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ARTICLE

An Improved Method for the Estimation and Comparison of Mortality
Rates in Fish from Catch-Curve Data

Julien Mainguy*
Direction de l’Expertise sur la Faune Aquatique, Ministère des Forêts, de la Faune et des Parcs, 880 Chemin Sainte-Foy,
Québec, Québec G1S 4X4, Canada

Rafael de Andrade Moral
Department of Mathematics and Statistics, Maynooth University, Maynooth W23 F2H6, Ireland

Abstract
Catch-curve analyses are routinely used to estimate instantaneous mortality (Z) in fish, and as the age-frequency

data are often overdispersed, the application of a variance bias-correction factor has been recommended. The exten-
sions of the Poisson generalized linear model (GLMPoisson) may, however, constitute a better alternative, as they
model the variance (SE) in counts more adequately with their specific dispersion parameter for more accurate estima-
tions and statistical comparisons. To test this idea, simulated age-frequency data generated under four dispersion sce-
narios were analyzed according to six currently available methods and compared with the results of a GLMPoisson and
five of its extensions to evaluate each method-specific bias in Z � SE estimates. Empirical age-frequency data from
sampled Walleye Sander vitreus and Arctic Char Salvelinus alpinus populations in Québec, Canada, were then used
to illustrate the applicability of our GLM-based method, which relies on the behavior of Pearson residuals to assess
model adequacy and an information-theoretic approach for model selection. All analyses revealed that Z-estimates
were generally accurate among the methods considered, except under the most likely situation of quadratic overdisper-
sion met in ecological studies, for which only the negative binomial type 2 and the mean-parametrized Conway–
Maxwell–Poisson (CMP) extensions were adequate to estimate both Z and its SE. Linearly overdispersed data were
best modeled by the negative binomial type 1 and generalized Poisson (GLMGP) extensions; the GLMCMP and
GLMGP were the most appropriate to model underdispersed data, whereas the GLMPoisson adequately modeled equi-
dispersed data, similar to the Chapman and Robson (1960) method. Statistical comparisons of Z � SE for grouping
factors, such as year or site, were correctly achieved when the most adequate and statistically supported GLMPoisson
extension was applied. Altogether, the proposed GLM-based method should help to circumvent the identified issues
related to SE estimation for statistical inferences about mortality rates for fisheries management decision making.

The age-frequency data obtained from sampled fish,
also referred to as catch-curve data, are often used to esti-
mate instantaneous mortality (Z) on the logarithmic scale,
which can then be converted into total annual mortality
(A = 1 – e−Z) on the more practical response scale (Mir-
anda and Bettoli 2007). Such catch-curve analyses are gen-
erally conducted under strict assumptions that are often

only partially met (Smith et al. 2012; Ogle 2016): (1) the
population is closed to emigration and immigration, (2)
recruitment is constant or at least varies without a trend
over time, (3) Z is constant across ages and years for ages
on the descending limb of the catch curve, (4) vulnerabil-
ity follows the same conditions as for Z, and (5) the sam-
ple is not biased regarding any specific age-group. The last
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assumption implies that age estimates are accurate. Given
these assumptions associated with a steady-state popula-
tion, Z and its estimated uncertainty will almost always
be biased to some degree (Murphy 1997; Nelson 2019) but
are nonetheless useful to approximatively assess mortality
rates in the absence of more accurate estimates derived
from effort-intensive capture–mark–recapture data (Zabel
et al. 2005; Dudgeon et al. 2015). For instance, comparing
mortality rates between time periods for the same study
site implies that some of the listed assumptions would not
be met. However, the results obtained may still provide
useful biological information for the assessment of a given
population, especially when combined with other biode-
mographic parameters (e.g., Barbieri et al. 1994). There-
fore, efforts should be made to use the least biased
method for the estimation of Z and its associated error
given the known limitations of this commonly used
approach.

Among the different currently available methods for
the estimation of mortality rates are that of Heincke
(1913), the maximum likelihood approach of Chapman
and Robson (1960; hereafter, “CR method”), the linear
regression (LR) method of Ricker (1975), and its
weighted version (WLR; Maceina and Bettoli 1998).
Based on a simulation study aimed at assessing the bias
in Z-estimates, Dunn et al. (2002) found that the CR
method outperformed the LR method, which often under-
estimates Z. In a larger simulation study, Smith et al.
(2012) assessed the previously mentioned methods to eval-
uate their respective bias and made four recommenda-
tions that should be applied to catch-curve analyses: (1)
the CR method should be preferred using the “peak plus”
criterion (see Figure 1), (2) the CR variance estimator
should be corrected for overdispersion (CR with correc-
tion for bias [CRCB] method), (3) the LR method should
no longer be used, and (4) the Heincke (1913) method
generally performs poorly and should in most cases be
disregarded. Smith et al. (2012) recognized that the WLR
method often slightly outperformed the CR method, but
they also indicated that its associated weighting procedure
was purely ad hoc. More recently, Millar (2015) proposed
the use of generalized linear models (GLMs) with a Pois-
son distribution to estimate Z, as Chapman and Robson
(1960) reported that their approach was equivalent to
considering that the age frequencies were Poisson dis-
tributed, with expected values decreasing geometrically
with age. Building on the work by Smith et al. (2012)
and Millar (2015), Nelson (2019) proposed an adapted
“Poisson model” (PM) that also corresponds to a GLM
fitted with a Poisson distribution, but it is applied to an
artificially extended age structure with zero counts (see
Millar 2015) and the SE estimate is corrected for overdis-
persion afterward, similar to the CRCB method. Nelson
(2019) showed through simulations that the two CR

methods and his adapted PM were the least biased for
the estimation of Z.

Despite the variance bias-correction factor used to
account for the often-overdispersed (i.e., variance > mean)
age-frequency data, Nelson (2019) cautioned that the esti-
mated SE obtained will almost always be downwardly
biased and should thus not be used in statistical compar-
isons. Although obtaining the least biased Z-estimates is
desirable for biological inferences, modeling the associated
variance adequately is as important to draw valid infer-
ences between and among different grouping variables of
interest. The current statistical approach for the compar-
ison of Z-estimates from catch curves relies on the LR
method and the use of a GLM with a Gaussian (i.e., nor-
mal) distribution to compare the slopes (Ẑ ) of loge trans-
formed age-class counts from, for instance, two lakes
(Miranda and Bettoli 2007; Ogle 2016). This GLM
approach allows an evaluation of whether the interaction
between the variables “age” and “site” is statistically sup-
ported, which would then provide evidence of different
mortality rates. However, use of the LR method as men-
tioned above is no longer recommended (Smith et al.
2012), and more importantly, count data in ecological
studies should not be log transformed (O’Hara and Kotze
2010). Moreover, such a parametric test would require
that the residuals of the investigated model are normally
distributed and homoscedastic to produce valid statistical
inferences. Fitting an error structure that is specifically
designed for the modeling of age-frequency data is there-
fore more adequate to determine the rate at which counts
decrease with age.

The Poisson distribution has been specifically developed
for discrete variables and should thus be primarily used
for the analysis of count data (Hilbe 2014). However, to
produce reliable estimates, this distribution requires that
the variance in counts be approximately equal to the mean
(i.e., equi-dispersion), which is rarely observed in ecologi-
cal studies, whereas overdispersion is far more frequent
(Richards 2008). When counts are overdispersed, several
extensions of the Poisson distribution can be considered to
find the most adequate at modeling the extra variance
observed in the age-frequency data, such as the negative
binomial type 2 (NB2) extension that was previously sug-
gested by Millar (2015). The NB2, along with the quasi-
Poisson (QP), have been among the most commonly used
extensions to model overdispersed data in ecological stud-
ies (Bliss and Fisher 1953; Ver Hoef and Boveng 2007;
Demétrio et al. 2014), as both have a specific dispersion
parameter that models the extra variance as a function of
the mean (Hilbe 2014), which will generally allow a better
fit to the observed data instead of applying a correction
factor afterward. The Conway–Maxwell–Poisson (CMP;
Sellers and Shmueli 2010), which has been more recently
parametrized on its mean (Huang 2017), is also gaining
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attention due to its ability to model both over- and
underdispersed data (Lynch et al. 2014). The generalized
Poisson (GP; Consul 1989), which can also be used when
the assumption of equi-dispersion is not satisfied and espe-
cially with underdispersed data (Hilbe 2014), should also
be considered with the mean-parametrized CMP in such
circumstances, as they can sometimes provide better model
adequacy for ecological inferences (e.g., Brooks et al.
2019). Determining whether these extensions fitted in
GLMs may outperform the currently available methods is
one of the main motivations behind the present investiga-
tion for both the estimation and statistical comparison of
mortality rates.

In this study, six currently available methods and
GLMs fitted with either the Poisson distribution
(GLMPoisson) or five of its derived extensions (Table 1)
were first compared for the estimation of Z � SE to assess
their accuracy and precision according to the analysis of
simulated catch-curve data. Our objective was to evaluate
the relative performance of these different methods under
the rationale that accounting for the variance with a dis-
persion parameter within the modeling of count data is
expected to produce more reliable estimates, especially
when the age-frequency data are overdispersed. Four dis-
persion scenarios were investigated for the simulation
analyses: (1) equi-dispersion, (2) linear overdispersion, (3)

FIGURE 1. Age-frequency data of monitored fish populations in Québec, Canada, used for the estimation of instantaneous mortality rates (Z) from
catch-curve analyses: (A) Walleye population (Baskatong Reservoir in 2012 and 2017) and (B) anadromous Arctic Char (Tasiujaq and Salluit)
populations. The “peak” age (i.e., mode) is illustrated by the open triangle, whereas younger age-classes that are not fully recruited to the fishing gear
are represented by open circles. The “peak plus” criterion (i.e., peak + 1) was used for the catch-curve analyses; thus, only the filled circles were
considered for the estimation of Z, often referred to as the “descending limb” of the catch curve. Predicted values with their respective 95% CI
(shaded area) according to each of the top-ranking log-linear models retained (see Table 3) are shown.
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quadratic overdispersion, and (4) underdispersion, know-
ing that the third scenario represents the most likely one
encountered with ecological count data (White and Ben-
netts 1996; Alexander et al. 2000; Lindén and Mäntyniemi
2011). Fisheries data sets from (1) two Walleye Sander vit-
reus gill-net surveys that were conducted in two different
years at the same study site and (2) two anadromous Arc-
tic Char Salvelinus alpinus erythrinus populations that
were monitored in different river systems in Nunavik
(Québec, Canada) were used as examples (i.e., empirical
data) to illustrate the applicability of our GLM-based
method for the estimation and comparison of Ẑ . For the
different GLMs considered, we aimed to determine which
one provided the most statistically supported estimate of
Z � SE under the assumption that the age-frequency data
analyzed from our samples offered a good approximation
of the unknown age structure of each studied population.
Lastly, comparisons of Ẑ between years (Walleye) or
between sites (Arctic Char) were investigated by testing

whether the interaction term with age obtained statistical
support, similarly as described by Miranda and Bettoli
(2007). Altogether, this investigation may provide further
insights regarding the statistical interpretation of Z
obtained from sampled age-frequency data for fisheries
management purposes.

METHODS
Simulated age-frequency data.—A total of 100 simu-

lated age-frequency data sets were generated under each
of the four dispersion scenarios. The true β-value for the
“age” parameter (Z) was fixed to 0.500 (i.e., A= 39.3%),
and then Ẑ and its estimated SE were obtained for each
of the currently available methods and GLMs when the
simulated data were (1) equi-dispersed according to a
GLMPoisson using a value of 1 for the dispersion parame-
ter; (2) overdispersed, with the variance modeled as a lin-
ear function of the mean according to a negative binomial

TABLE 1. Mean (�SD) estimated instantaneous mortality rate (Z) from 100 simulated data sets generated under four dispersion scenarios (equi-dis-
persion, linear overdispersion, quadratic overdispersion, and underdispersion) for six currently available methods and six generalized linear models
(GLMs) considered when the true Z was fixed to 0.500 and the dispersion parameter was set to 1.0, 2.0, 2.0, and 0.5, respectively. The observed bias
between the mean estimated Z under each dispersion scenario and the true value is expressed as a percentage of bias (%), and the sign (+ or −) is used
to indicate the direction of the bias. The least biased method for each dispersion scenario is indicated in bold.

Method
Equi-

dispersion
Linear

overdispersion
Quadratic

overdispersion
Under

dispersion

Heincke 0.499� 0.040
(–0.15%)

0.502� 0.064
(+0.43%)

0.387� 0.453
(–22.5%)

0.502� 0.027
(+0.33%)

Linear regression (LR) 0.425� 0.057
(–14.9%)

0.429� 0.079
(–14.2%)

0.306� 0.118
(–38.8%)

0.457� 0.037
(–8.62%)

Weighted linear regression (WLR) 0.500� 0.037
(+0.05%)

0.500� 0.060
(–0.03%)

0.359� 0.182
(–28.2%)

0.503� 0.027
(+0.68%)

Chapman–Robson (CR) 0.498� 0.027
(–0.32%)

0.503� 0.043
(+0.56%)

0.442� 0.196
(–11.6%)

0.502� 0.017
(+0.30%)

Chapman–Robson corrected
for bias (CRCB)

0.498� 0.027
(–0.45%)

0.502� 0.043
(+0.42%)

0.441� 0.195
(–11.7%)

0.501� 0.017
(+0.18%)

Adapted Poisson model (PM) 0.499� 0.027
(–0.11%)

0.504� 0.043
(+0.78%)

0.444� 0.196
(–11.3%)

0.503� 0.017
(+0.51%)

Poisson 0.492� 0.026
(–1.70%)

0.502� 0.026
(+0.48%)

0.429� 0.028
(–14.2%)

0.502� 0.026
(+0.45%)

Quasi-Poisson (QP) 0.492� 0.016
(–1.70%)

0.502� 0.025
(+0.48%)

0.429� 0.076
(–14.2%)

0.502� 0.011
(+0.45%)

Negative binomial type 1 (NB1) 0.492� 0.027
(–1.64%)

0.503� 0.039
(+0.53%)

0.311� 0.077
(–37.8%)

0.502� 0.026
(+0.45%)

Negative binomial type 2 (NB2) 0.492� 0.027
(–1.61%)

0.505� 0.040
(+1.07%)

0.485� 0.103
(–2.95%)

0.502� 0.026
(+0.45%)

Conway–Maxwell–Poisson (CMP)a 0.491� 0.023
(–1.77%)

0.503� 0.037
(+0.64%)

0.475� 0.083
(–4.90%)

0.501� 0.017
(+0.11%)

Generalized Poisson (GP) 0.492� 0.023
(–1.68%)

0.503� 0.039
(+0.59%)

0.319� 0.074
(–36.2%)

0.502� 0.017
(+0.38%)

aMean-parametrized Conway–Maxwell–Poisson (Huang 2017).
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type 1 model (GLMNB1) and a value of 2 for the disper-
sion parameter; (3) overdispersed, with the variance mod-
eled as a quadratic function of the mean according to a
GLMNB2 and a value of 2 for the dispersion parameter;
and (4) underdispersed according to a double Poisson
(Efron 1986) model and a value of 0.5 for the dispersion
parameter. Each Ẑ obtained was compared to the true Z,
and the observed mean difference over the 100 simulation
runs was then converted into a percentage (%) of bias.
The same was done for each estimated SE, which was
compared to a reference SE obtained for each of the four
dispersion scenarios considered to calculate bias (%). The
reference SE was determined based on the weighted mean
of the SE estimates obtained over the 100 simulated data
sets of each dispersion scenario according to the five maxi-
mum likelihood GLMs by adjusting the mean SE relative
to their mean Akaike weights (based on Akaike’s informa-
tion criterion [AIC]; Akaike 1973) following an informa-
tion-theoretic approach (Burnham and Anderson 2002).
When a given model for a given simulated data set did
not converge, such as the GLMNB1 on some occasions
when applied to under- or equi-dispersed data, the mean
Ẑ and estimated SE were calculated using fewer than 100
simulation results, whereas the Akaike weight assigned
under such conditions for a given simulated data set was
zero. Precision was evaluated according to the SD around
the mean calculated over the ≤100 simulation results and
also visually according to the width of the interquartile
range of either the estimated Z or SE values obtained.

Empirical age-frequency data.— The Walleye data were
collected as part of a large, standardized gill-net provincial
monitoring program (Service de la Faune Aquatique
2011), whereas the Arctic Char data originated from a
northern program aimed at establishing reference states
(Mainguy and Beaupré 2019). Many data sets were avail-
able for the Walleye surveys; we selected the Baskatong
Reservoir near the city of Mont-Laurier because its 2012
and 2017 data sets were among the largest sample sizes of
specimens caught. The gill nets used are made of a series
of eight panels of increasing mesh sizes to allow the cap-
ture of a wide range of lengths and, thus, ages—except for
young specimens (Figure 1A). Because catchability bias
related to fish size is almost inevitable with gill nets, this
can affect the estimated age structure (Finstad et al.
2000). Therefore, the Z-estimates may be further biased
given the limitations already associated with catch-curve
analyses, but nonetheless they will still be comparable
when done on the same basis, especially at the same study
site. The two Arctic Char studies near the Nunavik com-
munities of Tasiujaq (Aipparusik River) in 2017 and Sal-
luit (Tasiallujuak River) in 2019 were less likely to
introduce age-structure biases, as Arctic Char returning
from the sea will be captured in the counting cage of the
weir used if they attempt to go any further upstream. Ages

of all sampled Walleye and Arctic Char were determined
based on the examination of year-increment annuli of
their otoliths with a binocular microscope.

Catch-curve analyses of simulated and empirical data.—
As recommended by Smith et al. (2012), we applied the
“peak plus” criterion, which consists of using the age that
is 1 year beyond the age of full recruitment by the fishing
gear (Figure 1). Each of the 400 simulated and empirical
data sets was analyzed according to the six currently avail-
able methods to estimate Z � SE using the R package
fishmethods (Nelson 2019). These estimates were obtained
by fitting the “full” age to that corresponding to “peak
plus” and the “last” age to that of the oldest observed
age. For the simulated data sets, the 2-year-old age-class
was systematically used as the “full” age, whereas the
“last” age was determined for each of the 400 simulated
age-frequency data sets. The mean (�SD) number of age
counts that were analyzed for the descending limb of the
400 simulated catch curves was 357� 97, which was simi-
lar to although independent of that of the Walleye data.
The GLMs were then used to analyze how the variable
“counts” varied according to the continuous variable
“age.” The age-frequency data analyzed with GLMs were
artificially extended with ages having each a count of zero
past the oldest age up to three times that age, as per-
formed in fishmethods for the adapted PM of Nelson
(2019). For the simulated data, the oldest extended age
was fixed at 45 in all dispersion scenarios to facilitate the
large number of GLM analyses performed, knowing that
the addition of age-classes with zero count is done to min-
imize the underestimation of A (see Millar 2015). The can-
didate GLMs were all fitted according to the
methodological details provided in the Appendix.

To identify the GLMs that best fit the simulated and
empirical data, we first assessed model adequacy based on
the behavior of their Pearson residuals by using the R
package hnp (Moral et al. 2017), which produces an intu-
itive goodness-of-fit diagnostic plot (e.g., Demétrio et al.
2014). Briefly, the sorted absolute values of the Pearson
residuals are plotted against the quantiles of the half-nor-
mal distribution (hereafter, “half-normal scores”) to deter-
mine whether they fall within the limits of a simulated
envelope according to the distributional assumptions of
the investigated model (Moral et al. 2017). Model ade-
quacy can then be verified visually (Figure 2) and by cal-
culating the percentage of residuals falling outside the
envelope (Appendix). As the envelope used to assess fit is
simulated and thus its lower and upper bands slightly vary
from one simulation to the next, a set of 100 simulations
was run for each GLM tested and the mean percentage of
residuals falling outside the envelope was used to catego-
rize model adequacy as follows: (1) excellent (mean <
1%); (2) good (1% ≤ mean < 5%); (3) acceptable (5% ≤
mean < 10%); and (4) inadequate (mean ≥ 10%). These
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strict, arbitrarily determined categories have been elabo-
rated according to how the lower and upper limits of the
envelope are generated, as they respectively correspond to
the 2.5th and 97.5th percentiles of the residuals obtained
from re-fitting the model to simulated data (Moral et al.
2017). This indicates that around 5% of the residuals are
expected to fall outside the simulated envelope for a well-fit-
ting model. Models identified as being inadequate should be
discarded, except in the case of small sample sizes (e.g., n≤
30), for which the percentage of residuals found outside the
simulated envelope is more likely to exceed 10% (i.e., 3
points outside of the simulated envelope) despite sometimes

having a reasonable fit; thus, just the visual examination is
recommended in such cases. The Akaike weights of the ade-
quate GLMs retained were then used to objectively identify
the most statistically supported model (Burnham and
Anderson 2002). For the simulated data, model adequacy
was assessed according to the mean of the 100 hnp runs
averaged over each of the 100 simulated data sets under a
given dispersion scenario, whereas the mean Akaike weight
obtained was used to establish the relative statistical support
among the different GLMs considered.

Comparison of mortality rates.— The GLMs were used
to compare Z by fitting the variable “year” or “site” and

FIGURE 2. Half-normal plots with a simulated envelope for the Pearson residuals obtained for four different models by using the R package hnp.
The residuals (filled circles) should be found within the limits (solid lines) of the simulated envelope and ideally should be located near the median
(dashed line). A negative binomial type 2 (NB2) generalized linear model (GLM) fitted to the overdispersed Walleye 2017 data (top left) provides an
excellent fit. A Poisson GLM fitted to the same Walleye 2017 data (bottom left) provides an inadequate fit. A quasi-Poisson (QP) GLM fitted to the
overdispersed Walleye 2012 data (top right) provides a good fit, but as the residuals are moving away from the median with increasing half-normal
scores, this is suggestive of a poorer fit. A generalized Poisson (GP) GLM fitted to the Arctic Char data from Salluit (bottom right) has an excellent
fit, with all the residuals found within the simulated envelope. However, these residuals are systematically following the lower limit of the simulated
envelope, indicating rather problematic behavior that is suggestive of a poorer, questionable fit. [Color figure can viewed at afsjournals.org.]
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an interaction term with the age parameter when the two
groups for a given species were pooled into a single data
set. The adequate GLM found to have the most statistical
support based on Akaike weights was then used to deter-
mine whether A statistically differed between the consid-
ered groups. Statistical support for a difference was
obtained by comparing the best-ranking model to its
counterpart without the interaction term, relying on
Akaike weight (expressed in %) to determine whether the
model with this additional parameter allowing for differ-
ent regression slopes received more support (i.e., >50%)
compared to the reduced model that included only the
additive effects.

Statistical analyses.— To avoid model selection issues
that could be attributable to the low sample sizes of the
Arctic Char age-frequency data, the second-order (small-
sample) AIC (AICc; Burnham and Anderson 2002) was
used for all comparisons. Candidate models with an AICc

difference (ΔAICc) greater than 7 were discarded (Burn-
ham et al. 2011) prior to the last step of model selection,
even if they were found to be adequate. To determine
whether the assumption of equi-dispersion was met for
each of the empirical data sets, we first used a two-sided
dispersion test conducted on the results of a GLMPoisson,
which was applied to the observed age-frequency data
prior to extending them with zero counts using the R
package AER (Kleiber and Zeileis 2008). According to
the sign of the z-score statistic and the estimated disper-
sion parameter obtained, a specific one-sided dispersion
test was then conducted to determine whether the data
were sufficiently equi-dispersed (Appendix). To provide a
complete description of the results obtained following our
GLM-based method, the AICc scores obtained for the
empirical data sets for each of the five GLMs considered
(i.e., excluding GLMQP) are presented, including those
categorized as inadequate, for comparison purposes and
to highlight any potential inconsistencies between model
adequacy and selection. All statistical analyses were per-
formed in R version 4.0.3 (R Core Team 2020). All R
scripts that were used in this study for the analysis of the
empirical data are available in the Appendix, with detailed
examples applying to the Baskatong Reservoir Walleye
2012 data. Data files and R scripts for both simulated and
empirical data analyses are available at https://github.com/
rafamoral/catchcurve.

RESULTS

Simulated Age-Frequency Data
The estimates of Z and its associated SE revealed some

discrepancies among the currently available methods and
GLMs (Table 1; Figures 3, 4). Omitting the LR method,
which systematically produced the least accurate estimates

by underestimating Z in all four dispersion scenarios, all
of the other methods produced a mean Ẑ that was suffi-
ciently accurate (bias < 2%), but this was only true for the
less-likely scenarios in which the simulated age-frequency
data were equi-dispersed, linearly overdispersed, or
underdispersed (Table 1; Figure 3). The WLR method pro-
duced a highly accurate but slightly less-precise mean Ẑ
of 0.500 when the simulated age-frequency data were
either equi-dispersed or linearly overdispersed, whereas for
the underdispersion scenario the GLMCMP and GLMGP

were the most accurate (Table 1; Figure 3). Under the
more plausible ecological scenario of quadratic overdisper-
sion, all of the currently available methods were down-
wardly biased, with the worst being the WLR method by
28% and the best being the adapted PM by 11% (Table 1;
Figure 3). Among the log-linear models, the GLMNB2 and
GLMCMP provided the most accurate estimates, with a
respective underestimation bias of 3% and 5%, whereas
those obtained with the GLMGP and GLMNB1 were
downwardly biased by 36% and 38%, respectively (Table
1; Figure 3).

More variation was observed for the estimated SEs
among the currently available methods and GLMs (Fig-
ure 4). Given that (1) the two CR methods (CR and
CRCB) and the adapted PM were recently considered the
least biased methods to estimate Z (Nelson 2019) and (2)
two of these methods also apply a variance bias-correction
factor that should produce more accurate SEs, we only
report below the results of the two CR methods and the
adapted PM for the assessment of the bias. The simulation
results describing accuracy and precision for all six cur-
rently available methods are nonetheless presented in Fig-
ure 4. For the equi-dispersion scenario, the reference SE
was 0.025 and similar to that of the most supported
GLMPoisson (0.026), which had an overestimation bias of
4%, identical to that of the CR method (Figure 4). The
use of a correction factor inflated this overestimation bias
for the CRCB method (11%) and the adapted PM (12%;
Figure 4). Although ranked as the third best-supported
model for the linear overdispersion scenario, the GLMCMP

produced an estimated SE (0.037) nearly identical to the
reference SE, with an underestimation bias of 0.05%,
whereas the second-ranking GLMGP had an overestima-
tion bias of 6% and the best-ranking GLMNB1 had an
overestimation bias of 7% (Figure 4). The CR method
underestimated the reference SE by 29% for this disper-
sion scenario, whereas the CRCB method and the adapted
PM overestimated it by 24% and 16%, respectively (Fig-
ure 4). Under quadratic overdispersion, the reference SE
obtained was 0.090, which was comparable to that of the
most supported GLMNB2 (0.103), although with an over-
estimation bias of 15%. Upward bias was, however, much
more pronounced with the CRCB method (62%) and the
adapted PM (59%), whereas the CR method had an
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underestimation bias of 69% (Figure 4). The reference SE
for the underdispersion scenario was 0.019 and compara-
ble to that obtained with the most supported GLMGP

(0.017), yielding an underestimation bias of 12%. The esti-
mate obtained from the CRCB method underestimated
the reference SE by only 0.2%, whereas an upwardly
biased estimate was obtained with the CR method (37%)
and the adapted PM (39%; Figure 4). Although the WLR
method generally estimated Z accurately except for the
most commonly encountered quadratic overdispersion sce-
nario (Table 1; Figure 3), the estimation of the SE with
this method was poor under all scenarios: overestimation
bias was at best 20% for the underdispersed simulated
data and was as much as 73% for the quadratic overdis-
persion scenario (Figure 4).

Empirical Age-Frequency Data
The estimates of Z � SE of the currently available

methods for the Walleye and Arctic Char data sets are
presented in Table 2. For example, the estimates of Z

obtained from the analysis of the Walleye 2012 data set
provided A-values of 39.3% (Heincke method), 33.6%
(LR), 40.5% (WLR), and 38.7% (CR, CRCB, and
adapted PM), revealing moderate variation among these
methods and less so when the LR method is not consid-
ered. According to the GLMPoisson, the observed Walleye
data had a tendency of being overdispersed or were
overdispersed (2012: z-score = 1.47, P= 0.07; 2017: z-score
= 2.57, P= 0.005), whereas the observed Arctic Char data
showed a tendency of being underdispersed or were
underdispersed (Tasiujaq: z-score = –1.35, P= 0.09; Salluit:
z-score = –6.17, P< 0.001). Thus, the GLMPoisson assump-
tion of equi-dispersion was either met or not satisfied,
indicating that alternative models could in some cases
be more appropriate. The estimates of Z from the
GLMPoisson and its five extensions applied to the extended
age-frequency data are presented in Table 3, together with
a categorization of their fit according to the behavior of
their Pearson residuals, their AICc scores and Akaike
weights, and other model statistics.

FIGURE 3. Box plots showing the performance of six currently available methods (gray filled boxes) and six generalized linear models (GLMs;
unfilled boxes) in estimating the true instantaneous mortality rate (Z) of 0.500 (dashed reference lines) from which 100 simulated data sets were
produced under four different dispersion scenarios (acronyms are defined in Table 1). Box plots are delimited by the first and third quartiles, the
horizontal black solid line represents the median, and the whiskers correspond to the most extreme observation within 1.5 times the interquartile
range, whereas the filled gray circles represent potential outliers. For the GLMPoisson or one of its five extensions, model adequacy is indicated by a
single letter at the top of each plot and is categorized as excellent (E), good (G), acceptable (A), or inadequate (I) based on the mean percentage of
Pearson residuals falling outside of a simulated envelope (see Methods and Figure 2), which is also indicated under each letter. The Akaike weight (%;
based on the second-order Akaike’s information criterion) of each model is also provided at the bottom of each plot, with the most supported model
being highlighted in bold.
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Estimates of Z were often similar across the currently
available methods and GLMs in both species (Tables 2,
3), especially between the two CR methods, the adapted
PM, and the GLM-derived estimates. As for the simulated
data, the LR method again produced systematically lower
Z-estimates, whereas those obtained with the WLR
method were generally more comparable, although this

method likely underestimated Z in a manner similar to
the LR method for Salluit Arctic Char (Table 2). Differ-
ences in SE estimates were more evident (Tables 2, 3),
with the CR and Heincke methods and the GLMPoisson

having lower SEs when compared to the other methods
for the overdispersed Walleye data in both years. The
most supported GLMs for the analysis of the two Walleye

FIGURE 4. Box plots showing the performance of six estimators (gray filled boxes) and six generalized linear models (GLMs; unfilled boxes) in
estimating the reference SE (black dashed line) of the estimated instantaneous mortality rate (Ẑ ), which corresponds to the most statistically
supported mean SE estimate based on Akaike weights according to the 100 simulated data sets that were produced under each of the four different
dispersion scenarios (acronyms are defined in Table 1). Each dispersion scenario thus has a specific reference SE value (0.025 for equi-dispersion, 0.037
for linear overdispersion, 0.090 for quadratic overdispersion, and 0.019 for underdispersion). The box plots are delimited by the first and third
quartiles, the horizontal thick line represents the median, and the whiskers correspond to the most extreme observation within 1.5 times the
interquartile range, whereas the filled gray circles represent potential outliers.

TABLE 2. Instantaneous mortality rate (Z; �SE) estimates obtained from six currently available methods (acronyms are defined in Table 1) for
Walleye sampled in Baskatong Reservoir during 2012 and 2017 and for Arctic Char sampled in rivers near Tasiujaq and Salluit, Québec, Canada.

Method

Walleye Arctic Char

2012 2017 Tasiujaq Salluit

Heincke 0.500� 0.026 0.410� 0.023 0.762� 0.143 0.243� 0.034
LR 0.405� 0.050 0.292� 0.045 0.238� 0.075 0.177� 0.032
WLR 0.518� 0.075 0.410� 0.061 0.683� 0.037 0.175� 0.031
CR 0.490� 0.025 0.400� 0.022 0.660� 0.123 0.255� 0.036
CRCB 0.490� 0.075 0.399� 0.050 0.646� 0.278 0.254� 0.032
PM 0.491� 0.089 0.401� 0.055 0.677� 0.126 0.260� 0.037
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data sets provided, as expected, SE estimates that were
greater than those of the CR method and the GLMPoisson

but lower than those produced by the CRCB method and
the adapted PM (Tables 2, 3). The overdispersed Walleye
2012 data were best modeled by the GLMNB2, with an SE
estimate of 0.055 (Table 3). As observed with the simu-
lated data, the corresponding estimates for the CRCB
method and the adapted PM were higher: 0.075 and
0.089, respectively (Table 2). The variance bias-correction
factor therefore produced SE estimates that were 36% and
62% greater than that of the best-supported model. For

the 2017 Walleye data, the CRCB method and the
adapted PM again inflated the SE estimates by 32% and
45%, respectively, compared to the best-ranking GLMCMP

(Tables 2, 3). The two Arctic Char data sets were best
independently described by a GLMPoisson, which produced
Z � SE estimates that were identical to those of the
adapted PM (Tables 2, 3).

Comparison of Mortality Rates
In the Walleye data set, the top-ranking model esti-

mated A at 39.0% (95% CI= 32.1–45.3%) in 2012 and

TABLE 3. Instantaneous mortality rate (Z; �SE) estimates obtained from generalized linear models (GLMs) fitted with a Poisson distribution and
five different extensions for Walleye sampled in Baskatong Reservoir in 2012 and 2017 and for Arctic Char sampled in rivers near Tasiujaq and Sal-
luit, Québec, Canada (model acronyms are defined in Table 1). Model adequacy is categorized as either excellent, good, acceptable, or inadequate
depending on the mean percentage (shown in parentheses; n≤ 100 simulation runs) of Pearson residuals falling outside a simulated envelope (see Meth-
ods and Figure 2). The log-likelihood, number of parameters (k), second-order Akaike’s information criterion (AICc), AICc difference (ΔAICc), and
Akaike weight of each model are presented. The best-supported adequate model is highlighted in bold.

GLM Z� SE Model adequacy Log-likelihood k AICc ΔAICc Akaike weight

Walleye 2012
Poisson 0.491� 0.025 Inadequate (18.6) −78.595 2 161.5 72.46 Discarded
QP 0.491� 0.042 Good (4.05) n/a 3 n/a n/a n/a
NB1 0.398� 0.059 Excellent (0.67) −46.819 3 100.2 11.21 Discarded
NB2 0.495� 0.055 Excellent (0.20) −41.212 3 89.0 0.00 0.767
CMPa 0.489� 0.054 Excellent (0.00) −42.405 3 91.4 2.39 0.233
GP 0.388� 0.060 Excellent (0.02) −45.185 3 97.0 7.95 Discarded

Walleye 2017
Poisson 0.401� 0.022 Inadequate (23.6) −64.188 2 132.6 31.15 Discarded
QP 0.401� 0.028 Inadequate (21.9) n/a 3 n/a n/a n/a
NB1 0.363� 0.045 Excellent (0.00) −49.417 3 105.3 3.85 0.083
NB2 0.380� 0.042 Excellent (0.20) −48.415 3 103.3 1.84 0.225
CMPa 0.384� 0.038 Excellent (0.04) −47.494 3 101.5 0.00 0.564
GP 0.359� 0.048 Excellent (0.16) −48.972 3 104.4 2.96 0.129

Tasiujaq Arctic Char
Poisson 0.677� 0.126 Good (2.21) −13.306 2 30.9 0.00 0.615
QP 0.677� 0.151 Good (2.14) n/a 3 n/a n/a n/a
NB1b 0.677� 0.126 n/a −13.306 3 33.2 2.32 0.193
NB2 0.677� 0.126 Good (2.28) −13.306 3 33.2 2.33 0.192
CMPa,c 0.743� 0.085 n/a n/a 3 n/a n/a n/a
GPd 0.743� 0.032 Inadequate (21.8) [−8.337] 3 [23.3] n/a Discarded

Salluit Arctic Char
Poisson 0.260� 0.037 Excellent (0.00) −24.073 2 52.5 0.00 0.421
QP 0.260� 0.019 Inadequate (56.5) n/a 3 n/a n/a n/a
NB1c 0.260� 0.037 n/a n/a 3 n/a n/a n/a
NB2 0.260� 0.037 Excellent (0.00) −24.073 3 54.8 2.33 0.131
CMPa 0.245� 0.031 Excellent (0.00) −23.328 3 53.3 0.84 0.276
GPe 0.254� 0.033 Questionable (0.61) −23.807 3 54.3 1.80 0.171
aMean-parametrized CMP (Huang 2017).
bThe model converged and allowed us to obtain AICc scores, but the Pearson residuals could not be extracted to inspect model adequacy.
cThe model did not converge; thus, no Pearson residuals or AICc score could be used, despite obtaining parameter estimates.
dAlthough the model was inadequate, the log-likelihood and AICc values are presented in brackets to emphasize the importance of testing model adequacy prior to

model selection.
eAlthough the model had an apparent excellent fit, inspection of the Pearson residuals revealed an unusual behavior that was indicative of a poorer fit and its adequacy

was thus judged as questionable (see Figure 2).
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31.9% (95% CI= 26.6–36.8%) in 2017, indicating a decline
in mortality rates of approximately 7 percentage points
over the 5-year period, although statistical support for this
interpretation may be weak due to the partly overlapping
95% CIs. In the Arctic Char data set, the most supported
GLMPoisson provided A-estimates of 49.2% (95% CI=
35.0–60.3%) at Tasiujaq and 22.9% (95% CI= 17.1–
28.3%) at Salluit. Note that for both of the Arctic Char
data sets, the GLMNB1 and GLMNB2 produced Ẑ and
estimated SE values that were identical to those of the
GLMPoisson (Table 3), likely because their additional dis-
persion parameter specifically designed at modeling any
“extra” variance was not required in the presence of equi-
dispersed or underdispersed data; therefore, both were
reduced to a GLMPoisson while simultaneously being AICc

penalized. With non-overlapping 95% CIs, the estimated
A for the sampled Arctic Char was statistically higher at
Tasiujaq than at Salluit.

Once the observed age-frequency data were regrouped
according to either year (Walleye) or site (Arctic Char),
the Walleye data were still overdispersed (z-score = 2.21,
P= 0.01), whereas the Arctic Char data were underdis-
persed (z-score = –3.61, P < 0.001). After the overdispersed
Walleye data set was artificially extended, the most sup-
ported models based on Akaike weight were the GLMNB2

(65.6%) and the GLMCMP (34.4%). In a second step, the
Akaike weight of each of these two models was then sepa-
rately compared to that of their respective counterpart
that excluded the interaction term. Both the GLMNB2

(57.1%) and the GLMCMP (56.8%) provided weak but sta-
tistically detectable support for the inclusion of the inter-
action term, indicating different mortality rates between
years and, oppositely, about 43% of statistical support for
a lack of difference in both cases. For the underdispersed
Arctic Char data set, all of the models obtained an excel-
lent fit, except for the GLMNB1, which did not converge.
The GLMCMP received the most statistical support
(46.7%), followed by the GLMGP (23.2%), GLMPoisson

(22.8%), and GLMNB2 (7.3%). All models indicated that
the interaction term was strongly supported (≥99.5%)
when compared to a model containing only the additive
effects of age and site, providing unequivocal statistical
support for a difference in A between the Tasiujaq and
Salluit Arctic Char populations.

DISCUSSION
The assessment of model adequacy with Pearson residu-

als (Moral et al. 2017) followed by the use of an informa-
tion-theoretic approach (Burnham and Anderson 2002)
offers a statistically proven method to objectively identify
the most supported GLMs from which mortality rates can
be estimated and compared, therefore providing a clear
advantage over the currently available methods for which

no such assessment can be made. Our simulation analyses
indicated that the NB2 extension performed generally well
at modeling overdispersed count data, which explains in
part its widespread use (Hilbe 2014). This finding is con-
sistent with those of other ecological studies that have pro-
moted the use of the negative binomial distribution to
model overdispersed count data (Bliss and Fisher 1953;
White and Bennetts 1996; Alexander et al. 2000), although
some of its generalizations may sometimes prove more
adequate (Lindén and Mäntyniemi 2011). When the count
data have been generated under both demographic and
environmental processes, such as with catch-curve data,
the variance–mean relationship will be more likely quadra-
tic (Engen et al. 1998), providing further support for the
use of the GLMNB2. Under such conditions, other, more
complex extensions should ideally also be considered, such
as the Poisson–normal (Hinde 1982), the Poisson–inverse
Gaussian (Dean et al. 1989), and the hyper-Poisson (Sáez-
Castillo and Conde-Sánchez 2013) extensions, on top of
the mean-parametrized CMP, although a trade-off has to
be made regarding the advantage of considering multiple
extensions to obtain a better fit to the count data on the
one hand and the analytical time this would require on
the other. Our GLM-based method also offers a more reli-
able statistical approach that should be adopted by fish-
eries biologists to compare mortality rates between
grouping factors, as it outperforms the one currently pro-
posed (Miranda and Bettoli 2007; Ogle 2016), especially
given the inadvisable use of the LR method (Smith et al.
2012; this study) on which it is based.

Nelson (2019) cautioned that any downwardly biased
SE estimates are likely to indicate that a statistically sup-
ported difference between two mortality rates can be
found, whereas in some instances it should not. For
example according to the only two adequate GLMs used
to compare years for the Walleye data set, weak statistical
support was found for a difference between the mortality
rates, which corresponded to P< 0.10 for the interaction
term for both extensions, whereas the use of the inade-
quate GLMPoisson would have indicated much stronger
support for a difference (Akaike weight = 93%, corre-
sponding to P= 0.007), thus creating a potential to lead to
an incorrect interpretation of the results. We also found
the opposite pattern when the two methods relying on a
variance bias-correction factor were used. For the simu-
lated data sets that were generated under quadratic
overdispersion, the adapted PM, which was the least
biased of the currently available methods, estimated A at
35.9% (95% CI = 15.1–51.5%) due to its SE being artifi-
cially inflated by its correction factor, somewhat contrary
to its purpose, whereas the true Z and its reference SE
yielded A of 39.3% (95% CI = 27.6–49.2%). Using the
adapted PM for these simulated data sets produced a 95%
CI with a width that was inflated by 69%, in addition to
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underestimating A by 9%. Therefore, the use of either the
adapted PM or the CRCB method to compare grouping
factors when the age-frequency data are overdispersed has
the potential to statistically mask a difference between
mortality rates when it does exist. On the other hand, our
GLM-based method identified the GLMNB2 as the best-
ranking model with an accurate A estimation of 38.4%
(95% CI = 24.7–49.7%), corresponding to an underestima-
tion bias of only 2%, whereas the width of the 95% CI
obtained was increased by 16%. Altogether, these results
clearly indicate that using a method derived from a
GLMPoisson to estimate Z and its SE, whether or not a
variance bias-correction factor is applied, will likely lead
to less-reliable estimates under the most common overdis-
persion scenario met with age-frequency data.

Interestingly, if the age-frequency data are equi-
dispersed, they can be adequately modeled with the
GLMPoisson, which produced results nearly identical to
those of the CR method (Millar 2015; this study). Under
such circumstances, the application of a variance bias-cor-
rection factor is in fact unnecessary because it can poten-
tially induce an upward bias in the estimated SE obtained,
as demonstrated with the analysis of the simulated equi-dis-
persed data. Furthermore, the analysis of the site-specific
Arctic Char data sets also showed that a GLMPoisson can
sometimes be sufficient to adequately model underdispersed
data (Zuur et al. 2009). When overdispersion is detected,
the GLMNB1 and GLMGP both seem to be well adapted to
analyze age-frequency data but apparently only when they
are linearly overdispersed. For instance, Ver Hoef and
Boeng (2007) showed that for the estimation of abundance
of harbor seals Phoca vitulina from aerial surveys, a
GLMQP that closely resembles a GLMNB1 was more ade-
quate than the GLMNB2 to analyze their overdispersed
count data by looking graphically at how the partitioned
variance behaved compared to its partitioned mean, which
was found to follow a linear pattern. This visual assessment
of the variance–mean relationship was important to investi-
gate since the two extensions greatly diverged for the abun-
dance estimates produced (Ver Hoef and Boeng 2007).
Most of the time, however, the extra variance in counts will
be better taken into account with a GLMNB2 (Hilbe 2014).
Under such a case, the GLMQP, GLMNB1, and GLMGP

often offered an inadequate fit for both the simulated and
empirical data analyzed in this study. Interestingly, the
mean-parametrized CMP (Huang 2017) was adequate not
only to model quadratic overdispersion but also to model
underdispersion according to our analysis of both the simu-
lated and empirical data, providing further support to its
already recognized flexibility in ecological studies (Lynch
et al. 2014; Brooks et al. 2019). Given the many inadequate
fits obtained with the GLMQP and the fact that AICc can-
not be used to compare it with other log-linear models, this
extension appears to be of little practical use. We suggest

that only the GLMNB1 should be considered instead, as it is
based on maximum likelihood and produces estimates simi-
lar to those obtained with a GLMQP for the analysis of lin-
early overdispersed data (Hilbe 2014). Overall, selecting the
most adequate extensions of the Poisson distribution
according to the dispersion of the catch-curve data being
analyzed should generally produce more accurate mortality
rates than those obtained with the currently available meth-
ods, which can then help to provide a more reliable assess-
ment of a given population status, especially when
combined with other biodemographic parameters (Barbieri
et al. 1994; Bisping et al. 2019).

It is important to note that the best adequate model in
each of the analyses conducted received rather moderate
AICc support ranging from as low as 30% up to as much as
77%. This is clearly indicative that more than one distribu-
tional assumption can accommodate different randomly
selected age-frequency data originating from the same sam-
pled population—and possibly more so when the sample
sizes used are small. This finding highlights the importance
of considering more than one Poisson distribution exten-
sion, especially when overdispersion is detected, in an
attempt to estimate Z and its uncertainty. Therefore, to
more accurately reflect the age structure of the studied pop-
ulation and its inherent distribution profile at any given
point in time, the use of the least biased fishing gear relative
to fish age (Finstad et al. 2000) combined with efforts to
increase the sample size should ultimately allow one to iden-
tify with more certainty the adequate Poisson distribution
extension that should be used according to the Akaike
weight obtained, thus reducing model uncertainty for bio-
logical inferences. However, for the more likely situation in
which the Akaike weights are distributed through two or
more adequate candidate models, as observed in this study,
one can use the “model averaging” approach (Dormann
et al. 2018), which incorporates the estimate from each
retained adequate model by weighing its contribution
respective to its Akaike weight, similar to what was done to
calculate the reference SE. The single Z-estimate that results
from this approach will represent a compromise that better
reflects model selection uncertainty and can even potentially
reduce prediction error (Dormann et al. 2018).

Modeling of Z � SE under diverse simulation scenarios
would be the next logical step to determine the circum-
stances under which the GLM extensions of the Poisson dis-
tribution examined in this study—and possibly other, more
complex ones—are the most adequate for statistical infer-
ences specifically related to catch-curve analyses, benefiting
from the significant amount of simulation work already
existing on this subject (Murphy 1997; Dunn et al. 2002;
Thorson and Prager 2011; Smith et al. 2012; Millar 2015;
Nelson 2019; this study). For instance, how does varying
the dispersion parameter under biologically plausible sce-
narios affect the estimation of Z and its SE when sample
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size is also allowed to vary? Such simulation studies could
thus help to determine the conditions under which a given
extension will likely be less biased and more precise, know-
ing, however, that other potential explanations must be
considered besides the distributional assumptions to reach
better model adequacy (Moral et al. 2017). As such, added
covariates—for example, the annual variability in recruit-
ment when such data are available—may increase model
adequacy and thus can result in a more accurate estimate of
Z (Millar 2015). Altogether, GLMs fitted with Poisson dis-
tribution extensions definitely offer greater flexibility than
the currently available methods for statistical inferences.
More importantly, our GLM-based method is also applica-
ble to other fisheries studies relying on count data, such as
those based on CPUE. Given the already recognized ability
of the NB2 extension to take into account the presence of
many zeros in the modeling of count data (Warton 2005), it
should thus be considered not only for the estimation and
comparison of mortality rates for overdispersed age-fre-
quency data but also for other fisheries management pur-
poses, such as comparing abundance indices between or
among grouping variables of interest.
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who participated in the provincial monitoring programs of
Walleye and anadromous Arctic Char from which the
empirical data used in this study originate. Advice provided
by G. A. Nelson and R. B. Millar was instrumental for
pushing further the initial idea behind the development of
the proposed GLM-based method. M. Bélanger and three
anonymous reviewers provided valuable comments that sig-
nificantly improved the proposed approach, the description
of some statistical concepts, and the clarity of the manu-
script as a whole. We also want to thank M. Mainguy for
graphical assistance. The monitoring programs from which
the data used in this study originate were approved by the
Animal Care Committee of the Ministère des Forêts, de la
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Sáez-Castillo, A. J., and A. Conde-Sánchez. 2013. A hyper-Poisson
regression model for overdispersed and underdispersed count data.
Computational Statistics and Data Analysis 61:148–157.

Sellers, K. F., and G. Shmueli. 2010. A flexible regression model for
count data. Annals of Applied Statistics 4:943–961.

Service de la Faune Aquatique. 2011. Guide de normalisation des méthodes
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Appendix: R Scripts and Model Equations

R Scripts
These R scripts allow the analysis of the six generalized

linear models (GLMs) that were considered in this study
(i.e., GLMPoisson, GLMQP, GLMNB1, GLMNB2, GLMCMP,
and GLMGP; defined in Table 1) using the 2012 data set for
Baskatong Reservoir Walleye (Figure 1A) as an example.
More specifically, the required scripts for the dispersion test
to be performed on the GLMPoisson, the modeling of the five
other GLMs, the way to conduct the 100 simulation runs to
calculate the mean percentage of residuals falling outside
the simulated envelope according to the half-normal scores
as a goodness-of-fit diagnostic, and how to compare the can-
didate log-linear models based on Akaike weights are pro-
vided. An example of how to test whether mortality rates
differ between two compared groups is also shown using the
surveyed years (2012 and 2017) of the Walleye data set.
Model equations for the Poisson family distribution and five
of its extensions that were considered in this study are pre-
sented.

R Packages
The following packages need to be installed according

to the package name using install.packages("name-
ofpackage") and then loaded into R for specific analy-
ses to be performed with library(nameofpackage):

library(AER)

library(MASS)

library(glmmTMB)

library(hnp)

library(tidyverse)

library(MuMIn)

Fitted Model Acronyms
Model fitting uses the following acronyms: p = Poisson,

qp = quasi-Poisson, nb1 = negative binomial type 1, nb2
= negative binomial type 2, cmp = mean-parametrized
Conway–Maxwell–Poisson, and gp = generalized Poisson.
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Dispersion Test
To be statistically meaningful, a dispersion test can

only be applied to the results of a GLMPoisson for the
analysis of count data: “overdispersion is irrelevant for
models that estimate a scale parameter” (B. Bolker:
https://bbolker.github.io/mixedmodels-misc/glmmFAQ.
html#overdispersion). Here, we show how to first apply a
GLMPoisson to the original age-frequency data—that is,
prior to artificially extending them with zero counts (Mil-
lar 2015)—to then conduct a two-sided dispersion test
with the R package AER. The original data set is
referred to as baskatong2012 to distinguish it from the
extended data set used in all of the subsequent GLM
analyses (walleye2012). Therefore, the GLMPoisson

applied to the original data will be referred to as baska-
tong2012_p. The first (two-sided) dispersion test is con-
ducted to determine whether the estimated dispersion
parameter and the z-score statistic obtained indicate that
the age-frequency data may be either overdispersed (i.e.,
dispersion parameter > 1.0; positive z-score statistic) or
underdispersed (the opposite). At this step, a lack of
equi-dispersion in the age-frequency data can already be
detected at P< 0.05. Nevertheless, we recommend con-
ducting a second specific one-sided over- or underdisper-
sion test to determine whether the assumption of equi-
dispersion is statistically satisfied given the actual disper-
sion of the observed age-frequency data revealed by the
first test; the dispersion parameter and the z-score statistic
will both remain the same as those obtained with the
two-sided test, but the ability to detect an apparent lack
of equi-dispersion will be increased. Lack of statistical
support under such a specific test will indicate that the
variance in the age-frequency data is likely sufficiently
similar to the mean for a GLMPoisson to produce valid
statistical inferences. Generally, however, the age-fre-
quency data will more likely have a variance that is
greater than the mean, often leading to a ratio greater
than 1 between the residual deviance and its associated
degrees of freedom, which as a rule of thumb are both
suggestive of overdispersion. Only a proper dispersion test
should be used, however, to statistically determine
whether the data are sufficiently equi-dispersed. The more
appropriate extensions of the Poisson distribution for the
analysis of the age-frequency data can then be identified,
such as the use of the NB1, NB2, and CMP extensions if
the data are overdispersed, for instance. Note also that
the hnp() function applied to a GLMPoisson that was
used to analyze overdispersed data will indicate an inade-
quate fit, with most Pearson residuals found above the
upper limit of the simulated envelope as a result of
overdispersion (see Figure 2, bottom left).

GLMPoisson applied to the original data set with the
glm() function:

baskatong2012_p<-glm(N~AGE,

family=poisson,data=baskatong2012)

The model results (i.e., output) can be obtained with
the summary() function:

summary(baskatong2012_p)

Performing a two-sided dispersion test with the
dispersiontest() function:

dispersiontest(baskatong2012_p,

alternative="two.sided")

Performing a one-sided overdispersion test:

dispersiontest(baskatong2012_p,

alternative="greater")

Performing a one-sided underdispersion test (just as an
example):

dispersiontest(baskatong2012_p,

alternative="less")

The P-value associated with the overdispersion test cor-
responds to 1 – P for the underdispersion test, such that if
the z-score statistic obtained has, for instance, a negative
value for an overdispersion test and is associated with P=
0.96, then this result would provide statistical support for
underdispersion (P= 0.04).

GLMPoisson applied to the extended age-frequency data
set (walleye2012):

walleye2012_p<-glm(N~AGE,

family=poisson,data=walleye2012)

GLMQP:

walleye2012_qp<-glm(N~AGE,

family=quasipoisson,data=walleye2012)

GLMNB1 with the function glmmTMB() from the R
package glmmTMB:

walleye2012_nb1<-glmmTMB(N~AGE,

family=nbinom1,data=walleye2012)

GLMNB2 with the R package MASS. Note that the
family= argument is implicitly invoked by the glm.nb
() function to use the NB2 extension, such that it is not
indicated in the script:

walleye2012_nb2<-glm.nb(N~AGE,

data=walleye2012)

GLMNB2 can also be tested with the glmmTMB() func-
tion. Note here that nb2 has been changed to NB2 to differ-
entiate it from the previous model obtained with glm.nb():

walleye2012_NB2<-glmmTMB(N~AGE,

family=nbinom2,data=walleye2012)
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GLMCMP:

walleye2012_cmp<-glmmTMB(N~AGE,

family=compois,data=walleye2012)

GLMGP:

walleye2012_gp<-glmmTMB(N~AGE,

family=genpois,data=walleye2012)

Goodness-of-Fit Diagnostic Plots with hnp
We provide below helper functions to compute the half-nor-

mal plots with a simulated envelope for the GLMs fitted using
the R package glmmTMB (GLMNB1, GLMCMP, and
GLMGP). The GLMPoisson, GLMQP, and GLMNB2 obtained
with the package MASS can all be directly assessed for model
adequacy by the R package hnp (Moral et al. 2017). The three
GLMs depending on the R package glmmTMB all require the
following additional functions to allow the visual inspection of
the Pearson residuals according to a simulated envelope:

Function to obtain GLM diagnostics (Pearson residuals):

dfun<-function(obj)

{residuals(obj,type="pearson")}

Function to simulate a new response variable from the
fitted GLM:

sfun<-function(n,obj)

{simulate(obj)[[1]]}

Function to refit a GLM analyzed with the R package
glmmTMB (GLMNB1, GLMCMP, and GLMGP). Charac-
ters in bold need to be changed according to the data and
variables analyzed and the extension of the Poisson distri-
bution fitted in a given GLM. Here is an example for the
GLMNB1 in which family=nbinom1, whereas compois
or genpois should be used instead following the same
approach for the GLMCMP and GLMGP, respectively:

ffun_nb1<-function(response) {

fit<-try(glmmTMB(response~AGE,

family=nbinom1,data=walleye2012),
silent=TRUE)

while(class(fit)=="try-error") {

response2<-sfun(1,walleye2012_nb1)

fit<- try(glmmTMB(response2~AGE,

family=nbinom1,data=walleye2012),

silent=TRUE)

}

return(fit)

}

All hnp results in this study were obtained with the
seed 2020 (using year 2020; just used to assure the repro-
ducibility of the results), but any other seed can be used:

set.seed(2020)

For the GLMPoisson, GLMQP, and GLMNB2, the diagnos-
tic plots for model adequacy can be obtained using the follow-
ing script. The argument how.many.out=TRUE provides
the number of Pearson residual points falling outside of the
simulated envelope to further assess each model’s adequacy:

hnp_walleye2012_p<-hnp(walleye2012_p,

plot=FALSE,resid.type="pearson",

how.many.out=TRUE)

For the GLMNB1, GLMCMP, and GLMGP, the diagnostic
plots require references to the additional functions that were
previously performed. Here is the script for the assessment of
model adequacy, with the GLMNB1 again used as an example.
Note that once the dfun and sfun have been executed once,
they do not need to be run again. Just the fitfun is required
for each considered GLM to be specifically executed:

hnp_walleye2012_nb1<-

hnp(walleye2012_nb1,

plot=FALSE,newclass=TRUE,

diagfun=dfun,simfun=sfun,fitfun=ffun_nb1)

Here, we organize all results into a single data set (for
instance, if only the GLMPoisson, GLMQP, and GLMNB2 were
the models to be summarized). Note that the walleye2012
data set has n= 44 ages when considering the extended ages
with counts of zero past the maximal age. Thus, at the end of
this script, “each=44” refers to the sample size:

hnp_walleye2012<-data_frame(residuals=

c(hnp_walleye2012_p$residuals,

hnp_walleye2012_qp$residuals,

hnp_walleye2012_nb2$residuals),

lower=c(hnp_walleye2012_p$lower,

hnp_walleye2012_qp$lower,

hnp_walleye2012_nb2$lower),

median=c(hnp_walleye2012_p$median,

hnp_walleye2012_qp$median,

hnp_walleye2012_nb2$median),

upper=c(hnp_walleye2012_p$upper,

hnp_walleye2012_qp$upper,

hnp_walleye2012_nb2$upper),

x=c(hnp_walleye2012_p$x,

hnp_walleye2012_qp$x,

hnp_walleye2012_nb2$x),

model=factor(rep(c("Poisson","Quasi-Poisson",

"Negative binomial type 2"),each=44),levels=c

("Poisson","Quasi-Poisson","Negative binomial type 2")))

Including the results in hnp plots:

plot_walleye2012<-hnp_walleye2012%>%

ggplot(aes(x=x,y=residuals))+

theme_bw()+ facet_wrap(~model,

scales="free")+
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geom_point(cex=1,pch=16,alpha=.75)+

geom_line(aes(y=median),lty=2,lwd=.2)+

geom_line(aes(y=upper),lty=1,lwd=.2)+

geom_line(aes(y=lower),lty=1, lwd=.2)+

geom_ribbon(aes(ymin=lower,

ymax=upper),fill="gray",alpha=.2)+

xlab("Half-normal scores")+

ylab("Pearson residuals")+

theme(panel.grid.major=element_blank

(),panel.grid.minor= element_blank())

Saving the desired plot with a high resolution (800 dpi):

png("walleye_2012.tiff",res=800,

units="in",w=10,h=6)

print(plot_walleye2012)

dev.off()

Viewing the final plots (one hnp simulation run per
model) in a single figure in R:

print(plot_walleye2012)

Next, we produce 100 half-normal plots for each model
to obtain the average number of points (residuals) that fell
outside of the simulated envelope, with GLMPoisson as an
example for the GLMs that can be directly modeled by
the R package hnp and GLMNB1 as an example for those
that can only be obtained with the R package glmmTMB,
which require additional simulation functions.

GLMPoisson (100 hnp simulation runs):

set.seed(2020)

walleye_hnp_p<-list()

for(i in 1:100) {

walleye_hnp_p[[i]]<-

hnp(walleye2012_p,

resid.type="pearson",

how.many.out=TRUE,

plot.sim=FALSE)

}

GLMPoisson (summary of the 100 simulations):

walleye2012_p_hnp_summary<-

sapply(walleye_hnp_p,function(x)

x$out/x$total*100)

GLMNB1 (100 hnp simulation runs):

set.seed(2020)

walleye_hnp_nb1 <- list()

for(i in 1:100) {

walleye_hnp_nb1[[i]]<-

hnp(walleye2012_nb1,

newclass=TRUE,

diagfun=dfun,simfun=sfun,

fitfun=ffun_nb1,

how.many.out=TRUE,

plot.sim=FALSE)

}

GLMNB1 (summary of the 100 simulations):

walleye2012_nb1_hnp_summary<-

sapply(walleye_hnp_nb1,function(x)

x$out/x$total*100)

Including all results into a single data set:

results <- data.frame(model=factor(rep(c ("Poisson",

"Quasi-Poisson",

"Negative binomial type 2"),

each=100),levels=c("Poisson",

"Quasi-Poisson",

"Negative binomial type 2")),

perc_out=c (walleye2012_p_hnp_summary,

walleye2012_qp_hnp_summary,

walleye2012_nb2_hnp_summary))

Result summaries:

results %>%

group_by(model) %>%

summarise(mean=mean(perc_out),

sd=sd(perc_out))

Model Selection Based on Akaike Weights
The function model.sel() of the R package MuMIn

allows us to compare candidate models using an informa-
tion-theoretic approach based on the second-order
Akaike’s information criterion (AICc). We recommend
that only the GLMs found to be adequate according to
the previous goodness-of-fit assessment step should be
considered for model selection. The most supported
model will obtain the lowest AICc score and the highest
Akaike weight. Note that a GLMQP cannot be included
in the candidate models being compared, as it is based on
quasi-likelihood rather than maximum likelihood, thus
preventing the calculation of Akaike weight for all mod-
els. Models with convergence issues either should not be
included or should be included only with caution:

model.sel(walleye2012_p,

walleye2012_nb1,walleye2012_nb2,

walleye2012_cmp,walleye2012_gp)

Comparing Mortality Rates
Below are the scripts to compare the mortality rates

between years 2012 and 2017 for the Baskatong Reservoir
Walleye population, where walleye1217 regrouped the
extended age-frequency data of both years and the NB2
extension is used as an example to test the interaction AGE*
YEAR (nb2_int). Note that for walleye1217, both survey
years are referred to as Y2012 and Y2017 for the
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categorical variable YEAR, instead of 2012 and 2017, as
otherwise YEAR would be wrongly interpreted by R as a
numeric, continuous variable:

walleye1217_nb2_int<-

glm.nb(N~AGE+YEAR+AGE*YEAR,

data=walleye1217)

The same extension is used to test the model, this time
only containing the additive effects of AGE and YEAR
(nb2_add):

walleye1217_nb2_add<-

glm.nb(N~AGE+YEAR,data=walleye1217)

The function model.sel() seen above can then be
used to determine which of these two candidate models
obtain most of the Akaike weight. More statistical support
(>50% and up to 100%) for the inclusion of the interac-
tion term would indicate different slopes and, thus, differ-
ent mortality rates.

Model Equations
In the model equations below, Y represents the

response variable; μ is the mean parameter; ϕ is the dis-
persion parameter; β0 and β1 are the intercept and slope
of the linear predictor for the mean, respectively; n is the
sample size; p is the number of regression coefficients; and
Γ is the gamma function.

Poisson model:

Y ∼Poisson μð Þ

P Y ¼ yð Þ¼ e�μμy

y!

log μð Þ¼ β0þβ1�age

ϕ¼ 1ðknowndispersionparameterÞ

Var Nð Þ¼ϕμ¼ μ

QP model:

Y ∼Poisson μð Þ

log μð Þ¼ β0þβ1�age

~ϕ¼ ∑
n

i¼1

yi� μ̂i
μ̂iðn�pÞ ðestimatedthroughPearsonresidualsÞ

Var Nð Þ¼ϕμ

NB1 model:

Y ∼NegBin μ, ϕð Þ

P Y ¼ yð Þ¼Γ yþμϕ�1
� �
y!Γðμϕ�1Þ

ϕ�1

ϕ�1þ1

� �μϕ�1

1

ϕ�1þ1

� �y

log μð Þ¼ β0þβ1�age

Var Nð Þ¼ μþϕμ

NB2 model:

Y ∼NegBin μ, ϕð Þ

P Y ¼ yð Þ¼Γ yþϕ�1
� �
y!Γðϕ�1Þ

ϕ�1

ϕ�1þμ

� �ϕ�1

μ
ϕ�1þμ

� �y

log μð Þ¼ β0þβ1�age

Var Nð Þ¼ μþμ2

ϕ

Mean-parametrized CMP model:

Y ∼CMP μ, ϕð Þ

P Y ¼ yð Þ¼ μþ eϕ�1
2eϕ

� �yeϕ
y!ð Þ�eϕ

Z μ, ϕð Þ ,

withZ μ, ϕð Þ¼ ∑
∞

j¼0

μ j

j!ð Þϕ

log μð Þ¼ β0þβ1�age

Var Nð Þ¼ μe�ϕ

GP model:

Y ∼GP μ, ϕð Þ

P Y ¼ yð Þ¼ μ μþ ϕ�1ð Þy½ �y�1ϕ�y e
� μþðϕ�1Þy

ϕ½ �
y!

log μð Þ¼ β0þβ1�age

Var Nð Þ¼ϕ2μ
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