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Abstract

Upon challenge, lymphocytes multiply and diversify to combat the infection,
however, the mechanisms that drive this process are not well understood. A
theoretical model has been proposed to explain how a diverse selection of
cell fates is achieved, the Cyton model [Hawkins et al, 2007, PNAS]. In that
model the censorship caused by competing drives for lymphocytes to un-
dergo certain fates results in complex correlations and impacts the observed
distribution of times to cellular events. In [Duffy et al, 2012, Science] the
competition hypothesis is tested for consistency with data collected using
a novel experimental procedure. Through the implementation and develop-
ment of a collection of multivariate nonparametric statistical techniques, we
create a set of tools that can aid the study of competition hypotheses in
biological systems. As a worked example these tools are used to study data
collected for the experiments in [Duffy et al, 2012, Science] to challenge some
of the underlying assumptions of their parametric analysis. As an additional
illustration further unpublished data collected during the experiments is used
to study the time at which B cells divide, die and differentiate when they
have already undergone class switching, allowing us to address the question
of a cell type dependent change.
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Chapter 1

1 Introduction

In this chapter, we introduce important biological and statistical concepts and
provide motivation for this thesis.
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1.1 Motivation

The immune response is one of the most important processes within our body.
Through a collection of tissues, cells and molecules the immune system is able
to defend us from a wide variety of threats. Broadly speaking it can be split
into two subsystems: the innate and adaptive [21].

Cells of the innate immune system recognise a broad collection of pathogen
associated molecules [21]. This allows its many cells, including Natural Killer
cells and Macrophages, to rapidly respond to invading pathogen. The in-
nate immune system also provides a key role in alerting and supporting the
adaptive immune response via communication through molecules known as
cytokines.

In contrast, the adaptive immune response is a highly specialised system,
in which just a small number of individual B and T cells are capable of
recognizing a specific threat. As an example, it has been estimated in a
mouse that between 20 and 200 of its 40 million T helper cells can recognise a
specific threat [36]. Specialisation comes from receptors found on cell surfaces
and the antibodies that certain cells secrete.

Another key part of the adaptive immune system is its ability to form
immunological memory, allowing a much faster response to a pathogen the
host has already encountered. This process of immunological memory is the
basis of immunisation. A typical pattern of the adaptive immune response
is shown in Table 1.

Next we will describe B and T cells in more detail, as well as what happens
during an adaptive immune response. B cells develop in the bone marrow; it
is during this time that the process responsible for their near unique speci-
ficity takes place. V(D)J recombination is unique to B and T cells: different
gene segments (known as variable (V), diversity (D) and joining (J)) are
rearranged and selected in order to generate a highly diverse set of B cell
receptors (BCRs) and T cell receptors (TCRs) [21]. Each cell will have a
huge number of copies of just one BCR/TCR type on its surface. To prevent
the binding of B cells to harmless antigens naturally found in the body, B
cells are screened for auto-reactive BCRs in the bone marrow through a pro-
cess known as central tolerance [21]. Central tolerance involves the binding
of immature B cells to potential self-antigens in the bone marrow. If the
binding is successful the B cell will not leave the bone marrow and will die
by apoptosis. After cells leave the bone marrow, further checking for autore-
activity is done through the process of peripheral tolerance [21]. B cells then
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B Cell Subsets
Name Description
Plasma cell Long lived cells that secrete antibodies.
Memory Long lived cells that will stay in the body after

the infection has been cleared. Should the body be
infected by the same antigen, these cells will rapidly
proliferate to respond to the antigen.

T Cell Subsets
Name Description
Cytoxic (killer) Also known as CD8+ T cells as they express CD8

protein on their surface. They destroy cells that
have been infected with viruses or other pathogens.

Helper Also known as CD4+ T cells, as they also express
CD4 protein on their surface. By providing expan-
sion or suppression signals, they assist other cells
during the immune response.

Memory Long lasting cells that will stay in the body after
the infection has been cleared. Should the body be
infected by the same antigen, these cells will rapidly
proliferate to respond to the antigen. Memory T
cells can either be CD4+ or CD8+.

Figure 1: Brief description of the properties of some important B and T
cell subsets [21]. Many of the subsets listed here can be further split into
subsets, and have many extra functions.

migrate to different parts of the body awaiting their cognate antigen.
T cells mature in the thymus, where they develop from immature Thy-

mocytes [21]. Like BCRs, the TCRs of a T cell undergo a screening pro-
cess, including positive selection to determine whether they will bind to ‘self’
molecules, and negative selection to determine their ability to bind correctly
to peptide coupled with major histocompatibility complex (MHC) expressed
on the surface of cells. During this time they will become either CD4+CD8-
or CD4-CD8+. Both CD4 and CD8 are important co-receptors that play a
role in the immune response, and which of the two a given T cell expresses
will determine much of its behaviour. Table 1 gives more information on the
behaviour of different T cell subsets.
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Figure 2: Typical pattern of an humoral immune response (schematic - not
data) [21]. Once a pathogen enters the body and encounters a matching B
cell, proliferation and differentiation occur leading to an increased number of
antibodies specific for that threat. A peak in antibody concentration occurs
at around day 7, after which cells begin to die by apoptosis. A small number
of memory cells specific for that pathogen will remain in the body in case of
reinfection. If this pathogen is encountered again, memory cells will be able
to rapidly respond and defeat the pathogen. This is shown by the second
peak, which occurs sometime after the initial infection has been cleared.
During the secondary response there are more cells that can respond to the
antigen initially [21], therefore they will produce a greater concentration of
antibodies over the same amount of time.

There are two ways in which B cells can be stimulated to produce an
immune response: T cell dependent activation, and T cell independent acti-
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Receptor class Description

IgM Found on the surface of B cells. Primarily active dur-
ing the early part of the immune response.

IgG The most common antibody class found in humans.
Can be split into 4 different subsets, IgG1, IgG2, IgG3
and IgG4.

Table 1: Different cell receptor types and their function.

vation. T dependent activation requires B cells to receive two distinct signals.
The first occurs when the BCR binds to its cognate antigen; this antigen is
then internalised within the cell and digested. Fragments of the antigen are
displayed on the cells surface, bound to an MHC class II molecule. Upon
binding of a T-Helper cell with the antigen-MHC class II complex, the T-
Helper cell will express protein CD40L, which binds to the B cells CD40
receptor causing B cell to become activated. T cell independent activation
can occur with certain antigens, for example CpG DNA. These antigens are
capable of making the B cell activate without engaging its BCR by binding
to a Toll-like receptor (TLR). For example CpG DNA is recognised by TLR
9, which can motivate a T independent response.

After activation, B cells begin a process of proliferation and differen-
tiation, as well as antigen-specific antibody secretion and antibody class
switching. During antibody class switching, the constant region of anti-
bodies changes. Different antibody types perform different functions critical
for an effective immune response. The process of B cell activation is shown
graphically in figure 3. Once activation occurs, a diverse collection of B and
T cell subsets develop in order to fight the invading pathogen.

T cell activation occurs when a TCR meets its cognate antigen. It also
must receive a second co-stimulatory signal. The costimulatory signal can
be provided by the antigen presenting cell (APC) that the T cell is bound
to by engagement of its CD27 or CD28 receptor or through the provision
of secreted cytokines such as IL-2. From here, activated T cells will divide
and release cytokines to motivate more T cells; cytoxic T cells will track
down pathogen, destroy them and memory T cells will be formed for future
tolerance in case of reinfection.
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Figure 3: Graphical explanation of B cell activation. This image is simplified
for clarity, and is just a small part of the overall adaptive immune response.

With the use of important experimental techniques, including fluorescent
dyes [5] and cell sorting technology [21], it is possible to observe B and T
cells during a simulated immune response in vitro.

Data collected in these experiments reveals consistent features across both
B and T cells [23] [9] [17]. We see a diverse collection of cell types and
fates, as well as a broad distribution of times to reach those fates [9] even
when regulating agents (including cytokines or interactions between cells)
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are removed [9]. From this we understand that internal mechanisms within
the cell are contributory factors to the observed heterogeneity [9].

The studies mentioned above, and others, have also noted that despite
heterogeneity at the single cell level, the population level response is robust
and consistent across multiple experiments [10]. Given the diverse range of
cell types observed during an immune response, and the high variability in
time to fate, it is important to reconcile these two opposing views. How can
heterogeneity at the single cell level, lead to a robust and consistent immune
response at the population level?

A model known as the Autonomous Competition Hypothesis (ACH) [9]
attempts to answer this question. Not only does it account for the cell level
variability, it also models the complex correlation patterns found at both the
intra and inter cellular levels. The ACH describes a scenario in which each
cell contains independent processes which, through activation or beginning
at birth, determine when a cell will undergo division, death, class switching
or differentiation. The time at which each process will occur is given by a
probability distribution, with cell fates governed by a competition in which
the process having the smallest time will win. Competition-based models
have been used to study multiple biological systems, including sporulation
vs competence in bacillus subtilis [30], and time-to-fate in B cells [10]. In
this thesis we aim to study the ACH further by developing multivariate non-
parametric statistical tools to aid its investigation.

1.2 Data Source

The data source for this thesis comes from an extended data set of that pub-
lished in the 2012 paper [10]. Using a collection of experimental techniques
the authors of [10] collected the times to death, division, differentiation to
plasmablast and IgM to IgG1 class switch of B cells activated in vitro. Here
we discuss how the data was collected, and the experimental challenges that
needed to be solved.

To collect data that is suitable for testing the ACH, it is necessary to
track the time at which each fate occurs in every cell. Through direct ob-
servation and use of fluorescent proteins, it was possible to optically track
individual B cells and observe a time for the occurrence of several fates. To
determine when differentiation occurred, B cells from Blimp1-GFP reporter
mice were used. Blimp1 is a transcription factor required for differentiation
to plasmablast [25], and so through the use of these specific mice, where a
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green fluorescent protein is made every time Blimp1 is made, differentiation
can be observed by noting green fluorescence in a cell. To identify IgM to
IgG1 class switching, anti-IgG1-APC is added, which fluoresces in the red
spectrum when switching from IgM to IgG1 occurs. The beginning of cytoki-
nesis indicates division time, and the start of membrane rupture indicates
cell death [10].

Naive murine B cells stimulated in vitro with either LPS or anti-CD40
aggregate and so cannot be optically tracked to create full family trees. In-
stead B cells were stained with CTV, stimulated with anti-CD40, IL-4 and
IL-5, then FACS sorted from generations 0, 2, 4 an 6, and deposited into
micro wells at a density such that many wells were singly seeded. This
gets around the problem caused by aggregation of cells, however one can
only follow the cells through one round of division as further cells cannot
be uniquely identified past this point. Because of this limitation the data
consists of times-to-fate for siblings cells and no further into the family tree.

Using anti-CD40, as well as cytokines IL-4 and IL-5, a T dependent im-
mune response can be simulated. IL-4 is known to stimulate B cell differ-
entiation into plasmablasts, IL-5 stimulates B cell growth and anti-CD40
will bind to the CD40 receptor of B cells, short-cutting the B-T cell interac-
tion required for T dependent activation. A full account of the experimental
procedure can be found in the supplementary material of [10].

1.3 Statistical Methodologies

Motivated by the earlier discoveries including [17], the analysis of B cell data
in [10] assumes the existence of four independent random variables per cell,
denoted Tdiff , Tdie, Tswitch, Tdiv. These random variables describe the time,
from cell birth, at which differentiation to plasmablast, death, IgM to IgG1
class switching and division will occur in a given cell. However, as B cells
have been observed to not always undergo some processes, they assume that
all events excluding death have a positive probability of being infinite. As
described by the ACH, some of these variables can be censored by each other,
and are in competition to be the first to occur. For example, if a certain
cell has Tdiv < Tdie we would observe division, and the death event is not
observed; it is said to be censored. These random variables are independent
of each other, as noted by the ACH. However, the observed distribution
that has been modified by the competition and censorship processes can be
correlated.
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They [10] then define pairs of random variables to describe siblings, for
example (T 1

div, T
2
div). While pairs of random variables can be correlated with

each other, a cell’s individual random variables are independent. Each pair
is assumed to be described by a bivariate log-normal distribution with sym-
metric marginals, giving the model 15 parameters representing the means,
variances, correlations and probability of infinity respectively,

θ = {µdiv, µdie, µswitch, µdiff σ
2
div, σ

2
die, σ

2
switch, σ

2
diff ,

ρdiv, ρdie, ρswitch, ρdiff , pdiv, pswitch, pdiff}.

For a given data set D, containing the fates of all sibling within a given
generation, Matlab was used to numerically solve the maximum likelihood
problem maxθ L(D|θ). Further information on the modelling procedure can
be found in the supplementary material of [10].

1.4 Contribution overview

The primary contribution of this thesis is the implementation, modification
and use of non-parametric statistical techniques to provide an alternate anal-
ysis of the B cell data set [10]. These techniques do not assume that time-to-
event is a member of a particular class of distributions. Using unpublished
primary data collected during the [10] experiments, we provide further anal-
ysis of B cells born as IgG1+ or ASC+ (Antibody-Secreting Cell).

The statistical techniques come from a branch of statistics known as sur-
vival analysis. Survival analysis [24] is concerned with the study of random
variables describing the time at which a particular event occurred. For ex-
ample, it is quite often applied in clinical trials to describe the time of death
or cure.

The tools we borrow, implement and adapt from survival analysis in-
clude the Kaplan-Meier estimator [26], the Dabrowska estimator [7], and the
Log-Rank test [32]. When applied to the B cell data set, and assuming inde-
pendence between event and censoring, the Kaplan-Meier estimator allows
us to calculate the probability of survival beyond a given time for a specific
event of interest. Figure 4 shows an example. This gives us an empirical esti-
mate of the uncensored distribution of time-to-event, instead of the observed
distribution resulting from competition [9] as described by the ACH.
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The Dabrowska estimate is a multivariate generalisation of the Kaplan-
Meier estimator which allows non-parametric estimation of the joint distri-
bution between two paired events; from this we can further understand and
quantify the intra and inter-cellular correlations between a pair of sibling B
cells. Unlike the Kaplan-Meier estimator, the Dabrowska estimator is not
available in most standard statistical packages (for example Matlab or R)
and so in this case we developed our own implementation, which we adapted
to deal with assumed symmetric distributions. An example of the Dabrowska
survival function estimate applied to B cell data is shown in Figure 5.
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Figure 4: Kaplan-Meier estimate of the survival functions for generation 7 B
cell data [10]. This curve shows the probability that differentiation to plasma
blast will occur after the specified time. Created using the Matlab ECDF
function.
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Figure 5: Symmetric modified Dabrowska estimate using B cell data from
[10]. This surface shows the joint survival distribution for time to divide for
a pair of sibling B cells. Created using a MATLAB implementation for this
thesis.

We can use statistical tests, including the Log-Rank test, to provide com-
parisons between the parametric techniques used in [10] and the survival
analysis techniques developed in this thesis. We can then determine how
reasonable the parametric techniques used in the model are. For example
[8] notes that the time to divide distribution of B cells, should follow a
Log-Normal distribution; since our techniques do not follow a specified dis-
tribution, we can test if this is a good assumption. Furthermore, the time
to class switch and differentiate had not been measured before, and so this
work serves as a good test for the type of distribution it should follow.

One interesting feature of the analysis we have performed in this thesis
takes advantage of assumed symmetric properties of the underlying model
to improve estimation power. Assuming asymmetric cell division is not at
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work, the sibling cell data collected in [10] have no inherent rank order (i.e.
there is no ‘first’ cell to undergo an event between the siblings). Leveraging
this assumption allows us to create a symmetric Dabrowska estimate, sym−
Dabrowska. This allows us to create a more accurate survival distribution
from a given data set.

We produce a further analysis using some of the B cell data not published
in [10], but kindly provided by the Hodgkin Lab (WEHI). This allows us to
make interesting estimates of the time-to-fate in B cells that have already
undergone certain processes. For instance what does the time to division
distribution look like in cells that have already undergone class switching or
differentiation? Does it differ from the un-switched or un-differentiated dis-
tribution? We know that cells differentiated are more likely to stop dividing
[44].

A recent paper [6] questions the use of some survival analysis techniques,
for example using the Kaplan-Meier estimate, when studying time to event
data for cells. This is because of the possibility of competing risks. Gooley et
al [15] define a competing risk as, ‘An event whose occurrence either precludes
the occurrence of another event under examination or fundamentally alters
the probability of occurrence of this other event’. An assumption of Kaplan-
Meier analysis is non-informative censoring [33], this is where the censoring
event occurs independently of the outcome of interest. For example if we are
performing an analysis of time to isotype switch in B-Cells and there are cells
that have not isotype switched at the end of the study then the censoring is
non-informative and Kaplan-Meier analysis is suitable. Events such as death
or division are also censoring events but are not independent and would be
considered a competing risk. As a result we wish to make the reader aware
that Kaplan-Meier analysis can provide an overestimated probability of time-
to-event. However, in the present thesis, we do not address this matter as,
motivated by earlier studies, our aim was to create the tools necessary to
perform non-parametric survival analysis for these data.

Finally, with the collection of statistical tools we have developed, we can
create a package that, in the future, could be used for similar experiments
that apply a competition based hypothesis. For example, the time to sporu-
lation data in [30] or, indeed, for data in other fields.
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Chapter 2

2 Statistical Review

In this chapter we review important statistical definitions and techniques used
in the rest of the thesis. We introduce the survival function estimators, with
numerical examples to show their use. We present the univariate Kaplan-
Meier estimate and the multivariate Dabrowska estimate. Lastly we discuss
the different hypothesis tests needed to compare survival functions, and mod-
ifications that are needed.
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The statistical tools used in this thesis come from a branch of statistics
known as survival analysis. Broadly speaking survival analysis is a collection
of statistical approaches in which the main concern is the duration of time
until an event occurs. This event is normally referred to as a failure, and the
time of its occurrence a failure time. For example in engineering the tools
of survival analysis may be used to determine the lifetime of an electrical
component.

Usually an experiment will be performed in which n independent objects
are observed from a starting time t0 to an end time tm. During this time
the objects will be observed until a failure occurs, this could be for example,
the breakdown of an electrical component. Sometimes events occur which
obscure the observance of the failure event. These are known as censoring
events.

We denote ti as the time at which failure would occur if there were no
censoring, and ci the time at which censoring occurs assuming the failure
event has not yet occurred. If only one of the two events can happen, then
we observe an event at min(ti, ci) and assuming it is possible to distinguish
between failure and censoring, we use the indicator function defined as,

I(ti < ci) =

{
0 if ci ≤ ti

1 if ti < ci,
(1)

to record which event occurred. In summary, a pair of observable variables
for the ith object is given by,

(yi, δi) = (min(ti, ci), I(ti < ci)), (2)

If we were to observe an electrical component and at the end of the study
it is still working we would say the event was right censored. We don’t know
what time the electrical component will break, just that it is sometime after
tm. The different types of censoring are shown graphically in Figure 6.
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Figure 6: Different types of censoring. This figure could represent the testing
of the lifetime of electrical components. At the start of the study left censor-
ing could occur in components that were broken sometime before the study
began, and so we only know the approximate time of failure. If an electrical
component is still functioning at the end of the study then right censoring
has occurred, we know that component will eventually fail but can only say
at best that it will happen sometime after the end of the study.

When using survival analysis techniques to study time-to-event data, two
functions are commonly estimated to describe the data, the survival function
and the hazard function. We define these below.

Let T be a nonnegative random variable representing the time at which
failure occurs. This could be the time, from birth, for a cell to divide or the
time for a patient to become disease free after administration of medication.

Definition The Survival Function of a random variable T is its complemen-
tary cumulative distribution function, denoted S(t). It is a monotonically
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decreasing function that describes the probability T takes a value greater
than t,

S(t) = P(T > t) = 1− F (t) t ∈ [0,∞), (3)

where F (t) is the cumulative distribution function.

Definition The hazard function, λ(t), describes the instantaneous rate fail-
ure, conditioned upon survival up to that time [24]. Assuming the random
variable T has probability density function (PDF) f(t), it is defined to be,

λ(t) = lim
∆t→0

P(t ≤ T ≤ t+∆t|T ≥ t)

∆t
=

f(t)

S(t)
.

A useful related function is the cumulative hazard function, Λ(t), given by
the integral of λ(t) over the length of study [t0, tm],

Λ(tm) =

∫ tm

t0

λ(t)dt.

The cumulative hazard function gives the total hazard over the length of
study [t0, tm]. It is useful when determining how many failures we would
expect in a time interval. It also has an important relationship with the
survival function and the two functions can be written in terms of each other.

If we define the survival function using product integral notation [14]. For
a function A : (0, t] → R that is right continuous everywhere with left limits,∏

x∈(0,t]

(1 + A(dx)) = lim
maxi|ui−ui−1|→0

∏
i

(1 + (A(ui, ui−1])), (4)

where 0 = u0 < u1, ..., < un = t is a partition of the time interval (0, t]. We
can express the survival function in terms of the cumulative hazard function
[14] as,

S(t) =
∏
s<t

(1− Λ(ds)). (5)

2.1 Data sets

In order to perform calculations based on the failure time data (yi, δi) we
will briefly explain some notation, and a reformatting of the data set that
will be useful for later proofs and calculations. We have a data set where the
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superscript (1) indicates univariate observations and the subscript n indicates
the number of elements in the data set,

D(1)
n = {(yi, δi)}ni=1, (6)

where yi is the event time and δi takes the value 1 if a failure occurred, and
0 if right censoring occurred.

For the purpose of performing calculations we will reformat the data. We
define a set {xi}mi=1 to contain the m unique elements of the set {yi}ni=1. At
each of the unique time points we define a new set of observations given by,

D(1)
m = {(xi, di, ei, ri)}mi=1, (7)

where di =
∑n

j=1(1−δj)Iyj=xi
records the number of failures that occurred

at xi, ei =
∑n

j=1 δjIyj=xi
is the number of censored events that occurred at

xi and finally ri =
∑m

j=i(dj + ej) is the number of objects that were at risk
just before xi.

2.2 Univariate Kaplan-Meier estimate

The Kaplan-Meier [26] estimator is a nonparametric survival function esti-
mate used in cases of censored data where the time to censoring events are
assumed to be i.i.d and independent of the assumed i.i.d times to failure
events. When censoring is not observed it reduces to the complement of the
empirical distribution function (EDF) of the failure time random variable.

Given a data set D(1)
m as in equation 7 the Kaplan-Meier estimate of the

survival function is given by,

Ŝ(x) =
∏

{i:xi<x}

(
ri − di

ri

)
. (8)

Below is a short proof showing that given the data set D1
m of the form

shown in equation 7 the maximum likelihood estimate (MLE) of the survival
function S for T is given by the Kaplan-Meier formula in equation 8 [24].
What follows is an expanded version of the proof presented in [26].

Proof. The likelihood of the data, D(1)
m given S is,

L(D(1)
m | S) =

m∏
i=1

[S(xi−1)− S(xi)]
diS(xi)

ei ,
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Now consider the following. For a given xi,

S(xi) = P(T > xi) = P(T > xi | T > xi−1)P(T > xi−1)

= P(T > xi | T > xi−1)S(xi−1),

if we denote,

πi = P(T > xi | T > xi−1),

it allows us to write,

S(xi) =
i∏

j=1

πj,

inserting (6) into (5) we can rewrite L in terms of πi,

L(D(1)
m | S) =

m∏
i=1

[
i−1∏
j=1

πj −
i∏

j=1

πj]
di(

i∏
j=1

πj)
ei

=
m∏
i=1

[
i−1∏
j=1

πj(1− πi)]
di(

i−1∏
j=1

πj)
eiπei

i

=
m∏
i=1

[(1− πi)
diπei

i ](
i−1∏
j=1

πdi+ei
j )

=
m∏
i=1

(1− πi)
diπri−di

i ,

A useful technique when trying to maximise likelihood functions is to take
the logarithm of L(D(1)

m | S) which will give the same result as if we’d tried
to maximise L since the log function is a strictly monotonically increasing
function. This gives,

L(D(1)
m | S) = logL(v | S) =

m∑
i=1

[di log[(1− πi)] + (ri − di) log(πi)].

We can then differentiate this with respect to πi and set it equal to zero in
order to maximise the function.

∂L(D(1)
m | S)
∂πi

=
di
πi

− ri − di
1− πi

= 0,
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rearranging this leaves,

πi =
ri − di

ri
= 1− di

ri
,

giving us the Kaplan-Meier estimate,

Ŝ(x) =
∏

{i:xi<x}

(
ri − di

ri

)
,

=
∏

{i:xi<x}

(
1− di

ri

)
.

.

We can use the estimated survival function to calculate the mean survival
time, E(T ). If Ŝ(xm) = 0, where xm is the time of the last observation, then
we can define the expectation of T as,∫ ∞

0

Ŝ(x)dx = E(T ) ≈
m∑
i=1

(xi − xi−1)Ŝ(xi).

In a set of censored time-to-event data, if the last time point of observation
is censored, then the Kaplan-Meier estimate of the survival distribution will
not reach zero. This leads to the above integral being infinite. In order to
fix this problem Efron [27] suggests setting Ŝ(x) = 0 beyond the last time
point. This is the same as saying that the final survivor would die straight
after the censoring occurred. Gill [27] suggests estimating Ŝ(x) by Ŝ(xm)
for all times greater than xm. This corresponds to the idea that some of the
objects under study will not undergo the event of interest. This problem is
discussed further in [34].

2.2.1 Synthetic data example

Here we use synthetic data to show how the Kaplan-Meier estimate is cal-
culated, and numerically demonstrate its important features. Table 2 below
uses a set of observations (ti, ci)

n
i=1 to produce a Kaplan-Meier estimate. Fig-

ure 7 shows four different Kaplan-Meier estimates based on different changes
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to the data in Table 2. Figure 7(a) shows the usual Kaplan-Meier survival
function based on the data. Figure 7(b) shows the survival function esti-
mate when all censoring events are changed to failure events; in this case the
Kaplan-Meier estimate returns the empirical distribution function. Figure
7(c) shows a defective distribution caused by changing the data so that the
last event is a censored one. Figure 7(d) shows convergence as the amount
of data used in the estimate increases.

ti ci yi = min(ti, ci) δi = I(ti < ci) ri di
ni−di
ni

Ŝ(t)

17.1507 13.6501 13.6501 0 10 0 1.0000 1.0000
22.3355 18.0349 18.0349 0 9 0 1.0000 1.0000
5.9646 15.7254 5.9646 1 8 0 1.0000 1.0000
18.4487 14.9369 14.9369 0 7 1 0.8571 0.8571
16.2751 15.7147 15.7147 0 6 1 0.8333 0.7143
9.7692 14.7950 9.7692 1 5 1 0.8000 0.5714
13.2656 14.8759 13.2656 1 4 0 1.0000 0.5714
16.3705 16.4897 16.3705 1 3 1 0.6667 0.3810
29.3136 16.4090 16.4090 0 2 1 0.5000 0.1905
26.0777 16.4172 16.4172 0 1 1 0 0

Table 2: Synthetic data generated from a normal distribution. Using this
data we calculate the observable variables described above, the risk set ri,
the number of events di that occur and the Kaplan-Meier estimate Ŝ(t) for
each ti.
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Kaplan-Meier estimates using synthetic data.
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Figure 7: Kaplan-Meier estimates using synthetic data in a variety of cases. (a)
Standard plot based on the data in Table 2. (b) Estimate with no censored ob-
servations reduces to the complement of the empirical distribution function. (c)
Defective distribution estimate when final time point censored. (d) Convergence
to true survival function as amount of data increases.
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2.3 Bivariate Dabrowska estimate

Suppose that we would like to study the failure times in a pair of objects
whose time to failure could be correlated. For example the recovery time of
eyes after surgery. Let T = (T1, T2) be a pair of nonnegative random vari-
ables representing the time to failure of each of the objects in the pair. The
time of these failure events are then subject to the possibility of independent
censoring, described by random variables C = (C1, C2), which may be corre-
lated. Given n observations of censored pairs of random variables in a data
set where the superscript (2) indicates bivariate observations,

D(2)
n = {(min(t1i, c1i),min(t2i, c2i), I(t1i < c1i), I(t2i < c2i))}ni=1 (9)

= {(y1i, y2i, δ1i, δ2i)}ni=1 (10)

we want to estimate the bivariate survival function,

S(t1, t2) = P(T1 > t1, T2 > t2).

If (T1, T2) are independent and so are (C1, C2) then the Dabrowska estimate
is not needed since we would have,

S(t1, t2) = P(T1 > t1, T2 > t2) = P(T1 > t1)P(T2 > t2),

which can be estimated with Kaplan-Meier formula. The Dabrowska
estimator [7] is a multivariate generalisation of the Kaplan-Meier estimate
that allows us to deal with pairs of failure times subject to censoring. Here
we will look at the bivariate case, using this we can study the time-to-event
relationship in pairs of sibling B cells.

Unfortunately there is no nonparametric maximum likelihood estimator
of the bivariate survival function for censored data [7] [40]. The likelihood
function cannot be written in a unique way. Instead survival function esti-
mators have been proposed based on their useful properties. Many bivariate
survival function estimators have been suggested with varying strengths and
weaknesses, including the Yin-Ling [31], Prentice-Cai [39], Pruitt [41] and
Van der laan [45] estimators.

Dabrowska’s [7] is one of the most cited estimators of a bivariate survival
function for censored data. It overcomes many of the problems other pro-
posed estimators have. It is unique, consistent and converges weakly [7]. It
can also be extended to higher dimensions. More details on this can be found
in [7].
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However it does have some drawbacks. Under certain conditions it will
produce an estimate with negative probability, a problem that does not
go away as the sample size becomes larger [40]. Further information on
Dabrowska estimate and comparisons with other estimators can be found in
[39] [7].

The starting point for the Dabrowska estimate comes from a definition
of the survival function in terms of a product integral, by Gill and Johansen
[14]. In [14] it is shown that the survival function can be defined by a product
integral of the cumulative hazard function, as presented in equations 4 and
5. Dabrowska shows that a bivariate survival function can be defined in
terms of a suitable set of cumulative hazard functions.

Using paired failure time random variables (T1, T2) and without yet con-
sidering censoring, Dabrowska shows that the survival function can be written
using the following three cumulative hazard functions,

Λ11(dt1, dt2) =
P (T1 ∈ dt1, T2 ∈ dt2)

P (T1 ≥ t1, T2 ≥ t2)
,

Λ10(dt1, t2) =
P (T1 ∈ dt1, T2 ≥ t2)

P (T1 ≥ t1, T2 ≥ t2)
,

Λ01(t1, dt2) =
P (T1 ≥ t1, T2 ∈ dt2)

P (T1 ≥ t1, T2 ≥ t2)
,

and a term known as the L-measure,

L(dt1, dt2) =
Λ10(dt1, t

−
2 )Λ01(t

−
1 , dt2)− Λ11(dt1, dt2)

(1− Λ10(dt1, t
−
2 ))(1− Λ01(t

−
1 , dt2))

,

as,

S(t1, t2) =
∏
u≤t1

(1− Λ10(du, 0))
∏
v≤t2

(1− Λ01(0, dv))
∏

(u,v)≤(t1,t2)

(1− L(du, dv)),

(11)
where the first two terms are the respective univariate survival functions

of T1 and T2.
Dabrowska then uses this representation of the bivariate survival function,

showing that each term can be estimated from a set of bivariate right censored
data, and goes on to show that it has desirable properties. A formal proof
of this can be found in [7]. Figure 8 shows the process of estimating the
bivariate survival function from a data set in the presence of right censoring.
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Dabrowska estimate algorithm.
Step 1. Take the data set (t1i, t2i)

n
i=1 and (c1i, c2i)

n
i=1, and convert to observables as shown by equation 7.

Step 2. Compute S(t1, 0) and S(0, t2) using the Kaplan-Meier estimator using the modified data set.
Step 3. For every point of the lattice given by [0, t1m] × [0, t2m] compute the following four counting processes,

N
n
10(ds1, s2) =

n∑
i=1

I(y1i ∈ ds1, y2i ≥ s2, δ1 = 1),

N
n
01(s1, ds2) =

n∑
i=1

I(y1i ≥ ds1, y2i ∈ s2, δ2 = 1),

N
n
11(ds1, ds2) =

n∑
i=1

I(y1i ∈ ds1, y2i ∈ s2, δ1 = 1, δ2 = 1),

Y
n
(s1, s2) =

n∑
i=1

I(y1i ≥ ds1, y2i ≥ s2).

Where dsi represent the interval give by [si, si+1].
Step 4. Calculate Rn(y1, y2) with the formula,

n∏
y1i≤y1

n∏
y2j≤y2

Yn(y1i, y2i)(Yn(y1i, y2i) − Nn
10(dy1i, y1i) − Nn

01(y1i, dy2i) + Nn
11(dy1i, dy2i))

(Yn(y1i, y2i) − Nn
10(dy1i, y2i))(Yn(y1i, y2i) − Nn

01(y1i, dy2i))
.

Step 5. Combine S(t1, 0), S(0, t2) and Rn(t) to calculate the Dabrowska estimate SD
n ,

S
D
n (t1, t2) = S(t1, 0)S(0, t1)Rn(t1, t2).

Figure 8: Algorithm used to calculate the Dabrowska estimate [46].

In section 2.3.1 we use synthetic data to illustrate features of the estimator
and outline the calculation process.

2.3.1 Synthetic data example

Here we use synthetic data to show how the Dabrowska estimate is calcu-
lated, and numerically demonstrate some important features. Table 3 shows
a data set of paired observations that we will use to produce the estimates.
These were chosen so as to be small enough to easily understand the calcu-
lations, but also still be able to observe important features of the Dabrowska
estimate. Figure 9 shows the calculation of the four counting processes de-
fined in Figure 8 above using the synthetic data set. Figure 10 highlights
important features of the Dabrowska estimate using the synthetic data set.
Figure 10(a) shows the usual Dabrowska estimate of the data. Figure 10(b)
shows the Dabrowska estimate when all events in the data set are censored.
Figure 10 (c) shows a defective estimate which does not reach zero because
both pairs in the data set have their last observations censored. Figure
10(d) shows the Dabrowska estimate when all of the observations are not
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censored which gives the empirical distribution function. Figure 10(e) shows
the Dabrowska estimate using the assumption the underlying failure time
distribution is symmetric, F (t1, t2) = F (t2, t1), symmetric estimator are dis-
cussed further in chapter 3.

Figure 11 shows convergence of the Dabrowska estimate as the amount of
data used to produce the estimate is increased. Given a pair of failure time
random variables (T1, T2) and censoring time random variables (C1, C2) both
with bivariate normal distributions with parameters given by,

µ =

(
µ1

µ2

)
=

(
5
5

)
, Σ =

(
σ2
1 ρσ2

1σ
2
2

ρσ2
1σ

2
2 σ2

2

)
=

(
2 1.5
1.5 3

)
, (12)

and PDF [3],

f(x, y) =
1

2πσ1σ2

√
(1− ρ2)

e
− z

2(1−ρ2) , (13)

where,

z =
(x− µ1)

2

σ2
1

− 2ρ(x− µ1)(y − µ2)

σ1σ2

+
(y − µ2)

2

σ2
2

,

Figure 11(a) shows the bivariate normal survival function given by the
parameters in equation 12.

We sequentially generate data sets of the form given by equation 6 with in-
creasing lengths (n = 50, n = 150, n = 500) then calculating the Dabrowska
estimate. In Figure 11 we see that as the number of observations used to
produce the Dabrowska estimate increases (Figures 11 (b)–(d)) convergence
to the distribution the failure time observations were sampled from occurs
(Figure 11 (a)).

Another view of convergence is shown in Figure 12. Firstly, we calculate
the Dabrowska estimate of failure and censoring time observations generated
from bivariate normal distributions with parameters given by equation 12.
We then calculate the maximum distance between the Dabrowska estimate
and bivariate normal survival distribution the failure time observations were
generated from. To do this, we take our data set given by equation 12, taking
the two sets given by {y1i}ni=1 and {y2i}ni=1, rank order them from smallest
to largest. Then we define the maximum distance between two bivariate
survival functions as,

K(2)
n = max

(y1,y2)∈{y1i}ni=1×{y2i}ni=1

|Ŝ(y1, y2)− S(y1, y2)|. (14)

27



Using the same parameters and distribution as above, estimates were
produced as the amount of data sequentially increased from n = 10 to n =
650. At each n we calculated the statistic 1000 times to produce a box plot
showing the minimum, maximum, median, upper and lower quartiles for the
distribution of the statistic K

(2)
n . The mean of K

(2)
n was used to produce the

black curve shown in Figure 12 and is connected between data lengths.

t1 c1 y1 δ1 S1(t) t2 c2 y2 δ2 S2(t)
0.11 0.23 0.11 1 1 0.82 0.11 0.11 0 1
0.28 0.68 0.28 1 1 0.32 0.22 0.22 0 0.75
0.31 0.62 0.31 1 0.6667 0.71 0.33 0.33 0 0.75
0.34 0.14 0.14 0 0.6667 0.22 0.66 00.22 1 0.375

Table 3: Table of synthetic data used to calculate the Dabrowska estimates
in Figure 10.

1 0 0 0 0
0 0 0 0 0
1 1 0 0 0
1 1 1 0 0

(a)

0 1 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

(b)

4 3 1 0 0
3 3 1 0 0
2 2 1 0 0
1 1 1 0 0

(c)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

(d)

Figure 9: Tables showing the values of all 4 counting processes needed to cal-
culate the Dabrowska estimate (a) and (b) singly censored observations Nn

10

and Nn
01 (c) number of objects at risk Y n (d) doubly censored observations

Nn
11.
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Figure 10: Dabrowska estimate using synthetic data. (a) The usual Dabrowska es-
timate of the data. (b) The Dabrowska estimate when all events in the data set are
censored. (c) A defective distribution which does not reach zero because both pairs
in the data set have their last observations censored. (d) The Dabrowska estimate
when all of the observations are not censored. (e) Dabrowska estimate modified
to make use of the assumption that the underlying failure time distribution is
symmetric, F (t1, t2) = F (t2, t1) for all t1, t2. Creation of symmetric estimators is
discussed further in Chapter 3.

29



(a)

0
1

2
3

4
5

6
7

8

0

2

4

6

8

0

0.2

0.4

0.6

0.8

1

TimeTime

S
u

rv
iv

a
l 
P

ro
b

a
b

ili
ty

(b)

0
1

2
3

4
5

6
7

8

0

2

4

6

8

0

0.2

0.4

0.6

0.8

1

TimeTime

S
u

rv
iv

a
l 
P

ro
b

a
b

ili
ty

(c) (d)

Figure 11: Convergence of the Dabrowska estimate to true failure time distribu-
tion using synthetic data. (a) Survival function of a bivariate normal distribution
using parameters defined in 12. (b)–(c) Dabrowska estimates using failure time
and censoring time data generated from two bivariate normal distributions with
parameters described by equation 12. Amount of data increased sequentially ((b)
n = 50, (c) n = 150, (d) n = 500). Distance from Dabrowska estimate to the true
distribution as defined in 14 given by 0.2401, 0.1667 and 0.0904 respectively.
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Figure 12: Boxplots of the distribution of the maximum distance between the
Dabrowska estimate of the failure time distribution and the true distribution
as the amount of data used to produce each estimate increases. Failure time
and censoring time data is generated from two bivariate normal distributions
with parameters described by equation 12. Box plots describe the distribu-
tion of the quantity in equation 14 for that n. The black line shows the mean
of the distribution for that n.

2.4 Hypothesis Tests

In this section we introduce hypothesis tests that will be used to compare
survival function estimates [26] [7].

Section 2.4.1 introduces the Kolmogorov-Smirnov statistical test for the
hypothesis that a set of observations comes from a specific distribution in the
case of non-censored univariate data. It can be extended to test bivariate
data.
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Sections 2.4.3 and 2.4.4 look at two different statistical tests: the Log-
Rank (LR) and Weighted Kaplan-Meier. The LR test compares hazard es-
timates at each event time between empirical survival curves as a way to
determine if the two estimates have the same underlying distribution. The
WKM test produces a statistic by integrating the difference between the
two Kaplan-Meier survival functions estimates over the time period of study.
While the former is most commonly used, the latter test can perform as well
or better in many situations [38] such as when the hazard estimates of the
two survival functions cross each other over the time interval of study, and
so can be a good alternative or complementary test in these cases.

Section 2.4.6 discusses the family-wise error rate (FWER) and the Holm-
Bonferroni method (HBM). The FWER is the error given by the increasing
number of rejections of a true null hypothesis when multiple hypothesis tests
are performed. The HBM is a corrective tool used to reduce false rejections
through the modification of the rejection threshold α based on number of
test performed.

Lastly section 2.4.7 shows a small set of numerical examples used to
indicate that the implementations used in this thesis are working correctly
and are suitable for use as analysis tools of the B cell data set [10].

2.4.1 Univariate Kolmogorov-Smirnov test

Given observations drawn independently from a random variable X and a
univariate continuous cumulative distribution function F (x), the Kolmgorov-
Smirnov test [49] is a goodness-of-fit test for the hypothesis,

H0 : P (X ≤ t) = F (t) for all t ∈ R.

Given a collection of observations {ti}ni=1 we produce the EDF,

Fn(t) =
1

n

n∑
i=1

I(ti ≤ t) (15)

with which the KS statistic is defined as,

K(1)
n = sup

t∈R
|Fn(t)− F (t)|

Under H0, as n goes to infinity,

√
nK(1)

n ,
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follows a Kolmogorov distribution [49]. This fact can be used to perform the
statistical test. The CDF of a Kolmgorov distribution is given by,

G(x) = 1− 2
∞∑
i=1

(−1)ie−2i2x2

allowing the calculation of a p value as,

p = 1−G(
√
nK(1)

n ).

Under the null hypothesis the p value tells us the probability of observing
a statistic as large or larger than

√
nK

(1)
n . That is p = P(

√
nK

(1)
n ≥ x). A

small p value, where ‘small’ is determined by the α level, commonly set to
be 0.05, tells us that either H0 is false or that the data set we observed was
uncommon.

2.4.2 Kolmogorov-Smirnov test for right censored data

In [12] the authors present a modified version of the Kolmogorov-Smirnov
test procedure that allows goodness-of-fit testing when dealing with cen-
sored events. Given a failure time random variable T and a censoring time
random variable C, with estimated survival function Ŝ(t) from a data of set
as described by equation 7, which we suspect comes from a reference sur-
vival function S0(t), censoring random variable C with survival distribution
Ĝ(t) = P(C > t), and function N(t) which counts the number of items at
risk at time t, we define a function,

YN(t) =
1

2
{Ŝ(t)− S0(t)}

∫ t

0

{NĜ(s−)}
1
2 I(N(s)>0)d{Λ0(s)− Λ̂(s)}

from which we calculate the statistic over the interval of study give by [0, tm],

Ŷ = sup
0≤t≤tm

YN(t).

Let Θ(x) be the CDF of the standard normal distribution, we define a
function q,

q(x, y) = 1−Θ

(
y

(x− x2)
1
2

)
+Θ

(
y(2x− 1)

(x− x2)
1
2

)
e−2y2 ,

with which for large N and under H0 we compute the p value as follows,

p = P(Ŷ > y) = q(y, 1− S(tm)).
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2.4.3 The Log-Rank Test

The Log-Rank [29] test is a univariate statistical test that, given two data sets
with possibly censored failure times like those shown in equation 6, allows
the testing of the null hypothesis that there is no difference between the
distributions of the two underlying failure times,

H0 : S1(t) = P (T1 > t) = S2(t) = P (T2 > t) for all t ≥ 0. (16)

Given two univariate data sets based on observations of failure and censoring
times of the form,

D(1)
n1

= {yi1, δi1}n1
i=1, and D(1)

n2
= {yi2, δi2}n2

i=1,

we begin by formatting the data for the test. We need both data sets to be
over the same time periods, so we define {xi1}li=1 = {xi2}li=1 as two equal sets
made up of the unique elements of {yi1}n1

i=1∪{yi2}n2
i=1. Then, for j ∈ {1, 2} as

usual we can calculate dij =
∑nj

k=1 δkjI(xij = ykj), eij =
∑nj

k=1(1−δkj)I(xij =
ykj) and rij =

∑nj

k=1(dk + ek) as the number of failures, censoring events and
elements at risk respectively at time xij for data set j.

The Log-Rank test works by comparing the hazard estimate at every time
point where an event occurs. At each unique time point xij we calculate the
observed number of events for each survival curve, denoted oij = (dij + eij).
Using the number of objects at risk at xij, denoted rij we calculate the
expected number of events for S1(t) as,

Ei1 =
oi1 + oi2
ri1 + ri2

oi1,

We then calculate Log-Rank statistic as,

θ̂LR =

∑l
i=1(oi1 − Ei1)∑l

i=1 vi1

where,

vi1 =
l∑

i=1

ri1r2i(oi1 + oi2)(ri1 + ri2 − oj2 − oj2)

(ri1 + ri2)2(ri1 + ri2 − 1)
.

Under H0 and for sufficiently large n1 and n2 the Log-Rank statistic
follows a χ2 distribution with 1 degree of freedom [3]. If we define F1(x) as
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a chi-squared CDF with one degree of freedom we can calculate the p value
as follows,

p = 1− F1(θ̂LR).

2.4.4 Weighted Kaplan-Meier test

Here we present an overview of the Weighted Kaplan-Meier (WKM) test, a
univariate statistical test for comparing two Kaplan-Meier survival function
estimates [38]. In some cases, described below, the WKM is a more appro-
priate statistic to use to compare two survival function estimates than the
Log-Rank test. The WKM tests the null hypothesis,

H0 : S1(t) = S2(t) for all t > 0.

Given two survival functions estimates Ŝ1(t) and Ŝ2(t) based on two univari-
ate data sets {t1i, c1i}n1

i=1 and {t2i, c2i}n2
i=1, we define Gi(t) = P(Ci > t) as the

survival function of the censoring time random variable for survival curve
i = 1, 2. We define Ŝ(t) and Ĝ(t) as the failure time and censoring time
Kaplan-Meier estimates of the combined data set used to make estimates
S1(t) and S2(t).

When comparing two survival functions S1(t) and S2(t) in a situation
where,

λ1(t) ≥ λ2(t) for all t ≥ 0, (17)

or
S1(t) ≥ S2(r) for all t ≥ 0, (18)

we know that population 1 always has a better survival time than population
2. Statistical tests used to compare survival curve estimates should be sen-
sitive to these cases. The Log-Rank test explained above, which compares
hazard differences, is sensitive to the first case, but will not necessarily be
able to distinguish the second case [38]. As such the authors of [38] suggest
the use of a statistic based on the integrated difference between two survival
functions that has the ability to distinguish between both of the above cases,∫ tn

t0

(Ŝ1(t)− Ŝ2(t))dt,

however they note that this statistic can have a large variance in situations
where t is near tn and there is a large amount of censoring. Consequently
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they suggest a weighting function which will discount the impact of heav-
ily censored time points. They define the Weighted Kaplan-Meier (WKM)
statistic for a weight function w(t) as,

WKM =

√(n1n2

n

)∫ Tc

0

ŵ(t)[Ŝ1(t)− Ŝ2(t)]dt, (19)

where Tc = sup{t : min(Ĉ1(t), Ĉ2(t)) > 0}. The weight function is chosen
such that for constants α and Γ ,

|w(t)|≤ Γ [C−
i (t)]

1/2+α and |ŵ(t)|≤ Γ [Ĉ−
i (t)]

1/2+α,

for all t < τ = sup{min(S(t), C1(t), C2(t))} and i = 1, 2. Given the WKM
statistic in equation 19, we can use the fact that under H0 : S1(t) = S2(t),

WKM =

√(n1n2

n

)∫ Tc

0

ŵ(t)[Ŝ1(t)− Ŝ2(t)]dt →d N (0, σ2),

where,

σ2 = −
∫ τ

0

[
∫ τ

t
w(u)S(u)du]2

S2(t)

p1G
−
1 (t) + p2G

−
2 (t)

G−
1 (t)G

−
2 (t)

dS(t),

which can be estimated,

σ̂2
p = −

∫ Tc

0

[
∫ Tc

t
ŵ(u)Ŝ(u)du]2

Ŝ(t)Ŝ−(t)

p̂1Ĝ
−
1 (t) + p̂2Ĝ

−
2 (t)

Ĝ−
1 (t)Ĝ

−
2 (t)

dŜ(t).

A proof of the above can be found in [38]. We determine the p value for a
WKM statistics given by θ̂WKM using the CDF, F (x), of the normal distri-
bution described above as,

p = 1− F (θ̂WKM).

2.4.5 Bootstrap Monte Carlo hypothesis test

In this section we present a hypothesis test that allows us check if two bi-
variate Dabrowska estimates share the same underlying distribution. Given
two Dabrowska estimates Ŝ1(x, y) and Ŝ2(x, y) defined on a common grid of
time points given by [0, t1]× [0, t2] we defined H0,
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H0 : S1(x, y) = S2(x, y) for all (x, y) ∈ [0, t1]× [0, t2] (20)

Since no standard test exists for comparing two Dabrowska estimates we
do not have a statistic and reference distribution from which to calculate a
p value, as we did with the univariate tests described above. To perform
this test we will produce a distribution numerically for a sensible choice of
test statistic by sampling with replacement [11] from the data sets used to
produce the Dabrowka estimates a large number of times, and then for each
resampled data set, we calculate the chosen statistic, from this set of statistics
we will produce a distribution from which a p value can be calculated. We
will also present a set of numerical tests to provide evidence for the viability
of this method of hypothesis testing in Section 2.4.7 once the data sets are
sufficiently large.

Given two data sets of the form described in equation 9 of length n and
m denoted by D

(2)
n and D

(2)
m we calculate the Dabrowska estimates Ŝ1(x, y)

and Ŝ2(x, y) respectively as well as the Dabrowska estimate of combined

distribution D
(2)
n ∪ D

(2)
m given by Ŝ1+2(x, y). From these distributions we

calculate the following statistic,

θ̂ = d(Ŝ1(x, y), Ŝ1+2(x, y)) + d(Ŝ2(x, y), Ŝ1+2(x, y)), (21)

where d(S1(x, y), S2(x, y)) is the bivariate maximum absolute difference de-
fined in equation 14. We then sample with replacement from the combined
distribution D

(2)
n ∪ D

(2)
m to produce a data set of event times and censoring

times of length n+m.
This data set is then used to produce a new set of Dabrowska estimates

where the first n elements are used to produce Ŝi
1(x, y) and elements n+1 to

n +m are used to produce Ŝi
2(x, y), finally the entire resampled data set is

used to produce Ŝi
1+2(x, y). From these three estimates we produce a statistic

θ̂i. Repeating this procedure a large number of times, we can calculate the
empirical CDF of this sets of statistics and from this distribution compute
the p value for θ̂.

2.4.6 Family-Wise Error Rate

Given a collection of n statistical tests with true null hypothesis H0, p values
{pi}ni=1, and a significance level α, we define the number of ‘false positives’,
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that is, situations in which pi < α, resulting in a rejection of the true hy-
pothesis H0 as,

En =
n∑

i=1

I(pi < α). (22)

The family wise error rate (FWER) is defined as the probability at least
one false positive occurs when performing a collection of statistical tests.
That is,

FWER = P(En > 1). (23)

The FWER can be calculated as follows,

FWER = P(En > 1) = 1− P(En = 0) = 1− (1− α)n. (24)

Figure 13 shows how the FWER changes as we perform and increasing num-
ber of tests at a rejection threshold α = 0.05.

To compensate for the fact that increasing the number of tests performed
increases the FWER we use the Holm-Bonferroni method (HBM) [20]. The
HBM works by modifying the individual rejection threshold based on the
number of tests performed. An example calculation for a family of three
tests is shown in Figure 14.
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Figure 13: Family wise error rate (FWER) as the number of tests, n, increases
at a rejection threshold of α = 0.05 with and without the Holm-Bonferroni
method (HBM) procedure. As we can see FWER is always less than or equal
to α when HBM has been used.

Holm-Bonferroni method.
Step 1. Order p values smallest to largest. p = {p1, p2, p3}
Step 2. Perform test with rejection threshold α using modified p value pHB

i =
(C − i+1)pi, where C is the size of the test family and i is the number of the
current test.
Step 3. If the test result is not significant, we are finished. If the first test is
significant, we continue until we reach a none significant result or we run out
of tests.

Note: If pHB
i becomes greater than 1 set its value to 1.

Figure 14: Holm-Bonferroni method for a family of 3 tests.
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2.4.7 Hypothesis Test Examples with Synthetic Data

Figure 15a shows the EDF for 150 elements of univariate normal data with
parameters µ = 5 and σ = 1, the second curve labelled ‘reference distri-
bution’ is a normal CDF with parameters µ = 5 and σ = 1. Here we
used the Kolmgorov-Smirnov test to check the hypothesis that the underly-
ing distribution of the data was sampled from is the same as the reference
distribution. The test results gave a p value of 0.5928 indicating we do not
reject the null hypothesis at a threshold of α = 0.05. This was a test to give
evidence that the code used is working correctly. The Kolmogorov-Smirnov
tests in this section were produced using the Matlab function KSTEST.

Figure 15b shows a similar situation to that of the above except here
we would like to show that under correct conditions the KSTEST function
will correctly reject a null hypothesis. The EDF is generated from n = 150
elements of univariate normal data with parameters µ = 5 and σ = 1. The
built in Matlab function KSTEST was used to check if the data had a normal
distribution with the parameters µ = 6 and σ = 1. The result was a rejection
at α = 0.05 with a p value of 1.3590× 10−26 showing that the test is working
correctly.

Figure 16a shows two Kaplan-Meier estimates using the same configura-
tion as above but here the parameters used for the failure time distribution
are given in the first estimate by, µ = 16 and σ = 4, and in the second es-
timate by, µ = 15 and σ = 4. As the survival curves here are different we
expect that the statistical tests will reject H0. The Log-Rank and Weighted
Kaplan-Meier tests return p values of 0.0025 and 0.0073 respectively which
is in line with what we would expect at a confidence level of α = 0.05.

Figure 16b shows two Kaplan-Meier estimates produced from two data
sets in which the underlying distributions are identical and as such we expect
that both tests should fail to reject H0. The failure time data was generated
from a normal distribution with parameters, µ = 16 and σ = 4. The cen-
soring time data was generated from a normal distribution with parameters
given by, µ = 14 and σ = 1. In both cases 50 data points were gener-
ated. The Log-Rank and Weighted Kaplan-Meier tests returned p values of
0.1113 and 0.6952 respectively which is in line with what we would expect
at a confidence level of α = 0.05.

The above tests represent two different instances of the Kolmogorov-
Smirnov producing the correct results given the underlying data that the
two tests are based on. However a more extensive examination can be ap-
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plied that allows us to check the code is producing correct results across
m = 1000 different hypothesis tests. To do that we must outline the follow-
ing mathematics below. Given a true hypothesis H0, and given a generalized

statistic θ̂
d∼ X, with p value given by,

p = P(X ≥ θ̂), (25)

for a rejection threshold α all p must values have the property that,

P(p ≤ α) = α for all α ∈ [0, 1]. (26)

That is, the p value is uniformly distributed. If we use synthetic data to
produce many p values based on true hypothesis tests, we can check the
EDF is uniform and thus confirm our test is working over a much larger
sample size than just one test.

Figure 17 is a simulated illustration of uniform p values for the Kolomgorov-
Smirnov test. Here 10000 hypothesis tests were performed under a scenario
in which H0 is true. The p values produced were then used to create an
empirical distribution function,

F p
n(α) =

1

n

n∑
i=1

I(pi ≤ α). (27)

Figures 17 also shows a simulation of the p value distribution for the
Weighted Kaplan-Meier and Log-Rank tests to provide evidence supporting
their correct functioning beyond just the testing of one false and one true
hypothesis as with other figures. The WKM and LR tests were implemented
specifically for this thesis. Figure 18 plots a set of p values under true H0 for
the modified Kolmogorov-Smirnov test for right censored data [12] described
in section 2.4.2. Here we see a p value distribution that is close to uniform.

Figure 19 shows what happens to the distribution of p when H0 is not
true. Here multiple KS tests were performed to produce p value distributions
using survival curves that are estimated from data with increasingly different
19(a) means and 19(b) variances of the underlying distribution. As we can see
the distributions diverge from uniformity and the probability of a rejection
of H0 becomes much higher.

In Figure 20 we produced two identical survival distributions. Both failure
and censoring time data was generated from a univariate normal distribution
with parameters µ = 10 and σ = 1. Hypothesis tests were performed,
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H0 : S1(t) = S2(t) at a significance level α = 0.05, using both the Log-Rank
and Weighted-Kaplan Meier tests. We repeated this experiment 1000 times
to produce Figure 20(a) in which we see that there are a few instances of
rejection of H0 in line with the chosen α value of 0.05. As we increase the
number of tests we perform the chance that we produce false positive results
increases. Figure 20(b) shows the same test again but here HBM was used to
adjust the rejection threshold. As we can see there are almost no rejections.

Figure 21 presents a test to provide evidence that the numerical hypoth-
esis test presented in section 2.4.5 works correctly. Figure 21 shows the
uniform hypothesis test described above. Here the hypothesis test has been
performed 2000 times using data generated from a bivariate normal distri-
bution as described by equation 13 using parameters given by,

µ =

(
5
5

)
, Σ =

(
3 0
0 3

)
, (28)

the distribution produced is uniform as we would expect. However we note
that there is some discretization due to the fact we are resampling with
replacement from a data set to produce estimates.

42



2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

 

 

EDF of data

Reference distribution

(a)

2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

 

 

EDF of data

Reference distribution

(b)

Figure 15: KS Test, Section 2.4.1. Here we use the KS Test to check if a
set of data has a specific distribution. Data was generated (n = 150) from
a normal distribution with parameters µ = 5, σ = 1. (a) We then used the
built in Matlab function KSTest to check if the data generated had a normal
distribution with the same parameters. The result was a failure to reject that
the data has the specified distribution at α = 0.05 with a p value of 0.5928.
(b) We then used the built in Matlab function KSTest to check if the data
generated had a normal distribution with the parameters µ = 6, σ = 1. The
result was a rejection at α = 0.05 with a p value of 1.3590× 10−26.
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Figure 16: Log-Rank Test, Section 2.4.3 and Weighted Kaplan-Meier test
Section 2.4.4. Here we compare two Kaplan-Meier survival curve estimates
using synthetic failure time and censoring data with both the Log-Rank and
Weighted Kaplan-Meier tests. In both cases n = 50. (a) Both observations
use the data generated from the same underlying distributions. The Log-
Rank test returns a statistic of 2.5361, which gives a p value of 0.1113. The
Weighted Kaplan-Meier test returns a statistic of 0.2667 which gives a p
value of 0.6952. Thus in both cases we would correctly fail to reject H0 at
a confidence level of α = 0.05. (b) Here both observations have the same
censoring distribution, but one has a failure time distribution which differs
by a mean of 1. The Log-Rank test returns a statistic of 9.1401, which gives
a p value of 0.0025. The Weighted Kaplan-Meier test returns a statistic of
1.2357 which gives a p value of 0.0073. Thus in both cases we would correctly
reject H0 at a confidence level of α = 0.05
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Figure 17: KS Test, Section 2.4.1. LR Test, Section 2.4.3. WKM Test,
Section 2.4.4. Under the null hypothesis, the p-value distribution is uniform,
shown here as the black line. Comparison with it is provided as evidence
that the implementation of hypothesis tests are working correctly. (Green)
Kolmogorov-Smirnov testH0 true, (Black) Kolmogorov-Smirnov testH0 false
(Red) Log-Rank test H0 true (Blue) Weighted Kaplan-Meier test H0 true.
Tests under false H0 have a distribution centred around a much smaller value
as, assuming the correct working of the test, the p values should be much
smaller.
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Figure 18: Modified KS Test for right censored data, section 2.4.2. Under the
null hypothesis, the p-value distribution is uniform, shown here as the black
line. Comparison with it is provided as evidence that the implementation of
hypothesis tests are working correctly for the modified Kolmogorov-Smirnov
test for right censored data described in section 2.4.2.
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Figure 19: KS Test, Section 2.4.1. Here we show further evidence for a working
Kolmgorov-Smirnov test via uniform p values. Using data to produce the estimates
from an underlying distribution such that H0 begins true, and so produces a uni-
form distribution. (a) Here, the green curve shows the test when both estimates
were produced from underlying normal data was identical, with µ = 5 and σ = 1,
the curves then have a progressively larger rejection rate as µ goes from 5 to 4.4
while σ = 1 stays the same. (b). Here σ = 1 increases to 1.6 producing uniform
p initially when H0 is true, with a rapidly increasing threshold of rejection as the
distributions begins to differ further.
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Figure 20: FWER and HBM, Section 2.4.6. Two survival distributions were
compared based on synthetic data with the same underlying distribution. We
repeated this experiment 1000 times. This plot shows the number of times the
WKM test accepted and rejected H0 : S1(t) = S2(t) both without the HBM (a)
and with the HBM (b). As we can see the number of false positives has been
reduced when the HBM method is applied for both the WKM and LR tests. This
is as we would expect from looking at Figure 13, we see that when performing 100
tests the FWER is close to 1. When the HBM is applied the FWER is close to
0.05 and so we except fewer false positives.
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Figure 21: Under the null hypothesis, the p-value distribution is uniform as
evidence that the implementation of bootstrap hypothesis test described in
section 2.4.5 is working correctly. As expected the distribution of p values
under true H0 has a uniform distribution but with some discretization due
to the resampling process.
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Chapter 3

3 Statistical Extensions

In this chapter we cover defective distributions and symmetry. These two
topics are important modifications to the survival analysis tool set. As men-
tioned in both the Kaplan-Meier and Dabrowska sections, when the final event
is censored, the survival curve does not reach 0. When this occurs we need a
way to deal with it that allows us to still perform statistical tests, and calculate
expectations and variances. The second section, which covers symmetry, al-
lows us to leverage the fact that siblings have no inherent rank-order. We use
this fact to generate improved estimates when calculating survival functions.
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This chapter introduces two extensions to the statistical tool kit we have
described in chapter 2 that will be used to inform and improve the analysis
of the B cell data set [10] in chapter 4.

Firstly, section 3.1 introduces an estimator for the probability that cells
are not motivated to undergo certain events. The model developed in [10]
discussed the fact that some B cells will never for example, divide, regardless
of the length of time given. Under this assumption we propose a statistical
estimator for the probability that the failure time distribution, T , can take
on the value infinity. This is denoted by,

P (T = ∞) = p∞. (29)

We then apply numerical simulations to give evidence for estimators hav-
ing properties required to perform our analysis.

Secondly, in Section 3.2 we propose a modified Dabrowska estimator,
sym-Dabrowska that leverages the assumption of symmetry in the underlying
bivariate failure time distribution. The use of this estimator will improve
both the quality of the survival distributions we estimate, and the reliability
of the statistical tests we perform on the B cell data set [10].

3.1 Defective Distributions

In [10] three parameters are defined to describe the probability cells never
undergo division, differentiation to PB, and IgM to IgG1 class switching:
pdiv, pdiff , pswitch. This is because not all cells will necessarily activate the
machinery to undergo these processes [10]. Ideally we would like to define a
statistic that can be used to calculate this parameter in terms of the data.
Below we develop a maximum likelihood estimator of pdiv. To account for
the possibility that division does not occur, we will modify non-negative
real valued random variable representing the division time, T , such that
with probability p it can take on value ∞, otherwise it will take on the
usual division time, represented here by the non negative real valued random
variable A,

T = (1−B)A+B∞, (30)

whereB is a Bernoulli random variable taking values in {0, 1} with P (B =
1) = p. The censoring event is given by non-negative real valued random
variable C. We define the observable random variables as Y = min(T,C)
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and ∆ = I(T < C). A data set made up of observations from these random

variables is given by D
(1)
n = {(yi, δi)}ni=1 in a similar way to equation 6.

We express the likelihood over the n data points in terms of the PDFs and
survival functions of T,C and A as follows,

L(D(1)
n |θ) =

n∏
i=1

[fT (yi)SC(yi)]
δi [fC(yi)ST (yi)]

1−δi

=
n∏

i=1

[(1− p)fA(yi)SC(yi)]
δi [fC(yi)(p+ (1− p)SA(yi))]

1−δi ,

we can then take the logarithm,

logL(D(1)
n |θ) =

n∑
i=1

log([fT (yi)SC(yi)]
δi [fC(yi)SG(yi)]

1−δi)

=
n∑

i=1

(δi) log[(1− p)fA(yi)SC(yi)] + (1− δi) log[fC(yi)(p+ (1− p)SA(yi))]

=
n∑

i=1

(δi) log(1− p) + (δi) log fA(yi) + (δi) logSC(yi) + (1− δi) log fC(yi)

+ (1− δi) log(p+ (1− p)SA(yi)),

then we differentiate with respect to p,

∂ logL(D(1)
n |θ)

∂p
=

n∑
i=1

δi
p− 1

+
(δi − 1)(SA(yi)− 1)

p+ SA(yi)− pSA(yi)
. (31)
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Figure 22: Kaplan-Meier survival function estimate for generation 7 division
data. Here we see that the survival curve does not reach zero and S(tm) > 0.
Dashed lines show 95% confidence intervals generated using Matlabs ECDF
function.

This equation can not be solved for p explicitly and so we cannot get
an explicit expression for the probability of infinity in terms of the data via
maximum likelihood method. However the above equation could be evaluated
numerically. If we take a look at an example of a defective distributions for B
cell data like the Kaplan-Meier estimate for time to divide in Figure 22 we see
that this curve does not reach zero. At the end point there is some probability
mass left over. We use this to propose an estimator of the probability that
the failure time event does not occur as,

p̂n = min
t∈{yi}ni=1

Ŝn(t). (32)

In order to check this estimate is reasonable we will provide simulations
to suggest it is both consistent [43],

lim
n→∞

P (|p̂n − p|< ϵ) = 1, (33)

and that it is unbiased,
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(E[p̂n]− p) = 0 for all n. (34)

In Figure 23 we provide evidence to support the hypothesis that equa-
tion 32 has the properties discussed above as an estimator of p, via simula-
tion. Here we generated data using the above random variables such that
the censoring distribution C and the failure time distribution T both had log
normal distributions with parameters µ = 0 and σ = 1. We then introduced
the Bernoulli distribution B with parameter given by p = 0.15 to determine
if the failure time would take on the value ∞. Data sets were then generated
of different lengths with multiple data sets for each length, allowing the pro-
duction of distributions of estimates for fixed n. We then used this data to
show box plots in Figure 23 as well as give evidence for consistency.

Looking at the upper plot of Figure 23, we see that as the amount of data
used to produce the estimate increases, the estimate tends towards the true
underlying value given by the distributions from which the data was sampled
with p = 0.15. This provides evidence for consistency of the estimator.

The bottom plot shows many box plots, each of which represents the
distribution of p̂ for a specific value of n given by the x coordinate. From
this we see that the mean value of all of the estimates of p̂ from data of a
specific length produce an expected value close to the underlying value of
p = 0.15. This is to give evidence for the estimator being unbiased as the
expected value for all p̂n for a given n average around the true value of p.

The last property from the plot 23 shown here shows that as n increases
the distributions centre more closely around the true value of p = 0.15 sug-
gesting that the estimator is asymptotically unbiased.
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Figure 23: Consistency and unbiasedness of minSn(t) as an estimator of the
probability of a defective distribution. The upper sub plot shows five sample
paths of 1000 that were generated. The average path is also shown which
can be seen to rapidly convergence to the true underlying value of 0.15. The
lower sub plot in this figure shows a collection of box plots each representing
the empirical distribution of 10000 p̂ = mint Ŝ(t) estimates. The length of the
data used to produce the collection p̂ estimates then increases sequentially
for each box plot. As we can see convergence is taking place towards the true
value of 0.15 through a reduction in the overall variance of the estimates and
the mean value as n increases.

3.2 Symmetric Dabrowska estimate

As discussed in the introduction, under the hypothesis that the data set
collected in [10] has no inherent rank order we expect the underlying marginal
distributions to be symmetric.

While the symmetry is motivated here by the data source [10], it is rea-
sonable to assume that this idea could apply in any situation where there is
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symmetry in distribution of the the pairs. As an example, the time, after
surgery for a pair of eyes to become fully healed, or the lifetime of identical
light bulbs produced in pairs. In both of these cases we see that see there is
no item within the pair that is inherently the first item and so we propose
that the underlying marginal distributions will be the same.

Firstly we will cover the uncensored a MLE in Section 3.2.1 and then
adapt this to the censored case in 3.2.2.

3.2.1 Bivariate EDF

In this section we elaborate on an existing proof describing the MLE of a
bivariate symmetric distribution that does not consider censoring [35]. The
core idea here can then carried over to solve the case involving censored data.

Proof. Given n IID observations {(xi, yi)}ni=1 from a bivariate distribution
F (x, y) where the underlying random variables (X, Y ) are exchangeable and
so,

F (x, y) = F (y, x),

the MLE is given by,

F̂ sym
n (x, y) =

1

2
(F̂n(x, y) + F̂n(y, x)), (35)

where,

F̂n(x, y) =
1

n

n∑
i=1

I(xi ≤ x, yi ≤ y),

is the MLE without the assumption of symmetry.
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Figure 24: Probability regions Ri with n =
∑4

i=1 ni and ni =∑n
i=1 I((xi, yi) ∈ Ri) represents the observed frequency of random variable

Ni probability Pi = P((xi, yi) ∈ Ri) in region .

We split the range of (X, Y ) into regions such that n1 =
∑n

i=1 I((xi, yi) ∈
R1) is the observed frequency of random variable N1 in region R1 with prob-
ability P1 = P ((X, Y ) ∈ R1) as shown in Figure 24. We wish to estimate
F (x, y) = P1 + P2 using maximum likelihood where the MLE is given over
all the regions as,

L({ni}|F ) =
4∏

i=1

P ni
i = P n1

1 P n2
2 P n3

3 P n4
4 ,

using symmetry, P1 = P3 and so,

L({ni}|F ) = P n1+n3
1 P n2

2 (1− 2P1 − P2)
n4
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taking logarithms we have,

log (L({ni}|F )) = (n1 + n3) log(P1) + n2 log (P2) + n4 log(1− 2P1 − P2)

and then differentiating w.r.t P1 and P2,

d log(L)

dP1

=
n1 + n3

P1

− 2n4

1− 2P1 − P2

d log(L)

dP2

=
n2

P2

− n4

1− 2P1 − P2

d log(L)
dP1

= 0 gives,

P1 =
1

2n
(n1 + n3)

d log(L)
dP2

= 0 gives,

P2 =
n2

n

to get the combined symmetric estimate,

F s
n(x, y) = P1 + P2 =

1

2n
(n1 + 2n2 + n3) =

1

2
(Fn(x, y) + Fn(y, x))

This estimator now places probability mass 1/2n at point of observations
(xi, yi) unlike the EDF which places probability mass 1/n.

3.2.2 Dabrowska estimate

Given bivariate failure times (T1, T2) with corresponding independent bi-
variate censoring times (C1, C2), observable random variables are defined as
(Y1, Y2) = (min(T1, C1).min(T2, C2)) and (∆1,∆2) = (I(T1 < C1), I(T2 <
C2)), Dabrowska provides an estimate for S(t1, t2) by defining bivariate haz-
ard in terms of the joint distribution of (Y1, Y2) and (∆1,∆2). Given func-
tions,
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K1(t1, t2) = P(Y1 > t1, Y2 > t2,∆1 = 1,∆2 = 1), (36)

K2(t1, t2) = P(Y1 > t1, Y2 > t2,∆1 = 1), (37)

K3(t1, t2) = P(Y1 > t1, Y2 > t2,∆2 = 1), (38)

H(t1, t2) = P(Y1 > t1, Y2 > t2). (39)

Which are used to define univariate cumulative hazard functions and a
bivariate cumulative hazard function as,

Λ11(t1, t2) =

∫ t1

0

∫ t2

0

K1(du, dv)

H(u−, v−)
,

Λ10(t1, t2) =−
∫ t1

0

K2(du, t2)

H(u−, t1)
,

Λ01(t1, t2) =−
∫ t2

0

K3(t2, dv)

H(t2, v−)
.

Given iid right censored observations, as in equation 9. Dabrowska [7]
uses the following empirical functions as estimates of the above,

K̂1(t1, t2) = n−1

n∑
i=1

I(y1i > t1, y2i > t2, δ1i = 1, δ2i = 1), (40)

K̂2(t1, t2) = n−1

n∑
i=1

I(y1i > t1, y2i > t2, δ1i = 1), (41)

K̂3(t1, t2) = n−1

n∑
i=1

I(y1i > t1, y2i > t2, δ2i = 1), (42)

Ĥ(t1, t2) = n−1

n∑
i=1

I(y1i > t1, y2i > t2). (43)

We will now apply the logic from section 3.2.1 to produce symmetric
empirical estimates of equations (39)–(42), which will result in a symmet-
ric Dabrowska estimate through the relationship to the cumulative haz-
ard functions described above. As with the proof shown above, we be-
gin by splitting the range of failure times (T1, T2) into regions such that
n1 =

∑n
i=1 I(y1i, y2i ∈ R1, δ1i = 1) is the observed frequency of random vari-

able N1 in region R1, the probability of which is given by P1 = P (N1 ∈ R).
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Here however, we split the regions by components such that only the data
with the first element censored is used. This will allow the estimation of
K2(t1, t2).

As before we can express the maximum likelihood in terms of the proba-
bility observed frequencies and their respective probabilities,

L({ni}|S) = P n1
1 P n2

2 P n3
3 P n4

4 ,

which due to symmetry we have P1 = P3, as before we can also take
logarithms and maximise over parameter Pi. We wish to estimate the region
given by,

K2(t1, t2) = 1− (P1 + P2),

which, using the results from before, leads to,

K̂sym
2 (t1, t2) = 1−

(
1

2n
(n1 + 2n2 + n3)

)
,

where n1 and n2 are the observed number of elements in R1 and R2 in which
the first element is censored. We can rewrite this equation as,

K̂sym
2 (t1, t2) =

1

2
(K̂2(t1, t2) + K̂2(t2, t1))

=
1

2
(K̂2(t1, t2) + K̂3(t1, t2))

.

we can also define the second marginally censored estimator as follows,

K̂sym
3 (t1, t2) =

1

2
(K̂3(t1, t2) + K̂3(t2, t1))

=
1

2
(K̂3(t1, t2) + K̂2(t1, t2))

.

and by similar logic, we obtain the following, leaving us with the follows
symmetric estimators,
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K̂sym
1 (t1, t2) =

1

2
(K̂1(t1, t2) + K̂1(t2, t1)), (44)

K̂sym
2 (t1, t2) =

1

2
(K̂2(t1, t2) + K̂3(t1, t2)), (45)

K̂sym
3 (t1, t2) =

1

2
(K̂3(t1, t2) + K̂2(t1, t2)), (46)

Ĥsym(t1, t2) =
1

2
(Ĥ(t1, t2) + Ĥ(t1, t2)). (47)

As with the symmetric empirical distribution these estimates place prob-
ability mass 1/2n at each point (xi, yi) where their counterparts would place
probability mass 1/n.

3.2.3 Synthetic Example

Here we present synthetic data simulations using the symmetric Dabrowska
estimate.

Figure 25 shows a simple comparison between the Dabrowska and sym-
metric Dabrowska estimates. Both were generated using the exact same
underlying failure time and censoring time data from a bivariate normal dis-
tribution as given by equation 13 with 50 points of data and parameters show
in equation 48. Distances between true distribution, as defined by equation
14 were 0.2725 for (a) and 0.2502 for (b).

Figure 26 shows convergence of the symmetric Dabrowska estimate using
parameters from a bivariate normal distribution as described by the PDF in
equation 13. The parameters for this distribution are,

µ =

(
5
5

)
, Σ =

(
3 1.5
1.5 3

)
, (48)

The data increased sequentially with each plot from n = 50, 150 and n = 500.
(b)–(c). Here we see that as the amount of data increases the distance to the
true distribution is decreases.

Figure 27 shows what happens when the symmetric Dabrowska estimate
is used when the underlying data is not symmetric. Here failure and censor-
ing time data were generated from a normal distribution, however here the
parameters were not symmetric.

µ =

(
4
6

)
, Σ =

(
2 1.5
1.5 2

)
, (49)
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As we can see from the true distribituon in Figure 27 (a), as the amount of
data increases in Figure 27 (b)—(c) convergence is not taking place to the
true distribution.

Finally Figure 28 compares the convergence of the Dabrowska and Sym-
metric Dabrowska estimates when the underlying distribution is symmetric
(upper panel) and not symmetric (lower panel) for sequentially increasing
amounts of data. In the upper panel both estimates converge to the true
failure time distribution the data was sampled from where as in the lower
panel only the Dabrowska estimate converges since the underlying failure
time distribution is not symmetric.
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Figure 25: Comparison between the Dabrowska estimate which makes no assump-
tions about the marginal distribution, (a) and the new symmetric version (b). Here
50 points of data from a symmetric bivariate normal distribution with equally dis-
tributed censoring data were used. Distribution given by equation 48. Distances
between true distribution, as defined by equation 14 given by 0.2725 and 0.2502
respectively.
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Figure 26: Convergence of the symmetric Dabrowska estimate to true failure
time distribution using synthetic data. (a) Survival function of the actual nor-
mal distribution as defined with the parameters in equation 48. (b)–(d) Sym-
metric Dabrowska estimates using failure time and censoring time data generated
from two bivariate normal distributions with parameters described by equation 48.
Amount of data increased sequentially ((b) n = 50, (c) n = 150, (d) n = 500).
Supremum norm between Dabrowska estimate to true survival function give by
0.1528, 0.1323 and 0.0556 respectively.
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Figure 27: Convergence of the symmetric Dabrowska estimate to the wrong dis-
tribution when the underlying failure time distribution is not symmetric. Failure
and censoring data generated from a bivariate normal distribution with parame-
ters given by 49. (a) True failure time distribution (b)–(d) Symmetric Dabrowska
estimate as amount of data used increases sequentially ((b) n = 50, (c) n = 150,
(d) n = 500. Supremum norm between Dabrowska estimate and true survival
function given by 0.3154, 0.2976 and 0.2777 respectively.
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Figure 28: Comparison of convergence for Dabrowska and Symmetric
Dabrowska estimates when the underlying distribution is symmetric (up-
per panel) not symmetric (lower panel). The maximum difference between
estimate and reference distribution is calculated as in equation 14 for sequen-
tially increasing amounts of data as in the Chapter 2 Figure 12 to produce
a distribution for each n. In the upper panel, both estimates converge to
the failure time distribution the data was sampled from. In the lower panel
the Dabrowska estimate converges as n becomes large while the symmetric
estimator does not. The symmetric Dabrowska estimate will only converge
to the correct distribution when the underlying failure distribution is sym-
metric.
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Chapter 4

4 Non-parametric Survival Analysis of Pub-

lished Data

Here we use the statistical techniques discussed and developed in chapters 2
and 3 to provide analysis of the already published data in [10]. Given this
data set, we will try to answer two questions. 1) Is the assumption of log
normality reasonable as a description of the marginal distribution of time
to IgM to IgG1 class switch and for the marginal distribution of time to
differentiate to plasmablast in B cells in this data set? If so, is it reasonable
assumption for the joint distribution of time-to-event in pairs of sibling B
cells? 2) How does the time to event vary with generation?

66



4.1 Testing the Assumption of Log-Normal Marginal
Distributions

In the introduction we discussed testing the assumption of log-normality
for the distribution of time-to-event. Existing work [8] [18] shows that the
marginal distribution of time to divide and time to die in B cells are well
described by a log normal distribution.

Using the data collected during [10] we can further test similar assump-
tions by looking at the marginal distribution of the time taken for B cells to
IgM to IgG1 class switch, and the marginal distribution of time to differen-
tiate into a plasmablast. We can further look as this distribution in different
generations of B cells and provide analysis for each of them.

If we are able to determine that a log normal distribution is appropriate
in the marginal case, then it makes sense to use the bivariate statistical tools
we have developed in chapters 2 and 3 to then consider the assumption that
time-to-event in pairs of sibling cells should follow a bivariate log normal
distribution. If evidence suggests marginal distributions are not appropriate
or given the available data we can not determine with a high enough degree
of certainty if it is possible, then it does not make sense to consider this type
of distribution for the time to event in pairs of B cells.

Figure 29 shows the survival distributions for the time to differentiate to
plasmablast for all generations of available data. Each subplot shows a set
of survival curves for one of the generations for which data was collected in
[10] comparing the Kaplan-Meier estimate of the time to differentiate to plas-
mablast and a Log Normal survival function computed using the parameters
in [10].
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Figure 29: The above plots show the log normal survival function estimates
[10], and Kaplan-Meier survival function estimates for the time to differen-
tiate to a plasmablast for all four generations of available B cell data. KM
UB and KM LB show the 95% confidence intervals.

As well as performing hypothesis tests we can make a quantitative com-
parison between the two survival curves through statistics including the ex-
pected time to event and the probability of finite event time p. Since the
survival distributions are often expected to be defective and so do not go to
zero, we will compare the conditional expectation up to a given time point
which we define in terms of our dataset in equation 6 as

t∗ = max({yi}ni=1 : δi = 1). (50)

We then calculate the conditional expectation from the Log-Normal param-
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eters, given PDF fLN(x) and CDF FLN(x) as

E(T |T < t∗) =

∫ t∗

0

fLN(x)

FLN(t∗)
dx. (51)

and calculate the conditional expectation from the Kaplan-Meier survival
function given by Ŝ(x) as

E(T |T < t∗) =

∫ t∗

0

Ŝ(x)− Ŝ(t∗)

1− Ŝ(t∗)
dx. (52)

Figure 30 shows similar results across different generations for the condi-
tional expectation of time-to-event with larger differences occurring in gener-
ations 5 and 7. The probability that cells don’t undergo differentiation varies
with generation but shows no real trend in either models, with both models
giving estimates that do not compare well in generations 1 and 5.
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Figure 30: Conditional expectation of time to differentiate to plasmablast and
probability p that cells do not undergo the event for all generations using both
Kaplan-Meier (Non-Parametric) estimate and estimates produced in [10] (Para-
metric). Bootstrapping was used to generate 95% confidence intervals for these
estimates.

We can now take a visual look at the survival distribution estimates for
time to IgM to IgG1+ class switch. These are shown for all four generations
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in Figure 31. In most cases there is some agreement between the two meth-
ods, especially at early time points, with generation 3 showing the worst
correspondence between the two methods of estimation. In Generation 1
there is almost no estimate available, due to the small amount of switching
events observed in generation 1 B cells which can be seen from the event data
plot in Figure 33.
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Ŝ
(t
)

Ge ne ration 1

 

 

Kaplan−Meier

Parametric

KM LB

KM UB

0 20 40 60
0

0.2

0.4

0.6

0.8

1

T ime

Ŝ
(t
)

Ge ne ration 3

0 20 40 60
0

0.2

0.4

0.6

0.8

1

T ime

Ŝ
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Figure 31: The above plots show the log normal survival function estimates
[10], and Kaplan-Meier survival function estimates for the time to IgM to
IgG1+ class switch for all four generations of available B cell data.

Figure 32 shows the conditional expectation as defined above and the
probability of finite event time for both estimation methods. Here we see
some correspondence between the two methods. We see a high degree of
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similarity between the two methods of estimation for the probability that
switching does not occur, p.
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Figure 32: Conditional expectation of time to IgM to IgG1 class switch and
probability p that cells do not undergo the event for all generations using both
Kaplan-Meier (Non-Parametric) estimate and estimates produced in [10] (Para-
metric). Bootstrapping was used to generate 95% confidence intervals for these
estimates.

As mentioned above there was not enough data available to produce a
good estimate for generation 1 switching. Figure 33 shows the number of
observations of each type available in each generation. This shows us the
number of plasmablast differentiation events and number of IgM to IgG1
class switching events available to produce survival function estimates across
all generations. As a side note, we see a characteristic features observed in
[19]. They [19] note that IgG1+ class switching does not begin until after
the first division has occurred, with a plateau occurring after six divisions.
This helps explains the low number of observations in generation 1.
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Figure 33: The number of plasmablast differentiation events and number of
IgM to IgG1 class switching events available to produce survival function
estimates across all generations.

This behaviour of cell switching helps support the idea that in most cases
before generation two we expect to see very little isotype switching, which
explains the low amount of event count for generation 1 switching and the
corresponding low probability of finite event time.

Next, we performed a goodness of fit test to check the hypothesis that
time to switch and time to differentiate data is well described by a log normal
distribution using the parameters estimated for a log normal distribution in
[10]. The test chosen was a modified version of the Kolmogorov-Smirnov test
for right censored data [12] described in 2.4.2. Here we take a collection
of right censored observations, shown in uncensored form by the Kaplan-
Meier estimate, and perform a two sided statistical test to check if these
observations follow a log-normal distribution with parameters given by the
estimates in [10].

As we cannot compare estimates based upon the same data set when
performing hypothesis tests, we had to split the available data using one
half to produce the log normal distribution parameters (instead of using the
parameters in [10] which used the full data set), and the other half as the
data whose distribution we suspect to be log normal. The results of the test
are shown in the table below.

We can see in most cases at the level α = 0.05, the tests would reject
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Generation P Value - Differentiation P Value - Switching
1 0.0070 0.0059
3 1.6606e-7 0.0004
5 0.0050 0.4635e-9
7 0.0953 0.0043

Table 4: Results of statistical test to check the possible log normality of
distribution of time to IgM to IgG1 class switch and time to differentiate to
plasmablast. This test was performed using a modified Kolmogorov-Smirnov
test for right censored data [12].

the hypothesis that a log normal distribution is an appropriate choice for
distribution of time-to-event for differentiation to plasmablast and IgM to
IgG1 class switch. However we must be careful in reading too much into
these tests, as not only did we half the data set, in some instances there
would not have been appropriate data to begin with (for example generation
1 switching).

Given the results of the hypothesis tests performed and the statistics cal-
culated, we can conclude that while the log normal distribution may not be
the perfect choice for the distribution of time to class switch and differentiate
in B cells, it may be an appropriate choice is coarse models where a para-
metric model is necessary or preferable. Ideally it would be best to collect
a larger data set in order to produce more accurate statistics, and perform
hypothesis tests with which we can have greater confidence before making
definitive conclusions about the class of distributions B cells should follow.

4.2 Testing the Change in Time-To-Event as a Func-
tion of Generation

In this section we investigate how time-to-event varies with cell generation.
Firstly we will take a qualitative look at how the survival curves vary with
generation, we compare the expected time-to-event across generations, and
the probabilities of finite event time. Lastly we performed Log-Rank hypoth-
esis tests to see if it is possible to reject the hypothesis that any two survival
distributions share the same underlying time-to-event distribution.

Figure 34 shows the Kaplan-Meier survival function estimates of the time-
to-event for all possible generations and cell fates for which data was col-
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lected. Figure 35 shows the number of events available for all generations
and event types.

In the previous section, when comparing the conditional expectation be-
tween the parametric and non-parametric models, we conditioned the expec-
tations from both models such that T < t∗ where t∗ is defined in equation 50.
In order to make the comparison fair across generations such that each condi-
tional is the same we define a new t∗. If t∗i gives the value of t

∗ for generation
i then we conditioned all expectations of a given fate on t∗∗ which is defined
as,

t∗∗ = min{t∗1, t∗3, t∗5, t∗7}. (53)

An import consideration when using this definition is that t∗ may reflect
the censoring distribution more than the event distribution if mean censoring
time is less than mean event time. Tables 5, 6, 7 and 8 show these conditional
expectations for all event types and generations as well as the probabilities
of finite event time.
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Figure 34: Kaplan-Meier survival function estimates showing the time-to-
event for the B cell data set [10]. Each plot shows all generations within a
specific cell fate.
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Figure 35: Number of observations for every event type and generation for
the data published in [10].

We begin by considering the time to cell division. The Kaplan-Meier
estimates for time to division are shown in Figure 34, here we see that all
curves begin with a period of guaranteed survival, this is because there is
a minimum time it takes for a cell to begin the division process of approxi-
mately 8 hours [21]. We then see a steady decline in survival over the next
15—60 hours with generations 1 and 3 eventually reaching a value close to
zero, at which point most cells have undergone division. On the other hand
survival curves for generation 5 and 7 end at a value much greater than zero,
indicating that cells in later generations are less likely to divide. This is in
line with expectations as towards the end of an in vivo immune response cells
stop proliferating and start dying by apoptosis [21].
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Fate Division
Gen 1 3 5 7
p 0.987 1.000 0.831 0.704
E(T |T<30.33) 21.676 19.025 15.610 14.799

Table 5: Table of statistics for time to division for all generations. The
column labelled p shows the probability that the even time is finite. The
bottom column shows the conditional expectation conditioned on time t∗∗

which is defined in equation 53.

In Table 5 we see that the conditional expectation for time to division,
conditioned on T < 30.33 = t∗∗ where t∗∗ is defined in equation 53 and con-
ditional expectation for Kaplan-Meier is defined in 52. Having conditioned
the expectation for the purpose of comparison, we do not capture all of the
information as generations have a lot of division events that occur after this
time point. From these values we see a slow decline in the conditionally
expected time to divide as the generation increases. This is something we
would expect as it is observed that earlier generations of division take longer,
with later division times being smaller. In this table we also see a deceasing
probability of finite event time which as explained above is something we
would expect.

Fate Death
Gen 1 3 5 7
E(T |T<47.33) 37.543 30.605 23.646 19.683

Table 6: Table of statistics for time to die for all generations. Conditional
expectation conditioned on time t∗∗ which is defined in equation 53. This
table does not show a probability of finite event time as death will occur
in every cell and so event time is always assumed to be finite even if the
estimate does not currently have enough data to estimate it.

Next we consider how time to die changes with generation. Figure 34
shows a plot of the Kaplan-Meier estimates for time to cell death for every
generation. We can see here that there is a clear trend, as the generation
number increases, the probability of survival decreases. This is clear because
the survival functions become smaller with each generation. This is in line
with our expectations during an immune response, initially cells are dividing
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and diversifying in order to fight an infection, and in later generations these
processes stop as cells rapidly die by apoptosis [21]. Table 6 shows the
conditional expectation for the time to die with the condition as defined in
equation 53. We see the value decreases as the generation increases, again
this confirms what we would expect given a normal in vivo immune response.

Fate Differentiation
Gen 1 3 5 7
p 0.522 0.305 0.722 0.405
E(T |T<30.67) 17.245 17.798 15.466 14.318

Table 7: Table of statistics for time to differentiate for all generations. The
column labelled p shows the probability that the even time is finite. The
bottom column shows the conditional expectation conditioned on time t∗∗

which is defined in equation 53.

Next we compare the time for cells to differentiate into plasmablasts.
Again Figure 34 shows the Kaplan-Meier estimate of time to differentiate for
all generations. Here we see that there is much less variability between gen-
erations, with most of survival curves intersecting at different time points.
Conditional expectations in Table 7 show relatively similar values across gen-
erations, with generations 5 and 7 being 2—3 hours smaller than generations
1 and 3. The probabilities of finite event time show no real trend across
generations. Thus we conclude that unlike cell division and death it seems
that the uncensored times to differentiation do not change in a generation
dependent manner for this data set.

Fate IgM to IgG1 Class Switching
Gen 1 3 5 7
p 0.008 0.137 0.341 0.232
E(T |T<15.333) N/A 6.697 6.822 6.897

Table 8: Table of statistics for time to IgM to IgG1 class switch for all
generations. The column labelled p shows the probability that the even time
is finite. The bottom column shows the conditional expectation conditioned
on time t∗∗ which is defined in equation 53.

Figure 35 shows the number of switching events that occurred across each
generation. Here we see characteristic features observed in [19]. They note
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that IgG1+ class switching does not begin until after the first division has
occurred, with a plateau occurring after six divisions.

The Kaplan-Meier survival curves for class switching in Figure 34 show
similar values at early time points, with differences becoming more pro-
nounced over time. Generation 1 cells had only a small number of events,
with more data is available to produce estimates in later generations and the
most being in generation 5. All survival curves have a period during the first
few hours with a high probability of survival, eventually leading to a plateau.
Since the amount of data available to produce a survival curve for generation
1 switching is so low, it has been excluded when calculating a value for t∗∗.
We conclude that as the generation number increases, more switching events
occur, the expectation conditioned on t∗∗ is consistent across generations,
but the survival curves themselves vary with generation showing survival
probability decreasing faster in later generations.

In order to further quantify the difference in survival as the generation
increases, we present the results of Log-Rank statistical tests. Figure 36
shows the results of Log-Rank hypothesis tests comparing the unconditional
survival function estimates for all generations of a given fate, with all other
generations of that fate. The null hypothesis is that the two unconditional
survival functions are the same, as given by equation 16. To account for
the fact we are performing multiple tests, we have used the Holm-Bonferroni
method discussed in section 2.4.6 to adjust an α value of 0.05.

Figure 36 shows the results of all hypothesis tests performed and the
resulting p values. We see in all cases, the tests reject H0, saying that no
two generations follow the same distribution. In the cases of division and
death we would expect the distributions to change with generation, B cells
are more likely to die and less likely to divide as the generation increases [21],
this is also demonstrated through the estimates and figures presented above.
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Gen
1 3 5 7

1 1.00 0.00 0.00 0.00
3 0.00 1.00 0.00 0.00
5 0.00 0.00 1.00 4.97e-6

G
e
n 7 0.00 0.00 4.97e-6 1.00

(a) Division

Gen
1 3 5 7

1 1.00 6.07e-8 0.00 1.77e-8
3 6.07e-8 1.00 5.22e-9 1.25e-2
5 0.00 5.22e-9 1.00 2.35e-1
7 1.77e-8 1.25e-2 2.35e-1 1.00

(b) Death

1 3 5 7
1 1.00 0.00 0.00 0.00
3 0.00 1.00 0.00 0.00
5 0.00 0.00 1.00 4.29e-4

G
e
n 7 0.00 0.00 4.29e-4 1.00

(c) Differentiation

1 3 5 7
1 1.00 9.60e-6 0.00 0.00
3 9.60e-6 1.00 0.00 0.00
5 0.00 0.00 1.00 1.68e-4
7 0.00 0.00 1.68e-4 1.00

(d) Class Switching

Figure 36: Log-Rank Hypothesis tests comparing all generations within a
given fate. The null hypothesis is shown in equation 16. A green cell indicates
the test acceptsH0 and a red cell indicates its rejection. Each cell contains the
p values produced by the Log-Rank test. The rejection level of α = 0.05 was
modified for multiple testing using the Holm-Bonferroni procedure described
in section 2.4.6.

Differentiation and class switching show that despite similar conditional
expectation estimates across generations, the hypothesis tests reject H0 in
all cases. We must be careful when comparing statistics, as the expectation
is conditioned on T < t∗∗, where the hypothesis test uses the unconditional
distribution and the underlying hypothesis in the parametric model is that
all distributions bar Tdie can be defective with a positive probability mass
at +∞. Despite the similarities between the survival functions over the
conditional range, when tested over the full range of time points, the survival
curves are sufficiently different over T ≥ t∗∗ that H0 is rejected.

To investigate how the Log-Rank tests performs when the two survival
functions are estimated from data with identical underlying distributions,
but with one being possibly defective, we produced the numerical experiment
below. Unsurprisingly we see that the Log-Rank test has a higher probability
of rejection as the defective distribution places more probability mass at +∞.
We first generated two sets of failure time and censoring time data from
identical log normal distributions, similar to the distribution for generation
3 division, with parameters given by,

µ = 3 and σ = 0.25, (54)
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we then modify one of the data sets, such that a certain amount of the data
takes on the value infinity, corresponding to a chosen value for the probability
of finite event time. We then calculate the survival functions and perform
a Log-Rank test. Repeating this 10000 times, we produced an empirical
distribution of the p values generated by the Log-Rank test. This was then
repeated while keeping the underlying distributions identical but increasing
the probability of finite event time from 0.0 to 0.4 in steps of 0.1 for one of
the two distributions.

Figure 37 shows the result of this simulation. We see that when there is
no difference between the probabilities of finite event time, the distribution
of p values produced by the Log-Rank test is uniform as expected. When
we modify the probability of finite event time for one of the data sets, the
Log-Rank test produces p values that would result in a rejection of H0 at the
α = 0.05 level with greater probability as shown in the plot. This highlights
how the probability of finite event time can impact the result of hypothesis
tests, and shows that, while the conditional statistics can lead us to believe
two distributions are similar, if they are conditioned such that they miss
import aspects of the distribution then they can not be reliably used to fully
quantify the difference between two distributions.

In this section we have seen that in most cases the distribution of time-to-
event in B cells does vary with the generation number, something we would
expect given knowledge of the in vivo immune response. However we have
also seen that in some cases, while the overall distribution of time-to-event
are not the same when comparing two generations of a given fate, this may
be due to the proportion of B cells that have the mechanism for that event
“switched on”. In these cases we see that while a hypothesis test like the
Log-Rank test will reject the hypothesis that the underlying distributions are
similar, the time-to-event in cells that have the event “switched on” may be
the same.
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Figure 37: Empirical CDFs of Log-Rank p values showing how the distri-
bution of p values varies as the difference in probability of finite event time
between the two survival functions whose distributions are the same when
conditioned on being finite. Here 10000 pairs of Kaplan-Meier survival func-
tions are Log-Rank tested to produce an empirical CDF of the p values. This
is repeated as the difference in the probability of finite event time is modified
from 0.0 to 0.4 in steps of 0.1 by changing the proportion of the data with an
infinite value, keeping the underlying distribution of the data the same. Un-
derlying data is normally distributed with parameters shown in equation 54.
Here we can see that as the difference becomes larger, the proportion of p
values resulting in a rejection at the level α = 0.05 increases. We conclude
that while the survival functions are identical on a finite interval in all cases,
the difference in probability of finite event time causes an increased rejection
rate when the unconditional survival function is tested. Thus we would ex-
pect that, while B cells can have similar distributions when conditioned on
being finite, if they have a significant difference in the probability of finite
event time the Log-Rank test will conclude that they do not share the same
underlying distributions.
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Chapter 5

5 Analysis of Unpublished Data

Using previously unpublished data collected during the experiments reported
on in [10] we ask: What is the distribution of the time-to-event data of cells
that have already undergone differentiation to plasmablast and/or IgM to
IgG1 class switching? Are these distribution different to the published IgG1-
Blimp1- data studied in chapter 4?
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Here we use unpublished data collected during the experiments for [10] to
study the time-to-event in cells that have already undergone class switching
(from IgM, now IgG1+), differentiation to plasmablasts (are now Blimp1+),
and cells that did both (IgG1+ and Blimp1+). Including IgG1-Blimp1- cells,
there are a total of four different initial ‘start types’ that time-to-event data
was collected for.

Figure 38 shows the number of observations for each generation and start
type, excluding the already studied IgG1-Blimp1- data which is shown in
Figure 35. There were much fewer observations, and in some cases no ob-
servations, when compared to the already published data. In some cases
however, we would not expect to see any observations. For example with
differentiation we would not observe any Blimp1+ events because we are
looking at cells that started Blimp1+.

In the best case scenario there are approximately 80 observations for
generation 5 IgG1+Blimp1- time to death and time to differentiation. In
most cases there are between 0–20. We must also be careful when drawing
conclusions based on estimates with small amounts of data.

Figure 39 shows a box plot generated for the time to event for every
event type/generation/start type combination showing the minimum and
maximum event time that was observed, and the lower, middle and upper
quartiles calculated from the uncensored Kaplan-Meier survival function es-
timate of the respective data set. Across all data sets we see that the extra
start type data has a much narrower range of times than their IgG1-Blimp-
counterparts, and in most cases the values of the quartiles are smaller, but
this is something we would expect this due to the fact we have less data.
We can see here that most of the analysis in this section will focus on
division and death as we only have 3 data sets for differentiation, and as
explained above, no data sets for class switching. In the case of division
we have both IgG1+Blimp1- data and IgG1-Blimp1+ data available but no
IgG1+Blimp1+ data available. Cell death is the event for which most extra
start type data is available, and from this data we were able to produce an
estimate for every possible start type.
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Figure 38: Number of events observed in each generation for every event type
for the unpublished data.
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Figure 39: Collection of box plots for times from birth to each fate for all gen-
erations and start types. These statistics are calculated from the uncensored
Kaplan-Meier survival distributions. Each box plot contains the minimum
and maximum event time, upper, lower and middle quartiles.

Figure 40 shows the Kaplan-Meier survival function estimates for time
to divide, with each individual plot showing all possible initial start types
for available data of that generation. Tables 9 and 10 show the results of
Log-Rank tests for the hypothesis that the time-to-division distribution of
B cells whose initial start type is IgG1-Blimp1- is the same as the time-to-
division distribution of cells whose initial start type is IgG1+Blimp1- and
IgG1-Blimp+ respectively.
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From the survival curves in Figure 40 we see a period of guaranteed
survival, as with IgG1-Blimp1- data, as we would expect. For generation 1
and 3 we see the survival functions drop off rapidly, when compared to the
IgG1-Blimp1- estimates, eventually falling to zero or close to zero over the
next 10 hours. Survival curves for IgG1+Blimp- data in generation 5 and 7
seem to match their IgG1-Blimp1- counterparts more closely than in other
generations, but end earlier, likely due to the lack of available data.

The hypothesis tests performed show no clear pattern as to whether the
different start type impacts the time-to-division distribution with cases of
both rejection of H0 and failure to reject in both the IgG1+Blimp1- and
IgG1-Blimp1+ tests. However, of note here is the fact that the tests which
failed to reject H0 were based on estimates with significantly less data than
the tests that were able to reject H0, suggesting that lack of a trend may be
due to the amount of available data.
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Figure 40: Kaplan-Meier survival function estimates for time to division for
all generations and initial cell states for which data was available [10]. Each
plot shows an all initial states for a given generation.
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Fate Division
Gen 1 3 5 7
P Value N/A 0.06965 0.00036 0.48689
HBM Adjusted Result N/A Fail to Reject Reject Fail to Reject

Table 9: Table of Log-Rank statistical tests. The null hypothesis is given by
equation 16. We are testing if the survival distribution for time to division
for cells with initial state IgG1-Blimp1- is the same as the time to division
distribution for cells with initial state IgG1+Blimp1-. A rejection threshold
of 0.05 was used and the Holm-Bonferroni method described in section 2.4.6
was used to account for multiple testing. For some generations there is
insufficient data for hypothesis tests to be performed.

Fate Division
Gen 1 3 5 7
P Value 0.000027 0.551218 N/A N/A
HBM Adjusted Result Reject Fail to Reject N/A N/A

Table 10: Table of Log-Rank statistical tests. The null hypothesis is given by
equation 16. We are testing if the survival distribution for time to division
for cells with initial state IgG1-Blimp1- is the same as the time to division
distribution for cells with initial state IgG1-Blimp1+. A rejection threshold
of 0.05 was used and the Holm-Bonferroni method described in section 2.4.6
was used to account for multiple testing. For some generations there is
insufficient data for hypothesis tests to be performed.

We have also produced the same plots and tests as above, allowing us to
study differences in initial start type and its impact on the time to death
distribution. Figure 41 shows the Kaplan-Meier survival function estimates
for time to die, with each individual plot showing all possible initial start
types within one generation.

Tables 11, 12 and 13 show the results of Log-Rank tests again under
the hypothesis that the time-to-die distribution of B cells whose initial start
type is IgG1-Blimp1- is the same as the time-to-die distribution of cells whose
initial start type is IgG1+Blimp1-, IgG1-Blimp1+ and IgG1+Blimp1+ re-
spectively.

In Figure 41 we see that generally the time to die survival function esti-
mates differ significantly from the IgG1-Blimp- survival functions. For some
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start types there is not enough data to produce a survival function that
can be used for testing, for example the IgG1-Blimp+ in generation 5 and
IgG1-Blimp+ and IgG1+Blimp1+ in generation 7. From the Log Rank tests
we see in all cases H0 is rejected. The results of this test, and the survival
function estimates, suggest that cells that have undergone IgM to IgG1 class
switching and cells that have differentiated to plasmablast have a life span
shorter than that of IgG1-Blimp1- B cells.
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Figure 41: Kaplan-Meier survival function estimates for time to die for all
generations and initial cell states for which data was available [10]. Each plot
shows an all initial states for a given generation.
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Fate Death
Gen 1 3 5 7
P Value (*1e-10) N/A 0.00 0.000007 0.401628
HBM Adjusted Result N/A Reject Reject Reject

Table 11: Table of Log-Rank statistical tests. The null hypothesis is given by
equation 16. We are testing if the survival distribution for time to die for cells
with initial state IgG1-Blimp1- is the same as the time to die distribution
for cells with initial state IgG1+Blimp1-. A rejection threshold of 0.05 was
used and the Holm-Bonferroni method described in section 2.4.6 was used to
account for multiple testing. For some generations there is insufficient data
for hypothesis tests to be performed.

Fate Death
Gen 1 3 5 7
P Value 0.00000 0.00000 N/A N/A
HBM Adjusted Result Reject Reject N/A N/A

Table 12: Table of Log-Rank statistical tests. The null hypothesis is given by
equation 16. We are testing if the survival distribution for time to die for cells
with initial state IgG1-Blimp1- is the same as the time to die distribution
for cells with initial state IgG1-Blimp1+. A rejection threshold of 0.05 was
used and the Holm-Bonferroni method described in section 2.4.6 was used to
account for multiple testing. For some generations there is insufficient data
for hypothesis tests to be performed.
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Fate Death
Gen 1 3 5 7
P Value N/A 0.00000 0.00000 N/A
HBM Adjusted Result N/A Reject Reject N/A

Table 13: Table of Log-Rank statistical tests. The null hypothesis is given by
equation 16. We are testing if the survival distribution for time to die for cells
with initial state IgG1-Blimp1- is the same as the time to die distribution
for cells with initial state IgG1+Blimp1+. A rejection threshold of 0.05 was
used and the Holm-Bonferroni method described in section 2.4.6 was used to
account for multiple testing. For some generations there is insufficient data
for hypothesis tests to be performed.

Lastly we have the alternative start type data for time-to-differentiate.
Figure 42 shows the IgG1-Blimp1- survival function as well as the survival
function for IgG1-Blimp1+ data. For generation 1 we only have 2 obser-
vations and so we cannot perform analysis for this generation. Looking at
generations 3, 5 and 7 we see a much smaller probability of survival, with
cells undergoing differentiation much earlier than the IgG1-Blimp1- case.
Table 14 shows Log-Rank hypothesis tests to test the hypothesis that IgG1-
Blimp+ cells have the same survival distribution as IgG1-Blimp1- cells. Here
we have excluded generation 1 due to lack of data. As we would expect from
looking at the survival functions, in all cases we reject the hypothesis, con-
firming that, for this data set, the two start types have different survival
distributions.
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Figure 42: Kaplan-Meier survival function estimates for time to IgM to IgG1
class switch for all generations and initial cell states for which data was
available [10]. Each plot shows the survival distributions for cells whose initial
start type is either IgG1-Blimp1- or IgG1-Blimp1+ for a specific generation.
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Fate Differentiation
Gen 1 3 5 7
P Value (*1e-3) N/A 0.41659 0.14101 0.95763
HBM Adjusted Result N/A Reject Reject Reject

Table 14: Table of Log-Rank statistical tests. The null hypothesis is given
by equation 16. We are testing if the survival distribution for time to dif-
ferentiate for cells with initial state IgG1-Blimp1- is the same as the time to
differentiate distribution for cells with initial state IgG1-Blimp1+. A rejec-
tion threshold of 0.05 was used and the Holm-Bonferroni method described
in section 2.4.6 was used to account for multiple testing. For some genera-
tions there is insufficient data for hypothesis tests to be performed.

Having looked at the univariate time to event distributions, we can use
the Dabrowska estimate described in Section 2.3 and modified for symmetric
data in Section 3.2 to estimate the bivariate survival distributions of pairs
of sibling cells. Figure 43 shows the Dabrowska estimates for generation 3,
5 and 7 time to division, for start types IgG1-Blimp1- and IgG1+Blimp1-
cells. Figure 44 shows the same generations and start types for time to
death, and Figure 45 shows the same generations and start types for time to
differentiation.
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Figure 43: Bivariate survival function estimates for the time to division of
pairs of sibling B cells using the symmetric Dabrowska estimate. (a) Gen-
eration 3, IgG1-Blimp1-, (b) Generation 3, IgG1+Blimp1-, (c) Generation
5 IgG1-Blimp1-, (d) Generation 5 IgG1+Blimp1-, (e) Generation 7 IgG1-
Blimp1-, (f) Generation 7 IgG1+Blimp1-.
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Figure 44: Bivariate survival function estimates for the time to death of pairs
of sibling B cells using the symmetric Dabrowska estimate. (a) Generation
3, IgG1-Blimp1-, (b) Generation 3, IgG1+Blimp1-, (c) Generation 5 IgG1-
Blimp1-, (d) Generation 5 IgG1+Blimp1-, (e) Generation 7 IgG1-Blimp1-,
(f) Generation 7 IgG1+Blimp1-.
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Figure 45: Bivariate survival function estimates for the time to differenti-
ate of pairs of sibling B cells using the symmetric Dabrowska estimate. (a)
Generation 3, IgG1-Blimp1-, (b) Generation 3, IgG1+Blimp1-, (c) Gener-
ation 5 IgG1-Blimp1-, (d) Generation 5 IgG1+Blimp1-, (e) Generation 7
IgG1-Blimp1-, (f) Generation 7 IgG1+Blimp1-.

We see here that the results are largely the same as the univariate case
with different start types showing a different distribution to the IgG1-Blimp1-
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Fate PValue/ Generation
1 3 5 7

Division - 0.0010 0.0004 0.0158
Death - 0.3806 0.1510 0.7802
Differentiation - 0.0000 0.0000 0.0072

Table 15: Hypothesis test results comparing Dabrowska survival functions.

cells. This is backed up in the cases of division and death by the hypothesis
tests we have performed below.

In order to compare the Dabrowska estimates for cells with start type
IgG1-Blimp1- with cells that start IgG1+Blimp1- we use the hypothesis test
presented in Section 2.4.5. Here we present the p values for the hypothesis
that the distribution of time to event is the same in cells regardless of whether
they have undergone IgM to IgG1 class switching.

For division and differentiation, all tests are rejected at the α = 0.05 level,
providing evidence that different start types have different distributions. In
the case of death we see that none of the tests are rejected at the α = 0.05.
Suggesting that cells of different start types may still have the same death
times regardless of whether they have become IgG1+.
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6 Conclusion

In this section we will give a few concluding remarks.
Motivated by the data set of [10], where sibling B cells have correlated fate

times, under a competition based model, a set of nonparametric statistical
tools were developed for the purpose of further investigation and comparison
with the parametric techniques that were used in the paper.

The primary tools that were employed included the Kaplan-Meier and
Dabrowska survival function estimators, and a set of hypothesis tests to
allow comparison of distributions. For some of these, existing packages could
be used, while others new implementations were created. Family wise error
was considering when performing multiple tests through the use of the Holm-
Bonferroni procedure.

As an extension to this work, we addressed the case when distributions are
defective, either due to lack of data when the final event time was censored,
or due to the underlying features of the system from which the data had been
measured. Further development includes the implementation of a symmetric
Dabrowska estimate based on the underlying assumptions of [10] allowing
the production of more accurate survival distribution estimates when the
underlying distributions are symmetric.

When applied to the data from [10] this tool set allowed the comparison
of survival distributions estimated using Kaplan-Meier, to the Log-Normal
distributions from [10]. We compared the distributions of time from birth
to differentiation to plasmablast, and the times to IgM to IgG1 class switch.
Here we concluded that while these distributions may not be the best choice,
we must account for the small amount of data available due to the method
of comparison. The choice of distribution depends on the granularity of the
model, meaning it may be an appropriate choice in some cases, but not in
others.

The Kaplan-Meier estimate and the Log-Rank statistical test were used
to determine how the distribution of time to event varies with the generation
of cells. Here we concluded with results showing that, while time to divison
and death seem to vary with respect to generation, it seems that time to
differentiate to plasmablast does not vary with respect to generation. Here
we saw that while the statistical tests confirm that the differentiation distri-
butions are different, it seems the quantity that varied was the number of
B cells for which differentiation was “on” in that cell, and not the time at
which cells undergo the event.
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We looked at extra unpublished data which was collected during the ex-
periment performed for [10] and was kindly provided by Phil Hodgkin’s Lab
at WEHI. We performed hypothesis tests to compare the distributions of
time to event in B cells that had already undergone either class switching
to IgG1, differentiation to plasmablast, or both. In most cases we see that
the underlying distributions are different to the cells that had not undergo
class switching or differentiation. We must be careful here however, as lack
of data could be a large contributing factor in some cases.

In the future it would be interesting to apply this statistical methodology
to other systems, for example T cells. Further tools from survival analysis
could be used and compared, for example the Prentice-Cai [39] or Yin-Ling
[31] estimators of the bivariate survival function.

Finally it would be interesting to look at non-parametric statistical tech-
niques more suitable when competing risks are present such as the cumulative
incidence function[33] to avoid the possibility of overestimation. For exam-
ple the Kaplan-Meier analysis of time to IgM to IgG1 class switch given in
Figure 42 are likely an overestimate due to the informative censoring events
like cell death and division.

Code for this thesis is available through the Matlab Fileworks library.
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