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Abstract

Simulation provides a safe and controlled environment ideal for human
testing [49, 142, 120]. Simulation of real environments has reached
new heights in terms of photo-realism. Often, a team of professional
graphical artists would have to be hired to compete with modern com-
mercial simulators. Meanwhile, machine vision methods are currently
being developed that attempt to automatically provide geometrically
consistent and photo-realistic 3D models of real scenes [189, 139, 115,
19, 140, 111, 132]. Often the only requirement is a set of images of
that scene. A road engineer wishing to simulate the environment of a
real road for driving experiments could potentially use these tools.

This thesis develops a driving simulator that uses machine vision
methods to reconstruct a real road automatically. A computer graph-
ics method called projective texture mapping is applied to enhance
the photo-realism of the 3D models[144, 43]. This essentially creates
a virtual projector in the 3D environment to automatically assign im-
age coordinates to a 3D model. These principles are demonstrated
using custom shaders developed for an OpenGL rendering pipeline.

Projective texture mapping presents a list of challenges to overcome,
these include reverse projection and projection onto surfaces not im-
mediately in front of the projector [53]. A significant challenge was
the removal of dynamic foreground objects. 3D reconstruction sys-
tems create 3D models based on static objects captured in images.
Dynamic objects are rarely reconstructed. Projective texture map-
ping of images, including these dynamic objects, can result in visual
artefacts. A workflow is developed to resolve this, resulting in videos
and 3D reconstructions of streets with no moving vehicles on the scene.



The final simulator using 3D reconstruction and projective texture
mapping is then developed. The rendering camera had a motion
model introduced to enable human interaction. The final system is
presented, experimentally tested, and future potential works are dis-
cussed.
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Chapter 1

Introduction

1.1 Problem Statement

Driving simulation provides a safe, practical, and effective means of studying
driving behaviour [55]. However, with a lack of fidelity, the correlation between
real driving and simulation cannot be guaranteed. Although great strides have
been made in computer graphics to create photo-realistic computer-generated
models [49, 65, 16]. There exist ways to automate the generation of 3D models
for an experimental setting that is often not taken advantage of [189, 184, 139].

This thesis describes a method for creating a photo-realistic driving simu-
lation that uses 3D reconstruction to design the model the simulator renders.
Figure 1.1 highlights an example of a model-based driving simulator compared to
a photograph of a real road. There are differences in lighting, shadows, colour,
and detail in the geometry of the road. A person viewing the left image would
be aware they are observing a driving simulation, and a level of immersion may
be taken away, in comparison to the real road.

Within the past ten years, the Irish-roads infrastructure has received signif-
icant investment [167]. Interest has increased in trying to assess the impact of
distraction external to the vehicle such as road works, advertising, and roadside
art, see Figure 1.2a,1.2b, 1.2c respectively. Transport Infrastructure Ireland has
identified a need to quantify the level of driver distraction that would occur fol-
lowing road infrastructure and layout changes. During this time, a collaboration
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1. INTRODUCTION

Figure 1.1: Left: Asset based simulator. Right: desired level of photo-realism for
simulation.

(a) Roadworks (b) Advertising

(c) Road art

Figure 1.2: Roadside possible sources of distraction.

between members of Maynooth University and the Technological University of
Dublin has joined in a project to monitor driver response to measure driver dis-
traction using driving simulators and biofeedback technologies. This has been a
major motivating factor for this research.

Much work has been carried out on in-vehicle sources of distraction, such as
mobile phone usage, radio tuning, and the use of driving assistance systems [107,
157, 194]. Less attention has been given to sources of distraction outside the
vehicle. This is because the world within the vehicle is well constrained and, for
this reason, easier to control and make repetitive measures [55]. The research
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1. INTRODUCTION

developed in this thesis aims to develop an additional set of tools to analyse
driver responses and aid in detecting and understanding distractions external
to the vehicle. It is predicted that reconstructing the outside world based on
modern sensors and modelling tools should capture previously unseen instances
of distraction.

It is possible to create realistic driving simulators using advanced computer
graphics techniques and accurate physics given enough expertise and resources.
Although these simulators have high performance, it can take significant time
and effort to create them. A digital artist’s or developer’s impression of the
road may not truly reflect the state of a real road. Using images to automate
the generation of 3D models for a driving simulator enforces that the model
is based on the scene’s appearance. Driving simulators have been created using
advanced machine vision and automated methods to create random environments
for autonomous vehicles to train on [48, 147]. Automated methods that create
environments for autonomous vehicles use learned approaches to construct their
3D environment [48, 47, 119, 138, 3]. These approaches are slightly askew from
ours since it creates and estimates environments instead of focusing on developing
simulations of real authentic to the real world environments. It only matters to
the automated approaches that the environments are visually convincing and
allow autonomous vehicles and robots to transfer knowledge to the real world. It
is planned to use these 3D reconstruction tools to construct a 3D model, to be
rendered in a driving simulator and to include methods for testing driver sensory
behaviour, emphasizing eye tracking. Eye tracking is one of the most popular
methods of measuring driver attention [84, 129, 90, 22, 103, 107].

There exists a perspective projection relationship within computer vision
methods to reconstruct the 3D models and how the 3D models are rendered
using computer graphics techniques. A virtual rendering camera is abstracted
to a set of projective and rigid body transformations in most computer graphics
programs. This virtual camera transforms 3D coordinates of objects in a vir-
tual environment into screen coordinates that are presented on computer screens.
These transformations can be applied in the opposite direction, to convert eye
gaze coordinates to rays that can be compared against 3D objects. This process
is further discussed in Appendix B.1. The field of eye tracking has previously
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considered 3D eye tracking; however, there appear to be few works where the 3D
models were reconstructed from photographic data.

A driving simulator of the above description did not exist prior to the under-
taking of this project. To construct a driving simulator with these capabilities
the following problems would have to be addressed:

1. A review of the current state of the art for driving simulation and testing,
3D reconstruction, and computer graphics techniques.

2. Experiments on real people to investigate important features to maintain
within a driving simulator.

3. A workflow to automate 3D reconstruction of real roads and to deliver a
photo-realistic rendering.

There exists, some of the early work carried out by Maynooth University and
Technological University of Dublin including eye-tracking experiments on drivers
within a photo-realistic driving simulator. These experiments used dashboard
camera footage and allowed the participants to control video playback with an
accelerator and brake pedals [81]. Ideally, providing steering in a video-based
simulator would require a full 3D reconstruction of the road or clever use of
specialized wide-angled cameras with computer vision techniques. The problem
of 3D reconstruction is non-trivial and requires significant investigation for full
development. A previous approach implemented by the group used 2.5D mea-
surements (stereo camera pairs providing depth measurements) and reprojected
the environment found from depth map estimation to simulate a 3D environment
[14]. This resulted in a sparse representation witnessed by the viewing cam-
era and led to visual artefacts, including non-continuous surfaces, while viewed
from perspectives other than the viewing camera perspective. It is intended to
continue this work and extend the research toward a robust solution, capable of
observing reconstructions from perspectives with a transformation that is slightly
off axis from the capturing camera, i.e. to enable lane changes or slight turning
maneuvers.
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1.2 Thesis Scope

This thesis presents a novel driving simulator that uses reconstructed 3D models
of real roads and renders view-dependent texture mapping to increase photo-
realistic renderings of a road. The principal contribution of this thesis is the
synthesis of computer graphics, machine vision, and human testing technologies
to produce a driving simulator as a photo-realistic experience. Driving simulator
experiments are presented in this thesis to highlight features of driver attention
and to gather requirements for the final video based driving simulator. The
experiments include:

• A video based driving simulation where eye tracking is measured across par-
ticipants and these participants are classified into groups of distracted and
focused drivers varied over time. This work was presented at the European
Conference of Eye Movement 2017 [34]. The analysis of this data is detailed
in Section 3.1.

• An asset based driving simulation where participants were exposed to static
and dynamic billboards while driving. Participants eye tracking was com-
pared to discrete features on the road including the billboards, road signs,
speedometer, and the center of the road. The findings of this experiment
were presented at the International Conference of Driver Distraction and
Inattention 2021 [35]. These eye tracking results were later matched to EEG
measurements and presented in the journal of Sensors in 2021 [180]. The
main findings in this paper included the demonstration of a fixation related
potential within the brain that was triggered in relation to distractors. The
contribution of the work done in this thesis towards that finding included
the labelling of distractors, and the data processing and labelling of the eye
tracking that enabled analysis of these potentials measured using EEG, see
more detail in Section 3.2.

The video based driving simulator used projective texture mapping (PTM) to
increase its photorealism. The use of PTM in combination with 3D reconstructed
models, and localized camera poses will provide a method of:
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• Assigning texture coordinates to vertices during render time using perspec-
tive projection. This removed the requirement to store UV-vertex infor-
mation for every 3D point. The initial results of this were presented in
Irish Machine Vision and Image Processing Conference 2017 [31]. This is
detailed in Section 4.1.

• A view-dependent rendering of the 3D model. This was initially tested
on a SLAM system called Elastic Fusion [184], see Appendix C.1. The
estimated poses of the camera for each image relative to a 3D model were
used during PTM. The formalization and implementation of this approach
was presented in the Irish Machine Vision and Image Processing conference
2020 [33], see Section 4.2.

• Methods of inpainting/background subtraction using 2D template matching
and later multiple-view texture mapping. The 2D methods were presented
at the Irish Machine Vision and Image Processing Conference 2019 [32], see
Section 5.2. The multiple view texture mapping approach has not yet been
published. This is however detailed in Section 5.3

1.3 Thesis Structure

The representation of the road will be based off video sequences collected from
camera mounted vehicles (ideally a dashboard camera). Based on what has been
discussed in this chapter, to generate an environment capable of driving simula-
tion, the sequences will be processed using modern machine vision and computer
graphics techniques. These will be created with three main points in mind:

1. Photo-realism

2. Freedom of motion

3. Methods to measure driver attention

Chapter 2 reviews research in the area of driver distraction, and driving sim-
ulation to give context as to what is expected of the final driving simulation and

6



1. INTRODUCTION

what is currently available. Machine vision and its function in reconstructing 3D
assets and simulating environments using view synthesis will be discussed and
considered for the requirements of the driving simulator.

The initial objective of a photorealistic simulator is achieved by showing real-
world videos of the road to simulate the perspectives observed during video col-
lection to participants. This was first approached by replaying frames of video
which can be controlled only in terms of speed by adjusting the framerate of the
video playback. This method accomplishes the first objective but takes away from
the freedom of motion by not allowing a steerable environment. The construc-
tion of this environment was detailed in [81]. To measure attention on the road
an analysis of eye-tracking data of participants within the simulator is detailed
in Chapter 3. The remainder of this chapter considers an asset-based driving
simulator and driver distraction experiments. Experimenting with both of these
setups will aid in the gathering of further requirements for the driving simulator,
as well as measuring driver attention.

To introduce free movement into the simulation while maintaining the photo-
realism of video, PTM (PTM) is implemented. This is a method of mapping
texture from images to 3D surfaces in a computer graphics environment by using a
projective transformation [144, 53]. The implementation is detailed in Chapter 4.
PTM requires an image to project and a 3D model to project onto. Several 3D
proxies are considered in Chapter 4; including an open-ended box (to simulate
the geometry of a tunnel), and a 3D model automatically reconstructed from
SLAM (Simultaneous Localization and Mapping) [184] and SfM (Structure from
Motion) [139] systems. The 3D geometry and the transformations of the capturing
cameras are formalized to aid in the discussion of how best to combine the outputs
of SLAM and SfM with PTM. The performance and applicability of each system
and their use cases are compared and a final system is chosen as the optimal
choice for this workflow.

Following the combination of PTM and SfM/SLAM, it was noticed that visual
artifacts concerning unanticipated items shown in the image were projected but
not modeled in the final geometry. This results in diminished photo-realism for
the simulation. The solutions to these issues are detailed throughout Chapter 5.
Initially, it is proposed to solve this problem entirely within the 2D image plane.
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Semantic segmentation is used to localize vehicles within each image [199]. Fol-
lowing this the vehicles are removed from these images and replaced with pixel
colours from other images within video sequences of the same road. This ap-
proach was tested on videos of the Moyglare Road, in Maynooth, Co. Kildare,
Ireland. Following this approach, it will be extended to 3D, where PTM could
be used to aid in the removal of vehicles from these videos. Multiple images
would be projected onto the 3D model in all spaces, not including vehicles. This
approach will be applied to videos from the KITTI dataset to allow for future
benchmarking and comparison [63].

Chapter 6 reflects on the main contributions of this thesis, including the con-
nection between PTM and 3D reconstruction. It reflects on the solutions to PTM
challenges, including reverse projection, projection onto all 3D surfaces in front of
the projector, and removing dynamic foreground objects from video. The chapter
will end with a review of possible future work. The 3D reconstructed models will
allow for eye-tracking data to be projected from the viewpoint of the viewer to
the screen coordinates of their monitor, to the 3D model, and back to the images
used to reconstruct the scene. This work opens the possibility of examining eye
tracking under multiple contexts. If this is intended to be done in real-time, re-
search into ray-picking methods may have to be considered. The vehicle motion
models could also be extended to increase the simulator fidelity; Ackerman is
proposed as a possible integration.
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Chapter 2

From Review to Specification

2.1 Introduction

This chapter provides a comprehensive analysis of research on road safety, driv-
ing simulators, and driver distraction. The primary objective is to develop tools
for measuring driver attention in response to external distractors on the road.
The analysis includes driver and road safety reports, driving footage analysis,
and driving simulators. The chapter discusses the definition of driver distrac-
tion and inattention, including internal and external distractions. It explores the
challenges of replicating realistic 3D models of real roads in driving simulators
and examines methods for automatically generating 3D models. Video-based
data collection is emphasized, considering the use of easily accessible sensors and
photo-realistic information. The chapter reviews video-based 3D reconstruction
methods and their suitability for the driving simulator. It discusses the mathe-
matical formalization of 3D models, camera models, and the pipeline for mapping
3D world space to 2D screen space. Different systems for 3D reconstruction using
video data are analyzed, and their features are identified. The chapter also covers
shading, texturing, and lighting of 3D models, as well as recent developments in
view synthesis. The ability to aggregate visual fixations of different drivers over
a single model from multiple perspectives is highlighted as an important feature
of the video-based simulator. Finally, the chapter concludes with a review of
eye-tracking applications related to driver distraction in a simulator.

9



2. FROM REVIEW TO SPECIFICATION

2.2 Road Safety and Human Factors

Driver behaviour and simulation is an extensive research area with many text-
books, journals, and dedicated conferences [55, 126, 51]. It can be carried out us-
ing road safety and accidents reports or driver experimental studies; Sections 2.2.1
and 2.2.2, respectively [170, 103]. Reports can extract driver-specific and road-
specific information contributing to road accidents. Accident studies inform the
community of the factors associated with road accidents. These factors include
the age of drivers, the time of day, consumption of alcohol, phone use, the geome-
try of the road, road markings, and road signage. Driver experimental studies that
include monitoring driving performance allow researchers to examine distracting
events. Simulators provide a safer environment to study individual drivers’ re-
sponses to a distracting stimulus. The following sections develop these ideas in
the context of the work done.

2.2.1 Road Incident Reports

Irish Road Engineers from Transport Infrastructure Ireland (TII) expressed in-
terest in the effect of distraction from roadside advertising, art, and construction
work on driver behaviour. This section reviews real-world driving experiments
and road crash reports relating to these forms of distraction. These studies high-
light the involvement of distraction in road crashes and near-crashes. The reports
on real-world driving experiments are very detailed, but there is a noticeable lack
of detail while describing external forms of distraction [84].

Often in driving research, a focus is put on examining distractions internal
to the vehicle, an example of which includes the 100-car naturalistic study [84].
This major study was carried out for approximately 2,000,000 vehicle miles of
driving and accumulated 43,000 hours of data over 12-13 months. In this study,
109 cars were fitted with cameras and other sensors for extended periods. Aside
from the vehicle owner, other family members and friends occasionally drove
these vehicles and accounted for an additional 132 drivers. The setting allowed
drivers to interact with real roads (as opposed to a simulator). The drivers
could be less concerned with being monitored by an experimenter in their vehicle
and altering their driving in response. It allowed for the examination of driver

10



2. FROM REVIEW TO SPECIFICATION

performance without the hindsight bias associated with road incident reports.
Crashes in this study were defined as "any measurable dissipation of transfer of
energy due to the contact of the subject vehicle with another vehicle or object".
There were 82 recorded crashes and 761 near-crashes recorded throughout the
study. Among other features, they examined when drivers looked away from
the forward roadway by examining video data prior to crashes and near-crashes.
They identified significant sources of distraction internal to the vehicle in search of
causative sources of distraction (mobile phones, adjusting in-vehicle equipment,
drinking, and eating). It was found that 80% of crashes and 65% of near-crashes
were related to distractions internal to the vehicle. They attributed the remainder
of crashes as either unknown or road infrastructure related. If internal sources of
distraction caused 80% of crashes, it is possible that a proportion of the remaining
20% was related to external sources of distraction.

According to the National Crash Worthiness Data System, 29.4% of driver
distraction-related crashes originate from outside people, objects, or events, which
report similar figures to the naturalistic study [158]. These 20% to 35% of crashes
are of interest to the work carried out in this thesis. In the National Crash Worthi-
ness Data System, Stutts et al. highlighted each category of internal distraction
and assigned a percentage to each category. However, for external factors, they
were all categorised under a single heading receiving the highest percentage inci-
dence, 29.4% [158]. The CRC handbook on driving simulation explains that most
researchers may be deterred from researching this category of distraction because
of the many factors contributing to external distraction from the vehicle [55]. In
contrast, internal factors are better constrained. The CRC handbook also states
that external distractors such as digital billboards have rarely been associated
with road crashes, given the infrequency of reported events. The 100-car natural-
istic study observed that more road crashes occurred than what would have been
reported to the police (15 of the 82 crashes) [84]. Monitoring driver responses
might be the best way of testing if these items on the road caused significant
distractions to the driver to give cause for safety concerns, as not all crashes will
be reported to the authorities.

Summary: While distraction external to the vehicle causes fewer reported
accidents compared to internal sources, the number is still significant. A road
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engineer also posed the problem of measuring external distractions relating to
authorising roadside advertising, art, and maintenance. These factors informed
the design of the simulator developed in this thesis. The simulator aims to allow
a road engineer to collect video sequences from a section of the road of interest
and then allow other drivers to drive the same section in the simulator. The
road sequence might contain an existing object that is a potential distractor, or
this might be added afterward by augmentation. The driving simulator would
provide a safe means of testing and addressing these concerns. A 3D reconstruc-
tion of a road constrains the possible number of distractors on the road to the
infrastructure itself. In a real-world environment, there are too many variables
to consider while identifying external sources of distraction. Participant specific
experiments address this domain gap, however safety can be a concern. Driving
simulation is often used to address this issue at the expense of driving fidelity.
Driving experimentation and simulation will be discussed further in the following
sections. The system development within this thesis aims to reduce the com-
plexity of identifying external distractors while also basing the simulator on a
real-world road.

2.2.2 Review of Driving Experiments

The previous section reported driver performance from real camera footage and
road accident reports [84, 158]. Distraction in these cases was only recorded if
a crash or near-crash occurred. These studies noted a distraction event when a
driver was witnessed or self-reported looking away from the forward roadway. In
an experimental setting, it is possible to gauge the extent of driver distraction.
These include several methods for monitoring the braking response in response
to stimulus, speed, and progress along the road, EEG activity, and physiological
factors such as galvanic skin response and heart rate [94, 55, 107].

Driving simulation meta data, including speed, lane position, braking distance
from leading vehicles, and updates to vehicle controls can inform levels of atten-
tion and driving competence. Godthelp et al. tested the lane keeping ability of
drivers while wearing a visual occlusion helmet; "an electromagnetically driven
visual occlusion device mounted on a lightweight bicycle helmet" [66]. They found
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drivers compensate steering behaviour based on vision. Compensatory steering
(larger steering angles over time) was required when their vision was occluded
and shown to them again. McKnight & McKnight examined the effects of cel-
lular phone calls on the ability of drivers to respond to video driving sequences
[107]. They found that older drivers had a significant impact on their ability to
context switch and younger drivers were more affected based on the conversation
intensity.

Perhaps the most used methods are based on measuring the focus of attention
of the driver’s eye while driving [90, 103, 157, 22, 127, 128, 73]. This section will
discuss how attention is measured for drivers using eye gaze. It will begin by
showing studies where human vision and driving are connected. Human vision,
attention, and driving performance are connected; the question becomes, "what
are drivers attending to on the road". Suppose a driver is visually distracted by
an item on the road. In that case, that can be measured by querying the eye gaze
of the driver and associating it with a semantic label (a high-level label of what an
item is within a picture) of the item they are attending. This method will be used
in experiments in this thesis. This will gauge when or if drivers are attending
to distractions. It will measure levels of attention for the items on the road
depending on the duration of visual attention caused by the distractor. Further
details on the eye tracking process including collection, calibration, processing,
and labelling can be found in Appendix AA.1.

An early example of driver attention and eye gaze as a measure of attention
is discussed by Land et al. [90]. Land et al. used a head-mounted eye tracker
on real drivers and a rigged Jaguar car with sensors for measuring the steering
wheel angle and the vehicle’s speed. Their study observed that as the steering
wheel angle changed, the average eye-gaze direction followed into the bend of the
road, corresponding to the angular change in the steering. Similar observations
between eye gaze and tasks were found with other tasks [72]. This connection
between eye-gaze and attention is essential in measuring distraction in driving.
Other examples of observable behaviour include scanning strategies. Most drivers
inspect the forward roadway while driving down straight roads to anticipate on-
coming events/traffic. However, it has been noticed that experienced drivers tend
to scan a wider section of the road compared to novices [22]. Visual scanning be-
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haviour is a good predictor of the hazard awareness of drivers. Intuitively this
makes sense, given that the drivers will have observed more of the road. This
study further reinforces the observation that driving performance is connected
to the visual perception of the environment. Eye-gaze measurement informs how
likely it would be that a person has observed a given hazard or, for that matter,
a distraction on the road. Recarte and Nunes tested cognitive workload effects of
mental tasks to distract drivers [127]. This resulted in pupillary dilation and de-
creased horizontal and vertical scanning patterns. These effects were pronounced
for mental visual tasks. Mind wandering affects glance patterns, and blink rates
similar to cognitive distraction [73]. Experiments have also observed that driver
eye gaze remained forward for more significant periods while they were cognitively
distracted, using auditory tests [175] and handsfree systems [69]. Distraction can
affect the ability of drivers to examine an environment, and the distraction does
not need to be visual but visual distractions can further these effects.

Eye tracking studies in aviation have shown interest in what participants are
observing in a natural environment (the class labels of the items the eyes are
attending to) rather than how they are observing (variability/dispersion in their
eye scanning strategies) [4]. This was done through an area of interest analysis for
points of regard. Areas of interest are pre-defined boundaries usually categorised
over an image plane of a viewing camera. In this case, the areas of interest
included the controls used by the pilot to control the plane, see Figure 2.1. The
point of regard is where the fovea (the direction the viewing part of the eye is
pointed in) attention of some observer is looking with their eyes. Many eye-
trackers calculate eye gaze by reflecting infrared light off the cornea and viewing
it with an IR-sensitive camera [130, 117]. Area of interest analysis involves first
highlighting an area on an image with labels that convey some semantic meaning.
See Figure 2.2 for an example of a frontal view from a vehicle used in our simulator
experiments in Chapter 3.

Screen coordinates corresponding to eye tracked points (points of regard) can
then be compared to labelled regions of an image. The amount of time the gaze
dwells within this region and the number of visits the areas of interest receives
can be used as a measure of levels of attention/distraction. In the aviation study,
they were concerned with measuring attention on the inside of the vehicle, which
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Figure 2.1: The image on the left is the labelled AOI’s for the study on pilot
attention during flight [4]. The image on the right is the AOI’s used to measure
the attention of drivers while doing dual-tasks with driving [103].

Figure 2.2: Driving simulation screenshot with highlighted areas of interest (AOI)
from a billboard study (see chapter 3).
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is static. Similar methods have been used more recently in driving research to
measure attention within the vehicle while the participants were carrying out
dual tasks [103]. In both studies, the area outside the vehicle was labelled under
a single "outside", heading similar to the crash reports, see Figure 2.2. This is
likely because this part of the scene was dynamic, and the task of labelling these
features would be time-consuming. In this thesis, the areas outside the vehicle
will be labelled, and the allocation of attention will be measured.

Summary: Traffic collision reports are informative and support the claim that
visual driver distraction significantly contributes to road traffic accidents [170].
Driver distraction studies that directly observe drivers often report the sources of
distraction inside the car [84, 157, 103]. While assigning labels items outside of
this region, it is often a single label, "outside". With this single heading, external
sources of distraction cause a higher incidence of collisions compared to all other
categories of items within the vehicle. Further investigation into external sources
of distraction is required to identify what factors outside the vehicle are involved.
Testing on drivers can be done in the real world with camera-rigged vehicles
where data is collected over long periods. This presents a serious investment
for investigators. There are no guarantees that distracting events will occur in
a natural driving setting without experimenter intervention, like in [84]. The
likelihood increases over extended periods of time. If these events did occur,
the next issue would be to investigate when this happened by annotating all the
camera footage. Testing participants in a lab-based environment using a driving
simulator is the safest and more practical method. Driving simulations keep the
participant safe from any real harm and allow the experimenters to introduce
distracting events within the driving simulation at times and locations of their
choosing. It has been noted however that some driving simulators fail to replicate
the exact environment most drivers experience, including vehicle controls, lighting
conditions and the level of detail and complexity the real world has compared to a
simulated environment [109]. The next section of this review will cover the various
driving simulators available, and the novel features available in each. These
features will be assessed for inclusion in the final driving simulator presented in
this thesis. Previous studies have shown that measuring driver attention using
driving performance and eye-tracking is possible. Eye tracking will be the primary

16



2. FROM REVIEW TO SPECIFICATION

biosensor used in this thesis, and area of interest analysis will be used to detect
and measure attention from participants. The driving simulator in this thesis will
be built to measure human attention outside the vehicle.

2.3 Driving Simulators

Driving simulators are constructed to represent real-world driving without putting
the driver themselves in the real environment. The CRC handbook states that
driving simulation can often be safer and cost-effective compared to real driv-
ing experiments [55]. It allows repeatable measures to test drivers under specific
circumstances, and experimenters have complete control of the driving environ-
ment. This section will start by describing the uses of driving simulation for
the types of measurements available and the problems researchers are interested
in. This section will then discuss historical driving simulations, highlighting their
evolution, including practical video-based methods, analogue, and digital models,
3D models, and machine vision methods to simulate real roads. The history is
provided as some of the earliest simulators use a moving camera over a model.
These simulators are similar in concept to the method developed in this thesis.

2.3.1 Simulator Applications

Many driving simulator studies focus on testing environments unsafe for drivers in
the real world. These environments include driver states such as fatigue, shifts of
control from automation back to manual control, and inducing distractions to the
driver during safety-critical moments. Everyday tasks used to test driver atten-
tion include braking behind leading vehicles that stop at pre-determined times
or obeying speed limitations while attempting a secondary task like operating
mobile phones or engaging with advanced driving assistance systems (ADAS)
[61, 168]. These experiments require controlled environments using a driving
simulator. The use of driving simulators allows driver ability and response test-
ing without sacrificing safety [55]. It also enables the researchers to repeat rare
hazardous events in real-life driving (passing distractions, crossing intersections,
unexpected lead vehicles stopping).
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Figure 2.3: Toyota’s mechanical platform (Stewart platform) used to move a
driving simulator cabin to introduce forces to the environment of the simulators
operator and enhance fidelity.

Often road safety researchers and those interested in cognitive aspects of driver
behaviour have employed third-party software for their driving simulators to mea-
sure the drivers’ cognitive reactions [103]. Car companies often invest significant
resources into their in-house simulators [20, 120, 49]. These simulators are often
used to test specific criteria which would not be available to the researcher with
a third-party simulator. Toyota developed their simulator to use haptic feedback
in response to the simulator’s motion to enhance user experience while driving
inside a purpose-built cabin. This includes making the cabin vibrate, bounce,
and rotate in response to the vehicle’s environment simulating using a Stewart
platform, see Figure 2.3 . This setup provided higher fidelity for the experience
of driving.

Smaller scale research groups interested in the environment find ways of au-
tomatically reconstructing scenes. An example of this can be seen in a research
group in Cyprus which used GIS (Geographic Information Systems) data from
open street map to automatically construct their 3D models for their driving
simulation [110]. Their system parsed GIS data, including positions and types
of each feature, and rendered those objects in the corresponding positions within
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the simulator, see Figure 2.4. Although this appears flexible, there are limita-
tions, there is a limited range of assets, so features may appear to repeat, and
some vital GIS information may be lost as there is no asset available to add it
to the model. This repeated use of assets could take away from the immersion
of the driving simulator. It is intended that within this thesis, a method will be
used to automatically reconstruct 3D models, avoiding the requirement to create
and use assets while measuring the attention of operators of the simulator using
eye-tracking analysis.

Figure 2.4: On the left is a map representation of Geographic Information Systems
data and the right are the 3D models constructed from this data in [110].

2.3.2 Video-based Driving Simulation

A video-based simulation is an approach to automatically generating stimuli
based on real data. This involves manipulating real videos of roads to provide the
illusion that the participants are controlling a vehicle in the real world. This form
of driving simulation dates back to the earliest driving simulators, over 60 years
ago [77]. In this early study, a driving simulator was constructed using video film
of a journey in a real vehicle where the camera was facing forward, the driver’s
view. Play-back for the driving simulator operators was presented on a projec-
tor. Steering was controlled by altering the pan of the projector(s), and speed
was controlled by varying the playback speed; see Figure 2.5 for a concept draw-
ing. This method provided high resolution (35mm film) with detail approaching
real-world conditions, but it was described as arduous in its implementation [55].

Previous work in the author’s research group developed methods to playback

19



2. FROM REVIEW TO SPECIFICATION

Figure 2.5: A concept drawing developed by Hutchinson describing a method of
projecting real film footage streamed from some camera observing a representa-
tion of a road [77]. The operator being tested will be seated in the cabin of a
car contained within a sphere that receives the broadcast projection of the road
presented to the TV camera. There is a computer in the background used to
compute vehicle dynamics and interpret this motion to the TV camera. This
concept drawing can be found in a discussion section in [56].
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video at a rate controlled by the accelerator and brake pedals. This was used in an
eye-tracking study [81]. Later the generation of a model using GIS road data was
also investigated [13]. This created a road-only model (with limited additional
assets, mainly signs). A comparison between driving speeds between the video
and model-based simulators was made. Since GPS data was available for the
data acquisition vehicle, speeds were compared at some level with a real vehicle.
Further work includes an element of steering developed by projecting video onto
a simple model created using a stereo camera [14]. The approach used in this
thesis is different. The methods used for projective texture mapping are built
from a different foundation and are less likely to produce the distortions seen in
earlier work. The generation of the models uses more recent SLAM/SfM-based
reconstruction methods [184, 139]. This avoids the requirement for dedicated
hardware to collect stereo/3D information. The work in this thesis develops
methods for foreground object removal not available in earlier work.

Figure 2.6: A scale model video based simulator [182]. The left image shows the
drivers view and the right image shows the camera rig they operate and the belt
system used to move the models.

Over ten years after the first video-based simulators, scale models were used to
represent complex road geometry, including roadside objects like parked cars and
trees [182]. These scale models were placed on a moving belt system in front of a
camera; see the right image in Figure 2.6. The camera could maneuver (rotate)
in response to the driver’s steering input. The belt under the scale models for the
road would vary its speed with respect to the accelerator and braking controls
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given by the operator; see the left image for the driver’s view and the right
image for the camera rig and scale model in Figure 2.6. The steering and speed
differential motion to simulate a real vehicle was computed on another computer,
and it was possible to simulate the motion of a range of vehicles. The camera
was connected to a screen presented to the operator while controlling the vehicle.
This approach suffered from low-resolution lighting issues (unrealistic lighting
for outdoor environments). These simulators were soon replaced by digital 3D
models, which required less physical setup and often produced good resolution
and lighting. However, the idea has merit and has many features in common with
the simulator developed. It uses video of a real scene, and the driver can move
the camera through the scene under their control.

2.3.3 Digital Driving Simulation

In the early 1970s, there was a transition from video-based to digital display
simulators. This allowed researchers to design specific environments and increase
the maneuverability of the simulation with less effort in terms of physical setup.
Figure 2.7 shows an example of a 2D digital display driving simulation from [46].
It highlights the forward roadway from the perspective of a vehicle with well-
labelled boundaries for the lanes and sides of the road. This 2D display study was
used to test driver steering behaviour in response to increased speeds and variable
curvature on the road. The simulated environment allowed human adaptability
and driver limitations testing in response to the steerable environment. Although
more complex digital driving simulations existed at the time and could produce
more complex scenes, including obstacles and roadside signs/distractors [64], see
Figure 2.8, they were limited in terms of run time. The serial processors of the
time could not handle the number of objects they had to render and the vehicle’s
dynamic models. This resulted in delays in image generation. These display delay
artifacts could alter participants’ performance, as noted in a flight simulation
study on pilot reactions to variable image generation delays [131]. They found
flying formations challenging to complete at a low-frequency image presentation
rate. The pilots require a high frame rate for accurate control of the aircraft and
quick responses to errors. It was considered likely that these issues would carry
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over to driving simulation for delays over 100 milliseconds per frame update [55].

Figure 2.7: An example of an analog display driving simulator [46] that enabled
steerable simulation experiments.

Figure 2.8: Early digital display driving simulators presented by Gilliland in a
discussion on the applications of computer generated driving simulators [64].

Over the last 30 years, graphics cards and graphical processing units have al-
lowed faster serial and parallel processing of these 3D environments [38]. This, in
turn, resulted in driving simulation seeing significant development in digital dis-
plays, which have provided higher frame rates with better resolution. 3D scenes
could be rendered in greater detail, including shadow calculations and light re-
flection models [124, 178]. An example of these displays is the Daimler-Benz
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driving simulator [49]; see Figure 2.91. This example high- lights the capability
of driving simulators to represent more photo-realistic and complex scenes. It also
allows experimenters to test multiple lighting conditions for studying the effects
of night-time against daytime driving. Following the introduction of texturing
and light models, very few simulators appeared to focus on the photo-realism
of driving simulation. Testing on driver response to different rendering tech-
niques would focus on night driving, adaptive headlights, fog, rain, and drivers’
reaction to the high dynamic range [181, 18, 123]. Most of the literature on
state-of-the-art driving simulators focuses on advancing haptic response and ve-
hicle dynamics; these include the University of Iowa National Advanced Driving
Simulator, Toyota’s simulator, and the University of Leeds driving simulator [20,
142, 37, 120]. In these experiments, the focus has been on how the driver controls
the vehicle regarding lane keeping, speed control, and response to safety-critical
events, like braking on time. The simulators mentioned use an orbital cabin
on a Stewart platform. The cabin contains real vehicles, and the road is pre-
sented with projectors, similar to Figures 2.3 and 2.10. Although not reflected in
driving simulator research, computer graphics techniques have continued to de-
velop, including physical-based rendering, photometric lights, planar reflections,
and ray-traced shadows, which have been implemented in game engines such as
Unreal Engine 4 [52]. Gaming driving simulators tend to embrace these render-
ing features and are, for the most part, racing simulators [143, 78, 173]. These
advances can also be seen in realistic world simulations such as Airsim, built on
top of Unreal Engine 4 [147], see Figure 2.11. Airsim was built to extend the 3D
environments used to train machine learning algorithms, given their dependence
on large amounts of photo-realistic data. They provide dynamic vehicle models
as well as realistic physical environments. Airsim can also return multiple sensory
measurements from the perspective of some set of viewing cameras, such as depth
maps, semantically labelled images, and colour images.

The increased capability of personal computers through graphics cards and
multi-core processors enabled more development of digital environments for re-
searchers and enthusiasts. Initially, it was required to write shaders to instruct

1These images would be in colour for the actual simulator but the published research paper
they were taken from was in black and white.
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Figure 2.9: The Daimler-Benz driving simulator using lighting models to simulate
real world light in different time of day settings. Left to right it shows a standard
overcast day, bright light, and dark nighttime driving scenes [49].

Figure 2.10: University of Leeds Driving Simulator. The left image is the motion
cueing cabin used for haptic feedback during simulation. The right image is the
inside of that cabin showing the projection of the simulation on the walls.
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Figure 2.11: An example of Airsim driving simulation the main screen shows
the drivers perspective, the sub-screens across the base show a depth image, a
sematically labelled image, and a colour image in that respective order left to
right, all from the perspective of the front of the vehicle [147].

graphics cards on how to interpret 3D data for rendering, often through APIs like
OpenGL [145]. More recently, game engines like Unity, Unreal Engine, and Open-
SceneGraph have provided a development environment that reduces the knowl-
edge required of the rendering pipeline for the software developer [164, 52, 154].
A study using unreal engine and unity as a stimulus for their driving simulator
found that drivers’ gaze behaviour varies in response to different lighting models
presented to drivers [109]. The experiment involved examining drivers’ gaze and
vehicle operation behaviour while drivers used augmented reality instructions (an-
imated arrows for direction on the road). Driver attention was measured during
a safety-critical event where a pedestrian crossed the road in front of the driver’s
vehicle. They found that the distribution of the driver’s attention shifted signifi-
cantly to the augmented reality instructions from the pedestrian while in the high
graphical fidelity simulation compared to the lower fidelity graphical simulation.
This finding showed that graphic fidelity factors were significant while measuring
driver attention in simulators.
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2.3.4 Machine Vision and Driving Simulation

The number of driving simulators created from machine vision methods appears to
be a niche area. As a result, this section is shorter. Computer graphics and vision
methods have allowed videos of the real world to be transformed into navigable 3D
environments. Driving simulators have been developed using image mosaics from
omnidirectional cameras using image projections over manually reconstructed 3D
scenes [163, 118]. In their approach, it was possible to compute a texture-mapped
solution to rendering real roads with their 3D model and an estimation of the
set of camera poses and parameters (field of view, skew, radial distortions). The
texture mapping technique splits a panoramic image into vertical sections (they
refer to this as slits). These slits were then oriented in front of the rendering
camera depending on the relative transformation between the rendering camera
and the 3D model. The slits were textured using a set of local images sampled to
construct mosaics. The slits used in the final rendering did not have the constraint
of being from a single image. As a result, new renderings of the 3D model could
be produced. The method applied in this example assumed that the capturing
camera travelled in a straight trajectory. The assumptions on forward camera
motion and a predefined 3D model are no longer required for modern machine
vision methods while localizing a camera [171, 85, 189, 116, 139]. A projective
model associated with a camera used to record dashboard footage can be matched
to other images of the same scene to make a depth image. The approach in [14]
was to project images into a single sample depth view made from an image pair.
Although this method provided 3D geometry to steer around while viewing from
the perspective of the capturing camera, when the user required a trajectory
that deviated slightly from the capturing camera, holes in the depth image were
exposed, leading to visual artefacts.

Recently data driven approaches to simulated environments have been devel-
oped [3, 190]. Companies have gotten involved in creating photo-realistic driv-
ing simulation including Parallel Domains and Facebook Reality Labs [119, 138].
Their main motivations with these simulations is to allow robots and autonomous
vehicles to transfer learned skills from their synthetic environments to the real
world. A roads engineer however would be interested in constructing a simulation
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as close to a real road, as possible. Some of these data driven approaches appear
to require a multitude of sensors, not typically made readily accessible. For each
of these reasons these approaches have not been applied within this thesis.

2.3.5 Summary

Driving simulation has been used in safety, psychology, and engineering research
for many years. It offers a safe alternative to real-world driving, where repeat-
able measures can be taken, and the environment can be controlled. Real-world
information has been used to automatically construct simulated environments
since the 1950s, with video-based driving simulation [77]. Digital computers were
used to replace video-based driving simulators to allow experimenters more con-
trol over the environment and to introduce higher degrees of mobility. Digital
simulation continued to advance as computing power increased, allowing for 3D
and dynamic lighting environments. This allowed for the introduction of com-
plex scenes, including dynamic traffic and pedestrians. In the driving research
community, there appears to be less emphasis on keeping up to date with modern
methods for creating photo-realistic environments for driving simulators. The
focus appears to be on creating accurate physics models and high-fidelity hap-
tic feedback. This may be because there are less noticeable differences in driver
performance for increases in photo-realism compared to the standards set by car
companies in the 2000s [20, 142]. However, recent studies have shown that hu-
man attention, through eye gaze, is influenced by the level of photo-realism [109].
Photo-realism in simulations has been expanded in the gaming industry, machine
vision, and robotics research communities. Photo-realism in driving simulation is
of interest within this thesis because the original simulator requirements focused
on human-driver attention on real roads. Attention will be measured using human
vision, so it is desired to get the driver’s eye gaze behaviour within the simulator
as close as possible to the real world. Machine vision methods have previously
been used to automate the reconstruction of 3D environments for driving simu-
lation. The work in this thesis expands on the premise that 3D reconstruction
can be automated and enhances steering in video-based simulations. This thesis
provides a solution to projecting image data onto reconstructed surfaces. This is
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done by projecting the images onto a dense volume rather than a discrete depth
map. A dense model with known relations between itself and the capturing cam-
era extrinsic parameters allows for new forms of analysis in driving simulation.
Interactions between users of the simulator and the 3D model can be mapped
back to one of the 2D images used for the reconstruction. Since reconstructions
will be used for the simulator, augmentation of distractors will also be possible.

2.4 3D Scenes and Reconstruction

Driving simulation can benefit from modern computer vision and graphics tech-
niques for 3D reconstruction. The methods of photogrammetry and machine
vision used for 3D reconstruction will be introduced and reviewed. A 3D recon-
structed environment will provide a good representation of real roads for driving
simulation, reducing the time and effort required to manually construct 3D as-
sets using 3D design software. Building the pipeline for 3D reconstruction takes
more time than designing a single road. However, the cumulative time of design-
ing many roads will exceed the design of the 3D reconstruction pipeline. This
section will mathematically formalize how a 3D scene and a camera model are
composed to describe the chosen approach better. This formalization will be
used throughout the thesis for computer graphics and machine vision sections.
The camera model will be beneficial as perspective projection techniques (using
a camera model) will be used to enhance the texturing of the 3D reconstructed
models later in the thesis.

2.4.1 3D Reconstruction

3D reconstruction from image sequences forms an essential component of the
video-based driving simulator. The following section reviews existing methods
and discusses their relevance to the problem solved. Specifically open source im-
plementations have been focused on given these solutions are readily available
for testing and validation from the wider computer vision community. Recon-
struction of scenes using colour camera images has been an area of interest for
those in photogrammetry, robotics, and machine vision communities for many
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years [98, 42]. The most popular algorithms for 3D reconstruction from camera
images include structure-from-motion (SfM) and visual simultaneous localization
and mapping (V-SLAM). These algorithms take images as inputs and produce a
set of localized poses for each image and a relative 3D structure representing the
geometry the cameras observed in each image. Basic SfM and V-SLAM pipelines
will be outlined to highlight the benefits of the different types of systems. A
detailed discussion of the main compoenets of SfM can be found in Appendix
AA.2.

Structure-from-Motion: Longuet-Higgins appears to be among the first
examples in computer vision to present a method for creating 3D structures from
two views [98]. They presented an approach for estimating camera poses using
8-point correspondences from two views to estimate the camera’s epipolar ge-
ometry. Since then, full pipelines have been developed to create structure from
many views [152, 189, 160, 58, 115, 139]. These systems contain two main com-
ponents: correspondence search and incremental reconstruction. Given a set of
images of the same scene, correspondence search focuses on identifying unique
visual features between images that can be detected from different perspectives.
The output is a scene graph, highlighting robust features that connect the images.
The identified features are filtered to ensure the 3D reconstruction optimizations
and triangulations in the incremental reconstruction are not corrupted by out-
liers. The correspondence search uses feature extraction, matching, and geometric
verification. Incremental reconstruction focuses on taking the matched features
from the scene graph and building a 3D geometry. This is done using the densely
overlapped images first and adding additional images to the set. Additional im-
ages are used to expand the 3D geometry and optimize the existing triangulated
points towards a good solution. The output is a set of poses for each image and
a set of 3D feature points connecting the poses. It does this in the following
order: initialization, image registration, triangulation, and bundle adjustment.
The steps in structure-from-motion will explain why some reconstruction tools
were chosen over others.

Structure-from-motion has previously been used to reconstruct extensive im-
age collections of tourist attractions initially found on the Internet using publicly
available software [152, 189]; see Figure 2.12. This acted as a demonstration of
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how SfM could be applied robustly applied to real world datasets. SfM would
later be expanded to city-wide reconstructions, including reconstruction of pop-
ular cities for tourism, including Rome [57, 1, 188]. A significant advantage of
SfM is that the reconstruction process is usually performed offline. The advan-
tage here is that more effort can be put into forming the scene graph based on
feature matching. This increases the number of iterations of RANSAC for select-
ing features to compute geometric verification and image registration. Searching
for two views for initialization of incremental reconstruction also has increased
runtime. Bundle Adjustment can often fall into incorrect local minima when not
initialized with a pair of images containing features that overlap with many other
images. Modern approaches to SfM find a good initial pair of images with a
large set of shared features between themselves and all/most other images in the
dataset. This increases the likelihood bundle adjustment will optimize towards a
good solution for camera poses and 3D surfaces.

Figure 2.12: The left image is a collection of unstructured photographs of Notre-
Dame, and the middle image is a reconstruction of the 3D surfaces and the
viewpoints. The right image is the new way of browsing photos using Photo
Tourism [152].

There are multiple implementations of the structure-from-motion pipeline.
The most popular and publicly available algorithms include COLMAP [139],
Theia [160], OpenMVG [115], visualSFM [189], Bundler [152], and MVE (Multi-
view reconstruction environment) [58]. Each of these has been evaluated by [8]
to show the best performing algorithm for sparse 3D reconstruction, pose estima-
tion, and dense 3D reconstruction. This review found that COLMAP produced
the best results on average, but comparatively, the results are quite close between
itself and OpenMVG. This is the case for most comparisons involving both SfM
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pipelines [155]. A thorough examination of 3D reconstruction pipelines was done
by [136], where they compared dense 3D reconstructions using COLMAP and
OpenMVG. These were combined with multiple view stereopsis (MVS) pipelines
that constructed dense meshes from the sparse point clouds given by SfM [59].
The MVS pipelines used were those that were developed in combination with
the COLMAP application [140] and OpenMVS [19]. These 3D meshes were con-
structed using aerial photographs of Dublin city centre and compared against
ground truth LIDAR scans from the DublinCity dataset [202]. They reported
measurements of precision, recall, and an F-score (a combination of the previous
two scores). The full COLMAP pipeline had higher precision compared to Open-
MVG. However, the OpenMVG and OpenMVS combination acquired a higher
recall and F-score measurement.

Reasons for performance difference: Bundler is one of the earliest examples
of SfM running successfully on extensive image collections [152]. Most other
pipelines have either been built on this or heavily influenced by it. VisualSFM
is a GUI application for 3D reconstruction, and it focuses on increasing pro-
cessing speed through multi-core parallelism for feature detection, matching,
and bundle adjustment. VisualSfM integrates PMVS (Patch-based Multi-view
Stereo)/CMVS (Clustering Views for Multi-view Stereo) to extend the outputs
of SfM (a set of camera poses and a sparse 3D model of image features). This
extension reconstructs a dense 3D structure of visible objects in the scene ob-
served in the set of images [60]. Only static structures should be reconstructed,
automatically ignoring non-rigid objects. VisualSfM gained popularity as it was
the first accessible 3D reconstruction pipeline from image collection to 3D mod-
els. MVE has been built with a focus on reconstructing detailed 3D objects with
a set of images taken using multiple resolutions [58]. OpenMVG and Theia are
both end-to-end structure-from-motion libraries capable of including many im-
plementations of the different stages of SfM [115, 160]. However, OpenMVG has
multiple published works focusing on their improvements to the SfM pipeline.

OpenMVG has used:

• Adaptive thresholds (a contrario) to improve the accuracy of the final 3D
model [114, 112]. The thresholds adapted in this paper were image feature
thresholds for RANSAC used for projective model estimation during image
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registration for both image-to-image and image-to-world correspondences
and pose estimation.

• A method to find 10% more (than Bundler and other existing methods at
the time) multi-view tracks based on two-view image correspondences [113].

COLMAP was explicitly developed to be robust to outliers with each im-
provement it introduced to the SfM pipeline. It does this by editing the following
steps [139]:

• Geometric Verification: The scene graph is augmented to include infor-
mation on the transformations between corresponding images. The number
of inliers for each type of projective transformation (homography, essential,
and fundamental matrix) was recorded. Based on the number of inliers,
the best of these transformations can be chosen to describe their geometric
relationship best. A homography can be omitted to distinguish panoramic
and planar scenes from others by using a threshold based on the median
triangulation angle of the inliers.

• Next best view selection: to improve accuracy selecting new views for
incremental reconstruction is based on the number of image features and
their distribution across the image plane. Preference is shown for images
with a uniform distribution of matched features currently triangulated in
the 3D geometry. The uniformity of the features is computed by splitting
the image plane into a grid and categorizing a cell as empty or full. If
a point becomes visible inside an empty cell, it is re-assigned to full, and
some weight updates the distribution score of the image. This approach is
extended to multiple resolutions to reduce the influence of scale.

• Robust triangulation: Matching techniques favour image pairs with a
similar appearance which usually means that the image pair will have a
small baseline. Feature tracks are formed from concatenating two-view
correspondences to form larger baselines between images. RANSAC is used
to deal with the high number of outliers in feature tracks. Triangulated
points are not calculated from image pairs labelled as panoramic to avoid
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degeneracy. The triangulated points should display sufficient triangulation
angle and positive depths. New triangulated points conform to the model if
the depths are positive and the reprojection error is below some threshold,
t.

Visual Simultaneous Localization and Mapping: SLAM has been an active
research area for many years [116, 184, 106, 79, 85]. It involves generating a
map using sensor measurements and simultaneously localizing the sensors/robot
within an environment, often in real time. It has not always been associated with
camera sensors. However, over the last 20 years, visual-SLAM (V-SLAM) has
been a central research area in robotics and computer vision. These systems are
capable of producing 3D reconstructions, specifically on video sequences. They
were considered a possible means of reconstructing real roads and localizing im-
ages relative to the final model. The features of visual SLAM will be discussed
to bring context to why it was used in development throughout this thesis.

Like SfM, SLAM contains three main modules: initialization, tracking, and
mapping. Initialization defines the global coordinate system through stereo view
reconstruction with a known baseline using the 8-point algorithm [98] or local-
ization relative to a known model in the real world with distinguishable image
features [42]. Tracking is done by localizing the camera relative to the initial
set of image features and growing the set of features through iterations of fea-
ture recognition, matching, and triangulation. 2D-3D feature correspondences
are used to track the camera moving in the environment using algorithms like
PnP (perspective-n-point) [54]. The 3D structure is estimated in the mapping
thread when new, not yet mapped points are observed and triangulated [71].

Additional modules have been added to create stable and accurate 3D models
and camera pose tracking. These include relocalization and global map optimiza-
tion. Relocalization is a process used to find the location of a robot or sensor
when tracking has been lost. In practice, the visibility of features can vary due
to changes in lighting or motion blurring. Relocalization will allow the tracking
algorithm to query a large portion of the map against the features in the image
rather than local features typically used during tracking. Generally, there is a
cumulative error in the map due to inaccuracies in the camera itself (camera pa-
rameters), the detail the camera is capable of capturing (the resolution), and the
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features being matched against (feature mismatch). Global optimization helps
suppress this error. The map is refined to enhance the consistency of the whole
map. An example of this includes loop closures. A loop closure occurs when
some map segment is revisited, and a drift measurement can be computed. See
Figure 2.13 for an example of drift and loop closure. The drift is the distance be-
tween where the sensor/robot believes it is due to estimation against the position
of where it is located. When the sensor revisits a known location, a measure-
ment of this drift can be computed, and the error throughout its current map
estimation can be suppressed. Pose graph optimization and bundle adjustment
are other methods used to suppress the map’s error and estimated camera poses
[171, 88].

Initially, visual-SLAM systems considered the probabilistic optimization or re-
finement of measurements and predictions using filter-based approaches (Kalman
and particle filters). These filters increased the certainty of a robot agent’s loca-
tion and orientation over whatever map representation they used (2D grid-based
distances from landmarks, 2D topological maps, or continuous 3D detailed virtual
representations of a map) [166]. The earliest example of a monocular V-SLAM
system was MonoSLAM [41, 42]. For this system, a map was initialized using an
object with known geometry. This known geometry enabled a camera to estimate
its pose within the real 3D world. A state vector was used to contain the camera
motion and the set of 3D positions from visual feature points triangulated in
the images captured by the camera being localized. As the camera moved and
observed more of the scene, more feature points were added to this vector. This
system used an extended Kalman filter to refine the 3D structure and camera
pose contained in the state vector. An issue with this approach was that the
dimensionality of the state vector increased as the number of points increased.
Eventually, it would get too large to compute 3D features and camera transfor-
mations in real-time—the lack of scalability limits this algorithm’s applicability
to building models for the video-based driving simulator.

The computational costs of localizing the camera against a growing state vec-
tor were later solved by putting the localization and mapping into two separate
threads. This was done in Parallel Tracking and Mapping (PTAM) [85]. This
allowed the camera to be localized in real-time in one thread while the mapping
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Figure 2.13: New college sequence, top-down view of 3D reconstruction using
ORBSLAM [116]. The top map is the reconstruction before the loop closure
match, drawn in blue, the trajectory in green, and the local tracking map in red.
The bottom map is the reconstruction following the loop closure.
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thread used bundle adjustment to compute an accurate estimate of the 3D mod-
els [171]. Many v-SLAM systems today still use this multi-threaded technique.
PTAM also introduced key-framing, where selected images containing matching
features with a large disparity from another image in the key-frame set would
be used for local tracking. The large disparity enabled accurate triangulation.
The problem with PTAM, however, is that scale ambiguity (the scale of the co-
ordinate system is unknown) causes scale drift. There are no consistently known
distances between frames in a monocular system (a stereo system would have a
fixed, known distance between the sensors) [85]. Cameras can be optimized over
7 degrees of freedom for their poses in a pose graph to correct this [156]. ORB-
SLAM uses this method along with bundle adjustment and loop-closure detection
see Figure 2.13 [116]. ORB-SLAM is one of the few complete implementations of
feature-based monocular SLAM. It has since been extended to work with other
sensor setups such as stereo and RGBD cameras.

Summary: Bundler was an early implementation of SfM for large datasets,
and it has often been treated as baseline performance for many of the other
algorithms/pipelines mentioned. Therefore it often displays lower performance in
comparison to the other methods mentioned. VisualSfM focused on the speed of
reconstruction from Bundler and creating dense models from the SfM output. Its
contributions were significant. However, compared to other systems, it has lower
accuracy (reprojection error) and point/mesh density. MVE focused on improving
reconstructions from images over multiple resolutions, a specific use case that
does not generalize as well as some of the other algorithms mentioned. Theia
provided an SfM pipeline using multiple algorithms available for SfM; however,
their paper does not mention their contributions to increase robustness or 3D
point recall. It is unlikely that Theia could compete with other state-of-the-art
SfM algorithms. It re-implemented the available algorithms of the time with
few novel contributions. This left OpenMVG and COLMAP. Each of these has
contributed approaches to increasing robustness and 3D point density. OpenMVG
focuses on accuracy over robustness. COLMAP does not make this trade-off.
Ruano et al. [136] found that the scenes from COLMAP were sparser (lower
recall) while also having lower levels of error (higher precision). COLMAP would
be the pipeline of choice for instances where reprojection error over a 3D model
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should be low (to reduce visual artefacts). OpenMVG would be preferable if a
denser model were required with less concern for the average reprojection error
(good accuracy but lower precision). For this reason, COLMAP was used to
reconstruct real-world 3D models in the video-based driving simulator developed
in this thesis.

Visual SLAM has been shown to perform well on the task of camera localiza-
tion, sparse and dense mapping [85, 116, 79, 184, 40, 106]. It is often associated
with sequential data, like the video sequences used for data collection in this the-
sis. However, dense 3D models have often been associated with active cameras
[79, 184, 40, 106]. This presents an issue for applying SLAM as the solution
required for this thesis given standard/accessible equipment has been identified
as a requirement for this research. Meanwhile, monocular visual SLAM produces
sparse point clouds, like SfM [116]. Monocular SLAM approaches could be used
in combination with SfM and MVS. SfM typically struggles to find a good pair
of images to begin mapping or localization. However SLAM appears to be more
robust and time efficient. This performance difference could be attributed to
a mixture of factors including the assumptions that can be made with SLAM.
SLAM can assume measurements are made in close temporal proximity and are
often closer locally. SfM does not make this assumption. Most SfM implementa-
tions assume all images are uniformly equal in probability of being related until
all image features have been compared. In this thesis, Combining SLAM and
SfM solutions has been applied to overcome instances where COLMAP’s SfM
components failed to converge to a stable set of 3D correspondences. ORBSLAM
was instead used to seed initial poses for COLMAP’s SfM reconstruction. This
is discussed more in Section D.3.1.

2.4.2 Formalization of 3D Scenes

An artefact of this thesis included the manipulation of standard RGB camera
models and projective transformations from world to image space and image to
world space. Photo-realistic renderings could be produced using projective tex-
ture mapping (PTM) on 3D models [144, 43, 53]. PTM would then be connected
to 3D reconstructions and their corresponding camera models. Later, eye track-
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ing signals will be measured, and the screen coordinates mapping from the image
plane to geometric model rendered in the virtual environments. This section will
present a formalization of the mathematics involved in these processes.

In a basic graphics pipeline, three main components are used for rendering;
these are 3D points (vertices), illumination sources, and cameras. A 3D object can
be composed of vertices where each vertex has a position p ∈ R3, a colour c ∈ N3,
and normals n ∈ R3. A 3D model typically comprises many vertices grouped by
some rendering system. Usually, vertices are rendered together in groups of 3
vertices to form triangles, otherwise known as faces. Many of these triangles used
for one model are referred to as a triangle mesh. The space between vertices
will be filled with some surface while being rendered from one side of the face.
The colour of each vertex is interpolated over the surface of the face. Therefore,
the higher the resolution of the model (more 3D positions), the more colour
information can be stored for the model’s surface, assuming they are using vertex
colours. Normals can be computed by finding the cross product of the vectors
between the vertices on the face. The normal is used for lighting calculations.
This is discussed later.

Figure 2.14: Pin-hole camera model highlighting how the point p is observed as a
2D image coordinate u. Also highlighted is the principal point (Cx, Cy) and the
focal length fx
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Rendering 3D points with the description above requires transformations from
the 3D representation to a 2D viewing plane, see Figure 2.14. Camera models
are used to assist in this transformation. This is true for interpreting 3D points
in the real world (a computer vision perspective) and 3D points in a graphics
pipeline for rendering to a viewport. The standard pin-hole camera model is a
good approximation for how cameras can transform 3D points into 2D. In this
thesis it will be assumed that the 3D points are in homogeneous form, with an
extra dimension w added as a scaling factor, e.g., p ∈ R3 is now p ∈ R4 by
appending a 1 to the 3-vector. Let the image space domain be defined as Ω ⊂ N2.
The colour image C of colour pixels c : Ω→ N3.

The pin-hole camera model assumes a single point of projection, which all
rays, within some viewing frustum, pass through. The distance of the image
plane to the pinhole is known as the focal length (fx, fy). The pinhole model
considers the principal point (cx, cy) of the image plane as the point on the image
plane where the angle of the rays of light entering the pinhole is 0. A 3D point
in line with the camera center and the direction the camera’s forward vector is
pointing in will be observable at this point on the image plane. This principal
point corresponds to the origin of the image plane coordinates. There exists a
skew s that identifies the relative alignment between the x and y-axis of the image
plane. These axes are not always at a perfect right angle.

In the real world, there are also lens distortion parameters to consider, radial
distortion, such as positive radial distortion ("barrel") and negative radial dis-
tortion ("pincushion") distortions. However, it will be assumed from this point
that images have been undistorted using standard calibration techniques [196].
Camera parameters can be composed into a matrix K, known as the camera in-
trinsic parameters, Equation 2.1. This matrix can aid in the a transformation for
homogeneous points from P3 → P2, assuming that distortions have been removed
from the image plane. It scales the projection onto the image plane in the ideal
scenario where fx and fy are equal to 1. For a more thorough examination of these
parameters, consider [70]. The perspective projection itself can be calculated by
adding an additional row and column to this matrix and adding additional clip-
ping parameters for the z-dimension of the viewing frustum [162, 150]. In later
chapters, 3D reconstruction tools will be used; see Chapter 4. The video camera
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used to collect data will be calibrated. This will mean that the video could be
undistorted to remove camera lens distortion and allow the use of the standard
camera models for 3D reconstruction and projective texture mapping.

K =

fx s cx

0 fy cy

0 0 1

 (2.1)

The camera can then have its pose within a world coordinate system. The
above camera intrinsic parameters alone assume the camera center and rotation
are aligned with the global coordinate system. To allow for a camera that can have
varied positions, consider a rotation matrix R ∈ SO(3) and a translation t ∈ R3.
These are all considered in the global reference frame. These two components
are then stored in a matrix P of the form Equation 2.2. These are known as
the camera’s extrinsic parameters. In Figure 2.14, the optical center’s relative
position to the world coordinate system is analogous to the translation vector t,
and the rotation between the optical axis and the world’s coordinate system is
analogous to the rotation matrix R.

P =

[
R t

0 1

]
∈ SE(3) (2.2)

To compute these projections, the points used must be in homogeneous form.
These matrices will allow for transformations between image and world space and
vice versa. Vertices in the map at position p = [x, y, z]ᵀ, can be mapped to an
image point u ∈ Ω for a given camera, Equation 2.3. Where π(p) = (x/w, y/w)ᵀ

is the dehomogenisation of the point. This point u can be seen in Figure 2.14
where a ray connected to the optical center and the point p intersects the image
plane.

u = π(KPp) (2.3)

The matrices in Equation 2.3 define a generalization of 3D points p and poses
P, with intrinsic parameters K and how they relate to image plane coordinates u.
Each of these transformations can be visualized in Figure 2.15. This relationship
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can be used for rendering image-based representations of the real world after 3D
point retrieval. It allows for transformations of 2D image coordinates used for eye
tracking to be transformed between the rendering camera PR (what the viewer
will see) and some image of the real-world PT , sharing the point p from a shared
model M. The ability to map points between 2D views of the same scene will be
used in reconstructing 3D models, projective texture mapping, and eye-tracking
work presented in later chapters, see Chapters 4 and 5.
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Figure 2.15: Transformations from the world coordinate system [Wx,Wy,Wz] to
the camera coordinate system [Px, Py, Pz], and the projection of the 3D point p
onto the image plane of the camera as the 2D point u.

2.4.3 Modelling Colour on geometry

Texturing will be used to enhance the photo-realism of the final 3D models.
Textures are used in place of complex colour and lighting models. Using colour
and lighting can aid in the perception of depth. Without colour and lighting,
3D models appear as uniform blobs on a screen, and their edges are difficult
to distinguish. Colour and lighting provide cues for depth, such as shadows
and varying intensity of light/radiance across the 3D surface, see Figure 2.16.
This section discusses the interpretation of colour in computer graphics and 3D
reconstructed models. It mentions the assumptions used to build the 3D model
and presents the problems with how those colour representations decrease photo-
realism. The section finishes with a discussion on what techniques are currently
being used to address this problem in 3D view synthesis.

The human eye can distinguish different spectra and interpret them as colour.
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Figure 2.16: Example of a cube with uniform colour and no light on the left.
Example of a cube with colour and lighting on the right (diffuse reflection).

It does this using cone cells located at the back of the eye over the retina. There
are 6 million cones, with three types that can detect red, blue, and green colours.
The correct combination of red, green, and blue light can represent most colours.
Typically, in a graphics or computer vision system, three values associated with
red, green, and blue represent most other colours (there are others, but an ex-
haustive list may be going off-topic). Lighting can affect the final appearance
of these colours. Depending on the type of surface material, the light can cause
ambient, diffuse, and specular reflections. A Blinn Phong model is a simple
example to demonstrate 3D graphics environments [124]. There is also BSDF
(Bidirectional scattering distribution function), ray tracing, and physical-based
rendering, among others [15, 65, 17]. For simplicity, Blinn Phong will be used
for this argument. Ambient light is the light emanating from the object without
considering a light source. Diffuse lighting is considered when the light ray hits a
point/surface of an object, and equal illumination of the point can be witnessed
from all possible viewing directions. Specular light, however, varies its illumina-
tion based on the observer’s viewing direction. See Figure 2.17 for examples of
how these can be visualized. With diffuse and specular light, there is a reflection
vector in relation to the light direction vector. Figure 2.17 Left to right are exam-
ples of light illumination for ambient, diffuse, and specular lighting, respectively.
The rectangle is some surface on a model, and the circle on the surface is where
the illumination is concerned. The outward-facing arrows from this point are
the radiance of light from that point. The diffuse and specular lighting receives
light from some source and radiates light differently in response to it. Radiance
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is equal for all directions from the diffuse lighting, and radiance is higher in the
direction the surface reflects the light for specular lighting.

Figure 2.17: Left to right are examples of light illumination for ambient, diffuse,
and specular lighting respectively. The rectangle is some surface on a model, the
circle on the surface is where the illumination is concerned. The outward facing
arrows from this point is the radiance of light from that point. The diffuse and
specular lighting receive light from some source and radiate light differently in
response to it. Radiance is equal for all directions from the diffuse lighting. Ra-
diance is higher in the direction the surface reflects the light for specular lighting.

Lambertian reflectance is a special case of diffuse reflection in which the ma-
terial can reflect light in all directions with equal probability (no homogeneity in
reflectance). A point appears with equal brightness from all points of view. To
accomplish this, the angle between the normal of the point and the light source
vector is calculated. Intensities of colour depend on how this angle varies; see
Equation 2.4. Here kd is the contribution of diffuse light to the intensity of the
point as determined by the material properties of the point. θ is the angular dif-
ference between the normal of the point and the light source angle to that point.
Id is the overall illumination of the point based on the diffuse material and light
properties.
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Id = kd cos(θ) (2.4)

Is = ks cosn(α) (2.5)

Specular reflection considers the angle between the reflected light direction
vector and the viewing direction vector of the observer. While this angle is fine,
it provides greater illumination than the equivalent diffuse source, resulting in a
highlight on the surface of rendered objects. In Equation 2.5, α is the angular
difference between the reflection vector of light and the view vector. ks is the
contribution of specular lighting according to the point’s material properties, and
n is a shininess parameter to describe light distribution when reflected off the
object’s surface. It is the overall illumination of the point based on the specular
material, light, and viewing angle properties.

Often the assumption made in 3D modelling is that surfaces are Lambertian.
In the real world, there are many cases where this is not true. It is a fair assump-
tion to allow for the recovery of some 3D points and has often proved successful
in producing geometrically accurate 3D models [102]. During reconstruction, 3D
surfaces’ colour and depth are often a weighted average of observations. This
can lead to a loss of detail, and hence, a loss in photo-realism [39]. These meth-
ods reduce noise in the reconstructed geometry but can lead to over-smoothing
of the vertex colours. This approach is employed in many state-of-the-art sys-
tems [184, 79]. However, some methods have been developed for estimating light
sources in the scene and, in turn, simulating specular reflections [185]. Some tech-
niques reduce over smoothing by optimizing local camera pose photometrically by
matching surface colours (the rendering of the 3D model) to image colours (the
equivalent image used for 3D reconstruction) [200]. These optimizations have
since been expanded upon in [7, 76]. Most static solutions do not change their
appearance with changing views of the rendering camera. They are based on the
Lambertian surface assumption used for the reconstruction.

Light field estimation has been a popular approach to view-dependent ren-
dering on 3D surfaces. However, these methods have since been dominated by
data-driven approaches to learning the view-dependent effects of a model. A pop-
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ular method introduced recently was NeRF (neural radiance fields) [111]. This
approach used many training images of the same 3D model, reconstructed from
the same set of views using COLMAP [139], to estimate the projection of image
colours onto points on the model ray-traced back to some query camera pose.
The pose to be estimated is provided as input of the form location p ∈ R3 and
the pose’s viewing direction (φ, θ). This approach relates to the lighting con-
cepts described above and a neural network/perceptron. The approach estimates
the light vectors radiating from the 3D points without prior knowledge of the
light sources. The network architecture was a multi-layer perceptron. Following
training with colour images and depth maps traced from projections of all the
views of a single 3D model, the perceptron could estimate each pixel of a queried
pose relative to this 3D model. It provides a corresponding colour and depth
value per pixel of the estimated viewing camera (RGB and σ). This provided
promising results, including reflections, shadows, and other physical-based ren-
dering lighting effects. However, in later comparisons, it was found that NeRF
would only perform well when the synthesized images were within proximity of
the training dataset [195]. Other competitive approaches to view synthesis allow
for much larger deviations from the original training set camera path but still use
similar premises on training with light vectors [132, 133]. The reasons for their
performance boost include factors such as an original over-parameterization used
in NeRF (using an input vector of degree 5 instead of 4) and a more considerable
emphasis on training with image features rather than the raw colour information
itself.

Summary: Colour and light can be challenging to simulate through physical
properties. Although the properties of light are currently well known, comput-
ers (processors and graphics cards) can sometimes struggle with the computation
necessary to calculate how light should reflect off each surface from the source un-
til entry to the viewing camera. Unreal engine boasts the ability to host multiple
ray tracing functionalities. However, it often requires limits on the light distance
and bounce (number of times to track the reflectance of light on surfaces) [101].
NeRF used data-driven approach has been taken to estimate how surfaces should
be rendered when observed from a smaller set of perspectives (a subset of all
possible images of that surface). Although the available methods for scene recon-
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struction and view synthesis have reached a high level of photo-realism, they can
be challenging to include in a real-time system. Data driver approaches, includ-
ing NeRF [111], often take several hours to compute an appropriate rendering for
a set path of perspectives/views. The approach taken in this thesis expands the
use of projective texture mapping, a rendering approach to 3D models that will
be discussed more in the next section. This approach is taken because it allows
for a high levels of photo-realism with the ability to render graphics at a high
framerate. However, this will come at the expense of some visual artefacts and
only being able to select from a discrete set of images for texturing rather than
having the continuous lighting model provided by NeRF-like models.

2.4.4 Introduction to Projective Texture Mapping

In general, texture mapping involves matching the vertices of an object to texels
(pixels) of an image. This process can be difficult to calculate for intricate 3D
objects. An example of a 2D image texture on a 3D object can be seen in
Figure 2.18a. 2D image coordinates are matched to the 3D coordinates of a cube.
Projective texture mapping allows a 2D image to be projected onto a surface,
defined by the vertices within a viewing frustum, described by a projection matrix
[144, 53]. This can be seen in Figure 2.18b where a 2D image coordinate u is
mapped to a 3D model at point p. In the 3D model, the bottom plane represents
the road. The plane behind the model is a surface on which objects appearing
at a distance can be rendered. The two intersecting planes assist with capturing
(roughly) the geometry of the road boundary and hedgerows. Other models
could simulate vanishing points on the road (parallel planes). However, this
model is presented to show an approximation of the projection while limiting
the Z-coordinates (distance or depth from the virtual projector) required for the
model. This uses a pose P and a projection matrix K to simulate a projector.
If perspective projection were used to map textures onto a set of surfaces that
approximate the geometry captured in a real image, then it would be possible to
render the expected perspective changes seen in the real world while rendering in
this fashion.

These equations are similar/identical to Equation 2.3 used for rendering mod-
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(a) Manual Mapping

(b) Projective mapping

Figure 2.18: Texturing examples: (a): Manual texture mapping from 3D coor-
dinates to (u, v) image coordinates. (b): projective texturing onto planes from
P.
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els in 3D. PTM uses the same transformations discussed previously to map 3D
points to any 2D image, instead of the 2D image plane for a rendering camera.
These equations can be used for both image plane calculations during rendering
and texturing of 3D objects. When colour information is required by the ren-
derer, instead of using an attached colour value within the vertex, an additional
lookup is done where some projector (using a specific transformation and camera
parameters) is compared to the 3D point and a mapping is calculated between
the point and an associated 2D image.

To formally clarify, the rendering camera’s extrinsic and intrinsic parameters
will be referred to as PR and KR respectively. Any instance of a projector’s
extrinsic and intrinsic parameters used for PTM will be referred to as PT and
KT respectively, see Figure 2.19. While rendering 3D objects in this way the
texture is connected to the geometric relationship between the 3D surfaces and
some matrix representing a projector. Rendering 3D surfaces not encompassed by
this projector’s projection will have to receive colour information in some other
way.

PTM expanded from the basic projection of colour information on arbitrary
surfaces, as was previously highlighted by Everitt and Segal for projection and
shadow mapping [53, 144]. Later view-dependent texture mapping was coined.
View-dependent texture mapping allows for a range of dynamically rendered sur-
faces that are view-dependent, acknowledging that real world surfaces can often
not be Lambertian in nature [43]. This uses projective texture mapping as a
method of placing an image or image mosaic onto many surfaces and updating
which texture is used based on the transformation of the rendering camera. The
extrinsic parameters and image used for texturing are required for this procedure.
View-dependent texture mapping has been used in 3D modelling for many years.
There is often an emphasis on how to select the appropriate view/image and
methods to reduce noise caused by the re-projection error [43, 174, 179]. Chen et
al., has published a series of papers in the area of view-dependent texture map-
ping and has highlighted its real-time and dynamic capabilities while applied to
3D reconstructed models as well as its use in virtual reality [25, 23, 24, 27, 26,
28] 1.

1These papers were published in parallel to the time that works in this thesis were published.
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Figure 2.19: Transformations from the world coordinate system [Wx,Wy,Wz]
to the rendering camera coordinate system [Px,Py,Pz], indicated through the
transformation PR. The projection of the 3D point p onto the image plane of
the camera as the 2D point uR with the transformation KR. Similarly there are
transformations from the world coordinate system to the projector’s coordinate
system with PT and the projection of the point p onto the image plane of the
projector as a 2D point uT using the transformation KT. Below, the texture on
the left image is mapped onto the surfaces (the flower) in front of the projector.
The rendered image shows a partially textured object.
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This thesis implements and demonstrates PTM in combination with 3D recon-
struction techniques including SLAM and SfM. While other researchers previously
focused on selecting appropriate views for view-dependent texture mapping, this
thesis will focus on the robust application of PTM to real environments. This
will include solving the following challenges:

1. Reverse projection: when using PTM surfaces in front and behind the pro-
jector and textured. While rendering an image that can see surfaces in both
of these directions, this produces visual artefacts.

2. Projection onto surfaces that are not front-facing to the projector.

3. The removal of foreground objects captured in the image used for texturing
but not present in the final 3D model.

Challenges one and two have previously been identified by Everitt [53] in their
white paper and there have been various solutions presented in the past. The third
challenge was identified in the course of the research presented in this thesis. This
is discussed further in the next section on background subtraction and inpainting.
The solutions to challenges one and two are presented in Chapter 4. The solutions
to challenge three is addressed in Chapter 5.

2.4.5 Background Subtraction/Inpainting for Foreground

and Background Objects

Inpainting is the process of fixing damaged images through a filling process using
information from neighbouring pixels [6, 165]. Background subtraction, however,
is the process of highlighting dynamic foreground objects in a scene, given a static
capturing camera. The static capturing camera is not always a requirement but
most approaches consider very little movement. Background subtraction algo-
rithms often measure the rate of change of pixel intensities over time and set a
threshold based on a rate of change commonly associated with moving objects.
These two techniques can be paired to aid in removing foreground objects from
video, see Figure 2.20. The left image contains the road with cars present. The
centre image highlights cars and labels the regions as ϕ0,ϕ1. The right image
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shows that these regions are replaced with the appropriate background colours.
It is desired to reconstruct real roads for use in a driving simulator. Projective
texture mapping (PTM) takes images and projects their appearance onto a 3D
surface. The 3D surface should contain the same geometry as the items captured
in the image for photo-realistic PTM. 3D reconstruction algorithms, however,
often only reconstruct static objects. Dynamic objects entering the image will
not match the 3D model during projective texture mapping, resulting in visual
artefacts. For this reason, the above methods (inpainting and background sub-
traction) will aid in synthesizing photo-realistic views of real roads by aiding in
the removal of foreground objects such as vehicles and pedestrians.

Figure 2.20: Inpainting example of the Moyglare Road.

Early inpainting algorithms were only capable of repairing small regions of
images [6, 165]. There are some issues these early inpainting algorithms do not
satisfy. Over more extensive regions of an image, these algorithms perform poorly,
often resulting in visual artefacts. These artefacts include blurring and image
bleeding due to the inpainted area occupying an image boundary (a part of the
image with significant changes in image colour). Averaging the neighbouring
patch pixels would result in the colours at the boundary flooding into the patch.
Recently methods of inpainting have evolved, most notably using Convolutional
Neural Networks (CNNs). It is possible to train CNNs to develop a contextual
understanding of an image and inpaint based on the context, like humans [121].
The results of this form of inpainting are impressive. However, in some cases,
inpainted regions appear blurred. More recently, improvements have been made
by [177]; these appear to provide more compelling inpainted images.

To solve image inpainting in videos, early research papers focused on optical
flow/fluid dynamics to aid in the prediction of missing regions within videos [6].
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This would be a rational choice given that most videos travelling in a consistent
trajectory would contain surfaces and features that could be tracked frame to
frame. The inpainting could be done based on visual consistency between video
frames rather than solely relying on neighbouring pixels within a single frame.
More recently, deep networks have been used to predict the propagation of pixels,
and flow completion [192, 75]. Some of these networks have achieved impressive
results on the DAVIS [125] and YouTubeVOS [191] datasets.

Background subtraction would be among the methods of choice for enabling
the labelling of regions to be inpainted. Background modelling is typically used
to separate foreground from background objects for inpainting. For a taxonomy
of how these models are initialized, see [11]. Typically, these methods assume a
static camera. The background remains static, allowing a probabilistic model to
be computed based on the assumption that foreground objects will move and the
background will not [9, 92, 91]. The best results among these have been seen in
neural network approaches [104], as compared by [11].

Given that many of the background subtraction algorithms rely on static cam-
eras or cameras with slight movement, it is likely that another approach may be
required for labelling moving/dynamic objects within the scene. Semantic seg-
mentation has been a popular method for labelling extensive image collections
according to the pixel’s relative semantic meaning. For example, all the pixels
that occupy the parts of a car are labelled blue, and those that occupy the road
are grey 1. Since 2012 [87, 74, 151] deep neural networks have high accuracy
with these types of tasks, especially in instances where large datasets have been
provided [44, 63, 96]. This may be a viable option for labelling vehicles and pedes-
trians, given the large number of frames that require labelling and the dynamic
motion the camera will undergo.

Summary: Many popular video inpainting methods rely on time and 2D/image
plane space. The solution proposed in this thesis attempts to fuse the observa-
tions from many images recorded at different times and organise them spatially
in a 3D point cloud. The DVI paper attempts to solve the problem of remov-
ing transient traffic objects using LIDAR-based measurements of streets together
with a fused 3D point cloud [95]. A similar idea to our proposed solution was

1This is for visualization.
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published after we used multiple videos for inpainting in the 2D case [32, 95]. It
was also slightly before we expanded our solution to the 3D case, see Chapter 5.
However, we used a 3D model built using only images with a structure from mo-
tion algorithm. Background subtraction has been used over the years to separate
foreground and background objects by measuring large deviations of pixel inten-
sities from the mean. This would be useful with a static or panning camera. The
solution required for this thesis’s use case must be robust to significant changes
in the camera position. For this reason, semantic segmentation was considered
given its high accuracy and the relation between particular dynamically moving
objects often within the scene (other vehicles and pedestrians). For best results
in a single task, whether it be segmentation, inpainting, or background subtrac-
tion, it appears that deep neural networks are dominating the field. This may be
because of their ability to connect image features and associate them with objects
to develop a contextual awareness of the scene. Deep neural networks will likely,
if not already, dominate in terms of video [21]. The connection between these
individual functions and a good understanding of camera projective geometry
should allow a system to approximate a photo-realistic scene and manipulate it
to the point that the scene only contains features that the system designer selects.
Reconstruction algorithms allow foreground object removal, which is quite com-
mon. Examples can be seen in systems such as COLMAP [139]. They purposely
mask parts of their images for scene reconstruction, so they do not use unwanted
objects for their camera localization during feature extraction. This allows the
algorithm to localize based only on the background.

2.5 Concluding remarks

This chapter began with a review of driving safety reports, crash reports [170,
158, 167] and driver attention experiments [84, 175, 69, 103, 107]. It was found
that eye-tracking was a key factor in determining allocation of driver attention
[90, 103, 157, 22, 127, 128, 73]. Experiments carried out on real roads have
been informative but can require long term trials to gather enough data [84].
While inducing distraction on real roads, this can pose a potential danger to the
drivers [66]. Driving simulation appears to be a safe alternative that gives the
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experimenter full control over the environment [157, 107, 103, 20]. It has been
gathered that user experiments should be completed in driving simulators and
attention should be measured using eye-tracking. This research is reflected in
Chapter 3.

A review of driving simulations highlighted their evolution, from analogue
systems using projectors and video footage of real roads [77], to cameras over a
scale model of a road [182]. Simulators were shifted to digital applications by
the 1970’s [46, 64]. Although these lacked photo-realism in comparison to their
analogue counterparts, over time, this would be compensated for by including
light reflection, and advanced 3D modelling [124, 65, 16, 49, 78, 52]. More re-
cently, developments in the area of machine vision and computer graphics have
made it possible to merge real world measurements into digital simulators. This
can be done using 3D reconstruction [139, 184, 40, 19, 112]. The geometry of
these models are convincing but their texture and colour can be less convincing.
View-dependent texture and view synthesis is explored to resolve this challenge
[43, 111, 195, 132]. It was decided that view-dependent textures mapping us-
ing projective texture mapping would be pursued due to its connection to real
measurements and its real-time capabilities [53, 144, 43]. The 3D reconstruction
process and implementation of projective texture mapping are covered in Chapter
4.

The most concerning challenge with projective texture mapping is explored.
The ability to remove dynamic foreground objects from images. This is a pre-
dicted issue given structure from motion, and multiple view stereopsis techniques
reconstruct geometry for static objects [139, 189, 59, 19]. Artefacts will be pro-
duced if images containing moving objects are projected onto these 3D models. It
has been decided that dynamic objects will be labelled based on semantic labels
highlighted using trained neural networks [74, 151, 87]. The filling procedure
used over the regions previously containing the semantic labels will select images
near the query image and search over image space for the corresponding area not
containing those semantic labels. This was similar to the work done by [95]. The
inpainting methods inspired by all the above research are covered in Chapter 5.
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Chapter 3

Requirements Gathering
Experiments

This chapter reviews eye tracking data obtained from a driver distraction ex-
periment using a video-based driving simulator. The chapter also describes an
experiment carried out using a Unity based driving simulator [164]. These exper-
iments assisted with identifying the requirements for the final driving simulator
developed. The two experimental approaches, video based and generic 3D models,
were compared. This comparison highlighted the benefits and drawbacks of each
approach. The video-based driving simulator controls, available to the partici-
pants, were limited to acceleration and braking. The system used video playback
of a dashboard camera footage to the participants to simulate driving. Eye track-
ing was recorded for each participant while interacting with the simulator. An
automatic method for identifying locations of interest for the drivers was devel-
oped. This exploratory experiment highlighted the features required for future
experiments. This included image labelling, eye tracking analysis, data process-
ing, and temporal synchronization between video and eye-tracking. Following
this pilot study, an experiment was carried out using Unity as the presentation
method for a driving simulation. The aim of the experiment was to detect the
effect of external distractors from the car (static vs dynamic billboards). The sys-
tem recorded the driver’s reactions to distractors, including their speed control of
the vehicle and their eye movement. In this experiment areas of interest over the
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images representing the driver’s perspective were hand labelled. This allowed a
focus to be placed on testing individuals attention to particular events. The first
experiment focused on the group behaviour to the events on the road.

3.1 Video-Based Simulation

The data for this experiment was originally collected for the master’s thesis by
Kaneswaren [81]. The data was re-processed and analysed here for initial require-
ments gathering for the simulator described in this thesis. Sixty-eight people
participated in an experiment in which dashcam footage was replayed to them.
The participants were active observers as they could control the speed at which
frames of video were played in front of them, using acceleration and braking ped-
als. The roads used for testing were the L2007 road for 3640 frames of video,
see Figure 3.1 (Straffan Rd, Greenfield, Maynooth, Co. Kildare, Ireland), and
a segment of the M3 motorway for 10, 000 frames of video, see Figure 3.2 (Co.
Kildare, Ireland). Although the two roads state the duration of each journey is
seven and three minutes long respectively, this may vary depending on how fast
the participant chose to drive in the simulation.

Figure 3.1: Northbound L2007 route from the M7 used for rural driving in video
based driving simulator - Screenshot from Google Maps [67]
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Figure 3.2: M3 route from exit 7 to exit 8 used for motorway driving in video
based driving simulator - Screenshot from Google Maps [67]

The eye tracking data was recorded on a Tobii 1750 eye tracker, which was
built into a 43cm screen. This screen was accompanied by two other 43cm screens
to the left and right of the eye tracker, each with resolutions of 1280×1024 pixels,
see Figure 3.3. The three screens were used to give the driver a wider field of
view and add to the immersion. The eye tracking was recorded at a rate of 30Hz.
The video frames were timestamped and recorded with timestamped eye-gaze
coordinates. These were later synchronized offline, and eye-gaze was matched
to the relevant frames of video. This enabled cross-participant analysis. Given
each frame of video and the corresponding eye gaze positions; an algorithm was
developed to automatically identify areas of interest. A temporal comparison,
highlighted areas where attention was taken away from the road or dashboard.
The identification of object competing for attention on the side of the road were
identified. This pilot study showed that participants could be tested while par-
ticipating in video-based driving simulation and highlighted the requirement for
increased immersion with this setup.

3.1.1 Method

Participants were seated approximately 60cm from the three monitors and were
asked to observe a calibration video before beginning the experiment. This cal-
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Figure 3.3: Tobii 1750 eye tracking system using three monitors.

ibration included a short video sequence of a calibration dot moving across the
screen in a zigzag figure of eight pattern. This calibration was used to calibrate
the eye tracker and synchronize the eye tracking signal to the frames of video
being played back in front of the participants. The video then proceeded to show
the R406 regional road video sequence. Following the presentation of the R406
regional road, there was a second calibration zigzag eight pattern, and finally, the
M3 motorway sequence was followed by a final calibration sequence. Participants
controlled the speed of playback and the apparent speed of the vehicle by adjust-
ing the accelerator and braking pedals. There was no steering control available
to the participants, but there was a wheel they could hold during the experiment.
Participants were thanked for their time, and data were stored for later analysis.

3.1.2 Data Processing & Analysis

Eye gaze data was matched to video data using timestamps and a third-party
time synchronizing software developed by [81]. Video data and eye-gaze data
were each saved to their files. The video data included the timestamps and frame
number from the video used for this experiment. The eye-gaze data contained
the x and y coordinates of the eye on the desktop screens, as well as the global
timestamps to synchronize to the video data. There was a third file containing
the participant control input for the simulation. This contained the speed at
the frames of video being played back and the adjustment to the accelerator
controls. The pre-processing carried out by Kaneswaren spared the requirement
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to synchronize frames of video to eye gaze during pre-processing [81].
Given raw eye gaze was synchronized to the frames of video presented across all

participants a single frame of the video had multiple participant gazes associated
with it. An assumption was made that attention could be measured across 68
participants for each frame. A k-means algorithm was used to localize areas within
each frame of the video which gathered the most attention across the participants.
An initial seed of three cluster coordinates was selected. The first location was
in the place of the speedometer, this feature was at a fixed location. The second
location was the centre of the screen close to the focus of expansion for driving
forward. It was predicted this location would correspond to the centre of the road.
The third location was the left side of the road, it was predicted items found at this
location may be less related to driving and potential distractors. However, this
third focus also detected important events such as reading signs. The positions of
the eye gaze for every participant were then plotted alongside these cluster centres.
An iterative algorithm where the nearest cluster (per Euclidean distance across
the image plane) was assigned to each gaze. When all gazes were assigned to a
cluster, a new cluster centre was calculated based on the mean of the coordinates
for each gaze within a cluster. These steps were repeated until no new clusters
were assigned to each of the gazes (convergence) or the algorithm was repeated
some set number of times (10,000). An example of the three clusters can be seen
in Figure 3.4. The blue cluster was seeded with distractors to the side of the
road, green was related to the centre of the road, and red was associated with the
seed over the speedometer. In instances where the final mean of a cluster moved
closer to some initial seed point, the labels were swapped to improve consistency
across frames of video.

To filter the outliers from the gaze data, an eigenvalue decomposition was
used to identify which gaze points were found within two standard deviations 1 of
the centre of the cluster. An introduction to the eigenvalue decomposition used
can be found in [161]. This approach was taken to omit outliers which have been
labelled within the cluster. This variance and co-variance of the eye gaze positions

1Using a single standard deviation (65% of the data) omitted too much data and a quali-
tative assessment highlighted that many of these points were indeed part of the cluster. Using
three standard deviations did not add any significant differences to the number of points re-
tained within the cluster.
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Figure 3.4: Eye gazes split into clusters (red, green, and blue points). The large
white circle right of the middle of the image indicates where the speedometer was
rendered. The large circles surrounding the eye gazes indicates the decomposed
eigenvalues or variance of each cluster.

were calculated using the x/y-cartesian coordinates of the image presented to the
participants, see Figure 3.4. These variances and covariances were stored in a
covariance matrix, C. The covariance matrix could then be related to a set of
eigenvectors, ~v, to determine the directions in which the set of points varied
the greatest. The degree to which the eigenvector varied was represented by
the eigenvalues (there is an implicit relationship between the variance and an
eigenvalue). This relationship between all of the above is shown in Equation 3.1.

C~v = λ~v

(λI − C)~v = 0
(3.1)

Following on from Equation 3.1, and assuming C ∈ R2×2, and the eigenvectors,
~v, are non-zero, (λI−C) must be singular. The determinant of a singular matrix
is equal to zero. This provides Equation 3.2 and shows how the eigenvalues can
be retrieved from a quadratic equation. Cxx is the variance of the data in the
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x direction (horizontally), Cyy is the variance in the y direction (vertically), Cxy

and Cyx are the covariances. Substituting the eigenvalues back into Equation 3.1
gives the corresponding eigenvectors.

det (λI − C) = 0

λ2 − λ(Cxx + Cyy) + (Cxx × Cyy)− (Cxy × Cxy) = 0 (3.2)

It was predicted that increases in the number of gazes for each cluster may
be an indicator of increased visual attention across participants for a particular
item on the road. It was also predicted the "distraction cluster" would show more
non-driving related distractors, see Figure 3.4. This was because it was seeded
to an area away from the centre of the forward roadway and driving controls.

3.1.3 Results

For each cluster, the number of participant eye gazes was recorded for each frame
of the video, see Table 3.1. From this data, it was found that participants focused
more on the speedometer on the rural roads when compared to the motorway.
Using an independent samples z-test between the two treatments it was found
that the difference was significant, p < 0.05. This was also true for the centre
of the road, although the effect size was less significant following the same z-test
between treatments, it still reported a p < 0.05. While examining the "distractor
cluster" it appeared the averages were similar between routes, giving a p > 0.05

highlighting the similarity between the two distributions.
There were some distinct peaks corresponding to attention-diverting objects.

These peaks were further investigated for the top six contributors for each se-
quence. For the motorway sequence, the distractor cluster was always associated
with road signs, see Figure 3.5. For the rural road, the distractor cluster brought
attention to more interesting features, see Figure 3.6. These features included
bends in the road Figure 3.6(b), and forks in the road Figure 3.6(c,f). During
over-taking scenarios where some participants observed the lane they are in, and
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Road Type Cluster type Average Standard Error Standard Deviation
Rural Speedometer 6.46 ±0.06 3.87

Motorway Speedometer 3.38 ±0.03 3.41
Rural Center 41.6 ±0.15 9.14

Motorway Center 39.68 ±0.11 10.88
Rural Distractor 2.89 ±0.08 4.88

Motorway Distractor 2.86 ±0.05 5.15

Table 3.1: Number of participants associated with each type of cluster for the
rural and motorway videos. Each row reports a mean, standard error, and the
standard deviation, for the eye gaze count of each participant within a cluster
measured over the sequence of frames from each video.

others looked to where they are going, see Figure 3.6(d). Finally, there were
instances where clusters split because of approaching vehicles, some participants
looked at the vehicle and others observed the gap they were driving into between
the vehicle and the edge of the road. The beginning of the divergence between
these two groups is shown Figure 3.6(e).

Summary: In this pilot study an algorithm was developed to automatically
highlight areas of interest based on eye-gaze behaviour. All participant eye-gaze
data for two video sequences were synchronized such that eye-gaze for allotted
frames of video could be matched between participants. This pre-processing step
to match video and eye-gaze was completed within the work done by Kaneswaren
[81]. The clustering algorithm was implemented for this thesis to aid in the
analysis of eye-gaze data in a video-based driving simulation. The technique for
identifying clusters of participants in each frame of video was K-means and it was
filtered using eigenvalue decomposition with a threshold based on the distance of
an eye-gaze sample from the cluster centre along the two major eigenvectors of the
cluster. There were significant differences in the number of participants observing
the speedometer and the centre of the road depending on the type of road they
were observing, rural or motorway. The number of participants that observed
objects away from either the speedometer or the centre of the road, appeared
to be consistent between video sequences. Following an investigation into when
this distractor cluster reached a local maximum, it appeared that most peaks
corresponded to participants observing road signs on the motorway sequence. In
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Figure 3.5: Graph (above) highlights the number of participants associated with
the distractor cluster. Six frames from the motorway video, (a)-(f), were selected
to highlight instances where more than 24 participants appeared to be distracted.
These six frames (below) are presented below and the 3 clusters are highlighted,
as shown previously in Figure 3.4.
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Figure 3.6: Graph (above) highlights the number of participants associated with
the distractor cluster. Six frames from the rural video, (a)-(f), were selected to
highlight instances where more than 24 participants appeared to be distracted.
These six frames (below) are presented below and the 3 clusters are highlighted,
as shown previously in Figure 3.4.
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the rural sequences, with a more diverse environment, interesting features could
be observed. This included forks in the road, varying viewing tactics during ve-
hicle overtaking, and distinct groups who pay more attention to passing vehicles
while others look into the gaps they are driving into. Based on this study it was
shown that observations of driver behaviour in response to the video datasets
could be made using human eye gaze. Observations of attention and distraction
for roadside items require a full fixation analysis and possibly labelled frames
of video to highlight areas of interest [4, 103, 146]. This study highlighted that
participants would engage with video-based simulation. Participants vary their
attention across the three monitors based on the environmental cues observed
outside the vehicle. Video-based simulation allows for the testing of participants’
observation on real roads while also ensuring the safety associated with simula-
tion. A similar study on real roads would expose drivers to the dangers of the
distraction. This study had reduced fidelity due to absence of steering associated
with real driving.

3.2 Asset-Based Simulation

The previous section examined driver behaviour in a video-based driving simu-
lation. It highlighted important factors to consider for a video-based simulator.
This included the requirement to synchronize eye-tracking to the frames of video,
and the need to identify areas of interest in the eye-tracking data. However, the
study did not consider standard practices in driver distraction or eye tracking
experiments. Driver distraction experiments often introduce a distraction stimu-
lus and test the effect of this distractor on the driver. Eye tracking experiments
often classify eye-gaze into fixations and saccades, to aid in the measurement
of attention, see Appendix A.1 for details on these types of eye movement and
how they are acquired. Raw eye gaze was used in the previous study. An as-
sumption was made that groups of drivers would be likely to attend to the same
object at one time within a cluster. The study was exploratory and relied on
an existing dataset. To gauge the requirements for a driver distraction and/or
an eye-tracking experiment an asset-based (using 3D models specifically designed
for a computer game or simulation) driving simulator was developed. This was
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used to bring the focus onto data collection, testing, and processing. The previ-
ous study highlighted the practices required to incorporate video-based driving
simulation in a driving experiment. The development of the experimental design,
setup, and analysis was done in collaboration with the author and colleagues from
the Technological University of Dublin.

This study focused on a method to measure external sources of distraction
while driving. This experiment used an asset-based driving simulator with basic
3D depth and lighting developed using the Unity game engine [164]. To measure
the attention of participants eye tracking was monitored. It was hypothesised
that increased levels of attention would be found in the presence of distractors,
and varying levels of distraction might also be measured based on the level of
animation of the distractors. Driving performance was examined throughout
the experiment, including driving speed and the location and orientation of the
participant’s vehicle within the virtual world.

3.2.1 Experimental Design

A driving simulator was customised and then used within the gaming develop-
ment tool Unity [164]. The driving simulation consisted of a straight road and a
virtual vehicle the participant/driver could control within this environment. The
left side of the road intermittently contained fifty speed limit signs, randomly
placed. The speed limits varied between 40km/h, 60km/h, and 80 km/h. Along
the right side of the road, there were 50 digital billboards (distractors) placed
opposite the speed sign. The billboards and speed signs were randomly sorted
but were presented to all participants in the same order. Half of the billboards
were dynamic (changing image) and the other half were static. The billboard
consisted of a combination of advertising and road messages. Dynamic billboard
animations were activated based on the distance of the participant from the bill-
board, see the transition between top and bottom images on the billboard in
Figure 3.7. The same billboard changed its content from a Volvic to a KitKat
advertisement based on the position of the vehicle, see left images and the length
of the line δ measuring the distance of the vehicle to the billboard. The simulator
controls included a Logitech G27 racing wheel and pedals for the participants to
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Figure 3.7: An example of a billboard animation given the proximity of the car
to the billboard. δ highlights the distance between the vehicle and the billboard.

control the car in the simulator. The steering in the simulator was disabled as
the drive was along a straight road and the steering was originally very sensitive
to user input. Participants had control of speed and braking using the pedals.
The participants were told to obey the rules of the road and observe speed limits.

3.2.2 Data Collection

Participants were seated at 100 cm from the triple head monitor (three 1024
x 768 monitors connected to a Matrox TripleHead2Go converter interface to a
computer act as a single 3072×768 monitor) and 70cm from the eye tracker. The
dimensions of the screen’s resolution and size, and the distance of the participant
from the screen were used to calculate the number of degrees the eyes would move
about their centre of rotation, see Appendix A.1.3. Eye movement data were
recorded with the Tobii X-120 eye tracking system. The sampling rate of this
system was 120Hz. Participants had their eye-tracking calibrated and validated
before each experiment, and the error was ensured to be kept below the 1.5◦

of error. Calibration was carried out across three monitors, but the calibration
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software treated the three monitors as one large screen. Nine calibration dots
were randomly shown at extreme positions across the three monitors.

Initially, it was planned to record the image participants observed for each
perspective that each participant was exposed to during the experiment. The
eye tracking could then be projected on to the image for analysis. However, the
run-time performance of the simulator would not allow for this. This was due to
the large amount of data being written to disk continuously. Instead, the pose
and position of the rendering camera were recorded such that an image could be
rendered after the experiment was complete to allow for matching between eye-
gaze and the image the participant was observing. The position was represented in
3D coordinates using three values and the pose was represented using a quaternion
represented by 4 values. These were all written to a separate row within a CSV
file for each new sample and recorded at a rate of 15Hz. The simulation also
recorded events when billboards triggered their animations.

All the sensor measurements and simulation meta-data was synchronized using
the lab streaming layer (LSL) [86]. LSL is a system for the unified collection of
time series measurements specifically for research-oriented experiments. The eye
tracker was connected to the system using a customised python script. The
driving simulator meta-data, including camera pose and position and billboard
markers, was written to a CSV file locally together with LSL timestamps collected
through an LSL interface.

3.2.3 Participants

Eleven healthy adults volunteered for the experiment. The volunteers were post-
graduate students and university staff, of which they were all right-handed and
there were eight males and three females. The age range was between 22 and
55 years with a mean of 32.3 years. Participants had normal or corrected vision.
This experiment was approved by the Maynooth University ethics committee to
carry out the experiments on their premises. Written informed consent was ob-
tained before the experiment. After completion of the experiment, it was found
that ten of the participant datasets could be used for further analysis. One partic-
ipant was omitted due to a loss of eye tracking found during the post-experiment
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validation.

3.2.4 Data pre-processing

Eye tracking signals contain a variety of artefacts due to noise present during
data collection. For example, eye tracking can suffer from loss of tracking or mis-
classified eye-gaze coordinates caused by head movement. The following section
describes the processing of the eye gaze data before analysis.

Before any pre-processing of eye tracking data was carried out, the validation
data was queried to ensure the eye-gaze was correctly synchronized to the simu-
lation and the coordinates of the eye-gaze were aligned to the screen coordinates.
The validation screen contained nine images of speed signs randomly appearing
across different locations on a screen with a white background. The road signs
accounted for approximately ±1.5◦ of ocular range while presented on the screen.
The eye gaze coordinates were plotted over these validation images to verify that
the time and space synchronization of the eye-tracking was correct. Figure 3.8
shows the nine validation images with a participant’s eye gaze plotted on top of
each image. The eye gaze was plotted for one second leading to the image being
presented and is highlighted in blue text, and the eye gaze following its presenta-
tion is highlighted in green text. The text is a number relating to the nth eye gaze
sample. Eye tracking was reviewed following each experiment. If the eye gaze
did not overlap with the appearance of the roadsign in these images then that
participants data was removed from the final analysis due to tracking loss. This
was successfully carried out for all but two of the participants eye-tracking. These
participants eye gaze did not overlap with the road signs during the validation.

For the remaining participants, the eye-gaze data was processed to identify
times when tracking was lost. This was done by highlighting "NaN" values in
the recorded data and eye gaze coordinates outside the screen’s boundary. Linear
interpolation was used to correct for short periods of tracking loss. The data were
converted from units of pixel coordinates to ocular degrees to allow eye velocity
measurements and the setting of thresholds. A five-point Gaussian running aver-
age filter was used to reduce noise. Fixations and saccades were identified with a
velocity threshold of 30◦/second [117]. Samples collected below the given thresh-
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(a) Top left (b) Top right (c) Top middle

(d) Mid left (e) Mid right (f) Center

(g) Bottom left (h) Bottom right (i) Bottom middle

Figure 3.8: Each tile is an eye tracking validation image with example eye gaze
over-layed. The blue text are the number of samples where the eye was following
the appearance of the speed sign. The green text highlights where the eye returned
to after the sign disappeared.
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old were classified as fixations. Fixations were only retained if the sum of time for
neighbouring samples was above 60ms. Fixations with less than 0.5◦ apart and a
time difference less than 75ms apart were merged into a single fixation. All other
samples not labelled as fixations were assumed to be saccades. These parameters
are standard practice for the equipment used and the area of eye tracking, see
Appendix A.1.

The 50 billboards were each used as markers for separate trials. The imagery
(point of view), eye tracking, and speed were examined for fifteen to twenty
seconds surrounding each of these billboards. This time varied depending on
the time it took the participant’s vehicle to pass the billboard and speed sign
following the onset of some starting distance from the billboard. Each of these
instances is referred to as a separate trial. An area of interest (AOI) analysis was
implemented to associate eye fixations to items on the road [4, 103]. Within each
trial, three rectangular bounding boxes were labelled for each participant’s given
point of view while passing the billboards; see Figure 3.9. Labels were constructed
for each billboard, speedometer, and speed sign for every image visible to the
participant during every trial. This data was stored in a CSV file for later analysis
in correspondence to the eye tracking data; see Table 3.2. Every ten images
were labelled with their respective positions, width, and height. The images
between labelled images received interpolated values for position, width, and
height and a constant label. This was possible as most of the transformations
under these short periods were linear in their difference. Since the vehicle followed
the same trajectory for every participant, these values could be translated across
participants where the recorded position of the vehicle acted as a key to match
these values. The AOI for the billboards was defined as 10mm larger than the
corresponding item that appeared on the image plane.

The fixation data was matched to the AOI locations and the sum of the time
that was spent on each AOI was calculated in terms of seconds. This was then di-
vided into dynamic and static groups. The dynamic group referred to the amount
of time the participants observed these items in the presence of a billboard that
included an animation. The static group referred to the number of times partici-
pants fixated on an item on the road in the presence of a static billboard. These
were highlighted with the columns beginning with the word “static” or “dynamic”
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Figure 3.9: Highlighted areas of interest for eye tracking analysis.

AOI labelling

Image
Number

Label x-position y-position Width Height

1 Speedometer 250 250 50 50
1 Billboard 500 100 100 100
1 Speed sign 50 100 50 50
· · · · · · · ·
N label-M · · · ·

Table 3.2: Labels for AOI labelling
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on the first column. The following word in this column indicated what item the
participant was observing. “WS” referred to white space, meaning it was a posi-
tion of the screen not labelled by an AOI. “speedometer”, “billboard”, and “sign”
each referred to the times when the participant fixated on the speedometer, bill-
board, or speed sign respectively. Each other column was numbered, and this
referred to a separate participant. It was observed that the participants that did
not pass the validation check, participants 3 and 9, had the most instances of
fixation and white space crossover. This could be due to participants observing
the labelled AOIs, but the eye tracker was mislabelling their coordinates. For
this reason these participants were omitted from the analysis. The overall dwell
time for each fixation has been plotted for each participant in Figure 3.10. This
supports the theory that increased fixation time on white space resulted in less
time on other AOIs for participants 3 and 9. For all other participants there
is a far greater emphasis on the percentage of attention given to the speedome-
ter, billboard, and road sign, despite these features occupying less space on the
screen. For most participants their attention is diverted towards the road sign
and speedometer, implying they are following the specified task, "follow the rules
of the road". Although the billboard was not related to the specified task it still
diverts some of the attention of the participants throughout the experiment. In
the next section these results will be explored in more detail.

Figure 3.10: Fixations dwell time over each AOI for each participant.
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Vehicle position data was sampled from the driver’s location and rotation
(transform) on the road. Given the transform, it was then possible to calcu-
late the speed the driver was travelling. Assuming a single unit in the space of
the simulator world equated to 1 meter in the real world, and the distance be-
tween two poses of the participant at time τn and τn+1 could be calculated using
Equation 3.3. Where S was the speed, P was the pose/transform, τ was the
time stamp for each pose, and η was the normalizing factor to convert m/s to
km/h. Rotation and steering were not considered given the participant followed
a straight trajectory on an even road.

S =

(
||Pn+1 − Pn||
(τn+1 − τn)

)
× η (3.3)

The collection of driving simulator car position data, and eye tracking data
were synchronised using the lab streaming layers (LSL) which recorded a global
timestamp to enable comparison of these measurements [86]. This allowed for an
analysis of driver performance in relation to the stimulus they were exposed to
(within the simulator) while driving.

An example of the data for a single participant as they completed the simulator
trial can be seen in Figure 3.11. The two graphs show driver speed, and eye-
tracking information plotted against distance along the driving route for one
participant. Red vertical lines indicated the position of dynamic billboards, green
vertical lines corresponded to the position of static billboards. The driver speed
graph shows the speed limit in green horizontal bars and driver road speed using
a blue continuous line. The eye-tracking plot identified target fixations to areas
of interest as a function of road position. Each black triangle represented an
observed fixation over a specific AOI.

3.2.5 Analysis

The data collected were analysed to show the driver’s overall response over the
duration of the experiment. For each of the nine participants, their eye gaze data
was represented as fixations over areas of interest (white space, speedometer,
billboard, sign). To test for differences between static and dynamic billboards
the averages for eye fixation dwell time over the areas were calculated for each
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event and the difference between these averages was plotted, see Figure 3.12.
A paired t-test on each of the average dwell time differences showed that the
billboard dwell time differences had a significant effect size, with a p-value < 0.05

and t-value of 3.677. This contradicted the null hypothesis that the average
difference of dwell time over the dynamic billboard has either less time or zero
difference from the static billboard dwell time.

Figure 3.12: Average differences in fixation dwell time between static and dynamic
billboards.

The driver controls were represented as the root mean squared error (RMS)
between the speed limit and the actual speed the participant travelled at, and
the standard deviation of the participant’s speed (σ Speed) at each of these
intervals. A paired t-test was carried out for each driver performance variable
concerning the static and dynamic averages. There was no statistically significant
difference for the RMS but there was for the standard deviation size of their speed
(α < 0.05). The mean of the differences for the standard deviation of the speed
was 1.48km/hr.

The drivers may struggle to maintain the exact required speed while attend-
ing to more distracting features on the road i.e. the dynamic billboard versus
the static billboard. These variances in speed and deviations from the prescribed
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speed limit has occurred while significant changes in the amount of time par-
ticipants visually attended to dynamic billboards. However this did not lead to
significant deviations from the recommended speed limits. Based on the stan-
dard deviations of speed, driver’s appear to struggle to maintain consistent speed
while distracted by dynamic billboards. Again, this is not yet cause for concern
considering 1.48km/hr tends not to be flagged as a dangerous variance from the
prescribed speed limits. Based on previous studies on driver workload [128], for
future studies it would be worthwhile to study the effects of distraction with
more diverse surroundings (i.e. traffic, pedestrians, and surrounding buildings)
to increase the workload imposed on drivers and further exacerbate the effects of
distraction.

Using averaged data across the 9 participants (50 billboards) it suggested that
there was an increased fixation time for dynamic billboards over static billboards.
The dynamic billboards each required an average additional 0.41 seconds fixation
time per short sequence, see Figure 3.12. The speedometer fixations over these
periods remained relatively constant. The other two groups (fixations on speed
signs and all other spaces) had high variability for fixation dwell times. There
was an increase in the variability in driving speed following a dynamic billboard
when compared to a static billboard. Driver performance deteriorated marginally
from a single dynamic billboard event.

3.2.6 Conclusions/Discussion

This analysis benefitted from having labelled data to inform where attention
was focussed throughout the simulation. An understanding of the pose of the
participant’s virtual vehicle within the simulator allowed for an analysis of the
participant’s speed and a synchronisation (key indexing) for cross-participant
analysis. The position data-informed where the participant was relative to the
labelled image planes. This informed what eye tracking timestamps were relevant
to the given data period. The inclusion of lab streaming layer software eliminated
the requirement of the simulator to synchronize these timestamps itself. The
simulator reported simulation metadata including control inputs and orientation
and position of the driver to the LSL.
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Based on the eye tracking results it appeared that the animated billboards
caused an average additional 0.41 seconds fixation time per billboard observation.
Previous driving performance studies have highlighted visual complexity of the
road and the ability drivers have to drive safely due to inattention [55]. They refer
to this as driver workload and it is considered that this operates on a continuous
spectrum rather than a binary ability to attend or not. It is possible a more
complex environment than what was presented to the drivers in this simulator
study could promote a stronger response, whether this would be in response to
more complex animations on billboards or a more visually convincing road that
the driver observes.

3.3 Concluding Remarks

The video-based eye tracking experiment highlighted multiple features that could
be improved. This included the requirement for participants’ more realistic driv-
ing control within the simulation. The video-playback changes helped give feed-
back to the participants but were missing a significant factor associated with
driving, steering. The study highlighted the importance of labelled video data
and the ability to categorize where attention was focused with eye gaze data.
There were some observable instances of attention shifts using raw eye gaze and
automatic clustering methods. During a qualitative assessment, there were some
instances where participants’ eye gaze would observe an item on the road, but
this did not co-occur. This is similar to the findings of Yarbus while examining
people’s eye gaze while observing photographs [193]. Labelled data would allow
attention to be measured per item rather than the number of participants who
observed the item at the same time. Raw, unfiltered eye gaze provided many
data points. The eye tracker used in this study operated at 30Hz, but other
modern eye trackers can operate at rates as high as 2000Hz [130]. The number
of false positives for the clustering approach outlined above could be dramati-
cally reduced by filtering eye tracking data and labelling instances of fixations.
Eye tracking research usually associates fixations with an allocation of overt vi-
sual attention [50]. This approach was taken for the following experiment using
asset-based simulation.

80



3. REQUIREMENTS GATHERING EXPERIMENTS

The asset-based simulation contributed to the requirements gathering process.
The simulation allowed for the inclusion of specific scenarios in the driving se-
quence presented to the drivers. In this case, distraction in response to dynamic
and static digital billboards was tested. This was done by repeatedly present-
ing dynamic or static billboards to the participants in the presence of a speed
sign. The main driving task given to participants was to obey road safety laws.
By extension of that instruction, the participants assumed they should follow
the speed limits dictated by the speed signs. In a video-based simulation, it
would not be easy to replicate this experiment without considerable video edit-
ing, including possible scene augmentation. The asset-based simulation allowed
for constructing an environment that could replicate the same scenario for each
driver. During experimental design, multiple valuable features were included;
the tasks for validating eye tracking data and the temporal synchronization of
sensors and simulator metadata through the lab streaming layer (LSL). This en-
sured that all data was valid and could be measured in combination to aid in the
analysis of participant attention. Eye tracking was processed and fixations were
labelled. This reduced the number of data points considered during analysis.
These fixations were measured concerning specific locations within the partici-
pant’s perspective using AOIs. AOIs were labelled by hand for each participant
who passed a billboard and speed sign. These labels provided a means to analyse
driver attention. It was noted that there were significant differences, 0.41 sec-
onds, in the amount of time spent looking at dynamic billboards compared to
static billboards. It is hypothesised from this that a more complex environment
could elicit more considerable differences in the time spent looking at distrac-
tions and the number of mistakes made by participants while driving. This is
based on driving research highlighting the influence of scene complexity on driver
workload [128]. The environment of this driving simulation was simple to ensure
the driver measurements were in response to specific items on the road. A study
using a more realistic environment with more diverse surroundings may cause a
significant response.

In summary, the following factors should be included in the driving simulator
developed:

• Video-based driving simulation should be used to provide a complex envi-
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ronment that is similar to driving in the real world and can challenge the
driver with complex and realistic content.

• The video-based driving simulation should be steerable to simulate real
driving as most people experience it.

• Sensor and metadata from driving simulation should be timestamped us-
ing global synchronization tools such as LSL. This allows for analysis that
can use modern processing methods informed by the literature and can be
adjusted for future changes to the methodology of analysis.

• While doing eye-tracking experiments, attention can be measured using gaze
dispersal in video sequences [90, 107]. Clustering is a viable approach but is
subject to noise introduced due to the inclusion of saccadic eye movements
and misclassification of eye gaze positions. Fixation classification of eye
movement is supported by the literature and gives fewer false positives for
attention [4, 103].

• Measurement of attention concerning specific objects on the road is best
carried out using AOIs[4, 103]. The investment in labelling data by humans
is worth the results for the analysis of visual attention. These labels have
been used to inform what participants give attention to, and how often they
observed these items. An automated method of labelling would be helpful
here.

• In driving simulations with total freedom to explore an environment la-
belling and comparing eye tracking signals would be difficult. Attempting
to find the overlap of attention for participants could involve many hours
of labelling video data. To resolve this challenge using an understanding
of the 3D environment and how to communicate image coordinate data,
including eye tracking, between multiple views. This could enable larger
scale attention experiments where the participants have more autonomy.

• Although all participants completed eye tracking calibration and received
an initial accuracy of ±1.5◦, some participants did not pass the eye tracking
validation. Validation of eye gaze data before and after experiments resulted

82



3. REQUIREMENTS GATHERING EXPERIMENTS

in superior quality in the results observed during analysis. There were
higher fixation dwell times over items not labelled as white space (WS) for
participants who passed the validation check; see Table 3.10 for participants
3 who did not pass the validation. The validation step was built into the
simulator application, which removed the requirement of the experimenter
to switch between applications normally required for calibration. This step
should not be ignored for future eye tracking experiments as it validates
the consistency between eye gaze coordinates and screen coordinates and
accounts for the precision of the calibration.
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Chapter 4

Dashboard Footage to
Photo-realistic 3D Models

This chapter will focus on pre-processing textures for 3D models to provide pho-
torealism for a driving simulator experience. Video sequences can be collected for
almost any scene in the real world using cameras. Real-world images can be used
to reconstruct 3D models representing the geometry of a static scene captured in
those images using open source Structure-from-Motion (SfM) tools [152, 139, 116,
115, 160, 189]. The weighted average of the colours from the 3D model recon-
structed using these tools does not provide realistic lighting renderings. This is
the reason we will implement projective texture mapping (PTM) in combination
with the 3D models produced using SfM. Following reconstruction of a road, it
is proposed to treat each image in a video sequence of a road as a separate tex-
ture to achieve photorealism over a corresponding 3D model. An artifact of this
simulator includes the implementation for rendering 3D reconstructions with real
images of that same scene localized and projected onto its surfaces using PTM.
It sought to create high visual fidelity for possible future use in human behaviour
studies within a driving simulator. This chapter provides a description of the
3D models used to test the practicality of PTM for real-world simulation. The
geometric assumptions will be identified for each 3D model. Finally, the methods
developed for implementing PTM will be discussed.

Video footage has been used for driving simulation, but it can lack fidelity.
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The playback speed can be adjusted to create the effect of speed [77, 81]. A
further improvement to fidelity is to add steering. Steering requires the ability
to change the point of view away from the initially recorded perspective. Two
approaches were applied while creating this effect. The first used a manually
constructed simple model of the scene. This was to demonstrate that PTM could
be applied to any 3D model created by a designer, there was no requirement for
it to be linked to a model made from SfM. The second used 3D reconstruction
tools including SfM. In this section, perspective projection of an image of the
road will be used over a 3D reconstructed model to give the feel of depth to
the driver. Projection onto simplified models, including a plane or open-ended
box, can create visual artefacts. These artefacts become increasingly problematic
when the transformation of the drivers’ views and the projector diverge. When
the camera and projector are in perfect alignment, the view becomes independent
of the model on which it is projected and is free of distortion (assuming there are
no visible gaps/holes in the 3D model). This also assumes the “viewing” camera
model contains the same parameters as the projector used on the image. As the
camera and projector pose separate, there is an increasing need for the model to
be faithful to the real geometry. While generating an accurate 3D model of the
scene is computationally intensive, it has the ability to remove many artefacts
resulting in improved photo realism.

Section 4.1 formalizes the construction of 3D geometry and localization of 2D
images. It was considers a pre-set approximation of an environment (hallway);
an open-ended box. PTM is implemented using OpenGL. This implementation
is tested using images of a hallway and comparing how well PTM with an open-
ended box performs using photo-consistency metrics, including cross correlation.

This section then goes on to expand the generalizability of the 3D models. A
3D model was built as a proof of concept for linking PTM to an existing automatic
3D reconstruction algorithm. The KITTI existing dataset was used to allow
for a comparison of the experiments [63]. The limitations of this approach are
discussed, and an argument is presented for using a 3D reconstruction algorithm
with RBG images.
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4.1 Manual 3D Reconstruction and PTM

3D models can be manually constructed by setting 3D coordinates of a basic
shape in a computer graphics environment like OpenGL. To simulate the Port
Tunnel an open-ended box was used. Each corner of the box required a 3D
coordinate, p ∈ R3, and were organised in groups of 3 to form a triangle/face
(polygons). This is a standard format to describe a 3D model; a mesh. To
render these 3D coordinates to the screen requires a camera model. This model
included the transformation of the camera (location, t ∈ R3, and orientation,
R ∈ R3×3, relative to the model), PR ∈ R4×4, see Equation 4.11. The camera
parameters which dictate the projective transformation that occurred between a
point’s 3D camera coordinates and the 2D image space coordinates they map onto
was represented by KR ∈ R4×4. These parameters for the camera are manually
set at the beginning by the experimental designer.

PR =

[
R t

0 1

]
∈ SE3 (4.1)

The pose of the camera can be updated to provide varying points of view. The
projective transformation, KR, typically remained constant. It would be unusual
for user controls to affect the interpretation of 3D space to the 2D image plane
in a driving simulator.

4.1.1 PTM on Generic 3D Shape Models

PTM allows a 2D texture to be projected onto an arbitrary 3D surface as part
of the rendering process used by OpenGL. The PTM technique was integrated
into OpenGL version 1.1 and requires a stack based approach using named ma-
trices to be updated while rendering objects. These matrices are inputs to the
OpenGL stack to represent each coordinate system [145, 53]. The following labels
were used to represent each coordinate system: model matrix (the transformation
of the 3D model in world space, in this case, it will be assumed to be the iden-

1This notation can be aligned with the formalization outlined in Section 2.4.4. SE3 refers
to the Special Euclidean group referring to the fact that this matrix follows rigid body motions
causing translations and rotations but not reflections.
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tity), MODELVIEW (the transformation of the rendering camera concatenated to
the model matrix), PROJECTION_MATRIX (the perspective projection of the
rendering camera), TEXTURE_MATRIX (the transformation and projection of
the projector from image space to world space). A simple model consisting of
an open-ended box was used to model a hallway (and ultimately a tunnel). The
projector was placed in the reconstructed scene in the position and orientation
equivalent to the position where the real camera was used to record the view.

Assume vertex coordinates in world space are represented as p ∈ R4, to
transform them to camera space an inner product of that point and the inverse
of the VIEW_MATRIX, PR ∈ R4×4, is calculated. For rendering this point from
the viewing camera eye-space to the 2D image space on the computer screen the
PROJECTION_MATRIX, KR ∈ R4×4, is set during the program’s initialization.
This matrix then transformed the point pR to image viewport coordinate uv

following dehomogenization of the point, see Equation 4.3.

pR = PRp (4.2)

uv = π(KRpR) (4.3)

The 3D vertices were then converted to projector-space which allowed mea-
surement with respect to the projector’s frame of reference, Equation 4.5. Tak-
ing the vector-matrix product of the vertex coordinates, pR, with the planar
coefficients for each of the three projector planes and scalar on those planes
(R,S,T,Q ∈ R4) generates pT ∈ R4, texture coordinates in eye space. The cam-
era position is set by using a homogeneous co-ordinate of the form [x, y, z, w]T and
the projector position set using a homogeneous co-ordinate of the form [r, s, t, q]T

where w and q are scale factors. Assuming the renderer uses perspective pro-
jection, the projector and rendering camera, can be described as a combination
of a projection matrix based on camera parameters (focal lengths, skew, aspect
ratio, resolution) and a view matrix describing their transformation. The main
difference is that a camera samples the 3D positions of a model to form an image.
The projector samples 3D points to locate the part of the image to reference as a
texture coordinate for colouring the 3D point. The planes can then be composed
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in a matrix T ∈ R4×4, see Equation 4.4.

T = KTPT (4.4)

pT = TpR (4.5)

The projector was orientated and located by defining planes (S, T and R)
along the world coordinate X, Y and Z axes that were coincident with the world
coordinate system, centred at the origin and projecting along the Z-axis. In this
case pT = p, see Figure 4.1. In Figure 4.11 vertices further from the S and T
planes corresponded to texture coordinates further from the focus of expansion
(FOE) in the texture. Increased distance from the R plane moved points towards
the FOE, (small far away). The TEXTURE_MATRIX, T ∈ R4×4, was configured
to put the FOE at the centre of the texture. The texture matrix was also used
to scale, rotate, translate, using PT , and applied a perspective transform KT to
the texture, see Equation 4.4.

Normalizing and dehomogonizing the point pT provides the 2D (u, v), û ∈ R2,
required to access the texture, Equation 4.6.

û = π(pT ) (4.6)

With the correct values of scale, aspect ratio, rotation, and field of view, which
coincide with the cameras intrinsic and extrinsic parameters used to capture the
image being used, the projector can be constructed such that the projected image
aligned with the structure of the model, see Figure 4.2. The white edges in the
figure represent the boundaries between walls, ceiling, and floor used to line up
with the edges of the cube model. In practice the alignment was achieved using
slider bar controls on a Windows application until the super-imposed white lines
of the box coincided with ceiling, wall, and floor boundaries within the image.

The position and orientation of the vehicle (rendering camera) can be de-
scribed using two parameters to set the displacement, d, which is the position on
the road and a parameter to set the direction, θ. These parameters are used to

1Figure 4.1 and Figure 4.3 are from our previous publication [31], but there is no higher
quality vector graphic available.
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Figure 4.1: PTM, automated generation of texture co-ordinates.

Figure 4.2: Image projection onto a open-ended box.
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build the VIEW_MATRIX for the camera, see Figure 4.3.

Figure 4.3: Moving the camera relative to the model to simulate vehicle motion
(plan view).

4.1.2 Testing PTM on Generic 3D Shape Models

To commission the projection system 6 images were collected of a straight hallway
(75 meters in length, 1.8 meters wide, and 2.5 meters high). The images collected
included, a central straight view image (placed 90 centimetres from the right and
left wall, and approximately 1 meter from the ground leaving the camera front and
parallel to the central axis of the corridor) from the end of the hallway, centrally
positioned with left and right yaw rotation, and left and right translation of the
camera (placed 45 centimetres from the right and then the left wall). The central
straight view image was used as the input to the PTM program and using this
software all other views mentioned were simulated.

In practice, the simulated images and real images were cropped to limit the
field of view presented, see Figure 4.4. The original real images contained addi-
tional information at the edges that the forward-looking image did not capture
and so could not be recreated. The main effect of cropping was a reduction in the
field of view from what was available with the camera used to capture the original
texture image. The simulated images are quite close to the real-world represen-
tations. However, there are some minor artefacts that become apparent such as
sampling and aliasing effects in the rendering of fine lines of the floor. There is
also stretching of objects contained within the hallway rather than on the walls,
floor, or ceiling. An example of this can be found in the simulated right position
central view versus the right position central view (waste bins) Figure 4.4.
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Figure 4.4: Left-aligned are the real images of a hallway. Right-aligned are the
simulated images using PTM.

91



4. DASHBOARD FOOTAGE TO PHOTO-REALISTIC 3D
MODELS

Cross-correlation was used to compare how well the input image represented
the other points of view, before and after simulated projection of the images
above in Figure 4.4. Using this metric, a score of 1 represents complete correla-
tion/similarity, and a scores closer to 0 represent opposing signals to the input
template image. The average normalised cross correlation score when all points
of view were compared against the simulated images was 0.926± 0.003, and the
score for the non-warped input image against each of the real points of view was
0.909± 0.021. These values are represented in the box plot below in Figure 4.5.
The sample over the "input image" box is an outlier because the real image was
compared against itself, so it reports a cross correlation value close to 1. The
speed of this application during render time operates at 31.25 frames per second
on a laptop with an Intel core i5 processor and a GeForce GTX 950M graphics
card. The original texture images of the hallway had a resolution of 5312× 2988

pixels, and the simulated image acquired 2916×2360 of those pixels1. The reduc-
tion in resolution is 57%-caused by the reduced field required to accommodate
lane movement and steering.

Figure 4.5: Average cross correlation for warped images versus real images.

Figure 4.6 presents the application of the PTM tool on an image of the Dublin
port tunnel. There were no real-world images to compare various positions and

1This will be compared to future implementations of PTM
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Figure 4.6: First image of the Dublin port tunnel as labelled, and all other images
are the simulated orientation made.

orientations, however, it highlighted that it is possible to make a set of simulated
images based on what they would be expected to look like from a driver’s per-
spective. The original picture contains a sun visor in the top right corner of the
image. In other images where this image is warped to fit a new perspective the
sun visor is stretched across the screen, see Figure 4.6 in the top-right panel and
the bottom center panel.

Summary: In this section, rendering features have been discussed. The
projection of images onto approximate 3D surfaces works well for images with few
foreground objects. Although it is possible to calculate the projection of an image
onto 3D surfaces such that it appears photo-realistic from varying viewpoints, it is
limited to the time and effort of the user to align the projector’s transformation
matrix (TEXTURE_MATRIX). More considerable transformational distances
for the rendering camera (VIEW_MATRIX) from the projector transformation
matrix result in less fidelity due to visual artefacts, see Figure 4.4. These include
inconsistent reflections and distortion of foreground objects (less noticeable when
the camera extrinsic matrix and projection extrinsic matrix are aligned). The
following section will introduce solutions to these challenges.
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4.1.3 Limitations and Benefits of Manual 3D Reconstruc-

tion

Projections onto predefined 3D surfaces allowed for the commissioning and testing
of perspective projection implementations. Initial studies focussed on the projec-
tion process. Projecting onto an open-ended box revealed the artefacts that can
occur with imperfect models. These discoveries informed later stages of devel-
opment. General 3D reconstruction-from-image algorithms, such as SfM, can
be time-consuming and often require domain knowledge to generate accurate 3D
models. The main limitation of using the assumed shapes is that the geometry will
not always match the surfaces observed on real roads. A different model would
be required for each type of road (wide open scenes/tunnels/building-enclosed
streets). Projections will need to be realigned to the model depending on the tra-
jectory taken on the playback camera relative to the road. For example, turning
into bends shifts the focus of expansion, and either the assumed 3D model or the
projecting camera would have to be transformed to reflect this. Orienting the
projecting camera with the focus of expansion would improve texture and model
alignment. However, this approach has similar complexity to SfM methods al-
ready established [189, 139, 115]. A generalized shape cannot model unexpected
foreground objects. This often results in visual artifacts, including the stretching
of objects witnessed in the texture by the geometry. Using accurately localized
cameras and 3D models solves each of these issues. The process of achieving this
will be explored further in the next section.

4.2 Reconstruction and PTM - COLMAP

COLMAP is a general-purpose SfM and Multi-View Stereo (MVS) pipeline that
allows for reconstruction with unordered and ordered image datasets. COLMAP
was successfully used to reconstruct a road using solely RGB data images from
the KITTI dataset [139]. Its inputs were camera intrinsic parameters of the sen-
sor/camera and a set of RGB images. In other experiments done throughout this
thesis RGBD images were used from the ICL-NUIM dataset using Elastic Fusion
[68, 184], see Appendix C.1. The approach developed in this section aimed to

94



4. DASHBOARD FOOTAGE TO PHOTO-REALISTIC 3D
MODELS

use a standard dashboard camera that would not require an accompanying depth
sensor. In this case, COLMAP was preferable. Although LIDAR approaches
(e.g., Velodyne) have been preferred by others in the past, they often require
dedicated vehicles for data acquisition due to their high prices and complexity
[202]. Ideally, a road engineer in an unmodified vehicle could use the techniques
proposed in this thesis with commercial non-specialist equipment. The output of
COLMAP included a set of odometry measurements corresponding to the RGB
images and a dense mesh of 3D points and colours.

Pt =

[
Rt tt

0 1

]
∈ SE3 (4.7)

COLMAP was used to create a map, M. This map was composed of a set of
vertices where each vertex has a position p ∈ R3, and colour c ∈ N3, The image
space domain is defined as Ω ⊂ N2, where an RGB image was used. The colour
image C of colour pixels c : Ω → N3. A set of transformations were computed
to represent the poses of each of these images relative to the mapped vertices
but was rewritten with a subscript t for each individual pose at a given time, see
Equation 4.7. This used the same interpretation of 3D points described in the
previous section while describing the rendering camera PR. The camera intrinsic
parameters are the same for every image and follow the same convention as the
cameras described in Equation 2.1.

4.2.1 The KITTI Dataset

The data used for these reconstructions included RGB images of real roads from
the KITTI benchmark dataset [63]. Sequences 0, 2, 5, 13, and 18 colour images
from the "odometry dataset" were used. For each sequence there was at least
one 3D model reconstructed based on between. Two models made for sequence
13 where two separate roads were reconstructed and later tested. The conditions
for the selected sequences were that each sequence must have overlapping paths
within its sequence. An overlapping path will be defined as the camera observing
the same road multiple times. The application of these sequences will be described
in more detail in later sections. The analysis of system performance is then
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discussed. The results of using the KITTI dataset data with the COLMAP SfM
reconstruction tool can be seen in Figure 4.7.

Figure 4.7: Image of road (top) 3D reconstruction of same road (bottom)

While using COLMAP, the best results were achieved during the SfM pipeline
by extracting image features with default settings, exhaustive feature matching
(compared to sequential and vocabulary tree), default triangulation, and bundle
adjustment settings. The MVS pipeline used default settings for all stages (undis-
tort, stereo patch match, Poisson mesh conversion). Using COLMAP provided a
dense 3D model with a set of images, each localized relative to the model. The
camera’s intrinsic parameters were known. All images could be projected into 3D
space so that the images’ features matched the model’s features. This was done
using only RGB image measurements.

4.2.2 Video to Simulation

Overview: The three 3D models considered in the previous section (open-ended
box, Elastic Fusion mesh, and COLMAP mesh) are inputs for this sections and
Appendix C.1. The data included vertex positions, vertex colours, images, and
odometry. PTM uses the input images to synthesize the view of the model. The
texture is rendered on the model. It is photorealistic, given that the texture is a
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photograph of the real world. 3D reconstructed models often make Lambertian
world assumptions, and the vertex colours on the model are typically a weighted
average. In Section 4.1 PTM was implemented using OpenGL’s built-in shaders
from version 1.1. Following this, a formalization of PTM was connected to 3D
reconstructed scenes. Initially, this was completed using the ICL-NUIM 3D mod-
els reconstructed from Elastic fusion, see Appendix C.1. Our implementation of
PTM shaders was discussed to adjust to the complexity introduced using recon-
struction system parameters. The default PTM shaders provided a working but
minimal implementation. These shaders are re-implemented to include extensions
for visual artifacts such as reverse projection [53], projection onto non-front-facing
vertices [43], and logical operators to create a hybrid PTM implementation; vertex
colour, and multiple projections for 3D points not exposed to a single projector.
This was a novel contribution to the field [33]. Given the similarity between the
outputs for Elastic Fusion and COLMAP, the techniques developed for PTM are
portable between the two systems.

4.2.3 System-level design for custom shaders

Section 4.1.1 explained how the the integrated shaders for PTM in OpenGL could
be applied to surfaces in general. However, it was challenging to introduce the
changes required in the graphics pipeline to develop the driving simulator. As
a result, a modern approach (model view projection, MVP) to writing OpenGL
shader code was taken. The original PTM shaders lacked the versatility to render
different effects based on perspective projection criteria. Rather than treating the
OpenGL API and the access to the graphics card as a "state machine" managed
using a stack, code was explicitly written to the graphics card in the form of
shaders. It was controlled using a model, view, and projection approach [145].
This approach provided access to the graphics card. It was possible to choose
to compute on the CPU and the GPU. This helped achieve the high frame rate
operations required for driving simulation (above 30 fps). Writing shaders enables
logical operations on the graphics card, which enables the hybridization of shading
methods for a single 3D object. This feature will be helpful for shading surfaces
not exposed to the projector. The following section outlines how the shaders

97



4. DASHBOARD FOOTAGE TO PHOTO-REALISTIC 3D
MODELS

were included in a system-level design. It introduces the methods used to read
3D models, images, and the associated odometry from memory. It then describes
the processing of this data from the CPU to the GPU. The interactive game loop
and the shaders developed are also discussed. The rendering system is described
in terms of initialization, game loop, and key-call-back phases. Frequency of
use and execution times are referenced to give the impression of the run time
performance. For example, the steps during initialization are not required to run
at framerate as they are required at the beginning, and loading for a driving
simulator at the start is considered standard. However, the game-loop operation
is required to run at a minimum of 30 fps. Key-call-backs are executed on a
separate thread and should not affect the rate that the screen is rendered.

3D Mesh: Reading 3D reconstructed models are implemented in the same way
as reading any other type of 3D model used in computer graphics. However, the
models carried vertex colours and textures in this work. Assuming the outputs
of 3D reconstructed models had undergone some meshing procedure [83, 139],
they can be interpreted as a list of triangles. The typical format used in the
fore-mentioned sections was Polygon File Format (ply). Based on the header de-
scription of these files, they were parsed to include each vertex’s position, colour,
and normal. Colour and Normals were accepted to enable the shading of 3D co-
ordinates not exposed to the viewing space of the projectors used for texturing.
The vertex colours were a weighted average of the image projections from the
previous 3D reconstruction step. This approach enabled the removal of seams
where a projector was not available.

Open Asset Importer Library was the library for loading these models [141].
These vertices and their drawing order were loaded in buffers which would later
be interpreted by programs on the GPU (shaders). See Figure 4.8 for an example
of the vertex buffer layout. An index buffer could also indicate the drawing order
of the triangles. This is a numbered array that selects from the vertex buffer
which vertices are part of the triangle to be drawn. This format often reduces the
number of vertices saved in memory. Instead of having multiple instances of the
same vertex, where a vertex uses nine floating point numbers worth of memory,
a single index reference in the index buffer can be used to point to the nine
vertex attributes in the vertex buffer. This significantly reduces the amount of
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memory used if the same point were involved in drawing many polygons. OpenGL
required that the buffer objects (vertex buffer and index buffer) receive attributes
describing exactly how many bytes to set aside for each component. This included
the number of bytes per position, colour, and normal for the vertex buffer and the
number of bytes between each vertex for the index buffer. A detailed review of
how to apply similar setups for a graphics pipeline can be found here [145, 178].
When texture information is rendered, the UV-values are calculated at render
time; the file carries the RGB data.

Figure 4.8: Vertex Buffer Layout. Each vertex containing three numbers for
position, colour, and normal direction in that order, respectively.

Images: At initialization, 200-300 images are read as texture objects in CPU
memory. This is the number of images used for each 3D reconstructed model.
The images also have a data file that defines their relationship relative to the 3D
model. For 3D models produced using Elastic fusion, this is called a Freiburg file
(using the Freiburg odometry formatting). This data was not from the Freiburg
dataset, it was from ICL-NUIM. Elastic Fusion produced odometry in this format
by default. This contains the timestamp, location as a 3D coordinate [px, py, pz],
and orientation as a quaternion [Qx, QY , QZ , QW ] relative to the 3D reconstructed
model. COLMAP uses similar formatting, but the ordering of the data is dif-
ferent. It uses the image ID, the orientation as a quaternion in a different order
[QW , QX , QY , QZ ], and the 3D coordinate as the location [px, py, pz]. Another file
is loaded to indicate nearest neighbour images that can be used as projection
partners while texturing the scene. Appendix D develops a method to calcu-
late this data on the fly. This file is created by comparing multiple sequences
traversing the same road. It is intended that this projecting partner will cover
projections missing parts of the 3D model within their view. Projection partner
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groups are formed based on the minimum Euclidean distance of the poses found
between the two sequences. Depending on the graphics card, 16 to 32 images
can be stored within the GPU memory. While traversing the road and rendering
the 3D model, the images loaded into GPU memory were held within a queue.
New images enter this queue as their transform approaches the driver transform.
The image already in the queue popped out when further away from the driver
transform compared to the set. Camera parameters associated with each video
sequence were stored locally on the disc contained within a ".calib" file. This file
contains the images’ focal length, resolutions, and camera centre in the associated
sequence. After this was parsed, it was possible to construct a camera object that
could later be used to calculate the image’s perspective projection.

Shaders: Shader programs themselves must be loaded from disk memory and
compiled by the OpenGL API while initializing the game loop for the driving sim-
ulation. Each file has been saved as a ".shader" file and written in GLSL (graphics
library shader language). In this graphics engine, two shader programs are used
in combination for rendering each object. These are the vertex and fragment
(pixel) shader. The vertex shader is a program executed for each vertex attached
to the object associated with that shader. It is often used for calculating trans-
formations on the vertex coordinates. These calculations include model-based
transformations (moving the entire associated object with a rigid body transfor-
mation), viewing camera transformations (rigid body transformations providing
the illusion of the viewing camera moving), and projective transformations (con-
verting from camera viewing 3D space to the 2D image plane). The fragment
shader is a program executed for each pixel on the viewport. This is usually the
moment to make final adjustments to the appearance of pixels in the viewport.
These adjustments usually have to do with colour, illumination, and shadows.
Each ".shader" text file contained both the vertex and fragment shader in this
system. Each file line was parsed and queried against a regular expression of
"#shader vertex" and "#shader fragment." The vertex shader program was lo-
cated between "#shader vertex" and "#shader fragment". The fragment shader
was between "#shader fragment" and the end of the file. These shaders would
later be used in the graphics pipeline to interpret 3D data on the graphics card.
Each shader can also accept a set of custom parameters called uniforms at ini-
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tialization and during the game loop.
Cameras: To enable the rendering of the 3D model, a camera object was

used. The camera contained a view, an inverse view, and a projection matrix.
The view matrix was used to model the camera’s position within the 3D space
containing all the objects being rendered. If that camera was set as the rendering
camera, only the objects in front of the camera were rendered. The inverse
view matrix was used for instances where the camera needed to be modelled
in 3D space according to other camera view matrices. The projection matrix
described the 3D points’ transformation into the 2D image plane. The camera
calibration directly affects the projection matrix. The centre of projection and
focal lengths need to be known to model a camera for use as a projector. Guides
for understanding the connection between the OpenGL projection matrix and
the Hartley and Zisserman definition [70] of these matrices were given here [150,
162]. If the camera was the rendering camera, then the 2D image plane was the
image shown to the driver. Projectors can be used interchangeably with camera
objects.

Frame Buffer: The frame buffer was created as a source of rendering objects
into a 2D space that was not the final 2D viewport exposed to the driver. This
would later be useful for rendering depth values from perspectives outside the
viewing camera while doing shadow calculations for the projectors. The contents
of the frame buffer could be transferred to a texture image and read as a uniform
in another shader. This resource was helpful as a guide to using frame buffers
[178].

During the game loop, there are multiple threads executed at once. These
included the rendering, GUI call-back, and key call-back functions. The render-
ing function was responsible for delivering updates to shaders and issuing draw
commands from the CPU to the GPU. The key call-backs were associated with
the user input, and the user input for the driving simulation was used to vary the
motion of the rendering camera. The GUI call-back was used for rendering the
speedometer, but call-backs to these functions were not typically used.

Rendering: At the beginning of each render loop, the viewport was cleared of
previous depths and colours from the last render cycle. The camera view matrix
was queried to identify updates to the viewing state of the camera and projectors.
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This would later inform shaders of updates to the viewing transformations of each
object relative to these projectors and cameras. Each object had its associated
shader bound to the graphics card, and selected uniforms (CPU-GPU shared
variables) were then updated. These uniforms were usually associated with the
camera/projector view matrix and allowed the application of locally referenced
textures for projection. After all uniforms were set, the shader would then be
used to draw to the viewport or a frame buffer. This was done for all objects
included in the 3D mesh.

Key call-back: Initially, the keys from the keyboard were used to update
the rendering camera pose during system testing. Each key would change a
different axis of translation and rotation of the rendering camera. The updated
translations are delivered using a vector ṫ ∈ R3 added to the current translation
t. The updated vector t̂ ∈ R3 was then composed into a transform matrix, and
the matrix-vector product between that matrix and the current rotation matrix,
R ∈ R3×3, was calculated. To update the rotation, the input was an angle, θ ∈ R,
and a vector describing the axis the camera was to rotate around r ∈ R3. The
angle-axis notation was then converted to a matrix Ṙ ∈ R3×3 and this was used
to update the current view matrix of the rendering camera. Chapter 6 further
develops this with the pedal and steering wheel interface.

4.2.4 Implementation of Shader Algorithm for PTM

The approach described in Section 4.1.1 used default shaders built into the stack-
based (OpenGL version 1.1) implementation of OpenGL. The following section
describes the modern approach using customised shader programs. This approach
uses shader programs implemented in GLSL to allow customised rendering pro-
cessed on the graphics card. This code takes as its input the reconstructed mod-
els produced using Elastic fusion and COLMAP for the ICL-NUIM and KITTI
datasets, respectively. The reconstruction using the ICL-NUIM dataset with
Elastic Fusion have their specifics described in Appendix C.1 for commissioning
these shaders. The shaders developed implement PTM. The approach developed
in this section rejects reverse projection, a limitation of the default projector,
which projects both forwards and backward. The shader limits projections to
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objects closest to the camera, preventing background surfaces from being incor-
rectly textured. The shaders also allows for a hybrid approach of PTM, including
a mix of vertex colours and PTM over regions where PTM leaves seams due to
perspective occlusion.

Shader implementation of PTM: The projector positions are known at
initialization, provided by the reconstruction steps in Section 4.2. Only the cam-
era view needs to be updated. The code developed loads the projector positions
into the system at run time alongside the model data. Only the camera view is
changed during run time. The following section outlines a workflow for combining
3D reconstruction outputs, the model M and the camera odometry P, to allow
for PTM over a set of points given the relevant transforms of the projector.

Using the map M, representing a reconstructed model and the extrinsic pa-
rameters of the cameras used to reconstruct the scene of the form Equation 4.1,
it was possible to construct a workflow that implemented PTM with a recon-
structed model. Assuming good odometry (low root mean squared error from the
ground truth trajectory), the colour values of the image C should re-project onto
the surfaces of M with high accuracy when comparing image features [99, 137].
It is helpful to consider the odometry as a list of poses in the order of the frames
captured of the form Equation 4.7. The calibration matrix, K, is the same for all
poses Pt. Every previously captured pose could be expressed between all points
p ∈ R3 in the map M with the frame corresponding to that pose, where u is the
texel to be sampled for the surface. The inclusion of the camera parameters elim-
inates the need to manually adjust the projections to fit the model, as discussed
in Section 4.1. Algorithm 1 details how vertex coordinates, colours and normal’s
are read and transformed. The positions p of the vertices can be read using a
model-view-projection matrix Mcam on line 12. This should convert the vertices
to normalized device coordinates to be interpreted by the fragment shader. This
will be developed later in Algorithm 3.

Limiting shader to forward projection: Ideally the process would be
the same for the texture coordinates, ptexndc. OpenGL automatically carries out
perspective division and selecting front facing points, however, it does not do
this for variables used in the shader (aside from glPosition). Points behind the
projector are textured with a flipped image, this is referred to as reverse projection
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Algorithm 1: PTM (Vertex Shader)
Result: Vertices mapped to projector and camera coordinates

1 Input: p, Mcam, Pproj, Kproj, c, n;
2 output: vTexCoord, glPosition, vColour;
3 ptexeye = Pproj.p;
4 if ptexeye[z] < 0 then
5 ptexndc = Kproj.ptexeye;
6 vTexCoord = ptexndc

ptexndc[z]
;

7 else
8 vTexCoord = vec4(inf, inf, inf, 1);
9 end

10 vcolor = c;
11 vNormal =n;
12 glPosition = Mcam.p;

[53] see Figure 4.9 for an example. This is addressed by considering the points in
eye-space and checking the condition: Ptp[z] > 0,∀p ∈ M, to ensure the points
are in front of the projector, see line 4 in Algorithm 1.

Limit shading to nearest objects: Projecting onto items behind the in-
tended foreground object was a significant artefact to remove. This problem was
covered by [43] but was not considered in the previous Section. A projector uses
a viewing frustum pointing towards some set of 3D points. See Figure 4.10, where
the frustum is the red-tinted cone emitted from the camera. The left image out-
lines the vertices of the objects, which will receive the colours from the projected
texture from the projector position. In this case, it includes all the points within
the viewing frustum. The right image shows the vertices that should be solely
considered while projecting from this perspective, assuming occluding objects re-
ceive the projection over background objects, ensuring lamp image colours do
not cover the chair’s vertices. See Figure 4.11.c for an example of a foreground
object’s colours projected onto occluded background 3D points.

To eliminate the projection onto occluded surfaces a variant implementation
of shadow mapping was considered [178]. To check if a vertex, p, should receive
colours, c, from the texture image, Figure 4.11(a), the depth was tested from
the perspective of the projector using its matrix M from Equation 4.3. A depth
map Kt was retrieved from this test and stored in a separate texture, see Fig-
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Figure 4.9: (a)In this example there is a projection of an image further up the
road. The projection is reversed and texturing the vertices behind the correctly
oriented projector. (b) to highlight the reverse projection the projector has been
rotated around its own y-axis so the reverse projection can be rendered in view
of the rendering camera. The projection has also been surrounded by a red
bounding box. A green camera highlights the position of the projector (c) shows
the forward projection without the back projection.
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Figure 4.10: Projection of vertex coordinates to image. Left image: Projected
texture shown on all surfaces., Right image: Projected texture limited by shader
to nearest surface

ure 4.11(b) for an example of the depth map. While rendering the 3D points
from the perspective of the viewing camera their positions were transformed into
projector space so the z-value (depth) could be compared to the depth map Kt.
If the z-values transformed from the camera coordinate frame to the projector
coordinate frame were larger than what was found on the depth map from the
rendering camera then it could be concluded that the point was occluded and
should not receive the projectors colours, see Algorithm 2. Other considerations
included the removal of shadow acne [178]. Depth values in the Kt are limited by
the resolution of the texture used to store it. For this reason, some of the frag-
ments received incorrect depth values which they originated from neighbouring
pixels. This results in some missing regions of the projection. Using the approach
by [178] for shadow maps, a bias calculation was made, such that a small decision
boundary would be formed around the surfaces of the model being projected on.
This was based on the difference in distance and angle between the surface of the
model and the projector allowed for texturing, see lines 8-9 Algorithm 2.

Following PTM, points were clipped to ensure that only real points were
mapped from image C to the model M. The points were clipped if they lay
outside the clipping points (normalised device coordinates) for p ∈ R3 in the
range [−1, 1], see the first condition in line 4 Algorithm 3. Using normalised
device coordinates, the clipping space technique is a typical method for rendering
a 3D scene with perspective geometry in OpenGL [145, 2].
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Figure 4.11: (a) An image projected onto a reconstructed surface rendered from
the same pose as the projector. (b) a depth map of the 3D model sampled from
the pose of the projector in (a). (c) Following the projection of the image in
(a) while observed from another view it is noticeable that the projection goes
onto surfaces behind desired surfaces. d) a shadow calculation has been used
to remove projections on surfaces occluded by another surface. The red shaded
areas highlight an area where an occluding object should block the projector’s
texture from the surfaces behind it. In image (a) the projection is used on all
surfaces in front of it however in (d) it projects only on the surfaces visible to the
projector. 107
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Algorithm 2: Shadow Calculation
Result: Vertices mapped to projector and camera coordinates

1 Input: fragmentCoord, Kt, vNormal, Pt[t], vTexCoord;
2 output: occluded;
3 projCoords = (fragmentCoord ×0.5)+0.5;
4 projDepth = linearize(texture(Kt, projCoords[xy])[r]);
5 depth = linearize(projCoords.z);
6 normal = normalize(vNormal);
7 projNormal = normalize(Pt[t]−vTexCoord[xyz]) ;
8 bias = max(0.5× (1.0− dot(normal, projNormal)), 0.05);
9 difference = depth - projDepth - bias ;

10 occluded = difference > 0 ;

Algorithm 3: PTM (Fragment Shader)
Result: A rendering calculation for each pixel on the viewport

1 Input: vColour, vTexCoord, C, Kt, Pt[t], vNormal;
2 output: oColour;
3 projCoord = vTexCoord[xyz];
4 if ClipCoords(projCoord) and ShadowCalculation(projCoord, Kt,

vNormal, Pt[t], vTexCoord) then
5 projCoords = (projCoord ×0.5)+0.5;
6 oColour = texture(C, projCoords[xy]);
7 else
8 oColour = vColour;
9 end
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Figure 4.12: Image (a) is the 3D model using the weighted average vertex colours
calculated by elastic fusion. Image (b) is a projection of a single image onto that
3D model. The projection is outlined using the red border. Image (c) is a close-
up of the projection over the television screen. It highlights the difference in the
reflective properties maintained in a single image (within the green border) but
lost in the weighted average (vertices outside the green border).
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The previous example of PTM required cropping of images because the same
field of view was not available while attempting to look at variant angles around
the projection. Here it was possible to project with more than a single image.
When the current set of projectors could not cover some points in the camera’s
viewing frustum, the vertex colour provided by the SfM or SLAM could be used,
see lines 4-9 Algorithm 3. This partly solved projector occlusion covered by past
examples of PTM of 3D models [43].

An example of the output from this workflow with the above shaders can be
seen below in Figure 4.12. The top image included the model using the colours of
the vertices following the mesh reconstruction algorithm. The second image is the
projection of an image onto the model, as highlighted in red to indicate the image
boundaries. The third image was used to highlight the increased photorealism
captured by the projection over the television screen, which included reflections
of the room over the PTM region. Qualitatively lighting features such as the
reflections over the television screen can be witnessed. This feature improves the
photorealism of the 3D model. The reverse projection prevents projected images
from being used over surfaces behind the projector, and this could distract users
whose viewing camera is off-axis to the projector. The front-facing surface to the
projector consideration has prevented projections of image colours onto surfaces
behind the front-facing surfaces. Viewers observing points behind these projector
front-facing points will no longer witness these artefacts.

4.2.5 Testing PTM with COLMAP Reconstructions

To evaluate the performance of PTM on the 3D reconstructions the following
test was carried out: given the two video sequences of each road from the KITTI
dataset, see description in Section 4.2.1, one video was treated as ground truth
(how the road should appear) and the other video would be used to project an
image onto the surface of the 3D model to simulate that ground truth image.
Each render of the 3D model was captured with a pose that matched the ground
truth image relative to the 3D model. The effect of using PTM was first compared
to using vertex colours given by COLMAP. An example of the 3D models using
vertex colours and PTM as their rendering methods can be seen in Figure 4.13.
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Following this the effectiveness of each update to PTM (projection onto front
facing surfaces only and removing shadow acne) was evaluated. To measure how
closely each type of rendering matched the ground truth structural similarity
index metric (SSIM) was used to compare the rendering with the ground truth.

Figure 4.13: 3D models rendered using vertex colours (above) and PTM (below).

Figure 4.14 highlights the SSIM score between the rendering of vertex colours
and PTM against ground truth images. In all sequences the average SSIM was
higher for the renders using PTM in comparison to vertex colours. Figure 4.15
highlights the SSIM between the shadow projection with varying bias and the
ground truth images. A bias of 0 gives the lowest SSIM score in all cases. In
almost every case 0.005 gives a SSIM score that plateau’s for the values greater
than that, of those tested. Larger values than those that were tested tend to
render a projection that dis-regards the shadow projection. The rendering would
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be very similar to the basic implementation of PTM and the scores highlighted
in Figure 4.14.

4.3 Conclusions

Section 4.1 demonstrated the implementation and testing of PTM using basic
shapes to approximate a 3D environment. It was shown that images could be
warped using PTM onto these 3D shapes such that they could simulate perspec-
tive changes fitting other images of that same environment. This was shown using
SSIM photo-consistency metrics. However manual manipulation of the pose of
the projector was required. This implementation of PTM was construction using
built-in OpenGL shaders and operated at 30 frames per second.

To address manual manipulation of the projector pose 3D reconstruction sys-
tems were employed, including Elastic Fusion and COLMAP, see Appendix C.1
and Section 4.2 respectively. Not only did this provide a good approximation of
the projector pose, but it also gave an accurate 3D model to project onto. To
integrate the poses of the projectors and address issues with PTM including re-
verse projection and projection onto non-front facing images, was a requirement
to develop our own custom shaders. This not only addressed these issues but also
enable a performance boost up to 60 frames per second on the same hardware.

In testing PTM was shown to perform better than vertex colours in terms
of photo-consistency while rendering similar perspectives to the image used for
texturing. The vertex colours of the final model are a weighted average of the im-
ages from different views projected into 3D space. This uses a Lambertian world
assumption that 3D points reflect light equally in all directions. The material
characteristics of 3D objects in the real world often do not follow this Lamber-
tian world assumption. This reduces the photorealism of the final 3D model. This
is evident in the SSIM photo-consistency performance of vertex colours in com-
parison to PTM, see Figure 4.14. The material characteristics of the 3D models
are better reflected using projections of images from a similar perspective as the
rendering camera. The pose of the rendering camera and the projector was a
significant contributor to error in the PTM renders.

Shadow projection was initially proposed as a solution to the problem of pro-
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jecting an image onto all surfaces, including those that were not front facing to the
projector. However, after experimentation it was shown that photo-consistency
does not improve if vertex colours are used in place of the projection, see Fig-
ure 4.15. To increase performance in this regard a projection of another image
into this space may improve photo-consistency. The use of multiple projectors
will be discussed in the next chapter.

Objects can enter the view of the images used to reconstruct the scene, this can
increase photo-consistency error while using PTM. Due to the random sampling
approaches used by MVS, transient foreground objects are often excluded from
the weighted average colour of 3D surfaces. However, these transient objects
will still be present in the images localized relative to the 3D model and inhibit
the ability of PTM through reducing photo-consistency while simulating views
of the road without a moving vehicle. This could also affect other rendering
techniques, including NERF (neural radiance fields), to simulate photo-realistic
views. “NERF in the wild” was proposed to address this [105]. However, the
results using “NERF in the wild” for regions that contained foreground objects
in many of the images of that space resulted in ghosting artifacts.

Another challenge with the 3D models produced using COLMAP was that
it only reconstructs 3D surfaces within a threshold distance from the camera.
Surfaces far away and points labelled as being infinitely far away, sky, are not
reconstructed and leave gaps in the final model, see green regions in Figure 4.16.
This can further detract from simulator fidelity, given there is no default rendering
of sky or gaps in the 3D model that would make sense for all 3D models given
the colour of the sky can change depending on the time of day or location.

The loading times can be excessive for large 3D models. Loading the model
into memory presents a challenge when models are used with a simulator, as
this can cause drops in frame rate. Fragments load the scene efficiently (smaller
portions of a larger map). A single road segment is loaded at a time. Loading
subsequent models are complete when the driver’s viewing frustum approaches
the model boundaries. After departing, the fragment can be released to free
memory. Loading smaller models allows for smaller amounts of RAM and GPU
memory to be required during render time. Reading from disk may occur more
frequently, but the time between the beginning of a read and the end will be
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Figure 4.16: Top: Images moving along a real road. Bottom: 3D reconstruction
rendering of the same road from the estimated pose relating to the real image
highlighting reconstruction gaps (green).

shorter. A list/queue data structure could apply to this problem if the user is
driving along a straight road. However, if there is an extensive network grid
of roads, then a bi-directional graph data structure may be required. A sparse
3D map was constructed to provide odometry to find the connection between
fragments. The odometry can provide the transformations between fragments to
ensure they are loaded using the correct orientations and positions relative to one
another. This is discussed furth in in Appendix D.
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Chapter 5

Removing Vehicles and Inpainting

This chapter discusses methods to remove foreground dynamic objects found in
images but not represented in the final 3D model. There were two approaches
considered for this. They both used semantic segmentation to localize vehicles
within videos. There were multiple sequences of the same road captured on video.
A calculation was done to find which sequence contained the minimum total area
of dynamic foreground objects captured within the images within the video se-
quence. From this point, the two approaches diverge. The first approach used an
image template outside the area being removed. This was used to find the cor-
responding area in another image in another video of the same road using place
recognition. After this area was found, the pixel intensities found in the "mixing
region" (the space previously occupying the dynamic object) were used to fill
the hole left in the query image. The second approach used the final 3D recon-
struction from COLMAP, as discussed in the previous chapter. After removing
the foreground object, it was possible to render vertex colours of the 3D model
or use projective texture mapping (PTM) from a separate image. The chosen
inpainting image did not contain a vehicle at those exact 3D coordinates. The
second method achieved better results with fewer seams than the first. The first
method was included as this was the first iteration of a prototype that demon-
strated the general principle of foreground object removal using multiple video
sequences. This chapter finishes with a presentation of the results comparing the
photo consistency of the ground truth scene to the rendered 3D model using ver-
tex colours, PTM before the inpainting methods were applied, and PTM after the
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5. REMOVING VEHICLES AND INPAINTING

inpainting methods were applied. These photo-consistency measurements were
recorded sequence 2 in the KITTI dataset [63].

5.1 Introduction

As discussed in the previous chapter, moving (dynamic) foreground objects within
a scene are not geometrically reconstructed in most structure-from-motion sys-
tems, such as COLMAP. Most structure-from-motion algorithms/pipelines use
a static world assumption and attempt to find a common set of image features
to match across images and estimate both the location of the camera and the
matching points within 3D space [189, 139, 115]. For the features associated with
moving objects in the scene, although these correspondences are often found be-
tween images, if they are relatively infrequent and cannot be coherently matched
with the static world assumption, they should not be reconstructed as part of
the final 3D model. Some algorithms have been developed to allow users to mask
parts of the image set, such that the image features located at these masked co-
ordinates would not be considered during the 3D matching and mapping process
[139]. This solved the challenge of reconstructing the 3D model without the noise
introduced by the moving objects. While using PTM, the raw images are used
to texture this 3D model. Visual artefacts were introduced when the image and
model did not match. This was due to the absence of the moving object in the
reconstruction. See Figure 5.1 where this stretching across the 3D model has
been labeled as "Projection Splatter". To solve this challenge, it was proposed to
use image labelling techniques to locate the position of these objects within the
image. Following object localization, an inpainting solution was applied to this
area. This hid the presence of this foreground object within the texture.

The remainder of this chapter included two approaches taken to solve the
removal of dynamic foreground objects. These methods will be discussed, and
their performance will be presented and compared to other algorithms using both
our datasets and a publicly available benchmark, KITTI [63]. Both approaches
used semantic segmentation to label the location of vehicles in all images. How-
ever, the approach to inpainting varied. The first approach attempted to solve
the problem based entirely on image matching/place recognition within video
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Figure 5.1: Projection of dynamic object onto 3D reconstructed static back-
ground. Resulting in the dynamic object stretching across the 3D model.

sequences. The second approach used 3D reconstructions to localize where the
camera was while capturing the image and used PTM to aid in the recovery of
image data for texturing of the 3D model.

5.2 Inpainting: 2D Patch-Based Method

Three video sequences were collected of the Moyglare Road, Maynooth, County
Kildare, Ireland using a dashboard camera mounted on a car. The following
notation was used in the development of an algorithm that could process video
sequences. The system would allow for multiple video sequences of the same
road. A set of n cameras were used in this process, each camera Ci ∈ C, where
i ∈ [1 . . . n]. Each camera explored the same scene but was recording the scene
at different times. Camera’s produced images I ti , where the subscript i denotes
the identity of the camera, and the superscript t denotes the timestamp (frame
number) of that image from the sequence.

5.2.1 Vehicle Localization and Image Selection for Inpaint-

ing

For each set of images produced by each camera {Ci}, a corresponding semanti-
cally labelled image was produced using a convolutional neural network (CNN)
[198, 199]. The network used for this task used a pre-trained U-net architecture
including a Resnet-50 encoder and a Pyramid Pooling Module decoder [74, 197].
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I ti

Lt
i

Figure 5.2: Input image and its semantically labelled counterpart.

This produced corresponding labelled images Lt
i, where i is the corresponding

camera it came from and t is the timestamp, (timestamp number) of that image
from the sequence, as the standard colour images described previously, Figure 5.2.
In this figure, the semantic labels were represented using colour. For example,
blue corresponded to cars, maroon-people, and green-trees/shrubbery. The labels
were made more robust by employing tracking algorithms, see Appendix D.1.1.

Using the labelled images, it was possible to identify individual pixels cor-
responding to a given object, Lt

i(x, y). The total area occupied by pixels with
specific labels could be used to find which video sequences contained the fewest
vehicles. Finding the sequence with the minimum area occupied by these objects
would result in fewer instances where foreground object removal was required.
Converting the labelled images to bit masks, m(Lt

i(x, y)), for all labelled vehicle
pixels within all the sequence of images produced by camera {Ci} provided a
method to find this “clearer” sequence. Calculating the sum of pixels correspond-
ing to these labels provided the sequence with the minimum number of vehicles,
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see Equation 5.1.

Cp = min
i

t∑
0

x∑
0

y∑
0

m(Lt
i(x, y)) (5.1)

From Equation 5.1 the camera/video sequence with the minimum captured
pixels associated with vehicles, Cp, where p is the selected camera. From this
point onward this was the camera that was chosen for foreground object removal.
In the camera sequence Cp the pixel locations matching those marked as vehicles
m
(
Lt
p (x, y)

)
were removed, for all images, I tp. To replace the missing regions in I tp

the other two sequences were queried and used for inpainting. To find a suitable
image in the other sequences, the feature matching process bag of visual words
was used (DBOW) [62]. This algorithm used ORB features [116] and identified
for each image in Cp the corresponding top 10 closest images from the remaining
sequences {Cn−1}.

Cp

time (frames)

Itp

Cq

time (frames)

I t̂q

Figure 5.3: Background matching between camera sequences.

5.2.2 Inpainting the Missing Region

To find the replacement regions for each image in I tp ∈ C
p
within each of the

other sequences {Cn−1} the following algorithm was carried out. Given each
image I tp ∈ Cp and each query sequence for camera Cq, where Cq ∈ Cn−1, see
Figure 5.3. All images were queried against each of the other sequences for those
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DBOW
Semantic

Segmentation

choose least
vehicle

pixel image

(a)I tp (b)I t̂q0

(c)I t̂q1

(d)Lt̂q0

(e)Lt̂q1

(f )I t̂q̂

Figure 5.4: Workflow showing the selection of an image suitable for inpainting.

that contained the most similar visual features found in I tp. To find the top ten1

most similar images DBOW was used and was stored in a list I, that contained
matching images from the other sequences I t̂q ∈ I. See Figure 5.4(a) that shows
the query image and Figure 5.4(b) and 5.4(c) for examples of matching images.
An additional condition was applied to this set of images, where only images
that were chronologically ahead of that previously used inpainted image, could
be applied. This was done by caching the frame number of the previously used
image for this process, I t̂q ∈ I where t̂ ≥ t̂−1. Following this, each of the 10 images,
selected by DBOW, were semantically segmented using the labelling model from
the previously mentioned CNN, see Figure 5.4(d) and Figure 5.4(e) for examples
of semantically segmented images for Figure 5.4(b) and 5.4(c) respectively. This
provided a new list where each element contained the labelled version of each
image in I, giving labelled images Lt̂

q ∈ L. For each of the labelled images in this
set the number of vehicle pixels was calculated. The image that was found to
contain the minimum number of pixels corresponding to these labels was selected
for inpainting, see Equation 5.2. This resulted in the final selected image to aid
in inpainting, see Figure 5.4(f).

I t̂q̂ = min
t̂,q

x∑
0

y∑
0

m
(
Lt̂
q (x, y)

)
,∀ Lt̂

q ∈ L (5.2)

1Ten images were queried but often only the top 5 were relevant. This number of images
was selected through trial and error with this specific dataset
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Semantic
Segmentation

mask, set
bounding

box vehicles

Find tem-
plates in

assistant image

Use pixels
found between
templates to

fill blank region

(a)I tp

(b)Ltp (c)m(I tp)

(d)I t̂q̂ (e)t(I t̂q̂)

(f )fix(I tp)

Figure 5.5: Workflow to replace car pixels given proposed matching images.

Following matching of the images I tp ↔ I t̂q̂, a template matching algorithm
was applied to the regions of the image I tp surrounding labels corresponding to
vehicles and compared to the image I t̂q̂. The labels were again acquired from the
semantically segmented image, see Figures 5.5(a) and 5.5(b). Four blocked regions
(above, below, left, and right) were selected that surrounded each cluster of pixels
assigned the label of vehicle, see Figure 5.5(c). These templates were compared
(by minimizing the squared difference of the image data using OpenCV) to the
matching query image from the previous algorithm/workflow, see Figure 5.5(d) for
the image it was compared against and Figure 5.5(e) that highlights where these
templates found their matches. After these boundaries were located the pixel
colour values from the query image were cut from the query image, I t̂q̂, and written
to the image that required inpainting over the vehicles, I tq, see Figure 5.5(f).
Rather than using the rectangular region, the semantic labels corresponding to
vehicle were used as bitmasks to query where in the image the blending should
occur. This ensured the minimum amount of inpainting was applied instead of
inpainting a perfect rectangle.

5.2.3 Results

A qualitative assessment was carried out to measure the performance of the above
workflows. The same masking and labelling procedures were applied for each test.
Different inpainting algorithms were applied for comparison when it was required
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Figure 5.6: Inpainting results for a single image from the Moyglare Road experi-
ment.

I tp

fix(I tp)

Telea(I tp)

Nvidia(I tp)

t0 t10 t20 t30 t40

Figure 5.7: Comparison of inpainting over time for 5 frames separate 10 frame
apart (t0 − t40). Each inpainting algorithm is applied to each image shown on
column I tp. The algorithms fix(I tp) was the algorithm developed in this section.
Telea(I tp) refers to an algorithm developed by Telea et al.[165], and Nvidia(I tp)
refers to an algorithm developed by Liu et al.[97].
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to find a suitable replacement for the pixels located over the masked region. A
single example of our algorithm’s performance can be seen in Figure 5.6. The
results of this are seen over several images Figure 5.7. A comparison was made
over 50 frames of video of the Moyglare road. Figure 5.7 shows these 50 images
over intervals of 10. The input image to be inpainted is shown in the top row,
I tp. The workflow output described in this section is shown in the row labelled
fix

(
I tp
)
. The row labelled Telea

(
I tp
)
, was an example of a basic inpainting algo-

rithm computed over the same masks using an OpenCV implementation of this
paper [165]. The final row labelled Nvidia

(
I tp
)
was an example of a more recent

inpainting algorithm trained on a large image dataset using deep convolutional
networks computed over the same masks [97].

For instances including very close matches supplied between two image se-
quences using the workflow described in this section, the boundary of the in-
painted region was less visible. Visual artefacts, including shadows from the in-
painted objects, proved difficult to remove. This can be witnessed as the vehicle
being inpainted came closer to the capturing camera, see Figure 5.7 at times-
tamps [t10 − t30]. Similar effects could be seen when using the other inpainting
algorithms. In some cases, the camera misalignment between the matching im-
ages in the two sequences is evident; see Figure 5.7 at t30. The vehicle on the
right-hand side has been removed, but the image replacement has become visible
due to the roadside curbs not aligning within the border where the image has
been inpainted. The Telea algorithm appears to be the worst performing of the
set tested. This algorithm uses neighbouring pixels to estimate how the masked
region should appear. This often resulted in colour bleeding between large con-
tours on the road; see the roadside curb in all timestamps in Figure 5.7 for the
row labelled Telea

(
I tp
)
. The Nvidia sample performs exceptionally well for times-

tamps t0 and t40. The other timestamps perform poorly by comparison. This is
because of the presence of the shadows of the vehicle. The network carrying out
this inpainting procedure uses image context cues to estimate what should be in
the masked area, and the shadow indicates that something else should be present
on this part of the road.
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5.2.4 Discussion

The workflow described in this section removes vehicles from videos at the expense
of some visual artefacts. The artefacts are less extreme than those produced by
some existing inpainting algorithms applied to the same masks (covering these
vehicles). This workflow performs best when the videos contain fewer differences
in terms of lighting and capturing angle. This setup was ensured by the design
of the data collection. The same road was recorded multiple times, driving in
the same direction, within the same lane, at a similar time of day (within a
few minutes), and under similar lighting conditions (on an overcast day). Large
deviations in the appearance of the scene, especially those located adjacent to
bounding boxes of vehicles to be inpainted, can inhibit the performance of this
workflow. Feature detection algorithms, including SIFT and ORB, could be used
in future implementations instead of using template matching [99, 137]. These
image features would be less sensitive to scale and orientation factors during cor-
respondence matching. This could also allow features found while using DBOW
to be used again instead of wasting computational resources on finding another
set of image features. This approach relies on the time and space consistency
of roads captured in video. However, it does this within the 2D image plane.
The world being captured exists in 3D space. Image features and appearance
can be consistently modelled using multiple view geometry concepts instead of
attempting to match image features within a 2D space. The previous chapter
highlighted the possibility of reconstructing 3D environments for view synthesis.
Using a similar approach, a view can be synthesised for image inpainting. This
would involve synthesising the view for the area being inpainted. The final tech-
nique will build on the existing discussion and include rendering vertex colours
in the masked area of the image when mapping another image into that space is
impossible.

5.3 Inpainting: Multiple View Texture Mapping

The previous section described how background and foreground objects could
be separated such that only background pixels were present. Background pixels
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were labelled in correspondence with the semantic labels assigned to them based
on their similarity to vehicles, using a semantic labelling prediction network. A
method was developed to identify videos containing the fewest foreground objects
instances. This would approach produced a video that required the minimum
amount of inpainting. Within this video, each instance of a vehicle was tracked
and removed from the image. The pixels corresponding to these labels were
masked. The masked area was used as a query to the database of images from
other videos. Image blending was used to fill the gaps left after removing vehicles.
2D localization introduced artefacts, caused by differences in the appearance of
the road due to perspective and projective relationships between the 3D geometry
and the capturing camera. In this section, these artefacts will be corrected.

It was possible to reconstruct the 3D scene using multiple view geometry
methods discussed in the previous chapter, via structure from motion and multi-
ple view stereopsis [152, 139, 189]. Given a dense 3D reconstruction and localiza-
tion of camera intrinsic and extrinsic parameters, it was hypothesised that a video
of that scene could be inpainted using the vertex colours mapped within the 3D
model. The 3D model IS a continuous representation of the set of views/images
of the same scene. It does not reconstruct dynamically moving objects and should
only map the static background objects, if anything. A method was developed
to render background vertices from the same perspective as the image being
inpainted. PTM allowed an image to be painted onto the 3D model. The algo-
rithm developed provided a choice to render the entire scene using a combination
of single images, parts of multiple images, and/or vertex colours. Using the same
masking technique as Section 5.2 and developing the vehicle tracking techniques,
see Appendix D.1.2, rendering the image’s texture was possible when the mask
corresponded to pixels not labelled as vehicles.

5.3.1 The Dataset

The dataset: A 3D reconstruction of the road and camera localization was used
to aid the recovery of background colours required to replace vehicles within a
set of images from the KITTI dataset [63], see Figure 5.8. Camera localization
removed the requirement for template matching and place recognition (DBOW)
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[62]). Neighbouring images used for inpainting were found using nearest neigh-
bours identified using camera transforms (location and rotation). Another option
was to query the set of 3D points visible for each camera. Those with the most
overlap had the highest likelihood of appearing most similar.

Figure 5.8: Left: 3D model of road with a localized pose. Right: the view from
that pose with colours.

5.3.2 The Rendering Process

It was possible to ensure the semantically labelled images acted as a stencil while
synthesizing the views of the road without vehicles. The labelled parts of these
images were masked over the 2D image plane. As 3D points were transformed
from 3D space to the viewport of the rendering camera, they underwent projection
onto the 2D image plane of a texture. In instances where the 3D points were
transformed outside the image’s bounds, the vertex colours were used. If an
image is available for inpainting (inside the bounds), this was used for texturing.
A labeled mask corresponding to vehicles can be applied to conditional rendering.
Texturing from this image is only used when found outside the bounds of the
masked parts of the image. An example of this concept can be seen in Figure 5.9.
The top image was the original, including a motorbike projected onto a 3D model.
The middle image highlighted the boundary labelled as a vehicle and masked. The
final image showed how the motorbike could be replaced in the original image by
using a projection of an image that did not contain the motorbike.
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Figure 5.9: Inpainting using the 3D model. (a) The image to be inpainting before
PTM. (b) PTM and Mask applied to image from (a). (c) PTM applied to the
masked area from (b).
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The rendering process was adjusted from the description in the previous chap-
ter to enable the use of semantic labels in combination with PTM. An additional
condition that checks for the presence of a vehicle masked pixel would need to
be considered. Vertices would only be projected using that texture if this was
not true. This was done in real-time using a shader, and the vertices must pass
through shader programs regardless of the requirement of inpainting. The ad-
ditional condition and inclusion of a texture mask do not take significant time
during runtime, assuming these masks already exist. In these instances where
the mask covered some set of vertices, another image projection or set of vertex
colours should be considered. Testing was done to measure the performance of
both approaches. The shaders to make this computation will be presented in the
next section.

5.3.3 Theory & Implementation

Given the map M, the ego-motion (odometry) of the camera Pt, and a semanti-
cally labelled set of images Lt, with the goal of rendering the road without moving
vehicles, from the perspective of the capturing camera. Two videos were used to
capture the same scene from similar perspectives. One video contained moving
vehicles and the other did not. View selection for matching the images between
sequences was based on the minimum Euclidean distance in R3. This used the
camera pose Pq, the pose of the camera that required the moving vehicles to be
removed, and Pr, the pose of the camera that did not contain the obstructing
vehicles within its captured image. There existed a semantically labelled image
for each camera pose and this was used as a mask to remove the parts of the
image corresponding to vehicles. The vehicle masks used white pixels to rep-
resent vehicles and black pixels to represent everything else, see Figures 5.10a
and 5.10b. Perspective projection was applied to the bitmask in 5.10b to find
what 3D points corresponded to the vehicle labelled pixels in Figure 5.10a, see
Figure 5.10f. It was possible to texture from another image not containing the
vehicle, Figure 5.10c, or the colour contained within the 3D model’s vertices,
Figure 5.10d.

A function was created to check the intersection of the image colours/texture,
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(a) Cq (b) Lq

(c) Cr (d) pColour

(e) Cq(π(KPqp)) (f) L̄q(π(KPqp))

(g) f(Lq, Cq) + f(L̄q, Cr) (h) Fig 5.10g with skybox

Figure 5.10: Rederings of each of the transformed images used for inpainting. a:
is the image to be inpainted. b: is the bitmask used to label the bounding area
of the vehicle to be inpainted. c: is the image used to aid inpainting. d: is a
rendering of the 3D model M from the same perspective as c. e: is the image a
following PTM onto the model. f: is the bounding area of the vehicle mapped
onto the 3D model. g: is the two images a and c projected together onto the
model. h: is the same as 5.10g with a skybox added.
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Cq, projected onto the 3D model and the projection of the bitmask, Lq, this
function had the form L̄q (π (KPqp)), this produced Figure 5.10f. In summary,
the image that contained the vehicle was first mapped to the model through a
projective transformation, see Figure 5.10e. The semantic labels in the bitmask
were not rendered during projection, see Figure 5.10f. The projection of the image
without the vehicle was then applied to the region that previously contained the
vehicle, see Figure 5.10g. A function that accepted two parameters was used
to generalize this process, f (·, ·). The two arguments included a semantically
labelled bitmask and a colour image that had been used for PTM. The colour
image texture would be used for PTM if and only if the bitmask contained positive
values on the intersected surfaces of the bitmask while it was also projected. This
function could be generalized to what is contained within Equation 5.31. The
subscript e and w is just used to refer to the first and second arguments i.e. each
texture being passed to this equation will already have a corresponding pose, P,
and the subscript is used to match one another.

f(Lw, Ce) = Lw(π(KPwp))⊕ Ce(π(KPep)) (5.3)

The shaders from the previous chapter for implementing PTM were extended
to cover these additional cases, see Algorithm 4 and 5. The vertex shader included
the intrinsic and extrinsic parameters for all projectors used during PTM, see P

and K 2 respectively on line 1 of Algorithm 4. The rendering camera parame-
ters were also required, Mcam. The outputs of the vertex shader now included
texture coordinates for all image projections, see the list of vTexCoordi, where
i ∈ [1, . . . , n], on line 2 of Algorithm 4. The vertex colours, and the position of the
vertex after passing through this shader while using the model-view-projection
matrix based on the rendering camera parameters. Algorithm 4 contains the same
basic logic as Algorithm 1, with the exception that texture coordinates were col-
lected for a set of projectors, see lines 4-12 where a loop was used to collect these
coordinates for all projector parameters passed to the shader. The remainder of
the shader code is the same as Algorithm 1.

1⊕ is the exclusive or function
2This is not a typing error. P and K were previously used for a single projection. These

new letters represent lists of this same types of matrices.
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Algorithm 4: Dual PTM (Vertex Shader)
Result: Vertices mapped to projector and camera coordinates.

1 Input: p, Mcam, P, K , c n;
2 output: T, glPosition, vColour;
3 i = 0;
4 foreach Pproj,Kproj ∈P,K do
5 ptexeye = Pproj.p;
6 if ptexeye[z] < 0 then
7 ptexndc = Kproj.ptexeye;
8 vTexCoord = ptexndc

ptexndc[z]
;

9 else
10 vTexCoord = vec4(inf, inf, inf, 1);
11 end
12 T.append(vTexCoord);
13 i++;
14 end
15 vcolor = c;
16 vNormal =n;
17 glPosition = Mcam.p;

Algorithm 5 was developed to implement Equation 5.3. The semantically la-
belled image corresponding to the image to be inpainted was used to find where
within the texture the model should be mapped, ignoring vehicle pixels. In in-
stances where these labels overlapped a fragment on the image plane, another
projection was used instead of the initial image. To accomplish this the texture
coordinates from the vertex shader were received, T, and its corresponding tex-
ture to sample from was passed as a uniform to the shader in an ordered list of
textures, C . The first image in each of these lists corresponded to the image to be
inpainted. A Boolean variable was created to differentiate between the image to
be inpainted and the other images within the set used for PTM. These lists were
iterated through see lines 4-20 in Algorithm 5. The calculations used to find 3D
points within the clipping coordinates and front facing according to the shadow
calculation were queried on line 6. If the current image within the loop was not
the first image in the list then the texture was sampled from their corresponding
image pixels, see lines 8-10. Otherwise, if the image is the first image in the list
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Algorithm 5: Dual PTM (Fragment Shader)
Result: A rendering calculation for each pixel on the viewport

1 Input: vColour, T , C, Lt, Kt, Pt[t], vNormal;
2 output: oColour;
3 notFirst = False;
4 foreach vTexCoord,C ∈ T,C do
5 projCoord = vTexCoord[xyz];
6 if ClipCoords(projCoord) and ShadowCalculation(projCoord, Kt,

vNormal, Pt[t], vTexCoord) then
7 projCoords = (projCoord ×0.5)+0.5;
8 if notFirst then
9 oColour = texture(C, projCoords[xy]);

10 break;
11 else
12 if texture(Lt,projCoords[x,y])==0.0 then
13 oColour = texture(C, projCoords[xy]);
14 break;
15 end
16 end
17 notFirst=True;
18 else
19 oColour = vColour;
20 end
21 end
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and the semantic labels did not correspond to a vehicle then the texture could
be sampled from its corresponding image, see lines 11-15. In the case that no
image in the set could be mapped to any texture due to clipping space or shadow
calculations then the vertex colours were used, see lines 18-19.

There was an additional challenge which had not been previously considered.
Although COLMAP produced a dense 3D model, there remained instances where
the model contained “holes”. These were instances where there was no 3D point
mapped for some region in the map M when observed from some subset of per-
spectives Pt. This could be due to a small number of observations for some real
3D points such that a consensus could not be met. It could also be because the
points were too far away from the capturing camera to make an appropriate es-
timate. Whatever the reason, this resulted in perceived holes in the 3D model,
see the blue region near the center of Figure 5.10g. This issue was identified
within the Apolloscape inpainting dataset and was addressed by using smooth
colour interpolation [95]. The work presented within this thesis solved this issue
by implementing graphics technique known as skyboxes/cubemaps [178]. This
involved creating some set of far planes that would surround the map M, and
existed at a far distance from the set of projected images Pt. In instances where
the local depth buffer of an image rendered from the perspective Pt of the map M

and it contained no corresponding depth, the projected image would be mapped
to the far planes rather than the model, see Figure 5.10h. The planes remained
orthogonal to the optical plane of the camera to prevent skewing. The overall
result was that holes would be removed from the projection, see the difference
between Figure 5.10g and 5.10h.

5.3.4 Results

To evaluate the performance of this approach, a comparison was carried out using
a combination of projections against the ground truth. An image was deemed
ground truth if it was some image of the model of the road M, without a vehi-
cle. For each image containing a vehicle to be inpainted Cq another image was
found that had a close proximity and pose but did not contain the vehicle, Cr,
see Appendix D.2 for details on how this was selected. This image was also used
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Figure 5.11: Structural similarity index metric (SSIM) for each rendering option,
PTM ("projection"), PTM with inpainting ("dual projection"), and PTM with
inpainting and a skybox ("skybox and dual")
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to project the texture for the parts where the vehicle appeared in the other im-
age. Following the rendering process described in Figure 5.10g. The rendering of
this image was constructed from a camera pose matching the image Cr, Pr. The
photo-consistency metric used for comparing the images was structural similarity
index measurement (SSIM), see Figure 5.11. An average score was recorded for
each metric in three video sequences from the KITTI dataset, including sequence
2, 5, and 13. The PTM technique provided better photo consistency than vertex
colours in all sequences in the previous section. The projections that used in-
painting performed better than those that did not for PTM and the introduction
of a skybox performed better again.

5.4 Conclusions

This chapter focused on removing foreground dynamic objects, including vehi-
cles. The initial implementation was completed on a real dataset based on video
footage collected from Moyglare Road, Maynooth, Co. Kildare. A qualitative
performance assessment was demonstrated in Figure 5.7. On reflection it was de-
cided that a more robust approach was required. This was due to visual artefact
because of the following:

• Misclassification of semantic labels in a small percentage of images.

• Misalignment between the image being inpainted and the region blended
from other images.

• Inconsistencies related to matching images based entirely on the presence
of image features while using DBOW and not considering their scale within
the image. This used temporal consistency and did not consider geometric
consistency.

To address these challenges, an inpainting approach was developed that was
aided by 3D reconstruction. A 3D model of a real road from the KITTI dataset
was reconstructed using COLMAP. COLMAP considered the entire set of im-
ages during reconstruction following image feature identification and matching.
It used multiple view geometry techniques to triangulate 3D points and bundle
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adjustment to update the 3D model and image pose alignment based on repro-
jection error (a reprojection error loss function). Low reprojection error had a
positive correlation with good PTM performance, as was also observed in Ap-
pendix C.1. This made COLMAP an ideal system for 3D reconstruction in this
case.

The overall performance of this inpainting approach developed in Section 5.3
was measured using ground truth images. This included images without a fore-
ground object projected onto the 3D model. It was noted that projections includ-
ing and excluding foreground objects had higher photo-consistency than vertex
colours rendered on the 3D model. There was a higher photo-consistency per-
formance in the inpainted solutions applied to PTM compared to the unmodi-
fied images. The solution presented here poses a possible solution to 3D model
obstruction from dynamic objects for other view-dependent texturing [24] tech-
niques or view synthesis approaches using data driven models [111, 195]. This
chapter offers a possible solution to rendering skies/holes in 3D models, which
improves photo-consistency metrics.
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Chapter 6

Conclusions

6.1 Discussion

This thesis presented a novel driving simulator that used reconstructed 3D models
of real roads and view-dependent texture mapping to increase photo-realism.
The principal contribution of this thesis was the synthesis of computer graphics,
machine vision, and human testing technologies to present a driving simulator
as a photo-realistic experience. The use of projective texture mapping (PTM)
in combination with 3D reconstructed models, and localized camera poses has
provided a method of:

1. Improving the photo-realism of a 3D model through PTM in place of vertex
colours.

2. A view-dependent rendering of the 3D model.

3. A method of inpainting/background subtraction using multiple-view tex-
ture mapping.

The requirement-gathering phase was carried out for the development of the
driving simulator, see Chapter 3. This included human trials with video and asset-
based driving simulators. The benefits of photo-realism from the video-based
simulation were identified as a desirable trait for the simulator developed in this
thesis. The control over the asset-based driving simulation was also appealing.
To gain the best of both worlds a photo-realistic 3D model would have to be
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constructed and sets forth the requirements for the remaining sections. As well as
this, some observations on driver distraction were made. The video-based driving
simulator, although photo-realistic did not contain discrete distracting events to
measure against. However with the use of clustering of eye tracking data, large
shifts of attention were highlighted across groups of people to items on the side
of the road. To measure how distracted people were; discrete distracting events
had to be set up. Using the asset based driving simulator this was accomplished
by creating digital and static billboards. The degree to which someone would be
distracted was dependent on the activity of the distractor itself. This was shown
through animations (dynamic billboards) causing more higher levels of distraction
when compared to static billboards, see Section 3.2.5.

The driving simulator’s 3D model and PTM rendering process included two
main iterations, see Chapter 4. Initially, the 3D model was represented as an
open-ended box to simulate a hallway and tunnel. This provided a basic structure
to test an implementation of PTM. This iteration highlighted the feasibility of
PTM for producing multiple photo-realistic views using a single image. This
was demonstrated using structural similarity index metric (SSIM) on real images
compared to the synthesized views, see Section 4.1.2. The second iteration used
COLMAP to reconstruct 3D models from multiple RGB images from the KITTI
dataset. COLMAP used structure-from-motion that localized images relative
to the 3D model with a loss function that optimized toward correcting the re-
projection error of the entire set of images relative to the triangulated 3D points.
This made it a more suitable system when combined with PTM, because PTM
performs better when the reprojection error is lower, see Appendix C.2.1. PTM in
combination with 3D modelling has been demonstrated to provide greater photo-
consistency than vertex colours using SSIM on the KITTI dataset for several
routes, see Section 4.2.5.

During development, it was noted that removing foreground dynamic objects
were required to marry 3D reconstructions from COLMAP and PTM. Initially,
these objects were removed, and background pixels were found using place recog-
nition over multiple video sequences to find a matching image. Template match-
ing within matching images was used to localize the area in the query image that
required inpainting. This was demonstrated on an in-house dataset of video se-
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quences of Moyglare Road, Maynooth, Co. Kildare, Ireland [32]. This approach
produced visual artefacts when the two images did not align. Qualitatively these
results were promising but it was difficult to gauge quantitatively how well this
approach performed, see Section 5.2.3. Using the KITTI dataset [63] another
approach was taken to correct this misalignment using 3D reconstructions to
localize the images. The localization of the images removed the need for place
recognition. It was then possible to carry out inpainting using PTM from multiple
views. Using videos from KITTI where the roads were traversed multiple times,
ground truth images, without vehicles, could be used to compare against images
containing vehicles and those same images with the vehicles removed. It was
demonstrated that using inpainting could again improve the photo-consistency of
3D models while using PTM, see Section 5.3.4. In this same section, it was also
shown that skyboxes in combination with PTM could serve as a way to fill gaps
in 3D models left by 3D reconstruction algorithms. This in turn increased the
photo-consistency. Background such as skies and far away objects can often be a
source of inconsistency for high performing view synthesis algorithms including
NeRF [111], the solutions presented here with skyboxes may present a potential
solution to these problems.

6.2 Future Directions

Initially, the work done in this thesis set out to contribute to the research in the
area of driver distraction. Specifically distractions external to the vehicle. The
major contribution of this thesis was the construction of a photo-realistic driving
simulator. The driving simulator highlighted PTM as its principle rendering
approach. Rendering using PTM in combination with 3D reconstructions has
been fully formalized and implemented. However approaches to selecting a single
or multiple views for texturing, filling in gaps in the 3D model not captured
in a set of images used for texturing, and blending multiple textures seamlessly
over the 3D model remain open problems. Without research in these areas,
visual artifacts will likely reduce the photo-realism of this rendering technique in
some instances. If it is intended to simulate a person driving down a road in a
similar trajectory as the camera used for collecting the images used for texturing,
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then this simulator will perform exceptionally well. For larger deviations from
this trajectory, further research into the aforementioned areas will need to be
considered. Some general approaches to view synthesis may also be applied,
most notably Free View Synthesis [132], or NeRF [111, 195, 105]. View selection
and gap filling for textures can likely be solved through optimization techniques.
There is a lot of similarity between the view selection problem and the solution
proposed by NeRF for view synthesis. For gap filling, this is similar to the area
of inpainting, which has seen great strides in the last few years through deep
learning [121, 177, 97]

The driving simulation presented in this thesis provides the required function-
ality for a driving simulator. There are several directions in the work that could
be extended:

1. Experimental Applications:

(a) Extend current software to include augmentation of models with dis-
tractors. Additional 3D models/assets can be added afterward. This
would be similar to the static and dynamic billboards with timed ani-
mations in Chapter 3. Road engineers’ main distractors of interest are
roadworks, street art, and advertising.

(b) The same 3D model can be used for simulation with multiple record-
ings of the same road from different times of the day. PTM could
compare night-time vs. daytime driving by texturing with night-time
or daytime videos, respectively [181].

(c) Vehicle odometry collected to construct the 3D models and describe
the motion of the acquisition vehicle could be used to simulate auto-
mated driving. This could be used for human-in-the-loop experiments
where drivers must take control back from the vehicle. This is often
seen in partially/semi-automated driving vehicles [108].

(d) Using the PTM inpainting techniques in Chapter 5, it would be in-
teresting to create a dataset of videos free of vehicles to benchmark
data driven models for inpainting. Often there is an issue with finding
enough data to enable this, but this technique may help. This would
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then in turn remove the requirement to reconstruct a full 3D model
for inpainting.

2. Technical Advances:

(a) Higher resolution data for more photo-realistic driving simulation.
KITTI images have a resolution of 1280× 384 [63], and the Moyglare
Road dataset had a resolution of 1920× 1080 [32].

(b) Improved vehicle motion model as the current implementation uses
arc-ball single velocity pedal. Advanced models would include the
effects of inertia, braking, and acceleration. The steering could be
extended to Ackermann, see Appendix B.

(c) Real-time integration of eye-tracking for dynamic simulator response.
For example, part of the scene changes its state in response to eye
gaze. See Appendix B for an initial description of the eye-tracking to
model calculations. This would give some insight into the timing of
human vision while driving.

(d) PTM can be connected to eye-tracking. This allows eye gaze to be
mapped from screen coordinates to the 3D model and back to images
used for reconstructing the 3D model. This would allow for new forms
of eye-tracking analysis not previously considered.

(e) The design of this simulator’s rendering identifies the transformations
required to map between the viewport, the 3D model, and images
used for PTM. It was noted that labelling images for each participant’s
perspective were required to carry out eye tracking and area of interest
analysis in Chapter 3. A mapping of eye gaze to semantic labels could
be developed using these transformations.

(f) Training a small convolutional network to remove artefacts from ren-
derings using PTM. Given the previous tests in Section 4.2.5 and 5.3.4
there is a way to compare the renderings to ground truth. A small
convolutional network may be able to filter the remaining artefacts
(projection onto non-front facing objects or poor shadow projection)
through training.
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This thesis was completed with the intention of providing a method to analyse
distractions outside of a moving vehicle. As a result a driving simulator has been
constructed. This required merging of methods and techniques from the fields of
driver distraction and simulation with the computer graphics and vision. It is
hoped that as a result of this research a roads engineer may gain insight in the
levels of distraction present on real roads, without having to put people in harms
way.
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Appendix A

Tool Details

A.1 Eye Tracking

This section is a discussion of eye-tracking, including the methods used to acquire,
process, and interpret eye-tracking data. The ability to map eye tracking data
from different participants back to a common frame of video used to construct
the scene is developed. This mapping process is a significant contribution to the
work carried out in this thesis, see Chapter 3.

Eye-tracking will be the method chosen to measure reactions and gauge the
driver’s perception within the simulator. Eye-tracking is the process of observing
and reporting the state of an eye at a given time. The main components consid-
ered for tracking are the pupil and iris, located behind the cornea and in front
of the eye’s lens. The pupil is the part being tracked by most eye trackers while
attempting to gauge where the eye is looking. Rays of light are radiated through
the eye’s pupils and absorbed by the rod and cone cells at the back of the eye.
A person’s observable range of vision is captured based on the light allowed to
travel through the eye pupils. Other items people perceive outside of this range
have often been observed previously within the range. The perceptive visual sys-
tems could also estimate the presence of these items. The iris, in relation to the
pupil, is tracked to gauge how much light enters the eye at a given time. The
pupils’ dilation is associated with engagement and emotions towards the item the
person is observing. However, this reaction could also be a result of the change
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in brightness of the room. This factor is why pupil dilation is not considered an
essential factor in the experiments within this thesis. Specific lighting settings
may be required to control the eye’s reaction. This research focuses on the point
at which the eyes are looking, otherwise known as the point of regard. Eye gaze is
often associated with which items people are allocating attention to. This signal
will analyse driver behaviour and attention within the simulator.

This section will begin by discussing the methods to acquire eye tracking data
and the tools used. It will then cover the calibration protocol used to fit the
eye tracking estimation model to the person being tracked. Following this, the
methods for processing eye tracking data are covered. This includes the filters
used to clean the data and the interpretation of eye gaze in pixel space to ocular
degrees the eye moves around within its centre of rotation. This differentiation
will be significant in the following section covering eye movement classification.
The eyes are noted as giving attention to regions in their line of sight when the eye
is static. This is referred to as a fixation. Fixations are classified by measuring
their rotational speed, a threshold of 80 degrees per second. This threshold is
measured in ocular space because participants between studies can be seated
at varying distances from the eye tracker or viewing screen. A measurement
threshold based on pixels may vary in terms of the speed of the eye. For example, a
person sitting very close to the screen would have to move their eyes faster to bring
their focus from top to bottom than someone sitting further away. Measuring in
ocular space allows for consistency between studies in the general research area
of human attention while using eye-tracking equipment.

A.1.1 Acquisition

Eye-tracking and the sensors used to observe it has been developing over the last
hundred years [50]. For the research carried out here, there is a focus on using
video-based sensors combined with pupil/corneal reflection techniques. These eye
trackers use cameras and image processing techniques to compute the point of re-
gard (usually the observed point on a monitor) both offline and in real-time. This
can be done for on-screen computer desktop scenarios and using head-mounted
displays for testing virtual reality and tracking the eyes while interacting with the
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real world. Most eye tracking systems use similar cameras and image processing
techniques but vary in their calibration methods for the types of surfaces they
observe. A review of methods for retrieving point-of-regard measurements for the
interested reader may consider the following [50].

Given that most eye-tracking systems are considered concerning egocentric
views across the image plane, our novel contribution will be constructing a 3D
model based on real-world images (Chapter 4), allowing for exocentric eye-tracking
over a 3D map (Appendix B.1). This will be done by projecting the eye gaze from
the image plane/viewport into the 3D map and provide 3D points for analysis.
Another contribution will be to map these eye gazes/fixations from the 3D map
to another image plane corresponding to a viewing camera used to construct the
3D map initially.

Among the most popular desktop-based eye trackers are the Eyelink 1000, a
high-precision eye tracker produced by SR Research [130]. This equipment has a
sampling rate of up to 2000Hz for binocular eye tracking. It is among the most
accurate and precise eye trackers currently available. The accuracy of eye tracking
systems is measured in terms of angular degrees about the centre of the eye. In
head-mounted and remote setups (head free-to-move), its accuracy is typically
0.25◦ − 0.50◦, while approximately 60cm away from the screen and tracker. The
head-mounted setup can be as low as 0.15◦. This equipment is typically used for
highly accurate eye tracking for reading experiments or stimuli containing small
movements. Its free-to-move setup involves participants wearing a sticker on their
heads for the camera to track against (head localization).

There are many other sources for standard eye tracking experiments involving
free head movement (without the use of tracking stickers). For example, Tobii
Technology has a multitude of eye-tracking sensors. Their most recent research-
grade desktop-eye-tracker samples up to 250hz of binocular tracking. It has an
accuracy of 0.4◦ and a precision of 0.5◦ while seated approximately 60cm away
from the screen and tracker. A review of how they test for these specifications can
be found in [80]. Most human activity studies, such as driving, do not require
accuracy better, which 0.4◦ makes the Tobii eye-tracker an attractive option.
Typically, an eye-tracker with higher accuracy than this is more suited to a study
on micro-saccades, an eye movement not typically studied concerning the area of
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driver experiments. The Tobii eye-tracking system comes complete with software
to enable the processing of the eye-tracking data. A specialized method has been
developed for processing and labelling eye gaze measured using these cameras.
This is detailed in the Tobii I-VT fixation filter documentation [117]. This process
will be described in more detail later in this chapter, as this fixation filter has
been used within the experiments reported in this thesis.

A.1.2 Calibration

Calibration is used to match 3D models of the eye to the actual eye of the par-
ticipants during an eye-tracking experiment. Since human individuals contain
variation in the shape and positioning of their eyes, eye-trackers often develop
individual calibration procedures to optimize gaze estimation [122]. As a result,
an accurate estimate of gaze points is produced. Calibration is often done before
eye-tracking is recorded for either an experiment or a human-computer interface.
This process considers shapes, and light refraction and reflection on different parts
of the eye, including the cornea and placement of the fovea [183]. Participants are
required to look at calibration points on the screen. At the same time, images
are recorded by the eye-tracking camera to be analysed during the calibration
process. The analysis following the processing of these images is used to develop
a model of the participant’s eyes.

Figure A.1 shows an example of the calibration pattern used for desktop eye-
tracker calibration. During calibration, participants are required to gaze at each
calibration dot. This is done for a set period or based on experimenter requests.
There can be between 4-9 dots, sometimes 16 for large screens. The more dots
used for calibration, the more accurate the calibration tends to be. However,
this comes with the expense of participant attention, as participants may become
bored with long calibration sessions. The grey dots represent the calibration dot
area (where participants should focus their visual attention), and the green lines
highlight the difference in where the eye gaze was estimated to be focused based
on its current eye model. Ideally, the length of these lines would be minimized
across all dots present for the calibration pattern. Taking note of the distance
of the participants (often recommended to be 60cm for modern Tobii cameras),
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Figure A.1: Calibration pattern for eye-tracking.

the resolution and size of the screen being used, and the distance of these lines,
an error rate in terms of optical degrees can be determined. This error rate can
be influenced by many factors, including participants not focusing on the points,
the eye tracker not being set up appropriately, or excessive head movement [122].

Validation is often used to test the actual error rate of the eye model. The
calibration fits an eye model that returns a minimum error rate while conforming
to a rational eye model. It is possible that this eye model could overfit the data.
For this reason, validation is used to check the actual error rate of the eye model
based on unseen data. This involves a similar process to the calibration where a
participant is required to focus on calibration dots, except that these dots appear
in positions not included in the original calibration pattern. This tests the ability
of the eye model to generalize to other parts of the screen. Error is measured in
the same way, with ocular degrees, and will inform the experimenters if calibration
needs to be repeated.
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A.1.3 Processing Gaze Points

Consider the point of regard for an eye gaze position on a planar surface (the
screen the user is looking at). This point can be considered a position in the
image space domain Ω ⊂ N2, where Ω represents the current frame presented on
the screen for the viewer. The gaze point or point of regard will be referred to as
position x = {x, y}, where x and y are the horizontal and vertical components,
respectively. These can be represented as points on the image plane presented to
the participant. See the right image in Figure A.2 for an example of the scan path
of a participant in a driving simulator. Blue circles are points of regard closer
to x0, green circles are closer to xn/2, and red circles are closer to xn, where the
subscript reflects the temporal ordering of the points of regard.

Figure A.2: Points of regard captured in image frame.

Often eye tracking data is analysed collectively with many points-of-regard to
filter out the noise and evaluate what the eyes can observe. This "noise" can be
any number of things; it depends on what signal the experimenter is searching
for. There includes sensor noise that comes from the camera. Cameras are not
perfect and can contain radial distortions that affect the assumptions that may
be made during post-processing of the image plane and the point of regard. This
can usually be adjusted during calibration, but collecting many measurements
and using averaging techniques can also help filter this type of noise. For this
reason, calibration is carried out for each participant prior to experimentation.
Eye gaze is also rarely considered independently. Other factors to consider are
the head motion of the participant or alternate sources of light interfering with
corneal reflection tracking. Speed and acceleration-based techniques can be used

150



A. TOOL DETAILS

Figure A.3: Visualization of variables used to calculate ocular degrees from pixels
while viewing a screen.

to remove outliers. Factors known generally about eye movement can be used to
sensibly eliminate possible eye measurements, such as the potential speed an eye
can rotate in degrees per second. For example, [50] discusses using an upward
expectation of saccade (sudden eye movements) velocity of 600◦/sec (visual angle,
will be discussed below) or saccade duration of 120−300ms. These thresholds can
be chosen empirically as they may depend on the events the participant witnesses.

Given the temporal nature of eye tracking, data points are measured rela-
tive to the previous and future positions (future if the processing is not in real-
time). Now consider each point of regard contained in a temporally ordered set
X = {x1,x2, ...,xn}, where n is the number of samples. Each of these points of
regard {xi, yi} can then be converted into visual degrees, which is an angle of the
participant’s eyes relative to their centre of rotation. This is estimated given the
size of the screen (ws, hs), the expected position of the participant relative to the
screen d, and the resolution of the frame used for tracking (wr, hr). Given these
variables, the following equations can be used to get the ocular degrees.
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Figure A.4: Ocular angle vs. time for a participant, showing the x and y degree
changes.

θx = arctan
x

dwr

ws

(A.1)

θy = arctan
y

dhr

hs

(A.2)

These equations appear obvious to solve when considered with Figure A.3
and the appearance of a right-angled triangle. A similar setup can be considered
for visualizing θy. Plotting the ocular degrees in their ordered series after using
filtering techniques such as the 5-tap FIR (finite impulse response) filter should
produce the following, Figure A.4. This filtering technique is a good option for
reducing sensor noise and head movement from the participant.

Now the ordered set of gazes can be considered in the set Θ = {θ1, θ2, ..., θn},
where each θi = {θx, θy} is generated from the above Equations A.1 and A.2
using the set X as inputs for x and y. To calculate the speed of the eye, the
difference between adjacent members of the ordered set Θ and its corresponding
timestamps T = {T1, T2, ..., Tn}, and dividing the ocular degree difference by the
time-step difference will provide the speed (similar to the derivative of the ocular
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Figure A.5: Ocular degree velocity vs. time for a participant.

degrees to time), see Equation A.4.. Note that the difference between θi and θi−1

is calculated after θix and θiy are transformed to a Euclidean distance format,
Equation A.3. These velocities can then be represented in a time series as the
ocular degrees were represented before; see Figure A.5.

let, θi =
√
θ2x + θ2y (A.3)

θ̇i =
θi − θi−1

Ti − Ti−1

,∀θ̇i ∈ Θ̇ (A.4)

Observing Figure A.4 and A.5 together, high velocity, or peaks in Figure A.5
, corresponds to more significant eye movements, seen in Figure A.4. With the
given speeds held in, a threshold can be set to some limit to label types of eye
movement under specific time bands. This will be discussed in the next section.
These intermediate representations of the eye gaze are essential for classifying eye
movement. Labelling eye movement based on pixel coordinates alone can have a
reasonable accuracy; however, comparing across studies can be difficult as not all
screens have equal resolution or size for all experiments.
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A.1.4 Classification

Saccade and fixation identification is the most prevalent eye movement classifi-
cations. They are usually considered when testing participants’ overt attention.
Saccades are rapid eye movements used to re-position the fovea to a different
visual field region. Saccadic eye movement can be controlled and reflexive. The
average transition time for a saccade is between 10 to 100ms. During this time,
the actor is partially blind [148]. These movements occur so fast that the actor
does not perceive the temporary blindness. While collecting raw eye gaze coordi-
nates, it is possible to capture the position of the eyes during saccadic movement.
It is unlikely the actors are attending to an object at this position as they would
be blind at the time in question. For this reason, eye gaze data is usually labelled
before being analysed.

Fixation involves the stabilisation of eye movement to focus on an object.
They appear with minor, if not null, velocity. The most straightforward ap-
proach to classifying fixations considers each of the sampled points of regard in
the ordered set X and a Euclidean distance between each of these samples. A
collection of samples below some threshold may be considered a fixation. This is
equivalent to putting a bounding box around each sample xi ∈ X and checking
for neighbouring samples within this bounding box. This technique is helpful for
a first approximation of fixations; however, it may only be valid for certain types
of stimuli where the features of interest are far enough away from each other.

A slightly more complex and robust way is to use eye speed. Using the speeds
calculated in ocular degrees, Θ̇, it is possible to use the knowledge of the phys-
iology of the eye to inform what classification to provide for each sampled eye
gaze. A typical lower bound for saccades would be 80◦/sec. Using a simple clas-
sification model, all samples below 80◦/sec would be a fixation, and all samples
above would be saccades. Fixations can also be classified by merging neighbour-
ing fixations. This depends on the amount of time (below 75ms) and the number
of degrees (below 0.5◦) between them. Small fixations below 60ms are removed
based on the time it usually takes participants to register information visually.
All these considerations are explained fully in the Tobii I-VT fixation filter doc-
umentation [117]. Using these filters, the following should result from labelling
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Figure A.6: A participant’s Ocular degree velocity vs. time, including fixation
labels.

the velocity, see Figure A.6.
Smooth pursuit eye movements are used for tracking moving objects. De-

pending on the object’s speed, the eyes can match the object’s velocity with this
type of eye movement [50]. Smooth pursuit is a negative feedback loop, which
predicts where the object being tracked is going based on the observed speed
at which the object travels [93]. The speed the eye should travel is calculated
from its difference from the speed of the pursued object, and the eye accelerates
until the difference equals zero. This model for eye movement may be ideal when
considering a driving context. The visual field in a driving context is often dy-
namically changing, and objects are either being passed by or passing out the
driver. Smooth pursuit eye movements are likely one of the tools drivers use to
track these items while maintaining the driver’s overt attention.

Summary: Eye tracking can be used to measure human attention. The above
methods can acquire, calibrate, process, and classify eye tracking data. The
acquisition can be made using corneal/pupil reflections with high-end eye trackers.
Processing eye tracking data requires filters to clean it and make it temporally
consistent/coherent. The temporal nature of eye tracking is vital as a single eye
gaze conveys less meaningful information. This only highlights the direction of
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the eye at that moment, not whether the person was cognizant of what they were
seeing. The transformation of eye gaze from screen pixel space to ocular degree
space is essential to relate eye tracking studies in the field of human attention.
This allows for specific speed threshold algorithms to be used to classify eye gaze
points with the support of the literature. The classification algorithms discussed
in this section will be used in Chapter 3.

A.2 Structure From Motion Pipeline

The following is a summary of the main processes involved in structure from mo-
tion. Structure from motion is used throughout this thesis and different design
choices have been made based on these processes. For example, the choice to use
COLMAP SfM [139] instead of OpenMVG [115] in Chapter 2. Or the choice to
use the camera priors from ORBSLAM2 [116] before reconstructing roads from
the KITTI dataset [63] in Chapter 6. There are two main steps in SfM: corre-
spondence search and incremental reconstruction. Each of these are described in
detail below:

Correspondence Search

• Feature extraction: To localize common image features, distinguishable
and rich image points are identified, see Figure A.7a. Approaches with small
baseline differences between the two views use image edges and corners
[45]. However, for large baseline differences that were rotation and scale
invariant and robust to illumination changes, features like SIFT (Scale-
Invariant Feature Transform) were used [99].

• Matching: A scene graph is constructed to expand the problem to mul-
tiple images/views; see Figure A.7b. Image features must be matched to
construct a scene graph, where each node in the graph would be an image
representing some view, and the edges were the shared features both images
observed [57, 1].

• Geometric verification: a geometric verification will be used to refine
the number of matches such that outlier contaminated feature matches are
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Figure A.7: This is the correspondence search workflow for SfM. (a) Highlights
the feature extraction over an image, as seen with the red dots. (b) shows how
a scene graph is built using each image as a node, and the edges between nodes
are the feature correspondences between images. Again, features are shown as
red dots, and the green lines show correspondences. (c) shows a representation of
geometric verification. In this instance, a single 3D point can be seen from two
views. The rectangles with green borders are the image planes of the two views,
and the observed 3D point is a red dot. The observed 3D point on each image
plane is represented with a green dot, and the epipoles highlighting the direction
of the other camera centre are shown on the image plane as a purple dot.
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Figure A.8: The 2D image points, xij, of each image, i, is triangulated to some
3D point pj. They are projected from a viewing image plane Pi where the image
corresponding shares a subscript i with its respective pose.

omitted. This involves estimating a projective transformation of image
features for overlapping image pairs, see Figure A.7c. A homography is
used for pure rotational movement or a camera capturing features on a
planar scene [70, 102]. An essential matrix E is estimated for calibrated
cameras, providing the projective transformation for non-planar and non-
rotational (not just rotation only) movement. For uncalibrated cameras, an
estimation of the fundamental matrix is required, F. If a threshold number
of image features are found for a valid transformation, those image pair
features in the scene graph are geometrically verified. To remove outlier-
contaminated features from these images’ methods like RANSAC (Random
sample consensus) are typically used [54]. The appropriate geometric rela-
tion (homography/essential matrix) to use can be calculated using GRIC
(Geometric Robust Information Criterion) [169]. GRIC uses performance
metrics from the projective transformations to grade which transformation
would be more suitable for the image pairs features.

Incremental Reconstruction

• Initialization: SfM carefully selects an image pair to start the reconstruc-
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tion [5]. Selecting a good image pair is critical to future steps in incremental
reconstruction. An initial good image pair includes a dense set of features
in the images with a lot of overlap between themselves and other images
in the scene graph. This overlap can be measured as the number of edges
between pairs of nodes in the scene graph.

• Image Registration: additional views can be added by solving the Perspective-
n-Point (PnP) problem, provided a 3D reconstruction from the initial two
views exists [54]. This is done by matching the projected 3D features al-
ready in the 3D structure to 2D features in the new view. Solving this
problem produces a pose for the new view. The set of poses contained
in the newly registered scene graph is extended by this new pose when
localized. RANSAC, and other solvers, have been used to remove outlier-
contaminated correspondences between the 2D and 3D features.

• Triangulation: To register a new image in the existing set of poses, image
features must have matched the current set of the triangulated points. Once
this image has been registered, it can expand the number of scene points
through triangulation, assuming this image also has a new perspective not
already registered [71]. The expanded geometry enables the registration of
more images. An example of triangulation can be seen in Figure A.8, where
each camera pose, Pi, projects the observed 2D features, xij, into 3D space
with a ray, and the intersection forms the 3D points pj. The intersection of
the 3D rays can be seen with the orange dotted line going through image
features xi5, where i is the individual pose, and they intersect at a 3D point
p5.

• Bundle Adjustment: The poses and 3D points produced from image regis-
tration and triangulation come with uncertainty. Uncertainties related to
either the 3D triangulated points or the estimated pose impose uncertainty
on the other. The increased number of triangulated points improves camera
pose accuracy reducing the influence of individual 3D points [171]. Bundle
adjustment acts as the joint non-linear refinement of the camera and point
parameters currently associated with the registered images and geometry.
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This refinement prevents SfM from drifting away from the optimal solution.
This minimizes the reprojection error of the 2D-3D features across all im-
ages. See Figure A.9 for a visualization of the reprojection error. This is
formalized in Equation A.5, where the minimization of the loss function L is
calculated. The loss, in this case, is the reprojection error between the tri-
angulated features p and the image features x. The parameters minimized
are the 3D feature points and the poses P. The 3D points are localized on
the image plane using the pose and the function π(·, ·), which calculated
the reverse projection to find the point on the image plane. Levenberg-
Marquardt is the method of choice for solving this optimization problem
[171].

L =
m∑
j=0

n∑
i=0

ρj(||xj − π(Pi,pj)||2) (A.5)
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Figure A.9: An example of reprojection error of the corresponding 3D image
feature points, [p1, . . . ,p5], back project to the image at different locations from
where they are localized (black nodes with red border). The distance between
the features’ back projection and the features’ location on the image place was
used to calculate the reprojection error across all images.
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Appendix B

Future Works Details

B.1 Eye Tracking Over 3D Models

During development of the driving simulator eye-gaze to 3D model measurement
was impleneted and tested using ray picking algorithms. The projective transfor-
mations described in this thesis could take a 2D coordinate over the image plane
(viewport) and map them to a vector pointing away from the virtual camera in
the environment. This vector pointing away from the camera is referred to as a
ray and is represented in Equation B.11. Figure B.1 shows how the ray relates to
the image point u.

r = P−1K−1u (B.1)

To find 3D points overlapping with the ray r a sampling was taken iteratively
along the ray until an intersection was found, see Figure B.2. In this example, a
ray r is defined based on the camera’s eye-gaze projection. The algorithm steps
along the ray until it reaches a length w where there exists an intersection with
some 3D point p, see Equation B.2, where r0 is the origin of the ray r. This
method can be costly depending on the step size, λ, along the ray. The method’s

1P−1K−1 can be computed fast using a few useful facts. P is composed of a rotation
matrix R, and translation matrix T. The inverse of a rotation matrix is its transpose, and a
translation matrix is −RᵀT. Although computing K−1 might be an expensive computation; it
can be computed once at the start of the program, given that the camera intrinsics are unlikely
to require a change.
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Figure B.1: Computing a ray from the 2D image plane to 3D space.

complexity grows based on the number of polygons/vertices. Each of these will
have to be tested against each step along the ray. A more straightforward option
might be to create a line equation for the ray and query the point(s) p sit on
that line. It should also only consider the point if it is the minimum distance
compared to all other points on the line and is in front of the camera.

p = r0 + wr (B.2)

A method proposed in Duchowski’s book was to consider planes on which
many vertices sit (assuming shared faces) and find where the ray intersects with
the plane [50]. This could drastically reduce the number of vertices considered, as
many points could exist on this plane. The next step would be to calculate if the
point at which they intersected was within a rendered polygon. This method was
chosen to work in combination with the first version projective texture mapping
case described in Chapter 4. This used a simple open-ended box model. In this
case, the set of faces being rendered was produced using triangles, so for ease
of calculation, the plane was found relative to the positions of the vertices, xij,
of each triangle (face), Ti, where i was the face, the vertex belonged to, and j

corresponded to the individual vertex. The planar norm, νi, was calculated using

163



B. FUTURE WORKS DETAILS

Figure B.2: Ray tracing: iterative method

Equation B.31, where `ijk is the line between vertex xij and xik on the face Ti. The
inner product of the planar norm, and the ray, r, would then show if they were
parallel and non-intersecting if the result is not equal to 0. Following this, the
planar equation was used to find the distance w, given the ray r substituted for
some point in the plane Equation B.4, see Figure B.3 for a visual representation.

`i,2,1 = xi,2 − xi,1
`i,3,1 = xi,3 − xi,1
νi = [`i,2,1]× · `i,3,1

(B.3)

νi · p = d

νi · [r0 + wr] = d

w =
d− νi · r0
νi · r

(B.4)

1[u]× is being used here to represent the skew-symmetric matrix. It is being used instead
of the cross product (u× v) as this can be slower. Other representations of the skew-symmetric
include u× and û in other texts.
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Figure B.3: Point to triangle ray tracing

Given the eye gaze for the point p on the model, the point was projected back
to the image that textured the model. A mapping between the eye gaze and the
source images could be displayed, despite the transformation differences. Follow-
ing the calculation of the coordinate p, a texture coordinate could be retrieved
using the transformations used to project the texture initially. This can be seen
by treating the point p, projected from the view camera as the p, in the texture
coordinate calculation in Equation 2.3.

This approach worked well, given that the hallway was composed of 10 tri-
angles (2 triangles per face of an open-ended cube). Following further testing,
promising results were found using a video sequence of the "Port Tunnel" pro-
jected onto the cube. Eye-tracked points could be retrieved from 3D and back to
a single 2D coordinate on the image from the video. An issue with this approach
is that faces/triangles will not scale well as models become larger, as seen with
the large meshes created in Chapter 4. For extensive scenes, objects should be
loaded from memory in smaller sections of the point cloud as required by the
renderer and the tracer. This should speed up the rendering process and the
retrieval of 3D eye gaze coordinates. Initially, this can be addressed by splitting
the mesh into fragments to be loaded into the rendering pipeline based on a factor
of Euclidean distance.

165



B. FUTURE WORKS DETAILS

It is inefficient to do a ray calculation between the ray and all the points in
the vertex buffer. A standard solution to this problem is to group many points
and approximate their geometry using a shape that allows for fast calculation
of intersections (like the plane intersection tests discussed earlier). The shapes
used are typically bounding boxes, spheres, and cylinders. In most graphics
engines, they are referred to as "Colliders". These are normally manually anno-
tated for many 3D objects in game engines such as Blender or Unity. However,
automatic approaches have been attempted in the past through clustering and
random sampling-based (RANSAC) methods [153, 82]. Convolutional deep be-
lief networks have been used to generate voxel representations of 3D data from
depth maps, which also encode the distribution of points to aid in identifying
hierarchies of sets of points among the voxels. These hierarchies can be used to
identify larger regions where points/voxels within that set cannot be intersected
if they are not intersected. Others have used CNN’s to generate multiple cuboids
to approximate 3D point clouds [172] and from depth images [203]. It would be
recommended that future implementations of this system take similar approaches
to these. However, this section has presented how to project eye-gaze and relate
the projections to texture using projective mapping over simple models.

B.2 Ackermann Steering Model -Formalization

While developing the arc-ball motion model, it was proposed that another motion
model be applied to give realistic motion to the movement of the rendering cam-
era, the Ackermann model [149]. This Ackermann model was not implemented
for the final driving simulation as it was a less critical factor for a demonstration
of the final system. However, this section formalises the equations to indicate
how it might be used. This has been developed to link the rendering camera
transformation matrix and vehicle controls to the current state of the vehicle’s
wheels. The intention was that the presentation of the 3D reconstructed models
would have the feel as though the person is driving a car through the scene rather
than using some 3D viewer software.

The standard way of representing the transformation of the robotic platform
about the global coordinate system will be held in Equation B.5. The trans-
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formation between the vehicle’s platform’s global and local reference frames is
considered a planar transformation. It is considered using three parameters, po-
sitions x, y, and angular difference between the reference frames θ. The subscript
I denotes the global reference frame. This can be seen in Figure B.4. For simplic-
ity, this can be analysed in a top-down view of ξI moving along the ground plane.
Later ξI can be substituted for Pt, the camera’s pose in 3D space as described in
Chapter 4.

ξI =

xy
θ

 (B.5)

Figure B.4: Top down view of the vehicle platform and local reference (XR, YR)
relative to the global reference frame (XI , YI).

On a typical rear wheeled drive car there are two steerable wheels at the front
and two fixed motorised wheels at the rear. Each wheel will be described in its
local coordinate system relative to some fixed point on the motion platform. This
includes the wheels distance from the fixed-point l, this will be called the chassis
for future reference. The angular difference between the centre of the wheel and
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the fixed point on the x-axis is α. The angular difference between the chassis
and the forward wheel plane is β. See Figure B.5 for an example of a single
fixed wheel relative to the centre of the motion platform, where the center is also
the origin of the axis. The radius of the wheel is r, which can spin over time
and the rotational position of the wheel is a function of time φ(t). The rolling
constraint of a fixed wheel can be summarised in Equation B.6. Where ξ̇R is
the instantaneous change in the motion of the vehicle platform within it’s own
local reference. This equation can be used to calculate the possible direction the
vehicle can travel in with respect to a set of control inputs (the rate the wheels
are spinning and the orientation of the wheels at that time). A steerable wheel
has the same setup with exception to β, which can change over time in relation
to the drivers input, and can be replaced with β(t).

[
sin(α + β) cos(α + β) (−l)cos(β)

]
ξ̇R − rϕ = 0 (B.6)

x

y

α

β

l

Figure B.5: Example of a standard wheel relative to the vehicle platform

To calculate the appropriate β for the wheel to be facing forward the following
must be considered. When α is zero the assumed forward vector of the wheel is[
0 −1

]ᵀ
, call this d̂1

1. Following a rotation of α on a 2D plane the new forward

vector, d̂2, of the wheel can be calculated using Equation B.8. To calculate the
1The caret symbol is used in this context to mean the vectors are unit length.
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angle β required for the wheel to be facing forward consider the difference in
angle between the wheels forward motion line, d̂2, and the line parallel to the
x-axis (call it d̂3). Note it is possible to consider the lines perpendicular to the
wheel but this is essentially the same calculation. It is desired for d̂3 to point
in the direction

[
1 0

]ᵀ
. To find β the angular difference between d̂2 and d̂3

is required (unit vectors are used for ease of calculation), this can be calculated
using the dot product see Equation B.9. These forward vectors can be visualized
in Figure B.6. This formalization can be extended to all wheels on the vehicle
platform, see Figure B.7. In this example each wheel has it’s rotation about the
origin αi, and a rotation about its own center βi, where i denotes the wheel the
angle belongs to1. The forward vectors described in Figure B.6 are extended to
all wheels, d̂ij, where the i associates the forward vector to a particular wheel and
j is associated with the order of rotations in which the vectors have undergone.

R(α)d̂1 = d̂2 (B.7)[
cos(α) −sin(α)

sin(α) cos(α)

]
d̂1 = d̂2 (B.8)

d̂2.d̂3 = |d̂2||d̂3|cos(β) (B.9)

The rolling constraints for the vehicle’s fixed wheels can be contained within
J1f and the constraints for the steerable wheels are J1s(βs), see Equation B.10.
J1f is a constant matrix as all the wheels are fixed . However, J1s(βs) varies as
it is a function of the steering angle of the wheels at that time. These rolling
constraints can then be considered with the spin of the wheels themselves and the
position of the vehicle platform globally, similar to Equation B.6, but expanded
to include the rolling constraints of all wheels, see Equation B.11. J2 is a diagonal
matrix containing the radii of each wheel represented in J1(βs) in the same row
order, and ϕ̇ is the instantaneous rolling motion of these respective wheels at
time t. Given the current spin of the wheels, ϕ̇ and the steering angle of the
front wheels βs the instantaneous motion of the vehicle ξ̇R can be calculated at

1In some cases the smallest angle to rotate the wheel involved a positive or negative rotation
about the axis.
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x

y

α

l

d̂3

d̂2

β

d̂1

Figure B.6: Rotations of the wheel to ensure the wheels forward vector is forward
relative to the vehicle platforms local coordinates.

x

y

α1

|l|

d̂13

d̂12

β1

π − α2

|l|

d̂23

d̂22
β2

π − α3

|l|

d̂33

d̂32 β3

α4

|l|

d̂43

d̂42
β4

d̂1

Figure B.7: All wheels rotated and aligned to the vehicle platform such that their
forward vectors are parallel to the x-axis
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any time given all the other wheel parameters are constant.

J1(βs) =

[
J1f

J1s(βs)

]
=


sin(α2 + β2) −cos(α2 + β2) −lcos(β2)
sin(α3 + β3) −cos(α3 + β3) −lcos(β3)
sin(α1 + β1(t)) −cos(α1 + β1(t)) −lcos(β1(t))
sin(α4 + β4(t)) −cos(α4 + β4(t)) −lcos(β4(t))


(B.10)

J1(βs)ξ̇R − J2ϕ̇ = 0 (B.11)

This calculation was to limit the vehicle’s mobility in the driving simulation
at different points in time to produce higher fidelity with real driving. An arc
ball camera setup would allow the user to move the vehicle in any translation or
rotation at any time. An extension of the rolling constraints was the description
of the sliding constraints of the vehicle, C1(βs). This describes the motion of the
vehicle platform made unavailable with a specific orientation of the wheel angles
α and β. Using these principles it should be possible to implement vehicle motion
with the Ackermann model.
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Appendix C

Elastic Fusion and PTM

C.1 Elastic Fusion and PTM

During the PhD there were commissioning experiments for the implementation
of projective texture mapping (PTM). Before arriving at COLMAP as the final
automated reconstruction tool, Elastic Fusion was used. What follows are the
details of how that system was used, the dataset it was tested on, and how PTM
was applied to enhance results.

Elastic fusion was used to automate 3D reconstruction given sensor measure-
ments available from the real-world. A 3D model of an indoor scene was recon-
structed to commission the Elastic fusion software [184]. While Elastic Fusion
was not used in the final prototype, it was helpful, as it provided an accurate
point cloud in real-time. It also provided a set of corresponding poses for each
image taken of the model. The scene reconstruction was quick due to the avail-
ability of depth information in the input data. This provided an effective means
of building knowledge about the alignment of textures and 3D data structures.
The algorithm’s input included camera intrinsic parameters and a set of RGB-D
frames/images, see Figure C.1. In this case, the parameters were included as
part of the open-source dataset. The outputs included a 3D model and a set of
odometry measurements corresponding to the position and pose of the camera
capturing the RGB-D images.
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Figure C.1: RGBD image pair from the ICLNUIM dataset.

C.1.1 Formalization

Elastic fusion was used to create a map, M. This map was composed of a set
of vertices where each vertex has a position p ∈ R3, and colour c ∈ N3, The
image space domain is defined as Ω ⊂ N2, where an RGB-D image was used.
Depth maps D of depth pixels d : Ω→ R and the colour image C of colour pixels
c : Ω → N3. A set of transformations were computed to represent the poses
of each of these images relative to the mapped vertices but was rewritten with
a subscript t for each individual pose at a given time, see Equation 4.7. This
used the same interpretation of 3D points described in the previous section while
describing the rendering camera C. An example of each of these poses can be
seen in Figure C.2 where each camera pose is represented by a black frustum and
the 3D model behind them shows the 3D mapped vertices. The camera intrinsic
parameters are the same for every image and follow the same convention as the
cameras described in Equation 2.1.

C.1.2 The Dataset: ICL-NUIM

Synthetic data from ICL-NUIM was used for RGBD measurements of a 3D model
[68]. This dataset was chosen as Elastic fusion has been proven to perform ac-
curately on this dataset. The dataset contained multiple materials, including
diffuse, specular, and reflective lighting. These features can be lost during 3D
reconstruction and will serve as an excellent example of the strength of PTM.
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Figure C.2: Final 3D reconstruction and camera poses (frustums).

The tested sequence included the Living Room ’lr kt0’ trajectory. Frame-to-
frame tracking was enabled for Elastic fusion as it produced the lowest root mean
squared error for predicted poses compared with the ground truth poses. The
final map, containing a surfel representation, was generated along with predicted
odometry. The surfel map was then processed by a Poisson Mesh reconstruction
process using MeshLab, reducing the point count from 622, 367 to 253, 088 points
and providing a model with a continuous surface rather than a point-based one,
see Figure C.3 [83, 30]. Figure C.3 shows how the meshing process carried out
hole filling and point decimation. The dense 3D model will provide a helpful
surface to project onto, given its completed structure. The texture associated
with occluding foreground objects such as the lampshade can appear onto other
surfaces within the scene when viewed off-axis with the projector, as detailed in
Everitt’s implementation [53]. Solutions to this are developed in Section 4.2.4.
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Figure C.3: ICLNUIM reconstruction surfel (top) and Poisson mesh (bottom)
representation.
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C.2 Image-Model Alignment

Projective texture mapping qualitatively appears photo-realistic and convincing
to the human eye. However, it is sensitive to noise due to projection error. The
error is more noticeable in this case because the projection of colour is not a
continuous function over the 3D model. The estimation of colour on a 3D surface
is usually estimated using a moving average over the vertices [39]. Examples of
projection errors’ effect on projective texture mapping can be seen in Figure C.4.
When the projector was not aligned to the geometry found in the model, it
resulted in a projection of the texture onto the wrong surfaces (geometry and
texture do not align). This section will cover the approach used to rectify the
projection errors. The image-model alignment was a solution to a specific problem
related to the projection error of images following the use of Elastic Fusion on
a 3D model. This was demonstrated using measurements from the ICL-NUIM
living room benchmark.

C.2.1 Testing

The following approach was used to correct the projection error between the
image and the 3D model. The model, M, was treated as ground truth, and the
transformation for each camera pose, Pt (the estimated camera pose from Elastic
Fusion), was optimized relative to the model. The depth map corresponding
to Pt of the model M was calculated, Pt. This was done by rendering the 3D
model in front of the camera but rendering depth values instead of colours. Each
of these depth maps was compared against the sensor measurement depth map
associated with the equivalent poses Dt (depth map from RGBD camera). The
two depth maps were reprojected into 3D space as though their poses were set
to Pt. Poses were aligned using the iterative closest point (ICP) algorithm to
solve for a transformation with the minimum error between the model and the
predicted pose, Pt + ∆Ṗt. The most effective method was the point-to-plane
implementation of ICP for the given geometry in the living room dataset [29].
The two depth maps were compared in 3D space. Following ICP, two depth maps
Dt, and Pt, were compared using projection error and fitness, see Figure C.5.
ICP had a higher root mean squared error than the initial poses, Figure C.5.
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Figure C.4: Reprojection error and its effect on projective texture mapping.

The depth maps after ICP were matched to more points than the initial poses,
as shown in the fitness measure, see Figure C.5b. An example of the projections
side by side can be seen in Figure C.6. This included the depth map of the model
at the estimated pose, Pt, in yellow, and the depth sensor measurement for that
pose, Dt, in blue. The left image was the initial disparity between the point
clouds. The right image was the projections after the poses were optimized with
ICP. Images were created using Open3D [201].
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(a) Point error measure. (b) Point fitness measure.

Figure C.5: Point based optimization performance.

Figure C.6: Initial model/depth map (left) disparity compared to optimized
(right). Orange was the 3D mesh rendered from the perspective of the Elas-
tic Fusion pose Pt and blue was the depth map before (left) and after (right) ICP
alignment.
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To illustrate the performance of ICP the misalignment was measured by com-
puting SIFT features and matching them between the vertex colours image and
the PTM while using the poses before and after ICP, see Figures C.7a and C.7b
respectively [99]. The disparity between the features was measured as Euclidean
distance on the image planes of each image and was averaged. This measure was
reported for the full Living Room ’lr kt0’ scene from the ICL-NUIM dataset, see
Figure C.8a. In Figure C.7a the average error was a distance of 20± 4.33 pixels
(standard deviation: 14) with a fitness measure (number of features matched to
projection versus the total number of features in vertex colours image) of 0.018.
For Figure C.7b the average error was 0.68± 0.33 pixels (standard deviation: 3)
with a fitness of 0.15. The fitness for all other projections in the trajectory was
also included, see Figure C.8b. In most cases, within this dataset, the reprojec-
tion error is lower after the optimization while also matching more features than
the initial projection provided by Elastic Fusion.

C.2.2 Limitations and Benefits of Elastic fusion and RGBD

Images

Elastic Fusion demonstrated the feasibility of using multiple images to reconstruct
a scene. The technique works well with images providing different views of the
same scene. The camera required a depth sensor. Active depth cameras do not
typically work in daylight due to the over-saturation of the sensor from natural
sunlight. For this reason, this approach cannot be directly carried over to actual
roads. Elastic Fusion is a real-time system and has made sacrifices to keep it
running at this rate. A structure-from-motion (SfM) library can be tuned to run
until it reaches some quality threshold associated with the 3D model. SfM was
the final algorithm investigated for the reconstruction of roads. Elastic Fusion
has typically been used over small spaces with a slight transformational difference
between video frames. Methods to extend dense 3D reconstruction over larger
areas include Kintinuous [186]. A camera-mounted vehicle will typically traverse
much larger distances between video frames and should be used with algorithms
that accommodate large baseline differences between images. Changes may be
required to use the Elastic fusion system in that environment.
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(a) Initial Projection.

(b) Optimized Projection.

Figure C.7: Image feature matches (a) before ICP optimization and (b) after
ICP.

(a) Feature error measure. (b) Feature fitness measure.

Figure C.8: Performance of features matching across all image in ’lr kt0’ sequence
from ICL-NUIM [68]
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The reconstruction using the Elastic Fusion algorithm with RGBD images
provided an accurate 3D model and set of poses for each image. The poses for
the images could later be used as transformations for the projectors. However,
this method is not possible using a standard RGB dash camera without extra
features being built to compute the MVS or predictive depth estimation [89]. It
was intended that a road engineer could use this system to reconstruct real roads
using only a standard camera instead of a specialized vehicle. RGBD cameras,
although cheap, do not typically work in daylight, and Elastic Fusion has not
been developed with the appropriate parameters for wide baseline differences in
video sequences. This setup worked well for commissioning the integration of the
outputs of a 3D reconstruction system, the 3D mesh model, and a set of image
poses with PTM.

C.3 Conclusions

The ICP optimization had a focus on improving view-dependent visual effects.
Lighting variability from each view was only considered peripherally as specular
reflections were only observed from the projection of other images. A discrete
projected image was aligned with the 3D model. There was no continuous rep-
resentation of a light radiance field for each 3D point. Later in the same year
(2020), researchers in machine vision released a paper on Neural Radiance Fields
(NERF), which carried out a per-point optimization over the 3D model and at-
tempted to estimate the direction the light radiance reflected for some set of views
[111]. This work supports that lighting and colour should be optimized based on
view-dependent instances instead of treating 3D surfaces under Lambertian world
assumptions. Using Lambertian world assumptions has proven to be an excellent
approach to reconstructing 3D scenes geometrically. However, it is the belief of
the author of this thesis that this should be a temporary solution used only for
reconstructing the geometry. View-dependent shading should be used to recon-
struct appearance/colour in these virtual environments. The solution to fitting
images to a complete 3D model improved the overall reprojection error. Bundle
adjustment techniques optimize the reprojection error for the entire set of images
and the triangulated 3D points. For this reason, 3D reconstruction systems such
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as COLMAP, which use bundle adjustment, are used in Elastic Fusion’s place.
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Appendix D

Driving Simulation Runtime
Features

Chapters 4 and 5 described the reconstruction of the 3D environment and render-
ing methods for use in the simulator developed. The following sections describe
the components required to implement real-time projective texture mapping in
a driving simulator. It also describes how user input was used to adjust the ve-
hicle’s motion and the driver’s view. The following are the contributions of this
chapter:

1. Given image labels for each semantically labelled image a tracking algorithm
was applied to improve the robustness of retrieving vehicles.

2. A view selection method developed to find images and their pose matrix for
projective texture mapping.

3. Projective texture mapping (PTM), inpainting, foreground removal/background
subtraction, and shadow mapping can be computationally expensive. In-
stead of considering these as a stream-based process, some processing steps
were completed in batch style before simulation. This required the creation
of specific storage and data types to hold the intermediary data produced
by these batch processes for use during run-time.

4. There is a requirement to read 3D models into memory from disk in real
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time; to date, it has been assumed that the model has always been present1

for rendering. The approach to reading these models from disk is discussed
here.

5. The motion of the camera and vehicle between rendered views has not
previously been considered and is explained here.

This chapter will discuss in detail how each of these was addressed. The
driving simulation will be limited to specific paths. The rendering camera will
begin with an orientation that aligns with the set of images used during the
data capture of the 3D model. It has been shown in previous experiments that
photo-consistency metrics for projective texture mapping perform best when the
rendering camera is aligned to the extrinsic parameters/view matrix of the pro-
jectors, see Chapter 4. It is recommended that the driver remains on a specific
path via instructions provided by the experimenters. The driver must progress
along the road in the same direction as the recording camera. The playback view
is limited to ±45◦ concerning the forward direction of the recording camera. The
driver is required to drive on the same side of the road as the recording camera.

3D points of the reconstructed model can be textured with an image of a real
road to produce photorealistic views using projective texture mapping. The op-
timum projector needs to be identified for each position the driver occupies. The
poses of the projectors relative to the 3D model were compared to the rendering
camera. The pose with the minimum difference was selected for projective tex-
ture mapping. The difference metric used was the Euclidean distance between the
pose of the projector and the rendering camera. Finding local minima between
these two sets was computationally expensive at run-time. A linear search for
the minimum Euclidean distance would result in order O(n) search times [36].
The run-time should be fast enough for the simulator to remain responsive to the
change in the pose of the rendering camera. The simulator should maintain >15
frames per second run-time. Using a Monte Carlo style test, a variety of search
methods for the projector search problem was compared. This involved creating
a synthetic dataset of random poses and a random query pose for each test. The

1It is not being said that the model still needs to be reconstructed. The read from disk
time has previously been assumed to be completed.
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time and accuracy were recorded for each test. Previously it was described that
projections should only be used on surfaces that are front facing towards the pro-
jector. Shadow mapping was used to achieve this. This process was computation-
ally prohibitive. During development, projective texture mapping could achieve
≥ 60 frames per second. However, shadow mapping required depth maps from the
projector-camera pose to be stored in a frame buffer and read later. This process
increased the computation, and the frame rate dropped below 30fps. Pre-baking
depth maps ahead of simulation removed this processing time. Frame rate con-
sequently returned to 60fps. Similarly, inpainting/background subtraction was
required for instances where the image contained vehicles or pedestrians, but the
final 3D model or mesh did not. Inpainting was carried out in a batch before the
simulation. The inpainting workflows described in Chapter 5 required greater
run times and were not implemented into a single stream process. The resulting
images were stored on disk and read with their respective 3D model/mesh.

3D models and meshes can be read from the disk at the start of each simula-
tion. However, there is limited memory capacity for both RAM and GPU. Visual
Studio 2022 often has a limit on the virtual memory at 2GB. However, it can
be expanded to 4GB [176]. Creating a 3D model/mesh of an entire city would
quickly exceed this memory limit. This was before considering textures, depth
maps, or pose data that would also have to be read. The 3D model/mesh had
to be read in segments to prevent scalability from being an issue. The segments
must be small enough to fit in memory but read fast enough not to detract from
the immersion of the simulation. The 3D model should be read in the back-
ground, and the driver should be unaware of this. The time taken to read models
during simulation should avoid impacting the game logic and rendering. To load
all data relevant to a specific segment of road, the 3D mesh, textures, and pose
meta-data were stored under shared folders. This folder hierarchy allowed the
simulator to load all appropriate content for a given road based on the position
of the rendering camera.

A motion model was constructed to enable steering and forward motion within
the simulator. A vehicle’s steering has been identified as a key factor for measur-
ing human driver responses because steerable simulation supplies higher fidelity.
Most driving simulations include this ability, for this reason, [182, 49, 55, 157].
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An arc ball steering model was used, and a decaying acceleration model was used
for the vehicle’s forward motion.

D.1 Vehicle Tracking

Chapter 5 discussed the removal of foreground objects, specifically vehicles. To
remove these objects from video they must be localized in each image. Semantic
segmentation was used to identify where these vehicles were. However the seg-
mentation network does not have 100% accuracy [199]. Given the input data is
based on video and there exists a spatial consistency over most frames of video,
machine vision techniques were applied to counter false positives and false nega-
tives identified by this network.

D.1.1 Tracking for 2D Inpainting

Section 5.2 presented an inpainting workflow that would work in most cases.
However, the same surface observed from different perspectives or under dif-
ferent lighting conditions can provide variable photo-consistency and this had
a significant effect on the performance of image template matching techniques.
To overcome these variances, temporal and spatial consistency was used to find
neighbouring regions containing the same image labels. For example, if image I0q
matched at an image location (x̂, ŷ) in image I0q̂ for the image template located
to the left of the vehicle cluster, then it would be likely that the next image I1q
would contain a match in I1q̂ within proximity (x̂±A, ŷ ±B). This would be
based on some threshold that limits the degree to which these templates can shift
frame-to-frame within the video. Other sanity checks can be applied including
ensuring that the top, left, right, and bottom templates maintained the same
orientation within the image.

Semantic segmentation identifies each pixel of an image. It would later be
a requirement to identify instances of vehicles to enable the tracking of these
objects between images within a video. Rather than developing a network for
tracking, the existing segmentation network was used. Classic machine vision
techniques were applied to the masks provided by this network. To localize the
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Figure D.1: Cluster centre tracking.

centroid (the average position of the set of pixels labelled as a single vehicle)
of the labels the images were converted to binary images and a contour finding
method (findContours()) was used through OpenCV [12, 159]. A bounding
rectangle was calculated for each set of contours. This was identified by acquiring
the minimum and maximum horizontal, and vertical coordinates corresponding
to each instance of some vehicle. Each centroid was contained within a list,
ϕt, where t corresponded to the index of the frame number for a given video
sequence. Each centroid within the list had a set of attributes including size,
center-point, and visibility. The list ϕt was updated after each new labelled image
was provided. If a centroid did not reappear after some set number of images
(60 images), the centroid was removed from the list and not queried again. The
image labels were classified into clusters using a centroid tracking algorithm based
on this article [135]. The labelling of centroids between images was based on a
nearest neighbour’s algorithm using Euclidean distance within the image plane.
Figure D.1 shows an example of these regions being tacked within bounding boxes.
Instances where some images were not labelled as vehicles due to misclassification,
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could be rectified by applying this tracking algorithm. For example, if the labels
were detected in image Inp but lost between I

[n+1...m]
q and then detected again

in image Im+1
q the tracking of these labels could be interpolated, assuming the

gap between m and n was not large. The original tracking algorithm described
in [135] was responsible for identifying whether centroids were related to each
other and the interpolation between images was an extension we added to this
during implementation. These interpolation-based methods were applied after
the centroid tracking algorithm was finished. It followed a similar approach to
eye-tracking and fixation labelling [117].

D.1.2 Tracking for 3D Inpainting

To apply approach to inpainting described in Section 5.3, the following improve-
ments were considered. A tracking algorithm was developed to take the labelled
videos and make them robust to single-frame misclassification. Misclassifications
in terms of a vehicle attributes were not corrected previously. Each semantically
segmented blob was characterized to account for these misclassification instances.
The characterization provided a unique identifier for each label. These charac-
terizations were tracked across successive frames of video to correct for outliers.

Image Labelling in Video: Semantic segmentation in the previous section was
considered discretely per-image. It did not utilize the chronological advantages
of video. Inference of image appearance can be gained from vertically and hori-
zontally adjacent pixels and temporally. An assumption can be made that pixels
within an image, I tp (x, y), labelled as a vehicle, are more likely to contain a vehicle
pixel if the previous m images at the same position, I [t−m,t−1]

p (x, y), if the scene is
static and the camera is not moving. Alternatively, suppose vehicle-labelled pix-
els are approaching some position I tp (x, y) in the previous set of images. In that
case, it may be likely that this current pixel within the image could be labelled
as a vehicle. Optical flow has been a popular area in machine vision that would
have previously dealt with scenarios similar to this [100, 102]. More recently,
approaches using prior probability distributions for image labels while using an
image labelling model could have been applied. This work is done with recurrent
neural networks and long short-term memory (LSTM) [134]. Previous work has
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shown that image labelling can be improved with more measurements, including
labels over a 3D model, see Semantic Fusion [106].

There are some key differences between the problem presented here and what
is normally done in the state-of-the-art in machine vision. The setup in this thesis
for reconstructing real roads and removing foreground objects uses a fixed set of
videos, not a continuous stream (batch processing vs. stream processing). There
was no need to make a prediction based solely on prior information. For this
reason, the act of tracking attributes related to semantic labels were treated in a
similar fashion to eye tracking. The representation of each labelled vehicle was
contained in a list of centroids, ϕt. These could be processed similarly to eye
gaze tracked and classified into fixations, see Appendix A.1.4 for more details on
this process. A labelled vehicle was often classified correctly; however, a small
percentage of the labels were incorrect. This was noticeable to humans watching
a video while rendering the tracked vehicle with a bounding box, but statistically,
this would be a very low false negative rate. The model to attribute semantic
labels to each image had a pixel accuracy percentage of 80.13% on the MIT
ADE20K dataset [74, 197, 199]. This effect is apparent when vehicles suddenly
re-appear in a simulation of an empty road. Assuming this did not happen often,
signal processing techniques could be applied. Among those signal processing
techniques, linear interpolation (from the previous section) was used to rectify
issues when there was a total loss of tracking and Gaussian convolutions was to
smooth the effects of misclassification of centroid attributes (size and location).

Other vehicle tracking factors to consider include; mislabelling of the vehicle
pixels (false positives). False positives introduce unnecessary inpainting. Eu-
clidean distance between each occurrence of a centroid over each image was com-
pared against a threshold distance. Large jumps for centroids were not considered
to be the same instance of a vehicle. Occlusions of vehicles could cause tracking
to be lost, but this would be more critical if the instance of the vehicle mattered,
which is not the case here. For this use case, centroids were no longer tracked if
they had not been detected for more than 50 frames of video.

In practice, there were very few false positives. However, false positives as-
sociate themselves with the same centroid (a labelled blob whose characteristics
are tracked over time). Figure D.2 observes three typical cases while labelling
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these sequences. The top graph represented the tracking of a correctly labelled
cluster of vehicle pixels on an image plane, with the horizontal position of the
vehicle on the y-axis and time on the x-axis. Orange points represented the pos-
itive detection of a centroid, and blue points represented the negative detection
of the centroid. Figure D.2a highlights the presence of the vehicle vanishing to
the edge of the image. This contained more positive instances of the centroid
than negative instances, reinforcing the likelihood that this was a true positive.
Figure D.2b highlighted a single false positive. This was easy to detect and was
a likely occurrence given that the network labelling these images did not have
100% accuracy. Measuring the centroid’s lifetime could be used to detect these
instances. Figure D.2c, however, contained a challenging example where multiple
mislabeled centroids were detected and associated with a single instance. The
way to detect these instances was to compare the ratio of positive to negative
instances of vehicle centroids.

D.2 View Selection

This section describes how the image pose data was queried at run-time to ensure
that an appropriate image, or set of images, was used for projective texture map-
ping. The texture selection for projection was based on maximising the similarity
between the camera’s pose that captured that image relative to the reconstructed
3D model and the rendering camera within the driving simulator. The similarity
was based on Euclidean (spatial) distance between the two poses. Three ap-
proaches were considered for searching for these matching poses. All tests were
evaluated in Python. An initial optimized linear search approach was applied us-
ing the NumPy library. This was compared against a scratch-built search method
that used a k-dimensional tree (KD-tree). This data structure depended on the
pose similarity between images used for 3D reconstruction. These approaches
were tested on a set of randomly generated poses surrounding the odometry for
driving sequence obtained from KITTI [63]. There were 10, 000 random poses
sampled, and as a result, there was a high likelihood that a suitable match ex-
isted for the driving sequence to query. The KD tree was tested and compared
to a linear search. It was predicted that the linear search would have a lower
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(a) Labelling true positive in video sequence.

(b) Single false positive in video sequence.

(c) Multiple false positive in video sequence.

Figure D.2: Examples of centroid tracking for common true positive and false
positive instances.
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residual error while choosing a projector pose to align with but would take more
time to query than the KD-tree on average. The prediction was based on the
Big O complexity of the search using these data structures. The NumPy linear
search uses compressed array structures and vectorized methods. The underlying
C-code was pre-compiled and did not require the iterative interpretation of byte
code for each comparison associated with using loops and lists in Python. The
KD-tree, however, did not use this vectorized library and was developed from
scratch.

D.2.1 View Selection Algorithms

The images were associated with a KD-tree data structure to assist in selecting
the appropriate image for perspective projection. This tree was computed before
the simulation run-time and parsed with the image data at initialization. In
Figure D.3, the left graph shows the pose of a camera given an aerial view (just the
x-y coordinates). These poses were contained within a pose tree data structure.
Each node grouped all the poses within some boundary. The resolution of each
node increased with the depth of the tree. This can be seen in the right graph.
Each bounding box for the first two layers was linked to a node in the tree.
This tree stored every image name with its respective pose. The meta-data of
all the underlying poses was stored in nodes closer to the root. Poses within
the same node were more like each other than nodes in other parts of the tree,
based on Euclidean distance. The tree’s leaves contained image names and pose
information. The tree was constructed by splitting the root nodes’ poses into
a grid of nine sections. Poses contained within a single area were associated
with their respective node. The section was split into nine nodes if the child
node had more than nine poses. This process was repeated recursively until
less than nine poses were contained in a node. The higher-level hidden nodes
had attributes associated with their children, including the average coordinate,
standard deviation of coordinates, and the minimum and maximum positions of
the images in the leaves of their sub-trees.

This structure allowed for faster search times for the images with close align-
ment to the rendering camera. A comparison of the rendered pose against the
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Figure D.3: 1 Video sequence odometry (left) and how it was distributed across
a KD tree (right). Each root node of the tree is connected to a boundary of the
map the image poses are located associated with.
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nodes in the tree, starting from the root node, ensured the search space for the im-
age was logk(n), where k was the dimension of the maximum number of children
for each node in the tree (k=9), and n was the number of images in the database
being queried. Following the first search within this tree, images were quickly
found by searching neighbouring nodes in the sub-tree and leaving the sub-tree
when some threshold distance was elapsed, see Equation D.1. The variance and
mean of the poses within the node and coordinate of the rendering camera were
represented by σ, µ, and p, respectively. The mean and variance at each sub-tree
were pre-computed and stored in the tree data structure. These values were com-
pared against the current pose. 2 logk(n) was the worst-case run-time for this
improvement on the search algorithm. The worst case often occurred once per
sequence when the vehicle travelled from one side of the 3D model to the other.
If the search did not have to leave the occupied sub-tree from the previous search,
the run-time was only k(9) comparisons.

2σ − |µ− p|L2 < 0 (D.1)

D.2.2 Testing View Selection

To test these search times a sequence of poses was compared against a randomly
distributed synthetic poses surrounding a neighbourhood of the original driving
sequence from the KITTI dataset. This was done to demonstrate the scalability
of this approach while showing the data structure did not have to be dependent
on video sequences, like binary search, and could accommodate sequence spatial
overlap. A linear search method for comparing the distances of every point in
the dataset against each incoming query pose was considered, see Figure D.4.
The top image highlighted the path of a camera from the KITTI dataset. The
blue dot was the query pose to the KITTI sequence. The bottom graph showed
the Euclidean distance between the query and all other poses in the sequence
above. There was a local minimum over the shared x-coordinate matching the
query pose. Linear search was compared to the KD-tree on the same randomly
distributed dataset. The KD-tree was tested with both the smart-cache search
strategy and the naive strategy. The smart-cache search used the previously
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Figure D.4: Comparison of top-down camera poses (left) and the relative distance
between some points in the camera pose sequence and all other points (right).

Method Average Search
Time (seconds)

Standard deviation
search time (sec-
onds)

Average Euclidean
Distance (model
scale units)

Numpy linear
search

290× 10−6 167× 10−6 41× 47−3

Root KD-Tree 382× 10−6 120× 10−6 49× 52−3

Smart KD-Tree 189× 10−6 105× 10−6 25× 23−2

Table D.1: Run-times for each camera pose search strategy

acquired pose nodes to begin their search for the next closest node. The naive
search required each search to begin from the root node down to the solution
in every case. All cases computed the Euclidean distance between the query
and points in the database. The search times were highlighted in Table D.1 and
Figure D.5.

D.2.3 Summary

Linear search always returns the pose with the minimum residual error. The KD-
tree trades-off minor pose residuals for shorter search times. While considering
which nodes to enter or leave, the KD tree could change its search strategy to
compare the boundaries of the tree instead of the average. This trade-off may
provide better solutions for uniformly distributed data. However, there would be
no guarantee that poses searched near the boundaries would provide a solution
closely matching the query. In most cases, comparing the query pose against the
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Figure D.5: The search time for each respective method.

average pose of the nodes in their subtree increases the likelihood of finding a well-
aligned pose. In most cases, a sparse set of poses will be used for reconstruction,
as seen in the data collection sections in Chapters 4 and 5. The density in
the number of poses would be higher near the mean pose, given that they were
collected in a sequence. The KD-tree was the most appropriate method for run-
time within these tests. NumPy uses densely packed arrays of the same type and
often carries out operations in parallel. Numpy operations and methods on their
arrays typically outperform Python lists in terms of run-time. The tree searches
tested in this instance contained nodes, and within those nodes, Python lists. The
smart tree was faster despite not using parallel programming or densely packed
memory optimizations. This was shown based on the average search time and
standard deviation search time columns in Table D.1 respectively.
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D.3 Asset Loading

All items1 included in a graphics pipeline must be read from disk in some fashion,
processed by the CPU, and passed to the graphics card for rendering. Special-
ized data structures, storage types, and specialized algorithms were employed to
do this efficiently. There were three asset types loaded for this driving simula-
tion. These included the 3D model(s)/mesh, images used for projective texture
mapping, and the camera pose and model metadata. The rationale for using the
assets will be described. The process of separating the sections of the road into
fragments and labelling them to later bring them back together will be described.
The storage of these assets will be described, and how they are brought from disk
to computer memory will be detailed.

D.3.1 Partitioning the Road

It is possible to read the 3D model from disk in one chunk, but this is not scal-
able. If 3D reconstructions were developed that spanned a large enough space,
the 3D model would not fit in RAM and GPU memory. It was proposed that
the 3D model be read in smaller fragments. Within the 3D model, there was
a set of poses, as described in the previous chapters. Each pose corresponds to
a translation and rotation of the captured image. A 2D map was constructed
based on each pose’s vertical and horizontal coordinates as observed from a top-
down view, see Figure D.6. These poses were estimated by creating a sparse road
reconstruction using ORB-SLAM2 [116]. This provided an overview of the struc-
ture of the road before the full-scale dense 3D reconstructions. The fragments
of the reconstruction were based on the segmentation of this 2D map, forming a
topological map. Each fragment corresponded to a different segment of the road.
In Figure D.6, each segment was labelled with a number, and each neighbouring
road segment was given a different colour to highlight each road’s beginning and
endpoints. Each section was labelled manually based on correspondence to a sep-
arate junction or a straight road. During development, it was noted that if the
reconstruction ended at a turn or junction, the final mesh often contained many

13D models, textures, shaders, and any file descriptors influencing rendering or system logic
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Figure D.6: KITTI routes segmented to create a topological map (sequence 0).

outliers that were geometrically inconsistent with the ground truth of the scene.
The fragments were separated in this way for this reason. 3D reconstructions
of each road were made using COLMAP, and their corresponding textures were
stored within the same file hierarchy as the 3D model/mesh.

The 3D reconstruction process for these roads was carried out using COLMAP,
see Chapter 4. However, some modifications were made to this process to ensure
the models had consistent attributes. These attributes included consistent scale,
continuity of image poses, and consistent coordinates and orientation of shared
3D points for each fragment. The image poses from ORBSLAM2 were used as
priors for the triangulation step in COLMAP to provide consistency between the
3D fragments. Given these seeded priors, it was hypothesised that COLMAP
would likely fall into the same local minima as ORBSLAM2 while carrying out
triangulation and bundle adjustment. The primary appeal of this approach was
that these priors would likely result in uniform scale across the final 3D meshes,
similar to stereo cameras with a known baseline. The second benefit of using these
priors was that each of the image poses and 3D points for each fragment would
be contained within the same coordinate system. This spared further processing
to compute the transformations required for moving from one fragment coordi-
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nate system to the next while rendering these models. Notably, the incorporation
of seeded priors for the pose of each image from ORBSLAM2 resulted in fewer
iterations of bundle adjustment during fusion and more detailed meshes in the
final 3D reconstruction during multiple view stereopsis. ORBSLAM2 was specif-
ically built for solving the localization and sparse mapping problems, whereas
COLMAP focussed on providing an entire structure from motion and multiple
view stereopsis pipeline [139]. ORBSLAM2 was also initially benchmarked on the
KITTI dataset. ORBSLAM2 performance on this data and other roads would
likely perform better than in other environments.

The poses/odometry from ORBSLAM2 did not port directly into the COLMAP
pipeline. There were multiple items to address before this could be fully imple-
mented. ORBSLAM2 provided odometry following the completion of a sequence
in a keyframes file. A subset of poses was localized from the overall set of im-
ages. These were referred to as keyframes. This localization occurred when
enough new information entered the view of the reconstruction system based on
the images provided and the features they contained. Two possible solutions for
this were 1) to edit the ORBSLAM2 codebase to localize all images regardless
of the information criteria or 2) to interpolate between the keyframes to find
the approximate position and orientation of all the images between neighbouring
keyframes. The latter option was used. The format of the position and orien-
tation of each keyframe from ORBSLAM2 was [tx, ty, tz, qx, qy, qz, qw]ORB, where
t was the position and q was the quaternion of the pose. These were provided
in world coordinates. However, COLMAP expected these poses in the format of
[tx, ty, tz, qw, qx, qy, qz]COLMAP , and these poses were given in camera view coordi-
nates rather than in world coordinates. Since these two mapping systems operated
using different coordinate systems, it was necessary to create a conversion between
them, see Equation D.2. RC and RO were the COLMAP and ORBSLAM2 ro-
tation matrices, respectively. They were converted from quaternions to rotation
matrices prior to this. The translation of each pose was represented by tC , and
tO for COLMAP and ORBSLAM poses, respectively. This equation highlighted
how ORBSLAM2 pose coordinates could be directly converted to COLMAP pose
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coordinates. [
RC tC

0 1

]
=

[
Rᵀ

O −Rᵀ
OtO

0 1

]
(D.2)

The pose data was labelled and saved to a text file labelled, “images.txt”,
and a database on a table labelled “images” that would be used for reference by
COLMAP throughout the SfM and MVS processes. Camera intrinsic parameters
were saved to a file labelled as “cameras.txt” and committed to the database under
the table labelled cameras. A blank file labelled “points3D.txt” and a table la-
belled points3D were also created. Given the new set of poses from ORBSLAM2,
COLMAP was then used to extract image features (SIFT), match those features,
triangulate the image features, and use bundle adjustment to optimize the poses
of each image relative to the 3D features. COLMAP used the ORBSLAM poses
as priors before starting the triangulation step. The ORBSLAM poses contained
residual errors between the ground truth poses of each image relative to each
other because of the previous interpolation step. Further iterations of bundle
adjustment and triangulation could optimize the set of poses and final 3D model.
The images were undistorted and then mapped into depth, and normal maps for
each image using the patch match algorithm [140]. These depth and normal maps
were fused to produce a single mesh (PLY) Polygonal/Stanford file format [10]
using Poisson mesh reconstruction.

D.3.2 File Structure

The workspace used for the driving simulation is outlined in Figure D.7. Within
this hierarchy, the top folders contained Models and Shaders. The Models folder
contained all data relating to assets used during the simulation, including 3D
models/meshes, textures for the 3D models, and depth maps. These depth maps
were created based on the final 3D mesh instead of the depth maps estimated
from the patch match algorithm. Pose data was used for the projection of each
image. Camera parameters were used to describe the intrinsic parameters of
the camera used to capture the images and, consequently, its projector. The
shaders folder contained the GLSL code that would be compiled and run on the
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graphics card. These shaders described how 3D points should be interpreted
and rendered in Chapters 4 and 5. Within the Models folder, there were several
sequences, each corresponding to a different KITTI video sequence. Within those
folders, the sequences were broken into several parts/fragments. The numbering
of these fragments corresponded to the numbering used for either the graph or
queue used during runtime while loading each fragment. The fragment folder
was a PLY file labelled "meshed-poisson.ply". This was the 3D model that was
loaded during runtime. Shader programs read each 3D point in the mesh during
runtime. There were two folders within this directory, "images" and "sparse".
"images" was used to store files that would be used for texturing. The "textures"
folder contained images from the reconstruction, some of which had undergone
inpainting (depending on the presence of foreground vehicles that did not present
in the final 3D model/mesh). The "depthMaps" folder contained depth map
images computed from the depths observed from each camera pose relating to each
image in the "textures" folder. These were used for computing shadow projections
for each image in the "textures" folder. Within the "sparse" folder, there were two
files: "images.txt" and "cameras.txt". These were the duplicate files used during
the 3D reconstruction for COLMAP. "images.txt" listed each pose for each image
found in the "textures" folder. This was read during runtime and was used to
orient the projector during projective texture mapping. "cameras.txt" contained
the camera intrinsic parameters. These were read once at the simulation’s start
and applied to all matrices related to the projectors used for projective texture
mapping.

D.3.3 Reading from Disk

Each fragment file was read into CPU memory during the simulation and trans-
ferred to GPU buffers. The selection for each fragment to load depended on
the rendering camera’s location during the simulation. Euclidean distance was
used to determine which of the fifteen fragments was closest to the rendering
camera. When a fragment was read from the disk, its neighbours were also read
into memory. The load times for these models and their corresponding textures
could take longer than the time it took for the driver to complete a section of the
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Figure D.7: File structure for simulator workspace.
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road. Knowing ahead of time which models to load required a topological map
to inform the model loader which roads were connected. The topological map
had two possible representations: a queue or a graph. The queue introduced the
constraint that the 3D map would be read in a specific order. Most likely related
to the original trajectory taken during data capture. A graph allowed the user to
take alternative routes while in the simulation. Roads were loaded based on their
adjacency and connectedness conveyed in the topological map data structures.

For each 3D model, the set of corresponding textures was loaded. It was
assumed there would be a single disk that contained all assets (3D models and
textures), with the file structure in Figure D.7. The images were read from the
disk after the model was parsed, and images were stored in chronological order.
A separate folder was used for each texture type, including a folder for the colour
images and their corresponding depth maps. Before the simulation, inpainting
was completed as a batch, removing the need to do inpainting/background sub-
traction with multiple images in real-time. In memory, the depth map and colour
images were stored in a 2D array of textures that could be passed as uniforms to
OpenGL (the GPU).

A maximum of five models were in memory at any one time. Fifteen models
were created following the creation of the 3D model of a road from sequence 0
from the KITTI dataset. Each disk read required a minimum of three roads (3
meshes): a straight road with two neighbouring roads, one ahead and another
behind, giving the option to reverse. The maximum number of disk reads required
five roads: a junction with a road ahead, behind, to the left, and the right.
Examining the sections of the road in Figure D.6 that each section of the road
has between 2 and 4 neighbours. Reading neighbouring models and the model
the rendering camera currently occupied ensured the next required model for
rendering was available. When the rendering camera transitioned from one road
to a neighbouring road, the other roads were released from memory, and the
neighbours of the following road were read from the disk. The last section of
the road and the next road would not have to be reread. As a result, after
initialization, the maximum number of roads that would have to be read at any
one time would be three. This is because the road the vehicle is coming from and
the road it is going to are already in memory.
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Node N1 P1 N2 P2 N3 P3 N4 P4
1 2 101 15 3011 - - - -
2 1 90 3 200 4 505 5 1011
3 2 190 12 300 11 400 - -

Table D.2: Example format of Graph.txt. The N and P followed by a number in
each column represents neighbour and pose respectively.

The reading order of the 3D models was determined by parsing a "Graph.txt"
file. See Table D.2 for an example of the structure of this file. Each row of this file
corresponds to the node’s name in the graph (a 3D model from the sequence). The
first column was the name of this 3D model. The following columns corresponded
to the names of neighbouring nodes and the label of the pose that should be
queried for checking the Euclidean distance between the rendering camera and
the next model to render. The node’s name and its respective query pose were in
ordered pairs. Each pose for each neighbouring node acted as a dynamic weight
for the edges between nodes. The distance between the rendering camera and
each neighbouring node was compared, and the rendering node was swapped for
a neighbour when a threshold distance was met. The neighbours of the neighbour
would be read into memory while the neighbours of the previous node would be
de-referenced and deleted unless they were the current node or the last current
node.

Reading the models from disk was completed with a separate thread from the
main rendering loop. A background thread read these 3D models and textures
from the disk while the rendered scene was occupied. Transferring the model
data to the GPU was completed as part of the main rendering loop; otherwise,
multiple OpenGL contexts would have to be set for each thread [187]. The vertex
buffer and index buffer transfer to the GPU would have to be processed in small
segments to allow the rendering loop to continue to steam feedback to the driver.
The simulator’s current implementation does not allow for this. As a result, the
final demonstration reads the first 3D mesh and its neighbours exclusively. After
reaching the end of the neighbouring mesh, the simulation resets. This creates the
effect of continuous forward motion using a limited data set. It also demonstrated
the dynamic model switching required if more extensive models were used.
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Figure D.8: Model reading and rendering class diagram.

The above observations were abstracted into classes; see Figure D.8. The
main rendering loop was tested in a class named "TestingMultiModelLoad". All
other classes in this diagram had a dependency on this class. This class created
instances of the Shader to process the graphics instructions for rendering and
projection. See Chapter 4 for details on these shaders. A camera object was
created to enable updates to the perspective of the rendering camera as the 3D
models were viewed. A "ModelGraph" was initialized. The "ModelGraph" read
"Graph.txt" and a "ModelWorker" was initialized for each node it read from this
file. The "ModelWorker" created a pointer to a mesh that reads from the disk
when instructed by the "ModelGraph". Each "ModelWorker" retained a record of
their neighbours using a vector of pointers to other instances of "ModelWorker".
Within the "TestingModelLoad" main thread, the "ModelGraph" was queried
every render cycle to check if the currently rendered model should be swapped for
a neighbour. If this was true, they were swapped, and the neighbour was rendered
immediately while a background thread fetched their neighbours’ models from the
disk.

Summary: the processing involved in reading 3D models and textures/images
from disk memory was detailed. The solution to this is scalable where the limiting
factor is dependent on the number of models saved to disk. The use of graphs
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and queues has helped to inform which models are connected and in what order
they should be read from the disk. Multi-threading and carefully chosen data
structures have been used to minimize observable delays during run-time.

D.4 Vehicle Motion

The driving simulator’s rendering accepts poses for the rendering camera and uses
projective texture mapping over a reconstructed 3D model to provide a photore-
alistic stimulus for the driver. Allowing a driver to control the vehicle requires an
implementation of the camera movement about the model. The vehicle’s motion
is simulated using an arc-ball model where the camera can translate and rotate
about its axis in any direction. There is total manoeuvrability possible in the envi-
ronment. Through vehicle controls, however, the motion of the rendering camera
is limited to the forward and backward vectors and steering about the yaw axis.
The control inputs of the vehicle were handled by a separate thread that polls the
actions of steering wheel and pedal controllers. The arc-ball camera provides a
practical driving demonstration, forward motion, translation, and steering. The
Ackermann model would provide an extension by capturing some pose constraints
associated with front wheel steering. This is discussed in Chapter 6.

D.4.1 Camera Movement: Arc Ball

Camera movement can be calculated using a series of matrix multiplications and
dot products. There are two major components to camera motion, these include
orientation and translation. Each of these has been discussed, while setting a
fixed orientation for a camera or projector. This section will discuss the imple-
mentation for providing an update to the current pose of the rendering camera,
when provided with a state update to the current transformation.

The movement of the rendering camera in 3D space was controlled using a
view matrix, P ∈ R4×4. This view matrix contained the orientation, R ∈ R3×3,
and location, t ∈ R3, of the camera. Similar to the definition of a camera pose in
previous sections. When updated using user input, the update to the orientation
was transformed via the matrix Ṙ ∈ R3×3 or a quaternion q̇ composed of a vector
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[Qx, Qy, Qz] ∈ C3 and a scalar Qw ∈ R. An additional rotation was calculated
by getting the inner product of the current transform and the additional rotation
matrix. The change in the translation was computed with an addition of the
final column of the current pose, t ∈ R3, and the translational update, ṫ ∈ R3.
While both the rotation and the translation were required, these were calculated
by getting the inner product of the current pose P and the motion update Ṗ.

Ṗ =

[
Ṙ ṫ

0 1

]
(D.3)

P̂ = ṖP (D.4)

D.4.2 Vehicle Controls

Equations D.3 and D.4 aid in the description of discrete updates to the pose.
However, the driver would expect that the state update vector would update in
response to user controls. As opposed to the controls directly interfacing with
the camera pose. For example, while a driver presses on the accelerator with zero
steering angle it is expected that the forward motion of the vehicle increases in
speed. The accelerator should not control the absolute position of the vehicle. For
this reason, the forward motion speed was updated in response to the angle of the
accelerator pedal. Steering wheel, accelerator and brake were polled from a thread
outside of the game loop. The angular difference of the accelerator pedal from its
neutral position was reflected as ∆ṫ, in Equation D.5. The rotational difference of
the steering wheel from its neutral position directly transformed via the rotation
update of the pose matrix on the yaw axis, Ṙ. This rotational update was done
using an axis angle representation as this resulted in more readable code (others
could include quaternion, or Euler angle). Equation D.5 was used in place of
Equation D.3 while using these controls. The vehicle position was updated after
every render cycle. The amount of time was recorded since the last update, this
was called ∆dt. The forward and angular motion was scaled according to ∆dt.
This ensured the vehicle would progress at the same speed with respect to time,
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regardless of the frame rate for that render cycle.

Ṗ =

[
Ṙ ṫ + ∆ṫ

0 1

]
(D.5)

The rendering camera’s pose update was computed with a single matrix prod-
uct. The control inputs from the user come from a steering wheel to instruct the
camera’s rotation. The accelerator instructed the forward translational motion
to the rendering camera. The viewing camera was facing forward on the neg-
ative z-axis; therefore, forward acceleration transformed the camera forward in
this axis direction. This setup implemented an arc-ball camera where the centre
of rotation was set about the camera centre. This was an essential first step in
introducing vehicle motion in the simulator. It provides a template for future
development into higher fidelity vehicle motion that could incorporate a variety
of kinematic models (Ackermann, bicycle, swiss wheels, etc.) [149].

D.5 The System in Review

The following features have been included in the final driving simulator:

1. Vehicle tracking algorithms have been developed to enable the removal of
vehicles from video and inpainting the region they previously occupied, as
described in Chapter 5.

2. Rendering: Complete rendering procedures required for the driving simu-
lation, including processing vertex and index buffers and using projective
texture mapping with textures, have been developed.

3. View selection: Compared the drivers’ render camera pose with the set of
projector poses and selected the set of projectors that synthesize an optimal
projection.

4. Planning and Loading: Compare the drivers’ position against the 3D model
that should be used for the current time. If the model is close enough
to a new model, then a new 3D model is read and used to render. See
Figure D.9 for an example of multiple models being rendered depending on
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the rendering camera position. Vertex colours were used in this example
to highlight that this is using the 3D reconstruction and not video frames.
Note the driver sees mainly the projected view and the vertex colours shown
in this figure are used off axis corrections to perspective texture mapping,

5. User Input: Poll the drivers’ user input and introduce observable motion
(steering, acceleration, and braking) of the rendering camera with respect
to the 3D model.

Multi-threading would be necessary to deliver these processes concurrently at
a high framerate. Currently, the driving simulator can select camera poses based
on Euclidean distance for projective texture mapping, rendering the projections
onto the 3D models, and reading the 3D models from the disk. Each is on
separate threads. However, transferring the 3D model’s vertex data into GPU
memory must occur on the main thread, and this can lead to significant drops
in the framerate. As a result, the current simulator operates over four meshes
read into RAM and GPU memory at initialization. When the driver reaches the
end of this mesh, they are transported to the initialization point again. The
framerate is maintained at 60fps, and the driver is made aware that they have
completed the circuit. User input is taken from a separate thread and updates the
rendering camera at each render cycle using the motion models described above.
This chapter demonstrates the feasibility of using real image data to reconstruct
a 3D model of a road for driving simulator experiments.
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Figure D.9: Renderings of the 3D reconstructed models being loaded into the
graphics pipeline based on the driving simulator camera position. This is shown
for two frames in Model 1 (T0 and T1), and two frames in Model 2 (T2 and T3).
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