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Abstract
This study provides a long-term (1891–2014) global assessment of precipitation trends using data from two station-based 
gridded datasets and climate model outputs evolved through the fifth and sixth phases of the Coupled Model Intercomparison 
Project (CMIP5 and CMIP6, respectively). Our analysis employs a variety of modeling groups that incorporate low- and 
high-top level members, with the aim of assessing the possible effects of including a well-resolved stratosphere on the 
model’s ability to reproduce long-term observed annual precipitation trends. Results demonstrate that only a few regions 
show statistically significant differences in precipitation trends between observations and models. Nevertheless, this pat-
tern is mostly caused by the strong interannual variability of precipitation in most of the world regions. Thus, statistically 
significant model-observation differences on trends (1891–2014) are found at the zonal mean scale. The different model 
groups clearly fail to reproduce the spatial patterns of annual precipitation trends and the regions where stronger increases 
or decreases are recorded. This study also stresses that there are no significant differences between low- and high-top mod-
els in capturing observed precipitation trends, indicating that having a well-resolved stratosphere has a low impact on the 
accuracy of precipitation projections.
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1  Introduction

Precipitation is one of the key climatic variables contrib-
uting to the water and energy balance across spatial and 
temporal scales, ranging from local catchments to global-
scale hydrology. Due to their role in accelerating extreme 
weather events like drought and floods, precipitation 
anomalies can have significant hydrological, environmen-
tal and socioeconomic implications. As such, it is highly 
relevant to identify possible long term trends in precipita-
tion, as this knowledge can contribute to a better under-
standing of many ecosystem processes and functions (e.g. 
land aridity, vegetation greening and browning, crop yield, 
water resources availability, biodiversity, etc.). In the same 
context, knowledge about possible future changes in pre-
cipitation is essential to inform societal and ecological 
adaptation. For this purpose, outputs from climate models, 
with different configurations and scenarios of greenhouse 
gas (GHG) emissions, have been widely used to assess 
possible future precipitation changes (e.g. Orlowsky and 
Seneviratne 2013; Huang et al. 2014; Swain and Hayhoe 
2015; Raut et al. 2017; Martin 2018). These models simu-
late the possible complex feedbacks in the global climate 
system, including interactions between ocean, land, and 
atmosphere processes (Räisänen 2007; Dirmeyer et al. 
2013). Simulations from these models span a wide variety 
of climate variables, including precipitation.

Different climate model simulation experiments under-
pin the reports of the Intergovernmental Panel on Climate 
Change (IPCC). The third phase of the Coupled Model 
Intercomparison Project (CMIP3) was developed for the 
Fourth Assessment Report (AR4) of the IPCC (Meehl 
et al. 2007). A few years later, simulations of the fifth 
phase (CMIP5) were delivered in 2011 (Taylor et al. 2012) 
to coincide with the IPCC’s Fifth Assessment Report, fol-
lowed by those of the sixth phase (CMIP6) (Eyring et al. 
2016). Based on these model experiments, several studies 
have assessed future scenarios of precipitation at global 
(e.g. Orlowsky and Seneviratne 2013) and regional (e.g. 
Mariotti et al. 2008; Su et al. 2013) scales. For example, 
using CMIP5 models under high emission scenarios, dif-
ferent studies have suggested an increase in precipitation at 
high latitudes of the Northern Hemisphere over the coming 
century, while general dryness dominates over subtropical 
regions (e.g. the Mediterranean, southern North America, 
central America, and South Africa) (e.g. Dufresne et al. 
2013; Knutti and Sedláček 2013; Orlowsky and Senevi-
ratne 2013; Cook et al. 2014; Asadi Zarch et al. 2015). 
The uncertainty associated with these future simulations 
is commonly assessed using the spread among different 
emission scenarios, projections, and models (Schaller 
et al. 2011; Alexander and Arblaster 2017), with a high 

spread suggesting an increase in the uncertainty of projec-
tions (Orlowsky and Seneviratne 2013; Zhao et al. 2015b).

A necessary step to ensure the reliability and perfor-
mance of climate models is to validate their skill and accu-
racy in reproducing near-present climate. This procedure 
is typically implemented by comparing model outputs for 
a historical period with available ground-based climate 
observations. In this context, several studies have con-
firmed the greater skill of climate models in reproducing 
characteristics (e.g. climatologies, anomalies, and magni-
tude and spatial patterns of trends) of air temperature over 
precipitation. (e.g. van Oldenborgh et al. 2013; Kumar 
et al. 2013; Zhao et al. 2015b; Lee et al. 2019). In fact, 
climate models show limited skill in capturing long-term 
observed precipitation variability (e.g. van Oldenborgh 
et al. 2013; Chen and Frauenfeld 2014).

Several comprehensive studies have attempted to com-
pare long-term precipitation trends from observations with 
model simulations, mainly CMIP5 models (e.g. Kumar et al. 
2013; Nasrollahi et al. 2015; Zhao et al. 2015a; Knutson 
and Zeng 2018). To date, a global assessment of long-term 
precipitation trends using CMIP6 simulations is still lack-
ing, albeit with the availability of some preliminary regional 
evaluations (e.g. Rivera and Arnould 2020; Xin et al. 2020; 
Peña-Angulo et al. 2020). In addition, very few studies have 
assessed the possible role of model vertical structure in 
determining their capacity to reproduce precipitation trends. 
This includes, for example, the possible effects of the verti-
cal resolution and top height of the models. While some 
models (so called low-top models) are characterized by their 
coarse vertical resolution in the stratosphere and associated 
limitations in explicitly modeling climate processes in this 
layer (possibly affecting stratosphere-troposphere coupling), 
other models (so called high-top models) include a well 
resolved stratosphere (Charlton-Perez et al. 2013; Hurwitz 
et al. 2014). Numerous studies have evaluated the effective-
ness of high-top models to capture the observed signal in 
precipitation and the different atmospheric mechanisms 
driving multidecadal variability (e.g. Cagnazzo and Man-
zini 2009; Lee and Black 2014; Wei et al. 2018a; Haase et al. 
2018). Others indicate that models without a well-resolved 
stratosphere show limitations in identifying atmospheric 
circulation mechanisms (Deser et al. 2012; Osprey et al. 
2013). According to Scaife et al. (2012), future changes in 
stratospheric circulation are likely to double the increase 
in winter precipitation over Western and Central Europe, 
compared to projections from low-top models. Similarly, 
Marsh et al. (2013) compared simulations from low- and 
high-top versions of the NCAR Community Earth System 
Model (CESM), suggesting systematic differences between 
these two types of models in reproducing some variables like 
wind and precipitation, especially in the extratropics. These 
earlier findings emphasize that stratosphere–troposphere 
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coupling could be a major source of uncertainty in climate 
model projections of precipitation.

In the pursuit of this background, the main aims of this 
study are to: (i) explore the extent of agreement in both the 
magnitude and spatial distribution of precipitation trends 
from observations and climate simulations, (ii) compare 
precipitation signals in CMIP5 and CMIP6 using multi-
model groups, and (iii) assess improvements in reproducing 
observed precipitation trends in climate models with and 
without a well-resolved stratosphere (i.e. low-top vs. high-
top models).

2 � Data

This study employs observed annual precipitation data from 
the Global Precipitation Climatology Centre (GPCC) dataset 
(https://​www.​dwd.​de/​EN/​ourse​rvices/​gpcc/​gpcc.​html) at a 
2.5º grid resolution. The GPCC dataset is maintained by the 
Deutscher Wetterdienst, German Weather Service under the 
auspices of the World Meteorological Organization (WMO). 
Due to the uneven distribution of gauged data from many 
national meteorological networks in the early decades of 
the twentieth century, our analysis for these earlier decades 
(i.e. from 1891) is restricted to regions with higher density 

of observations (e.g. North America, Europe, Middle East, 
North and South Africa, Australia, India, the La Plata basin 
in South America, and some sparse regions in Central Asia, 
Central America and East Asia) (See colored regions in the 
first column of Fig. 1) and, accordingly, more reliable out-
puts from interpolation algorithms. Our analysis is limited to 
the year 2014, which corresponds to the end of the historical 
CMIP6 model simulations.

We use the available historical monthly simulations 
with observed radiative forcing from a set of CMIP5 and 
CMIP6 models spanning the period 1891–2014. Because 
each model has a different number of ensemble members 
(ranging from one to ten, with the most common situation 
being one single member per model), a single member 
per model is used to maintain model homogeneity. A list 
of CMIP models employed is available in Table S1. Given 
that historical simulations of the CMIP5 are only available 
up to 2005, simulations from the RCP8.5 scenario are used 
for the period 2006–2014. This is justified as the evolution 
of CO2 observations from 2006 to 2014 resembles those 
used in the RCP8.5 experiment more than other scenarios 
(Schwalm et al. 2020). The spatial resolutions of the CMIP 
models vary considerably, with the CMIP6 models hav-
ing improved spatial resolution over the CMIP5 models 
(Table S1). High-resolution climate models were shown to 

Fig.1   a Spatial distribution of the magnitude of change (in z-units/
decade) of annual precipitation using GPCC observations and b Spa-
tial distribution of their statistical significance (using a p-level of 
0.05 for statistical significance, the dark blue and dark red colours 
show areas with statistically significant positive and negative trends, 

respectively, while the light blue and yellow colours denote regions 
with statistically non-significant increases and decreases, respec-
tively). Results are presented for the periods 1891–2014 and 1951–
2014. Due to the scarcity of GPCC data, white areas were not used 
for comparison

https://www.dwd.de/EN/ourservices/gpcc/gpcc.html


2828	 S. M. Vicente‑Serrano et al.

1 3

be capable of reproducing precipitation with the same skill 
as regional climate models (Demory et al. 2020). Nonethe-
less, all models were resampled to a common grid interval 
of 2.5° using a bilinear interpolation approach to match with 
the selected resolution of the GPCC data. The aim was to 
have a comparable spatial resolution to CMIP5 models and a 
common spatial resolution for all models, allowing for direct 
comparisons between all models.

As the gridded precipitation data, climate model data are 
aggregated into annual series. To assess the ability of the 
well-resolved stratosphere models to represent observed 
long-term precipitation trends, models are divided into two 
broad categories: high-top and low-top models. To define a 
model as a high-top or low-top model, the 1 hPa lid height 
was used following Charlton-Perez et al. (2013). Specifi-
cally, we assess whether there are significant differences 
in reproducing long-term observed precipitation trends 
between the two types of models (i.e. low-top vs. high-top 
models). We also derive trend results for the complete group 
of models (i.e. including both types of models).

3 � Methods

In literature, it is well-established that the prediction and 
simulation of precipitation is a challenging task, with large 
uncertainties from different sources. On one hand, total pre-
cipitation can vary largely among models (Su et al. 2013). 
On the other hand, overestimation or underestimation biases 
affect large areas of the world (Brands et al. 2013; Mehran 
et al. 2014; Aloysius et al. 2016). In addition, precipitation 
is characterized by its high spatial and temporal variability. 
As we are more interested in trends than in the total volumes, 
and to account for these issues, we decided to standardize 
the precipitation series to have an average equal to zero and 
a standard deviation equal to one. This procedure makes 
precipitation series comparable over space and time, allow-
ing consideration of the strong spatial and temporal varia-
tions of precipitation worldwide. Importantly, based on these 
standardized precipitation series, a comparison between 
observations and model outputs was feasible, both spatially 
and temporally. Following Knutson and Zeng (2018), pre-
cipitation series were standardized by means of the widely 
used procedure of calculating the Standardized Precipitation 
Index (SPI) (McKee et al. 1993) through fitting the data to 
a gamma distribution. This procedure was applied to the 
series for both observations and simulations of the different 
individuals of each group of models.

To analyze changes in annual precipitation series from 
both observations and model outputs, we employed a modi-
fied version of the non-parametric Mann–Kendall statistic 
(Hamed and Rao, 1998; Yue and Wang, 2004). This statistic 
accounts for the possible effect of autocorrelation on trend 

detection by returning the corrected p values after account-
ing for temporal pseudoreplication. To facilitate direct com-
parison between different regions worldwide, we presented 
the trend results using four categories of trends: positive and 
significant (p < 0.05), positive and non-significant (p > 0.05), 
negative and non-significant (p > 0.05) and negative and sig-
nificant (p < 0.05).

It is quite difficult to establish a robust comparison 
between trends in series of observations and a group of 
model simulations. Some studies have made comparison 
between observations and model simulations by means of 
multimodel averages (e.g. Orlowsky and Seneviratne 2013; 
Sillmann et al. 2013; Kumar et al. 2013; Dai and Zhao 2017). 
However, in comparison to observed series, this approach 
dramatically reduces internal variability and the standard 
deviation of the resulting average series from a group of 
models, making it difficult to establish a comparison with 
observed series characterized by strong natural variability. 
For this reason, we calculated the trend for each independ-
ent model and computed an average of these magnitudes 
for all models. Although this approach reduces the range of 
precipitation changes derived from the models, as compared 
to those of observations, it allows for a comparison of the 
spatial patterns of the magnitudes of change between obser-
vations and climate models. The percentage of models show-
ing the same trend category, as compared to a multi-model 
average, was also computed. Herein, four trend categories 
were considered, including statistically positive (p < 0.05), 
statistically negative (p < 0.05), statistically non-significant 
positive (p > 0.05), and statistically non-significant negative 
(p > 0.05) trends. To assess the magnitude of change in pre-
cipitation (z-unit/decade), we used the least squares regres-
sion model, in which time was considered as an independ-
ent variable, while precipitation represented the dependent 
variable. The slope of the regression indicated the amount 
of change, with a higher slope suggesting greater changes 
and vice versa. As the identification of hydroclimatic trends 
is strongly impacted by the selection of the base period for 
analysis (Hannaford et al. 2013; Vicente-Serrano et al. 2020; 
Peña-Angulo et al. 2020), trends were assessed for two dif-
ferent periods: 1891–2014, and 1951–2014.

In addition, we considered the series of observations as a 
member of each of the group of models. This method is used 
to determine the position of the trends in the observations 
in relation to the trends in the members (the independent 
model runs). This enables a statistical analysis of the pos-
sible differences between trends in observations and model 
outputs. In this context, it is acceptable to infer that changes 
in observed precipitation are significantly (p 0.05 two-tails) 
different from those of the group of models when the mag-
nitude of change in the observations is above the 95th or 
below the 5th percentiles of changes suggested by the differ-
ent members of a large-enough group of models. A similar 
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procedure has been adopted in earlier studies (e.g. Nasrollahi 
et al. 2015; Knutson and Zeng 2018).

Also, we compared the magnitude of change in the obser-
vations with the different independent model simulations 
by looking at the position (percentile) of the magnitude of 
trend in the observations, as compared to the entire range of 
the models. This approach allows determining if the models 
overestimate or underestimate precipitation patterns. The 
significance of the differences between the regression slopes 
of the observations and the independent models and also 
between the observations and the average group of models 
was assessed by means of a statistical test for the equality of 
regression at a confidence interval of 95% (p < 0.05)(Pater-
noster et al. 1998). Following this approach, we computed 
the percentage of independent models that showed signifi-
cant differences in the magnitude of precipitation changes, 
compared to observed precipitation. Finally, to remove the 
noise at the spatial level, we compared trends for different 
latitude bands. To do so, we compared the observed trend 
with the trend of each group of the CMIP5 and CMIP6 mod-
els. We utilized a two-sample t-test, at the 95% significance 
level, to compare the precipitation trends between observa-
tions and models in the various latitudinal bands and explore 
whether there are significant differences between them.

4 � Results

Figure 1 illustrates the spatial distribution of annual precipi-
tation trends calculated from GPCC precipitation and their 
significance. Annual precipitation (GPCC) showed nega-
tive and significant trends in small areas of the Near East, 
West Africa, North Africa, and some regions of Chile from 
1891 to 2014. On the other hand, Northern Europe, parts of 
northeastern North America and the La Plata basin in South 
America exhibited the most significant increase. Large areas 
of Central, Northern and Eastern Europe exhibited statis-
tically significant increase in annual precipitation between 
1891 and 2014. We also noted the dominance of statistically 
significant increasing trends in northwestern North America, 
North Australia, and Greenland. The dominant increase in 
North Eurasia was identified clearly from 1951 to 2014, 
while the main negative and significant trends were recorded 
for this period in Central and West Africa.

For the long term (1891–2014), the average change from 
the individual CMIP6 (Fig.  2) and CMIP5 (Figure S1) 
models depicts less spatial consistency with observations. 
In particular, simulated precipitation shows increases in 
North Eurasia, Northeast North America, and the La Plata 
basin, which are qualitatively consistent with observations. 
Rather, the majority of the world regions show more het-
erogeneous patterns with less agreement between models 
and observations. Accordingly, a non-significant statistical 

relationship was noted between patterns of change in obser-
vations and those of the various individual models (Fig. 3 
and Figure S2). For 1891–2014, the Mediterranean region, 
east China, and the Philippines showed the largest decrease 
in the average change in the different CMIP6 models. This 
decrease is more pronounced in low-top models than in 
high-top models. This decrease was also evident for various 
CMIP5 groups of models, with precipitation decreasing in 
Central America, southern Africa, Bangladesh, and Indo-
nesia. Given the internal climate variability and the incon-
sistent behavior of observations and models, the magnitude 
of trends between observations and models is expected to 
differ. A spatial comparison clearly demonstrates that the 
magnitude of change in annual precipitation from models 
tends to reinforce precipitation decrease in some regions of 
the world, particularly in subtropical areas in CMIP5's and 
in low-top models (Figs. 2 and S1). Between 1951 and 2014, 
there is noticeable spatial divergence in precipitation trends 
between model averages and observations, especially in 
South America, West North America, Africa, the Mediter-
ranean, Australia, amongst other regions. Such divergence is 
expected to be larger in the trend analysis for shorter periods 
since the relative contribution of internal variability to the 
overall trend is typically larger than it is for longer trends 
(e.g., 1891–2014). The spatial relationship between model 
averages and observations is statistically non-significant for 
both CMIP5 and CMIP6 experiments, as well as low- and 
high-top models.

Thus, the average differences between the individual 
models and the observations seems to be substantial in sev-
eral world regions, with a clear underestimation of long-term 
(1891–2014) observed precipitation trends, particularly in 
North and East Europe and, central and West Africa, most 
of Russia, South and North America. When analyzing trends 
for different latitudinal bands, the spatial differences between 
annual precipitation trends in observations and model simu-
lations are clearly identified (Figs. 4 and S3–S5). For the 
period 1891 to 2014, the different groups of CMIP6 models 
show that models underestimate precipitation increases at 
high latitudes in the Northern Hemisphere (above 55° N). 
We found statistically significant differences between the 
average trends in observations and the individual model sim-
ulations for both low- and high-top models. A similar picture 
can be seen for the northern latitudes between 40° and 55°. 
The CMIP6 models perform better at mid-latitudes and in 
tropical and subtropical areas, with no statistically signifi-
cant differences between trends in observations and models, 
regardless of using low- or high-top models (not shown). 
The CMIP5 models show a similar pattern, though they 
show statistically significant differences between observa-
tions and models in more latitudinal bands than the CMIP6 
models (Figure S3). This pattern varies between latitudinal 
bands for the period 1951–2014 but there are no relevant 
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differences with the behavior of the CMIP6 models. No mat-
ter the latitudinal band, there is a domain of statistically 
significant differences in average trends between observa-
tions and models.

All these results contrast with the few significant differ-
ences in annual precipitation trends between models and 
observations (Figs. 5 and S6). This is simply because there 
is a dominance of non-significant differences between the 
trends in the individual models of each group of models and 
the series of observations (Figure S7 and Figure S8). Thus, 
for the period 1891–2014, with the exception of a few areas 
in Eastern Europe, Egypt and La Plata basin, the rest of the 
regions show a low percentage of models showing statisti-
cally significant differences with the trend of observations. 
With the exception of Central and West Africa, there are few 

areas where a large percentage of models (> 80%) show sta-
tistically significant differences in trends between 1951 and 
2014 when compared to observations. The differences in the 
spatial patterns of trends and the substantial differences in 
the average magnitude of the changes between the individual 
models and the observations, suggest that the models' abil-
ity to reproduce trend in observations is low. Nevertheless, 
the small number of statistically significant differences in 
annual precipitation trends between models and observa-
tions seems to suggest the opposite. The problem is that pre-
cipitation is characterized by strong interannual variability, 
making it difficult to obtain statistically significant differ-
ences between two series characterized by large interannual 
variability. Nevertheless, although differences are mostly 
non-significant, in most of the world's regions, the annual 

Fig. 2   Spatial distribution of the average magnitude of change (in 
z-units/decade) in annual precipitation using different CMIP6 mod-
els, considering low-top, high-top, and all models. Changes were ana-

lyzed for the periods 1891–2014 and 1951–2014. Due to the scarcity 
of GPCC data, white areas were not used for comparison
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precipitation trend, as recorded in the majority of models, 
differs from the observed trends. Figure 6 and Figure S9 
show the spatial distribution of the percentile of trends 
in annual precipitation observations in comparison to the 
trends in the independent models of each CMIP6 and CMIP5 
group of models, respectively. The first remarkable feature 
is the small differences between the spatial patterns in the 
groups of low- and high-top models and between CMIP5 
and CMIP6 models, which suggest similar skill among the 
different groups of models. For the period 1891–2014, in the 
majority of the world regions with available data, the mod-
els tend to underestimate or overestimate the magnitude of 
change of annual precipitation (Tables 1 and S1). This would 
affect both regions with increasing or decreasing annual pre-
cipitation in observations, and it means that, despite the fact 
that there are few statistical differences between trends in 
individual models and trends in observations, the models 
are primarily overestimating decreasing trends in annual 
precipitation in southwestern Europe, southern Africa, and 
western Australia, and underestimating increasing annual 
precipitation trends in western North America, the la Plata 
basin, western Europe, Scandinavia, and western Russia. For 
the period 1951–2014, most of the models overestimate pre-
cipitation increase in the Sahel, central and western Africa, 
the middle East and eastern Asia, and they underestimate 
precipitation increase in large areas of north Eurasia, France, 
West Australia and large areas of North and South America.

The misrepresentation of the annual precipitation trends 
in different groups of models is also identified, by means of 
the most common trend significance category (Fig. 7 and 
Figure S10). In comparison to the spatial patterns illus-
trated in Fig. 1B, where large areas of northern and west-
ern Europe, northern Eurasia, the La Plata basin, western 
North America, central Asia, Australia, etc., showed positive 
and statistically significant trends, the different CMIP5 and 
CMIP6 groups of models show a dominant pattern charac-
terized by non-significant trends in these areas. Thus the 
dominant pattern of the models would clearly underestimate 
regions with significant annual precipitation trends. In com-
parison with the CMIP5 models, the CMIP6 models tend 
to reduce the areas with dominance of significant trends. 
Nonetheless, in some areas where observations do not show 
statistically significant changes, CMIP5 models show domi-
nant negative significant trends (e.g. Bangla Desh, Indone-
sia, the Iberian Peninsula). The same dominant behavior is 
recorded for the most recent period (1951–2014). Thus, it 
is paradoxical that the regions where the models tend to 
record dominance of statistically and significant positive 
trends agree with areas in which observations show a domi-
nant negative trend such as in the Sahel. Moreover, the large 
areas with positive and significant trends in North Eurasia, 

West China and Northwest Australia are characterized by 
the dominance of non-significant trends in both CMIP5 and 
CMIP6 model experiments. It is also a paradox that only the 
low-top CMIP5 models record the dominance of positive 
and significant trends in northern Eurasia, while the rest of 
the areas where low-top CMIP5 models show dominance 
of significant trends (negative in North South America and 
positive in West Africa and Central Asia) do not correspond 
to significant trends in observations. In general, the sign and 
significance of annual precipitation trends in observations 
are reproduced by few models in each group (Figs. 8 and 
S11). Few areas in the group of CMIP6 models have more 
than 60% of the models with the same sign and significance 
of observations. CMIP5 models tend to show the same pat-
tern, although the group that includes both low- and high-top 
models has higher percentages in eastern North America 
and Western Europe for the period 1951–2014. Thus, there 
is dominance of the world regions, where only few models 
agree on the trend's sign and significance, compared to only 
a few areas where most models agree on the trend in obser-
vations (Figs. 9 and S12).

5 � Discussion

This study provides a global evaluation of long-term annual 
precipitation trends from observations, as compared to 
model-based simulations from the CMIP5 and CMIP6 
experiments. Specifically, this assessment considered data 
spanning the periods 1891–2014 and 1951–2014. Our 
analysis accounts for two different types of models depend-
ing on their representation of the stratosphere (i.e. low-top 
and high-top), with the aim of determining whether a good 
representation of this atmospheric layer may improve the 
ability of CMIP models to reproduce observed precipitation 
changes. An assessment of this possible influence is crucial 
for evaluating the capacity of climate models to determine 
long-term precipitation trends under future precipitation 
projections.

It should be noted that making a direct comparison 
between observed and modeled precipitation trends has 
some limitations. In this study, we included observations as 
an additional member in the different group of models: an 
approach that was adopted in earlier studies (e.g. Knutson 
and Zeng 2018; Peña-Angulo et al. 2020). Nevertheless, due 
to the large range of variability introduced in each group 
of models, this method can introduce some uncertainties. 
While there are noticeable differences in the spatial patterns 
of trends in observations and the dominant patterns of the 
different group of models (as represented by the average 
of the trends), no statistically significant differences exist 
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between trends in observations and model members. Excep-
tionally, in a few cases, the “observation member” might be 
placed outside the range of trends suggested by the majority 
of models (Nasrollahi et al. 2015).

Nevertheless, this result cannot support that models pro-
vide a good assessment of trends in observations. Although 
there are very few cases in which there are statistically 
significant differences in the magnitude of trends between 
models and observations, our findings suggest that, in large 
regions of the world, the majority of models tended to either 
overestimate or underestimate the trend magnitude found in 
observations. This is evident, given that the annual precipita-
tion trend in observations corresponds mostly to very low or 
very high percentiles in comparison to the trend magnitudes 
suggested by the different members of the group. In this 
context, recalling that simulated changes in precipitation 
rarely differ significantly from observations, due to the low 
signal-to-noise ratio presented in local precipitation changes, 
the simple assessment of statistical significant differences 
between observations and models is a poor approach (Bhend 
and Whetton 2013). This effect was demonstrated in regions 
with high interannual precipitation variability, such as the 
Western Mediterranean, where earlier studies showed that 
both CMIP3 and CMIP5 models simulate more drying than 
observations, albeit with the absence of statistically signifi-
cant differences in the magnitude of these trends between 
observations and individual ensemble members (Peña-
Angulo et al. 2020). For this reason, although there is a prev-
alence of statistically non-significant differences in the trend 
magnitude of precipitation between observations and model 
simulations, it cannot be inferred that models are capable of 
reproducing observed trends. Indeed, our study found that 
model simulations generally show poor skill in replicating 
trends in observations and that annual observed precipitation 
trends in many parts of the world is generally overestimated 
or underestimated by the climate models. In addition, the 
patterns of observed and modeled precipitation trends were 
less consistent over space. Overall, our findings support pre-
vious studies that demonstrated low agreement between the 
magnitude of observed and modeled precipitation changes 

(e.g. Asadieh and Krakauer 2015; Bishop et al. 2018), as 
well as inconsistent spatial patterns of these changes (e.g. 
van Oldenborgh et al. 2013; Kumar et al. 2013; Sheffield 
et al. 2013; Zebaze et al. 2019).

Moreover, we find that the new CMIP6 models do not 
substantially improve the sign and statistical significance 
of the magnitude and spatial patterns of trends, compared 
to CMIP5 models. In some regions, like the West Sahel, the 
models simulate poorly the observed long-term precipita-
tion trends. The dominant decrease in observed precipita-
tion from 1951 to 2014 contrasts with the models' overall 
positive trend (both high- and low-top models in CMIP5 and 
CMIP6), which is characterized by a strong increasing trend. 
We also detected a long-term precipitation trend in areas of 
the high latitudes of the Northern Hemisphere that is con-
sistent with anthropogenic influences, as indicated by some 
previous studies (e.g. Bhend and von Storch 2008; Wan 
et al. 2015). Nevertheless, we must emphasize that, even 
in these areas, there are inconsistencies with model simula-
tions, mostly for the long term, with a general underestima-
tion of the annual precipitation trend by the different groups 
of models. Also, there are substantial differences between 
the long-term evolution of observations and model simula-
tions in the mid-latitude subtropical regions (i.e. southern 
North America, Central America, northern South America, 
East Asia and the Mediterranean). Models in these regions 
showed stronger drying, which contradicts long-term obser-
vations. Some exceptions (i.e. drying suggested by models 
coincide with drying from observations) were found in a few 
regions, mainly close to the Near East (Israel and Syria), 
where changes have been attributed to anthropogenic forcing 
(Knutson and Zeng 2018). The expansion of Hadley cells in 
the Southern and Northern Hemispheres could explain the 
significant drying of these regions in models (Staten et al. 
2018). Nevertheless, the CMIP5 models show limitations 
in reproducing robustly subtropical expansion (Davis and 
Birner 2016), and they appear to amplify the possible effects 
of long-term anthropogenic forcing relative to natural vari-
ability that characterizes Hadley cells movement (Bronni-
mann et al. 2015; Grise et al. 2018).

In general, the existing differences between trends in 
observed precipitation and model simulations for different 
long- and short-term periods can probably be linked to a 
misrepresentation of the atmospheric processes driving dec-
adal variability in model simulations (Sheffield et al. 2013; 
Chen and Frauenfeld 2014). For example, Gu et al. (2015) 
and Wei et al. (2018b) have shown that most models are 
inaccurate in simulating the impacts of the Pacific Decadal 
Oscillation (PDO) on the western Pacific subtropical high 
and the East Asian summer monsoon. Models also show 

Fig. 3   Scatterplots showing the spatial relationship between the mag-
nitude of annual precipitation change in GPCC observations and the 
average magnitude of change derived from each CMIP6 individual 
models. Colours represent the density of points with red colours 
showing the highest densities (legends show the frequency of grid 
points). The significance of the correlation was obtained using a boot-
strap method. A total of 1000 random samples of 30 data points each 
were extracted, from which correlations and p values were obtained. 
The final significance was assessed by means of the average of the p 
values

◂
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limitations in replicating changes in the Indo-Pacific sea 
surface temperature (SST) and the Atlantic SST meridional 
gradients, which are key systems impacting precipitation 
variability in the Sahel (Biasutti et al. 2008). This could 
explain the discrepancy between observed and modelled pre-
cipitation trends from 1951 to 2014. The model representa-
tion of El Niño Southern Oscillation (ENSO) also shows 
clear differences among simulations. As such, precipitation 
biases in the CMIP5 model simulations over the western 
Pacific, the Indian Ocean, and the equatorial Pacific could 
be linked to the ENSO-related SST biases in the models (Dai 
and Arkin 2017). Moreover, the position of the Northern 
Annular Mode (NAM) and the North Atlantic Oscillation 
(NAO) is not well represented in precipitation simulation 
models, as reported by previous studies (Bladé et al. 2012; 
Kelley et al. 2012). This would reinforce, for example, the 
disparity between observed and modeled precipitation 
trends in Southern Europe. In the same context, the CMIP5 
models do not adequately represent the Southern Annular 
Mode (SAM), limiting their ability to reproduce precipita-
tion trends in semiarid mid-latitude regions of the South-
ern Hemisphere (Purich et al. 2013). Sheffield et al. (2013) 
showed a wide range of model performance in reproducing 
the displacement of the tropical synoptic-scale disturbances 
in North America, making tropical cyclones unpredictable. 
In addition, they showed a large spread in the model’s ability 
to replicate ENSO impacts on the North American climate. 
In the Tibetan plateau, Duan et al. (2013) and Salunke et al. 

(2019) showed certain weaknesses of CMIP5 models for the 
reproduction of summer monsoon.

According to Deser et al. (2012), the internal atmospheric 
variability associated with the annular modes is a major source 
of uncertainty in model simulations in the middle and high lat-
itudes. It could be reasonable to consider that high-top models 
could better represent trends of precipitation at these latitudes. 
This is simply because this mechanism has been a primary 
source to explain the interannual variability of precipitation 
and its long term trends over large regions (Vicente-Serrano 
and López-Moreno 2008; Bladé et al. 2012). Nevertheless, 
in this study, there were few differences in the skill of both 
CMIP5 and CMIP6 high and low-top models in reproduc-
ing long-term observed precipitation trends. Several studies 
have indicated that accurate representation of the stratosphere 
is required to properly replicate the various atmospheric 
processes in the troposphere (Cagnazzo and Manzini 2009; 
Wei et al. 2018a; Haase et al. 2018). Low-top models do not 
explicitly reproduce stratospheric dynamical variability, which 
may have consequences for the identification of tropospheric 
impacts of the SAM and NAM, which have a major influence 
on precipitation variability at high latitudes and in subtropi-
cal regions. Using the Hadley Center Global Environmental 
Model version 2 (HCGEM2), Osprey et al. (2013) suggested 
that high-top models could better replicate the Quasi-Biennial 
Oscillation (QBO), indicating that a better representation of 
stratospheric variability in tropical and extratropical strato-
spheric modes is required. Nevertheless, based on high-top 
model simulations using the Met Office Unified Model from 

Fig. 4   Distribution of the magnitude of the annual precipitation 
trends in observations and the individual CMIP6 models from 1891 
to 2014 distributed at different latitudinal bands. The significance of 

statistical differences between trends in observations and models is 
assessed by means of the T-test (p < 0.05)
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CMIP5, Hardiman et al. (2012) showed that high-top model 
experiments enhanced the impact of atmospheric teleconnec-
tions on surface climate, particularly the response to ENSO. 
However, surprisingly, the addition of a well-resolved strato-
sphere had no effect on the annular mode index variability. 
This finding concurs with the study of Lee and Black (2014), 
which employed CMIP5 models. According to Scaife et al. 
(2012) changes in the stratospheric circulation induce a further 
shift in the tropospheric circulation. This shift in circulation 
could alter the Atlantic storm track and modify precipitation 
projections over Western and Central Europe. Our findings 
indicate minor differences between high- and low-top model 
groups, demonstrating that there is little improvement in the 

ability of the models to reproduce precipitation trends when 
considering a well-resolved stratosphere.

6 � Conclusions

This study provides a comprehensive comparison of 
long-term precipitation trends using observations and a 
set of models from two CMIP experiments (CMIP5 and 
CMIP6). Making such a comparison is challenging in the 
sense that precipitation is characterized by high interan-
nual and multidecadal variability. This study demonstrates 
that –in large regions worldwide- there are no statistically 
significant differences between observed and modeled 

Fig. 5   Spatial distribution of the average differences between the 
magnitude of change in annual precipitation of the individual models 
of each CMIP6 group of models and the magnitude of change in the 

GPCC observations. Areas with statistically significant differences 
between observations and model groups are delineated by black lines 
(90% of the models)
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precipitation trends. However, this does not imply that 
different model experiments can reproduce the observed 
trends. Rather, this finding is associated with the large 
interannual variability of precipitation, suggesting that 

the total variance explained by the dominant trend is low. 
This is evident for long-term (1891–2014) and short term 
(1951–2014) analysis.

Moreover, there is a statistically significant under-sim-
ulation of zonal mean observed increasing precipitation 
trends (1891–2014) by CMIP6 models over land regions 
with adequate data coverage (at least poleward of about 
40º N in the northern hemisphere, and from 15º S to 40º S 
in the southern hemisphere). This new key finding gener-
ally supports previous findings of under-estimated increas-
ing trends in similar regions using CMIP5 models.

In general, we found that the new experiments in 
CMIP6 do not significantly improve the representation of 
the magnitude and spatial patterns of global precipitation 
trends compared to CMIP5 models. Rather, we found that 

Fig. 6   Percentile of the magnitude of change in annual observations in comparison to the CMIP6 individual model simulations of each group. 
Percentiles were computed including observations as a member in all groups

Table 1   Percentage of the regions showing that the trend in obser-
vations is above the 0.8 percentile or below the 0.2 percentile of the 
trend of all models of the CMIP6 groups

1891–2014 1951–2014

 < 0.2  > 0.8  < 0.2  > 0.8

Low 13.3 43.03 27.9 26.5
High 16.3 42 32.2 26.8
All 15.2 42.7 30.7 27.0
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there is a spatial discrepancy between observed and mod-
eled precipitation, which is stronger in CMIP5 models. 
Similarly, no significant differences were found between 
the high- and low-top models.

When comparing individual model trends to observa-
tions, there is a large spread in model trends. Models, in 
particular, overestimate drying in mid-latitude subtropical 
regions while underestimate observed precipitation increases 

in the Northern Hemisphere, particularly in North and Cen-
tral Europe.

Based on comparisons of observations and model simu-
lations, several studies have suggested human influence on 
precipitation trends (Zhang et al. 2007; Wan et al. 2015; 
Sarojini et al. 2016; Knutson and Zeng 2018). We argue that 
large uncertainties remain, mainly due to the strong inter-
annual variability of precipitation, the lack of significant 

Fig. 7   Spatial distribution of the most frequent category of trend and statistical significance from the individual models in each one of the 
CMIP6 model groups
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observed long-term trends (Nasrollahi et al. 2015; Knutson 
and Zeng 2018; Spinoni et al. 2019), the general overes-
timation or underestimation of precipitation changes at 
the regional scale, as well as the general spatial mismatch 
between observed and modelled precipitation trends.

This study emphasizes that future projections of precipi-
tation trends from CMIP5 and CMIP6 should be viewed 
with caution because they do not adequately reproduce 
trends in observations. For example, several papers report 

that the general drying in large subtropical regions shown 
by the different groups of models is projected to magnify in 
future projections (Martin 2018; Spinoni et al. 2020; Ukkola 
et al. 2020). Nevertheless, even in these regions, these pro-
jections cannot be seen as fully robust, given the poor abil-
ity of models in reproducing long-term observed trends and 
correspondingly overestimating drying processes suggested 
by observations in these regions.

Fig. 8   Percentage of models in each CMIP6 group showing the same sign and significance of the observed annual precipitation trends
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