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a b s t r a c t 

Convolutional neural networks (CNNs) learn filters in order to capture local correlation patterns in fea- 

ture space. We propose to learn these filters as combinations of preset spectral filters defined by the 

Discrete Cosine Transform (DCT). Our proposed DCT-based harmonic blocks replace conventional convo- 

lutional layers to produce partially or fully harmonic versions of new or existing CNN architectures. Using 

DCT energy compaction properties, we demonstrate how the harmonic networks can be efficiently com- 

pressed by truncating high-frequency information in harmonic blocks thanks to the redundancies in the 

spectral domain. We report extensive experimental validation demonstrating benefits of the introduction 

of harmonic blocks into state-of-the-art CNN models in image classification, object detection and seman- 

tic segmentation applications. 
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. Introduction 

CNNs have been designed to take advantage of implicit charac- 

eristics of natural images, specifically correlation in local neigh- 

orhood and feature equivariance. Standard CNNs rely on learned 

onvolutional filters hence finetuned to the data available. How- 

ver, it can be advantageous to revert to preset filter banks: for 

nstance, with limited training data [1] , using a collection of preset 

lters can help in avoiding overfitting and in reducing the compu- 

ational complexity of the system. Scattering networks are an ex- 

mple of such networks with preset (wavelet based) filters which 

ave achieved state-of-the-art results in handwritten digit recogni- 

ion and texture classification [2] . 

We propose instead to replace the standard convolutional oper- 

tions in CNNs by harmonic blocks that learn the weighted sums 

f responses to the Discrete Cosine Transform (DCT) filters, see 

ig. 1 . 

DCT has been successfully used for JPEG encoding to trans- 

orm image blocks into spectral representations to capture the 

ost information with a small number of coefficients. Motivated 

y frequency separation and energy compaction properties of DCT, 

he proposed harmonic networks rely on combining responses of 

indow-based DCT with a small receptive field. Our method learns 
∗ Corresponding author. 
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ow to optimally combine spectral coefficients at every layer to 

roduce a fixed size representation defined as a weighted sum 

f responses to DCT filters. The use of DCT filters allows one to 

epresent and regularize filter parameters directly in the DCT do- 

ain and easily address the task of model compression. Other 

orks that propose convolutional filters decomposition to partic- 

lar basis functions [3,4] have predominantly focused on network 

ompression. In our study we demonstrate that prior information 

oming from well chosen filter basis can not only be used to 

ompress but also speeds up training convergence and improves 

erformance. 

Based on our earlier works [1,5] , this paper contributions are as 

ollows. First we demonstrate that the theoretical computational 

verheads of the optimised formulation of a harmonic block are 

inimal (experimentally, within 3–7%) whereas the memory foot- 

rint requirements are comparable to those of the benchmark ar- 

hitecture based on standard convolutional blocks (and are lower 

f harmonic blocks undergo compression). Second, we substan- 

ially expand experimental validation to demonstrate a consis- 

ent increase in performance due to the use of harmonic blocks. 

pecifically, on the small NORB dataset we achieve state-of-the- 

rt results and demonstrate how DCT-based harmonic blocks al- 

ow one to efficiently generalise to unseen lighting conditions. We 

urther report quantitative as well as qualitative results of appli- 

ation of harmonic blocks to a representative variety of vision 

asks: object detection and instance/semantic segmentation. We 

bserve a consistent average improvement of 1% AP on these tasks, 

hich demonstrates the practical appeal of using harmonic net- 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Left: Design of the harmonic block. Boxes show operation type, size of filter (if applicable) and the number of output channels given the block filter size K, number 

of input channels N and output channels M. Batch normalization (BN) block is optional. Right: Visualization of the harmonic block applied to an input layer. 
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orks. Section 2 presents the relevant background research to our 

armonic network formulation ( Section 3 ). It is extensively vali- 

ated against state-of-the-art alternatives for image classification 

 Section 4 ), for object detection, instance and semantic segmenta- 

ion ( Section 5 ). All our architectures in the reported results are 

enoted as Harm ; the PyTorch implementations for our harmonic 

etworks are publicly available at https://github.com/matej-ulicny/ 

armonic-networks . 

. Related work 

.1. DCT & CNNs 

Networks trained on DCT coefficients are frequently used in 

orensics for detection of tampered parts in images. These parts are 

ssumed to have different distribution of DCT coefficients from the 

est of the image. A common practice is to classify histograms of 

reselected JPEG-extracted DCT coefficients by 1-D or 2-D convolu- 

ional network [6] . A number of studies have also investigated the 

se of spectral image representations for object and scene recog- 

ition. DCT features from an entire image were used to train Ra- 

ial Basis Function Network for face recognition [7] . A DCT-based 

cene descriptor was used together with a CNN classifier [8] . A sig- 

ificant convergence speedup and case-specific accuracy improve- 

ent have been achieved by applying DCT transform to early stage 

earned feature maps in shallow CNNs [9] whereas the later stage 

onvolutional filters were operating on a sparse spectral feature 

epresentation. In [10,11] it was demonstrated how DCT coefficients 

an be efficiently used to train CNNs for classification, where the 

CT coefficients can be computed or taken directly from JPEG im- 

ge format. Wang et al. [12] compresses CNN filters by separating 

luster centers and residuals in their DCT representation. Weights 

n this form were quantized and transformed via Huffman coding 

used for JPEG compression) for limiting storage. Lastly, DCT image 

epresentation has been used for calculation of more informative 

oss function in generative learning [13] . 

.2. Wavelets & CNNs 

Wavelet networks As an alternative to DCT, scattering networks 

2] are built on complex-valued wavelets. The scattering network 

as its filters designed to extract translation and rotation invariant 

epresentations. It was shown to effectively reduce the input repre- 

entation while preserving discriminative information for training 

NN on image classification and object detection task [14] achiev- 

ng performance comparable to deeper models. Williams et al. 

15] have advocated image preprocessing with wavelet transform, 

ut used different CNNs for each frequency subband. Wavelet fil- 

ers were also used as a preprocessing method prior to NN-based 

lassifier [16] . 

Spectral based CNNs Other works have used wavelets in CNN 

omputational graphs. Low-frequency components of the Dual-Tree 

omplex Wavelet transform were used in a noise suppressing pool- 

ng operator [17] . Ripperl et al. have designed a spectral pool- 
2 
ng [18] based on Fast Fourier Transform and truncation of high- 

requency coefficients. The pooled features were recovered with 

nverse Discrete Fourier Transform, thus the CNN still operates in 

he spatial domain. They also proposed to parameterise filters in 

he Fourier domain to decrease their redundancy and speed up the 

onvergence when training the network. 

A Wavelet Convolutional Network proposed by Lu et al. 

19] learns from both spatial and spectral information that is 

ecomposed from the first layer features. The higher-order co- 

fficients are concatenated along with the feature maps of the 

ame dimensionality. However, contrary to our harmonic networks, 

avelet CNNs decompose only the input features and not the fea- 

ures learned at intermediate stages. Robustness to object rotations 

as addressed by modulating learned filters by oriented Gabor fil- 

ers [20] . Worrall et al. incorporated complex circular harmonics 

nto CNNs to learn rotation equivariant representations [21] . Sim- 

larly to our harmonic block, the structured receptive field block 

22] learns new filters by combining fixed filters, a set of Gaus- 

ian derivatives with considerably large spatial extent. Addition- 

lly, an orthogonal set of Gaussian derivative bases of small spatial 

xtend have been used by Kobayashi to express convolutional fil- 

ers [23] . DCFNet [3] expresses filters by truncated expansion of 

ourier-Bessel basis, maintaining accuracy of the original model 

hile reducing the number of parameters. 

. Harmonic networks 

A convolutional layer extracts correlation of input patterns with 

ocally applied learned filters. The idea of convolutions applied to 

mages stems from the observation that pixels in local neighbor- 

oods of natural images tend to be strongly correlated. In many 

mage analysis applications, transformation methods are used to 

ecorrelate signals forming an image [24] . In contrast with spa- 

ial convolution with learned kernels, this study proposes feature 

earning by weighted combinations of responses to predefined fil- 

ers. The latter extracts harmonics from lower-level features in a 

egion. The use of well selected predefined filters allows one to 

educe the impact of overfitting and decrease computational com- 

lexity. We focus here on the use of DCT as the underlying trans- 

ormation. 

.1. Discrete cosine transform 

DCT is an orthogonal transformation method that decomposes 

n image to its spatial frequency spectrum. A 2D signal is ex- 

ressed as a sum of sinusoids with different frequencies. The con- 

ribution of each sinusoid towards the whole signal is determined 

y its coefficient calculated during the transformation. DCT is also 

 separable transform and due to its energy compaction proper- 

ies on natural images [24] it is commonly used for image and 

ideo compression in widely used JPEG and MPEG formats. Note 

hat Karhunen–Loève transform (KLT) is considered to be optimal 

n signal decorrelation, however it transforms signal via unique ba- 

is functions that are not separable and need to be estimated from 

https://github.com/matej-ulicny/harmonic-networks
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Fig. 2. 3 × 3 DCT filter bank employed in the harmonic networks and its compres- 

sion. 
he data. On locally correlated signals such as natural images DCT 

as shown to closely approximate KLT [24] . 

We use the most common DCT formulation, noted DCT-II, com- 

uted on a 2-dimensional grid of an image X of size A × B repre- 

enting the image patch with 1 pixel discretisation step: 

 u, v = 

A −1 ∑ 

x =0 

B −1 ∑ 

y =0 

√ 

αu 

A 

√ 

αv 

B 

X x,y cos 

[ 
π

A 

(
x + 

1 

2 

)
u 

] 
cos 

[ 
π

B 

(
y + 

1 

2 

)
v 
] 
.

(1) 

 u, v is the DCT coefficient of the input X using a sinusoid with 

orizontal and vertical frequencies noted u and v respectively. Ba- 

is functions are typically normalized with factors αu = 1 (resp. 

v = 1 ) when u = 0 (resp. when v = 0 ) and αu = 2 (resp. αv = 2 )

therwise to ensure their orthonormality. 

It is worth noting [1] , that the sine transform of the signal X

ith N values at frequency k is equivalent to the cosine transform 

f the image shifted by N ( 1 + 4 z ) / 2 k pixels, z ∈ Z : 

−1 
 

n =0 

X n sin 

[ 
π

N 

(
n + 

1 

2 

)
k 

] 
= 

N−1 ∑ 

n =0 

X 

n + N(1+4 z) 
2 k 

cos 

[ 
π

N 

(
n + 

1 

2 

)
k 

] 
. (2) 

ence by applying DCT with a certain stride (effectively result- 

ng in overlapping DCT transform) it is possible to obtain a feature 

epresentation as rich as that obtained employing the full Fourier 

ransform [1] . 

.2. Harmonic blocks 

We propose the harmonic block to replace a conventional con- 

olutional operation hence relying on processing the data in two 

tages (see Fig. 1 ). Firstly, the input features undergo harmonic 

ecomposition using window-based DCT. In the second stage, the 

ransformed signals are combined by learned weights. The funda- 

ental difference from standard convolutional network is that the 

ptimization algorithm is not searching for filters that extract spa- 

ial correlation, rather learns the relative importance of preset fea- 

ure extractors (DCT filters) at multiple layers. 

Harmonic blocks are integrated as a structural element in the 

xisting or new CNN architectures. We thus design harmonic net- 

orks that consist of one or more harmonic blocks and, option- 

lly, standard learned convolutions and fully-connected layers, as 

ell as any other structural elements of a neural net. Spectral de- 

omposition of input features into block-DCT representation is im- 

lemented as a convolution with DCT basis functions. A 2D kernel 

ith size K × K is constructed for each basis function, comprising a 

lter bank of depth K 

2 , which is separately applied to each of the

nput features. Convolution with the filter bank isolates coefficients 

f DCT basis functions to their exclusive feature maps, creating a 

ew feature map per each channel and each frequency considered. 

he number of operations required to calculate this representation 

an be minimized by decomposing 2D DCT filter into two rank- 

 filters and applying them as separable convolution to rows and 

olumns sequentially. 

Each feature map h l at depth l is computed as a weighted linear 

ombination of DCT coefficients across all input channels N: 

 

l = 

N−1 ∑ 

n =0 

K−1 ∑ 

u =0 

K−1 ∑ 

v =0 

w 

l 
n,u, v ψ u, v ∗ ∗ h 

l−1 
n (3) 

here ψ u, v is a u, v frequency selective DCT filter of size K × K,

∗ the 2-dimensional convolution operator and w 

l 
n,u, v is learned 

eight for u, v frequency of the n th feature. The linear combina- 

ion of spectral coefficients is implemented via a convolution with 

 × 1 filter that scales and sums the features, see Fig. 1 . In our
3 
mplementation we use a fixed collection of DCT bases. Specifi- 

ally, if we are to replace a K × K convolution layer, the DCT fil- 

er bank 
{
ψ u, v ∈ R 

K×K ; u, v ∈ N ; 0 ≤ u, v < K 

}
has filt ers defined for 

very filter coordinate x, y as given in Eq. (1) . Since the DCT is a

inear transformation, backward pass through the transform layer 

s performed similarly to a backward pass through a convolution 

ayer. Harmonic blocks are designed to learn the same number of 

arameters as their convolutional counterparts. Such blocks can be 

onsidered a special case of depth-separable convolution with pre- 

efined spatial filters. 

DCT is distinguished by its energy compaction capabilities 

hich typically results in higher filter responses in lower frequen- 

ies. The behaviour of relative loss of high frequency information 

an be efficiently handled by normalizing spectrum of the input 

hannels. This can be achieved via batch normalization that adjusts 

er frequency mean and variance prior to the weighted combina- 

ion. The spectrum normalization transforms Eq. (3) into: 

 

l = 

N−1 ∑ 

n =0 

K−1 ∑ 

u =0 

K−1 ∑ 

v =0 

w 

l 
n,u, v 

ψ u, v ∗ ∗h 

l−1 
n − μl 

n,u, v 

σ l 
n,u, v 

, (4) 

ith parameters μl 
n,u, v and σ l 

n,u, v estimated per input batch. 

.3. Harmonic network compression 

The JPEG compression encoding relies on stronger quantisation 

f higher frequency DCT coefficients. This is motivated by the hu- 

an visual system which often prioritises low frequency informa- 

ion over high frequencies. We propose to employ similar idea in 

he harmonic network architecture. Specifically, we limit the vi- 

ual spectrum of harmonic blocks to only several most informative 

ow frequencies, which results in a reduction of number of param- 

ters and operations required at each block. The coefficients are 

partially) ordered by their relative importance for the visual sys- 

em in triangular patterns starting at the most important zero fre- 

uency at the top-left corner, see Fig. 2 . We limit the spectrum 

f considered frequencies by hyperparameter λ representing the 

umber of levels of coefficients included perpendicularly to the 

ain diagonal direction starting from zero frequency: DC only for 

= 1 , three coefficients used for λ = 2 , and six coefficients used 

or λ = 3 . Fig. 2 illustrates filters used at various levels assuming a 

 × 3 receptive field. 

Thus, reformulating convolutional layers as harmonic allows 

ne to take advantage of this natural approach to model compres- 

ion, and in doing also introduce additional regularization into the 

odel. 

When compressing harmonic networks with multiple harmonic 

locks a question what is the appropriate subset of coefficients 

rises. We propose 3 principles of selecting these subsets: uniform, 

rogressive and adaptive. 

Uniform selection is the most simple compression approach 

hat uses the same λ at every layer. A pitfall of this method is that 

 specific subset of basis functions might not explain well enough 
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lter banks at some layers, but might have some bases redundant 

hen representing filters in other layers. 

Progressive selection omits higher number of frequencies in 

eeper layers. We investigate two strategies for progressive co- 

fficient selection. The first strategy employs the same subset of 

oefficients in all harmonic blocks applied to feature maps of a 

articular size, but this subset shrinks with the size of feature 

aps (smaller maps in deeper layers). The second strategy relies 

n the selection of compression level based on the depth of the 

ayer. Specifically, the compression level is estimated as λprogr = 

ax (α, min (2 K − 1 , � T /Depth � )) , where α is the lowest allowed

alue of λ, considering α ∈ { 1 , 2 } , K the filter size ( λ = 2 K − 1 cor-

esponds to no compression), and T a constant that sets a linear 

elation between λ and the depth of a particular layer and con- 

rols the overall compression rate when T ∈ 〈 α, ( 2 K − 1 ) × Depth 〉 . 
Adaptive selection : compression is estimated adaptively for 

ach layer; a basis is excluded if proportion of the L 1 norm of

ts corresponding weights compared to the norms of the other 

ases in the same layer is lower than a threshold T . Specifi- 

ally, if 
∣∣w i, j 

∣∣
1 
/ 
∑ K−1 

u, v =0 | w u, v | 1 < T then the coefficient is truncated. 

t should be noted that this approach, unlike the previous ones, 

eeds the full model to be optimized prior to compression. 

The empirical impact of harmonic model compression is inves- 

igated experimentally in more detail in Sections 4 and 5 . 

.4. Computational requirements 

Harmonic blocks are designed to learn the same number of pa- 

ameters as their convolutional counterparts. Requirements for the 

CT transform scale linearly with the number of input channels 

nd result in a modest increase to the theoretical number of op- 

rations. Standard convolutional layer used in many popular archi- 

ectures that has N input and M output channels with a kernel size 

 × K learns NMK 

2 parameters and performs NMK 

2 AB operations 

f the filter is applied A and B times in particular directions. Har- 

onic block with K 

2 transformation filters of size K × K upsamples 

epresentation to NK 

2 features and then learns one weight for each 

psampled-output feature pair hence NK 

2 M weights. Transforma- 

ion of an A × B feature set costs NK 

2 K 

2 AB on top of weighted

ombination NK 

2 MAB that matches the number of multiply-add 

perations of K × K convolution. The total number of operations 

s thus NK 

2 AB 
(
M + K 

2 
)
. The theoretical number of multiply-add 

perations over the standard convolutional layer increases by a 

actor of K 

2 /M. If we assume truncated spectrum (use of λ ≤ K) 

iven by P = λ(λ + 1) / 2 filters, proportion of operations becomes 

 /K 

2 + P /M. 

While keeping the number of parameters intact, a harmonic 

lock requires additional memory during training and inference to 

tore transformed feature representation. In our experiments with 

RN models ( Section 4.2 ), the harmonic network trained with full 

CT spectrum requires almost 3 times more memory than the 

aseline. This memory requirement can be reduced by using the 

CT spectrum compression. 

Despite the comparable theoretical computational require- 

ents, the run time of harmonic networks is larger compared to 

he baseline models, at least twice slower (on GPU) in certain con- 

gurations. This effect is due to generally less efficient implemen- 

ation of separable convolution and the design of harmonic block 

hat replaces a single convolutional layer by a block of 2 sequen- 

ial convolutions (with individual harmonic filters and 1x1 convo- 

ution). Most blocks do not need BN between the convolutions and 

hus represent a combined linear transformation. The associativity 

roperty of convolutions allows one to reformulate the standard 

armonic block defined above so that the DCT transform and lin- 

ar combination can be effectively merged into a single linear op- 
4 
ration: 

 

l = 

N−1 ∑ 

n =0 

K−1 ∑ 

u =0 

K−1 ∑ 

v =0 

w n,u, v 
(
ψ u, v ∗ ∗h l−1 

n 

)
= 

N−1 ∑ 

n =0 

( 

K−1 ∑ 

u =0 

K−1 ∑ 

v =0 

w n,u, v ψ u, v 

) 

∗ ∗h l−1 
n 

(5) 

n other words, equivalent features can be obtained by factorizing 

lters as linear combinations of DCT basis functions. We thus pro- 

ose a faster Algorithm 1 that is a more memory efficient alter- 

Algorithm 1: Memory efficient harmonic block. 

Input : h l−1 

Define updates g ∈ R 

M×N×K×K ; 

for m ∈ { 0 ..M − 1 } do 

for n ∈ { 0 ..N − 1 } do 

g l m,n ← 

∑ K−1 
u =0 

∑ K−1 
v =0 w m,n,u, v ψ u, v ; 

end 

end 

h l ← g l ∗ ∗h l−1 ; 

Output : h l 

ative to the standard two-stage harmonic block formulation and 

ses dense convolution. 

The Algorithm 1 overhead in terms of multiply-add operations 

ith respect to the standard convolutional layer is only K 

2 /AB , 

here the input image size for the block is A × B . The experimental

erformance of the algorithm is evaluated in Section 4.2 . 

. Image classification 

The performance of the harmonic networks is assessed for im- 

ge classification on small (NORB, Section 4.1 ), medium (CIFAR-10 

nd CIFAR-100, Section 4.2 ) and large (ImageNet-1K, Section 4.3 ) 

cale datasets. 

.1. Small NORB dataset 

The small NORB dataset [25] is a synthetic set of 96 × 96 binoc- 

lar images of 50 toys sorted into 5 classes (four-legged animals, 

uman figures, airplanes, trucks, and cars), captured under differ- 

nt lighting and pose conditions (i.e. 18 angles, 9 elevations and 6 

ighting conditions induced by combining different light sources). 

raining and test sets used in our experiments are retained origi- 

al [25] . We show first that harmonic networks outperform stan- 

ard and state-of-the-art CNNs in both accuracy and compactness 

c.f. Section 4.1.1 ) and also illustrate how Harmonic networks can 

e naturally resilient to unseen illumination changes without re- 

orting to using data augmentation ( Section 4.1.2 ). 

.1.1. Comparisons CNN vs. harmonic nets 

Baseline architectures Our baseline CNN2 consists of 2 convolu- 

ion and 2 fully-connected layers. Features are subsampled by con- 

olution with stride and overlapping max-pooling. All hidden layer 

esponses are batch normalized and rectified by ReLU. We also use 

 slightly deeper network CNN3 with an additional convolutional 

ayer preceding the first pooling. Details of the architectures are 

ummarised in Table 1 . 

Optimisation The baseline CNNs are trained with stochastic gra- 

ient descent for 200 epochs with momentum 0.9 and weight de- 

ay 0.0 0 05. The initial learning rate 0.01 is decreased by factor 10 

very 50 epochs. The network is trained with batches of 64 stereo 

mage pairs, each pair is zero-padded 5 pixels and a random crop 

f 96 × 96 pixels is fed to the network. 
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Table 1 

Models used in NORB experiments. Convolution and harmonic operation are denoted as {conv, harm} M,K ×K/S with M output features, kernel size K and stride S; similarly 

for pooling K ×K/S and fully connected layers fc M. 

Resol. CNN2 CNN3 Harm-CNN2 Harm-CNN3 Harm-CNN4 

96 × 96 conv 32, 5 × 5/2 conv 32, 5 × 5/2 harm 32, 4 × 4/4 harm 32, 4 × 4/4 harm 32, 4 × 4/4 

48 × 48 pool 3 × 3/2 conv 64, 3 × 3/2 – – –

24 × 24 conv 64, 3 × 3/2 pool 2 × 2/2 harm 64, 3 × 3/2 harm 64, 3 × 3/2 harm 64, 3 × 3/2 

12 × 12 pool 3 × 3/2 conv 128, 3 × 3/2 pool 3 × 3/2 pool 3 × 3/2 pool 3 × 3/2 

6 × 6 fc 1024 pool 2 × 2/2 fc 1024 harm 128, 3 × 3/2 harm 128, 3 × 3/2 

3 × 3 – fc 1024 – fc 1024 harm 1024, 3 × 3/3 

1 × 1 dropout 0.5 dropout 0.5 dropout 0.5 dropout 0.5 dropout 0.5 

1 × 1 fc 5 fc 5 fc 5 fc 5 fc 5 

Fig. 3. Mean classification error on small NORB test set. Weak generalization of 

CNN (green) and harmonic network (blue) is observed during the early stages of 

training. Filled areas (best seen in color) show 50% empirical confidence intervals 

from 20 runs. Batch normalization of DCT spectrum (first block) significantly speeds 

up convergence of harmonic network (red). (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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Table 2 

Comparison with the state-of-the-art on small NORB dataset, showing the proposed 

method outperforms other reported results. 

Method Parameters ↓ Error % ↓ 
CNN3 1.28 M 3.43 ± 0.31 

CapsNet [26] multi-crop 310 K 1.4 ∗

Harm-CNN2 2.39 M 1.56 ± 0.18 

Harm-CNN3 1.28 M 1.15 ± 0.22 

Harm-CNN4 1.28 M 1.10 ± 0.16 

∗score reported by the authors of the corresponding paper. 
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Harmonic networks architectures Several versions of harmonic 

etworks are considered ( Table 1 ), by substituting the first, first 

wo or all three of CNN2 and CNN3 convolution layers by har- 

onic blocks. Furthermore, the first fully-connected layer can be 

ransformed to a harmonic block taking global DCT transform of 

he activations. The first harmonic block uses 4 ×4 DCT filters, the 

urther blocks mimic their convolutional counterparts. 

Performance evaluation The baseline CNN architecture shows 

oor generalization performance in early stages of training, see 

ig. 3 . Baseline CNN2 achieved mean error 3.48% ± 0.50 from 20 

rials, while CNN2 utilizing harmonic blocks without explicit nor- 

alization of harmonic responses exhibits similar behavior result- 

ng in lower mean error of 2.40% ± 0.39. Normalizing DCT re- 

ponses at the first block prevents harmonic network from focus- 

ng too much on pixel intensity, allows using 10 × higher learning 

ate, significantly speeds up convergence, improves performance 

nd stability. 

All variants of the harmonic network perform comparably. Par- 

icularly we observe the overlapping average pooling to work well 

n combination with harmonic blocks. The best result was obtained 

y the Harm-CNN4 model with 4 harmonic blocks (the latter re- 

laces the fully-connected layer), misclassifying only 1.10% ± 0.16 

f test samples. 

Comparison with state-of-the-art Table 2 shows that these results 

urpass the best previously reported error rate for this dataset to 

he best of our knowledge. The capsule network [26] claims 1.4% 

rror rate, however estimated under a different evaluation proto- 

ol. 

Harmonic network compression We further proceed to design- 

ng a very compact version of Harm-CNN4 (cf. Table 2 ). To do so,

he fully connected layer is reduced to only 32 neurons and the 
5 
ropout is omitted. The modified network reaches 1.17% ± 0.20 

rror and has 131k parameters. When applying compression with 

= K (i.e. 3 for 3 × 3 filters) the network reaches 1.34% ± 0.21 and 

equires less than 88k parameters. By applying λ = K − 1 the to- 

al count is less than 45k parameters and error of 1.64% ± 0.22 is 

chieved on the test set, in contrast with small capsule network 

26] with 68k parameters scoring a higher error of 2.2%. 

.1.2. Harmonic networks for illumination changes 

Spectral representation of input data has a few interesting prop- 

rties. Average feature intensity is captured into DC coefficient, 

hile other (AC) coefficients capture the signal structure. DCT rep- 

esentation has been successfully used [7] to build illumination in- 

ariant representation. This gives us strong motivation to test illu- 

ination invariance properties of harmonic networks and to com- 

are them with standard CNNs. Objects in the small NORB dataset 

re normalized and are presented with their shadows over a uni- 

orm background. The six lighting conditions are obtained by vari- 

us combination of up to 4 fixed light sources at different positions 

nd distances from the objects. 

Usual approaches to reduce sensitivity to lighting conditions in- 

lude image standardization with ZCA whitening or illumination 

ugmentation. Brightness and contrast manipulations encourage 

he network to focus on features that are independent of the il- 

umination. Contrary to these methods in our approach we achieve 

he same effect by removing the filter corresponding to the DC 

omponent from the first harmonic block. Such network is invari- 

nt towards global additive changes in pixel intensity by definition. 

Set-up The dataset is split into 3 parts based on lighting con- 

itions during image capturing: the bright images (conditions 3,5) 

ark images (cond. 2,4) and images under standard lighting con- 

itions (cond. 0,1). The models are trained (w/wo data augmenta- 

ion) only on data from one split and tested on images from the 

ther two splits that contain unseen lighting conditions. 

Performance evaluation Classification errors of the best CNN and 

armonic network architectures on the test images (unseen illu- 

ination conditions) are reported in Table 3 . Harmonic networks 

onsistently achieve lower error under various unseen lighting 

onditions in comparison to baseline CNNs, with and without ran- 

om brightness and contrast (only for dark images) augmentation. 
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Table 3 

Means of classification error over 10 runs on NORB test images captured in unseen illumination conditions. Harmonic 

networks improve classification error of CNN by 5–16%. 

Augmentation lighting condition None Brightness & contrast 

CNN ↓ Harmonic ↓ CNN ↓ Harmonic ↓ 
Bright 26.3 ± 2.6 10.2 ± 0.4 17.6 ± 0.7 9.4 ± 0.7 

Standard 30.2 ± 1.8 18.0 ± 1.9 22.5 ± 1.1 15.1 ± 1.1 

Dark 31.2 ± 1.8 18.9 ± 1.2 20.1 ± 1.3 14.5 ± 1.4 

Table 4 

Settings and median error rates (%) out of 5 runs achieved by WRNs and their harmonic modifications on CIFAR 

datasets. Number of parameters reported for CIFAR-10. 

Method Dropout Param. ↓ CIFAR-10 ↓ CIFAR-100 ↓ 
WRN-28-10 [27] � 36.5 M 3.91 18.75 

Gabor CNN 3–28 [20] 17.6 M 3.88 ∗ 20.13 ∗

Harm1-WRN-28-10 (no BN) 36.5 M 4.10 19.17 

Harm1-WRN-28-10 36.5 M 3.90 18.80 

Harm1-WRN-28-10 � 36.5 M 3.64 18.57 

Harm-WRN-28-10 � 36.5 M 3.86 18.57 

Harm-WRN-28-10, progr. λ 15.7 M 3.93 19.04 

∗scores reported by Luan et al. [20] . 
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.2. CIFAR-10/100 datasets 

The second set of experiments is performed on popular bench- 

ark datasets of small natural images CIFAR-10 and CIFAR-100. 

Baseline For experiments on CIFAR datasets we adopt WRNs 

27] with 28 layers and width multiplier 10 (WRN-28-10) as the 

ain baseline. Model design and training procedure are kept as in 

he original paper. Harmonic WRNs are constructed by replacing 

onvolutional layers by harmonic blocks with the same receptive 

eld, preserving batch normalization and ReLU activations in their 

riginal positions after every block. 

Results We first investigate whether the WRN results can be 

mproved if only trained on spectral information, replacing only 

he first convolutional layer (denoted as Harm1-WRN). The net- 

ork learns more useful features if the RGB spectrum is explicitly 

ormalized by integrating the BN block as demonstrated in Fig. 1 , 

urpassing the classification error of the baseline network on both 

IFAR-10 and CIFAR-100 datasets, see Table 4 . We then construct 

 fully harmonic WRN (Harm-WRN) by replacing all convolutional 

ayers with harmonic blocks. This harmonic network also outper- 

orms the baseline WRN, see Table 4 . 

Analysis of fully harmonic WRN weights learned with 3 × 3 

pectrum revealed that the deeper layers tend to favour low- 

requency information over high frequencies when learning rep- 

esentations. Relative importance of weights corresponding to dif- 

erent frequencies shown in Fig. 4 motivates truncation of high- 

requency coefficients for compression purposes. While preserving 

he input image spectrum intact, we train the harmonic networks 

n limited spectrum of hidden features for λ = 2 and λ = 3 using 
ig. 4. Distribution of weights (averaged in each layer) assigned to DCT filters in the fi

odel trained on CIFAR-10. Vertical lines separate the residual blocks. 

6 
 and 6 DCT bases respectively. To assess the loss of accuracy as- 

ociated with parameter reduction we train baselines with reduced 

idths having comparable numbers of parameters: WRN-28-8 and 

RN-28-6, see Fig. 5 . Fully harmonic WRN-28-10 with λ = 3 has 

omparable error to the network using the full spectrum and out- 

erforms the larger baseline WRN-28-10, showing almost no loss 

n discriminatory information. On the other hand Harm-WRN-28- 

0 with λ = 2 is better on CIFAR-100 and slightly worse on CIFAR- 

0 compared to the similarly sized WRN-28-6. The performance 

egradation indicates that some of the truncated coefficients carry 

mportant discriminatory information. 

We further compare performance with the Gabor CNN 3–28 

20] that relies on modulating learned filters with Gabor orienta- 

ion filters. To operate on a similar model we remove dropouts and 

educe complexity by applying progressive λ: no compression for 

lters on 32 × 32 features, λ = 3 for 16 × 16 , and λ = 2 for the rest.

ith a smaller number of parameters the Harm-WRN-28-10 per- 

orms similarly on CIFAR-10 and outperforms Gabor CNN on CIFAR- 

00. 

Harmonic block implementations Here we compare the standard 

armonic block implementation with its memory efficient version 

ntroduced in Algorithm 1 , see Table 8 . The comparison on CIFAR- 

0 dataset demonstrates that Algorithm 1 provides similar overall 

erformance but reduces both the runtime and memory require- 

ents nearly three times. We will therefore use solely this imple- 

entation of the harmonic block except for the root (first) layer 

ue to the use of BN on that first layer. 

Ablation study The effect of filter parametrisation by DCT bases 

s investigated by replacing particular layers of WRN-16-4 (w/o 
rst harmonic block (left-most) and the remaining blocks in the Harm-WRN-28-10 
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Fig. 5. Decrease of classification error as a function of model size on CIFAR-10 (left) and CIFAR-100 (right). Parameters of harmonic networks are controlled by the compres- 

sion parameter λ, the WRN baselines by the width multiplier w . 

Table 5 

Modifications of the WRN-16-4 baseline on CIFAR-100: mean classification errors 

and standard deviations from 5 runs when replacing particular layers by harmonic 

blocks. 

Root block Harmonic root BN Residual blocks Error % ↓ 
24.07 ± 0.24 

� 23.79 ± 0.24 

� � 23.67 ± 0.12 

� 23.22 ± 0.28 

� � 23.25 ± 0.25 

� � � 23.21 ± 0.11 
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Fig. 6. Accuracy of compressed WRN-28-10 on CIFAR-100 dataset using different 

coefficient truncation strategies. 
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Table 6 

Classification errors on ImageNet validation set using central crops. 

Model Parameters ↓ Top-1% ↓ Top-5% ↓ 
VGG16-BN 138.4 M 25.86 8.05 

Harm-VGG16-BN 138.4 M 25.55 8.01 

ResNet-50 (no maxpool) 25.6 M 23.83 7.01 

Harm1-ResNet-50 25.6 M 23.01 6.47 

Harm-ResNet-50 25.6 M 22.98 6.64 

Harm-ResNet-50, progr. λ 19.7 M 23.21 6.67 

Harm-ResNet-101 44.5 M 21.45 5.78 

Benchmarks 

ResNet-50 (maxpool) ∗ 25.6 M 23.87 7.14 

ScatResNet-50 [14] 27.8 M 25.5 8.0 

JPEG-ResNet-50 [11] 28.4 M 23.94 6.98 

ResNet-101 (maxpool) ∗ 44.5 M 22.63 6.45 

∗torchvision models. 
ropout) with harmonic blocks, see Table 5 . We consider replacing 

he root convolution layer (with or without BN), or layers in resid- 

al blocks. Replacing each layer has provided the greatest improve- 

ent, while BN in the first block decreases the variance by half. 

hese observations correspond to the results obtained on NORB 

ataset. We will always be employing BN as part of the root har- 

onic block. 

Compressing existing models Section 3.3 described how convolu- 

ional filters in certain layer can be approximated with fewer pa- 

ameters. So far we have only considered uniform coefficient trun- 

ation by truncating the same frequencies in all the layers, or a 

imple progressive compression. In this experiment we assess the 

ffectiveness of our more elaborate coefficient selection schemes 

n already trained model. We start with the WRN-28-10 baseline 

rained without dropout, which has been converted to harmonic 

RN-28-10 net (omitting BN in the first harmonic block) by re- 

xpressing each 3 × 3 filter as a combination of DCT basis func- 

ions. The first harmonic block is kept intact (no compression in 

CT representation), while all other blocks are compressed. We 

ompare three different coefficient selection strategies: uniform, 

dvanced progressive and adaptive selection (cf. Section 3.3 ). 

The results reported in Fig. 6 confirm the behavior observed in 

ig. 4 , i.e. the high frequencies appear to be more relevant in the 

arly layers of the network compared to deeper layers. The uni- 

orm compression discards the same amount of information in all 

he layers, and is surpassed by the other compression strategies. By 

sing progressive or adaptive coefficient selection a model can be 

ompressed by over 20% without a loss in accuracy. The best pro- 

ressive method loses less than 1% of accuracy when compressed 

y 45% without a need for finetuning. 

.3. ImageNet dataset 

We present here results obtained on ImageNet-1 K classifica- 

ion task. ResNet [28] with 50 layers is adopted as the baseline. 

o reduce memory consumption maxpooling is not used, instead 

he first convolution layer employs stride 4 to produce equally- 

ized features; we refer to this modification as ResNet-50 (no max- 
7

ool). The following harmonic modifications refer to this baseline 

ithout maxpooling after the first layer. We investigate the perfor- 

ance of three harmonic modifications of the baseline: (i) replac- 

ng solely the initial 7 × 7 convolution layer with harmonic block 

with BN) with 7 × 7 DCT filters, (ii) replacing all convolution lay- 

rs with receptive field larger than 1 × 1 with equally-sized har- 

onic blocks, (iii) compressed version of the fully-harmonic net- 

ork. The models are trained as described in [5] , and here we re- 

ort accuracy after 100 epochs. 

Table 6 reports error rates on ImageNet validation set using 

entral 224 × 224 crops from images resized such that the shorter 

ide is 256. All three harmonic networks have similar performance 

nd improve over the baseline by 0.6–1% in top1 and 0.4–0.6% in 

op5 accuracy. We observe similar progress of the three modifi- 

ations during training, see Fig. 7 . ResNet-50 architecture has 17 

ayers with spatial filters which correspond to 11 M parameters. 
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Fig. 7. Training of harmonic networks on ImageNet classification task. Left: comparison with the baseline showing validation error (solid line) and training error (dashed). 

Right: last 40 epochs of training for all the ResNet-50 based models including scores reported for the benchmark models. 
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Table 8 

GPU training memory requirements and speed of harmonic block implementations 

on CIFAR-10 and ImageNet. All ImageNet models use harmonic blocks based on 

Algorithm 1 . Values are measured on Nvidia RTX60 0 0 using batch size 128. 

Model 

GPU 

mem- 

ory ↓ 
Images/s ↑ Error % ↓ 

train. infer. 

CIFAR-10 

WRN-28-10 [27] 4.6 GB 606.4 1876.9 3.89 

Harm-WRN-28-10 (non-optimized) 14.1 GB 211.0 600.4 3.71 

Harm-WRN-28-10 ( Algorithm 1 ) 4.8 GB 573.3 1736.5 3.78 

ImageNet 

ResNet-50 (no maxpool) 11.2 GB 306.2 820.5 23.83 

ResNet-50 (maxpool) 12.1 GB 292.9 790.1 23.87 

Harm-ResNet-50 11.4 GB 296.3 766.5 22.98 

ResNet-101 (maxpool) 17.4 GB 174.1 526.7 22.63 

Harm-ResNet-101 16.9 GB 174.4 507.9 21.45 
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e reduce this number by using progressive λ compression: λ = 3 

n 14 × 14 features and λ = 2 on the smallest feature maps. This 

educes the number of weights roughly by half, in total by about 

3% of the network size. The compressed network loses almost no 

ccuracy and still clearly outperforms the baseline. Even with com- 

ression the proposed Harm-ResNet-50 confidently outperforms 

he standard ResNet-50 (maxpool), as well as the ScatResNet-50 

14] and JPEG-ResNet-50 [11] . Furthermore, we also observe a sub- 

tantial improvement of 1.15 in top-1 error % associated with the 

ntroduction of harmonic blocks into a deeper ResNet-101. 

We validate the use of harmonic blocks on an architec- 

ure without residual connections as well, specifically the VGG16 

29] architecture with BN layers. Harm-VGG16-BN, obtained by re- 

lacing all convolutional layers by harmonic blocks yields an im- 

rovement of ∼0.8% in top-1 classification error. This demonstrates 

hat the improvement is not limited to residual-based architec- 

ures. 

Finally, we evaluate conversion of weights of a pretrained non- 

armonic network to those of its harmonic version. Each learned 

lter in the pretrained baseline (ResNet-50 without maxpooling af- 

er 90 epochs of training) is transformed into DCT domain, skiping 

N inside the first harmonic block. The direct conversion resulted 

n the exact same numerical performance due to the basis proper- 

ies of DCT. We then finetune the converted model for another 5 

pochs with the learning rate of 0.001, which results in the top1 

top5) performance improvement of 0.21% (0.19%) over the pre- 

rained baseline, see Table 7 . We also investigate the conversion 

o a harmonic network with progressive λ compression. After cast- 

ng the pretrained filters into the available number of DCT filters 

from full basis at the early layers to 3 out of 9 filters at the latest

ayers), the top1 performance degrades by 6.3% due to loss of infor- 

ation. However, if we allow finetuning for as few as 5 epochs the 

op1 (top5) accuracy falls 0.24% (0.09%) short of the baseline, while 

educing the number of parameters by 23%. This analysis shows 

ow the harmonic networks can be used to improve the accuracy 

nd/or compress the existing pretrained CNN models. 

Comparison with the cutting-edge techniques Here we verify the 

se of DCT-based harmonic blocks in the more elaborate state- 

f-the-art models. To this end we modify ResNeXt architecture 

30] , which is similar to ResNets and uses wider bottleneck and 

rouped convolution to decrease the amount of FLOPS and the 
Table 7 

Performance of the converted harmonic networks (error on Im

Training Epochs Model 

full 90 ResNet-50 (no maxpool

finetuned 90 + 5 ResNet-50 (no maxpool

finetuned 90 + 5 ResNet-50 ⇒ Harm-Res

finetuned 90 + 5 ResNet-50 ⇒ Harm-Res

8 
umber of parameters. The model is further boosted using sev- 

ral state-of-the-art adjustments: (i) identity mappings that down- 

ample features are extended by average pooling to prevent infor- 

ation loss; (ii) squeeze and excitation blocks (SE) [31] are used 

fter every residual connection. The network is further regular- 

zed by stochastic depth and dropout on the last layer. Training 

s performed via stochastic gradient decent with learning rate 0.1 

nd batch size 256, with the former decayed according to one co- 

ine annealing cycle. In addition to mirroring and random crops 

f size 224, images are augmented with rotations and random 

rasing. 

Our ResNeXt modification with 101 layers and 32 groups per 4 

onvolutional filters in a residual block is trained for 120 epochs. 

he use of DCT bases provides a subtle improvement over the stan- 

ard bases. Furthermore, we upscale the network to use 64 groups 

f filters, replace max-pooling in the first layer by increased stride 

nd train this network for 170 epochs. From Table 9 we conclude 

hat our model outperforms all other “handcrafted” architectures 

hat do not use extra training images and performs comparably 

o the networks of similar complexity found via neural architec- 

ure search. Note that these models were trained on larger image 

rops compared to our harmonic network, which typically leads to 

igher accuracies. 
ageNet). 

Top-1% ↓ Top-5% ↓ 
) 24.36 7.33 

) 24.34 7.30 

Net-50 24.06 7.12 

Net-50, progr. λ 24.62 7.44 
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Table 9 

SE-ResNeXt networks: harmonic vs. baseline errors and comparison with the state of the art on ImageNet. 

Model Param 

224 × 224 320 × 320 / 331 × 331 

FLOPS Top-1 Top-5 FLOPS Top-1 Top-5 

ResNeXt-101 (RNX): 

RNX (64 × 4d) [30] 83.6 M 15.5B 20.4 5.3 31.5B 19.1 4.4 

SE-RNX(32 × 4d) 49.0 M 8.0B 19.73 4.90 16.3B 18.49 4.05 

Harm-SE-RNX(32 × 4d) 49.0 M 8.1B 19.39 4.73 16.5B 18.48 4.06 

Harm-SE-RNX(64 × 4d) 88.2 M 15.4B 18.37 4.34 31.4B 17.15 3.56 

Benchmarks 

PolyNet [31] 92 M – – – 34.7B 18.71 4.25 

DualPathNet-131 [31] 79.5 M 16.0B 19.93 5.12 32.0B 18.55 4.16 

SENet-154 [31] 145.8 M 20.7B 18.68 4.47 42.3B 17.28 3.79 

NASNet-A [32] 88.9 M – – – 23.8B 17.3 3.8 

AmoebaNet-A [32] 86.7 M – – – 23.1B 17.2 3.9 

PNASNet-5 [32] 86.1 M – – – 25.0B 17.1 3.8 

EfficientNet-B7 ∗ [33] 66 M – – – 37B 15.6 2.9 

Swin-B ∗ [34] 88 M 15.4B 16.5 3.5 47.0B 15.5 3.0 

∗models trained on 600 × 600 (EfficientNet) and 384 × 384 (Swin) crops. 

Table 10 

Mean average precision of Faster R-CNN models after 5 runs on Pascal VOC07 test 

set. ResNet-101-based models are trained once. 

Backbone ↑ Box AP VOC07 ↑ Box AP VOC07+12 

ResNet-50 73.8 ± 0.3 79.7 ± 0.3 

Harm-ResNet-50 75.0 ± 0.4 80.7 ± 0.2 

ResNet-101 76.1 82.1 

Harm-ResNet-101 77.4 82.9 
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Table 12 

Mean average precision on Cascade R-CNN architecture on MS COCO 2017 validation 

set. All backbones are transformed to FPNs. 

Cascade R-CNN Backbone Type Box AP ↑ Mask AP ↑ 
ResNet-101 Faster 42.5 ∗ –

Harm-ResNet-101 Faster 43.5 –

ResNet-101 Mask 43.3 ∗ 37.6 ∗

Harm-ResNet-101 Mask 44.3 38.3 

ResNet-101 Hybrid 44.9 ∗ 39.4 ∗

Harm-ResNet-101 Hybrid 46.0 40.2 

∗scores reported by Chen et al. [41] . 
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Vision transformers [34] process a sequence of patch embed- 

ings and consider global relations within an image, which is dis- 

inct to the CNN approach. At the same time transformers lack 

ome inductive biases such as translation equivariance, locality and 

ave issues related to the features’ scale. Recently proposed Swin 

ransformers [34] address some of these issues by hierarchical rep- 

esentation and strong augmentation to perform very well even 

ithout pre-training on larger datasets (cf. Table 9 ). This excellent 

erformance, surpassing that achieved by our model, is obtained 

y using more sophisticated augmentation techniques and more 

raining epochs. 

. Object detection and segmentation 

Representations learned from features expressed via harmonic 

asis are versatile and can serve well for transfer learning. We 

emonstrate here that popular vision architectures relying on har- 

onic backbones provide a notable improvement in accuracy com- 
Table 11 

Mean average precision for different backbones and detector ty

transformed to FPNs. 

Backbone Type 

Box A

12 epochs 

ResNet-50 Faster 36.4 

Harm-ResNet-50 Faster 37.2 

ResNet-50 Retina 35.6 ∗

Harm-ResNet-50 Retina 36.3 

ResNet-101 Faster 38.5 

Harm-ResNet-101 Faster 39.7 

ResNet-101 Retina 37.7 ∗

Harm-ResNet-101 Retina 39.0 

ResNet-50 Mask 37.3 ∗

Harm-ResNet-50 Mask 38.1 

ResNet-101 Mask 39.4 ∗

Harm-ResNet-101 Mask 40.7 

∗scores reported by Chen et al. [41] . 

9

ared to the use of standard convolution-based backbone mod- 

ls. To this end we assess the performance of harmonic networks 

n object detection, instance and semantic segmentation tasks. For 

bject detection, the popular single stage RetinaNet [35] and mul- 

istage Faster [36] and Mask R-CNN [37] frameworks are built 

pon our harmonic ResNet backbones. The semantic segmenta- 

ion pipeline extends these backbones to DeepLabV3 [38] mod- 

ls. A set of experiments is conducted on the datasets Pascal VOC 

39] ( Section 5.1 ) and MS COCO [40] ( Section 5.2 ). 

.1. Object detection on pascal VOC 

We extend PyTorch implementation provided by Chen et al. 

41] and train Faster R-CNN model based on our harmonic ResNets 

ith 50 and 101 layers. Region proposal network (RPN) is ap- 

lied on the feature pyramid [42] constructed from the network 
pes on MS COCO 2017 validation set. All backbones are 

P ↑ Mask AP ↑ 
24 epochs 12 epochs 24 epochs 

37.7 ∗ – –

38.4 – –

36.4 ∗ – –

36.8 – –

39.3 – –

40.3 – –

38.1 ∗ – –

39.2 – –

38.5 ∗ 34.2 ∗ 35.1 ∗

38.9 34.7 35.5 

40.3 ∗ 35.9 ∗ 36.5 ∗

41.5 36.8 37.3 
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Table 13 

Intersection over Union (IoU) of DeepLabV3 architecture semantic segmentation on Pascal VOC 2012 validation set. IoU 

shown is the median of 5 trials ± empirical std. dev. 

Backbone Baseline Harm converted Harm pre-trained Benchmark 

ResNet-50 76.31 ± 0.07 76.65 ± 0.07 77.40 ± 0.08 –

ResNet-101 78.31 ± 0.07 77.92 ± 0.11 79.49 ± 0.29 77.21 [38] 

Fig. 8. Examples of semantic segmentation on Pascal VOC 2012 validation images. The first 4 rows show where harmonic network is more successful than the baseline, 

while the last row displays case where it fails. DeepLabV3 with ResNet-101 backbone is used. 
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ayers. RPN layers as well as regression and classification heads 

re randomly initialized and use standard (non-harmonic) convolu- 

ion/fully connected layers. Images are resized to set their shortest 

ides at 600 pixels. The Faster R-CNN is trained with the learn- 

ng rate lr = 0 . 01 × (bs/ 16) dependant on a particular batch size

s . Models are trained on the union of VOC 2007 training and val-

dation sets with about 50 0 0 images for 17 epochs, decreasing the 

earning rate by a multiplicative factor of 0.1 after epoch 15. We 

rain the networks with original and harmonic backbones using 

he same setting. Additionally, these models are also trained on the 

ombination of training sets of VOC 2007 and VOC 2012, consisting 
10 
f about 16 500 images, for 12 epochs with learning rate dropped 

t epoch 9. All models are tested on VOC 2007 test set and the 

fficial evaluation metric, the mean average precision (AP), is aver- 

ged over 5 runs. Final results are reported in Table 10 for different 

epths of ResNet backbones and configurations of the dataset. 

From Table 10 we conclude that the models built on our 

armonic backbones surpass their conventional convolution-based 

ounterparts in all configurations as well as on both training sets. 

e observe a consistent improvement due to the Harmonic archi- 

ecture: by 1% AP for ResNet-50 and 0.8% AP in case of ResNet-101 

sing the Faster R-CNN architecture. 
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.2. Object detection on MS COCO 

Common Objects in COntext (COCO) dataset poses a greater 

hallenge due to a higher variety of target classes and gener- 

lly smaller object sizes. The networks are trained following the 

tandard procedure, images resized so that their shortest side 

s 800 pixels. The learning rate is initialized by linear scaling 

ethod lr = 0 . 02 × (bs/ 16) using default hyperparameters set up 

y Chen et al. [41] . All models are trained with standard 12 (24)

pochs schedules with learning rate decreased by 10 after epochs 

 (16) and 11 (22). Table 11 shows that the use of our harmonic

ackbones consistently improves both single-stage RetinaNet and 

ulti-stage Faster and Mask R-CNN detectors by 0.7–1.3 AP with 

dentical training procedures employed. 

The state-of-the-art detectors rely on a cascade of detection 

eads with progressively increasing IoU thresholds, which refines 

he bounding boxes and thus improves localization accuracy [43] . 

n Table 12 , we report comparisons achieved with the Cascade R- 

NN architecture, trained using the 20-epoch schedule suggested 

n [43] . The use of our harmonic ResNet-101 provides a 1.0 AP 

mprovement for object detection similar to Faster & Mask R- 

NNs, and it also improves instance segmentation AP by 0.7 (see 

able 12 ). Moreover, a similar improvement of 1.1 AP is observed 

or hybrid task cascade R-CNN [44] that alters the mask refinement 

rocedure and exploits semantic segmentation information to in- 

orporate additional contextual information. 

These experiments on object detection and localization demon- 

trate that the harmonic versions of the backbones provide a 

eaningful improvement of about 1.0 AP in terms of both bound- 

ng boxes and masks to the state-of-the-art detection architectures. 

ur harmonic networks retain this improvement from the purely 

lassification task through the transformation to the Feature Pyra- 

id Networks (FPNs). 

.3. Semantic segmentation on pascal VOC 

We now assess our proposed harmonic networks on the task 

f semantic segmentation using the Pascal VOC 2012 benchmark. 

raining images are augmented into a set of 10,582 samples as 

n [38] . Performance is measured in terms of intersection over 

nion (IoU) on a large validation set consisting of 1449 images. 

he segmentation is performed using the DeepLabV3 architecture 

38] . We extend PyTorch implementation of this model 1 and re- 

rain baseline models with ResNet-50 and ResNet-101 backbones 

or 30,0 0 0 iterations with batch size 16, learning rate 0.1 and out- 

ut stride parameter equal to 16. We replace the backbone model 

f the segmentation network with harmonic ResNets using two 

ettings for the backbone: (i) converting from the original back- 

one models or (ii) taking a harmonic models pre-trained on Im- 

geNet (90 epochs), see Table 6 . The results are summarized in 

able 13 . The DeepLabV3 models with harmonic backbones pre- 

rained on ImageNet improve IoU scores by approximately 1.1%. 

his experiment also validates the application of harmonic blocks 

ith dilated convolution, which is dissimilar to the classical dense 

ormulation in that the spatial correlation patterns may be weaker 

ue to dilatation. DeepLabV3 with harmonic backbone has the 

trongest average improvement on classes “chair” (+9.5%), “sheep”

+3.9%), “boat” (+3.2%), “cow” (+2.9%) and “tvmonitor” (+2.9%), and 

erforms worse on “pottedplant” ( −3.4%) and “aeroplane” ( −0.8%). 

 selection of image samples from these classes is presented in 

ig. 8 showing how harmonic networks impact image segmen- 

ation quality. We observe some non-trivial improvements of the 

egmentation masks due to the use of harmonic blocks. 
1 https://github.com/VainF/DeepLabV3Plus-Pytorch . 

11 
. Conclusion 

We have presented a novel approach to explicitly incorpo- 

ate spectral information extracted via DCT into CNN models. We 

ave empirically evaluated the use of our harmonic blocks with 

he well-established state-of-the-art CNN architectures, and shown 

hat our approach improves results for a range of applications in- 

luding image classification (0.7–1.2% accuracy on ImageNet), ob- 

ect detection (0.7-1.1 AP on Pascal VOC and MS COCO) and se- 

antic segmentation (1.1% IoU on Pascal VOC). We further estab- 

ish that the memory footprint of harmonic nets is similar and the 

omputational complexity increases only slightly when compared 

o the standard convolutional baseline architectures. We ascertain 

hat harmonic networks can be efficiently set-up by converting the 

retrained CNN baselines. The use of DCT allows one to order the 

armonic block parameters by their significance from the most rel- 

vant low frequency to less important high frequencies. This en- 

bles efficient model compression by parameter truncation with 

nly minor degradation in the model performance. Current efforts 

im at investigating robustness of harmonic networks and at com- 

ressing weights according to correlations across filters in depth 

irection. 
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