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Abstract. We present an improved adaptive approach for studying sys-
tems of ODEs affected by parameter variability and state space uncer-
tainty. Our approach is based on a reformulation of the ODE problem as
a transport problem of a probability density describing the evolution of
the ensemble of systems in time. The resulting multidimensional prob-
lem is solved by representing the probability density w.r.t. an adaptively
chosen Galerkin ansatz space of Gaussian distributions. Due to our im-
provements in adaptivity control, we substantially improved the overall
performance of the original algorithm and moreover inherited the theo-
retical property that the number of Gaussian distribution stays constant
for linear ODEs to the numerical scheme. We illustrate the approach
in application to dynamical systems describing the pharmacokinetics of
drugs and xenobiotics, where variability in physiological parameters is
important to be considered.

Introduction

The medical benefits of a drug depend not only on its biological effect at the tar-
get protein, but also on its ”life cycle” within the organism - from its absorption
into the blood, distribution to tissue and its eventual breakdown or excretion by
the liver and kidneys. Pharmacokinetics is the study of the drug-organism inter-
action, in particular the investigation of absorption, distribution, metabolism,
and excretion (ADME) processes [9]. Studying ADME profiles is widely used
in drug discovery to understand the properties necessary to convert leads into
good medicines [15, 3]. Physiologically based pharmacokinetic (PBPK) models
aim at describing pharmacokinetic processes on a mechanistic basis. They model
the body as a network of organ or tissue compartments that are interconnected
by blood flow (see Fig. 1). From a mathematical point of view, a PBPK model
comprises a system of coupled ordinary differential equations (ODEs). These
equations involve physiological and physicochemical parameters, each of which
is typically affected with uncertainty and some degree of variability due to inter-
and intra-individual variations.

There are available theoretical and numerical tools for investigating ODEs
with initial values and/or parameter uncertainty distributions. One class of ap-
proaches is represented by Monte Carlo methods based on a sampling of the
initial distribution and subsequent solution of the underlying ODE for each of



Fig. 1. A typical PBPK model. We distinguish between physiological and physicochem-
ical parameters. Physiological parameters comprise organ volumes and blood flows;
physicochemical parameters such as partition coefficients or solubility describe proper-
ties of the compound.

the sampling points (e.g. [14]). While this is the method of choice for prob-
lems with many parameters and degrees of freedom in order to avoid the ”curse
of dimensionality”, the questions of numerical accuracy, reliability, and adap-
tivity still remain partially unclear. A second class of methods are sparse grid
techniques [16, 4] or particle methods [13, 11]. In contrast to frequently used
conventional grid methods, they both scale reasonably well for medium dimen-
sional problems. Sparse grids work best for smooth anisotropic densities with
the grid being aligned to the propagated objects. Adaptivity is used to generate
an optimal sparse grid in order to minimize the approximation error beneath
some predefined threshold. However, for isotropic problems, e.g., for classical
Liouville or Fokker–Planck equations with Gaussian initial density, the adaptive
sparse grid methods end up by full grids, i.e., they are practically not applicable
for high–dimensional isotropic problems. A third class of approaches is known
as the stochastic finite elements (SFEMs) approach [7, 8, 12]. This method rep-
resents the overall statistical response of the system by a linear combination of
orthogonal basis functions. However, in the available form, this approach cannot
be applied to higher dimensional problems with different time and length scales
as it is typical for reaction kinetics and pharmacokinetic models.

In this article, we present a theoretical framework and an improved adap-

tive numerical approach for systems of ODEs affected by parameter variabil-
ity and uncertainty distributions. The problem is reformulated in terms of the
well-established Frobenius-Perron theory, involving the semigroup of Frobenius-
Perron operators. In order to approximate the semi-group numerically, we adopt
and substantially extend the adaptive Gaussian-based particle method TRAIL
[6] that has originally been developed in the context of molecular dynamics [6]
and recently be transferred to reaction systems [5]. The approach is based on
two ingredients, (i) a time-dependent Galerkin ansatz space of Gaussian basis



functions , and (ii) a propagation of the density w.r.t. the Galerkin ansatz space.
First applications to reaction kinetics demonstrated the potential of the method,
however the adaptivity control remained unsatisfactory from both the theoreti-
cal as well as the efficiency point of view. In this article we propose an improved
adaptivity control and demonstrate its power in application to typical systems
in pharmacokinetics, where variability and uncertainty play an important role.

Theoretical background

Let us assume that the dynamics is defined in terms of some ODE

ẋ = f(x|p) (1)

with some continuously differentiable right hand side f(·|p) : X → R
d param-

eterized by p ∈ Y ⊂ R
m, the vector of fixed parameters. In the setting of

pharmacokinetics, X ⊂ R
d is the space of concentrations in d compartments,

and p represents physiological and physicochemical parameters. Given the ini-
tial state x(0) = x0, the solution of the initial value problem (1), x(t|p) : R → X

describes the concentration-time behavior in d different tissues and can formally
be written in terms of the flow Φt(·|p)

x(t|p) = Φt(x0|p) (2)

that is known to be invertible. Now assume that the parameters are specified
in terms of some statistical distribution in contrast to a fixed numerical value.
Rather than solving (1) for some initial value x0 and a single set of parameters, we
are interested in capturing the effects of distributed parameters on the evolution
of the dynamics, i.e, the initial value. Then, eq. (1) becomes an ODE with random
parameters and possibly random initial conditions that can be interpreted as
the evolution of an entire population. We can easily extend equation (1) to
account for influences of distributed parameters by extending the state space to
Z := X × Y and setting ṗ to zero

(

ẋ

ṗ

)

= F (x, p) =

(

f(x|p)

0

)

, (3)

since parameters are assumed to be constant in time.
Denote by L2(dxdp) the space of square integrable functions. The semigroup

of Frobenius-Perron operators Pt : L2(dxdp) → L2(dxdp) associated with (3)
describes the evolution of a given density u0 ∈ L2(dxdp) in time according to
Ptu0 = ut. Since the flow Φt is invertible and differentiable, Pt is explicitly
defined by

Ptu0(x, p) = u0

(

Φ−t(x, p)
)

·

∣

∣

∣

∣

dΦ−t(x, p)

dxdp

∣

∣

∣

∣

(4)

where the last term denotes the determinant of the Jacobian of Φ−t [10]. In broad
terms, definition (4) can be interpreted as follows: the value of the density ut at



(x, p) is given by the value of u0 at the pre-image of (x, p) corrected according to
the dynamics (expanding or contracting directions). The infinitesimal generator
A of the semigroup of Frobenius-Perron operators is defined by

Au = −div(F · u) = −
n

∑

i=1

∂

∂zi

(F · u) , (5)

where z ∈ Z and n = d + m is the dimension of Z.

Adaptive density propagation

For the density propagation of Liouville type problems, Horenko and Weiser de-
veloped a multidimensional, adaptive particle method to describe the propaga-
tion of distributions in non-linear dynamical systems, called TRAIL (trapezoidal
rule for adaptive integration of Liouville dynamics) [6]. The adaptive discretiza-
tion scheme is based on a semi-discretization in time and subsequent approxi-
mation of the stationary spatial problem. The key idea is to approximate the
distribution u w.r.t. a time-adapted Galerkin basis of Gaussian ansatz functions.

Semi-discretization in time. Consider a probability distribution u0 characteriz-
ing variability and uncertainty of parameters and state variables. Then, at any
later time t > 0 the distribution ut is given by ut = Ptu0 involving the semi-group
of Frobenius-Perron operators. The basic idea of temporal semi-discretization
is to approximate {Pt}t≥0 by a simpler and numerically treatable semi-group
{Rt}t≥0. Loosely speaking, since Pt = exp(tA), we define Rt = r(tA) based
on some possible rational approximation r(·) of the exponential function exp(·).
Relevant in our context are Rt = (Id − tA/2)−1(Id + tA/2) denoting the trape-
zoidal rule and Rt = Id + tA denoting the explicit Euler scheme. Finally, the
numerical scheme exploits the semi-group property to approximate Pt for some
large t > 0 according to Pt = Pτn

◦ · · · ◦Pτn
≈ Rτn

◦ · · · ◦Rτn
for some adaptively

chosen sequence of time steps t = τn + · · · + τ1.

Spatial discretization of stationary problem. At the very beginning, the initial
distribution u0 is approximated by a finite sum of Gaussian distributions, i.e.,

u0 =

Nt0
∑

j=1

ωj(t0)Bj(· ; t0) + δt0 (6)

such that ‖δt0‖ < TOL, and for j = 1, . . . , Nt and t ≥ 0

Bj(z; t) := exp
{

(z − µj(t))
T Gj(t)(z − µj(t)) + aj(t).

}

(7)

The parameters µj(t), Gj(t), and aj(t) with j = 1, . . . , Nt denote the correspond-
ing means, inverses of the covariance matrices and normalization constants3,

3 The constants are chosen in such a way that Bj(·; t) is normalized to one, resulting

in aj(t) = ln(det(2πΣj(t))
−

1

2 ).



respectively. For details, see [6, 5]. The initial approximation also defines the
Galerkin basis {Bj(·; t0) : j = 1, . . . , Nt0} at time t0.

In each step, the scheme comprises two steps: (i) adaptation of the Galerkin
basis w.r.t. the underlying dynamics; (ii) optimal representation of the time-
propagated density w.r.t. the adapted Galerkin basis. The propagation of the
Galerkin basis is performed w.r.t. to the locally (around each mean µj) linearized
dynamics guaranteeing that the Gaussian distributions remain Gaussian in time.
The parameters evolve according to the ODEs:

ȧj = −trace(DF (µj)) (8)

µ̇j = F (µj) (9)

Ġj = −DF (µj)
T Gj − Gj DF (µj), (10)

where DF (z) denotes the Jacobian of F at z ∈ Z. The representation of the time-
propagated density w.r.t. to the new Galerkin basis is realized via the trapezoidal
rule. The new coefficients {ωj(t + τ) : j = 1, . . . , Nt} are optimized according to

‖δt+τ‖ =
∥

∥

∥

(

1 −
τ

2
A

)

u(·, t + τ) −
(

1 +
τ

2
A

)

u(·, t)
∥

∥

∥
= min (11)

with

u(·, t + τ) =

Nt
∑

j=1

ωj(t + τ)Bj(· ; t + τ) .

This can efficiently be performed by approximating the involved norm by a
Monte-Carlo sampling, reformulating eq. (11) as a least squares problem to be
solved by means of a qr-algorithm [6], and noting that the action of the infinites-
imal generator A on a Gaussian basis function can be computed exactly at any
given state z ∈ Z.

Adaptivity in time and space. The crucial ingredient of the TRAIL scheme is
the adaptive choice of the next time step and the adaptation of the Galerkin
basis (increasing or decreasing the number of basis functions) to keep the local
error below a user-defined local tolerance TOL. In the original TRAIL scheme,
temporal adaptivity is realized by a step size control based on a comparison of
the trapezoidal rule and the Euler scheme, while spatial adaptivity is realized by
exploiting properties of the qr-algorithm in the optimization step combined with
some ”accuracy matching” (splitting of the local tolerance into some temporal
and spatial local tolerance), for details, see [6].

Improved adaptivity

It is well-known that for linear ODEs an initially Gaussian distribution stays
Gaussian in time. In terms of the TRAIL scheme this means that the num-
ber of Gaussian basis functions should stay constant for linear ODEs. However,



application to simple linear ODEs revealed that the number of Gaussians ba-
sis functions does in general not stay constant unless an a-priori unknown small
maximal time step is introduced. Since the numerical effort of the TRAIL scheme
scales cubically with the number of Gaussian basis functions, this result is unsat-
isfactory from both a numerical (adaptivity and efficiency) point of view as well
as from a theoretical point of view. Rather one would like to design an adaptivity
control that allows for efficiency and inherits the theoretical properties for linear
ODEs to the numerical scheme. A thorough analysis of the performance for linear
problems revealed that new ansatz functions are added due to a too coarse time
discretization resulting in an overestimation of the spatial error. At the same
time, conservation of (probability) mass is poor. On the other hand, bounding
the time-step from above by some maximal time step (a-priori unknown and in
general depending on the ODE and the initial distribution) enforced a constant
number of ansatz functions, but slowed down the integration drastically.

The improved adaptivity control is based on the key idea to control the
time-step not only based on a comparison of two different numerical schemes
(in the case of TRAIL the trapezoidal rule and the Euler scheme), but also
based on the spatial discretization error (estimator): For linear ODEs the time-
step is rejected and subsequently decreased whenever the spatial error estimator
exceeds the spatial tolerance. In addition, we replace the Euler method by a
second order Runge-Kutta methods with Rt = Id + tA + t2A2/2 for a more
efficient performance. For non-linear ODEs, the same is done based on a (local)
linearization of the ODE. Hence in broad terms, the time step is controlled in
such a way that a change in the number of basis functions is only due to non-
linear effects of the underlying dynamics. In the next section we demonstrate
the improved adaptivity control in application to two typical pharamcokinetics
models.

Numerical examples

This section illustrates the numerical scheme in application to two model prob-
lems in pharmacokinetics.

The first model is a very simple empirical two-compartment model that is
frequently used in population pharmacokinetics to analyze large data sets re-
sulting from clinical studies. It comprises two compartments, a central and a
peripheral one. Typically, the central compartment is thought of as blood com-
partment, while the peripheral compartment is empirically chosen. In contrast
to physiologically based models this type of model is empirical. A compound is
transferred from the central to the peripheral compartment with some transfer
rate kt, where it is eliminated with some elimination rate ke. The resulting ODEs
are:

(

Ċc

Ċp

)

=

(

−kt 0
kt −ke

)(

Cc

Cp

)

, (12)

where Cc and Cp denote the concentrations of the compound in the central and
peripheral compartment. The evolution of the system with for initially distri-



bution concentrations is depicted in Fig. 2. In the left column, fixed parameter
values are chosen: kt = 0.5 and ke = 0.6, while in the right column parameter
variability according to kt ∼ N (0.5, 0.01) and ke ∼ N (0.6, 0.01) is taken into
account.

Though variances of kt and ke are comparatively small, we observe consider-
able effects on the joint distribution of central and peripheral concentrations. By
extending the state space, the ODE has become non-linear. Still, the number of
ansatz functions remains constant for the simulation time performed. This might
indicate that non-linear effects have not been dominated. Applying the original
TRAIL scheme without the presented improvements results in a large number of
Gaussian ansatz functions (> 100 depending on the user prescribed tolerance)
for both the linear model (only concentrations) as well as the non-linear model
(concentration and parameters).
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Fig. 2. Simulations of system (12) with initial concentrations Cc(0) ∼ N (15, 1) and
Ce(0) ∼ N (2, 0.1). The left column shows the evolution of the initial density without

parameter variation, whereas in the right column the state space has been extended
by kt and ke. In both cases joint distributions of central and peripheral concentrations
are shown for time points t = 0, 0.4, 1.2 h (bottom to top).

Next, we simulate and analyze a physiologically-based pharmacokinetic model
that has been developed in the context of toxicological risk assessment [?,1, 2].
The PBPK model comprises the organs/tissues liver, adipose, muscle, and vessel
rich tissue that are interconnected by the blood flow. Based on the law of mass
action a system of coupled ODEs describing the time-evolution of the concentra-
tions in the above organs and tissues is established. For org ∈ {liver, adipose, muscle, and vessel rich tissue}
we get

Vorg

dCorg

dt
= Qorg · (Cart −

Corg

Porg

), (13)

where Vorg, Qorg and Porg denote the volume, blood flow and the so-called tissue
partition coefficient, respectively. In the liver compartment, additionally a non-
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Fig. 3. Simulations of the ten dimensional extended styrene system. Two dimensional
projections of the high dimensional joint distribution are shown for concentrations in
liver & vessel rich tissue (left), venous blood & liver (center), and Vmax with liver
concentration (right) are shown.

linear Michaelis-Menten term accounting for saturable metabolism is present.
The equations for venous and arterial blood are given by

Vven

dCven

dt
=

∑

i∈ Tissues

Qi ·
Ci

Pi

− Cven · Qtot

Vart

dCart

dt
= Qtot · (Cven − Cart) + Qalv · (Cinh −

Cart

Pair

)) ,

where Cinh denotes styrene concentration in inhaled air, Qalv alveolar flow, and
Qtot the total blood flow.

In [2], it was found that the system is sensitive to parameter uncertainty
w.r.t. Vmax and Km in liver tissue, the blood:air partition coefficient Pair, and
the partition coefficient in adipose tissue Pfat. Hence, in addition to the ODE
for the concentrations we take uncertainty of these parameters into account. The
simulation results for the ten dimensional PBPK system modelling the inhalation
of styrene in human body are shown in Fig. 3.

The initially uncorrelated distributions develop correlations in time, both
between different tissues (Fig. 3, left and center) and between liver concentration
and Vmax (Fig. 3, right). As we would expect, liver concentration is negatively
correlated to Vmax. Also we would expect a positive correlation for liver and
venous concentrations, since both compartments are directly coupled by the
liver blood flow. The positive correlation of vessel rich and liver tissue on the
other hand is not obvious on first sight. Knowledge about the effect of variability
and uncertainty is important information for risk assessment studies, as in [1].

Conclusions

We presented an improved approach for adaptive density propagation in the
context of ODEs affected by parameter variability and state space uncertainty.
Our approach is based on a representation of the corresponding probability den-
sity w.r.t. an adaptively chosen Galerkin ansatz space of Gaussian distributions.
Due to our improvements in adaptivity control, the theoretical property that
the number of Gaussian distribution stays constant for linear ODEs is now in-
herited to the numerical scheme. Since the numerical efforts scale with the third



power of the number of Gaussian basis functions, we managed to substantially
improve the overall performance. In addition the conservation of (probability)
mass improved.

Most often, Monte Carlo (MC) approaches are applied to study dynami-
cal systems with distributed parameters and states. The MC methods generate
an ensemble of sampling points that approximate the statistical distribution.
However, in contrast to molecular dynamics, where the underlying Hamiltonian
structure implies conservation of phase volume and probability density along
trajectories, this properties does rarely hold in reaction kinetics and pharma-
cokinetics. As a consequence, a single sampling point is of limited use and only
in form of expectation values relevant information can be extracted. Moreover,
the control of the approximation error still remains partially unclear. The adap-
tive approach to density propagation presented herein generates a continuous
approximation of the density in time. Since the density is approximated in terms
of Gaussian distributions, the approach is expected to be efficient whenever the
underlying dynamics results in densities that are ”sufficiently smooth”, as it
seems to be the case for pharmacokinetics problems. Due to the improved adap-
tivity control it might also become possible to selectively study the influence
of non-linear effects on the overall dynamics by monitoring the dimension of
the Galerkin basis, i.e., the number of basis functions, since only the non-linear
part of the dynamics is able to increase or decrease the number of Gaussians.
This would allow to extract a completely different and very interesting type of
information and is currently under investigation.

The results in application to pharmacokinetic models demonstrate the advan-
tages of the approach presented. As a result of the simulation studies, detailed
information on the distribution in state space and, e.g, the correlation between
different parameters is available. These are important data for toxicological risk
assessments [1], or to study the variability of a drug exposure in an entire pop-
ulation (an information becoming more and more important).
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