group samples (Fig. S3d) (p < 0.05). 

The relative abundance of both ARGs and MGEs was lowest in AD 
treatment, indicating the highest efficiency in removing antibiotic 
resistance. These also resulted in the low richness (Chao1) of ARGs and 
MGEs in AD sample groups comparing with control and other sample 
groups. However, the highest Shannon diversity index of ARGs in AD 
indicates a high diversity of ARGs and MGEs present. 

The composition of ARGs and MGEs was analysed through PCoA 
analysis based on Bray-Curtis dissimilarity (Figs. S2b and c, PERMA-
NOVA test, p < 0.05). In the ARG PCoA plot, control, compost, and AD 
clusters separated from each other, while the storage cluster overlapped 
with control and compost clusters (Fig. S2b). The MGEs of the AD 
sample group also formed a cluster separated from other sample groups. 
The MGEs of the control, storage and composted samples overlapped 
with each other (Fig. S2c). These results identify the differences in the 

Fig. 3. Gene relative abundance detected in pig slurry under different treatments for (a) resistance gene and (b) mobile genetic elements. The data is presented as the 
sum of relative abundances ARGs or MGEs. Samples were divided into 4 groups: control contained slurry samples collected before treatment (F0-1, F0-2, F0-3, F0-4); 
Storage (PS–W2/W16): samples collected every 2 weeks during storage; AD (AD-W1 to AD-W16): samples collected every 2 weeks during anaerobic digestion; and 
Compost (CP–W2 to CP-W8): samples collected during composting process at weeks 2, 4, 6, and 8. 
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profiles of ARGs and MGEs between all sample groups. The storage 
samples displayed the most similar profile to control in comparison with 
other treatments, which was also indicated by the overlap between ARG 
and MGE clusters of two sample groups. 

A core resistome containing 89 genes was identified based on the 
presence of these genes across all sample groups (Fig. S2d). These genes 
included resistance to tetracycline (n = 17), aminoglycosides (n = 16), 
beta-lactam, (including blaNDM) (n = 12), sulfonamides (n = 5), 
trimethoprim (n = 2), MLSB (n = 4), vancomycin (n = 6), phenicol (n =
1), MDR (n = 2), polymyxin (mcr1) (n = 1), quinolone (n = 1) and MGEs 
(n = 22) (Table S2). This lists the genes which were not removed by any 
of the slurry treatments and thus persisted regardless of treatments to 
the final product. The core ARGs include blaNDM and mcr1, both mobile 
ARGs to the last line of defence antibiotics; carbapenems and colistin, 
respectively. The core resistome of pig slurry among all sample groups, 
with a high abundance of tetracycline and aminoglycoside resistance 
genes, was consistent with the core resistome of gut microbiota in 
industrialised feedlot pigs and laboratory pigs (Looft et al., 2012; Wang 
et al., 2019b). 

The network analysis based on strong and significant Spearman’s 
correlations (|r| > 0.85, p < 0.05) between ARGs and MGEs was 
employed to understand the co-occurrence of ARGs and MGEs across all 
samples (Fig. 4a, Data S3). The network contains 126 nodes and 489 
edges formed by 93 negative (blue edges) and 395 positive (red edges) 
correlations. The MGEs showed a higher degree of interactions with 
ARGs, indicating their central role in the network formulation. The 
network displayed two large clusters C1 and C2. In cluster C1, the repA 
and Tn5 genes displayed the most interaction with ARGs, followed by 
Tp614 and IS631. They formed the main hubs in this cluster. While repA 
displayed mostly positive interactions (red lines), Tn5 displayed mostly 
negative interactions (blue lines) with the ARGs. The interaction in C1 
mainly formed between beta-lactamase resistance genes and some 
others including tetracycline, aminoglycoside resistance, sul and, mcr-1 
genes and MGEs. The main hubs in cluster C2 were formed by tnpA and 
intI genes (Fig. 4a). The C2 cluster included the interaction between 
MGEs mainly with aminoglycoside resistance, sul, and tet genes. The 
high degree of positive correlations with various ARGs was found for the 
intI1 integron, which is a proxy for anthropogenic gene pollution (Gil-
lings et al., 2015). 

A high number of genes within the tetracycline, aminoglycoside, and 
sulfonamide resistance groups positively interacted with MGEs in all 
sample. This result indicates the strong dissemination of these genes via 
horizontal gene transfer. This was also reported in previous works 
analysing pig slurry (Cao et al., 2020; Wang et al., 2021). The integrons 
and transposons formed the main large hubs in the network, deter-
mining their essential role in ARG dissemination. 

The relationship between microbial phyla and ARGs were investi-
gated with the network based on Spearman’s correlation analysis 
(Spearman’s |r| > 0.7, p < 0.05) (Fig. 4b). The network consists of 61 
nodes (from 7 microbial phyla and 54 ARGs), and 163 edges (built from 
113 negative (blue lines) and 50 positive (red lines) correlations). Pro-
teobacteria had the most positive interactions with 20 ARGs, followed 
by Bacteroidetes having positive interactions with 7 ARGs. Actino-
bacteria had positive correlations with tetW and bla CTX-M-6 only (Fig. 4b, 
Data S4). These results indicated their role as primary ARG hosts, 
consistent with previous findings (Qian et al., 2021; Wang et al., 2021). 
When these data are compared with the relative abundance data of 
phyla and ARGs across samples (Figs. 2 and 4a) we can identify the trend 
of increasing relative abundance of Proteobacteria and Bacteroidetes, 
and ARGs in compost samples. Whereas increases in Firmicutes in the 
AD samples did not result in increases in ARGs. Bacteroidetes were 
strongly correlated to tet genes, which was also previously reported, and 
we know that many members of the Bacteroidetes phyla contain tet 
genes on their chromosomes (Wang et al., 2017). Firmicutes were found 
to be important in ARG dissemination (Song et al., 2017). This phylum 
showed positive interactions with aminoglycoside resistance genes, 

while negative interactions with others. These bacterial phyla were also 
reported as the ARG hosts in soil microbiota (Qian et al., 2021). Eur-
yachaeota and Candidatus Cloacimonetes held a high degree of negative 
interactions with ARGs. 

The network was also built for microbial families and ARGs on 
similar parameters. This network mirrors the interaction between mi-
crobial phyla and ARGs at the family level with confirming the role as 
primary ARGs hosts of families from Proteobacteria, Bacteroidetes, 
Actinobacteria, and Firmicutes. Among them, Alcaligenaceae had the 
most positive interactions with 19 ARGs and formed the biggest node in 
the network, followed by Pseudomonadaceae, Bacteroidacease (both have 
5 positive interactions), and Brucellaceae (4 positive interactions) 
(Fig. S4, Data S4). 

3.5. KEGG functional annotation 

We identified 354 KEGG pathways across all samples. In control and 
storage sample groups, the largest group of annotated genes was 
assigned to ABC transporters, followed by two-component systems and 
methane metabolism. The methane metabolism was dominated in the 
AD sample group, followed by ABC transporters and ribosome. The 
dominance of methane metabolic pathways in the AD treatment was 
consistent with previous findings (Guo et al., 2015; Ma et al., 2021). This 
is directly linked to the high abundance of methanogenic archaea in the 
microbial community. Among the detected pathways in compost sam-
ples, the most abundant was two component systems, followed by ABC 
transporters and purine metabolism (Fig. S5a). The ABC transporters 
was previously reported within high abundance species in microbial 
communities (Campanaro et al., 2016). 

The LEfSE analysis among 50 of the most abundant pathways 
revealed the characteristics of each sample group (Fig. S5b). The control 
group was characterised by 13 pathways. Among them, the most 
enriched pathways were ribosome, starch and sucrose metabolism, and 
pyrimidine metabolism. The storage sample group was represented by 6 
pathways with the most enrichment of ABC transporters, phospho-
transferase system PTS, and sulfur metabolism. The compost sample 
group was recognised by the overrepresentation of two component 
systems, benzoate degradation, and bacterial secretion system over 13 
representatives. Methane metabolism, terpenoid backbone biosynthesis, 
and DNA replication were the most enriched among 14 marker path-
ways of the AD sample group. 

All samples formed 4 separate clusters in the PCoA plot, where the 
control sample cluster overlaps the other three (Fig. S6c), confirming the 
variation of the difference in profile and composition of detected path-
ways in all sample groups. Across all samples, the KEGG pathway dis-
tributions did not varying greatly. The overall pattern of KEGG 
pathways was maintained across treatments and time. Thus, while the 
microbial populations and resistomes varied the major KEGG pathway 
genes remained stable. The richness of detected pathways was higher in 
all treatment sample groups compared with the control group (Fig. S6a). 
A statistically significant difference in Shannon indexes was found be-
tween all sample groups (Fig. S6b). 

3.6. Effect of treatments on pig slurry physio-chemical properties 

The concentrations of main crop nutrients (N, P, K), elements (Ca, 
Mg, S, Na, C), dry matter (DM), and organic matter (OM) contents in the 
control and final treated samples were measured to identify if treatment 
resulted in a change of nutritional value for fertilisation (Table S3). The 
DM content decreased after storage, while it largely increased after pig 
slurry composting and remained almost the same in the AD system. The 
organic matter (OM) content increased after all the treatments. In 
comparison with the control slurry, the storage treatment showed 
enrichment of N and K, AD treatment revealed an increase in the N 
concentration, while composting led to a reduction in concentration of 
all the main nutrients. The storage also led to an increase of Na, S, and 
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Fig. 4. ARG and MGE interaction network (a) and ARG and microbial phylum interaction network (b) presented in “organic layout”. A connection shows a strong 
and significant correlation based on Spearman’s rank analysis (|r| > 0.85, p < 0.05). The red and blue edges indicated the indexes of positive and negative cor-
relations, respectively, between ARGs and MGEs. The size and colour (ranging from yellow to dark green) of the nodes showed degree of the interactions. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Mg elements, while reduced others. Pig slurry composting resulted in an 
increase of carbon with a decrease in other elements. The reduction in N, 
P, K after pig slurry composting could make the compost product suit-
able to sustainable environmentally friendly agricultural land spreading. 
The increase in N concentration after storage and AD may cause prob-
lems with further use as fertilisers in relation to water pollution and 
climate change policy implementation in the future. 

3.7. Data derived decision tree 

Using the data derived from this study we generated a simple deci-
sion tree matrix (Fig. 5). Each treatment was assigned a positive integer 
where the outcome was positive and a negative integer where the 
outcome was negative. The tree is based on three problems: AMR, 
pathogens, and Nitrogen. As the requirement for nitrogen may be either 
positive, in terms of maintaining the nitrogen content of the slurry or 
negative in terms or requiring the reduction of nitrogen to minimise 
pollution this was factored in two separate equations. The optimal 
treatment for AMR reduction was AD, for pathogen reduction were 
storage or composting, and for nitrogen reduction was composting but 
increasing nitrogen content were storage and AD. Overall, where ni-
trogen reduction was required, composting was the recommended 
treatment but where nitrogen increase was preferred then storage or AD 
were recommended. 

4. Conclusion 

This is the first study to provide a direct comparison of different 
treatments on the same pig slurry microbiome and resistome. Our results 
determined the effectiveness of storage, composting, and AD on 
reducing/removing potential pathogens by culture-based methods. The 
storage is considered the simplest technique to treat pig slurry in com-
parison to composting and AD. However, composting and AD showed 
better capacities to decrease the diversity of microbial communities, 
especially AD which also showed the best efficiency at reducing the 
microbial load, ARGs and MGEs in pig slurry. The link between micro-
bial composition and resistome is well demonstrated in our study via the 
compost samples, where the change in microbial composition resulting 
in Proteobacteria and Bacteroidetes dominating, is mirrored by a large 
increase in the relative abundance of ARGs and MGEs. This indicates 
that the changes in microbial population composition correlate with 

specific ARG and MGE changes in the populations. Such data is only 
possible due to the extensive sequencing and data analysis performed in 
this study. Similar microbial changes have been observed in previous 
studies demonstrating the reliability of these data. 

Although the treatments in our work were designed on small scale 
and more data should be obtained for the nutrient quality, the outcomes 
can be used to design an optimal low-cost treatment adapted to actual 
conditions on different pig farms. We also found that each of the treat-
ment methods had advantages and disadvantages, depending on the 
parameter measured e.g., reduction in ARG or MGE content or microbial 
diversity or pathogens. However, the implications of the changes within 
the microbiome are not yet known. Our data derived decision tree 
provides a structure for the determination of optimal strategies for slurry 
treatment. While this is a simple model of decision additional factors, 
such as cost, or time may be added to determine the optimal recom-
mendation. The most important component of this tree is that the data is 
comparable as all treatments were performed on the same initial slurry 
samples, thus the only changing component was the treatment. Future 
decision trees and models may be generated from these data to model 
different input data such as higher or lower pathogen content or 
different AMR gene or nutrient content. 
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