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Abstract: This study investigates the application of precipitation estimation from remote sensing
information using artificial neural networks (PERSIANN) for hydrological modeling over the Russian
River catchment in California in the United States as a case study. We evaluate two new PERSIANN
products including the PERSIANN-Cloud Classification System–Climate Data Record (CCS–CDR),
a climatology dataset, and PERSIANN–Dynamic Infrared Rain Rate (PDIR), a near-real-time pre-
cipitation dataset. We also include older PERSIANN products, PERSIANN-Climate Data Record
(CDR) and PERSIANN-Cloud Classification System (CCS) as the benchmarks. First, we evaluate
these PERSIANN datasets against observations from the Climate Prediction Center (CPC) dataset as a
reference. The results showed that CCS–CDR has the least bias among all PERSIANN family datasets.
Comparing the two near-real-time datasets, PDIR performs significantly more accurately than CCS.
In simulating streamflow using the nontransformed calibration process, EKGE values (Kling–Gupta
efficiency) for CCS–CDR (CDR) during the calibration and validation periods were 0.42 (0.34) and
0.45 (0.24), respectively. In the second calibration process, PDIR was considerably better than CCS
(EKGE for calibration and validation periods ~ 0.83, 0.82 for PDIR vs. 0.12 and 0.14 for CCS). The
results demonstrate the capability of the two newly developed datasets (CCS–CDR and PDIR) of
accurately estimating precipitation as well as hydrological simulations.

Keywords: PERSIANN family; precipitation; VIC hydrologic model; VIC; SMAP; GLEAM

1. Introduction

Much effort has been devoted to the development of different models to simulate
and forecast streamflow (e.g., [1,2]) With recent developments in remote sensing science,
high-resolution data have been available for characterizing the earth’s surface features, e.g.,
soil types, topography and land use, and hydrometeorological drivers, e.g., temperature,
precipitation, and evapotranspiration. In particular, the remote sensing of precipitation has
attracted considerable attention (e.g., [3]).

Several quasi-global high-resolution satellite precipitation products have been de-
veloped in recent years using various methodologies [4,5]. Among these are the Pre-
cipitation Estimation from Remotely Sensed Information using Artificial Neural Net-
works (PERSIANN) dataset [6], the Climate Prediction Center (CPC) MORPHing tech-
nique (CMORPH, [7]), the Tropical rainfall measuring mission Multi-satellite Precipita-
tion Analysis (TMPA, [8]), the Global Precipitation Measurement (GPM) dataset [9], and
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the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural
Networks–Climate Data Record (PERSIANN–CDR) dataset [10]. These gridded precipita-
tion products are useful for research, urban planning, water resource management, flood
and drought prediction, and hydrologic modeling [11]. However, these datasets are de-
signed based on different applications, and therefore their accuracy, latency, and temporal
and spatial resolution are different [12].

As such, numerous studies have been conducted to validate satellite-derived pre-
cipitation to provide information to users and providers about the quality of estimates
(e.g., [13–16]). Yilmaz et al. (2005) investigated the use of three sources of precipitation
datasets, an operational rain gauge network, a radar/gauge multisensor product, and the
PERSIANN satellite precipitation algorithm, in hydrological forecasting over seven opera-
tional basins of varying size in the southeastern United States with a lumped hydrologic
model. The results showed when the hydrological model was calibrated with the PER-
SIANN dataset, the hydrological model performance improved in both the calibration and
verification periods [17]. Behrangi et al. (2011), evaluated the effectiveness of five satellite
precipitation products (TMPA–RT, TMPA–V6, CMORPH, PERSIANN, and PERSIANN-adj)
as forcing data for the simulation of catchment-scale flows. They concluded that satellite
products with no bias adjustment significantly overestimate both precipitation inputs and
simulated stream flows over warm months, while for the cold season, these precipitation
products result in the underestimation of streamflow forecast [18]. Ashouri et al. (2016)
investigated the efficacy of the PERSIANN-CDR precipitation product in simulating runoff
on three watersheds in the US, demonstrating the similar performance of PERSIANN-
CDR and TRMM Multi-satellite Precipitation Analysis (TMPA) and that these datasets
outperformed PERSIANN because unlike PERSIANN, PERSIANN–CDR and TMPA use
gauge adjusting. Their study highlights the utility of PERSIANN–CDR in hydrological
rainfall–runoff modeling applications [3]. Feng et al. evaluated the accuracy of the PER-
SIANN, PERSIANN–CDR, TRMM–3B42V7, GPM–IMERG, StageIV, and ERA5 datasets
in nine small watersheds in the US and simulated runoff using the CREST distributed hy-
drological model and NOAA–CPC–US as reference precipitation. The results showed that
CPC and StageIV outperform other datasets and in the north and west of the United States,
PERSIANN, PERSIANN–CDR, GPM–IMERG, and ERA5 should be used with caution in
runoff simulations. Moreover, they show that TRMM–3B42V7 is not suitable for runoff
simulation in small watersheds [19].

Specific challenges and limitations have been identified in using satellite precipitation
for rainfall–runoff modeling. Bias in satellite and reanalysis precipitation datasets is one
concern that carries over to hydrological simulations when used as model inputs [20,21].
Errors in precipitation estimation can bring significant uncertainties in streamflow simula-
tion and prediction [22]. Therefore, choosing the best satellite precipitation product with
the highest skill over each study region has been a big challenge for hydrologists.

Recently, two new satellite-based precipitation products have been released by the
Center for Hydrometeorology and Remote Sensing (CHRS). One is PERSIANN Dynamic
Infrared–Rain Rate (PDIR), which is a near-real-time, quasi-global satellite precipitation
dataset [23], and the second is PERSIANN Cloud Classification System–Climate Data
Record (CCS–CDR) [24], a new addition to the PERSIANN global satellite precipitation
data family. In this study, we implement these newly developed precipitation datasets
in a hydrological modeling framework to simulate low-flow and flood events using the
variable infiltration capacity (VIC) model calibrated for the Russian River catchment in
California in the United States. We seek to evaluate the performance of PDIR and CCS–
CDR in a semi-distributed rainfall–runoff modeling application and benchmark their
performance against older versions of PERSIANN precipitation products. For this purpose,
the VIC model was calibrated using two separate optimization processes, for low-flow and
high-flow simulation. Evaluating the application of the PERSIANN family precipitation
products for hydrological modeling and benchmarking new and old products can provide
useful insights to users on the utility and improvement of these datasets. To the best of our



Remote Sens. 2022, 14, 3675 3 of 21

knowledge, this is the first time the accuracy of the CCS–CDR precipitation dataset has been
evaluated for catchment-scale hydrological modeling. In addition to simulating observed
streamflow, we evaluate the simulated soil moisture and evapotranspiration obtained from
the VIC model using each dataset, providing clearer insight into the PERSIANN family’s
ability to simulate additional elements of the hydrologic cycle.

2. Materials and Methods
2.1. Description of the Hydrologic Model

The variable infiltration capacity (VIC) [25] is used to model the rainfall–runoff process.
VIC is a semi-distributed, macroscale hydrologic model that solves the full water and
energy balances. This model has been tested in different basins with different scales and
has performed well in diverse settings [26–28]. VIC is a grid-based model and is made
up of two main components, a rainfall–runoff model and a routing component, which
can be applied at different spatial scales and with different temporal resolutions, daily
in this case (version 4.2). Daily precipitation, maximum and minimum temperature, and
wind speed are the primary forcing data, and soil data, land cover, and a vegetation library
are provided for the model to generate runoff response components. In the VIC model,
the vertical soil profile of each grid typically consists of three layers to represent different
physical processes: a top thin layer to calculate evaporation and respond to small rainfall
values, a middle layer to consider the dynamic change of the soil moisture, and a bottom
layer for characterizing the seasonal soil moisture and generating the baseflow [29]. In this
study, fluxes are routed by the routing module developed by Lohmann et al. [30].

Calibration of the VIC Hydrologic Model

Hydrological models are typically calibrated to provide reliable flow simulations. In
this study, we used the NSGA-II optimization algorithm [31] for VIC calibration. This
algorithm has been successfully applied in many water resource optimization problems,
e.g., for model calibration [32,33]. The seven main parameters that control the rainfall–
runoff process of the VIC model are calibrated, including: the thickness of three soil layers
(D1, D2, and D3), the infiltration parameter (Binf), and the three base flow parameters (Ds,
Dsmax, and Ws). Parameter Binf determines the shape of the VIC curve and thus affects
the available infiltration capacity and the amount of runoff produced by each cell. The
model was calibrated with each precipitation product for both high and low flow. For
the high-flow simulation, the Kling–Gupta efficiency (EKGE) [34] was used as the objective
function (Equation (1)), while for low flows, the model was calibrated using EKGE after
Box–Cox transformation (Equation (2)). In this transformation, λ was 0.3, which has a
similar effect as a log transformation [35]. The EKGE and Box–Cox transformation are
defined as:

EKGE = 1−
√
(1− CC)2 + (α− 1)2 + (β− 1)2, α = σs

σo
, β = µs

µo
,

CC = ∑n
t=1(Qo,t−Qo)(Qs,t−Qs)√

∑n
t=1 (Qo,t−Qo)

2
√

∑n
t=1 (Qo,t−Qo)

2

(1)

Zo,t =
(1 + Qo,t)

λ − 2
λ

(2)

where (σo) and (σs) are the standard deviations for the observed and simulated responses,
respectively, and (µs) and (µo) are the corresponding means. CC, the linear correlation
coefficient, evaluates the error in the shape and timing between observed (Qo) and simulated
(Qs) flows, and (Qs,t) and (Qo,t) are the simulated and observed flows at time step t. (Qo)
is the observed mean runoff in the total period, while n is the total number of days in the
calibration period.
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2.2. Datasets
2.2.1. Basic Data

The basic datasets used in this research are as follows: (1) digital elevation model
(DEM): the shuttle radar topography mission (SRTM) dataset with a digital elevation
model (DEM) of 30 m spatial resolution was used to delineate the Russian River basin [36];
(2) land use maps: the land cover map was obtained from the MODIS Land Cover Type
Product (MCD12Q1) [37] at 500 m spatial resolution; (3) soil data: the 1:1 million scale
HWSD (Harmonized World Soil Database) constructed by the FAO (Food and Agriculture
Organization of the United Nations) was used [38].

2.2.2. Meteorological Data

• Temperature data: daily maximum and minimum temperature were extracted from
the NCEP/Climate Prediction Center in 0.5◦ × 0.5◦ spatial resolution [39].

• Wind speed data: By combining the V and U components of 10 m wind from the ERA5
Reanalysis dataset [40], wind speed and direction were calculated.

• Precipitation datasets: we used five datasets as follows:

1. NOAA Climate Prediction Center (CPC) Unified Gauge-Based Analysis of Daily
Precipitation over the CONUS: used as ground-based precipitation for evaluating
other precipitation datasets and the ability of the hydrology model in the Russian
River basin (retrieved from ftp://ftp.cdc.noaa.gov/datasets, accessed on 26 June
2022). This dataset is at 0.25◦ × 0.25◦ spatial resolution with a daily time step.

2. The PERSIANN–Cloud Classification System (CCS) [15] is a near-real-time prod-
uct and an example of a cloud patch-based algorithm in which the characteristics
of cloud cover below the temperature thresholds specified by fixed infrared
satellite images (10.7 µm) are extracted. PERSIANN–CCS provides precipitation
estimates at 0.04◦ × 0.04◦ spatial and hourly temporal resolution. In this study,
the daily temporal resolution was utilized.

3. PDIR is intended to supersede CCS, which has been the standard near-real-time
precipitation dataset from PERSIANN. Similar to PERSIANN–CCS, PDIR offers
precipitation estimates at 0.04◦ × 0.04◦ spatial and hourly temporal resolution.

4. CDR is constructed as a climate data record for hydrological and climate stud-
ies. This data set provides daily 0.25◦ rainfall estimates for the latitude band
60◦S–60◦N for the period of 1983 to the present with a lag of 3 months.

5. CCS–CDR is a newly developed high-resolution precipitation dataset for hydro-
climate studies. This dataset covers from 60◦S–60◦N globally and from 1983 to
near current time, and it was developed by merging CCS and Global Precipitation
Climatology Project (GPCP) monthly precipitation observations. The spatial and
temporal resolution of this product are 0.04◦ × 0.04◦ lat–long and every three
hours, respectively. PERSIANN–CCS, the main algorithm, is used to extract the
spatial features of cloud top temperature to the surface rainfall field. In this study,
we utilize the PERSIANN–CCS–CDR at daily temporal resolution from the CHRS
data portal (https://chrsdata.eng.uci.edu/; accessed on 28 February 2021).

We used the CDR and CCS–CDR datasets at the same temporal and spatial scales for a
fair comparison; whereas the old product is only available on a daily scale, the new dataset
provides 4 km precipitation data on an hourly time scale, which may lead to different
results from what we have in this research. CCS and PDIR are near-real-time products
without any gauge-adjusting component that have other applications such as monitoring
and flood warning at the catchment and global scale. Depending on the purpose of the
study, each of these datasets can be selected.

2.2.3. References Datasets

Satellite-derived precipitation data and VIC model outputs were evaluated against
the following reference datasets:

ftp://ftp.cdc.noaa.gov/datasets
https://chrsdata.eng.uci.edu/
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• Precipitation: the CPC dataset described in the previous section.
• Streamflow: 8 years of data (2011–2018) for the Russian River basin located upstream

of USGS gauging station 11,467,000, Guerneville, California (Figure 1).
• Evapotranspiration (ET): Land evapotranspiration is one of the major components

of global energy, water, and biogeochemical cycles [41], and accurate estimates are
critically important in hydrology, climate, and weather prediction [42]. Numerous eval-
uations have been performed to find the most reliable ET data worldwide (e.g., [43–45]
and have shown that the Global Land Evaporation Amsterdam model database is
highly accurate.
ET is one of the outputs of the VIC model based on the Penman–Monteith equation.
ET accuracy is directly related to the accuracy of data inputs to the model, especially
precipitation data. Although the aim of this study was not to calibrate ET but to
evaluate this output, we test how different PERSIANN family precipitation datasets
affect the simulated evapotranspiration along with other model outputs. In this
study, the daily data of the Global Land Evaporation Amsterdam model (GLEAM) [46]
dataset with a spatial resolution of 0.25◦ × 0.25◦ is used as a reference for the evaluation
of the actual ET. The GLEAM algorithm estimates land evaporation primarily based
on a parameterized physical process that uses extensive independent remote-sensing
observations as a basis for calculating land evaporation. Because the model is not
calibrated based on ET data, the results of the ET evaluation are derived for the whole
study period, i.e., from 2011 to 2018.

• Soil Moisture: we use the Soil Moisture Active Passive (SMAP) measurements as a
reference for evaluating the soil moisture in the simulation. The SMAP mission of the
National Aeronautics and Space Administration (NASA) was launched in 2015 [47].
This product has been evaluated and analyzed by various researchers around the
world, and almost all of them emphasized that this product has the best performance
among other satellite and reanalysis soil moisture data [48–50].
While the VIC model is based on water balance and the evaluation of soil moisture data
is not the main purpose of this study, it can help with examining other components of
water balance. The SMAP L3 Radar/Radiometer Global Daily 9 km EASE–Grid Soil
Moisture was the specific product employed. It provides soil moisture at a depth of 5
cm, which corresponds to the first layer of soil in the VIC model.

2.3. Study Area and Period

The Russian River, located in the western US in the northern latitudes 38◦18′ to 39◦25′

and the eastern longitudes −123◦23′ to −122◦32′, with a drainage area of 3850 km2, is the
second-largest river flowing through the nine-county San Francisco Bay Area. It provides
groundwater recharge and water supply for the agriculture sector. Figure 1 shows the
location of the Russian River catchment and its main branches. Catchment elevation
ranges from sea level in the southwest to 1326 m in the north and northeast. It is a rain-
dominated basin with an average wintertime (December–February) temperature above
7.58 ◦C with dry summers and wet winters. Over 96% of the annual total precipitation
falls between October and April. The average annual precipitation is 1061 mm for the
period 1950–2017 [51]. Our experiment is performed using 8 years of data (2011–2018) with
5 years used for calibrating the model (2014–2018) and 3 years for validation (2011–2013).
The average streamflow for both the calibration and validation periods is approximately
the same, with the calibration period spanning the period for which the SMAP data are
available. According to the land cover map, woody savannas and evergreen needle leaf
forests classes are dominant cover, by covering 30% and more than 24%, respectively.
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Figure 1. The study basin overlaid with an elevation map, streams, and the catchment outlet.

2.4. Evaluation Metrics

To quantitatively evaluate different precipitation products and model outputs, seven
statistical metrics including the correlation coefficient (CC), root mean square error (RMSE),
percentage bias (PBIAS), EKGE, probability of detection (POD), false alarm ratio (FAR), and
critical success index (CSI), were selected at three temporal scales, namely daily, monthly,
and seasonal. CC reflects the degree of linear correlation between the two datasets; the
optimal value is 1. RMSE measures the deviation between the two datasets and describes
the data dispersion degree, and PBIAS reflects system error; the optimal value for both
RMSE and BIAS is 0. POD indicates the ability of precipitation products to accurately
capture precipitation occurrence, with an optimal value of 1. FAR indicates the rate of
incorrect precipitation occurrence prediction, with an optimal value of 0. CSI reflects the
ability of the precipitation product to comprehensively detect actual rainfall events, with
an optimal value of 1. Table S1 provides the formulation of all the statistical assessment
criteria used in this study.

3. Results and Discussion
3.1. Evaluation of Precipitation Forcing
3.1.1. Evaluation of Climatology Datasets

Figure 2 shows the time series of average daily precipitation over the catchment for the
period 2011–2018 for each satellite-derived dataset with CPC as the reference precipitation.
Visual inspection of the precipitation rates and patterns in conjunction with the quantitative
statistics reported in Table 1 are used to assess agreement between satellite products and
CPC. Based on CPC, the average daily precipitation in winter (December, January, and
February) and summer (June, July, and August), as the wettest and driest seasons, are
4.8 mm/day and 0.39 mm/day, respectively.
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Figure 2. Daily basin averaged precipitation time-series CPC (reference), PERSIANN–CDR,
PERSIANN–CCS–CDR, PERSIANN–CCS, and PERSIANN–PDIR results.

Table 1. Statistical summary of multiple precipitation products against CPC on daily and
seasonal scales.

Mean STD CC EKGE Bias RMSE POD FAR CSI

Daily

CPC 2.56 9.10

CDR 1.48 4.61 0.51 0.22 −0.42 8.88 0.63 0.51 0.38

CCS–CDR 1.74 5.35 0.46 0.25 −0.32 8.26 0.65 0.53 0.37

PDIR 2.80 9.69 0.55 0.53 0.09 8.86 0.68 0.47 0.42

CCS 1.36 4.61 0.40 0.08 −0.47 8.59 0.45 0.45 0.33

Winter

CPC 4.80 12.60

CDR 2.94 6.67 0.52 0.21 −0.38 10.98 0.70 0.44 0.45

CCS–CDR 3.08 7.16 0.49 0.24 −0.35 11.29 0.72 0.47 0.44

PDIR 5.37 15.17 0.56 0.46 0.2 13.10 0.77 0.43 0.49

CCS 2.44 6.12 0.42 0.08 −0.49 11.81 0.54 0.54 0.40

Summer

CPC 0.39 2.00

CDR 0.30 1.24 0.19 0.16 0.02 2.15 0.36 0.79 0.16

CCS–CDR 0.39 1.96 0.18 0.21 0.41 2.44 0.39 0.78 0.17

PDIR 0.50 2.08 0.19 0.18 0.65 2.36 0.39 0.71 0.21

CCS 0.37 2.08 0.11 0.10 0.54 2.74 0.24 0.72 0.15

For daily precipitation, CCS–CDR outperforms CDR for some performance criteria
(Figures 3 and 4). For example, the Bias and POD for CCS–CDR are 0.32 and 0.64, and for
CDR, they are 0.36 and 0.62, respectively. For the other criteria, CDR was better. FAR, CC
and RMSE were 0.51, 0.51, and 7.90 for CDR, whereas for CCS–CDR, they were 0.53, 0.46,
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and 8.26. CSI and EKGE are more general performance criteria; for CSI, CDR performs better
(CCS–CDR = 0.46 and CDR = 0.51), but for EKGE, CCS–CDR is better (CCS–CDR = 0.25 and
CDR = 0.22). Spatial distribution of these criteria over the Russian River are presented in
Figure S1.
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(CC (d), RMSE (e), bias (f), α (g), β (h), EKGE (i)) for the evaluation of the PERSIANN family over the
Russian River basin using CPC as the reference.

On a seasonal scale such as the whole period throughout the 8 years, the performance
of these two datasets can be examined from different aspects. According to Figure 4, in
winter, POD, Bias, and EKGE for CCS–CDR were 0.71, 0.35, and 0.24, while for CDR the
equivalent scores were 0.70, 0.38, and 0.21. CDR was better according to CC, RMSE, FAR,
and CSI, which were 0.52, 10.98, 0.44, and 0.45, with CCS–CDR returning 0.48, 11.29, 0.47,
and 0.45, respectively. Both datasets show the best performance in winter. In summer,
CDR outperformed CCS–CDR for most performance criteria. For example, RMSE, Bias, CC,
and EKGE were 2.06, 0.03, 0.19 and 0.08 for CDR, while the equivalent scores for CCS–CDR
were 2.44, 0.41, 0.18, and 0.0. The newest dataset had slightly better performance at
detecting precipitation occurrence where POD, FAR, and CSI were 0.39, 0.78, and 0.17 for
CCS–CDR and 0.36, 0.79, and 0.16 for CDR. On a monthly scale, CCS–CDR was better
on all performance criteria except CC, where CCS–CDR was 0.94 and CDR was 0.96. For
CCS–CDR, Bias, RMSE, and EKGE were 0.32, 65.88, and 0.43, while for CDR, they were 0.35,
67.18, and 0.39. As evaluated against CPC, it can be concluded that CCS–CDR performed
better in POD well as Bias, while CDR had a smaller FAR and more correlation. These
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results are consistent with the findings of Sadeghi et al. (2021) and Huang et al. (2021), who
find that the rate of Bias and RMSE in CCS–CDR has decreased significantly throughout
the whole period as well as wet seasons and heavy rainfall events [12,52].
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3.1.2. Evaluation of Near-Real-Time Datasets

According to Table 1 and Figure 4, PDIR was better at detecting precipitation events
(POD: CCS = 0.45 and PDIR = 0.67), but CCS has fewer false alarms based on FAR
(CCS = 0.45, PDIR = 0.48). CSI criteria show that PDIR is more reliable than CCS in
detecting the precipitation events (CCS = 0.40 and PDIR = 0.55). Bias, CC, and EKGE scores
are substantially better for PDIR than CCS (PDIR: 0.09, 0.56, 0.53 and CCS: −0.47, 0.38, and
0.08, respectively). Although CCS is better for RMSE (CCS = 8.59 and PDIR = 8.86 mm),
PDIR is significantly better than CCS overall.

In winter, the superiority of PDIR is notable, especially for EKGE, which is 0.46 for
PDIR and 0.08 for CCS. PDIR has better precipitation detection accuracy for all skill scores
(see Figure 4 and Table 1). Both datasets have the worst performance in summer, but PDIR
is still more reliable than CCS. For example, POD is 0.38 for PDIR and 0.22 for CCS, and
CC is 0.19 and 0.11 for PDIR and CCS, respectively. These results have agreement with the
findings of Saemian et al. (2021), who found that the rate of EKGE and CC in PDIR increased
significantly and the rate of Bias decreased [53]. In additional confirmation of the findings
of this study, the results of Huang et al. (2021) showed that PDIR had better performance
in detecting rainfall events and fewer false alarms.

3.2. Evaluation of Streamflow Simulations

We calibrated the model in nontransformation and Box–Cox transformation, with
results presented separately. Optimum parameters are presented in Table S2 for each
dataset and calibration mode.

3.2.1. Evaluating Streamflow in Nontransformation Mode

First, the CPC dataset was used to run the VIC model for the Russian River basin
before each of the PERSIANN precipitation products was used in turn. Time series of daily
streamflow hydrographs simulated from the CPC and PERSIANN products are illustrated
in Figures 5 and 6 for the calibration and validation periods. Figures S2 and S3 show
scatter plots of the simulated daily streamflow using different precipitation products as the
inputs of the VIC model. Based on these figures and Table 2, it can be seen that the VIC
model run with CPC as the input has high skill at simulating streamflow in the Russian
River basin. The daily EKGE is 0.75 in the calibration period and 0.76 in the validation
period (Table 2). In winter, EKGE in the calibration period is 0.74 and is 0.76 for validation,
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indicating that the model has good performance in estimating high flows (Figures 5 and 7).
Table 2 show EKGE scores for monthly data during the calibration and validation periods,
with EKGE scores of 0.62 and 0.93. The evaluation of streamflow simulation results using
CPC dataset showed that although based on station data, it did not provide accurate results
for several peak discharges. This may be due to uncertainty in the model structure, model
parameters, inputs and the observational data [54]. These results help to better understand
the hydrologic model’s ability to simulate streamflow and provide good criteria for general
insights on error related to PERSIANN precipitation products and VIC hydrology.
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Table 2. The performances of streamflow simulations driven by CPC and PERSIANN family precipi-
tation dataset on a daily, winter, and monthly scale.

Precipitation
Products

Daily Winter Monthly

Calibration Validation Calibration Validation Calibration Validation

EKGE EKGE EKGE EKGE EKGE EKGE

CPC 0.75 0.76 0.74 0.76 0.62 0.93

CCS–CDR 0.42 0.45 0.25 0.50 0.45 0.65

CDR 0.35 0.24 0.25 0.32 0.30 0.29

PDIR 0.43 0.38 0.36 0.64 0.39 0.47

CCS 0.23 0.21 0.09 0.25 0.26 0.30

Figures 5 and 6 show that the simulated runoff using CDR and CCS–CDR are similar.
In the calibration and validation periods, CCS–CDR outperforms CDR with our objective
function (EKGE 0.42 and 0.44 for CCS–CDR and 0.35 and 0.24 for CDR, respectively). The
reason for the superiority of CCS–CDR is that it has a significantly better mean than
CDR, while CDR shows a better correlation, although this advantage is not significant
(Figure 7). Both datasets fail to capture the heavy precipitation in January and February
2017, and as a result, generated runoff from the VIC model shows weak performance
for this event. During validation, CCS–CDR showed improved performance relative to
calibration, while the accuracy of CDR decreases compared with the calibration period. In
the validation period, CCS–CDR better simulates peak discharges, especially at the end
of 2012. Figure 4 shows that CDR usually underestimates peak flows, while CCS–CDR
both over- and underestimates different peak flows. This might be the result of using
daily forcing data and consequently missing the actual intensity of the precipitation at
finer temporal scales. CCS–CDR has hourly data, but as the aim of the present study is to
compare different PERSIANN products with CDR, we applied data with daily time step.
During the wet winter season, the performance of CCS–CDR and CDR are the same based
on EKGE (CDR: 0.25, CCS–CDR: 0.25). However, in the validation period, CCS–CDR shows
better performance (CDR: 0.32, CCS–CDR: 0.50), although it still underestimates the flow
values. CDR shows a higher correlation with the observed runoff during calibration (CDR:
0.86, CCS–CDR: 0.80) and validation (CDR: 0.86, CCS–CDR: 0.83). The superior correlation
for CDR was also observed in the precipitation evaluation.

Figure 7. Cont.
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Figure 7. The results of EKGE and its components for simulating the runoff using CPC and PERSIANN
family datasets. In the nontransformed calibration process: α (a1), β (b1), CC (c1), and EKGE (d1)
for calibration period and α (a2), β (b2), CC (c2), and EKGE (d2) for validation periods at daily and
monthly scales and winter. In the transformed calibration process: α (a3), β (b3), CC (c3), and EKGE

(d3) for the calibration period and α (a4), β (b4), CC (c4), and EKGE (d4) for the validation period at
daily and monthly scales and summer.

Assessing the performance of the CDR and CCS–CDR datasets in the simulation of
monthly streamflow is important because these two datasets have longer historical records
and have had more applications in climatic science. Monthly results are evaluated with
and without transformation. CCS–CDR performs better for monthly runoff simulations
(Figure 6 and Table 2), with EKGE for the calibration and validation periods for CCS–CDR
being 0.45 and 0.65, while for CDR, the equivalent values are 0.30 and 0.29.

As was shown in the precipitation analyses, PDIR performs better than CCS, which is
the case in streamflow simulation. During the calibration period, PDIR estimates runoff
more accurately, with EKGE scores of 0.43 and 0.23 for PDIR and CCS, respectively. Based on
the correlation coefficient, PDIR is again slightly better, with CC of 0.73 and 0.70 for PDIR
and CCS, respectively. The largest difference between the two datasets is in runoff simula-
tion at the beginning of 2017, where PDIR performs similarly to CDR and CCS–CDR but
CCS performs very poorly. The largest difference in runoff estimation occurred on 12 De-
cember 2014, with an observed daily discharge of 1151 (m3/s), but the PDIR overestimated
it at 1528 (m3/s). During the validation period, the performance of both datasets reduced
relative to the calibration period. EKGE in this period is 0.38 for PDIR and 0.21 for CCS.
Figure 7 shows the results of these two datasets for the entire simulation period and over
the winter for the calibration and validation periods. CCS always underestimates runoff,
which is consistent with the results of the precipitation evaluation. PDIR has intermittent
behavior, with frequent periods of overestimation/underestimation. Winter simulation
results again show more accurate runoff simulations using PDIR during both the calibration
and validation periods. In terms of correlation, PDIR is better in the calibration period, but
in the validation period, the two have the same performance. EKGE in the two periods is
0.36 and 0.64 for PDIR and 0.09 and 0.25 for CCS. PDIR has the best performance among the
PERSIANN family dataset in winter. According to Table 2 and Figure 6, the performance of
two near-real-time datasets on a daily scale is replicated on a monthly scale, and just as
PDIR was superior on a daily scale, it performs better and is more reliable on a monthly
scale. In the calibration and validation periods, EKGE is 0.39 and 0.47 for PDIR and 0.26 and
0.30 for CCS. Considering these differences and the advantages of each of these datasets,
to choose a more efficient database, one should review the conditions of the basin under
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study and the study period. The superiority of PDIR over CCS is quite evident in terms
of the accuracy of both precipitation and simulated streamflow, especially in wet seasons,
which could be a great advantage in flood estimation and warning systems.

3.2.2. The Evaluation of Streamflow in Transformation Mode

This acceptable performance for CPC in the nontransformation state is repeated in the
transformed state, where the values of EKGE are equal to 0.86 and 0.92 in the calibration and
validation periods, respectively. In summer, based on Box–Cox transformed flows, EKGE
during calibration was 0.71 and 0.87 for the validation period (Figure 5 and Table 3). EKGE
at monthly scale, shown in Table 3, is 0.91 and 0.92 during the calibration and validation
periods, respectively. These results show that the VIC hydrological model and CPC dataset
are skillful in simulating the low flow in the Russian River catchment. Figures 8 and 9
show the simulated runoff using CPC and PERSIANN family precipitation datasets with
Box–Cox transformation.

Table 3. The performances of streamflow simulations driven by CPC and PERSIANN family precipi-
tation dataset at daily, summer, and monthly scale with Box–Cox transformation.

Precipitation
Products

Daily Summer Monthly

Calibration Validation Calibration Validation Calibration Validation

EKGE EKGE EKGE EKGE EKGE EKGE

CPC 0.86 0.92 0.71 0.87 0.91 0.92

CCS–CDR 0.51 0.57 0.85 0.70 0.55 0.67

CDR 0.47 0.45 0.82 0.83 0.53 0.53

PDIR 0.83 0.82 0.62 0.20 0.84 0.61

CCS 0.12 0.14 −0.05 0.40 0.12 0.14
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EKGE as an objective function and its component are show, in Table 3 and Figure 7. Dur-
ing the calibration period, CCS–CDR has slightly better performance than CDR (CDR: 0.47
and CCS–CDR: 0.51), and this advantage was repeated with more differences during the
validation period (CDR: 0.45 and CCS–CDR: 0.57). In the dry summer season, CCS–CDR
is better in the calibration period (CDR: 0.85 and CCS–CDR: 0.82), but in validation, the
performance of CCS–CDR drops (CDR: 0.83 and CCS–CDR: 0.70). Both datasets perform
better than CPC in summer during the calibration period, indicating their utility for simu-
lating low flows (see Figure S3). Regarding the CDR, it can be said that it had significant
performance in dry seasons with low flows [55], and consequently, it performed better
than CPC in summer streamflow simulation. The main reason CDR excels in summer is
that it better captures average flows, which is related to the better Bias in precipitation
evaluation. Additionally at monthly scale, EKGE for CCS–CDR is 0.56 and 0.53 for CDR
during the calibration period and 0.67 and 0.53 for these datasets during the validation
periods, respectively (see Figures 9 and S3).

For low flows (using Box–Cox transformation), PDIR has good performance. In the
calibration period, EKGE for PDIR is 0.83, with CCS showing much weaker performance
(0.12). This advantage is repeated during validation (EKGE: 0.82 and 0.14 for PDIR and CCS,
respectively). In summer during the calibration period, PDIR performs well according
to EKGE (0.62), while this index is negative for CCS (−0.05). The performance of the
two datasets is more different in the validation period, where EKGE for CCS and PDIR are
0.4 and 0.2, respectively; the main reason for the improvement of CCS relates to the closer
standard deviation to the observed one. PDIR also has the best performance among the
PERISANN family with applied Box–Cox transformation at monthly scale (Figure 9). EKGE
for PDIR is 0.84 and 0.61 for calibration and validation, while for CCS, the equivalent results
are 0.12 and 0.14, respectively.

Various researchers have used positive EKGE values as indicative of “good” model
simulations, whereas negative EKGE values are considered unsatisfactory, without ex-
plicitly indicating that they treat EKGE = 0 as their threshold between good and bad
performance [56–58]. Therefore, the modeling results in this study are “skillful” (except for
CCS in summer).
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3.3. Evaluation of Evapotranspiration

Figure 10 shows the performance of the VIC model in simulating ET in terms of CC
(a), RMSE (b) EKGE (c), and Bias (d) using different PERSIANN products. The CPC dataset
had a higher correlation (CC = 0.73) compared with CPC–T (CC = 0.68), while based on the
average of Bias, both CPC and CPC-T slightly underestimated the ET, the RMSE, and EKGE;
that is, CPC outperforms CPC-T. According to Figures S5 and S6, which show the spatial
distribution of the evaluation criteria, CPC was better in the center of the catchment, with
higher CC and EKGE and lower RMSE and Bias, while CPC-T was better in these criteria.
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Figure 10. The box plot of the continuous CC (a), RMSE (b), EKGE (c), and Bias (d) for the evaluation
of ET using CPC and the PERSIANN family over the Russian River basin and using the GLEAM as
reference and the CC (e), RMSE (f), EKGE (g), and Bias (h) for the evaluation of soil moisture using
CPC and the PERSIANN family and the SMAP as reference.
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The CCS–CDR and CDR datasets have same behavior in simulating the ET. The results
of the ET evaluation of the model output show that the calibration of the model with Box-
Cox transformation leads to better results in ET simulation; therefore, we analyze the result
of calibration with transformation. According to Figure 10a, the CDR-T dataset had higher
correlation (CC = 0.63) than CCS–CDR-T (CC = 0.59). Average Bias is negative and the same
for these datasets (Bias: CCS–CDR-T: −0.37 and CDR-T: −0.38), which is consistent with
the negative Bias in rainfall and runoff. EKGE is also very close: 0.39 and 0.4 for CCS–CDR-T
and CDR-T, respectively. Figures S5 and S6 show that RMSE in CCS–CDR-T and CDR-T
decrease from north to south. This reduction in error for CCS–CDR-T also applies to Bias
but not in CDR-T. CC and EKGE for CCS–CDR increase from north to south, but as shown
in Figure 10, the amplitude of the CDR-T changes is smaller than that of CCS–CDR-T and
has a similar performance across the catchment.

According to Figure 10 and based on EKGE, both near-real-time datasets better estimate
evapotranspiration in calibration mode with transform, and therefore, we used these
results for analysis. In the whole period, PDIR-T had better correlation than CCS-T (CC:
CCS-T = 0.55, PDIR-T = 0.64), and PDIR is obviously better in Bias (Bias: CCS-T =−0.37 and
PDIR-T =−0.03). These superiorities give even better EKGE results (EKGE: CCS-T = 0.39 and
PDIR-T = 0.54) and are RMSE (RMSE: CCS-T = 1.28, PDIR-T = 1.17 mm). From the spatial
distributions of these criteria, which are shown in Figures S5 and S6, it can be concluded
that these two datasets, similar CPC and CCS–CDR-T, have better performance in the south
than in the north, which can be attributed to vegetation characteristics and factors affecting
evapotranspiration.

Regarding the overall performance of the datasets in ET simulation throughout the
modeling period, the best performance related to CPC, followed by PDIR. Although these
results are not the best possible results because the model is not calibrated based on evapo-
transpiration, it can be concluded that all these datasets can simulate evapotranspiration at
an acceptable level. However, to obtain better results, the dataset should be selected based
on the purpose of the research.

The results show although we did not calibrate the model for ET, all datasets had the
ability to spatially simulate ET in an acceptable way. Based on EKGE, CCS–CDR and CDR
datasets simulated ET better than the CPC dataset, and CCS had the best performance in
winters. The difference in performance over various seasons is due to the different perfor-
mances of these precipitation datasets along with the philosophy behind the development
of these datasets; hence, to obtain the best result, an appropriate product should be selected
based on the simulation purpose.

3.4. Evaluation of Soil Moisture

Figure 10 shows the performance of the VIC model in simulating soil moisture in
terms of CC (e), RMSE (f), EKGE (g), and Bias (h) using different PERSIANN products,
and Figures S7 and S8 show the spatial distribution of these criteria over the Russian
River catchment.

Figure 10e shows the distribution of CC in all basin grids based on SMAP grid size. It
can be seen that all datasets show a correlation above 0.75. CPC followed by PDIR shows
the highest correlation among simulated results, with average correlations of 0.87 and
0.85, respectively. Another near-real-time dataset has performance close to PDIR, with an
average correlation of 0.79. Among climatic datasets, the CDR shows better correlation
with an average value of 0.8, while the mean correlation for CCS–CDR for all grids is 0.75.
These results are related to the nontransformed datasets, but the results of calibration with
the transformed datasets are very close to the original datasets.

The results for RMSE are presented in Figure 10f. The best performance related
to the CPC dataset, with RMSE of 0.07 for both the transformed and nontransformed
datasets. The average RMSE for all datasets is very similar in in terms of transformed
and nontransformed modes. Overall, the two near-real-time datasets are slightly better
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for PDIR, which has less RMSE error. CCS–CDR and CDR have the same performance
according to this criterion.

Figure 10g provides the EKGE, which is very close for CCS–CDR and CDR in non-
transformed and transformed modes: 0.68 and 0.7 and 0.69 and 0.71 for this products,
respectively. Among the near-real-time datasets, just as it outperformed PDIR in assessing
rainfall accuracy and runoff simulation, CCS–CDR performed better, with mean EKGE of
0.74, while this criterion was 0.71 for CCS. EKGE for both calibration processes are the same
for these two datasets, although their performance is different in different cells. The mean
EKGE for the nontransformed and transformed CPC datasets is 0.76 and 0.74, respectively,
not significantly different from the PDIR dataset.

The average Bias, presented in Figure 10h, is positive for all datasets; this indicates that
all datasets estimate soil moisture above the actual level. CCS have the best performance in
both nontransformed and transformed modes (Bias = 0.13). Following this dataset, the other
near-real-time dataset performed better, with average Bias of 0.15, which was even better
than the CPC average of 0.16. CCS–CDR and CDR have very close, Bias, but CCS–CDR is
better with (Bias: CCS–CDR = 0.19 and CDR = 0.2).

Based on Figures S7 and S8, it can be concluded that the performance of all datasets is
better in the north and west and worse in the east and center regions of the basin. The CPC
dataset has almost the same performance throughout the basin except for the middle and
east of the basin. CCS–CDR and CDR are almost identical in terms of spatial distribution,
especially in the northern areas and the outlet of the basin. These datasets are similar in the
spatial distribution of the evaluation criteria. Between the two near-real-time datasets, the
PDIR dataset performs better in the border areas, and this advantage is more evident in the
output and southern parts of the basin. However, there is no significant difference in the
CCS dataset, and we can only say that it performs more satisfactorily in the northern half
than in the southern parts. The common denominator of soil moisture simulation is that
all datasets in the southwest of the basin, which is the outlet of the basin, underestimate
soil moisture.

The maximum and minimum EKGE were 0.76 and 0.68 in CCS–CDR, respectively,
without any significant difference from the CPC results, especially the PDIR results, which
were similar to CPC. It should be noted that the results are based on runoff calibration and
accuracy could improve with a focus on ET and soil moisture calibration.

4. Conclusions

Although many studies have examined the performance of the CCS and CDR datasets
so far, we used these two datasets in addition to the CCS–CDR and PDIR datasets to
investigate the applications of PERSIANN family datasets in hydrological models and
compare the ability of new and old versions of the CHRS.

The results showed that the CCS–CDR had less Bias than its predecessor, i.e., CDR.
CCS–CDR performed better in wet seasons, while CDR is better in dry seasons. Evaluation
of near-real-time precipitation datasets showed that the PDIR performed significantly better
than CCS. PDIR performed much better in detecting rainfall events and is more reliable
than CCS in wet seasons. While CCS–CDR, CDR, and CCS datasets underestimates, PDIR
performs differently from other PERSIANN family databases and overestimates.

Evaluating the applications of the PERSIANN family for hydrological modeling
showed the efficiency of these products in simulating the streamflow. We calibrated the
model using two methods, i.e., based on nontransformed (original) datasets and with Box-
Cox transformation. In the first calibration method, which focuses on high flow, CCS–CDR
and PDIR showed better performance. In the second calibration process with Box-Cox
transformation, the CDR precipitation dataset was better than CCS–CDR during summer.
Throughout the whole period, PDIR performed better than CCS in both the calibration and
validation periods.

These results show that the ET simulated by CPC is better with the nontransformed
dataset, but CCS–CDR, CDR, PDIR, and CCS revealed comparable results with better



Remote Sens. 2022, 14, 3675 18 of 21

performance in estimating ET with the model calibrated by Box-Cox transformation. The
best result in the whole period was related to CPC, and then PDIR-T performed better
than the other datasets. CDR-T and CCS–CDR-T were better in summer, while CCS-T was
the best dataset in winter. In this study, daily data were used to simulate runoff for a fair
comparison between different products, and the model was calibrated with these data.
Based on simulated daily evapotranspiration from the model, if the hourly data are used as
input and the calibration focuses on these data, the results will be improved.

The results for soil moisture simulation showed that all precipitation data of the
PERSIANN family have a high ability to simulate soil moisture, especially the PDIR dataset,
with very similar results to CPC. Because the SMAP soil moisture dataset is not available
in the long term and its available period is incomplete, it is possible with focus on soil
moisture calibration using PERSIANN family precipitation datasets in ungauged areas to
achieve a long-term and complete soil moisture dataset.

The results of this study showed that each of the PERSIANN family datasets has
a special ability. CCS–CDR has better ability to simulate streamflow in winter, while
CDR has better performance in simulating low flow in summer, even better than the CPC
dataset. PDIR also performs better at detecting precipitation events than the CCS and in
simulating streamflow in winter, while CCS can perform well at simulating low flows.
These capabilities can be different depending on the period and case of study, so evaluations
should be done based on the purpose of the study, and then the most efficient dataset
should be selected.

Supplementary Materials: The following supporting information can be downloaded at: https:
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multiple precipitation products; Table S2. Calibration parameter and their intervals (N: for non-
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Winter respectively) and CSI (row 4 to 6 in Daily, Summer and Winter respectively) (CDR, CCS–CDR,
PDIR and CCS, column 1 to 5); Figure. S2. Scatter plot for daily streamflow generated from CPC
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is simulated discharge (m3/s); Figure S3. Scatter plot for transformed daily streamflow generated
from CPC and PERSIANN family. The horizontal axis is observation discharge (m3/s) and the
vertical axis is simulated dis-charge (m3/s); Figure S4. Scatter plot monthly streamflow for general
(column 1 and 2) and transformed (column 3 and 4) generated from CPC and PERSIANN family. The
horizontal axis is observation discharge and the vertical axis is simulated discharge; Figure S5. CC,
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Russian River catchment for ET simulation; Figure S6. CC, EKGE, RMSE and Bias (column 1 to 4) of
CPC-T, CCS–CDR-T, CDR-T, PDIR-T and CCS-T (row 1 to 5), over the Russian River catchment for
ET simulation; Figure S7. CC, EKGE, RMSE and Bias (column 1 to 4) of CPC, CCS–CDR, CDR, PDIR
and CCS (row 1 to 5), over the Russian River catchment for Soil moisture simulation; Figure S8. CC,
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5), over the Russian River catchment for Soil moisture simulation.
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