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Abstract

In this thesis, we will study the theory of superalgebras, which are algebras with
a C2-grading. One of our main aims is to show that many concepts and theorems in
Algebra Theory have their counterparts in Superalgebra Theory. For example, we will
state and prove the superalgebra counterparts of Schur’s Lemma, Maschke’s Theorem,
and Wedderburn’s theorem.

In Algebra Theory, each field F has a group called the Brauer Group of F (denoted
as Br(F )), which is a group of equivalence classes of central simple F -algebras. We will
be showing that there is a superalgebra equivalent, namely the Brauer-Wall group of
F (denoted as BW (F )), which is a group of equivalence classes of super central simple
F -superalgebras.

Additionally, we will be studying group superalgebras, super representations, and
super characters. In the study of ordinary group algebras, the Frobenius-Schur indicator
meaningfully associates an irreducible C-character of a finite group G with a division
algebra over R. In this thesis, we will introduce the Super Frobenius-Schur indicator,
which associates a super irreducible C-super character with a super division algebra over
R. We will also give the full decomposition of group superalgebras over R and C.

Finally, we will discuss Clifford Algebras, another family of examples of superalgebras.
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Introduction

This thesis aims to study finite dimensional superalgebras, with a particular focus on
super semisimple superalgebras and group superalgebras over R and C.

In section 1, we will recall elementary concepts in Algebra theory. We will define
objects such as algebras, ideals, modules, algebra homomorphisms, module homomor-
phisms, and division algebras. We will also define what it means for a module to be
irreducible, and what it means for a module to be completely reducible. From there, we
will state three important theorems: Schur’s Lemma, Maschke’s Theorem, and Wedder-
burn’s Theorem.

We will then study central simple algebras. Given a field F , we can define an equiv-
alence relation on the set of central simple F -algebras, and from there we introduce an
important group called the Brauer Group of F (denoted by Br(F )). We will not focus
much on the proofs of important theorems in this section. We will instead refer the reader
to I.M. Isaacs’ Character Theory of Finite Groups [1] and W. Scharlau’s Quadratic and
Hermitian Forms [2].

In section 2, we will introduce the concept of a superalgebra. Many concepts from
Algebra Theory have their equivalent concepts in Superalgebra Theory. A term in Su-
peralgebra Theory will often have the prefix “super-” to distinguish it from its ordinary
Algebra Theory counterpart. We will also prove the super versions of Schur’s Lemma,
Maschke’s Theorem, and Wedderburn’s Theorem. We will base a lot of the proofs of
statements in Superalgebra Theory on the proofs of their Algebra Theory equivalents.

Afterwards, we will define super central simple F -superalgebras, and introduce the su-
per version of the Brauer group called the Brauer-Wall group of F (denoted by BW (F )).
To examine the group structure of BW (F ), we will follow the theory from C.T.C. Wall’s
Graded Brauer Groups [5]. We will explore properties of super central simple superal-
gebras in detail, focusing on the case where char(F ) ̸= 2. In this situation, some super
central simple superalgebras are also central simple in the ordinary algebra sense, and
some are not. The subset P (F ) ⊂ BW (F ) containing classes of ordinary central simple
algebras forms a subgroup. One of the major results in this section is that, for any field
F such that char(F ) ̸= 2, BW (F )/P (F ) ∼= C2, and P (F )/Br(F ) ∼= F×/F×2. We will
then show that BW (C) ∼= C2 and BW (R) ∼= C8.

We will then build our way towards studying group superalgebras over R and C. To
prepare us for that, we will go through some preliminary definitions and results in Rep-
resentation and Character Theory of finite groups in section 3. One important definition
is the Frobenius-Schur (FS) indicator of an irreducible C-character. For any finite group
G, we will then describe the two-sided ideal decomposition of RG and CG. Each min-
imal two-sided ideal of CG corresponds to an irreducible C-representation. A minimal
two-sided ideal of RG is a matrix algebra over either R, H or C. These cases respectively
correspond to either a single C-character with FS indicator 1, a single C-character with
FS indicator −1, or a pair of C-characters with FS indicator 0.

We will then specialise to the case where G has a subgroup N such that |G : N | = 2.
We will use Clifford Theory to study the relationship between characters of G, and char-
acters of N . This will allow us to describe super representations and super characters
of G over N . We will define two new indicators: the Gow indicator (an indicator for
irreducible characters of N), and the Super Frobenius-Schur (SFS) indicator. The SFS
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Introduction

indicator of a super irreducible super character can take 8 possible non-zero values. Each
possible non-zero value corresponds to an element of BW (R).

This will bring us to the discussion of group superalgebras over R and C, our main
topic of section 4. We will see how the decomposition of CG will help us describe the
decomposition of the group superalgebra C[G,N ]. We will then explore how the decom-
position of C[G,N ], RG and RN will help us describe the decomposition of R[G,N ].
Afterwards will be able to describe super irreducible C[G,N ]- and R[G,N ]-supermodules
and how they come about from CG- and RG-modules.

In section 5, we will briefly go through another family of examples of superalgebras,
namely Clifford Algebras. We will investigate how we can construct Clifford Algebras
over R and C, and how we can relate them to an element of BW (R) and BW (C).

The diagram below lists the key concepts in Algebra Theory that have counterparts
in Superalgebra Theory. The down arrows tell us when one topic leads to another topic.

Algebras Superalgebras

Central simple algebras Super central simple superalgebras

Brauer group Brauer-Wall group

Frobenius-Schur indicator Super Frobenius-Schur indicator

Group Algebras Group Superalgebras

Throughout the thesis, we will omit the proofs of some theorems and lemmas. When
this happens, a reference will be provided at the end of the theorem/lemma, allowing the
reader to locate the proof.
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1 Algebras

1.1 Algebra Theory preliminaries

⋆ Throughout the thesis, F will refer to an arbitrary field.
In this section, we will list some important definitions and theorems from the theory
of Algebra. Much of the material in this section comes from [1, Chapter 1] and [2,
Chapter 8].

An F -algebra A is an F -vector space with an additional ring structure. In an F -
algebra, the addition operation in the vector space and the ring structure coincide, and
the scalar multiplication in the vector space and multiplication in the ring are related in
the following way: for all c ∈ F and x, y ∈ A,

(cx)y = c(xy) = x(cy).

⋆ Throughout the thesis, we will assume that any algebra is a ring with a multi-
plicative identity. Throughout this section, A will refer to an arbitrary F -algebra with
multiplicative identity denoted as 1A.

An F -algebra A is said to be finite-dimensional if it is finite-dimensional as an
F -vector space. We define the dimension of A over F by the vector space dimension of
A over F .

Example 1.1 Let us list examples of F -algebras, and mention their dimensions over F .

• The field F itself is an F -algebra, and dimF (F ) = 1.

• Let K be a finite field extension of F . Then K is an F -algebra, and dimF (K) =
[K : F ].

• The set Mn(F ) of n× n matrices over F is an F -algebra, and dimF (Mn(F )) = n2.

• Given an F -vector space V , then EndF (V ), the set of endomorphisms (or F -linear
transformations) of V is an F -algebra. Multiplication in EndF (V ) is given by compo-
sition of maps, and given c ∈ F and α ∈ EndF (V ), cα is defined by cα(v) = α(cv) for
any v ∈ V . If V is finite-dimensional over F , then dimF (EndF (V )) = (dimF (V ))2.

• Given a finite group G, the group algebra of G over F , denoted FG, is an F -
algebra with a basis {eg : g ∈ G} whose elements are indexed by the elements of G.
So FG can be expressed as

FG =

{∑
g∈G

cgeg : cg ∈ F

}
.

In this algebra, the multiplication of the basis elements {eg : g ∈ G} is inherited
from the group multiplication in G. So if g, h ∈ G, then, in FG, we have egeh = egh.
We extend this linearly to all of FG to define multiplication in FG. We note that
e1G is the multiplicative identity of FG. Furthermore, dimF (FG) = |G|.

• The ring F [x] of polynomials in x with coefficients in F is an F -algebra. We note
that this is an infinite-dimensional F -algebra.

1



1.1 Algebra Theory preliminaries

Since we have defined F -algebras to be rings, we can talk about the notion of left and
right ideals of algebras.

A left ideal I ⊂ A of an F -algebra A is a subspace of A that is closed under left
multiplication by A. In other words, for any a ∈ A and x ∈ I, ax ∈ I. Right ideals are
defined correspondingly. We call I a two-sided ideal of A if it is both a left and a right
ideal of A.

Since we assumed that any F -algebra A has an identity 1A, the condition that an
ideal is a subspace of A would come automatically from the ring theoretic definition of
an ideal. Indeed, if I is a left ideal of A seen as a ring, then for any c ∈ F and x ∈ I,
cx = c(1Ax) = (c1A)x ∈ I.

Definition 1.2 • The centre of A is the set Z(A) := {z ∈ A : za = az ∀a ∈ A}.

• Given a subset B ⊂ A, the centralizer of B in A is the set ZA(B) := {a ∈ A :
ab = ba ∀b ∈ B}.

A subalgebra B ⊂ A of an F -algebra A is a subspace of A that is itself an F -algebra,
with addition and multiplication inherited from A.
While addition and multiplication in B are inherited from A, the identity 1B of B does
not necessarily coincide with the identity 1A of A. We say that a subalgebra B ⊂ A is
called unital if 1B and 1A coincide.

Example 1.3 Given an F -algebra A, let us mention examples of subalgebras of A.

• The set F · 1A = {c1A : c ∈ F} is a subalgebra of A. In this case, the identities of
F · 1A and A coincide. Also, we can identify F with F · 1A.

• The centre Z(A) of A is a subalgebra. Additionally, for any subset B ⊂ A, its
centralizer ZA(B) is a subalgebra of A.

Definition 1.4 Given an F -algebra A, we say that A is simple if it has no non-trivial
proper two-sided ideals.

Definition 1.5 An algebra is called a division algebra if every non-zero element has
a multiplicative inverse.

Since algebras are both vector spaces and rings, we would like homomorphisms of
algebras to be both vector space and ring homomorphisms.

Definition 1.6 Let A and B be F -algebras. Then an F -algebra homomorphism is
a map φ : A→ B from A to B that satisfies the following conditions:

1. φ(xy) = φ(x)φ(y) for all x, y ∈ A,

2. φ(1A) = 1B,

3. φ is an F -linear transformation.

As expected, a map φ : A → B from A to B is called an F -algebra isomorphism
if it is a bijective algebra homomorphism.

Definition 1.7 Let A be an F -algebra. Then an A-module V is a finite-dimensional
vector space that is equipped with a left A-action map

A× V → V, (a, v) 7→ a · v = av

that satisfies the following properties for any x, y ∈ A, v, w ∈ V and c ∈ F :

2



1.1 Algebra Theory preliminaries

1. x(v + w) = xv + xw,

2. (x+ y)v = xv + yv,

3. (xy)v = x(yv),

4. x(cv) = c(xv) = (cx)v,

5. 1Av = v.

The properties the left A-action needs to satisfy can be equivalently stated as follows:

1. For any x ∈ A, v ∈ V , the map V → V , v 7→ xv is an endomorphism of V ,

2. The map defined by A → EndF (V ), x 7→ (v 7→ xv) for any x ∈ A, v ∈ V is an
F -algebra homomorphism.

We define right A-modules in a corresponding way.
⋆ Throughout the thesis, the term A-module will refer to a left A-module unless

specified otherwise.

Definition 1.8 Let A be an F -algebra. The regular A-module , denoted as A◦, is A
viewed as an A-module under left multiplication.

Definition 1.9 Let V be an A-module. Then a subspace W ⊂ V is called an A-
submodule of V if W is closed under left multiplication by A. In other words, for
any a ∈ A and w ∈ W , aw ∈ W .

Definition 1.10 Let V and W be two A-modules. Then an A-module homomor-
phism is a linear transformation φ : V → W from V to W that satisfies xφ(v) = φ(xv)
for any v ∈ V and x ∈ A.

The set of all A-module homomorphisms from V to W is denoted as HomA(V,W ).
By convention, HomA(V, V ) will be denoted as EndA(V ).

Given two A-modules V,W and an A-module homomorphism φ ∈ HomA(V,W ), we
define the kernel of φ as kerφ := {v ∈ V : φ(v) = 0W}. The image of φ is given by
imφ := {w ∈ W : ∃v ∈ V such that φ(v) = w}. kerφ and imφ are submodules of V and
W respectively.

Given two A-modules V,W , an A-module homomorphism φ ∈ HomA(V,W ) is called
an A-module isomorphism if it is bijective, and we would say that V and W are
isomorphic as A-modules. An A-module isomorphism φ ∈ HomA(V,W ) satisfies the
conditions kerφ = 0V and imφ = W .

Definition 1.11 Let V be a non-zero A-module. Then V is said to be irreducible if
the only submodules of V are 0 and V .

We now state an important lemma involving irreducible A-modules:

Lemma 1.12 (Schur’s Lemma) If V and W are irreducible A-modules, then every
non-zero A-module homomorphism in HomA(V,W ) has an inverse in HomA(W,V ). [1,
Lemma 1.5]

A consequence of Schur’s Lemma is that if F is an algebraically closed field, A is an
F -algebra, and V is an irreducible A-module, then EndA(V ) = F · 1, the set of scalar
multiplications on V .
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1.1 Algebra Theory preliminaries

Definition 1.13 Let V be an A-module. Then V is said to be completely reducible
if for every submodule W ⊆ V , there exists a submodule U ⊆ V such that V = W ⊕ U .

Definition 1.14 An F -algebra A is said to be semisimple if the regular module A◦ is
completely reducible.

Theorem 1.15 (Maschke’s Theorem) Let G be a finite group and suppose F is a field
whose characteristic does not divide the order of G. Then every FG-module is completely
reducible. [1, Theorem 1.9]

Theorem 1.16 Let V be an A-module. Then the following are equivalent:

1. V is completely reducible.

2. V is a sum of irreducible submodules.

3. V is a direct sum of irreducible submodules.

[1, Theorem 1.10 + Lemma 1.11]

Let A be an F -algebra with multiplication ∗A. The opposite algebra of A, denoted
as Aop, is the F -algebra that is A as a vector space, but with multiplication ∗Aop defined
by a ∗Aop b = b ∗A a for any a, b ∈ A.

Definition 1.17 Let V be a completely reducible A-module and let M be an irreducible
A-module. We define the M-homogeneous part of V as the sum of all the submodules
of V that are isomorphic to M . We denote this as V (M).

Lemma 1.18 Let V =
⊕

Wi be a direct sum of a finite number of irreducible A-modules
Wi. Let M be any irreducible A-module. Then the following holds:

1. V (M) is an EndA(V )-submodule of V .

2. V (M) =
∑

{Wi : Wi
∼= M}.

3. The number of Wi that are isomorphic toM is an invariant of V , and is independent
of the given direct sum decomposition.

[1, Lemma 1.13]

Given a semisimple algebra A and an irreducible A-module M , it can be shown that
A◦(M) is a two-sided ideal of A. We will denote A◦(M), regarded as an ideal of A, as
A(M).

We let M(A) be a set of irreducible A-modules such that every irreducible A-module
is isomorphic to exactly one element of M(A).

Theorem 1.19 (Wedderburn’s Theorem) Let A be a semisimple algebra and let M
be an irreducible A-module. Then the following holds:

1. A(M) is a minimal two-sided ideal of A.

2. If W is an irreducible A-module, then W is annihilated by A(M) unless W ∼= M .

3. M(A) is a finite set.

[1, Theorem 1.15]

4



1.1 Algebra Theory preliminaries

Corollary 1.20 If A is a simple F -algebra, then any two irreducible A-modules are iso-
morphic, and |M(A)| = 1.

We note that for any irreducible A-moduleM , A(M) is a simple subalgebra of A that
is not necessarily unital. The algebra A can then be decomposed in the following way as
a direct sum of simple subalgebras:

A =
⊕

M∈M(A)

A(M).

Lemma 1.21 Let A be a finite-dimensional simple F -algebra. Then for some positive
integer n, A ∼= Mn(D) for some division algebra D whose centre contains F . [2, Chapter
8, Theorem 1.5 + Corollary 1.6]

In combination with Wedderburn’s Theorem, this allows us to say that any semisimple
F -algebra A is a direct product of simple algebras of the formMn(D) whereD is a division
algebra over F .

Definition 1.22 (Tensor Product of Algebras) Let A,B be F -algebras. Then the
F -algebra tensor product A ⊗ B is A ⊗F B as an F -vector space with the following
multiplication: for any a1, a2 ∈ A, b1, b2 ∈ B, (a1 ⊗ b1) · (a2 ⊗ b2) = a1a2 ⊗ b1b2.

It is an exercise to show that multiplication in A⊗B is associative, that A⊗B ∼= B⊗A,
and that (A⊗B)⊗ C ∼= A⊗ (B ⊗ C) for any F -algebras A,B,C.

Recall that the centre of an F -algebra A, Z(A), is defined as the set {z ∈ A : za =
az ∀a ∈ A}. In this discussion, let A be a simple F -algebra. Then A ∼= Mn(D) for some
positive integer n and some division algebra D whose centre contains F . From this, we
can say that Z(A) ∼= Z(D), and for any division algebra D, Z(D) is a field. Note that
Z(D) is the largest field over which we can view A as an algebra. We now state the
following definition.

Definition 1.23 A is said to be central over F if Z(A) = F .

So if a simple F -algebra A is central, then F is the largest field over which we can view
A as an algebra. If A is not central, then there are finite field extensions of F over which
we can view A as an algebra.

Now let A =
⊕

iAi be a semisimple F -algebra such that each Ai is simple. Suppose
Ai = Mni

(Di). Then Z(A) =
⊕

i Z(Ai) =
⊕

i Z(Di). So the centre of a semisimple
algebra is a direct product of fields. Clearly, if a semisimple algebra A is central, then A
is simple.

Definition 1.24 An F -algebra is said to be central simple if it is central over F , and
simple.

Theorem 1.25 If A is a central simple F -algebra and B is a simple F -algebra, then
A⊗B is simple. [2, Chapter 8, Theorem 3.2 (ii)]

Theorem 1.26 Let A and B be two F -algebras, and let A′, B′ be unital subalgebras of
A and B respectively. Then ZA⊗B(A

′ ⊗B′) = ZA(A
′)⊗ZB(B

′). [2, Chapter 8, Theorem
3.2 (i)]

Note that this implies in particular that Z(A⊗B) = Z(A)⊗ Z(B).

5



1.1 Algebra Theory preliminaries

Corollary 1.27 If A and B are both central simple F -algebras, then A ⊗ B is central
simple.

Theorem 1.28 (Skolem-Noether theorem) Let A be a central simple F -algebra, and
let B be a simple F -algebra. Let σ : B → A and τ : B → A each be unital F -algebra
homomorphisms. Then there exists an inner automorphism ϕ of A such that τ = ϕσ,
and we obtain the commutative diagram.

B A

A

ϕ
τ

σ

[2, Chapter 8, Theorem 4.2]

In particular, this implies that any F -algebra automorphism of a central simple F -
algebra is an inner automorphism.

Theorem 1.29 (Centralizer Theorem) Let A be a central simple F -algebra, and let
B be a simple unital subalgebra of A. Then the following holds:

1. ZA(B) is a simple unital subalgebra of A.

2. dimF (A) = dimF (B) · dimF (ZA(B)).

3. If B is central, then A ∼= B ⊗F ZA(B).

[2, Chapter 8, Theorem 4.5]

Corollary 1.30 Let A be a central simple F -algebra, and let B be a simple unital subal-
gebra of A. Then ZA(ZA(B)) = B. [2, Chapter 8, Corollary 4.8]

Lemma 1.31 If A is a central simple F -algebra, then A ⊗ Aop ∼= Mn(F ) where n =
dimF (A). [2, Chapter 8, Theorem 3.4]

Corollary 1.32 Let D be a division algebra that is central over F . Then D ⊗ Dop ∼=
Mn(F ) where n = dimF (D).

Lemma 1.33 Let A =Mn(D) be a central simple F -algebra, where D is a central division
algebra over F . Then Aop ∼= Mn(D

op).

Proof. We can express A as A ∼= Mn(F ) ⊗D, and Mn(D
op) ∼= Mn(F ) ⊗Dop. For any

i, j ≤ n, we define Ei,j to be the matrix in Mn(F ) with a 1 in the (i, j)th entry and 0
everywhere else. The required isomorphism φ : (Mn(F )⊗D)op →Mn(F )⊗Dop is defined
as: φ(Ei,j ⊗ x) = Ej,i ⊗ x for any x ∈ D. ■

The tensor product of central simple algebras somewhat exhibits the behaviour of
a group operation. Let us see how:

• Firstly, as mentioned before, as an operation on F -algebras, the algebra tensor
product is associative. In general, for any F -algebras A,B,C, (A ⊗ B) ⊗ C ∼=
A⊗ (B ⊗ C). This of course still holds for central simple algebras.

6



1.2 The Brauer Group of F

• Let A and B be two central simple F -algebras. Then, by Corollary 1.27, A =
Mn1(D1), B = Mn2(D2) and A ⊗ B = Mn3(D3) for some positive integers ni and
for some division algebras Di such that Z(Di) = F for all i. So the algebra tensor
product is closed in the set of central simple F -algebras.

• For any central simple algebra Mn(D), Mn(D) ⊗ Mm(F ) ∼= Mm(F ) ⊗ Mn(D) =
Mnm(D). In a sense, “tensor multiplying” a central simple algebra by Mn(F ) does
not change the associated (central) division algebra. So the matrix algebras of the
form Mn(F ) act like identity elements under the tensor product operation.

• Since D⊗Dop =Md(F ),Mn(D)⊗Mm(D
op) ∼= Mm(D

op)⊗Mn(D) ∼= Mnm(F )⊗(D⊗
Dop) ∼= Mnm(F ) ⊗Md(F ) ∼= Mnmd(F ). So given a central simple algebra Mn(D),
central simple algebras of the form Mm(D

op) act like inverses under algebra tensor
product.

We remark that the isomorphism classes of central simple F -algebras is a monoid
under the operation of algebra tensor product. We now formalize the group structure of
central simple F -algebras in a way introduced by Richard Brauer.

1.2 The Brauer Group of F

Let us first describe the set of elements in the Brauer group of F . For any central
simple F -algebras A,B, define A ∼ B if A = Mn(DA), B = Mm(DB), and DA

∼= DB.
One can check that ∼ defines an equivalence relation on all central simple algebras over
F .

Let F be a field. We denote the set of equivalence classes of central simple F -algebras
as Br(F ). Then [A] will denote the set of central simple F -algebras in the same equiva-
lence class as A. We define a binary operation on Br(F ) in the following way:

For any two equivalence classes [A], [B], set [A] · [B] := [A⊗B]. Let us verify that this
operation is well defined. Let A = Mn(DA) and B = Mm(DB) for some central division
algebras DA, DB. For any A

′ ∼ A, A′ =Mn′(DA) and for any B′ ∼ B, B′ =Mm′(DB).
Our task is to show that [A′ ⊗ B′] = [A ⊗ B]. Suppose DA ⊗ DB = Mr(D) where

D is a central division algebra. Then A ⊗ B ∼= Mnm(F ) ⊗ (DA ⊗ DB) ∼= Mnm(F ) ⊗
(Mr(F ) ⊗ D) ∼= Mnmr(D). On the other hand, A′ ⊗ B′ ∼= Mn′m′(F ) ⊗ (DA ⊗ DB) ∼=
Mn′m′(F )⊗ (Mr(F )⊗D) ∼= Mn′m′r(D). This has the same central division algebra part
as A⊗ B, and so A⊗ B ∼ A′ ⊗ B′, hence [A′ ⊗ B′] = [A⊗ B] and the binary operation
on the set of equivalence classes is well defined.

Since the tensor product is associative on central simple F -algebras, the binary oper-
ation · is associative. Note that [A] · [F ] = [A]. So the equivalence class [F ] acts as the
identity element under the operation. Also if A ∼= Mn(D), then [A] · [Dop] = [D] · [Dop] =
[Dop] · [D] = [F ]. So the inverse of [D] is [Dop]. We can now define the group Br(F ).

Definition 1.34 The Brauer group of F is the set Br(F ) of equivalence classes of
central simple F -algebras equipped with the group operation defined by [A]·[B] = [A⊗B].

As ⊗ is commutative, we note that Br(F ) is abelian.
It must be emphasised that the Brauer group is different for different fields. Note that

given a field F , the order of Br(F ) is equal to the number of distinct central division
algebras over F .

Corollary 1.35 If a field F is algebraically closed, then Br(F ) = 1, the trivial group.

7



1.2 The Brauer Group of F

When it comes to finite fields, we note that by Wedderburn’s little theorem, every
finite division algebra is a field. Hence, if F is a finite field, then the only finite-dimensional
central division algebra over F is F itself. Hence, if F is a finite field, then Br(F ) = 1.

By Frobenius, there are only two finite-dimensional central division algebras over R.
They are R and H, the algebra of quaternions. Hence Br(R) ∼= C2. The only other
finite-dimensional division algebra over R is C. It is clear that C is not central over R.
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2 Superalgebras

2.1 Superalgebra Theory preliminaries

In this section, we will introduce the concept of a superalgebra, which is a specific
type of algebra. Many of the definitions and theorems we encountered in Algebra Theory
will have their equivalents in Superalgebra Theory. As such, section 2 will follow a similar
structure to section 1. This time, we will provide full proofs of the “super” theorems, such
as the Super Schur’s Lemma, Super Maschke’s Theorem, and the Super Wedderburn’s
Theorem. Many of these proofs are based on the proofs of the theorems from ordinary
Algebra Theory. We will eventually build up to super central simple superalgebras and
the Brauer-Wall group. Many of the definitions mentioned in this section comes from [3,
Chapters 5 + 6].

⋆ Again, F will refer to an arbitrary field, and A will refer to an arbitrary F -algebra.

SupposeG is a finite group. AG-grading on A is a direct sum decomposition A =
⊕
g∈G

Ag

of A indexed by the elements of G that satisfies the following conditions:

• F · 1A ⊂ A1G ,

• For any g, h ∈ G, Ag · Ah ⊂ Agh.

A is a G-graded F -algebra if it is equipped with a G-grading A =
⊕
g∈G

Ag. The subspace

Ag is called the g-component of A.

Definition 2.1 An F -superalgebra is a C2-graded F -algebra.

Given an F -superalgebra with a C2-grading, by convention we will denote the compo-
nent of A indexed by the trivial element of C2 as A0, and we will denote the component
indexed by the non-trivial element of C2 as A1. A0 is called the 0-component of A,
while A1 is its 1-component .

Let A = A0 ⊕ A1 be an F -superalgebra. Then the set A0 ∪ A1 is called the set of
homogeneous elements of A. Homogeneous elements in A0 and A1 are called even and
odd elements respectively. An F -superalgebra A is purely even if A1 = {0}. Given
i ∈ {0, 1}, a homogeneous element x in Ai is said to have degree d(x) = i.

Remark 2.2 • An F -algebra A can be given different gradings. We will mention this
fact in the list of examples that follow this remark.

• From the definition of a superalgebra, we know that A0 is an ordinary unital subal-
gebra of A.

• Like with F -algebras, the dimension of an F -superalgebra A is given by its vector
space dimension over F .

Example 2.3 Given a field F , let us list examples of F -superalgebras.

• The field F itself can be regarded as a purely even F -superalgebra.

• Let r, s ≥ 0. Then the matrix superalgebra over F , M(r,s)(F ), is Mr+s(F ) as an
F -algebra with the following grading:

(
M(r,s)(F )

)
0
is the set of matrices of the form(

A 0

0 B

)

9



2.1 Superalgebra Theory preliminaries

where A and B are r × r and s× s matrices over F respectively, while
(
M(r,s)(F )

)
1

is the set of matrices of the form (
0 C

D 0

)
where C and D are r × s and s × r matrices over F respectively. From this, we
can see that for any n ≥ 2, Mn(F ) can be given different gradings. For example,
the F -superalgebras M(2,2)(F ) and M(1,3)(F ) are both M4(F ) as algebras, but have
different gradings.

• We can define the notion of an F -super vector space and its super endomorphism
ring over F . Let V be a finite-dimensional F -vector space. Let r, s be two non-
negative integers such that r + s = dimF (V ). Then the F -super vector space
V (r,s) is V as an F -vector space with a direct sum decomposition V = V0⊕V1 where
dimF (V0) = r and dimF (V1) = s. The super endomorphism ring Ends

F

(
V (r,s)

)
of V (r,s) is EndF (V ) as an F -algebra with the following grading:

–
(
Ends

F (V
(r,s))

)
0
= {φ ∈ EndF (V ) : φ(v0) ∈ V0 and φ(v1) ∈ V1 ∀v0 ∈ V0, v1 ∈

V1}, and
–
(
Ends

F (V
(r,s))

)
1
= {φ ∈ EndF (V ) : φ(v0) ∈ V1 and φ(v1) ∈ V0 ∀v0 ∈ V0, v1 ∈

V1}.

• Let G be a finite group with a normal subgroup N ◁ G of index 2. Then the
group superalgebra F [G,N ] is FG as an F -algebra with the following grading:
(F [G,N ])0 = FN , while (F [G,N ])1 = F [G\N ].

• The ring F [x] of polynomials in x with coefficients in F can be equipped with the
following grading: F [x]0 is the set of all polynomials of the form

∑
cnx

2n, while
F [x]1 is the set of all polynomials of the form

∑
cnx

2n+1. With this grading, F [x] is
an infinite-dimensional F -superalgebra.

If A,B are F -superalgebras, then A×B is an F -superalgebra with 0-component A0×B0

and 1-component A1 ×B1. In general, a finite direct product of F -superalgebras
∏
Ai is

itself an F -superalgebra with 0-component
∏

(Ai)0 and 1-component
∏

(Ai)1.

⋆ In this section, we set A to be an F -superalgebra.

Definition 2.4 A left superideal I ⊂ A of A is a subspace of A with a decomposition
I = I0 ⊕ I1 that satisfies the following properties:

• I0 ⊂ A0 and I1 ⊂ A1.

• For any i, j ∈ {0, 1}, Ai · Ij ⊂ I(i+j)mod2.

Right superideals are defined correspondingly. A two-sided superideal of A is a
left superideal that is also a right superideal.

We note that superideals of a superalgebra are ordinary ideals of the underlying
algebra.

A subsuperalgebra B ⊂ A is a subspace of A that is also an F -superalgebra, and
is equipped with a grading B = B0 ⊕ B1 that satisfies B0 ⊂ A0 and B1 ⊂ A1. A
subsuperalgebra B ⊂ A is called unital if 1B = 1A.

Let us mention examples of subsuperalgebras of A.
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2.1 Superalgebra Theory preliminaries

• F · 1A is a purely even subsuperalgebra of A.

• Z(A) is a subsuperalgebra of A with grading Z(A)0 = Z(A) ∩ A0 and Z(A)1 =
Z(A) ∩ A1.

Definition 2.5 The super centre of A, denoted by Zs(A), is the subsuperalgebra of A
with the following grading:

• (Zs(A))0 = {z0 ∈ A0 : z0a0 = a0z0 and z0a1 = a1z0 for any a0 ∈ A0, a1 ∈ A1} and

• (Zs(A))1 = {z1 ∈ A1 : z1a0 = a0z1 and z1a1 = −a1z1 for any a0 ∈ A0, a1 ∈ A1}.

Let B ⊂ A be a subsuperalgebra of A. Then the super centralizer of B in A,
denoted by Zs

A(B), is the subsuperalgebra of A with the following grading:

• (Zs
A(B))0 = {z0 ∈ A0 : z0b0 = b0z0 and z0b1 = b1z0 for any b0 ∈ B0, b1 ∈ B1} and

• (Zs
A(B))1 = {z1 ∈ A1 : z1b0 = b0z1 and z1b1 = −b1z1 for any b0 ∈ B0, b1 ∈ B1}.

Definition 2.6 A is super simple if it has no non-trivial proper two-sided superideals.

An F -superalgebra is called a super division algebra if every non-zero homoge-
neous element has a multiplicative inverse.

Remark 2.7 • Let D = D0 ⊕ D1 be a super division algebra, and let x ∈ Di be a
non-zero homogeneous element of degree i. Then it is straightforward to show that
x−1 is also a homogeneous element of degree i.

• Given a super division algebra D = D0 ⊕ D1, D0 itself is an ungraded division
algebra. If D1 ̸= 0, then for any non-zero v ∈ D1, D1 = D0v.

Definition 2.8 Let A and B be F -superalgebras. Then an F -superalgebra homo-
morphism is a linear map φ : A→ B which satisfies:

1. φ(xy) = φ(x)φ(y) for all x, y ∈ A,

2. φ(1A) = 1B,

3. φ(Ai) ⊂ Bi for any i ∈ {0, 1}.

As expected, an F -superalgebra isomorphism is a bijective superalgebra homo-
morphism.

Definition 2.9 A left A-supermodule V is a finite-dimensional vector space that is
equipped with a direct sum decomposition V = V0 ⊕ V1 (called its grading) and a left
A-action map

A× V → V, (a, v) → a · v = av

that satisfies the same properties as a left A-action map for an ordinary A-module, and
additionally satisfies Ai · Vj ⊂ V(i+j)mod2 for any i, j ∈ {0, 1}.

We define right A-supermodules in a corresponding way. Throughout the thesis, the
term A-supermodule will refer to a left A-supermodule unless specified otherwise.

Definition 2.10 Let A be an F -superalgebra. The regular A-supermodule , denoted
as A◦, is A viewed as an A-supermodule under left multiplication.

11



2.1 Superalgebra Theory preliminaries

Let A be an F -superalgebra and let V be an A-supermodule. Then a subspaceW ⊂ V
is called an A-subsupermodule of V if W is closed under left multiplication by A, and
is equipped with a direct sum decomposition W = W0 ⊕ W1 that satisfies W0 ⊂ V0,
W1 ⊂ V1 and Ai ·Wj ⊂ W(i+j)mod2 for any i, j ∈ {0, 1}.

Definition 2.11 Let V and W be two A-supermodules, and let i ∈ {0, 1}. Then a map
φ : V → W from V to W is called an A-supermodule homomorphism of degree i
if it is a linear transformation that satisfies:

• φ(Vj) ⊂ W
(j+i)mod2

for any j ∈ {0, 1}.

• φ(ajv) = (−1)ijajφ(v) for any aj ∈ Aj, v ∈ V .

The set of all A-supermodule homomorphisms from V toW , denoted as Homs
A(V,W ),

is the A-supermodule with the following grading:

• (Homs
A(V,W ))0 is the set of all A-supermodule homomorphisms from V to W of

degree 0.

• (Homs
A(V,W ))1 is the set of all A-supermodule homomorphisms from V to W of

degree 1.

Remark 2.12 • Given an A-supermodule homomorphism φ ∈ Homs
A(V,W ), its ker-

nel kerφ and image imφ are defined in the same way as the ungraded case. If φ is
homogeneous, then kerφ and imφ are subsupermodules of V and W respectively.

• Given twoA-supermodules V,W , anA-supermodule homomorphism φ ∈ Homs
A(V,W )

is called an A-supermodule isomorphism if it is homogeneous and bijective, and
if such an A-supermodule homomorphism exists, we would say that V and W are
super isomorphic, and we would denote this as V ∼=s W .

Conventionally, given an A-supermodule V , Homs
A(V, V ) will be denoted as Ends

A(V ).

Lemma 2.13 Suppose V = V0 ⊕ V1 and W = W0 ⊕W1 are two A-supermodules such
that there exists an ordinary A-module isomorphism φ : V → W such that φ(V0) = W1

and φ(V1) = W0. Then V ∼=s W .

Proof. Let us show that the linear map φ̃ defined by: φ̃(v0) = φ(v0) for any v0 ∈ V0,
and φ̃(v1) = −φ(v1) for any v1 ∈ V1 is an A-supermodule isomorphism. For any vi ∈ Vi,
note that for any a0 ∈ A0, φ̃(a0vi) = (−1)iφ(a0vi) = a0(−1)iφ(vi) = a0φ̃(vi), and for
any a1 ∈ A1, φ̃(a1vi) = (−1)1−iφ(a1vi) = a1(−1)1−iφ(vi) = −a1(−1)iφ(vi) = −a1φ̃(vi).
Hence φ̃ is an A-supermodule isomorphism of degree 1, and V ∼=s W . ■

Definition 2.14 Let V be a non-zero A-supermodule. Then V is said to be super
irreducible if the only subsupermodules of V are 0 and V .

Lemma 2.15 If V = V0 ⊕ V1 is a super irreducible A-supermodule, then V0 and V1 are
irreducible as ungraded A0-modules.

Proof. Let V = V0 ⊕ V1 be a super irreducible A-supermodule. Without loss of general-
ity, suppose V0 is not an irreducible ungraded A0-module. Let W0 ⊂ V0 be a non-trivial
A0-submodule of V0. Then W0 ⊕ (A1 ·W0) would be a non-trivial A-subsupermodule of
V , which is a contradiction. ■

We now come to the superalgebra analogue of Schur’s Lemma.
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2.1 Superalgebra Theory preliminaries

Lemma 2.16 (Super Schur’s Lemma) If V andW are super irreducible A-supermodules,
then every non-zero homogeneous A-supermodule homomorphism in Homs

A(V,W ) has an
inverse in Homs

A(W,V ).

Proof. Since V = V0 ⊕ V1 and W = W0 ⊕W1 are super irreducible A-supermodules,
then by Lemma 2.15, V0, V1, W0 and W1 are irreducible ungraded A0-modules.

If φ ∈ Homs
A(V,W ) is a non-zero homogeneous A-supermodule homomorphism of

degree i, then the subsupermodule kerφ = ker(φ |V0)⊕ ker(φ |V1) of V is not equal to V .
Since V is super irreducible, then kerφ = 0, implying ker(φ |V0) and ker(φ |V1) are both
equal to 0, which tells us that φ |V0 and φ |V1 are non-zero elements of HomA0(V0,Wi)
and HomA0(V1,W1−i) respectively. By the ungraded Schur’s Lemma, φ |V0 and φ |V1
have inverses in HomA0(Wi, V0) and HomA0(W1−i, V1). This will allow us to construct the
inverse of φ: for any w0 ∈ W0, w1 ∈ W1, φ

−1(w0 + w1) = (φ |Vi)−1(w0) + (φ |V1−i
)−1(w1).

φ−1 is an A-supermodule homomorphism in Homs
A(W,V ), and we are done. ■

Remark 2.17 • If V andW are super irreducibleA-supermodules and φ ∈ Homs
A(V,W )

is a non-zero homogeneous A-supermodule homomorphism of degree i, then φ−1 is
also a non-zero homogeneous A-supermodule homomorphism of degree i.

• Given a super irreducible A-supermodule V , Ends
A(V ) is a super division algebra.

If Ends
A(V ) has non-zero homogeneous elements of degree 1, then V0 and V1 are

isomorphic as A0-modules, and dimF (V0) = dimF (V1).

Definition 2.18 Let V be an A-supermodule. Then V is completely super reducible
if for every subsupermodule W ⊂ V , there exists another subsupermodule U ⊂ V such
that V = W ⊕ U .

Definition 2.19 An F -superalgebra A is said to be super semisimple if its regular
supermodule A◦ is completely super reducible as an A-supermodule.

Now we get to the super version of Maschke’s Theorem.

Theorem 2.20 (Super Maschke’s Theorem) Let G be a finite group, and let G0 be
a subgroup of G with |G : G0| = 2, and suppose that the characteristic of F does not
divide |G|. Then every F [G,G0]-supermodule is completely super reducible.

Proof. Let V be an F [G,G0]-supermodule, and let W be a subsupermodule of V . Since
W is also an ungraded FG-submodule of V , then by the ungraded Maschke’s Theorem,
there exists an ungraded submodule U such that W ⊕ U = V . We note that U is also
an F [G,G0]-subsupermodule of V , with grading U = U0 ⊕ U1, where U0 = U ∩ V0 and
U1 = U ∩ V1. ■

Theorem 2.21 Let V be an A-supermodule. Then the following are equivalent:

1. V is completely super reducible.

2. V is a sum of super irreducible subsupermodules.

3. V is a direct sum of super irreducible subsupermodules.

Proof. First, let us show that 1 =⇒ 2.
Let V be a completely super reducible A-supermodule. Let W be the sum of all super
irreducible subsupermodules of V . For the sake of contradiction, suppose W ⊊ V . Since
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2.1 Superalgebra Theory preliminaries

V is completely super reducible, then V = W ⊕ U for some non-zero A-supermodule U .
Since V is finite dimensional, U contains a super irreducible subsupermodule U ′ ⊂ V .
Since W is the the sum of all super irreducible subsupermodules of V , U ′ ⊂ W , which
implies W ∩ U ̸= 0, which is a contradiction. Thus W = V , and V is a sum of super
irreducible subsupermodules.

Then, let us show that 2 =⇒ 1.

Let V be a sum of super irreducible subsupermodules. Then V =
∑
V α, where each

V α is super irreducible. Let W ⊂ V be a subsupermodule of V . By finite dimensionality
of V , choose a maximal subsupermodule U ⊂ V with the property that W ∩ U = 0.
We claim that W ⊕ U = V . If this was not true, then there would exist a V α that
V α ̸⊂ W ⊕ U . This would mean that V α ̸⊂ W and V α ̸⊂ U . Since V α is super irre-
ducible, then V α ∩W = 0 and V α ∩ U = 0. Hence U ⊕ V α would be a subsupermodule
that satisfiesW∩(U⊕V α) = 0, which contradicts the maximality of U . ThusW⊕U = V ,
and V is completely super reducible.

3 =⇒ 2 is immediate, so we just need to show that 2 =⇒ 3.

Let V be a sum of super irreducible subsupermodules. Then V =
∑
V α, where each

V α is super irreducible. We choose a maximal subsupermoduleW ⊂ V with the property
thatW is the direct sum of some of the V α’s. We aim to show thatW = V . For the sake of
contradiction, supposeW ⊊ V . Then for some α, V α ̸⊂ W . Since V α is super irreducible,
then V α ∩W = 0, and W ⊕ V α ⊋ W . This contradicts the maximality of W . Thus we
can conclude thatW = V , and V is a direct sum of super irreducible subsupermodules. ■

Let A be an F -superalgebra with multiplication ∗A. The super opposite algebra
of A, denoted as Asop, is the F -superalgebra that is A as a vector space, has the same
grading as A, but with multiplication ∗Aop defined by:

• a0 ∗Asop b0 = b0 ∗A a0 for any a0, b0 ∈ A0.

• a0 ∗Asop a1 = a1 ∗A a0 and b1 ∗Asop b0 = b0 ∗A b1 for any a0, b0 ∈ A0, a1, b1 ∈ A1.

• a1 ∗Asop b1 = −(b1 ∗A a1) for any a1, b1 ∈ A1.

Definition 2.22 Let V be a completely super reducible A-supermodule and let M be
a super irreducible A-supermodule. We define the M-homogeneous part of V as the
sum of all the left subsupermodules of V that are super isomorphic to M . We denote
this as V s(M).

Lemma 2.23 Let V =
⊕

Wi be a direct sum of A-supermodules where each Wi is super
irreducible. Let M be any super irreducible A-supermodule. Then the following holds:

1. V s(M) is an Ends
A(V )-subsupermodule of V .

2. V s(M) =
∑

{Wi : Wi
∼=s M}.

3. The number of Wi that are super isomorphic to M is an invariant of V , and is
independent of the given direct sum decomposition.

Proof.
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2.1 Superalgebra Theory preliminaries

1. It is enough to show that for any homogeneous element φ ∈ Ends
A(V ), φ(V s(M)) ⊂

V s(M).

Now let φ be a homogeneous element of Ends
A(V ). To show that φ(V s(M)) ⊂

V s(M), it is enough to show that for any subsupermodule W ⊂ V that is super
isomorphic to M , φ(W ) ⊂ V s(M).

Let W be a subsupermodule of V such that W ∼=s M . If φ(W ) = 0, then
immediately φ(W ) ⊂ V s(M). Suppose φ(W ) ̸= 0. Since W ∼=s M and M is super
irreducible, W is also super irreducible. Therefore, ker(φ |W ) is either 0 or W . Since
φ(W ) ̸= 0, ker(φ |W ) = 0, which means the map φ |W : W → φ(W ) is injective,
and hence bijective. Therefore, W ∼=s φ(W ), and since W ∼=s M , φ(W ) ∼=s M . We
conclude that φ(W ) ⊂ V s(M).

2. It is clear that
∑

{Wi : Wi
∼=s M} ⊂ V s(M). To show the reverse inclusion, it is

enough to show that for any subsupermodule W ⊂ V that is super isomorphic to
M , W ⊂

∑
{Wi : Wi

∼=s M}.

First, let πi be the projection map from V ontoWi. Note that πi is a homogeneous
element of Homs

A(V,Wi) of degree 0. Now let W ⊂ V be a subsupermodule such
that W ∼=s M . We know that means W is super irreducible. For any i, ker(πi |W )
is either 0 or W . If ker(πi |W ) = 0, then the map πi |W : W → Wi is injective.
Since Wi is super irreducible, we also get that im(πi |W ) = Wi, hence πi(W ) =
Wi ⊂

∑
{Wi : Wi

∼=s M} for any i. However, since W ⊂
∑

i πi(W ), we get that
W ⊂

∑
{Wi : Wi

∼=s M}, and we are done.

3. Let n denote the number of Wi that are super isomorphic to M . By 2), we get that
dimF (V

s(M)) = n · dimF (M), and it is clear that n is an invariant of V .

■

Definition 2.24 Let V be an A-supermodule, and let W ⊂ V be a subsupermodule of
V . Then the factor supermodule (V/W )s is V/W as an ungraded A-module with the
following grading: (V/W )s0 = V0/W0, and (V/W )s1 = V1/W1.

Lemma 2.25 Let A be an F -superalgebra. Then the following holds:

1. Every super irreducible A-supermodule is super isomorphic to a factor supermodule
of A◦.

2. If A is super semisimple, then every super irreducible A-supermodule is super iso-
morphic to a subsupermodule of A◦.

Proof.

1. Let V be a super irreducible A-supermodule. Choose a non-zero element v ∈ V0, and
define the F -linear φ : A → V by φ(x) = xv. Note that for any a0 ∈ A0, a0v ∈ V0,
and for any a1 ∈ A1, a1v ∈ V1. Hence φ(A0) ⊆ V0 and φ(A1) ⊆ V1. Also, for any
x, y ∈ A, φ(xy) = (xy)v = x(yv) = xφ(y). That means φ is a homogeneous element
of Homs

A(A
◦, V ) of degree 0. Hence imφ is a subsupermodule of V , and since V is

super irreducible, imφ is either 0 or V . Since v ∈ imφ, imφ = V , and this allows us
to say that V = imφ ∼=s A◦/ kerφ.
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2. Let V be a super irreducible A-supermodule. From 1), V ∼=s A◦/ kerφ where φ is
the A-supermodule homomorphism defined in 1). If A is super semisimple, then
since kerφ is a subsupermodule of A◦, there exists a subsupermodule U ⊂ A◦ such
that A◦ = kerφ ⊕ U . This tells us that U ∼=s A◦/ kerφ ∼=s V . Hence V is super
isomorphic to U , a subsupermodule of A◦.

■

Given a super semisimple superalgebra A and a super irreducible A-supermodule M ,
it can be shown that (A◦)s(M) is a two-sided superideal of A. We will denote (A◦)s(M)
seen as a two-sided superideal of A as just As(M).

We can describe a representative set of super irreducible A-supermodules. We can
describe a set Ms(A) as a set of super irreducible A-supermodules such that every super
irreducible A-supermodule is super isomorphic to exactly one element of Ms(A).

We finally get to Wedderburn’s theorem for superalgebras

Theorem 2.26 (Super Wedderburn’s Theorem) Let A be a super semisimple su-
peralgebra and let M be a super irreducible A-supermodule. Then the following holds:

1. As(M) is a two-sided superideal of A.

2. If V is a super irreducible A-supermodule, then V is annihilated by As(M) unless
V ∼=s M .

3. As(M) is a minimal two-sided superideal of A.

4. Ms(A) is a finite set.

Proof.

1. Let us first prove that As(M) is a two-sided superideal of A.

First we note that As(M) is a non-zero sum of left subsupermodules of A◦. This is
because, by Lemma 2.25(2), there is a subsupermodule W ⊂ A◦ such thatM ∼=s W .
Since left subsupermodules of A◦ are also left superideals of A, As(M) is therefore
a sum of left superideals of A, and hence is a left superideal of A.

Next, we show that As(M) is a right superideal. Let V = V0 ⊕ V1 be a super
irreducible left subsupermodule of A◦ that is super isomorphic to M . Once we show
that for any a ∈ A0 ∪ A1, V · a = (V0 · a) ⊕ (V1 · a) ∼=s V when V · a ̸= 0, we can
then say that for any a ∈ A0 ∪ A1, A

s(M) · a is a sum of left subsupermodules of
the form V · a, and each non-zero V · a are all super isomorphic to M , allowing us
to conclude that As(M) · a ⊂ As(M).

When showing that V · a ∼=s V when V · a ̸= 0, we need to first note that since
V0 ⊂ A0 and V1 ⊂ A1, V0 · a ⊂ A(0+d(a))mod2 and V1 · a ⊂ A(1+d(a))mod2, which means
(V0 · a) ∩ (V1 · a) = 0. This validates our grading of V · a = (V0 · a) ⊕ (V1 · a).
Let φ : V → V · a be the super homomorphism defined by φ(x) = xa. Since V
is super irreducible, then kerφ is either 0 or V . If kerφ = V , then V · a = 0. If
kerφ = 0, then φ is a bijection. It is also a homogeneous super homomorphism
of degree 0, and because of associativity in A, for any b ∈ A0 ∪ A1 and x ∈ V ,
φ(bx) = (bx)a = b(xa) = bφ(x). Hence for any a ∈ A0 ∪ A1, V · a ∼=s V ∼=s M
when V ·a ̸= 0. As stated in the previous paragraph, this allows us to conclude that
As(M) · a ⊂ As(M), meaning As(M) is a right superideal.
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2. Let V be a super irreducible A-supermodule. First we will show that if V ≇s M ,
then V is annihilated by As(M).

Let V ≇s M . Since A is super semisimple, then A◦ is a direct sum of super irre-
ducible subsupermodules, and soA◦ =

⊕
Wi. In particular, A◦ = (

⊕
{Wi : Wi

∼=s V })⊕
(
⊕

{Wi : Wi
∼=s M})⊕ (

⊕
{Wi : Wi ≇s V and Wi ≇s M}). By Lemma 2.23(2), we

have As(V ) = (
⊕

{Wi : Wi
∼=s V }) and As(M) = (

⊕
{Wi : Wi

∼=s M}). Hence
As(V )∩As(M) = 0. SinceAs(V ) andAs(M) are two-sided superideals, As(M)As(V ) ⊂
As(V ) ∩ As(M) = 0. Hence V is annihilated by As(M).

Now let V ∼=s M . We can express A◦ in the following way: A◦ = (
⊕

{Wi :
Wi

∼=s M}) ⊕ (
⊕

{Wi : Wi ≇s M}). From the previous paragraph, we can say
that (

⊕
{Wi : Wi ≇s M}) annihilates M (and hence also V ). As a consequence

(
⊕

{Wi : Wi
∼=s M}) = As(M) does not annihilate M , and therefore As(M) does

not annihilate V .

3. Let I ⊊ As(M) be a two-sided superideal of A. We need to show that I = 0.

Since I ⊊ As(M) and As(M) is a sum of subsupermodules super isomorphic to
M , there is a subsupermodule N ⊂ As(M) such that N ∼=s M and N ̸⊂ I. Since
M is super irreducible, so is N . Since N ∩ I ⊂ N and N ̸⊂ I, N ∩ I = 0. Since
IN ⊂ N ∩ I, IN = 0. Hence, for any homogeneous element x ∈ I, x · N = 0. In
fact, for any subsupermodule V ⊂ As(M) that is super isomorphic to M , x · V = 0,
hence x · As(M) = 0.

To show that x = 0 for any homogeneous element x ∈ I, we first note that
A◦ = (

⊕
{Wi : Wi

∼=s M})⊕(
⊕

{Wi : Wi ≇s M}) = As(M)⊕(
⊕

{Wi : Wi ≇s M}).
Then 1A = m+n where m ∈ As(M) and n ∈

⊕
{Wi : Wi ≇s M}. Since x ∈ As(M),

by 2), x annihilates everything in
⊕

{Wi : Wi ≇s M}, hence x·1A = x(m+n) = xm+
xn = xm. But from the previous paragraph, x ·As(M) = 0, hence x · 1A = xm = 0,
and we conclude that x = 0 for any homogeneous element x ∈ I. Hence I = 0, and
As(M) is a minimal two-sided superideal.

4. On the one hand, by 2.25(2), As(V ) ̸= 0 for any super irreducible A-supermodule
V . On the other hand, since A◦ =

⊕
Wi and each Wi is super isomorphic to one

element of Ms(A),

A◦ =
⊕

V ∈Ms(A)

As(V )

where each As(V ) is non-zero. Since A◦ is finite dimensional, there is a finite number
of distinct As(V ) in the direct sum, hence Ms(A) is a finite set.

■

Definition 2.27 Let A,B be two F -superalgebras. Then the super tensor product A ⊗̂B
is A⊗F B as an F -vector space with the following grading: (A ⊗̂B)0 = (A0⊗B0)⊕ (A1⊗
B1) and (A ⊗̂B)1 = (A0⊗B1)⊕ (A1⊗B0). For any a ∈ A, b ∈ B, a ⊗̂ b is identified with
a⊗ b. Multiplication in A ⊗̂B is defined in the following way: for any a1, a2 ∈ A0 ∪ A1,
b1, b2 ∈ B0 ∪B1, (a1 ⊗̂ b1) · (a2 ⊗̂ b2) = (−1)d(a2)d(b1)(a1a2 ⊗̂ b1b2).

While it is not obvious that the super tensor product is a commutative operation on
F -superalgebras, let us show that for any F -superalgebras A,B, A ⊗̂B ∼= B ⊗̂A.

For any homogeneous elements a ∈ A0∪A1, b ∈ B0∪B1, the required F -superalgebra
isomorphism φ : A ⊗̂B → B ⊗̂A is defined by φ(a ⊗̂ b) = (−1)d(a)d(b)(b ⊗̂ a). Let us show
that it is an F -superalgebra homomorphism.
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For any a, a′ ∈ A0 ∪A1, b, b
′ ∈ B0 ∪B1, let i = d(a), j = d(a′), k = d(b), and l = d(b′).

Then

φ((a ⊗̂ b) · (a′ ⊗̂ b′)) = φ((−1)jk(aa′ ⊗̂ bb′)) = (−1)jk(−1)(i+j)(k+l)(bb′ ⊗̂ aa′) =
(−1)2jk+ik+il+jl(bb′ ⊗̂ aa′) = (−1)ik+il+jl(bb′ ⊗̂ aa′).

On the other hand,

φ(a ⊗̂ b)φ(a′ ⊗̂ b′) = (−1)ik(b ⊗̂ a) · (−1)jl(b′ ⊗̂ a′) = (−1)ik+jl(−1)il(bb′ ⊗̂ aa′) =
(−1)ik+il+jl(bb′ ⊗̂ aa′).

It can be seen straight away that φ preserves grading, and so it is an F -superalgebra
homomorphism. φ is also bijective, so A ⊗̂B ∼= B ⊗̂A.

Next, let us show that the super tensor product is associative. In other words, let us
show that for any F -superalgebras A,B,C, (A ⊗̂B) ⊗̂C ∼= A ⊗̂(B ⊗̂C).

For any homogeneous elements a ∈ A0∪A1, b ∈ B0∪B1, c ∈ C0∪C1, the required F -
superalgebra isomorphism φ : (A ⊗̂B) ⊗̂C → A ⊗̂(B ⊗̂C) is defined by φ((a ⊗̂ b) ⊗̂ c) =
a ⊗̂(b ⊗̂ c). Let us show that it is an F -superalgebra homomorphism.

For any a, a′ ∈ A0 ∪A1, b, b
′ ∈ B0 ∪B1, c, c

′ ∈ C0 ∪C1, let i, j, k, l be d(a
′), d(b), d(b′),

and d(c) respectively. Then

φ(((a ⊗̂ b) ⊗̂ c) · ((a′ ⊗̂ b′) ⊗̂ c′)) = φ((−1)(i+k)l+ij(aa′ ⊗̂ bb′) ⊗̂ cc′) =
(−1)il+kl+ijaa′ ⊗̂(bb′ ⊗̂ cc′).

On the other hand,

φ((a ⊗̂ b) ⊗̂ c)φ((a′ ⊗̂ b′) ⊗̂ c′) = (a ⊗̂(b ⊗̂ c)) · (a′ ⊗̂(b′ ⊗̂ c′)) =
(−1)(j+l)i+klaa′ ⊗̂(bb′ ⊗̂ cc′) = (−1)il+kl+ijaa′ ⊗̂(bb′ ⊗̂ cc′).

It is an exercise to verify that φ preserves grading, and so it is an F -superalgebra
homomorphism. φ is also bijective, so (A ⊗̂B) ⊗̂C ∼= A ⊗̂(B ⊗̂C).

Lemma 2.28 Let A be a finite-dimensional super simple F -superalgebra. Then for some
non-negative integers r, s, A ∼= M(r,s)(F ) ⊗̂D for some super division algebra D whose
centre contains F .

Proof. We will prove this lemma in two steps.

• To set up the first step, we will let I ⊂ A be a left superideal that is also a super
irreducible A-supermodule. Then by the Super Schur’s Lemma, Ends

A(I) is a super
division algebra. Denoting Ends

A(I) as D, we can now describe our first step, which
is to show that A ∼= Ends

D(I) as F -superalgebras.

• To set up the second step, we first note that I0 and I1 are vector spaces over the
ungraded division algebra D0. If D1 = 0, then we will let r = dimD0(I0) and s =
dimD0(I1), and our second step would be to show that Ends

D(I)
∼= M(r,s)(F ) ⊗̂Dop.

If D1 ̸= 0, then we will let r = dimD0(I0), and s = 0, and our second would be to
show that Ends

D(I)
∼= M(r,0)(F ) ⊗̂Dsop =Mr(F ) ⊗̂Dsop.

Step 1. To show that A ∼= Ends
D(I) we will consider the natural map ι : A → Ends

D(I),
a 7→ φa where φa(x) = ax for any x ∈ I. Let us quickly verify that this is indeed a
map from A to Ends

D(I) that preserves grading.

Let i ∈ {0, 1}. Since, for any ai ∈ Ai, ai · Ij ⊂ I(i+j)mod2 for any j ∈ {0, 1},
φai(Ij) ⊂ I(i+j)mod2 for any j ∈ {0, 1}.
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Now let i, j ∈ {0, 1}. For any ai ∈ Ai and dj ∈ Dj, dj(aix) = (−1)ijaidj(x) for any
x ∈ I, hence φai(dj(x)) = aidj(x) = (−1)ijdj(aix) = (−1)ijdj(φai(x)) for any x ∈ I.
We can conclude that for any i ∈ {0, 1}, ι(Ai) ⊂ (Ends

D(I))i. Hence ι is a map from
A to Ends

D(I) that preserves grading.

Next, let us show that ι is a homomorphism of F -superalgebras. Let us show that
ι(ab) = ι(a) ◦ ι(b). For any x ∈ I, φab(x) = (ab)x = a(bx) = aφb(x) = φa(φb(x)),
and hence we have shown that ι(ab) = ι(a) ◦ ι(b).

It is clear that ι(1A) = id, the identity element of Ends
D(I). Also, since A is an F -

algebra, ι is an F -linear transformation. We can conclude that ι is an F -superalgebra
homomorphism.

Next, we show that ι is injective. Note that ker(ι) is a two-sided superideal of
A. Since A is super simple and ι(1A) = id ̸= 0, ker(ι) ̸= A, so ker(ι) = 0, and ι is
injective.

Finally, we will show that ι is surjective. To do this, we show that ι(A) is a left
superideal of Ends

D(I).

For this, we first show that ι(I) is a left superideal.

Note that for any a ∈ I0 ∪ I1, the map ψa : I → I defined by x 7→ (−1)d(x)d(a)xa
for any x ∈ I0 ∪ I1 is an element of D = Ends

A(I) of degree d(a). Hence, for
any homogeneous element φ ∈ Ends

D(I) of degree i, φ(ψa(x)) = (−1)i·d(a)ψa(φ(x))
for any x ∈ I. So for any x, y ∈ I0 ∪ I1, (φ ◦ ι(x))(y) = φ(φx(y)) = φ(xy) =
φ((−1)d(x)d(y)ψy(x)) = (−1)d(x)d(y)φ(ψy(x)) = (−1)(d(x)+i)d(y)ψy(φ(x)) = φ(x)y =
φφ(x)(y) = (ι ◦ φ(x))(y). This tells us that for any x ∈ I, φ ◦ ι(x) = ι ◦ φ(x). This
applies for any homogeneous element φ ∈ Ends

D(I). We conclude that ι(I) is a left
superideal of Ends

D(I), as desired.

Next, let us show that ι(A) is a left superideal of Ends
D(I). Note that since I

is a left superideal of A, I · A is a two-sided superideal of A (with 0-component
I0A0 + I1A1 and 1-component I0A1 + I1A0), and since A is super simple and IA
is non-zero, IA = A. So ι(A) = ι(IA) = ι(I)ι(A). Since ι(I) is a left superideal
of Ends

D(I), so is ι(I)ι(A), and hence ι(A) is a left superideal of Ends
D(I). Since

id ∈ ι(A), ι(A) = Ends
D(I), and hence ι is surjective. We have now shown that

A ∼= Ends
D(I).

Step 2. In this step, we show that if D1 = 0, then Ends
D(I)

∼= M(r,s)(F ) ⊗̂D where r =
dimD0(I0) and s = dimD0(I1). Since D = D0 would be an ungraded division algebra
when D1 = 0, then, as an ungraded algebra, Ends

D(I) = EndD(I), and by choosing
a D-basis for I, we get EndD(I) ∼= Mn(D

op) where n = dimD(I). Since dimD(I) =
dimD(I0) + dimD(I1) = r+ s, then, as an ungraded algebra, EndD(I) ∼= Mr+s(D

op).

Since as a D-super vector space, I0 ⊕ I1 ∼= D(r,s), then by choosing a D-basis
for I0 and I1, we get that the required grading for Mr+s(D

op) is M(r,s)(D
op) ∼=

M(r,s)(F ) ⊗̂Dop, and hence, as a superalgebra, Ends
D(I) =M(r,s)(F ) ⊗̂Dop.

Now let us tackle the case where D1 ̸= 0. Let us first show that (Ends
D(I))0

∼=
Mn(D

op
0 ) where n = dimD0(I0).

Let v ∈ D1 be a non-zero element. Since I1 = v(I0), then every element of
(Ends

D(I))0 is determined by an element of EndD0(I0), and since, after choosing aD0-
basis for I0, EndD0(I0)

∼= Mn(D
op
0 ) where n = dimD0(I0), we get that (Ends

D(I))0
∼=

Mn(D
op
0 ).
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Now, we figure out (Ends
D(I))1. Let φ ∈ (Ends

D(I))1. Now let a0 ∈ I0 and a1 ∈ I1,
and let b1 = va0 and b0 = va1. Note that φ(a0) = φ(v−1b1) = −v−1φ(b1) ∈ I1 and
φ(a1) = φ(v−1b0) = −v−1φ(b0) ∈ I0. Note that for any d0 ∈ D0 and x ∈ I,
v−1φ(d0x) = v−1d0φ(x) = (d0 ∗Dop (v−1))φ(x). That means v−1φ is an element of
(Ends

D(I))0, and hence, for any φ ∈ (Ends
D(I))1, φ = vψ for some ψ ∈ (Ends

D(I))0
∼=

Mn(D
op
0 ). Hence (Ends

D(I))1 = v · (Ends
D(I))0

∼= v · Mn(D
op
0 ). Overall, we get

that Ends
D(I)

∼= Mn(F ) ⊗̂Dsop. In this superalgebra isomorphism, (Ends
D(I))0

∼=
Mn(F ) ⊗̂(Dsop)0 ∼= Mn(F ) ⊗̂(Dop

0 ) and (Ends
D(I))1

∼= Mn(F ) ⊗̂(Dsop)1.

■

Lemma 2.29 Let r, s be non-negative integers and let D = D0 ⊕D1 be a super division
algebra over F such that F ⊂ Z(D) and D1 ̸= 0. Then M(r,s)(F ) ⊗̂D ∼= Mr+s(F ) ⊗̂D.

Proof. Let v be a non-zero element of D1. For any i, j ≤ r + s, we define Ei,j to be the
matrix in Mr+s(F ) with a 1 in the (i, j)th entry and 0 everywhere else. We define a linear
map φ :M(r,s)(F ) ⊗̂D →Mr+s(F ) ⊗̂D by:

• φ(Ei,j ⊗̂x) = Ei,j ⊗̂x if i, j ≤ r, and x ∈ D0 ∪D1,

• φ(Ei,j ⊗̂x) = (−1)d(x)Ei,j ⊗̂xv if i ≤ r, j > r, and x ∈ D0 ∪D1,

• φ(Ei,j ⊗̂x) = Ei,j ⊗̂ v−1x if i > r, j ≤ r and x ∈ D0 ∪D1,

• φ(Ei,j ⊗̂x) = (−1)d(x)Ei,j ⊗̂ v−1xv if i, j > r, and x ∈ D0 ∪D1.

One can check that this is a superalgebra homomorphism that preserves grading, and
is bijective. ■

Lemma 2.28, in combination with the Super Wedderburn’s Theorem, allows us to say
that any super semisimple F -superalgebra A is a direct sum of super simple superalgebras
of the form M(r,s)(F ) ⊗̂D where D is a super division algebra over F .

Corollary 2.30 Suppose A is a super semisimple F -superalgebra and that char(F ) ̸= 2.
Then Zs(A) = Z(A) ∩ A0.

Corollary 2.31 Let A = M(r,s)(F ) ⊗̂D be a super simple F -superalgebra, where D is
a super division algebra whose centre contains F . Then for any super irreducible A-
supermodule V , Ends

A(V ) ∼= Dsop.

⋆ Throughout the rest of this section, we will only cover the case where F is a field
whose characteristic is not equal to 2.

Let A be a super simple F -superalgebra. Then A ∼= M(r,s)(F ) ⊗̂D for some super
division algebra D whose centre contains F . If D1 = 0, then Zs(A) ∼= Z(D) = Zs(D),
which is a field. If D1 ̸= 0, then Zs(A) ∼= Z(D0) ∩ ZD0(D1) = Zs(D), and one can check
that this is a field.

We now give the following important definition:

Definition 2.32 An F -superalgebra is said to be super central over F if Zs(A) = F .

Now let A =
⊕

iA
i be a super semisimple F -superalgebra such that each Ai is a

super simple F -superalgebra. Suppose Ai = M(ri,si) ⊗̂Di. Then Zs(A) ∼=
⊕

i Z
s(Ai) =⊕

i Z
s(Di). So the super centre of a super semisimple F -superalgebra is a direct product

of fields. If a super semisimple superalgebra A is super central, then A is super simple.

20



2.1 Superalgebra Theory preliminaries

Definition 2.33 An F -superalgebra is said to be super central simple if it is both
super central over F , and super simple.

We now provide the superalgebra analogue of Theorem 1.25.

Theorem 2.34 If A is a super central simple F -superalgebra and B is a super simple
F -superalgebra, then A ⊗̂B is super simple.

Proof. Let I be a non-zero two-sided superideal ofA ⊗̂B. We will show that 1A ⊗̂ 1B ∈ I,
which would imply that I = A ⊗̂B.

First, let us show that if I contains a non-zero homogeneous element of the form a ⊗̂ b
where a ∈ A0 ∪A1 and b ∈ B0 ∪B1, then 1A ⊗̂ 1B ∈ I. Since A is super simple, A has no
non-trivial proper two-sided superideals, which means the two-sided superideal generated
by a is the whole of A. This means 1A is in the superideal generated by a. This means
we can express 1A in the form

1A =
n∑
i=1

aiaa
′
i +

m∑
j=1

ãjaã
′
j

for some ai ∈ A0, a
′
i ∈ Ad(a), ãj ∈ A1 and ãj ∈ A(1−d(a)). Thus

n∑
i=1

(ai ⊗̂ 1B)(a ⊗̂ b)
(
(−1)d(a)d(b)(a′i ⊗̂ 1B)

)
+

m∑
i=1

(ãi ⊗̂ 1B)(a ⊗̂ b)
(
(−1)

(
1−d(a)

)
d(b)(ã′i ⊗̂ 1B)

)

=

(
n∑
i=1

aiaa
′
i

)
⊗̂ b+

(
m∑
j=1

ãjaã
′
j

)
⊗̂ b =

(
n∑
i=1

aiaa
′
i +

m∑
j=1

ãjaã
′
j

)
⊗̂ b = 1A ⊗̂ b

Similarly, since B is super simple, we can express 1B in the form

1B =
n′∑
i=1

bibb
′
i +

m′∑
j=1

b̃jbb̃
′
j

for some bi ∈ B0, b
′
i ∈ Bd(b), b̃j ∈ B1 and b̃j ∈ B(1−d(b)). Thus

n′∑
i=1

(1A ⊗̂ bi)(1A ⊗̂ b)(1A ⊗̂ b′i) +
m′∑
i=1

(1A ⊗̂ b̃i)(1A ⊗̂ b)(1A ⊗̂ b̃′i) = 1A ⊗̂

(
n′∑
i=1

bibb
′
i

)

+1A ⊗̂

(
m′∑
j=1

b̃jbb̃
′
j

)
= 1A ⊗̂

(
n′∑
i=1

bibb
′
i +

m′∑
j=1

b̃jbb̃
′
j

)
= 1A ⊗̂ 1B = 1A ⊗̂B ∈ I0.

Therefore I = A ⊗̂B.
Let us now show that I is guaranteed to have an element of the form a ⊗̂ b where

a ∈ A0 ∪A1 and b ∈ B0 ∪B1. Once we show this, then we can say that 1A ⊗̂ 1B ∈ I, like
before. Suppose, for the sake of contradiction, that A ⊗̂B does not have a homogeneous
element of the form a ⊗̂ b where a and b are homogeneous elements of A andB respectively.
Suppose x is a homogeneous element that can be expressed as

x =
k∑
r=1

ar ⊗̂ br
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where ar ∈ A0∪A1, br ∈ B0∪B1, d(br) = (d(x)−d(ar))mod2, k > 1 and k is minimal over
all homogeneous elements of I. Note that the br’s would therefore be linearly independent
over F . By our earlier argument, the two-sided ideal of A generated by ak is the whole
of A, meaning 1A can be expressed in the following way:

1A =
n∑
i=1

αiakα
′
i +

m∑
j=1

α̃jakα̃
′
j

for some αi ∈ A0, α
′
i ∈ Ad(ak), α̃j ∈ A1 and α̃j ∈ A(1−d(ak)). Thus

n∑
i=1

(αi ⊗̂ 1B)x
(
(−1)d(ak)d(bk)(α′

i ⊗̂ 1B)
)
+

m∑
j=1

(α̃j ⊗̂ 1B)x

(
(−1)

(
(1−d(ak))d(bk)

)
(α̃′

j ⊗̂ 1B)

)

=

(
k−1∑
r=1

cr ⊗̂ br

)
+ 1A ⊗̂ bk

where

cr =
n∑
i=1

(−1)d(ak)d(bk)αiarα
′
i +

m∑
j=1

(−1)

(
(1−d(ak))d(bk)

)
α̃iarα̃i

′.

Denote
(∑k−1

r=1 cr ⊗̂ br

)
+ 1A ⊗̂ bk as w. Note that, for each r < k, cr ∈ A0 ∪ A1 and

d(cr ⊗̂ br) = d(bk). So w is a homogeneous element of A ⊗̂B with k terms in its expression.
Note that none the cr’s are 0, and the cr’s are linearly independent, otherwise it would
contradict the minimality of k. Note that ck−1 /∈ F , since if ck−1 ∈ F , d(ck−1 ⊗̂ bk−1) =
d(bk−1) = d(bk). This means the last two terms can be expressed as (ck−1 ⊗̂ bk−1) +
(1A ⊗̂ bk) = (ck−1 + 1A) ⊗̂(bk−1 + bk), and we would get an expression of a homogeneous
element of I with k − 1 terms that satisfies the same conditions as x, which would
contradict the minimality of k. Hence ck−1 /∈ Zs(A) since Zs(A) = F . Hence there exists
a homogeneous element c ∈ A0∪A1 such that cck−1 ̸= (−1)d(ck−1)d(c)ck−1c. Therefore, the
(k − 1)th term in

(c ⊗̂ 1B)w − (−1)

(
d(ck−1)+d(bk−1)

)
d(c)w(c ⊗̂ 1B)

would be
(
cck−1 − (−1)d(ck−1)d(c)ck−1c

)
⊗̂ bk−1, which is not equal to 0. The kth term

would be

(
c− (−1)

(
d(ck−1)+d(bk−1)+d(bk)

)
d(c)c

)
⊗̂ bk = (c− (−1)2d(bk)d(c)c) ⊗̂ bk =

(c− c) ⊗̂ bk = 0. Since the br’s are linearly independent,

(c ⊗̂ 1B)w − (−1)

(
d(ck−1)+d(bk−1)

)
d(c)w(c ⊗̂ 1B)

is a non-zero homogeneous element of I that satisfies the same conditions as x, but has
at most k − 1 non-zero terms, which contradicts the minimality of k.

We can then say that there exists a homogeneous element of I in the form a ⊗̂ b where
a ∈ A0 ∪ A1 and b ∈ B0 ∪ B1, and from earlier, that means I contains 1A ⊗̂ 1B, meaning
I = A ⊗̂B. We conclude that A ⊗̂B is super simple. ■

Theorem 2.35 Let A and B be two F -superalgebras, and let A′, B′ be unital subsuper-
algebras of A and B respectively. Then Zs

A ⊗̂B
(A′ ⊗̂B′) = Zs

A(A
′) ⊗̂Zs

B(B
′), and their 0-

and 1-components coincide.

22



2.1 Superalgebra Theory preliminaries

Proof. It is an exercise to show that(
Zs
A(A

′) ⊗̂Zs
B(B

′)
)
0
= Zs

A(A
′)0 ⊗̂Zs

B(B
′)0 + Zs

A(A
′)1 ⊗̂Zs

B(B
′)1 ⊂

(
Zs
A ⊗̂B(A

′ ⊗̂B′)
)
0

and(
Zs
A(A

′) ⊗̂Zs
B(B

′)
)
1
= Zs

A(A
′)0 ⊗̂Zs

B(B
′)1 + Zs

A(A
′)1 ⊗̂Zs

B(B
′)0 ⊂

(
Zs
A ⊗̂B(A

′ ⊗̂B′)
)
1
.

One can show that the reverse inclusion holds for both. We will outline the argument
showing that

(
Zs
A ⊗̂B

(A′ ⊗̂B′)
)
0
⊂
(
Zs
A(A

′) ⊗̂Zs
B(B

′)
)
0
, and a similar argument can be

made to show that
(
Zs
A ⊗̂B

(A′ ⊗̂B′)
)
1
⊂
(
Zs
A(A

′) ⊗̂Zs
B(B

′)
)
1
.

First, let w ∈
(
Zs
A ⊗̂B

(A′ ⊗̂B′)
)
0
. Then w ∈ A0 ⊗̂B0 + A1 ⊗̂B1. We will show that

w ∈
(
Zs
A(A

′) ⊗̂Zs
B(B

′)
)
0
. Choose an F -basis for B0, let us say {b1, . . . bn}, and choose an

F -basis for B1, let us say {b̃1, . . . , b̃n′}. Then

w =
n∑
i=1

xi ⊗̂ bi +
n′∑
j=1

x̃j ⊗̂ b̃j

for some xi ∈ A0 and x̃j ∈ A1. Since w ∈
(
Zs
A ⊗̂B

(A′ ⊗̂B′)
)
0
, for any a ∈ A′

0, w(a ⊗̂ 1B) =

(a ⊗̂ 1B)w. Hence

w(a ⊗̂ 1B) =
n∑
i=1

xia ⊗̂ bi +
n′∑
j=1

x̃ja ⊗̂ b̃j = (a ⊗̂ 1B)w =
n∑
i=1

axi ⊗̂ bi +
n′∑
j=1

ax̃j ⊗̂ b̃j.

Hence, for all i, xia = axi and for all j, xja = axj. This applies for any a ∈ A′
0.

Additionally, for any ã ∈ A′
1, w(ã ⊗̂ 1B) = (ã ⊗̂ 1B)w. Hence

w(ã ⊗̂ 1B) =
n∑
i=1

xiã ⊗̂ bi −
n′∑
j=1

x̃j ã ⊗̂ b̃j = (ã ⊗̂ 1B)w =
n∑
i=1

ãxi ⊗̂ bi +
n′∑
j=1

ãx̃j ⊗̂ b̃j.

Hence, for all i, xiã = ãxi and for all j, xj ã = −ãxj. This applies for any ã ∈ A′
1.

We have thus shown that for all i, xi ∈ Zs
A(A

′)0 and for all j, x̃j ∈ Zs
A(A

′)1, and hence
w ∈ Zs

A(A
′)0 ⊗̂B0 + Zs

A(A
′)1 ⊗̂B1. Now we choose an F -basis for Zs

A(A
′)0, let us say

{c1, . . . cm}, and choose an F -basis for Zs
A(A

′)1, let us say {c̃1, . . . , c̃m′}. Then

w =
m∑
i=1

ci ⊗̂ yi +
m′∑
j=1

c̃j ⊗̂ ỹj.

Now for any b ∈ B0, w(1A ⊗̂ b) = (1A ⊗̂ b)w and for any b̃ ∈ B1, w(1A ⊗̂ b̃) = (1A ⊗̂ b̃)w.
Using a similar argument as before, one can verify that these equations imply that for
any i, yi ∈ Zs

B(B
′)0 and for any j, ỹj ∈ Zs

B(B
′)1. Hence w ∈ Zs

A(A
′)0 ⊗̂Zs

B(B
′)0 +

Zs
A(A

′)1 ⊗̂Zs
B(B

′)1, and we get
(
Zs
A ⊗̂B

(A′ ⊗̂B′)
)
0
⊂
(
Zs
A(A

′) ⊗̂Zs
B(B

′)
)
0
.

Similarly, one can show that
(
Zs
A ⊗̂B

(A′ ⊗̂B′)
)
1
⊂
(
Zs
A(A

′) ⊗̂Zs
B(B

′)
)
1
.

In conclusion, we get
(
Zs
A ⊗̂B

(A′ ⊗̂B′)
)
0
=
(
Zs
A(A

′) ⊗̂Zs
B(B

′)
)
0
and

(
Zs
A ⊗̂B

(A′ ⊗̂B′)
)
1
=(

Zs
A(A

′) ⊗̂Zs
B(B

′)
)
1
, meaning Zs

A ⊗̂B
(A′ ⊗̂B′) = Zs

A(A
′) ⊗̂Zs

B(B
′), and their 0- and 1-

components coincide. ■

The following corollaries are now obvious:
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Corollary 2.36 If A and B are two F -superalgebras, then Zs(A ⊗̂B) = Zs(A) ⊗̂Zs(B).

Corollary 2.37 If A and B are two super central simple F -superalgebras, then A ⊗̂B is
super central simple.

Proof. Since A is super central simple, and B is super simple, then by Theorem 2.34,
A ⊗̂B is super simple. Since A and B are super central, by Corollary 2.36, Zs(A ⊗̂B) =
Zs(A) ⊗̂Zs(B) = F · 1A ⊗̂F · 1B ∼= F , which means A ⊗̂B is also super central. Hence
A ⊗̂B is super central simple. ■

Lemma 2.38 Let A be a super central simple F -superalgebra. Then Asop is also super
central simple.

We now come to a key result in the classification of super central simple superalgebras.

Lemma 2.39 Let D be a super central super division algebra over F .

1. If D1 = 0, then D ⊗̂Dsop = D ⊗Dop =Mn(F ) where n = dimF (D).

2. If D1 ̸= 0, then D ⊗̂Dsop ∼= M(n,n)(F ) where n = dimF (D0).

Proof. The first statement is proven by invoking Corollary 1.32. Now let us prove
the second statement. If D1 ̸= 0, let us show that D ⊗̂Dsop ∼= M(n,n)(F ), where n =
dimF (D0). To do this, we will show that D ⊗̂Dsop ∼= Ends

F (D). First, let us denote the
linear map D → D, x 7→ axb as ga,b. Then for any homogeneous elements a ∈ D0 ∪D1,
b ∈ Dsop

0 ∪Dsop
1 , we can construct a linear map φ : D ⊗̂Dsop → Ends

F (D) where, for any
x ∈ D0 ∪D1, φ(a ⊗̂ b)(x) = (−1)d(x)d(b)axb.

We claim that φ is a superalgebra homomorphism. It is clear that φ preserves grad-
ing. For any a, a′, x ∈ D0 ∪ D1, b, b

′ ∈ Dsop
0 ∪ Dsop

1 , let i, j, k, l be d(b), d(a′), d(b′)
and d(x) respectively. Then φ((a ⊗̂ b)(a′ ⊗̂ b′))(x) = φ((−1)ij(aa′ ⊗̂ b ∗Dsop b′))(x) =
φ((−1)ij+ik(aa′ ⊗̂ b′b))(x) = (−1)ij+ik(−1)(i+k)laa′xb′b = (−1)i(j+k+l)+klaa′xb′b.

On the other hand,
(φ(a ⊗̂ b) ◦ φ(a′ ⊗̂ b′))(x) = φ(a ⊗̂ b)((−1)kla′xb′) = (−1)i(j+k+l)(−1)klaa′xb′b. Hence
φ((a ⊗̂ b)(a′ ⊗̂ b′))(x) = (φ(a ⊗̂ b) ◦ φ(a′ ⊗̂ b′))(x), and φ : D ⊗̂Dsop → Ends

F (D) is a
superalgebra homomorphism.

Since φ is a superalgebra homomorphism, kerφ is a two-sided superideal. Since D is
super central simple, so is Dsop by Lemma 2.38. By Corollary 2.37, D ⊗̂Dsop is super
central simple, hence kerφ is either 0 or all of D ⊗̂Dsop. However, kerφ ̸= D ⊗̂Dsop

since φ(1D ⊗̂ 1Dsop) = idD. Hence kerφ = 0, which means φ : D ⊗̂Dsop → Ends
F (D) is

injective.
Since dimF (imφ) = dimF (D ⊗̂Dsop) = dimF (D)2 = dimF (End

s
F (D)), we get im(φ) =

Ends
F (D), which means φ is surjective. We conclude that φ is a superalgebra isomor-

phism, and D ⊗̂Dsop ∼= Ends
F (D) ∼= M(n,n)(F ) where n = dimF (D0), as desired. ■

For super opposite superalgebras, we have:

Lemma 2.40 Let A ∼= M(r,s)(F ) ⊗̂D be a super central simple F -superalgebra, where D
is a super central super division algebra. Then Asop ∼= M(r,s)(F ) ⊗̂Dsop.

Proof. IfD1 = 0, then the required superalgebra isomorphism φ : Asop →M(r,s)(F ) ⊗̂Dsop

is the linear map defined by:

• φ(Ei,j ⊗̂x) = Ej,i ⊗̂x whenever i > r or i, j ≤ r for any x ∈ D0 ∪D1,
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• φ(Ei,j ⊗̂x) = −Ej,i ⊗̂x whenever i ≤ r and j > r for any x ∈ D0 ∪D1.

If D1 ̸= 0, then we know, by Lemma 2.29, M(r,s)(F ) ⊗̂D ∼= Mr+s(F ) ⊗̂D and
M(r,s)(F ) ⊗̂ Dsop ∼= Mr+s(F ) ⊗̂Dsop, and the required superalgebra isomorphism
φ : (Mr+s(F ) ⊗̂D)sop → Mr+s(F ) ⊗̂Dsop is the linear map defined by φ(Ei,j ⊗̂x) =
Ej,i ⊗̂x for any x ∈ A0 ∪ A1. ■

The following lemma comes from [4, Proposition 2.10 in pg. 102].

Lemma 2.41 Let m,n, r, s be non-negative integers such that m+ n > 0 and r + s > 0.
Then M(m,n)(F ) ⊗̂M(r,s)(F ) ∼= M(mr+ns,ms+nr)(F ).

Proof. Let U and V be F -vector spaces of dimension m + n and r + s respectively,
and let W = U ⊗F V . We know that, once we choose a graded F -basis for U (m,n) and
V (r,s), Ends

F (U
(m,n)) ∼= M(m,n)(F ) and Ends

F (V
(r,s)) ∼= M(r,s)(F ). So proving the lemma

is equivalent to proving that Ends
F (U

(m,n)) ⊗̂Ends
F (V

(r,s)) ∼= Ends
F (W

(mr+ns,ms+nr)).
Note that the F -super vector spaceW (mr+ns,ms+nr) can be constructed by grading the

F -module tensor product U (m,n) ⊗ V (r,s) in the following way:(
U (m,n) ⊗ V (r,s)

)
0
=
(
U

(m,n)
0 ⊗ V

(r,s)
0

)
⊕
(
U

(m,n)
1 ⊗ V

(r,s)
1

)
∼= (Fm ⊗ F r)⊕ (F n ⊗ F s) ∼=

Fmr ⊕ F ns ∼= Fmr+ns, and
(
U (m,n) ⊗ V (r,s)

)
1
=
(
U

(m,n)
0 ⊗ V

(r,s)
1

)
⊕
(
U

(m,n)
1 ⊗ V

(r,s)
0

)
∼=

(Fm ⊗ F s)⊕ (F n ⊗ F r) ∼= Fms ⊕ F nr ∼= Fms+nr.

We now construct φ : Ends
F (U

(m,n)) ⊗̂Ends
F (V

(r,s)) → Ends
F (W

(mr+ns,ms+nr)). Let
f, g, x and y be arbitrary homogeneous elements of Ends

F (U
(m,n)), Ends

F (V
(r,s)), U (m,n)

and V (r,s) respectively. We define φ(f ⊗̂ g) as follows:

φ(f ⊗̂ g)(x⊗ y) = (−1)d(x)d(g)f(x)⊗ g(y).

One can check that φ is well defined, and is an F -superalgebra isomorphism. ■

Just like the algebra tensor product induces a group operation on equivalence classes of
central simple algebras, the super tensor product induces a group operation on equivalence
classes of super central simple superalgebras, as we see next.

2.2 The Brauer-Wall Group of F

The Brauer-Wall group, named after R. Brauer and C.T.C. Wall, is the super version
of the Brauer group. It gives a group structure on the isomorphism classes of super
central simple superalgebras.

Let A and B be two super central simple F -superalgebras. From the Super Wed-
derburn’s Theorem, as superalgebras, A ∼= M(r,s)(F ) ⊗̂DA and B ∼= M(r′,s′)(F ) ⊗̂DB for
some super central super division algebrasDA andDB. We define the equivalence relation
on super central simple F -superalgebras as A ∼ B if DA

∼= DB as superalgebras. One
can check that this satisfies the conditions of an equivalence relation on the set of super
central simple F -superalgebras. Let F be a field. We denote the set of equivalence classes
of super central simple F -superalgebras as BW (F ). We use [A] to denote the equivalence
class containing A. Now define a binary operation on BW (F ) in the following way:

For any two equivalence classes [A], [B], we set [A] · [B] := [A ⊗̂B]. Let us verify
that this operation on equivalence classes is well defined. Let A = M(m,n)(F ) ⊗̂DA and
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B = M(r,s)(F ) ⊗̂DB for some super central super division algebras DA, DB. For any
A′ ∼ A, A′ ∼= M(m′,n′)(F ) ⊗̂DA and for any B′ ∼ B, B′ = M(r′,s′)(F ) ⊗̂DB. Our task
is to show that [A′ ⊗̂B′] = [A ⊗̂B]. Suppose DA ⊗̂DB = M(a,b)(F ) ⊗̂D where D is a
super central super division algebra. Then A ⊗̂B ∼= M(mr+ns,ms+nr)(F ) ⊗̂(DA ⊗̂DB) ∼=
M(mr+ns,ms+nr)(F ) ⊗̂(M(a,b)(F ) ⊗̂D) ∼= M(c,d)(F ) ⊗̂D, where c = a(mr+ns)+b(ms+nr)
and d = a(ms+ nr) + b(mr + ns).

On the other hand, A′ ⊗̂B′ ∼= M(m′r′+n′s′,m′s′+n′r′)(F ) ⊗̂(DA ⊗̂DB) ∼= M(c′,d′)(F ) ⊗̂D
where c′ = a(m′r′+n′s′)+ b(m′s′+n′r′) and d′ = a(m′s′+n′r′)+ b(m′r′+n′s′). This has
the same super central super division algebra part as A ⊗̂B, and so A ⊗̂B ∼ A′ ⊗̂B′,
hence [A′ ⊗̂B′] = [A ⊗̂B] and the binary operation on the set of equivalence classes is
well defined.

Since ⊗̂ is an associative operation, then the operation · we have defined is associative.
Note that for any super central simple F -superalgebra A, [A] · [F ] = [A ⊗̂F ] = [A]. So
the equivalence class [F ] acts as the identity element under the operation. Also for
any super central simple F -superalgebra A = M(r,s)(F ) ⊗̂D, Asop ∼= M(r,s)(F ) ⊗̂Dsop

by Lemma 2.40, and [A] · [Asop] = [D] · [Dsop] = [Dsop] · [D] = [D ⊗̂Dsop] = [F ], since
D ⊗̂Dsop ∼= Mn,n(F ) where n = dimF (D0) by Lemma 2.39. So for any equivalence class
[D] (where D is a super central super division algebra), [Dsop] is its inverse. We can now
define the Brauer-Wall group of F .

Definition 2.42 Given a field F , the Brauer-Wall group of F is the set BW (F ) of
equivalence classes of super central simple F -superalgebras, with group operation [A] ·
[B] = [A ⊗̂B] for any [A], [B] ∈ BW (F ).

Note that BW (F ) is abelian, as ⊗̂ is commutative.
It must be emphasised that the Brauer-Wall group depends on the field F . Note that

given a field F , the order of Br(F ) is equal to the number of distinct super central super
division algebras over F .

To study the Brauer-Wall group of a given field F , we need to understand some further
properties of super central simple F -superalgebras. We will now go through some of the
main results from [5].

⋆ In this subsection, A will refer to a super central simple F -superalgebra. We main-
tain the assumption that charF ̸= 2 throughout this subsection.

Lemma 2.43 The following holds:

1. If A1 ̸= 0, then A1 · A1 = A0.

2. If I is a non-zero two-sided ordinary ideal of A0, I+A1·I ·A1 = A0 and A1·I+I ·A1 =
A1.

Proof.

1. Suppose A1 ·A1 ̸= A0. Then (A1 ·A1) +A1 would be a proper two-sided superideal,
which is a contradiction.

2. Let I be a two-sided ordinary ideal of A0. Then (I + A1 · I · A1) + (A1 · I + I · A1)
is a two-sided superideal of A, with 0-component I + A1 · I · A1 and 1-component
A1 · I + I ·A1. Since A is super simple, this superideal is either A or 0. If I ̸= 0, we
get I + A1 · I · A1 = A0 and A1 · I + I · A1 = A1, as required.

■
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Lemma 2.44 If J is a proper two-sided ordinary ideal of A, then the projections π0 :
J → A0 and π1 : J → A1 are bijective.

Proof. We will first show that π0 is surjective. To begin, we note that J ∩A0 and π0(J)
are two-sided ideals in A0. Let us show that J ∩ A0 and π0(J) are not equal.

Suppose, for the sake of contradiction, that J ∩ A0 = π0(J). Then π0(J) ⊂ J , which
means, for any j = j0 + j1 ∈ J (where ji ∈ Ai), we have j0 ∈ J , which implies j1 ∈ J ,
and so J = (J ∩ A0) ⊕ (J ∩ A1), which means J is also a proper two-sided superideal,
which is a contradiction since A is a super simple superalgebra.

Now we will show that both J∩A0 and π0(J) are improper two-sided ideals of A0. We
first note that, because J is a two-sided ideal of A, A1 · (J ∩A0) ·A1 ⊂ J ∩A0. Similarly,
A1 ·π0(J) ·A1 ⊂ π0(J). If we assume J ∩A0 is a proper two-sided ideal of A0, then J ∩A0

is non-zero, and (J ∩ A0) + A1 · (J ∩ A0) · A1 = J ∩ A0 = A0 by Lemma 2.43, which is a
contradiction. Similarly, if we assume π0(J) is a proper two-sided ideal of A0, then π0(J)
is non-zero, and π0(J) + A1 · π0(J) · A1 = π0(J) = A0 by Lemma 2.43, which is again a
contradiction.

So both J ∩A0 and π0(J) are improper in A0. We cannot have J ∩A0 = A0, otherwise
A0 ⊂ J and π0(J) = A0. That means we can only have J ∩ A0 = 0 and π0(J) = A0.
Thus we have shown that π0 is surjective.

Next, let us now show that π1 is surjective. Since we just showed that J ∩ A0 = 0,
J ∩A1 = A0 · (J ∩A1) = A1 ·A1 · (J ∩A1) ⊂ A1 · (J ∩A0) = A1 ·0 = 0, and π1(J) contains
A1 · π0(J) = A1 · A0 = A1. Thus the π1 is surjective.

Finally, let us show that π0 and π1 are injective. Since J∩A1 = 0, ker(π0) = J∩A1 = 0,
and since J ∩A0 = 0, ker(π1) = J ∩A0 = 0. Hence both π0 and π1 are injective, and we
can conclude that both are bijective linear maps. ■

Lemma 2.45 If A is not ordinary simple, then A0 is ordinary simple and A1 = A0 · v,
with v ∈ Z(A) ∩ A1 and v2 = 1A.

Proof. Suppose A is not ordinary simple. Then it has a proper two-sided ideal J ,
and by Lemma 2.44, the projections π0 : J → A0 and π1 : J → A1 are bijective linear
maps. Consider the element x = π−1

0 (1A) ∈ J . Since π0(x) = 1A, x = 1A + v, where
v = π1(x) ∈ A1. Since J is a two-sided ideal, J contains the element v(1A + v) = v2 + v.
Since π1 is bijective and π1(1A + v) = v = π1(v

2 + v), 1A + v = v2 + v, meaning v2 = 1A.
Let us show that v ∈ Z(A) and A1 = A0 · v. For any y ∈ (A0 ∪ A1)\{0}, J contains

the elements xy = (1A + v)y = y + vy and yx = y(1A + v) = y + yv. Let i = d(y). Since
πi is bijective and πi(y + vy) = y = πi(y + yv), y + vy = y + yv, which means vy = yv
for any y ∈ (A0 ∪ A1)\{0}. As a consequence, v ∈ Z(A). That means A1 = A1 · 1A =
A1 · v2 ⊂ A0 · v, and so A1 = A0 · v.

Finally, if I is a two-sided ideal of A0, we have

A1 · I · A1 = (A0 · v) · I · (A0 · v) = A0 · v · I · v = A0 · I · v2 = A0 · I = I,

and if we assumed I is a non-trivial proper two-sided ideal, then, by Lemma 2.43, I+A1 ·
I · A1 = I = A0, which is a contradiction. Therefore, I is improper, and A0 is ordinary
simple. ■

Lemma 2.46 If A is not ordinary central simple, then A0 is ordinary central simple, and
A is not ordinary central.

Proof. We will first prove that if A is a super central simple F -superalgebra that is
not ordinary central simple, then it is not ordinary central. To show this, we will show
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that A not being ordinary simple implies it is not ordinary central. We will prove the
contrapositive.

Let A be ordinary central. We can show that A being ordinary central implies it is
ordinary simple. If we assumed A was not ordinary simple, then, by Lemma 2.45, we can
find a v ∈ Z(A) ∩ A1 such that v2 = 1 and A1 = A0 · v. But Z(A) = F · 1 ⊂ A0, which
means Z(A) ∩ A1 = 0 and v2 = 02 = 0 = 1A, a contradiction. Thus A being ordinary
central implies it is also ordinary simple.

Hence if A is not ordinary central simple, then A is not ordinary central. Let us now
show that A0 is ordinary central simple.

Since A is super central, Z(A) ∩ A0 = F · 1 ⊊ Z(A), which means Z(A) ∩ A1 is a
non-zero subspace of Z(A). For any z ∈ Z(A)∩A1, z

2 ∈ Z(A)∩A0 = F ·1. To show that
A0 is ordinary central simple, let us first show that there exists an element v ∈ Z(A)∩A1

such that A1 = A0 · v.
To show this, we will first propose that there exists an element v ∈ Z(A) ∩ A1 such

that v2 ̸= 0. For the sake of contradiction, suppose v2 = 0 for all v ∈ Z(A) ∩ A1. That
means Z(A) has zero-divisors, and as a consequence, it would mean Z(A) is not a field.
Therefore A is not ordinary simple, and by Lemma 2.45, we can find a v ∈ Z(A) ∩ A1

such that v2 = 1A, which is a contradiction. Hence there exists a v ∈ Z(A) ∩ A1 such
that v2 ∈ (F · 1A)\{0}. Let u = v2. Then A1 = A1 · u = A1 · v2 ⊂ A0 · v, which means
A1 = A0 · v.

Now let us show that A0 is central. Since v ∈ Z(A) and A1 = A0 · v, then any
element of A is in the form a + bv where a, b ∈ A0, and for any z ∈ Z(A0), z(a + bv) =
za + zbv = az + bvz = (a + bv)z for any a, b ∈ A0, which means z ∈ Z(A), and hence
Z(A0) ⊂ Z(A) ∩ A0 = F · 1A. Therefore, Z(A0) = F · 1A, and A0 is central.

To show that A0 is ordinary simple, we first note that if I is a two-sided ideal of A0,
then I + I · u is a two-sided superideal of A. Since A is super simple, I + I · u is either
0 or all of A. Therefore I can only be either 0 or all of A0. Hence A0 is ordinary simple,
as required. ■

Corollary 2.47 If A is not ordinary central simple, then Z(A) = F · 1A + F · v where v
is an element of Z(A) ∩ A1 such that v2 is a non-zero element of F · 1A.

Proof. The proof of lemma 2.46 tells us that there exists a v ∈ Z(A) ∩ A1, such that
v2 = a ∈ (F · 1A)\{0}, and hence A1 = A0 · v.

So far, we know that F · 1A + F · v ⊂ Z(A). Let us show that we have an equality.
To do this, we show that Z(A) ∩ A1 = F · v.

Let z be a non-zero element of ∈ Z(A)∩A1. Then z = cv for some c ∈ A0\{0}. Note
that zv = cv2 is a non-zero element of Z(A)∩A0, since c is non-zero and v2 is a non-zero
element of F · 1A. Since A is super central, Z(A) ∩ A0 = F · 1A, which means zv = b ∈
F · 1A\{0}. That means zv2 = za = bv, hence z = (b/a)v, and since (b/a) ∈ F · 1A,
z ∈ F · v. Hence we have shown that Z(A) ∩ A1 = F · v, and since Z(A) ∩ A0 = F · 1A
and Z(A) is a subsuperalgebra, we can conclude that Z(A) = F · 1A + F · v. ■

Remark 2.48 We further claim that ZA(A0) = Z(A) in the case where A is super central
simple, but not ordinary central simple. The inclusion Z(A) ⊂ ZA(A0) is obvious. To
show the reverse inclusion, first note that in this situation, A1 = A0 · v where v ∈
Z(A)∩A1. Hence any element of A can be expressed in the form x+ yv where x, y ∈ A0.
Now let a ∈ ZA(A0). Since v ∈ Z(A) ∩ A1, then for any x + yv ∈ A (where x, y ∈ A0),
a(x + yv) = ax + ayv = xa + yav = xa + yva = (x + yv)a. Hence a ∈ Z(A), and we
conclude that ZA(A0) = Z(A). Overall we have ZA(A0) = Z(A) = F · 1A + F · v.
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We also note that in the case where A is super central simple, but not ordinary central
simple, A can be expressed as A = A0 ⊗ Z(A) = A0 ⊗ (F · 1A + F · v).

Lemma 2.49 Let A =M(r,s)(F ) ⊗̂D be a super central simple F -superalgebra, where D
is a super central super division algebra. Then A is ordinary central simple if and only if
D is ordinary central simple.

Proof. Suppose D is ordinary central simple. In the case where D1 = 0, D = D0 is
an ordinary central division algebra, and since D is purely even, then, as an F -algebra,
A = M(r,s)(F ) ⊗̂D ∼= M(r,s)(F ) ⊗ D = Mr+s(F ) ⊗ D ∼= Mr+s(D). Hence A is ordinary
central simple in the case where D1 = 0.

If D1 ̸= 0, then M(r,s)(F ) ⊗̂D ∼= Mr+s(F ) ⊗̂D, and since Mr+s(F ) is purely even,
Mr+s(F ) ⊗̂D ∼= Mr+s(F ) ⊗D. Since Mr+s(F ) and D are ordinary central simple, then
A ∼= Mr+s(F )⊗D is ordinary central simple.

Now suppose A is ordinary central simple. For the sake of contradiction, suppose D
is not ordinary central simple. Then D1 ̸= 0, because otherwise D would be an ordinary
central division algebra. Since D1 ̸= 0, M(r,s)(F ) ⊗̂D ∼= Mr+s(F ) ⊗̂D ∼= Mr+s(F )⊗D.

If D is not ordinary central, then Z(A) ∼= Z (Mr+s(F )⊗D) ∼= Z(D), which would
mean A is not ordinary central, which is a contradiction.

If D is not ordinary simple, then it contains a non-trivial proper two-sided ideal I,
and the subspace Mr+s(F ) ⊗ I in A would be a non-trivial proper two-sided ideal of A,
which is again a contradiction. Thus A being ordinary central simple implies that D is
ordinary central simple. ■

We summarise our analysis thus:

Let A be a super central simple F -superalgebra that is not ordinary central simple.

• A and D are not ordinary central.

• A1 ̸= 0, and D1 ̸= 0.

• D0 is a central division algebra.

• A0
∼= Mn(D0) for some n > 0, and A0 is ordinary central simple.

• Z(A) = ZA(A0) = F · 1A + F · v where v ∈ Z(A) ∩ A1 and v2 is a non-zero
element of F · 1A.

• A ∼= A0 ⊗ (F · 1A + F · v) ∼= Mn(D0)⊗ (F · 1A + F · v) ∼= Mn(F )⊗D.

• If D is also not ordinary simple:

– v2 is a square in F · 1A.
– A is not ordinary simple.

– A ∼= Mn(D0)×Mn(D0).

• If D is ordinary simple:

– v2 is not a square in F · 1A.
– A is ordinary simple.

Next, we deal with the case where A is ordinary central simple.
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Lemma 2.50 Suppose A is ordinary central simple. If A1 ̸= 0, then A0 is not ordinary
central simple.

Proof. Let A = M(r,s)(F ) ⊗̂D be a super central simple F -superalgebra that is also
ordinary central simple. If D1 = 0, then A0 =M(r,s)(F )0 ⊗D. Since A1 ̸= 0, then both r
and s are positive integers, meaning A0 =M(r,s)(F )0⊗D ∼= Mr(D)×Ms(D), which would
mean A0 is neither ordinary central or ordinary simple. In this case Z(A0) ∼= F × F ∼=
{
(
a 0
0 b

)
: a, b ∈ F}.

Now suppose D1 ̸= 0. Then A = M(r,s)(F ) ⊗̂D ∼= Mr+s(F ) ⊗̂D. Letting n = r + s,
then A0

∼= Mn(D0), which means A0 is ordinary simple. Let us show that A0 is not
ordinary central.

To begin, we give a construction that is applicable in both the D1 = 0 and the D1 ̸= 0
case. Consider the involution T of A defined by: T (x) = x whenever x ∈ A0, and
T (y) = −y whenever y ∈ A1. If charF ̸= 2, then it can be easily checked that the set
of elements of A fixed by T is A0. It can also be easily checked that T is a non-trivial
F -algebra automorphism. Since A is an ordinary central simple F -algebra, then by the
Skolem–Noether theorem, T is an inner automorphism. So there exists an element v ∈ A×

such that for any x ∈ A, T (x) = v−1xv.
Note that T (v) = v−1vv = v, and since the elements of A fixed by T is A0, v ∈ A0.

Since for any x ∈ A0, v
−1xv = x, v ∈ Z(A0). Since T is a non-trivial automorphism,

v /∈ F · 1A. We further note that for any x ∈ A, T (T (x)) = x, meaning for any x ∈ A,
v−1(v−1xv)v = (v2)−1xv2 = x, hence v2 is a non-zero element of Z(A) = F ·1A. Therefore,
F ·1A+F ·v is a unital subalgebra of A0, and it is isomorphic to {

(
a ub
b a

)
: a, b ∈ F, u = v2}.

One can check that this is a field if and only if v2 = u is not a square in F×. Also note
that F · 1A + F · v ⊂ Z(A0).

In the case where D1 = 0, Z(A0) = F × F would not be a field, and so v2 = u would
be a square in F× if D1 = 0. If D1 ̸= 0, then Z(A0) ∼= Z(D0), which is a field. Since
F · 1A + F · v ⊂ Z(A0), then F · 1A + F · v would also need to be a field, which means
v2 = u is not a square in F×. We have thus shown that A0 is not central. ■

Corollary 2.51 Suppose A is ordinary central simple. If A1 ̸= 0, then Z(A0) = F · 1A+
F · v where v is an element of A0\(F · 1A) such that v2 is a non-zero element of F · 1A.

Proof. Let A =M(r,s)(F ) ⊗̂D be a super central simple F -superalgebra that is also ordi-
nary central simple. We have previously seen that if D1 = 0, then A0

∼= Mr(D)×Ms(D),
which means Z(A0) ∼= F · Ir × F · Is where Ir and Is are the identity elements of Mr(D)
and Ms(D) respectively. Note that Z(A0) ∼= F · Ir × F · Is = F · (Ir, Is) + F · (Ir,−Is).
Hence Z(A0) ∼= F · 1A + F · v where v = (Ir,−Is). Note that v2 = (Ir, Is) = 1A, which is
a non-zero element of F · 1A.

Now let us investigate the case where D1 ̸= 0. From the previous lemma, we showed
that there is an element v ∈ A0\(F ·1A) such that v−1xv = (−1)d(x)x for any x ∈ A0∪A1.
We also noted that when D1 ̸= 0, v2 is an element of F · 1A that is not a square, and
F · 1A + F · v ⊂ Z(A0). We can show that F · 1A + F · v ⊃ Z(A0) by showing that
F · 1A + F · v = ZA(A0) ⊃ Z(A0).

In order to show that F ·1A+F ·v = ZA(A0), we first note that F ·1A+F ·v is a field,
since F ·1A+F ·v ⊂ Z(A0) ∼= Z(D0), and we know Z(D0) is a field. Hence F ·1A+F ·v is
a simple unital subalgebra of A. By Corollary 1.30, ZA(ZA(F ·1A+F ·v)) = F ·1A+F ·v.
Note that x ∈ ZA(F · 1A + F · v) if and only if v−1xv = x if and only if x ∈ A0. That
means ZA(F · 1A + F · v) = A0, hence ZA(ZA(F · 1A + F · v)) = ZA(A0) = F · 1A + F · v.

Since we always have Z(A0) ⊂ ZA(A0), we get Z(A0) ⊂ F · 1A + F · v, and hence we
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can conclude that Z(A0) = F · 1A + F · v. ■

We summarise our analysis thus:

Let A be a super central simple F -superalgebra that is also ordinary central simple.

• D is an ordinary central simple algebra.

• If A1 = 0, then:

– D1 = 0 and D0 = D is an ordinary central division algebra.

– A0 = A is ordinary central simple.

• If A1 ̸= 0, then:

– Z(A0) = ZA(A0) = F · 1A + F · v where v ∈ A0\(F · 1A), v2 is a non-zero
element of F · 1A, and for any x ∈ A1, v

−1xv = −x.
– If D1 = 0, then:

∗ D0 = D is an ordinary central division algebra.

∗ A0
∼= Mr(D) × Ms(D) for some r, s > 0, and A0 is neither ordinary

central or ordinary simple.

∗ v2 is a square in F · 1A.
– If D1 ̸= 0, then:

∗ D0 is a division algebra that is not ordinary central.

∗ A0
∼= Mn(D0) for some n > 0, and A0 is ordinary simple but not

ordinary central.

∗ v2 is not a square in F · 1A.

We will now work towards describing the properties of BW (F ). We remind the reader
that we are assuming charF ̸= 2 throughout the rest of this subsection.

Theorem 2.52 Let A and B be two super central simple F -superalgebras which are or-
dinary central simple. Then A ⊗̂B is ordinary central simple.

Proof. First we will cover the case where at least one of A and B is purely even. If one
of A and B is purely even, then A ⊗̂B ∼= A⊗B, and since A and B are ordinary central
simple, then A⊗B is ordinary central simple, hence A ⊗̂B is ordinary central simple.

Now let us cover the case where both A and B have a none-zero 1-component. If A1

and B1 are both non-zero, then Z(A0) = F · 1A+F · v and Z(B0) = F · 1B +F · v′ where
v /∈ F · 1A, v′ /∈ F · 1B, v−1xv = −x for any x ∈ A1 and v′−1yv′ = −y for any y ∈ B1. To
show that A ⊗̂B is ordinary central simple, we will show that (A ⊗̂B)0 is not central. We
first note that for any a0 ∈ A0 and b0 ∈ B0, (v ⊗̂ v′)(a0 ⊗̂ b0) = va0 ⊗̂ v′b0 = a0v ⊗̂ b0v

′ =
(a0 ⊗̂ b0)(v ⊗̂ v′), and for any a1 ∈ A1 and b1 ∈ B1, (v ⊗̂ v′)(a1 ⊗̂ b1) = va1 ⊗̂ v′b1 =
(−a1v) ⊗̂(−b1v′) = a1v ⊗̂ b1v

′ = (a1 ⊗̂ b1)(v ⊗̂ v′). Hence (v ⊗̂ v′) ∈ Z((A ⊗̂B)0), and
F · (1A ⊗̂ 1B) +F · (v ⊗̂ v′) ⊂ Z((A ⊗̂B)0). Since (v ⊗̂ v′) /∈ F · (1A ⊗̂ 1B), (A ⊗̂B)0 is not
central, which implies A ⊗̂B is ordinary central simple. ■

Remark 2.53 We note that Z((A ⊗̂B)0) = F · (1A ⊗̂ 1B) + F · (v ⊗̂ v′) since A ⊗̂B
is ordinary central simple, meaning dimF (Z((A ⊗̂B)0)) is at most 2. Also, for any
a0 ∈ A0 and b1 ∈ B1, (v ⊗̂ v′)(a0 ⊗̂ b1) = va0 ⊗̂ v′b1 = a0v ⊗̂(−b1v′) = −(a0v ⊗̂ b1v

′) =
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−(a0 ⊗̂ b1)(v ⊗̂ v′), and for any a1 ∈ A1 and b0 ∈ B0, (v ⊗̂ v′)(a1 ⊗̂ b0) = va1 ⊗̂ v′b0 =
(−a1v) ⊗̂ b0v

′ = −(a1v ⊗̂ b0v
′) = −(a1 ⊗̂ b0)(v ⊗̂ v′). This means for any x ∈ (A ⊗̂B)1,

(v ⊗̂ v′)x = −x(v ⊗̂ v′).

Let us denote the subset of BW (F ) consisting of classes of ordinary central simple
algebras as P (F ). Then we have the following lemma:

Corollary 2.54 P (F ) is a subgroup of BW (F ).

Proof. Theorem 2.52 tells us that the set of super central simple F -superalgebras that
are also ordinary central simple is closed under the super tensor product operation. This
means the subset P (F ) is closed under the group operation of BW (F ). It is clear that
the identity element [F ] of BW (F ) is an element of P (F ). Let us show that for any
element [A] ∈ P (F ), [A]−1 = [Asop] ∈ P (F ). It is enough to show that for any super
central simple F -superalgebra that is ordinary central simple, Asop is also ordinary central
simple.

If A is purely even, then Asop = Aop, and since Aop has the same two-sided ideals as
A, and Z(A) = Z(Aop), Aop = Asop is also ordinary central simple.

If A1 ̸= 0, then Z(A0) = F · 1A + F · v where v is an element in Z(A0) such that, for
any x ∈ A1, v

−1xv = −x. Note that Z((Asop)0) = F · 1A + F · v, hence Asop is ordinary
central simple. We can conclude that P (F ) is a subgroup of BW (F ). ■

Theorem 2.55 BW (F )/P (F ) ∼= C2.

Proof. First we will show that the set BW (F )\P (F ) is non-empty for any field F not
of characteristic 2. We simply note that D = F × F can be turned into a super division
algebra by giving it the following grading: D0 = F · (1F , 1F ), and D1 = F · (1F ,−1F ).
This is a super central simple F -superalgebra that is not ordinary central simple, hence
the set BW (F )\P (F ) is non-empty.

To show that BW (F )/P (F ) ∼= C2, it is enough to show that if A and B are su-
per central simple F -superalgebras that are not ordinary central simple, then A ⊗̂B is
ordinary central simple. If A and B are super central simple F -superalgebras that are
not ordinary central simple, then Z(A) = F · 1A + F · v and Z(B) = F · 1A + F · v′,
where v ∈ Z(A) ∩ A1 and v′ ∈ Z(B) ∩ B1. To show that A ⊗̂B is ordinary cen-
tral simple, we will show that F · (1A ⊗̂ 1B) + F · (v ⊗̂ v′) ⊂ (A ⊗̂B)0, which would
mean (A ⊗̂B)0 is not ordinary central. Note that for any a0 ∈ A0 and b0 ∈ B0,
(v ⊗̂ v′)(a0 ⊗̂ b0) = va0 ⊗̂ v′b0 = a0v ⊗̂ b0v

′ = (a0 ⊗̂ b0)(v ⊗̂ v′), and for any a1 ∈ A1 and
b1 ∈ B1, (v ⊗̂ v′)(a1 ⊗̂ b1) = −(va1 ⊗̂ v′b1) = −(a1v ⊗̂ b1v

′) = (a1 ⊗̂ b1)(v ⊗̂ v′). Hence
(v ⊗̂ v′) ∈ Z((A ⊗̂B)0) and F · (1A ⊗̂ 1B) + F · (v ⊗̂ v′) ⊂ (A ⊗̂B)0. Since (v ⊗̂ v′) /∈
F · (1A ⊗̂ 1B), (A ⊗̂B)0 is not central. Hence A ⊗̂B is ordinary central simple, and for
any equivalence classes [A], [B] ∈ BW (F )\P (F ), [A] · [B] = [A ⊗̂B] ∈ P (F ). We con-
clude that BW (F )/P (F ) ∼= C2. ■

Hence BW (F ) is an extension of P (F ) by C2. We note that Br(F ) can be iden-
tified with a subgroup of BW (F ), namely the classes of BW (F ) that contain the purely
even super central super division algebras. Since a purely even super central super di-
vision algebra is a central simple algebra, Br(F ) is a subgroup of P (F ), and we have
Br(F ) ⊴ P (F ) ⊴ BW (F ).

Theorem 2.56 P (F )/Br(F ) ∼= F×/F×2.
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Proof. First, we will show that P (F )/Br(F ) is trivial if and only if F×/F×2 is trivial.
First, let P (F )/Br(F ) be trivial. Suppose, for the sake of contradiction, that F×/F×2

is non-trivial. Then F× has an element u that is not a square. For any x ∈ F×, F s(
√
x)

will denote the algebra {
(
a xb
b a

)
: a, b ∈ F} with the following grading: F s(

√
x)0 =

F ·
(
1 0
0 1

)
, and F s(

√
x)1 = F ·

(
0 x
1 0

)
. One can express F s(

√
x) as F · 1 ⊕ F · vx where

v2x = x.
Note that F s(

√
x) is a super central super division algebra that is not ordinary cen-

tral simple for any x ∈ F×. Also note if there exists an element u ∈ F× that is not a
square, then A = F s(

√
u) ⊗̂F s(

√
−1) would be a super division algebra; one can check

that A0
∼= F s(

√
u), which is a field, and A1 = A0 · (vx ⊗̂ 1).

Since F s(
√
u) and F s(

√
−1) are not ordinary central simple, A is a super central sim-

ple superalgebra that is ordinary central simple. However, since it is a super central super
division algebra that is not purely even, [A] ∈ P (F )\Br(F ), which is a contradiction.

Now let F×/F×2 be trivial, and suppose, for the sake of contradiction, that P (F )/Br(F )
is non-trivial. Then there is a super central super division algebra D that is ordinary
central simple, but is not purely even. Then Z(D0) = F ·1D+F ·v where v ∈ D0\(F ·1D),
and v2 is a non-zero element of F · 1D. Since D is ordinary central simple and D1 ̸= 0,
Z(D0) is a field, which means v2 is not a square in F · 1D. Hence there are non-squares
in F×, which is a contradiction.

Now let us construct an isomorphism between P (F )/Br(F ) and F×/F×2 when they
are both non-trivial. We will denote our required isomorphism as φ. For any [A] ∈ Br(F ),
φ([A]) = [1]′ (for this proof, prime will denote an equivalence class in F×/F×2). For any
[A] ∈ P (F )\Br(F ), we know that Z(A0) = F · 1A + F · vA where vA ∈ A0\(F · 1A), and
v2A = uA is not a square in F · 1A. Using the notation from before, Z(A0) = F s(

√
uA),

where uA is not a square in F×. Then for any [A] ∈ P (F )\Br(F ), we will let φ([A]) =
[uA]

′ Let us show that this map is well defined.
Let A be a super central simple superalgebra whose equivalence class [A] ∈ BW (F )

is contained in P (F )\Br(F ), and let B be a super central simple superalgebra such that
[B] ∈ Br(F ). If B1 = 0, then (A ⊗̂B)0 = A0 ⊗ B0 = A0 ⊗ B, hence Z(A ⊗̂B)0 ∼=
Z(A0 ⊗B) ∼= Z(A0)⊗Z(B) = (F · 1A+F · vA)⊗F ∼= F · 1A+F · vA, and since v2A = uA,
φ([A ⊗̂B]) = [uA]

′. If B1 ̸= 0, then Z(B0) = F · 1B + F · vB where vB ∈ B0\(F · 1B)
and v2B = uB is a square in F×. Note that F · (1A ⊗̂ 1B) + F · (vA ⊗̂ vB) ⊂ Z((A ⊗̂B)0),
and since dimFZ((A ⊗̂B)0) ≤ 2, Z((A ⊗̂B)0) = F · (1A ⊗̂ 1B) + F · (vA ⊗̂ vB). Squaring
(vA ⊗̂ vB), we get (v2A ⊗̂ v2B) = (uA ⊗̂uB) = uAuB(1A ⊗̂ 1B), hence φ([A ⊗̂B]) = [uAuB]

′,
and since uB is a square in F×, φ([A ⊗̂B]) = [uAuB]

′ = [uA]
′, and we have shown that

the map φ : P (F )/Br(F ) → F×/F×2 is well defined.
Let us show that φ is a group homomorphism. In the previous paragraph, we

showed that if [A] ∈ P (F )\Br(F ) and [B] ∈ Br(F ), then φ([A][B]) = φ([A ⊗̂B]) =
[uA]

′ = [uA]
′[1]′ = φ([A])φ([B]). Let us now show that φ([A][B]) = φ([A])φ([B]) for any

[A], [B] ∈ P (F )\Br(F ).
Let [A], [B] ∈ P (F )\Br(F ). Then Z(A0) = F ·1A+F ·vA and Z(B0) = F ·1B+F ·vB

where v2A = uA and v2B = uB are not squares in F×. We note that Z((A ⊗̂B)0) =
F · (1A ⊗̂ 1B) + F · (vA ⊗̂ vB), and (vA ⊗̂ vB)

2 = (v2A ⊗̂ v2B) = (uA ⊗̂uB) = uAuB(1A ⊗̂ 1B).
If uAuB is not a square in F×, then [A ⊗̂B] ∈ P (F )\Br(F ), and hence φ([A][B]) =
φ([A ⊗̂B]) = [uAuB]

′ = [uA]
′[uB]

′ = φ([A])φ([B]). If uAuB is a square in F×, then
the super division algebra part of A ⊗̂B is purely even, hence [A ⊗̂B] ∈ Br(F ), and
φ([A][B]) = φ([A ⊗̂B]) = [1]′ = [uAuB]

′ = [uA]
′[uB]

′ = φ([A])φ([B]). We conclude that
φ is a group homomorphism.
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2.3 The Brauer-Wall Group of C

It can be easily seen that φ is injective, since we have defined it in such a way
that for any [A] ∈ P (F )\Br(F ), φ([A]) ̸= F×2. Let us show that φ is surjective. For
any element u ∈ F× that is not a square, we previously said that the superalgebra
A = F s(

√
u) ⊗̂F s(

√
−1) has the property that Z(A0) ∼= F s(

√
u) = F · 1A + F · v where

v ∈ A0\(F · 1A) and v2 = u. Thus, φ([F s(
√
u) ⊗̂F s(

√
−1)]) = [u]′, and we have shown

that φ is surjective.
We can finally conclude that φ : P (F )/Br(F ) → F×/F×2 is an isomorphism. ■

Hence P (F ) is an extension of Br(F ) by F×/F×2.

Corollary 2.57 Suppose both Br(F ) and F×/F×2 are finite. Then BW (F ) is finite,
and |BW (F )| = 2|Br(F )||F×/F×2|.

Corollary 2.58 Suppose F is algebraically closed. Then BW (F ) ∼= C2.

Proof. If F is algebraically closed, then every element of F× is a square, which means
F×/F×2 is trivial. In addition, by Corollary 1.35, Br(F ) is also trivial. By Corollary
2.57, |BW (F )| = 2, hence BW (F ) ∼= C2. ■

Our discussion above shows that if F is a field not of characteristic 2, Br(F ) and
BW (F ) are related by the exact sequences:

1 → P (F ) → BW (F ) → C2 → 1, and

1 → Br(F ) → P (F ) → F×/F×2 → 1.

2.3 The Brauer-Wall Group of C
Since C is algebraically closed, then by Corollary 2.58, BW (C) ∼= C2. This also

means there are only two super central super division algebras over C. They are C ⊕ 0
(which is C as a purely even algebra), and C × C equipped with the following grading:
(C× C)0 = {(a, a) : a ∈ C} and (C× C)1 = {(a,−a) : a ∈ C}. We will denote the latter
super division algebra as C ⊕ Cv, where Cv is the 1-component of the super division
algebra. We note that Z(C⊕ Cv) = C⊕ Cv. We also note that both C⊕ 0 and C⊕ Cv
are super division algebras over R, but they are not super central over R. Both of their
super centres are isomorphic to C.

In BW (C), we simply have that [C⊕Cv]2 = [C⊕ 0]. In fact, (C⊕Cv) ⊗̂(C⊕Cv) ∼=
M(1,1)(C).

2.4 The Brauer-Wall Group of R
Let us construct all of the super central super division algebras over R. We know

that if D is a purely even super central super division algebras over R, then it is an
ordinary central division algebra over R. Hence the purely even super central super
division algebras over R are R⊕0 and H⊕0. Their equivalence classes [R⊕0] and [H⊕0]
in BW (R) make up the subgroup Br(R) contained in BW (R). Now let us construct the
super central super division algebras over R that are ordinary central simple, and thus
find the subgroup P (R).
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2.4 The Brauer-Wall Group of R

2.4.1 Super central super division algebras over R that are ordinary central
simple

We know from Theorem 2.56 that P (R)/Br(R) ∼= R×/R×2. Since R×/R×2 = {[1], [−1]}
∼= C2, then |P (R)| = |Br(R)| · |R×/R×2| = 2 ·2 = 4. So there are four super central super
division algebras over R that are ordinary central simple, and two of them are purely
even. Let us find the two super central super division algebras that are not purely even.

If D = D0 ⊕ D1 is a super central super division algebra that is ordinary central
simple, and D1 ̸= 0, then D0 is an ordinary division algebra that is non-central, and
Z(D0) = R · 1A+R · v where v2 is not a square in R · 1A. Hence u = v2 is a negative real
number, and we can show that this means Z(D0) = R ·1A+R ·v ∼= C. If v2 = −a for some
positive real number a, then ( 1√

a
v)2 = −1. Letting ṽ = 1√

a
v, then R·1A+R·v = R·1A+R·ṽ,

and it is clear that this is isomorphic to C.

However, we know that D0 is a division algebra that is not ordinary central, and by
Frobenius’ Theorem, the only non-central division algebra over R is C. Hence D0

∼= C
and D0 = Z(D0) = R · 1A + R · ṽ whenever D is a super central super division algebra
over R that is ordinary central simple, and not purely even. Let us show that, in this
situation, for any non-zero x ∈ D1, x

2 ∈ (R · 1D)\{0}.

For any non-zero x ∈ D1, x
2 ∈ D0, so x

2 = a + bṽ for some real numbers a, b. Since
(x2)x = x(x2), (x2)x = (a+ bṽ)x = ax+ bṽx = xa−xbṽ = x(a− bṽ) = x(x2) = x(a+ bṽ),
hence a− bṽ = a+ bṽ, implying b = 0 and x2 = a ̸= 0. Hence, for any non-zero x ∈ D1,
x2 ∈ (R · 1D)\{0}.

Let us show that there are two possibilities: either, for every non-zero x ∈ D1, x
2 is a

positive real number, or, for every non-zero x ∈ D1, x
2 is a negative real number. To show

this, it is enough to show that for any two non-zero elements x, y ∈ D1, x
2/y2 is positive.

For any two non-zero elements x, y ∈ D1, xy
−1 ∈ D0, so there exists real numbers a, b such

that x = (a+ bṽ)y. Note that x2 = (a+ bṽ)y(a+ bṽ)y = (a+ bṽ)(a− bṽ)y2 = (a2 + b2)y2.
Since x2 is non-zero, (a2 + b2) is non-zero, which additionally means it is positive, and
x2/y2 = (a2 + b2) > 0, which means x2 and y2 are either both positive or both negative.

If, for some arbitrary non-zero element x ∈ D1, x
2 = a > 0, then we will let v+ = 1√

a
x.

We can see that (v+)2 = 1, and hence D = D0 ⊕D0 · v+ where D0
∼= C. For any super

central super division algebra D′ over R whose 0-component is isomorphic to C and every
non-zero degree 1 element squares to a positive number, D′ ∼= D0⊕D0v

+. We will denote
this super division algebra as C⊕ Cv+.

Similarly, if every element of D1 squares to a negative number, then we can find an
element v− ∈ D1 that squares to −1, and any super central super division algebra over
R that is in that situation is isomorphic to D0 ⊕ D0v

− where D0
∼= C. We will denote

this super division algebra as C⊕Cv−1. One can check that C⊕Cv+ ̸∼= C⊕Cv−. Also,
both of these super division algebras are not isomorphic to C ⊕ Cv, since Z(C ⊕ Cv) =
C⊕ Cv ∼= C× C, whereas Z(C⊗ Cv+) ∼= Z(C⊗ Cv−) ∼= C.

Hence we have constructed the two super central super division algebras over R that
are ordinary central simple, and are not purely even. One can check that C ⊕ Cv+ ∼=
M2(R), and C ⊕ Cv− ∼= H. Now, let us find the four remaining super central super
division algebras over R that are not ordinary central simple.
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2.4 The Brauer-Wall Group of R

2.4.2 Super central super division algebras over R that are not ordinary
central simple

In this situation, the super division algebra is not purely even, D0 is a central division
algebra over R, and D ∼= D0⊗ (R ·1D⊕R ·v) where v is a non-zero element of Z(D)∩D1

such that v2 is a non-zero element of R · 1D. If v2 = a > 0, then we will let v+ = 1√
a
v,

and we can see that (v+)2 = 1. If v2 = −a < 0 for some positive number a, then we will
let v− = 1√

a
v, and we can see that (v+)2 = −1. We can now construct the four super

central super division algebras over R that are not ordinary central simple:

• R⊗ (R · 1⊕ R · v+) = R⊕ Rv+,

• R⊗ (R · 1⊕ R · v−) = R⊕ Rv−,

• H⊗ (R · 1⊕ R · v+) = H⊕Hv+, and

• H⊗ (R · 1⊕ R · v−) = H⊕Hv−.

2.4.3 Group Structure of BW (R)

So far, we only know that |BW (R)| = 2|Br(R)| · |R×/R×2| = 2 · 2 · 2 = 8. Let us
explore the group structure of BW (R).

We note that (R⊕Rv+) ⊗̂(R⊕Rv+) = C⊕Cv+, and (C⊕Cv+) ⊗̂(R⊕Rv+) = H⊕Hv−.
Hence, in BW (R), [R ⊕ Rv+]2 = [C ⊕ Cv+] and [R ⊕ Rv+]3 = [H ⊕ Hv−]. Note that
H⊕Hv− = (H⊕ 0) ⊗̂(R⊕Rv−), hence, in BW (R), [R⊕Rv+]4 = [R⊕Rv+]3[R⊕Rv+] =
[H⊕Hv−][R⊕Rv+] = [H⊕0][R⊕Rv−][R⊕Rv+] = [H⊕0][R⊕Rv+]−1[R⊕Rv+] = [H⊕0].

Also note that (R ⊕ Rv−) ⊗̂(R ⊕ Rv−) = C ⊕ Cv−, and (C ⊕ Cv−) ⊗̂(R ⊕ Rv−) =
H⊕Hv+. Note also that (H⊕Hv+) ∼= (H⊕0) ⊗̂(R⊕Rv+), hence, in BW (R), [R⊕Rv+]5 =
[R⊕Rv+]4[R⊕Rv+] = [H⊕0][R⊕Rv+] = [H⊕Hv+]. We can compute the higher powers
of [R⊕ Rv+] in BW (R):

[R⊕Rv+]6 = [R⊕Rv+]5[R⊕Rv+] = [H⊕Hv+][R⊕Rv+] = [C⊕Cv−][R⊕Rv−][R⊕
Rv+] = [C⊕ Cv−][R⊕ Rv+]−1[R⊕ Rv+] = [C⊕ Cv−].
[R⊕Rv+]7 = [R⊕Rv+]6[R⊕Rv+] = [C⊕Cv−][R⊕Rv+] = [R⊕Rv−][R⊕Rv−][R⊕Rv+] =
[R⊕Rv−][R⊕Rv+]−1[R⊕Rv+] = [R⊕Rv−] = [R⊕Rv+]−1. Hence [R⊕Rv+]8 = [R⊕0],
and hence BW (R) ∼= C8, and R⊕ Rv+ generates the entire group.

In summary, the powers of [R⊕ Rv+] are:

• [R⊕ Rv+]1 = [R⊕ Rv+],

• [R⊕ Rv+]2 = [C⊕ Cv+],

• [R⊕ Rv+]3 = [H⊕Hv−],

• [R⊕ Rv+]4 = [H⊕ 0],

• [R⊕ Rv+]5 = [H⊕Hv+],

• [R⊕ Rv+]6 = [C⊕ Cv−],

• [R⊕ Rv+]7 = [R⊕ Rv−],

• [R⊕ Rv+]8 = [R⊕ 0].
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2.4 The Brauer-Wall Group of R

So we now have a complete list of super central simple super division algebras over
R:

• R⊕ 0. It is a purely even algebra.

• R⊕Rv+ ∼= R×R. We graded (R×R) in the following way: (R×R)0 = R·(1, 1) ∼= R,
and (R× R)1 = R · (1,−1). Also, v+ ∈ ZD(D0) and (v+)2 = 1.

• C ⊕ Cv+ ∼= M2(R). We grade M2(R) in the following way: M2(R)0 = {
(
a −b
b a

)
:

a, b ∈ R} ∼= C, and M2(R)1 = {
(
a b
b −a

)
: a, b ∈ R}. Also, v+x(v+)−1 = x for any

x ∈ D0 and (v+)2 = 1

• H ⊕ Hv− ∼= H ⊗ C ∼= M2(C). We grade M2(C) in the following way: M2(C)0 =
{
(
z −w
w z

)
: z, w ∈ C} ∼= H, and M2(C)1 = {

(
z w
w −z

)
: z, w ∈ C}. Also, v− ∈ ZD(D0)

and (v−)2 = −1.

• H⊕ 0. It is purely even.

• H ⊕ Hv+ ∼= H ⊗ (R ⊕ Rv+) ∼= H ⊗ (R × R) ∼= H × H. We graded (H × H) in
the following way: (H × H)0 = H · (1, 1) ∼= H, and (H × H)1 = H · (1,−1). Also,
v+ ∈ ZD(D0) and (v+)2 = 1

• C⊕ Cv− ∼= H. We grade H in the following way: H0 = {a+ bi : a, b ∈ R} ∼= C, and
H1 = {aj + bk : a, b ∈ R}. Also, (v−)x(v−)−1 = x for any x ∈ D0 and (v−)2 = −1.

• R ⊕ Rv− ∼= C. We grade C in the following way: C0 = R, and H1 = {ai : a ∈ R}.
Also, v− ∈ ZD(D0) and (v−)2 = −1.

In total, there are ten finite-dimensional super division algebras over R. Eight of them
are super central, while two of them (C⊕ 0 and C⊕ Cv) are not super central over R.
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3 Character Theory of finite groups

3.1 Representation and Character Theory preliminaries

Throughout this section, G is a finite group and F is a field. We may restrict the
characteristic of F as required.

Definition 3.1 An F -representation ofG is a group homomorphism X : G→ GLn(F )
for some n ≥ 1. The integer n is the degree of the representation X.

Given an F -representation X ofG, its linear extension is the F -algebra homomorphism
X̃ : FG→Mn(F ) defined by:

X̃

(∑
g∈G

cgeg

)
:=
∑
g∈G

cgX(g).

By convention, we will use the same symbol to denote both an F -representation and
its linear extension.

Note that an F -representation X of G of degree n determines an n-dimensional FG-
module in the following way: given an n-dimensional F -vector space V , we can identify
EndF (V ) with Mn(F ) (the codomain of X) since Mn(F ) ∼= EndF (V ). The corresponding
FG-module of X is V with the left FG-action defined by:

FG× V → V,

(∑
g∈G

cgeg, v

)
7→ X

(∑
g∈G

cgeg

)
v.

Conversely an n-dimensional FG-module V determines an F -representation X in the
following way: first, we define GLF (V ) to be the group of invertible F -endomorphisms of
V . Note that GLF (V ) and GLn(V ) are isomorphic as groups, so we can identify GLF (V )
with GLn(F ). We define the F -representation X : G→ GLF (V ) corresponding to V by:

X(g) := (v 7→ egv for any v ∈ V ).

We say that an F -representation of G is irreducible if its corresponding FG-module is
irreducible.

Definition 3.2 Let X be an F -representation of G. Then the F -character of X is a
function χ : G → F defined by χ(g) = tr(X(g)), where tr is the matrix trace. If X has
degree n, we say χ is a character of degree n.

We can see immediately that, when char(F ) = 0, deg(χ) = χ(1).

Definition 3.3 A function f : G → F is called a class function if f(x) = f(y)
whenever x and y are conjugate in G.

Lemma 3.4 Let G be a finite group and let F be a field. The following holds:

1. Equivalent F -representations of G have the same F -characters.

2. Characters are class functions.
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3.1 Representation and Character Theory preliminaries

A character χ is said to be irreducible if it is a character of an irreducible F -
representation of G. We denote the set of all the distinct irreducible F -characters of G
as IrrF (G). The trivial character of the trivial representation of G is denoted as 1G.

We now specialise to the case where F = C.

Definition 3.5 Let φ and ψ be C-valued class functions on G. Then the inner product
of φ and ψ is defined as

⟨φ, ψ⟩ := 1

|G|
∑
g∈G

φ(g)ψ(g).

Theorem 3.6 (First Orthogonality Relation) Let χ1, χ2 ∈ IrrC(G). Then:

⟨χ1, χ2⟩ =

{
1 if χ1 = χ2,

0 if χ1 ̸= χ2.

[1, Corollary 2.14]

Corollary 3.7 Let φ and ψ be any C-characters of G. Then ⟨φ, ψ⟩ = ⟨ψ, φ⟩ is a non-
negative integer. In addition, φ ∈ IrrC(G) if and only if ⟨φ, φ⟩ = 1. [1, Corollary 2.17]

The inner product allows us to quickly check if a C-character of G is irreducible.
Now, given any finite group G, we can use the set IrrC(G) to decompose CG as a

direct sum of simple subalgebras:

CG ∼=
⊕

χ∈IrrC(G)

Mχ(1)(C).

So for any irreducible CG-module V , let χ be its corresponding C-character. Then we
have CG(V ) ∼= Mχ(1)(C).

We also hope to express RG as a direct sum of simple algebras, using information
about IrrC(G). To do this, we will need to introduce the Frobenius-Schur indicator.

Given a class function φ of a group G, set φ(2)(g) := φ(g2). It is straightforward to
check that φ(2) : G→ F is also a class function.

Definition 3.8 Let χ be a C-character. The Frobenius-Schur indicator ϵ(χ) of χ is
defined as

ϵ(χ) :=
1

|G|
∑
x∈G

χ(g2) = ⟨χ(2),1G⟩.

Theorem 3.9 (Frobenius-Schur) Let χ ∈ IrrC(G). Then we have the following:

1. χ(2) is a difference of characters.

2. ϵ(χ) = 1, 0 or −1.

3. ϵ(χ) ̸= 0 if and only if χ is real-valued.

[1, Theorem 4.5]

Definition 3.10 Given a C-representation X : G → GLn(C), we say that X is a real
representation if there exists an invertible matrix P such that P−1X(g)P is a real n×n
matrix for all g ∈ G. Given a C-character χ of G, we say that χ is realisable over R if
it is a character of a real representation.
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3.1 Representation and Character Theory preliminaries

Given a C-character χ of G, we say χ is real (or real-valued) if χ(g) is a real number
for all g ∈ G. We note that every C-character that is realisable over R is a real character,
but not all real characters are realisable over R.

Definition 3.11 Let χ be a real character of G. Then χ is said to be quaternionic if
it is not realisable over R.

We call a C-character of G that is not real a complex character.

Theorem 3.12 Let χ ∈ IrrC(G). Then:

1. ϵ(χ) = 0 if and only if χ is a complex character.

2. ϵ(χ) = 1 if and only if χ is realisable over R.

3. ϵ(χ) = −1 if and only if χ is a quaternionic character.

[1, Theorem 4.5, Corollary 4.15 + Theorem 4.19]

We can now begin to explore RG-modules by taking irreducible CG-modules, and
restricting them down to an RG-module.

Before we begin our analysis, let us state a quick definition. Given an irreducible
RG-module V , we say that V is of type R, C or H if EndRG(V ) = R, C or H respectively.

Now, given a finite group G, let Vχ be an irreducible CG-module with character χ.

• If ϵ(χ) = 1, then (Vχ)↓R = Ṽχ⊕ Ṽχ where Ṽχ is an irreducible RG-module of type R.

• If ϵ(χ) = 0, then (Vχ)↓R = Ṽχ where Ṽχ is an irreducible RG-module of type C.

• If ϵ(χ) = −1, then (Vχ)↓R = Ṽχ where Ṽχ is an irreducible RG-module of type H.

Let us go on the other direction; we will outline what can happen when we take an
irreducible RG-module, and induce it up to a CG-module.

Let V be an irreducible RG-module.

• If V is of type R, V ↑C = C⊗R V = Vχ, where Vχ is an irreducible CG-module with
character χ, and ϵ(χ) = 1.

• If V is of type C, V ↑C = C ⊗R V = Vχ ⊕ Vχ, where Vχ and Vχ are irreducible
CG-modules with characters χ and χ respectively, and ϵ(χ) = ϵ(χ) = 0.

• If V is of type H, V ↑C = C⊗R V = Vχ ⊕ Vχ, where Vχ is an irreducible CG-module
with character χ, and ϵ(χ) = −1.

We can also begin to describe the simple subalgebra decomposition of RG. First, let
us introduce some notation.

Let S be any finite set, and let n be a non-negative integer such that n ≤ |S|. Then
we define Pn(S) as the set of subsets of S of cardinality n.

Now, we give the decomposition of RG :

RG ∼=
⊕

χ∈IrrC(G)
ϵ(χ)=1

Mχ(1)(R)⊕
⊕

χ∈IrrC(G)
ϵ(χ)=−1

Mχ(1)
2

(H)⊕
⊕

{χ,χ′}∈P2(IrrC(G))
χ′=χ

ϵ(χ)=ϵ(χ′)=0

Mχ(1)(C).
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3.2 Introduction to Clifford Theory

3.2 Introduction to Clifford Theory

Let H be a subgroup of a group G. Given an irreducible C-character χ of H, the
restriction of χ to H, denoted as χ↓H , is a character of H. In the same vein, given an
irreducible C-character ϑ of H, there is a character of G called the induced character of
ϑ. Recall that, given a class function φ of a subgroup H of G, the induced class function
φ↑G on G is given by

φ↑G(g) =
1

|H|
∑
x∈G

φ◦ (xgx−1
)
,

where φ◦ is defined as

φ◦(g) =

{
φ(g) if g ∈ H

0 if g /∈ H.

In 1937, Alfred H. Clifford developed a detailed and effective theory that explored
restrictions and inductions of characters when H is a normal subgroup of G.

Definition 3.13 Let N be a normal subgroup of G, and let ϑ be a complex-valued class
function of N . Given g ∈ G, we define a function ϑg on N by

ϑg(n) := ϑ
(
gng−1

)
for all n ∈ N . Then ϑg is called a G-conjugate of ϑ.

Lemma 3.14 With G, N and ϑ as above,

(1) ϑg is a class function of N .

(2) (ϑg)h = ϑgh for all g and h in G.

(3) If φ and ϑ are class functions of N , then

⟨φg, ϑg⟩N = ⟨φ, ϑ⟩N .

(4) For any class function χ of G,

⟨χ↓N , ϑ
g⟩N = ⟨χ↓N , ϑ⟩N .

(5) If ϑ is an ordinary character of N , then so is ϑg.

(6) The subset of all g ∈ G satisfying ϑg = ϑ is a subgroup of G containing N . This
subgroup is called the stabilizer of ϑ in G, and we denote it as Gϑ.

[1, Lemma 6.1]

Given a normal subgroup N ⊴ G and a class function ϑ of N , we have

G =
m⋃
i=1

Gϑgi,

where Gϑg1, . . . , Gϑgm are the right cosets of Gϑ in G and m = |G : Gϑ|. Then, given
g ∈ G, it can be expressed as sgi for some s ∈ Gϑ. We observe that

ϑg = ϑsgi = (ϑs)gi = ϑgi .

We additionally have ϑgi = ϑgj ⇐⇒ i = j. Thus ϑ has m = |G : Gϑ| different
G-conjugates.
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Theorem 3.15 (Clifford’s Theorem - Part 1) Let N be a normal subgroup of G and
let χ be an irreducible C-character of G. Let ϑ be an irreducible constituent of χ↓N . Let
ϑ1 = ϑ, . . . , ϑm be the different G-conjugates of ϑ. Then

χ↓N = e (ϑ1 + · · ·+ ϑm) ,

where e is some positive integer. [1, Theorem 6.2]

We can actually expand on Theorem 3.15 by taking into account the stabilizer sub-
group Gϑ of ϑ. Since ⟨χ↓N , ϑ⟩ = e > 0, there must be some irreducible character φ of
Gϑ that satisfies ⟨χ↓Gϑ

, φ⟩ ≠ 0 and ⟨φ↓N , ϑ⟩ ≠ 0. In other words, χ↓Gϑ
has an irreducible

constituent φ such that ϑ is an irreducible constituent of φ↓N . It turns out that χ = φ↑G,
so that χ is induced from Gϑ.

Theorem 3.16 (Clifford’s Theorem - Part 2) Using the notation introduced, if φ is
an irreducible character of Gϑ that satisfies

⟨χ↓Gϑ
, φ⟩ ≠ 0 and ⟨φ↓N , ϑ⟩ ≠ 0,

then χ = φ↑G and φ↓N = eϑ.

Proof. Since Gϑ is the stabilizer subgroup of ϑ in G and ⟨φ↓N , ϑ⟩ ≠ 0, it follows that
φ↓N = fϑ for some integer f , by Theorem 3.15 (since φ is an irreducible character of Gϑ,
and the only Gϑ-conjugate of ϑ is itself). In addition, since ⟨χ↓N , ϑ⟩ = e and φ↓N is a
constituent of χ↓N (which is implied from ⟨χ↓Gϑ

, φ⟩ ≠ 0), we must have that f ≤ e. Let us
look at χ(1). Since χ↓N = e (ϑ1 + · · ·+ ϑm), m = |G : Gϑ| and ϑg(1) = ϑ(g1g−1) = ϑ(1)
for all g ∈ G, we get χ(1) = e|G : Gϑ|ϑ(1).

Now since ⟨χ↓Gϑ
, φ⟩Gϑ

̸= 0, we have ⟨χ, φ↑G⟩G ̸= 0 by Frobenius reciprocity. Hence χ
is an irreducible constituent of φ↑G, which means χ(1) ≤ φ↑G(1) = |G : Gϑ|φ(1) = |G :
Gϑ|fϑ(1). So χ(1) = e |G : Gϑ|ϑ(1) ≤ |G : Gϑ|fϑ(1) =⇒ e ≤ f . But we already have
f ≤ e, and so e = f and χ(1) = e|G : Gϑ|ϑ(1) = |G : Gϑ|φ(1). We can now conclude
that χ = φ↑G and φ↓N = eϑ. ■

We note that φ would in fact be the unique irreducible character of Gϑ with the
properties described in Theorem 3.16. Also, we have that ⟨χ↓Gϑ

, φ⟩ = e.

Corollary 3.17 Let N be a normal subgroup of G such that |G : N | = p, where p is
a prime. Then, for each χ ∈ IrrC(G), either χ↓N ∈ IrrC(N) or N has an irreducible
character ϑ with the property that ϑ↑G = χ. In that case, χ↓N = ϑ1 + · · ·+ ϑp, where the
ϑi’s are the conjugates of ϑ.

Let us discuss this corollary further. In the case where χ↓N = ϑ ∈ IrrC(G), it is
straightforward to prove the following: Let 1G = ε1, ε2, . . . , εp be the different linear
characters of G/N inflated to G. Then the characters χε1 = χ, χε2, . . . , χεp are all distinct
and they are the extensions of ϑ to G. We also get that ϑ↑G = χ+ χε2 + · · ·+ χεp.

Let us now specialise in the case where |G : N | = 2. Given any χ ∈ IrrC(G) we have
the following two possibilities:

1. If χ↓N /∈ IrrC(N), then for some ϑ ∈ IrrC(N), χ↓N = ϑ + ϑg for some g ∈ G\N . In
this case, Gϑ = N , and ϑ↑G = (ϑg)↑G = χ.
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2. If χ↓N = ϑ ∈ IrrC(N), then Gϑ = G, and ϑ↑G = χ + sgnχ where sgnχ is the
C-character defined by:

sgnχ(g) :=

{
χ(g) if g ∈ N,

−χ(g) if g ∈ G\N.

Note that (sgnχ)↓N = χ↓N = ϑ.

We can visualise the induction and restriction relationships present in these two cases
using the poset diagrams below:

Case 1:
G χ

N ϑ ϑg

Case 2:
G χ sgn(χ)

N ϑ

3.3 Super representations and super characters

In section 3.1, we saw how an F -representation of a finite group G determines an
FG-module, and vice versa. We now want to define a super representation in such a way
that we can readily construct a supermodule from a super representation, and vice versa.

Recall that given an FG-module V , the map FG → EndF (V ) defined by x 7→ (v 7→
xv for all v ∈ V ) is an F -algebra homomorphism. This can be turned into an F -
representation by restriction to the basis elements {eg : g ∈ G}. We want to say something
similar regarding F [G,N ]-supermodules.

Let G be a group, and let N ◁G be a normal subgroup of index 2. Let V = V0⊕V1 be
a finite dimensional F [G,N ]-supermodule. Let us first note that dimF (V0) = dimF (V1)
since, for any g ∈ G\N , the linear map V0 → V1, v0 7→ egv0 is bijective.

Now let n = dimF (V0). We claim that the map φ : F [G,N ] → Ends
F (V

(n,n)) defined
by: φ(x) := (v 7→ xv for all v ∈ V ) is an F -superalgebra homomorphism. Since V is
an FG-module, φ is an ordinary F -algebra homomorphism. We just need to show that
φ preserves grading. Note that for any x ∈ F [G,N ]0, x · V0 ⊂ V0 and x · V1 ⊂ V1. This
implies that φ(F [G,N ]0) ⊂ Ends

F (V
(n,n))0. Also, for any x ∈ F [G,N ]1, x · V0 ⊂ V1 and

x · V1 ⊂ V0. This means φ(F [G,N ]1) ⊂ Ends
F (V

(n,n))1, and thus φ is an F -superalgebra
homomorphism.

By restricting φ to the basis elements {eg : g ∈ G}, we begin to see how we could
define an F -super representation. We identify M(n,n)(F ) with Ends

F (V
(n,n)). We can see

that for any g ∈ N , φ(eg) ∈ M(n,n)(F )0 ∩ GL2n(F ), and for any g ∈ G\N , φ(eg) ∈
M(n,n)(F )1 ∩GL2n(F ). We can now define F -super representations.

Definition 3.18 Let G be a finite group, and let N ⊴ G be a normal subgroup of index
2. Then an F -super representation of the pair (G,N) is an F -representation X : G→
GL2n(F ) that additionally satisfies X(N) ⊂ M(n,n)(F )0 and X(G\N) ⊂ M(n,n)(F )1 for
some n ≥ 1.

This definition of an F -super representation allows us to readily construct the corre-
sponding F [G,N ]-supermodule.

An F -super character of (G,N) is an F -character of an F -super representation of
(G,N).
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3.4 The Gow indicator and the Super Frobenius-Schur indicator

Let g ∈ G\N , and let X be an F -representation of N of degree n. We let Xg :
N → GLn(F ) be the F -representation defined by Xg(n) := X(g−1ng) for any n ∈ N .
Given an FN -module V with corresponding representation X, we let V g denote the FN -
module with corresponding representation Xg. It is an exercise to show that, for any two
elements g, h ∈ G\N and for any FN -module V , V g ∼= V h. For any g ∈ G\N , we call
V g a G-conjugate module of V .

Theorem 3.19 Let V = V0 ⊕ V1 be an F [G,N ]-supermodule. Then, for any g ∈ G\N ,
V1 ∼= V g

0 as FN-modules.

Proof. Let X denote the representation of G corresponding to V . Additionally, let X0

and X1 denote the representations of N corresponding to V0 and V1 respectively so that
for any n ∈ N , X(en)v0 = X0(en)v0 for any v0 ∈ V0 and X(en)v1 = X1(en)v1 for any
v1 ∈ V1. Now let g ∈ G\N . Note that V1 = X(eg) · V0. Let φ : V1 → V g

0 be the linear
map defined by: φ(v1) := X(e−1

g )v1.
Let us show that φ is an FN -module isomorphism. Note that, for any n ∈ N ,

φ(X1(en)v1) = X(e−1
g )X1(en)v1 = X(e−1

g )X(en)v1 = X(e−1
g en)v1 = X(e−1

g enege
−1
g )v1 =

X(e−1
g eneg)X(e

−1
g )v1 = X0(e

−1
g eneg)φ(v1) = Xg(en)φ(v1).

Hence V1 ∼= V g
0 as FN -modules. ■

From this, we can also say that V0 ∼= V g
1 for any g ∈ G\N . We deduce from Theorem

3.19 that, for any F [G,N ]-supermodule V = V0 ⊕ V1, V = V ↑G
0 = V ↑G

1 . This gives us a
criteria outlining when an C-character is a super character.

Theorem 3.20 An F -character χ of G is an F -super character of (G,N) if and only if
there exists an F -character ϑ of N such that ϑ↑G = χ.

Note that by Lemma 2.15, an F [G,N ]-supermodule V = V0 ⊕ V1 is super irreducible
if and only if V0 and V1 are irreducible FN -modules.

We say that an F -super character χ is super irreducible if its corresponding F [G,N ]-
supermodule is super irreducible. It is immediate that a super character χ of (G,N) is
super irreducible if and only if there exists ϑ ∈ IrrF (N) such that ϑ↑G = χ.

3.4 The Gow indicator and the Super Frobenius-Schur indicator

Recall that given a C-character χ ∈ IrrC(G), the Frobenius-Schur indicator ϵ(χ) is
the average value of χ(g2) as g runs over all of G. R. Gow explored a related indicator
in [6]:

Definition 3.21 Let N be a subgroup of index 2 in a finite group G and let ϑ be an
irreducible character of N . Then the Gow indicator η(ϑ) of ϑ is:

η(ϑ) :=
1

|N |
∑

g∈G\N

ϑ(g2).

Lemma 3.22 It turns out that η(ϑ) = 0, 1 or −1. Moreover, η(χ) ̸= 0 if and only if ϑ
is G-conjugate to ϑ.

Let us explore the different possibilities given the setting of Definition 3.21.
If Gϑ = N , then ϑ would have one other G-conjugate. Let g ∈ G\N . Then ϑg would

be that other G-conjugate, and ϑ ̸= ϑg. By Clifford Theory (Theorem 3.16), ϑ↑G would
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3.4 The Gow indicator and the Super Frobenius-Schur indicator

be an irreducible character of G. Since we have ϵ(ϑ) = ϵ(ϑg) and η(ϑ) = η(ϑg), we also
get ϵ(ϑ↑G) = ϵ(ϑ) + η(ϑ). Table 1 below lists the different possible values of ϵ(ϑ↑G), ϵ(ϑ)
and η(ϑ).

If Gϑ = G, then ϑ can be extended to an irreducible character φ of G. In this case,
we would have 2ϵ(φ) = ϵ(ϑ) + η(ϑ). Table 2 below lists the different possible values of
ϵ(φ), ϵ(ϑ) and η(ϑ).

Table 1: When Gϑ = N

ϵ
(
ϑ↑G) ϵ(ϑ) η(ϑ)

1 0 1

1 1 0

0 0 0

-1 0 -1

-1 -1 0

Table 2: When Gϑ = G

ϵ(φ) ϵ(ϑ) η(ϑ)

1 1 1

-1 -1 -1

0 0 0

0 1 -1

0 -1 1

Let G be a group, and let N ◁ G be a normal subgroup of index 2. Let ϑ be an irre-
ducible C-character of N . Then the Super Frobenius-Schur indicator of the C-super
character ϑ↑G is defined as follows:

1. If both ϵ(ϑ) and η(ϑ) are equal to zero, then S(ϑ↑G) = 0.

2. If at least one of ϵ(ϑ) and η(ϑ) is non-zero, then S(ϑ↑G) = ϵ(ϑ)+iη(ϑ)
|ϵ(ϑ)+iη(ϑ)| .

The possible values of S(ϑ) are the eighth roots of unity, and 0. While the Super
Frobenius-Schur indicator alone doesn’t distinguish the two separate cases where the
indicator is 0, we can distinguish them by checking if ϑ↑G is an irreducible C-character
of G or not.

We can create a new table that lists the possible values of S(ϑ), ϵ(ϑ) and η(ϑ), with
the help of our two previous tables. We shall also list the ten possible values of ϵ(χ),

where χ = ϑ↑G if Gϑ = N and χ = φ if Gϑ = G. Here, ω = e
2πi
8 . Following the notation

from [7], we will define a variable q(ϑ) to be equal to 0 if Gϑ = N , and 1 if Gϑ = G.

S(ϑ) q(ϑ) ϵ(χ) ϵ(ϑ) η(ϑ)

0 0 0 0 0

0 1 0 0 0

1 0 1 1 0

ω 1 1 1 1

ω2 = i 0 1 0 1

ω3 1 0 -1 1

ω4 = −1 0 -1 -1 0

ω5 1 -1 -1 -1

ω6 = −i 0 -1 0 -1

ω7 1 0 1 -1
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3.4 The Gow indicator and the Super Frobenius-Schur indicator

We can visualize the last eight cases using the diagram below. The eight roots of
unity each have three coloured dots associated with them. These dots tell you the values
of ϵ(ϑ), ϵ(χ) and η(ϑ) that occur. Green, blue and red dots represent the values 1, 0 and
−1 respectively. We will also write down the corresponding super central super division
algebra of R.

Re(z)

Im(z)

R⊕ Rv+H⊕Hv−

H⊕Hv+ R⊕ Rv−

H⊕ 0 R⊕ 0

C⊕ Cv−

ϵ(ϑ)

ϵ(χ)

η(ϑ)

C⊕ Cv+

Let us give an example of each of the ten possibilities, for specific G and N :

1.
S(ϑ) q(ϑ) ϵ(χ) ϵ(ϑ) η(ϑ)

0 0 0 0 0

Let G = S3 × C3 and N = C3 × C3. The presentation of S3 is ⟨s1, s2 : s21 =
s22 = 1, (s1s2)

3 = 1⟩, while the presentation of C3 is ⟨g : g3 = 1⟩. Let ψ1 be the
character of S3 × {1} with the given character values:

{(1, 1)} {(s1, 1)} {(s1s2, 1)}

χ 2 0 -1

Let ζ = e
2πi
3 , and let ψ2 be the (linear) character of {1} × C3 defined by

ψ2(1, g) = ζ. Now let χ = ψ1 ⊗ ψ2. This is an irreducible character of G. When we
restrict χ to N , χ↓N would be a sum of two G-conjugate characters of N .

To describe these two G-conjugate characters, let ϕ be the (linear) character of
C3×{1} ≤ S3×{1} defined by ϕ(s1s2, 1) = ζ. Then the two G-conjugate characters
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of N that make up χ↓N are ϑ = ϕ⊗ ψ2 and ϑg = ϕ2 ⊗ ψ2. So χ↓N = ϑ+ ϑg, and we
are in the situation where q(ϑ) = 0. χ is a complex character of G, while ϑ and ϑg

are complex characters of N . Hence ϵ(χ) = 0 and ϵ(ϑ) = ϵ(ϑg) = 0. This also gives
us the value of the Gow indicator, which is η(ϑ) = 0.

2.
S(ϑ) q(ϑ) ϵ(χ) ϵ(ϑ) η(ϑ)

0 1 0 0 0

Let G = C8 and N = C4. The presentation of C8 is ⟨g : g8 = 1⟩. Let ζ = e
2πi
8 ,

and consider the (linear) character χ of C8 defined by χ(g) = ζ. When we restrict χ
to C4 (where C4 is the subgroup generated by g2), we get a single character ϑ = χ↓N ,
which means q(ϑ) = 1. χ and ϑ are C-characters of G and N respectively, and hence
ϵ(χ) = 0 and ϵ(ϑ) = 0. This also gives us the value of the Gow indicator, which is
η(ϑ) = 0.

3.
S(ϑ) q(ϑ) ϵ(χ) ϵ(ϑ) η(ϑ)

1 0 1 1 0

Let G = D8 and N = K4. The presentation of D8 is ⟨a, b : a4 = b2 = 1, b−1ab =
a−1⟩. Let χ be the character of G with the given character values:

{1} {a2} {a, a3} {b, a2b} {ab, a3b}

χ 2 -2 0 0 0

The subgroup K4 contained in D8 is the subgroup generated by a2 and b. When
we restrict χ to N , χ↓N would be a sum of two G-conjugate characters of N . So
χ↓N = ϑ+ ϑg, where χ↓N , ϑ and ϑg have the following character values:

{1} {a2} {b} {a2b}

χ↓N 2 -2 0 0

ϑ 1 -1 1 -1

ϑg 1 -1 -1 1

We therefore are in the situation where q(ϑ) = 0, and we can compute that
ϵ(χ) = 1, ϵ(ϑ) = 1 and η(ϑ) = 0.

4.
S(ϑ) q(ϑ) ϵ(χ) ϵ(ϑ) η(ϑ)

ω 1 1 1 1

Let G = C2 and N = {1}. The presentation of C2 is ⟨g : g2 = 1⟩. Con-
sider the (linear) character χ of C2 defined by χ(g) = −1. When we restrict χ to
N , we get a single character ϑ = χ↓N , which means q(ϑ) = 1. χ and ϑ are real
characters of G and N respectively, and hence ϵ(χ) = 1 and ϵ(ϑ) = 1. This also
gives us the value of the Gow indicator, which is η(ϑ) = 1.

5.
S(ϑ) q(ϑ) ϵ(χ) ϵ(ϑ) η(ϑ)

ω2 = i 0 1 0 1
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Let G = D8 and N = C4. The presentation of D8 is ⟨a, b : a4 = b2 = 1, bab−1 =
a−1⟩. Let χ be the character of G with the given character values:

{1} {a2} {a, a3} {b, a2b} {ab, a3b}

χ 2 -2 0 0 0

The subgroup C4 contained in D8 is the subgroup generated by a. When we
restrict χ to N , χ↓N would be a sum of two G-conjugate characters in N . So
χ↓N = ϑ+ ϑg, where χ↓N , ϑ and ϑg have the following character values:

{1} {a} {a2} {a3}

χ↓N 2 0 -2 0

ϑ 1 i -1 -i

ϑg 1 -i -1 i

We therefore are in the situation where q(ϑ) = 0, and we can compute that
ϵ(χ) = 1, ϵ(ϑ) = 0 and η(ϑ) = 1.

6.
S(ϑ) q(ϑ) ϵ(χ) ϵ(ϑ) η(ϑ)

ω3 1 0 -1 1

Let G = SD16 and let N = Q8. The presentation of SD16 is ⟨a, d : a8 =
b2 = 1, bab−1 = a3⟩. Let χ be the character of G with the given character values:

{1} {a4} {a2, a6} {a, a3} {a5, a7} {b, a2b, a4b, a6b}, {ab, a3b, a5b, a7b}

χ 2 -2 0 i
√
2 -i

√
2 0 0

The subgroup Q8 contained in SD16 is the subgroup generated by a2 and ab.
When we restrict χ to Q8, we get a single character ϑ = χ↓N , which means q(ϑ) = 1.
χ is a complex character of G, while ϑ is a quaternionic character of N , and hence
ϵ(χ) = 0 and ϵ(ϑ) = −1. This also gives us the value of the Gow indicator, which is
η(ϑ) = 1.

7.
S(ϑ) q(ϑ) ϵ(χ) ϵ(ϑ) η(ϑ)

ω4 = −1 0 -1 -1 0

Let G = Q8 ≀ C2 and N = Q8 × Q8. Within N , there is a subgroup H =
Q8 × {1} ∼= Q8. The presentation of Q8 is ⟨a, b : a4 = 1, a2 = b2, b−1ab = a−1⟩. Let
ψ be the character of H with the given character values:

{1} {a2} {a, a3} {b, b3} {ab, a3b}

ψ 2 -2 0 0 0

We let ϑ = ψ ⊗ 1Q8 , and let χ = ϑ↑G. ϑ and χ turn out to be irreducible
characters of N and G respectively. When we restrict χ to N , χ↓N would be a sum
of two G-conjugate characters in N . So χ↓N = ϑ+ ϑg. Hence we have q(ϑ) = 0. In
their respective groups, χ and ϑ are both quaternionic characters, so ϵ(χ) = −1 and
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ϵ(ϑ) = −1. We also get η(ϑ) = 0.

8.
S(ϑ) q(ϑ) ϵ(χ) ϵ(ϑ) η(ϑ)

ω5 1 -1 -1 -1

Let G = Q8 × C2 and N = Q8. The presentation of Q8 is ⟨a, b : a4 = 1, a2 =
b2, b−1ab = a−1⟩. Let ϑ be the character of N with the given character values:

{1} {a2} {a, a3} {b, b3} {ab, a3b}

ϑ 2 -2 0 0 0

We let χ = Inf(ϑ). It is straightforward to show that χ is an irreducible char-
acter of G. We also immediately get χ↓N = ϑ and hence q(ϑ) = 1. χ and ϑ are
quaternionic characters of G and N respectively, and so ϵ(χ) = −1 and ϵ(ϑ) = −1.
We also get η(ϑ) = −1.

9.
S(ϑ) q(ϑ) ϵ(χ) ϵ(ϑ) η(ϑ)

ω6 = −i 0 -1 0 -1

Let G = Q8 and N = C4. The presentation of Q8 is ⟨a, b : a4 = 1, a2 =
b2, b−1ab = a−1⟩. Let χ be the character of G with the given character values:

{1} {a2} {a, a3} {b, b3} {ab, a3b}

χ 2 -2 0 0 0

The subgroup C4 contained in Q8 is the subgroup generated by a When we
restrict χ to N , χ↓N would be a sum of two G-conjugate characters in N . So
χ↓N = ϑ+ ϑg, where χ↓N , ϑ and ϑg have the following character values:

{1} {a} {a2} {a3}

χ↓N 2 0 -2 0

ϑ 1 i -1 -i

ϑg 1 -i -1 i

We therefore are in the situation where q(ϑ) = 0, and we can compute that
ϵ(χ) = −1, ϵ(ϑ) = 0 and η(ϑ) = −1.

10.
S(ϑ) q(ϑ) ϵ(χ) ϵ(ϑ) η(ϑ)

ω7 1 0 1 -1

Let G = C4 and N = C2. The presentation of C8 is ⟨g : g4 = 1⟩. Consider
the (linear) character χ of C4 defined by χ(g) = i. When we restrict χ to C2, we get
a single character ϑ = χ↓N , which means q(ϑ) = 1. χ is a complex character of G,
while ϑ is a real character of N , and hence ϵ(χ) = 0 and ϵ(ϑ) = 1. This also gives
us the value of the Gow indicator, which is η(ϑ) = −1.
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4 The Superalgebras C[G,N ] and R[G,N ]

Throughout this section, G is a finite group, and N ◁G is a normal subgroup of index
2. We aim to describe the decomposition of the superalgebras C[G,N ] and R[G,N ]. We
will also describe the super irreducible C[G,N ]- and R[G,N ]-supermodules.

4.1 Simple subalgebras of CG and RG
In this subsection, we will first recap how we obtain the simple subalgebras of CG

and RG for arbitrary G. We will use a construction that comes from [8, Theorem 3.15].
Let χ be an irreducible C-character of G. Its corresponding (primitive) central idem-

potent eχ is:

eχ =
χ(1)

|G|
∑
g∈G

χ(g)eg ∈ Z(CG).

It is known that for any χ ∈ IrrC(G), eχCG ∼= Mχ(1)(C), which means eχCG is a
(central) simple C-subalgebra of CG. Note that if χ is a real character, then eχ can also
be seen as a central idempotent in RG.

Lemma 4.1 Let χ be an irreducible C-character of G. We have the following:

• χ is realisable over R if and only if eχRG ∼= Mχ(1)(R).

• χ is quaternionic if and only if eχRG ∼= Mχ(1)
2

(H).

• χ is complex if and only if (eχ + eχ)RG ∼= Mχ(1)(C).

[8, Theorem 8.16]

All simple R-subalgebras of RG are of the form (eχ + eχ)RG for some χ ∈ IrrC(G).

4.2 Super simple subsuperalgebras of C[G,N ]

Let χ be an irreducible C-character of G. Previously we saw that we have two possible
situations regarding χ↓N :

• either χ↓N is a sum of two irreducible characters of N that are G-conjugates of each
other, or

• χ↓N is an irreducible character of N .

These two cases allow us to find the two different possible types of super simple subsu-
peralgebras of C[G,N ]:

• If χ↓N = ϑ+ϑg where ϑ ∈ IrrC(N) and ϑg is its G-conjugate, then ϑ↑G = χ. However,
for any g ∈ G\N ,

χ(g) = ϑ↑G(g) =
1

|N |
∑
x∈G

ϑ◦ (xgx−1
)
= 0

since xgx−1 ∈ G\N for all x ∈ G (which means ϑ◦ (xgx−1) = 0 ). Hence the central
idempotent eχ corresponding to χ is contained in the subalgebra CN . With this in
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mind, we can use eχ to create a super simple subsuperalgebra of C[G,N ].

The superalgebra eχC[G,N ] is eχCG as an algebra, but graded in the following
way:

– Its 0-component is eχCN .

– Its 1-component is eχC[G\N ].

Note that since eχ ∈ CN , then eχCN is contained in the subspace CN , while
eχC[G\N ] is contained in the subspace C[G\N ].
As a superalgebra, eχC[G,N ] ∼= M(ϑ(1),ϑ(1))(C).

• If χ↓N = ϑ ∈ IrrC(N), then ϑ↑G = χ + sgnχ (where sgnχ(g) = χ(g) whenever
g ∈ N , and sgnχ(g) = −χ(g) whenever g ∈ G\N). Note that ϑ↑G(g) = 0 whenever
g ∈ G\N , so eχ+ esgnχ is contained in the subalgebra CN . We can use eχ+ esgnχ to
create a super simple subsuperalgebra of C[G,N ].

The superalgebra (eχ+ esgnχ)C[G,N ] is (eχ+ esgnχ)CG as an algebra, but graded in
the following way:

– Its 0-component is (eχ + esgnχ)CN = eϑCN .

– Its 1-component is (eχ + esgnχ)C[G\N ].

As a superalgebra, (eχ + esgnχ)C[G,N ] ∼= Mϑ(1)(C) ⊗̂(C⊕ Cv).

We can express C[G,N ] as a direct sum of super simple subsuperalgebras in the following
way:

C[G,N ] ∼=
⊕

χ∈IrrC(G)
χ↓N=ϑ+ϑg

ϑ,ϑg∈IrrC(N)

M
(
χ(1)
2
,
χ(1)
2

)
(C)⊕

⊕
{χ,χ′}∈P2(IrrC(G))

χ′=sgn(χ),
χ↓N=χ′

↓N∈IrrC(N)

Mχ(1)(R) ⊗̂(C⊕ Cv).

4.3 Super simple subsuperalgebras of R[G,N ]

With G, N and χ as in the previous subsection, let us revisit the two possibilities
regarding χ↓N :

• If χ↓N = ϑ + ϑg, then we are able to use eχ to construct a super central simple
subsuperalgebra of R[G,N ] if χ is a real character. If χ is real, then the superalgebra
eχR[G,N ] is eχRG as an algebra, but graded in the following way:

– Its 0-component is eχRN .

– Its 1-component is eχR[G\N ].

From our discussion of the Gow indicator, there are four possibilities if χ is real:

ϵ(χ) ϵ(ϑ) η(ϑ)

1 1 0

1 0 1

-1 -1 0

-1 0 -1
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4.3 Super simple subsuperalgebras of R[G,N ]

Let us look at these four possibilities:

– If ϵ(χ) = 1 and ϵ(ϑ) = 1, then eχR[G,N ] ∼= M(ϑ(1),ϑ(1))(R).
– If ϵ(χ) = 1 and ϵ(ϑ) = 0, then eχR[G,N ] ∼= Mϑ(1)(R) ⊗̂(C⊕ Cv+).
– If ϵ(χ) = −1 and ϵ(ϑ) = −1, then eχR[G,N ] ∼= M(ϑ(1)

2
,
ϑ(1)
2 )(H).

– If ϵ(χ) = −1 and ϵ(ϑ) = 0, then eχR[G,N ] ∼= Mϑ(1)(R) ⊗̂(C⊕ Cv−).

If χ is complex, then the superalgebra (eχ+eχ)R[G,N ] is (eχ+eχ)RG as an algebra,
but graded in the following way:

– Its 0-component is (eχ + eχ)RN .

– Its 1-component is (eχ + eχ)R[G\N ].

As a superalgebra, (eχ + eχ)R[G,N ] ∼= M
(
χ(1)
2
,
χ(1)
2

)
(C)

• If χ↓N = ϑ ∈ IrrC(N) then we can use eχ + esgn(χ) to construct a super central
simple subsuperalgebra of R[G,N ] if ϑ is real. If ϑ is real, then the superalgebra
(eχ + esgn(χ))R[G,N ] is (eχ + esgn(χ))RG as an algebra, but graded in the following
way:

– Its 0-component is (eχ + esgn(χ))RN = eϑRN .

– Its 1-component is (eχ + esgn(χ))R[G\N ].

From our discussion of the Gow indicator, there are four possibilities if ϑ is real:

ϵ(χ) ϵ(ϑ) η(ϑ)

1 1 1

0 -1 1

-1 -1 -1

0 1 -1

Let us look at these four possibilities:

– If ϵ(χ) = 1 and ϵ(ϑ) = 1, then (eχ + esgn(χ))R[G,N ] ∼= Mϑ(1)(R) ⊗̂(R⊕ Rv+).
– If ϵ(χ) = 0 and ϵ(ϑ) = −1, then (eχ + esgn(χ))R[G,N ] ∼= Mϑ(1)

2

(R) ⊗̂(H⊕Hv−).

– If ϵ(χ) = −1 and ϵ(ϑ) = −1, then (eχ+esgn(χ))R[G,N ] ∼= Mϑ(1)
2

(R) ⊗̂(H⊕Hv+).

– If ϵ(χ) = 0 and ϵ(ϑ) = 1, then (eχ + esgn(χ))R[G,N ] ∼= Mϑ(1)(R) ⊗̂(R⊕ Rv−).

If ϑ is complex, then the superalgebra (eχ + eχ + esgn(χ) + esgn(χ))R[G,N ] is (eχ +

eχ + esgn(χ) + esgn(χ))RG as an algebra, but graded in the following way:

– Its 0-component is (eχ + eχ + esgn(χ) + esgn(χ))RN .

– Its 1-component is (eχ + eχ + esgn(χ) + esgn(χ))R[G\N ].

As a superalgebra, (eχ + eχ + esgn(χ) + esgn(χ))R[G,N ] ∼= Mχ(1)(R) ⊗̂(C⊕ Cv)
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4.3 Super simple subsuperalgebras of R[G,N ]

The table below describes the super simple subsuperalgebras of R[G,N ]. The first column
of the table describes the irreducible C-characters of G involved in each stage of the direct
sum decomposition of R[G,N ].

C-Characters of
G involved in

the decomposition

Super simple sub-
superalgebra of

R[G,N ]

Subsuperalgebra
as a subalgebra

of RG

0-component
as a sub-

algebra of RN
{χ, χ′} ∈ P2(IrrC(G)) :
χ′ = χ, ϵ(χ) = ϵ(χ′) = 0,

χ↓N = ϑ+ ϑg, ϑ, ϑg ∈ IrrC(N),
ϵ(ϑ) = ϵ(ϑg) = 0

M
(
χ(1)
2
,
χ(1)
2

)
(C) Mχ(1)(C)

Mϑ(1)(C)
×Mϑg(1)(C)

{χ, χ′, ψ, ψ′} ∈ P4(IrrC(G)) :

χ′ = χ, ψ = sgn(χ), ψ′ = ψ
ϵ(χ) = ϵ(χ′) = ϵ(ψ) = ϵ(ψ) = 0,
χ↓N = ψ↓N = ϑ ∈ IrrC(N),

ϵ(ϑ) = 0

Mχ(1)(R) ⊗̂(C⊕ Cv) Mχ(1)(C)
×Mψ(1)(C)

Mϑ(1)(C)

χ ∈ IrrC(G) :
ϵ(χ) = 1,

χ↓N = ϑ+ ϑg, ϑ, ϑg ∈ IrrC(N),
ϵ(ϑ) = ϵ(ϑg) = 1

M
(
χ(1)
2
,
χ(1)
2

)
(R) Mχ(1)(R)

Mϑ(1)(R)
×Mϑg(1)(R)

{χ, χ′} ∈ P2(IrrC(G)) :
χ′ = sgn(χ), ϵ(χ) = ϵ(χ′) = 1
χ↓N = χ′

↓N = ϑ ∈ IrrC(N)
ϵ(ϑ) = 1

Mχ(1)(R) ⊗̂(R⊕ Rv+) Mχ(1)(R)
×Mχ′(1)(R)

Mϑ(1)(R)

χ ∈ IrrC(G) :
ϵ(χ) = 1,

χ↓N = ϑ+ ϑg, ϑ, ϑg ∈ IrrC(N),
ϵ(ϑ) = ϵ(ϑg) = 0

Mχ(1)
2

(R) ⊗̂(C⊕ Cv+) Mχ(1)(R) Mϑ(1)(C)

{χ, χ′} ∈ P2(IrrC(G)) :
χ′ = sgn(χ) = χ, ϵ(χ) = ϵ(χ′) = 0

χ↓N = χ′
↓N = ϑ ∈ IrrC(N)
ϵ(ϑ) = −1

Mχ(1)
2

(R) ⊗̂(H⊕Hv−) Mχ(1)(C) Mϑ(1)
2

(H)

χ ∈ IrrC(G) :
ϵ(χ) = −1,

χ↓N = ϑ+ ϑg, ϑ, ϑg ∈ IrrC(N),
ϵ(ϑ) = ϵ(ϑg) = −1

M
(
χ(1)
4
,
χ(1)
4

)
(H) Mχ(1)

2

(H)
Mϑ(1)

2

(H)

×Mϑg(1)
2

(H)

{χ, χ′} ∈ P2(IrrC(G)) :
χ′ = sgn(χ), ϵ(χ) = ϵ(χ′) = −1
χ↓N = χ′

↓N = ϑ ∈ IrrC(N)
ϵ(ϑ) = −1

Mχ(1)
2

(R) ⊗̂(H⊕Hv+)
Mχ(1)

2

(H)

×Mχ′(1)
2

(H)
Mϑ(1)

2

(H)

χ ∈ IrrC(G) :
ϵ(χ) = −1,

χ↓N = ϑ+ ϑg, ϑ, ϑg ∈ IrrC(N),
ϵ(ϑ) = ϵ(ϑg) = 0

Mχ(1)
2

(R) ⊗̂(C⊕ Cv−) Mχ(1)
2

(H) Mϑ(1)(C)

{χ, χ′} ∈ P2(IrrC(G)) :
χ′ = sgn(χ) = χ, ϵ(χ) = ϵ(χ′) = 0

χ↓N = χ′
↓N = ϑ ∈ IrrC(N)
ϵ(ϑ) = 1

Mχ(1)(R) ⊗̂(R⊕ Rv−) Mχ(1)(C) Mϑ(1)(R)
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4.4 Super irreducible C[G,N ]-supermodules

4.4 Super irreducible C[G,N ]-supermodules

We know that any super irreducible C[G,N ]-supermodule can be constructed by in-
ducing an irreducible ungraded CN -module. A super irreducible C[G,N ]-supermodule
V corresponds to an element of BW (C) = C2, which is determined by the super di-
vision algebra Ends

C[G,N ](V ). Let us go through the two possibilities for a super irre-

ducible C[G,N ]-supermodule. To do this, we will explore how super irreducible C[G,N ]-
supermodules can be constructed from irreducible CG-modules.

Let Vχ be an irreducible CG-module with character χ.

• If (Vχ)↓N is not an irreducible CN -module, then:

– (Vχ)↓N = Vϑ⊕Vϑg , where Vϑ and Vϑg are irreducible CN -modules with characters
ϑ and ϑg respectively, and Vϑ ̸≃ Vϑg .

▶ Vχ is itself a super irreducible C[G,N ]-supermodule with components Vϑ and
Vϑg .

– V ↑G
ϑ = V ↑G

ϑg = Vχ.

– The corresponding super simple two-sided superideal summand, C[G,N ]s(Vχ),
is isomorphic to M(ϑ(1),ϑ(1))(C). The 0-component is isomorphic to Mϑ(1)(C) ×
Mϑ(1)(C).

– Ends
C[G,N ](Vχ)

∼= C⊕ 0.

– χ would be a super irreducible C-super character of (G,N).

When (Vχ)↓N is not an irreducible CN -module, we will say that it has poset type ∧,
as its corresponding poset diagram resembles the “∧” symbol.

G χ

N ϑ ϑg

• If (Vχ)↓N is an irreducible CN -module, then:

– (Vχ)↓N = Vϑ, where Vϑ is an irreducible CN -modules with character ϑ.

– V ↑G
ϑ = Vχ ⊕ Vsgn(χ).

▶ Vχ ⊕ Vsgn(χ) is a super irreducible C[G,N ]-supermodule with components con-
structible in the following way:

∗ Since (Vχ)↓N = Vϑ ≃ (Vsgn(χ))↓N , there is a CN -module isomorphism φ :
Vχ → Vsgn(χ).

∗ The components of Vχ ⊕ Vsgn(χ) are: V0 = {a+ φ(a) : a ∈ Vχ} and V1 =
{a− φ(a) : a ∈ Vχ}. Both of these components are isomorphic to Vϑ as CN -
modules.

▷ As CG-modules, Vχ ̸∼= Vsgn(χ). As CN -modules, Vχ ∼= Vsgn(χ).

– The corresponding super simple two-sided superideal summand, C[G,N ]s(Vχ ⊕
Vsgn(χ)), is isomorphic to Mϑ(1)(C) ×Mϑ(1)(C). The 0-component is {(A,A) :
A ∈Mϑ(1)(C)}, which is isomorphic toMϑ(1)(C). The 1-component is {(A,−A) :
A ∈Mϑ(1)(C)}.
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4.5 Super irreducible R[G,N ]-supermodules

– Ends
C[G,N ](Vχ ⊕ Vsgn(χ)) ∼= C⊕ Cv.

– χ+ sgn(χ) would be a super irreducible C-super character of (G,N).

When (Vχ)↓N is an irreducible CN -module, we will say that it has poset type ∨, as
its corresponding poset diagram resembles the “∨” symbol.

G χ sgn(χ)

N ϑ

The table below summarises our analysis. The super division algebra specified in each
row is the super division algebra part of C[G,N ]s(V ) for each possibility of a C[G,N ]-
supermodule V = V0 ⊕ V1.

SDA / C Poset
type

CG-mod.
decomp.

SDA a
simple alg.?

V0 ∼= V1?
Irred.

CG-module?

C⊕ 0 ∧ Vχ Yes No Yes

C⊕ Cv ∨ Vχ + Vsgn(χ) No Yes No

4.5 Super irreducible R[G,N ]-supermodules

Any super irreducible R[G,N ]-supermodule can be constructed by inducing an irre-
ducible ungraded RN -module. The diagram below shows the different restrictions we
will be performing when finding super irreducible R[G,N ]-supermodules.

C[G,N ] R[G,N ]

CN RN

Let Vχ be an irreducible CG-module with character χ.

• If Vχ is not an irreducible CN -module, we know that (Vχ)↓N = Vϑ ⊕ Vϑg , where
Vϑ and Vϑg are irreducible CN -modules with characters ϑ and ϑg respectively, and
Vϑ ̸≃ Vϑg .

– If ϵ(χ) = 0, and ϵ(ϑ) = ϵ(ϑg) = 0, then:

∗ ϑg ̸= ϑ.

∗ (Vχ)↓R = Ṽχ where Ṽχ is an irreducible RG-module of type C.
∗ (Vχ)↓RN = ((Vχ)↓N)↓R = (Vϑ⊕Vϑg)↓R = (Vϑ)↓R⊕(Vϑg)↓R = Ṽϑ⊕ Ṽϑg where Ṽϑ
and Ṽϑg are irreducible RN -modules of type C. Note that (Ṽχ)↓N = Ṽϑ⊕Ṽϑg .

▶ Ṽχ is itself a super irreducible R[G,N ]-supermodule with components Ṽϑ and
Ṽϑg .

∗ Ṽ ↑G
ϑ = Ṽ ↑G

ϑg = Ṽχ.

∗ The corresponding super simple two-sided superideal summand, R[G,N ]s(Ṽχ),
is isomorphic toM(ϑ(1),ϑ(1))(C). The 0-component is isomorphic toMϑ(1)(C)×
Mϑ(1)(C).
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4.5 Super irreducible R[G,N ]-supermodules

∗ Ends
R[G,N ](Ṽχ)

∼= C⊕ 0.

∗ When induced up to C:
▷ Ṽ ↑CG

χ = Ṽχ ⊗R C ∼= Vχ ⊕ Vχ.

▷ Ṽ ↑CN
ϑ = Ṽϑ ⊗R C ∼= Vϑ ⊕ Vϑ and Ṽ ↑CN

ϑg = Ṽϑg ⊗R C ∼= Vϑg ⊕ Vϑg .

∗ χ+ χ would be a super irreducible R-super character of (G,N).

– If ϵ(χ) = 1, and ϵ(ϑ) = ϵ(ϑg) = 1, then:

∗ ϑg ̸= ϑ.

∗ (Vχ)↓R = Ṽχ ⊕ Ṽχ where Ṽχ is an irreducible RG-module of type R.
∗ (Vχ)↓RN = ((Vχ)↓N)↓R = (Vϑ⊕Vϑg)↓R = (Vϑ)↓R⊕(Vϑg)↓R = Ṽϑ⊕Ṽϑ⊕Ṽϑg⊕Ṽϑg
where Ṽϑ and Ṽϑg are irreducible RN -modules of type R.

∗ Given Vχ, we can construct Ṽχ by setting a C-basis {x1, . . . , xχ(1)} on Vχ such
that its R-span is an irreducible RG-module. Similarly, we can construct
Ṽϑ and Ṽϑg by setting a C-basis {y1, . . . , yϑ(1)} and {z1, . . . , zϑ(1)} on Vϑ
and Vϑg such that their R-spans are irreducible RN -modules. Note that
(Ṽχ)↓N = Ṽϑ ⊕ Ṽϑg .

▶ Ṽχ is itself a super irreducible R[G,N ]-supermodule with components Ṽϑ and
Ṽϑg .

∗ Ṽ ↑G
ϑ = Ṽ ↑G

ϑg = Ṽχ.

∗ The corresponding super simple two-sided superideal summand, R[G,N ]s(Ṽχ),
is isomorphic toM(ϑ(1),ϑ(1))(R). The 0-component is isomorphic toMϑ(1)(R)×
Mϑ(1)(R).

∗ Ends
R[G,N ](Ṽχ)

∼= R⊕ 0.

∗ When induced up to C:
▷ Ṽ ↑CG

χ = Ṽχ ⊗R C ∼= Vχ.

▷ Ṽ ↑CN
ϑ = Ṽϑ ⊗R C ∼= Vϑ and Ṽ ↑CN

ϑg = Ṽϑg ⊗R C ∼= Vϑg .

∗ χ would be a super irreducible R-super character of (G,N).

– If ϵ(χ) = 1, and ϵ(ϑ) = ϵ(ϑg) = 0, then:

∗ ϑg = ϑ.

∗ (Vχ)↓R = Ṽχ ⊕ Ṽχ where Ṽχ is an irreducible RG-module of type R.
∗ (Vχ)↓RN = ((Vχ)↓N)↓R = (Vϑ ⊕ Vϑg)↓R = (Vϑ)↓R ⊕ (Vϑg)↓R = Ṽϑ ⊕ Ṽϑg where
Ṽϑ and Ṽϑg are irreducible RN -modules of type C. Note that (Ṽχ⊕ Ṽχ)↓N =
Ṽϑ ⊕ Ṽϑg .

▶ Ṽχ ⊕ Ṽχ is itself a super irreducible R[G,N ]-supermodule with components
Ṽϑ and Ṽϑg .

▷ As RG-modules, Ṽχ ⊕ 0 ∼= 0⊕ Ṽχ.

∗ Ṽ ↑G
ϑ = Ṽ ↑G

ϑg = Ṽχ ⊕ Ṽχ.

∗ The corresponding super simple two-sided superideal summand, R[G,N ]s(Ṽχ⊕
Ṽχ), is isomorphic to Mϑ(1)(R) ⊗̂(C⊕Cv+), which, as an algebra, is isomor-
phic to Mχ(1)(R). The 0-component is isomorphic to Mϑ(1)(C).

∗ Ends
R[G,N ](Ṽχ ⊕ Ṽχ) ∼= C⊕ Cv−.

∗ When induced up to C:
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4.5 Super irreducible R[G,N ]-supermodules

▷ (Ṽχ ⊕ Ṽχ)
↑CG = (Ṽχ ⊕ Ṽχ)⊗R C ∼= Vχ ⊕ Vχ.

▷ Ṽ ↑CN
ϑ

∼= Ṽ ↑CN
ϑg = Ṽϑ ⊗R C ∼= Vϑ ⊕ Vϑ.

∗ 2χ would be a super irreducible R-super character of (G,N).

– If ϵ(χ) = −1, and ϵ(ϑ) = ϵ(ϑg) = −1, then:

∗ ϑg ̸= ϑ.

∗ (Vχ)↓R = Ṽχ where Ṽχ is an irreducible RG-module of type H.

∗ (Vχ)↓RN = ((Vχ)↓N)↓R = (Vϑ⊕Vϑg)↓R = (Vϑ)↓R⊕(Vϑg)↓R = Ṽϑ⊕ Ṽϑg where Ṽϑ
and Ṽϑg are irreducible RN -modules of type H. Note that (Ṽχ)↓N = Ṽϑ⊕Ṽϑg .

▶ Ṽχ is itself a super irreducible R[G,N ]-supermodule with components Ṽϑ and
Ṽϑg .

∗ Ṽ ↑G
ϑ = Ṽ ↑G

ϑg = Ṽχ.

∗ The corresponding super simple two-sided superideal summand, R[G,N ]s(Ṽχ),
is isomorphic toM(ϑ(1)

2
,
ϑ(1)
2 )(H). The 0-component is isomorphic toMϑ(1)

2

(H)×
Mϑ(1)

2

(H).

∗ Ends
R[G,N ](Ṽχ)

∼= H⊕ 0.

∗ When induced up to C:
▷ Ṽ ↑CG

χ = Ṽχ ⊗R C ∼= Vχ ⊕ Vχ.

▷ Ṽ ↑CN
ϑ = Ṽϑ ⊗R C ∼= Vϑ ⊕ Vϑ and Ṽ ↑CN

ϑg = Ṽϑg ⊗R C ∼= Vϑg ⊕ Vϑg .

∗ 2χ would be a super irreducible R-super character of (G,N).

– If ϵ(χ) = −1, and ϵ(ϑ) = ϵ(ϑg) = 0, then:

∗ ϑg = ϑ.

∗ (Vχ)↓R = Ṽχ where Ṽχ is an irreducible RG-module of type H.

∗ (Vχ)↓RN = ((Vχ)↓N)↓R = (Vϑ⊕Vϑg)↓R = (Vϑ)↓R⊕(Vϑg)↓R = Ṽϑ⊕ Ṽϑg where Ṽϑ
and Ṽϑg are irreducible RN -modules of type C. Note that (Ṽχ)↓N = Ṽϑ⊕Ṽϑg .

▶ Ṽχ is itself a super irreducible R[G,N ]-supermodule with components Ṽϑ and
Ṽϑg .

∗ Ṽ ↑G
ϑ = Ṽ ↑G

ϑg = Ṽχ.

∗ The corresponding super simple two-sided superideal summand, R[G,N ]s(Ṽχ),
is isomorphic to Mϑ(1)(R) ⊗̂(C ⊕ Cv−), which, as an algebra, is isomorphic
to Mϑ(1)(H). The 0-component is isomorphic to Mϑ(1)(C).

∗ When induced up to C:
▷ Ṽ ↑CG

χ = Ṽχ ⊗R C ∼= Vχ ⊕ Vχ.

▷ Ṽ ↑CN
ϑ

∼= Ṽ ↑CN
ϑg = Ṽϑ ⊗R C ∼= Vϑ ⊕ Vϑ.

∗ Ends
R[G,N ](Ṽχ)

∼= C⊕ Cv+.
∗ 2χ would be a super irreducible R-super character of (G,N).

• If Vχ is an irreducible CN -module, we know that (Vχ)↓N = Vϑ, where Vϑ is an

irreducible CN -module with character ϑ, V ↑G
ϑ = Vχ ⊕ Vsgn(χ), and the components

V0 and V1 of V ↑G
ϑ = Vχ ⊕ Vsgn(χ) are isomorphic to Vϑ, and are constructed in the

following way:
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4.5 Super irreducible R[G,N ]-supermodules

* Since (Vχ)↓N = Vϑ ≃ (Vsgn(χ))↓N , there is a CN -module isomorphism φ : Vχ →
Vsgn(χ).

* The components of Vχ ⊕ Vsgn(χ) are: V0 = {a+ φ(a) : a ∈ Vχ} and V1 = {a −
φ(a) : a ∈ Vχ}. Both of these components are isomorphic to Vϑ as CN -modules.

– If ϵ(χ) = ϵ(sgn(χ)) = 0 and ϵ(ϑ) = 0, then:

∗ sgn(χ) ̸= χ.

∗ (Vχ ⊕ Vsgn(χ))↓R = (Vχ)↓R ⊕ (Vsgn(χ))↓R = Ṽχ ⊕ Ṽsgn(χ), where Ṽχ and Ṽsgn(χ)
are irreducible RG-modules of type C.

∗ (Vχ ⊕ Vsgn(χ))↓RN = ((Vχ ⊕ Vsgn(χ))↓N)↓R ∼= (Vϑ ⊕ Vϑ)↓R = (Vϑ)↓R ⊕ (Vϑ)↓R =

Ṽϑ⊕Ṽϑ where Ṽϑ is an irreducible RN -module of type C. Note that (Ṽχ)↓N ∼=
(Ṽsgn(χ))↓N ∼= Ṽϑ.

▶ Ṽχ ⊕ Ṽsgn(χ) is itself a super irreducible R[G,N ]-supermodule with compo-

nents (V0)↓R and (V1)↓R. Here, (V0)↓R ∼= (V1)↓R ∼= Ṽϑ.

▷ As RG-modules, Ṽχ ̸∼= Ṽsgn(χ). As RN -modules, Ṽχ ∼= Ṽsgn(χ) ∼= Ṽϑ.

∗ The corresponding super simple two-sided superideal summand, R[G,N ]s(Ṽχ⊕
Ṽsgn(χ)), is isomorphic toMϑ(1)(C)×Mϑ(1)(C). The 0-component is {(A,A) :
A ∈ Mϑ(1)(C)}, which is isomorphic to Mϑ(1)(C). The 1-component is
{(A,−A) : A ∈Mϑ(1)(C)}.

∗ Ends
R[G,N ](Ṽχ ⊕ Ṽsgn(χ)) ∼= C⊕ Cv.

∗ When induced up to C:
▷ (Ṽχ ⊕ Ṽsgn(χ))

↑CG = (Ṽχ ⊕ Ṽsgn(χ))⊗R C ∼= Vχ ⊕ Vχ ⊕ Vsgn(χ) ⊕ Vsgn(χ).

▷ Ṽ ↑CN
0

∼= Ṽ ↑CN
1 = Ṽϑ ⊗R C ∼= Vϑ ⊕ Vϑ.

∗ χ + χ + sgn(χ) + sgn(χ) would be a super irreducible R-super character of
(G,N).

– If ϵ(χ) = ϵ(sgn(χ)) = 1 and ϵ(ϑ) = 1, then:

∗ sgn(χ) ̸= χ.

∗ (Vχ⊕Vsgn(χ))↓R = (Vχ)↓R ⊕ (Vsgn(χ))↓R = Ṽχ⊕ Ṽχ⊕ Ṽsgn(χ) ⊕ Ṽsgn(χ), where Ṽχ
and Ṽsgn(χ) are irreducible RG-modules of type R.

∗ (Vχ ⊕ Vsgn(χ))↓RN = ((Vχ ⊕ Vsgn(χ))↓N)↓R ∼= (Vϑ ⊕ Vϑ)↓R = (Vϑ)↓R ⊕ (Vϑ)↓R =

Ṽϑ ⊕ Ṽϑ ⊕ Ṽϑ ⊕ Ṽϑ where Ṽϑ is an irreducible RN -module of type R.
∗ Given Vχ and Vsgn(χ), we can construct Ṽχ and Ṽsgn(χ) by setting a C-basis
{x1, . . . , xχ(1)} and {y1, . . . , yχ(1)} for Vχ and Vsgn(χ) such that their R-spans
are irreducible RG-modules.

▶ Ṽχ ⊕ Ṽsgn(χ) is itself a super irreducible R[G,N ]-supermodule with compo-

nents Ṽ0 and Ṽ1, where Ṽ0 and Ṽ1 are the R-spans of {x1+φ(x1), . . . , xχ(1)+
φ(xχ(1))} and {x1 − φ(x1), . . . , xχ(1) − φ(xχ(1))}. Here, Ṽ0 ∼= Ṽ1 ∼= Ṽϑ.

▷ As RG-modules, Ṽχ ̸∼= Ṽsgn(χ). As RN -modules, Ṽχ ∼= Ṽsgn(χ) ∼= Ṽϑ.

∗ The corresponding super simple two-sided superideal summand, R[G,N ]s(Ṽχ⊕
Ṽsgn(χ)), is isomorphic toMϑ(1)(R)×Mϑ(1)(R). The 0-component is {(A,A) :
A ∈ Mϑ(1)(R)}, which is isomorphic to Mϑ(1)(R). The 1-component is
{(A,−A) : A ∈Mϑ(1)(R)}.
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4.5 Super irreducible R[G,N ]-supermodules

∗ Ends
R[G,N ](Ṽχ ⊕ Ṽsgn(χ)) ∼= R⊕ Rv−.

∗ When induced up to C:
▷ (Ṽχ ⊕ Ṽsgn(χ))

↑CG = (Ṽχ ⊕ Ṽsgn(χ))⊗R C ∼= Vχ ⊕ Vsgn(χ).

▷ Ṽ ↑CN
0

∼= Ṽ ↑CN
1 = Ṽϑ ⊗R C ∼= Vϑ.

∗ χ+ sgn(χ) would be a super irreducible R-super character of (G,N).

– If ϵ(χ) = ϵ(sgn(χ)) = 0 and ϵ(ϑ) = −1, then:

∗ sgn(χ) = χ.

∗ (Vχ ⊕ Vsgn(χ))↓R = (Vχ)↓R ⊕ (Vsgn(χ))↓R = Ṽχ ⊕ Ṽsgn(χ), where Ṽχ and Ṽsgn(χ)
are irreducible RG-modules of type C.

∗ (Vχ ⊕ Vsgn(χ))↓RN = ((Vχ ⊕ Vsgn(χ))↓N)↓R ∼= (Vϑ ⊕ Vϑ)↓R = (Vϑ)↓R ⊕ (Vϑ)↓R =

Ṽϑ⊕Ṽϑ where Ṽϑ is an irreducible RN -module of type H. Note that (Ṽχ)↓N ∼=
(Ṽsgn(χ))↓N ∼= Ṽϑ.

▶ Ṽχ ⊕ Ṽsgn(χ) is itself a super irreducible R[G,N ]-supermodule with compo-

nents (V0)↓R and (V1)↓R. Here, (V0)↓R ∼= (V1)↓R ∼= Ṽϑ.

▷ As RG-modules, Ṽχ ∼= Ṽsgn(χ).

∗ The corresponding super simple two-sided superideal summand, R[G,N ]s(Ṽχ⊕
Ṽsgn(χ)), is isomorphic to Mϑ(1)

2

(R) ⊗̂(H⊕Hv−) which, as an algebra, is iso-

morphic to Mϑ(1)(C). Its 0-component is isomorphic to Mϑ(1)
2

(H).

∗ Ends
R[G,N ](Ṽχ ⊕ Ṽsgn(χ)) ∼= H⊕Hv+.

∗ When induced up to C:
▷ (Ṽχ ⊕ Ṽsgn(χ))

↑CG = (Ṽχ ⊕ Ṽsgn(χ)) ⊗R C ∼= Vχ ⊕ Vχ ⊕ Vsgn(χ) ⊕ Vsgn(χ)
∼=

Vχ ⊕ Vχ ⊕ Vχ ⊕ Vχ.

▷ Ṽ ↑CN
0

∼= Ṽ ↑CN
1 = Ṽϑ ⊗R C ∼= Vϑ ⊕ Vϑ.

∗ 2(χ+ χ) = 2(χ+ sgn(χ)) would be a super irreducible R-super character of
(G,N).

– If ϵ(χ) = ϵ(sgn(χ)) = −1 and ϵ(ϑ) = −1, then:

∗ sgn(χ) ̸= χ.

∗ (Vχ ⊕ Vsgn(χ))↓R = (Vχ)↓R ⊕ (Vsgn(χ))↓R = Ṽχ ⊕ Ṽsgn(χ), where Ṽχ and Ṽsgn(χ)
are irreducible RG-modules of type H.

∗ (Vχ ⊕ Vsgn(χ))↓RN = ((Vχ ⊕ Vsgn(χ))↓N)↓R ∼= (Vϑ ⊕ Vϑ)↓R = (Vϑ)↓R ⊕ (Vϑ)↓R =

Ṽϑ⊕Ṽϑ where Ṽϑ is an irreducible RN -module of type H. Note that (Ṽχ)↓N ∼=
(Ṽsgn(χ))↓N ∼= Ṽϑ.

▶ Ṽχ ⊕ Ṽsgn(χ) is itself a super irreducible R[G,N ]-supermodule with compo-

nents (V0)↓R and (V1)↓R. Here, (V0)↓R ∼= (V1)↓R ∼= Ṽϑ.

▷ As RG-modules, Ṽχ ̸∼= Ṽsgn(χ). As RN -modules, Ṽχ ∼= Ṽsgn(χ) ∼= Ṽϑ.

∗ The corresponding super simple two-sided superideal summand, R[G,N ]s(Ṽχ⊕
Ṽsgn(χ)), is isomorphic toMϑ(1)

2

(H)×Mϑ(1)
2

(H). The 0-component is {(A,A) :
A ∈ Mϑ(1)

2

(H)}, which is isomorphic to Mϑ(1)
2

(H). The 1-component is

{(A,−A) : A ∈Mϑ(1)(H)}.
∗ Ends

R[G,N ](Ṽχ ⊕ Ṽsgn(χ)) ∼= H⊕Hv−.
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4.5 Super irreducible R[G,N ]-supermodules

∗ When induced up to C:
▷ (Ṽχ ⊕ Ṽsgn(χ))

↑CG = (Ṽχ ⊕ Ṽsgn(χ))⊗R C ∼= Vχ ⊕ Vχ ⊕ Vsgn(χ) ⊕ Vsgn(χ).

▷ Ṽ ↑CN
0

∼= Ṽ ↑CN
1 = Ṽϑ ⊗R C ∼= Vϑ ⊕ Vϑ.

∗ 2χ+ 2sgn(χ) would be a super irreducible R-super character of (G,N).

– If ϵ(χ) = ϵ(sgn(χ)) = 0 and ϵ(ϑ) = 1, then:

∗ sgn(χ) = χ.

∗ (Vχ)↓R = Ṽχ, where Ṽχ is an irreducible RG-modules of type C.
∗ (Vχ)↓RN = ((Vχ)↓N)↓R ∼= (Vϑ)↓R = Ṽϑ ⊕ Ṽϑ where Ṽϑ is an irreducible RN -
module of type R. Note that (Ṽχ)↓N ∼= Ṽϑ ⊕ Ṽϑ.

▶ Ṽχ is itself a super irreducible R[G,N ]-supermodule. To construct its compo-
nents Ṽ0 and Ṽ1, we first note that (Vχ)↓N = Vϑ is an irreducible CN -module
such that ϵ(ϑ) = 1. Hence (Vϑ)↓R = Ṽϑ⊕ Ṽϑ. We can construct Ṽ0 by taking
a C-basis {x1, . . . , xχ(1)} of Vϑ whose R-span is an irreducible RN -module.

Ṽ1 will be the R-span of {ix1, . . . , ixχ(1)}. We note that Ṽ0 ∼= Ṽ1 ∼= Ṽϑ.

∗ The corresponding super simple two-sided superideal summand, R[G,N ]s(Ṽχ),
is isomorphic to Mϑ(1)(R) ⊗̂(R ⊕ Rv−), which, as an algebra, is isomorphic
to Mϑ(1)(C). The 0-component is isomorphic to Mϑ(1)(R).

∗ When induced up to C:
▷ Ṽ ↑CG

χ = Ṽχ ⊗R C ∼= Vχ ⊕ Vχ.

▷ Ṽ ↑CN
0

∼= Ṽ ↑CN
1 = Ṽϑ ⊗R C ∼= Vϑ.

∗ Ends
R[G,N ](Ṽχ)

∼= R⊕ Rv+.
∗ χ+ χ would be a super irreducible R-super character of (G,N).

The table below summarises our analysis. The super division algebra specified in each
row is the super division algebra part of R[G,N ]s(V ) for each possibility of an R[G,N ]-
supermodule V = V0 ⊕ V1.

SDA / R Poset
type

RG-mod.
decomp.

RG-mod.
type

SDA a
simple alg.?

V0 ∼= V1?
RN -mod.

type
Irred.

RG-module?

C⊕ 0 ∧ Ṽχ C Yes No C Yes

C⊕ Cv ∨ Ṽχ ⊕ Ṽsgn(χ) C No Yes C No

R⊕ 0 ∧ Ṽχ R Yes No R Yes

R⊕ Rv+ ∨ Ṽχ ⊕ Ṽsgn(χ) R No Yes R No

C⊕ Cv+ ∧ Ṽχ ⊕ Ṽχ R Yes Yes C No

H⊕Hv− ∨ Ṽχ ⊕ Ṽsgn(χ) C Yes Yes H No

H⊕ 0 ∧ Ṽχ H Yes No H Yes

H⊕Hv+ ∨ Ṽχ ⊕ Ṽsgn(χ) H No Yes H No

C⊕ Cv− ∧ Ṽχ H Yes Yes C Yes

R⊕ Rv− ∨ Ṽχ C Yes Yes R Yes
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4.6 Interpretation of the Gow indicator

We end this section with an interpretation of the Gow indicator. Since the Gow
indicator η(ϑ) of an irreducible C-character ϑ of N is equal to either 1, 0 and −1, it is
tempting to think that the Gow indicator is acting like the Frobenius-Schur indicator
on some kind of module. This is in fact true, and we will outline this in the upcoming
subsection.

4.6 Interpretation of the Gow indicator

Ideas in this subsection are inspired from [9]. Again, let G be a group and let N ◁G be
a normal subgroup of index 2. Then we can construct the group superalgebra R[G,N ].
From this, we construct a different superalgebra A = (R ⊕ Rv−) ⊗̂R[G,N ]. This has
homogeneous components A0 = (R ⊗ RN) + (Rv− ⊗ R[G\N ]) ∼= RG and A1 = (R ⊗
R[G\N ]) + (Rv− ⊗ RN).

Now let V be an irreducible A-module. Our task is to relate EndA(V ) with the Gow
indicator. To this end, we note that V is itself an RN -module. Let W ⊂ V be an
irreducible RN -submodule of V . Let ϑ̃ be the character of the CN -module C⊗RW . This
is a character of N , and is either irreducible, or a sum of two irreducible characters of N .
Let ϑ be an irreducible constituent of ϑ̃. We can now state the following theorem:

Theorem 4.2 (Gow indicator Theorem)

η(ϑ) :=
1

|N |
∑

g∈G\N

ϑ(g2) =


1 if EndA(V ) = R,
0 if EndA(V ) = C,
−1 if EndA(V ) = H.

A proof of this theorem can be sketched by comparing the Super Frobenius-Schur
indicator table with the R[G,N ] decomposition table on page 53.

S(ϑ) q(ϑ) ϵ(χ) ϵ(ϑ) η(ϑ)

0 0 0 0 0

0 1 0 0 0

1 0 1 1 0

ω 1 1 1 1

ω2 = i 0 1 0 1

ω3 1 0 -1 1

ω4 = −1 0 -1 -1 0

ω5 1 -1 -1 -1

ω6 = −i 0 -1 0 -1

ω7 1 0 1 -1

Super Frobenius-Schur indicator table

We note that in the above table, the values in the ϵ(χ) and η(ϑ) columns follow the
same cyclic sequence in the rows with non-zero S(ϑ) value. In the last 8 rows, the sequence
in the ϵ(χ) column is the same as the sequence in the η(ϑ) column, but shifted up by
one space. So given any ϑ ∈ IrrC(N) and its corresponding super simple subsuperalgebra
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4.6 Interpretation of the Gow indicator

B = B0⊕B1, the superalgebra (R⊕Rv−) ⊗̂B will be, as an algebra, isomorphic to either
Mn(R), Mn(C), Mn(H), Mn(R)×Mn(R), Mn(C)×Mn(C) or Mn(H)×Mn(H) for some
n ≥ 1, and we can see that:

• η(ϑ) = 1 if (R ⊕ Rv−) ⊗̂B is isomorphic to Mn(R) or Mn(R) × Mn(R) for some
n ≥ 1.

• η(ϑ) = 0 if (R ⊕ Rv−) ⊗̂B is isomorphic to Mn(C) or Mn(C) × Mn(C) for some
n ≥ 1.

• η(ϑ) = −1 if (R ⊕ Rv−) ⊗̂B is isomorphic to Mn(H) or Mn(H) ×Mn(H) for some
n ≥ 1.

From this observation, we get the Gow indicator theorem. This result was interpreted in
a similar way in [9, Theorem 4.2].
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5 Clifford Algebras

In this section, we will give one final family of examples of superalgebras, namely
Clifford Algebras (named after William K. Clifford). We will construct Clifford Algebras
over R and C, and see how we can relate them to an element of BW (R) and BW (C).
The theory in section is based on material from [2, Chapter 9, Section 2].

5.1 Introduction to Clifford Algebras

Let V be a finite dimensional F -vector space. Let us introduce some notation.
The n-fold tensor product of V with itself,

V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n times

,

will be written as
n⊗
V . By convention,

0⊗
V := F .

Definition 5.1 The tensor algebra of V is the vector space

T (V ) :=
∞∑
n=0

(
n⊗
V

)
= F ⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · .

So each element of T (V ) is a sequence of tensor products, only finitely many of which
are non-zero. Clearly T (V ) is infinite dimensional over F . The multiplication in T (V ) is
induced by (

n⊗
V

)
×

(
m⊗
V

)
→

n+m⊗
V,

where (v1 ⊗ v2 ⊗ · · · ⊗ vn, w1 ⊗w2 ⊗ · · · ⊗wm) 7→ v1 ⊗ v2 ⊗ · · · ⊗ vn⊗w1 ⊗w2 ⊗ · · · ⊗wm.

This makes T (V ) into a ring, and indeed an F -algebra.

For example, if V is a 1-dimensional F -vector space, we may write V = Fx for any
non-zero x. Then T (V ) ∼= F [x], which is the algebra of F -polynomials in the variable x.
Under this isomorphism, x⊗ x is mapped to x2, etc. So T (V ) is a polynomial algebra.

Now, given a finite dimensional F -vector space, let q : V → F be a quadratic form (q
is not necessarily non-singular). Let I(q) be the two-sided ideal in T (V ) generated by{

v ⊗ v − q(v) · 1T (V ) : v ∈ V
}
.

Note that 1T (V ) = 1F .

Definition 5.2 Given a finite dimensional F -vector space V and quadratic form q on V ,
the Clifford Algebra C(V, q) is defined as

C(V, q) = T (V )/I(q).

We note that the composition V → T (V ) → C(V, q) gives us a natural injection from
V to C(V, q), since V ∩ I(q) = 0V .
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5.1 Introduction to Clifford Algebras

Example. Let V = Fx (where x is non-zero), and let q = ⟨α⟩ be a 1-dimensional form on
V (where α ∈ F×). Suppose q(x) = α. Then we have T (V ) = F [x] and I(q) = (x2 − α),
which is the ideal generated by x2 − α. That means C(V, q) ∼= F [x]/(x2 − α). If α is not
a square in F , then C(V, q) ∼= F (

√
α), which is a quadratic extension field.

Now that we have defined C(V, q), we give it a superalgebra structure as follows:

Write C(V, q) = A0 ⊕ A1, where A0 is the image of
∑

n even

( n
⊗V
)

in the natural map

T (V ) → C(V, q), and A1 is the image of
∑
n odd

( n
⊗V
)
.

Essentially, C(V, q) inherits the natural grading of T (V ). We note that I(q) is in the
even part of T (V ). We shall denote the even part of C(V, q) as C0(V, q) and the odd part
as C1(V, q).

Let us outline some properties of Clifford Algebras.
Let V be an F -vector space, and let q be a quadratic form on V . If {x1, . . . , xn}

is an orthogonal basis for V (with respect to the associated bilinear form ⟨a, b⟩ =
q(a + b) − q(a) − q(b)), then, in C(V, q), xixj = −xjxi whenever i ̸= j. In other words,
distinct xi’s anti-commute in the Clifford Algebra.

This can be quickly verified: xi, xj being orthogonal with respect to q means q(xi +
xj) − q(xi) − q(xj) = 0. Hence, in C(V, q), (xi + xj)

2 − x2i − x2j = x2i + xixj + xjxi + x2j
−x2i − x2j = xixj + xjxi = 0 =⇒ xixj = −xjxi.

Proposition 5.3 Let (V, q) be a quadratic vector space, and let {x1, . . . , xn} be an or-
thogonal basis for V with respect to q. Set αi = q(xi), i = 1, . . . , n.

Then {1, x1, x2, . . . , xn, x1x2, x1x3, . . . , xn−1xn, x1x2x3, . . . , x1x2 · · ·xn} is a basis for
C(V, q). In particular, dimF (C(V, q)) = 2n, independent of the choice of basis for V .

We remark that not all αi’s are necessarily non-zero.

Proposition 5.4 Let (V, q) be a quadratic F -vector space. If V is even dimensional,
then C(V, q) is a central simple algebra over F . If V is of odd dimension, then C0(V, q)
is central simple over F .

Before we look at the super tensor product of two Clifford Algebras, let us outline a
universal property of C(V, q).

Proposition 5.5 Let F be a field, (V, q) a quadratic F -vector space, and A an F -algebra.
Suppose we have a linear mapping f : V → A which is compatible with q in the sense that
f(v)2 = q(v) · 1A. Then there exists a unique F -algebra homomorphism g : C(V, q) → A
such that f = g ◦ i, where i : V → C(V, q) is the natural injective map we outlined earlier.
We have the following picture:

V A

C(V, q)

i

f

g

Proof. We have our natural map V
i′−→ T (V )

p−→ C(V, q). That means i = p ◦ i′. Let us
define the linear map h : T (V ) → A. Given a sequence (λ0, (v1,1), (v2,1⊗v2,2), (v3,1⊗v3,2⊗
v3,3), . . . ) in T (V ), h would map this to λ0+f(v1,1)+f(v2,1)f(v2,2)+f(v3,1)f(v3,2)f(v3,3)+
· · · . We now have the following picture:
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5.1 Introduction to Clifford Algebras

A

V T (V ) C(V, q)

f

i′ p

h
g

By the universal property of tensor product, f factors via h : T (V ) → A. Let us
show that h vanishes on I(q) (this would yield a well-defined map g : C(V, q) → A). We
have h(v⊗v−q(v)·1A) = h(v⊗v)−h(q(v)·1A) = f(v)2−q(v)·1A = 0 by compatibility. ■

Let us now recall that, given a quadratic form q on V , there is a symmetric bilinear
form ϕ : V × V → F associated with q. ϕ would be defined by ϕ(v, w) = 1

2
(q(v + w) −

q(v) − q(w)). This works when charF ̸= 2. When our underlying field F does not have
characteristic 2, we have a one-to-one correspondence between the set of quadratic forms
on V and the set of symmetric bilinear forms on V . The reverse correspondence is given
by q(v) = ϕ(v, v).

⋆ From now on, we will assume the characteristic of F is not 2.
Let V1, V2 be F -vector spaces with respective quadratic forms q1 and q2. Denote the
symmetric bilinear forms associated with q1 and q2 as ϕ1 and ϕ2 respectively. Let V1⊕V2
be the direct sum of the vector spaces. We define a symmetric form on V1⊕V2 as follows:

(V1 ⊕ V2)× (V1 ⊕ V2) → F

(v1 ⊕ v2, v
′
1 ⊕ v′2) 7→ ϕ1(v1, v

′
1) + ϕ2(v2, v

′
2).

It is straightforward to check that this is a symmetric bilinear form. It is called the
orthogonal sum of ϕ1 and ϕ2. It is denoted as ϕ1 ⊥ ϕ2. We note that, for any v1 ∈ V1,
v2 ∈ V2, (ϕ1 ⊥ ϕ2)(v1, v2) = ϕ1(v1, 0) + ϕ1(0, v2) = 0 + 0 = 0. So, under this symmetric
bilinear form, every vector in V1 is orthogonal to every vector in V2. We may denote the
quadratic form associated with ϕ1 ⊥ ϕ2 as q1 ⊥ q2.

We can now explore the super tensor product of two Clifford Algebras.

Proposition 5.6 Let (V1, q1), (V2, q2) be quadratic F -vector spaces. Then C(V1⊕V2, q1 ⊥
q2) ∼= C(V1, q1) ⊗̂C(V2, q2) as superalgebras.

Recall that, given two superalgebras A,B, f : A → B is a superalgebra homomor-
phism if f is an algebra homomorphism that satisfies f(Ai) ⊂ Bi for i = 0, 1.

Proof. Let us construct the linear map f0 : V1 ⊕ V2 → C(V1, q1) ⊗̂C(V2, q2), v1 ⊕ v2 7→
(v1 ⊗ 1) + (1 ⊗ v2). This is compatible with q1 ⊥ q2 since, using multiplication in
C(V1, q1) ⊗̂C(V2, q2),

f0(v1 ⊕ v2)
2 = (v1 ⊗ 1 + 1⊗ v2)(v1 ⊗ 1 + 1⊗ v2) = v21 ⊗ 1 + 1⊗ v22

+v1 ⊗ v2 − v1 ⊗ v2 = v21 ⊗ 1 + 1⊗ v22 = q1(v1)⊗ 1 + 1⊗ q2(v2) =

q1(v1) · 1 + q2(v2) · 1 = (q1(v1) + q2(v2)) · 1 = (q1 ⊥ q2)(v1 ⊕ v2) · 1.
Hence, by the universal property of C(V1 ⊕ V2, q1 ⊥ q2), f0 factors through f : C(V1 ⊕
V2, q1 ⊥ q2) → C(V1, q1) ⊗̂C(V2, q2). We have the following picture:

C(V1, q1) ⊗̂C(V2, q2)

V1 ⊕ V2 T (V1 ⊕ V2) C(V1 ⊕ V2, q1 ⊥ q2)

f0 f
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5.2 Clifford Algebras over C

Note that f is surjective as the image of f0 generates all of C(V1, q1) ⊗̂C(V2, q2).

To show that f is a superalgebra isomorphism, we can construct the inverse of f .
To this end, we note that the map

V1 → V1 ⊕ V2
natural injection−−−−−−−−−→ C(V1 ⊕ V2, q1 ⊥ q2)

is compatible with q1. Hence, by universality, there exists a map α1 : C(V1, q1) →
C(V1 ⊕ V2, q1 ⊥ q2). Similarly, the natural map

V2 → V1 ⊕ V2
natural injection−−−−−−−−−→ C(V1 ⊕ V2, q1 ⊥ q2)

gives us α2 : C(V2, q2) → C(V1 ⊕ V2, q1 ⊥ q2). Each αi is a superalgebra homomorphism,
and the images of α1 and α2 ”anti-commute” in the sense described earlier. This is a
consequence of the earlier remark that elements of an orthogonal basis anti-commute in
the Clifford Algebra. Hence, we can create a well-defined superalgebra homomorphism:

α1 ⊗̂α2 : C(V1, q1) ⊗̂C(V2, q2) → C(V1 ⊕ V2, q1 ⊥ q2).

We can check that (α1 ⊗̂α2) ◦ f is the identity map (on C(V1 ⊕ V2, q1 ⊥ q2)) by
verifying that it is the identity on elements of an orthogonal basis for (V1 ⊕ V2, q1 ⊥ q2).
We conclude that f is a superalgebra isomorphism. ■

5.2 Clifford Algebras over C
Let us now give an example of a C-Clifford Algebra C(V, q) for every class in BW (C),

the Brauer-Wall group of C. We need to specify both the real vector space and the
non-singular quadratic form.

(i) x0 = [C⊕ 0] = 1BW (C):
V = R2, q is represented as

(
1 0
0 1

)
. The basis of C(V, q) is {1, x, y, xy}. So C0(V, q) =

span(1, xy) and C1(V, q) = span(x, y). We can see that, in this case C(V, q) ∼=
M(1,1)(C).

(ii) x1 = [C⊕ Cv]:
V = Rx, q is represented as

(
1
)
. The basis of C(V, q) is {1, x}. So C0(V, q) = R · 1

and C1(V, q) = Rx. We can see that, in this case C(V, q) ∼= C⊕ Cv.

5.3 Clifford Algebras over R
Let us now give an example of an R-Clifford Algebra C(V, q) for every class in BW (R),

the Brauer-Wall group of R. We need to specify both the real vector space and the non-
singular quadratic form.

(i) x0 = [R⊕ 0] = 1BW (R):
V = R2, q is represented as

(
1 0
0 −1

)
. The basis of C(V, q) is {1, x, y, xy}. So C0(V, q) =

span(1, xy) and C1(V, q) = span(x, y). We can see that, in this case C(V, q) ∼=
M(1,1)(R).

(ii) x1 = [R⊕ Rv+]:
V = Rx, q is represented as

(
1
)
. The basis of C(V, q) is {1, x}. So C0(V, q) = R · 1

and C1(V, q) = Rx. We can see that, in this case C(V, q) ∼= R⊕ Rv+.
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(iii) x2 = [C⊕ Cv+]:
V = R2, q is represented as

(
1 0
0 1

)
. The basis of C(V, q) is {1, x, y, xy}. So C0(V, q) =

span(1, xy) and C1(V, q) = span(x, y). We can see that, in this case C(V, q) ∼=
C⊕ Cv+.

(iv) x3 = [H⊕Hv−]:
V = R3, q is represented as

(
1 0 0
0 1 0
0 0 1

)
. The basis of C(V, q) is {1, x, y, z, xy, xz, yz, xyz}.

So C0(V, q) = span(1, xy, xz, yz) and C1(V, q) = span(x, y, z, xyz). In this case,
C(V, q) ∼= H⊕Hv−.

(v) x4 = [H⊕ 0]:

V = R3, q is represented as

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
. The basis of C(V, q) is {1, w, x, y, z, wx, wy, wz,

xy, xz, yz, wxy, wxz, wyz, xyz, wxyz}. So C0(V, q) = span(1, wx, wy, wz, xy, xz, yz,
wxyz) and C1(V, q) = span(w, x, y, z, wxy, wxz, wyz, xyz). In this case, C(V, q) ∼=
M1,1(H).

(vi) x5 = [H⊕Hv+]:
V = R3, q is represented as

( −1 0 0
0 −1 0
0 0 −1

)
. The basis of C(V, q) is {1, x, y, z, xy, xz, yz,

xyz}. So C0(V, q) = span(1, xy, xz, yz) and C1(V, q) = span(x, y, z, xyz). In this
case, C(V, q) ∼= H⊕Hv+.

(vii) x6 = [C⊕ Cv−]:
V = R2, q is represented as

( −1 0
0 −1

)
. The basis of C(V, q) is {1, x, y, xy}. So

C0(V, q) = span(1, xy) and C1(V, q) = span(x, y). In this case, C(V, q) ∼= C⊕ Cv−.

(viii) x7 = [R⊕ Rv−]:
V = Rx, q is represented as

(
−1
)
. The basis of C(V, q) is {1, x}. So C0(V, q) = R · 1

and C1(V, q) = Rx. In this case, C(V, q) ∼= R⊕ Rv−.

We note that when char(F ) ̸= 2, a Clifford Algebra C(V, q) over F is ordinary central
simple if V is of even dimension, and C(V, q) is not ordinary central simple if V is of odd
dimension.
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6 Conclusion and Future work

Throughout the thesis, we have seen that many results regarding algebras and modules
have their equivalents in Superalgebra Theory. One important result we have proven is
the Super Wedderburn’s Theorem, which states that any super semisimple superalgebra
is a direct sum of super simple superalgebras of the form M(r,s) ⊗̂D where D is a super
division algebra.

Given a field F , we have also defined a group of equivalence classes of super central
simple F -superalgebras called the Brauer-Wall group of F (denoted as BW (F )), which
is the superalgebra equivalent of the Brauer group. One important result is that, if
char(F ) ̸= 2, then we have BW (F )/P (F ) ∼= C2, and P (F )/Br(F ) ∼= F×/F×2.

We have also introduced the Super Frobenius-Schur indicator of a super irreducible
C-super character of (G,N). It associates a C[G,N ]-supermodule with a super division
algebra over R. We also studied in detail the supermodules of the superalgebras C[G,N ]
and R[G,N ], and how we can construct them from ordinary modules.

There are a couple of topics in the theory of superalgebras that can be explored in fu-
ture work. For example, one could examine the theory of super semisimple superalgebras
over a field of characteristic 2. Further reading on this topic can be found in [5].

One may also study super representations and super characters of specific pairs (G,N),
where N ◁ G and |G : N | = 2. A potentially interesting set of examples would be the
pairs (Sn, An), (2 · S+

n , 2 · An), and (2 · S−
n , 2 · An).

One could also explore the theory of graded algebras when the grading is over a
different group. Given a group G, one can explore if there are complications to the
theory of G-graded algebras if the characteristic of F divides the order of G.

To generalise the idea of a group superalgebra, let G be a group and let N ◁ G be
normal subgroup of index p. Let g ∈ G\N . Then we could give CG a Cp-grading by
letting the 0-component be CN , and the i-component be C[Ngi]. One can introduce
a generalised version of the Frobenius-Schur indicator that applies to characters of CG.
The Cp-graded Frobenius-Schur indicator would relate characters of CG with Cp-graded
division algebras.

Another further topic one could explore is the Category Theory of superalgebras,
supermodules and super homomorphisms. Studying this topic can explain why much of
the structure theory of algebras and modules can be carried over to superalgebras and
supermodules.
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