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Abstract 
This paper investigates new ways of inferring nonlinear dependence from measured data.  The existence of unique linear and 
nonlinear sub-spaces which are structural invariants of general nonlinear mappings is established and necessary and sufficient 
conditions determining these sub-spaces are derived.  The importance of these invariants in an identification context is that they 
provide a tractable framework for minimising the dimensionality of the nonlinear modelling task.  Specifically, once the 
linear/nonlinear sub-spaces are known, by definition the explanatory variables may be transformed to form two disjoint sub-sets 
spanning, respectively, the linear and nonlinear sub-spaces.  The nonlinear modelling task is confined to the latter sub-set, which 
will typically have a smaller number of elements than the original set of explanatory variables.  Constructive algorithms are 
proposed for inferring the linear and nonlinear sub-spaces from noisy data. 
 

1. Introduction 
 
 Methods for inferring nonlinear dependence from 
measured data are presently almost entirely confined to 
analysis of the dependence with respect to explanatory 
variables selected a priori.  Inference of nonlinear 
dependence is usually outwith the scope of principal 
components and analysis of variance techniques.   Relevant 
methods include series expansion approaches whereby the 
coefficients of the first few terms in some series expansion 
are estimated, perhaps in a stepwise manner (e.g. Korenberg 
et al. 1988, Sjoberg et al. 1995).  The linearity or non-
linearity with respect to each explanatory variable may then 
be inferred by inspection of the estimated coefficients.  
Alternatively, when the model has the additive form, 

(where zϕ i iz( )
i

∑ i denotes the ith element of the explanatory 

variable vector and ϕi is an associated nonlinear, possibly 
vector, function), back-fitting methods can be used to directly 
estimate the ϕi, and thereby linearity or nonlinearity with 
respect to each explanatory variable, zi, without necessarily 
postulating a particular series expansion (e.g. Hastie & 
Tibshirani 1990, Young 2000).   Similar considerations apply 
to automatic relevance determination methods in the context 
of probabilistic neural network and non-parametric Gaussian 
process prior models (e.g. Neal 1996). In the case of blended 
multiple model representations based on decomposition of the 
operating space into a number of operating regions, similar 
considerations again apply when the local models associated 
with each operating region are sufficiently rich that they can 
directly embody any linear component (although this 
excludes the constant local models employed in standard 
radial basis function networks).  In situations such as these, 
algorithms to search for appropriate operating region 
decompositions (e.g. Johansen & Foss 1995) can indirectly 
detect linearity with respect to particular explanatory 
variables. 
 The effectiveness of such methods in inferring a 
parsimonious dependence is generally strongly dependent on 

the choice of co-ordinate axes. For example, when the 
nonlinearity is dependent on some scalar function of all the 
chosen explanatory variables, the nonlinear dependence may 
be inferred to involve every explanatory variable, and thus be 
far from parsimonious, yet with a different choice of co-
ordinate axes the true scalar nature of the dependence would 
become apparent.   In principle, it is, of course, possible to 
extend the foregoing methods to incorporate estimation of, for 
example, a coordinate transformation and thereby 
automatically adjust the choice of explanatory variables as 
indicated by the data.  However, such an approach is 
generally unattractive.  Even a simple linear transformation 
matrix involves m2 parameters, where m is the number of 
explanatory variables, and so estimation can be expected to 
quickly become unwieldy and intractable introducing, for 
example, an additional 100 parameters into an estimation 
problem involving 10 explanatory variables.  Any attempt, 
furthermore, to nest current model fitting algorithms, which 
may already be rather complex and computationally 
intensive, within an outer axes-estimation iteration which is 
itself non-trivial are likely to be subject to local minima 
issues and similar associated difficulties quite apart from 
computational considerations.   
 The objective of the present paper is to investigate new 
ways of inferring the specifically nonlinear dependence (as 
opposed to linear dependence) from measured data.  
 
Notation.  The notation used is essentially standard. For a 
matrix M∈ℜqxp, null(M) denotes the null space of M, i.e. 
null(M) ={v∈ℜp:Mv=0}, and comp(M) denotes the 
orthogonal complement of M, a sub-space of ℜqxp. For a 
twice differentiable vector mapping F: D⊆ℜp

 →R⊆ ℜq, HF(z) 
denotes the Hessian H z  
with F

z zF ( ) [ ( ( )) ( ( )) ]= ∇ ∇ ∇ ∇F FT

q

T T

1 K

i denoting the ith element of the vector mapping F.  The 
derivative of a vector or matrix function, Λ(z), in direction v 

is defined as ( . ) ( ) lim ( ) ( )v z
h o

h
h

∇ =
+T −

→
Λ

Λ Λz v z .  The 
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directional derivative of ∇ = ∇  in 
direction v can be expressed as H

∇F [( ) ( ) ]F FT
q

T T
1 K

Ρ

∆ x

∇ =f MzT ( )0 0

∩ =H z Mnull( ( )) ( )

= 0

F(z)v. 

2. Structural Decomposition  
 The nonlinear mappings, F: ∆ → , with open domain, 

⊆ℜ∆ n+m, open range, Ρ ⊆ ℜn, and F continuously twice 
differentiable, are considered. While this setting is general, 
the particular interest here (and reflected in the examples 
chosen) is in dynamic systems applications where the 
nonlinear mapping might typically be the right-hand side of a 
differential/difference equation 
  ∂x(t) = F([xT(t)   rT (t)] T) (1) 
where the input is r ∈ ⊆ ℜ∆ r

m, the state x ∈ ⊆ ℜn and ∂ 
denotes an appropriate operator; for example, the derivative 
operator d/dt (corresponding to continuous-time dynamics), 
the shift operator q (corresponding to discrete-time dynamics) 
or perhaps some combination of these. 
  The nonlinear dependence of the right hand side of (1) can 
be made explicit by reformulating as 
   (2) F z Az f( ) ( )= + Mz
with z=[xT   rT]T and where A∈ℜn×(n+m), M∈ℜq×(n+m), and f(•) 
is a continuously twice differentiable nonlinear function. The 
decomposition (2), as it stands,  is, of course, not unique but 
uniqueness of the linear term can be imposed without loss of 
generality, for example, by requiring  for 
some . Note, the decomposition (2) can always be 
trivially achieved by choosing A to be any matrix and M the 
identity. However, what is of interest here is to determine a 
decomposition, or class of decompositions, that is minimal. 

z0 ∈∆

 
Definition (minimality):  Let a decomposition for F on 
D⊆ , with D non-empty and open, be defined by ∆
   ∀z∈D (3) F z Az f Mz( ) ( )= +
where M is some matrix. M is said to be of minimal degree 
for F on D when M is of full rank and an alternative choice of 
lower rank satisfying the decomposition for some A and f 
does not exist.   
 
This definition of minimality corresponds to the intuitive idea 
that we would like to choose the rank of M to be as small as 
possible. In order to be useful, a testable condition for 
minimality is required. It is readily verified that the Hessian 
of a linear or affine mapping is identically zero. Indeed, this is 
the basis for common regularisation schemes and Bayesian 
priors. Building on this observation, the following Lemma is 
obtained.  
  
Lemma (minimal decomposition)  Let M be of full rank and 
the decomposition (3) exist then M is of minimal degree for F 
on D if and only if . 

∈z FD
null

  
Proof  Note that H z  whenever Mv . Suppose 

, then there exists a v
F v( ) = 0

≠ Mnull( )

v( )0 0 = 0

∩
∈z FH z

D
null( ( ))

Mv 0 0≠ F

0 such that 

 and H z  .  Since the Hessian 

H

∀ ∈z0 D

F is zero in direction vo on an open set, all higher derivatives 
in this direction also vanish on D.  Hence, ∀ ∈z0 D , ∃ε>0: 
z0+λv0∈D and 

∈[ , ]0 ε
$ ∈ℜλ

$D D⊇ ∀

G z

v v( 0
T)) . )−1

H0 G

(H z ( ( ) )H z vF∇

Fll

M Mv

∩
∈z D

⊕lΨ

F u~( ,≅ ∈ ∩Ψl D

∩nl D ( , ) ~F u v F1

u u

F(z0+λv0)=F(z0)+λ(v )F(z0

T .∇ 0)  ∀λ  

Let { : ,D Dn m= ∈ℜ = + ∈+z z z v z0 0 0λ . The 

domains of F(•) and f(•) are extended to . ∈z $D , 
define F(z)=F(z0)+λ(v 0

T .∇ )F(z0) and f(Mz)=F(z)-Az where 
z=z0+λv0 with z0∈D and λ∈ℜ. With this extension to the 
domain of f, f Mz( ) z D is defined ∀ ∈ , where 

},

M M I v v v v= −( ( )0 0
T

0
-1

0
T )  

Furthermore, 
f Mz f Mz

v z v F z A v v z

( ) = ( ) - )

= (( ( ( . (0
T

0
T

0
T

(

0. ) . ) ( ) ) .∇ −
 

 is affine in z, D∀ ∈z , since 
  ( )  ( )v v z0

T
i

=

( ) ) ( ( ) ) ( )v v v H z v v zF 0
T

F
T

0
T T 0

i i i0 0 0 0+ +  =

Hence, there exists a decomposition (3) for M  but 
rank(M )<rank(M). Consequently, when 
∩ ≠
∈z

H z M
D

null( ( )) (nu ) , M must be non-minimal.  Now, 

suppose M is non-minimal, i.e. ∃ M  such that (3) is satisfied 
for some A and f and rank(M )<rank(M), then 
dim(null( ))>dim(null(M)).  Hence, ∃ v0: 0 0≠ , 
M vF ( ) 0v0=0 and so H z 0= ,  . Consequently, when M is 
non-minimal, 

∀z
∩ ≠
∈z D

null FH z( ( Mnull()) ) .  It follows 

immediately that M is of minimal degree for F on D if and 
only if =FH znull nu( ( )) M( )ll . 

 
 
 
This lemma enables it to be immediately determined whether 
a given matrix M is minimal by inspecting the Hessian HF of 
the mapping F. Further observe that the minimality test is in 
terms of the sub-space null(M) rather than the matrix M 
itself. This is important. Since a non-singular linear 
transformation applied to M can be absorbed into the 
nonlinear function, the mapping f:z∈D→ Ρ , embodied by a 
nonlinear function f(Mz), can be realised by any function 

fT(MTz) with MT=TM and fT=f°T-1. Hence, there does not 
exist a single, unique M that is minimal for mapping F. The 
sub-space null(M) is invariant with respect to such 
transformations. Developing this line of reasoning further, let 
Ψl denote null(M) and Ψnl denote comp(M). It follows from 
(2) that on the domain Ψl∩D the mapping is linear and, 
conversely, when M is minimal the mapping F is nonlinear 
on the domain Ψnl∩D; that is,  and ℜ ≅n+m Ψ

F z v( ) ) , with , z ∈ℜ ∩n+m D u  and 

v ∈Ψ , such that ~( , ) ~ ( ,u v2 )F u u1 2

l D
v+ = +  

when u1 2, , u1 2+ ∈ ∩Ψ . The sub-spaces, Ψl and Ψnl, 
of M embody the linear and nonlinear dependence of the 

nl
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mapping F. It follows from the minimality lemma that these 
sub-spaces are identical for all minimal M and are structural 
invariants of the mapping F. This is formalised by the 
following corollary. 
  
Corollary  (subspace partitioning) Consider the class of 
decompositions (3) with M minimal for F on D.   Let M0 and 
M1 denote any two choices of M, then comp(M0)=comp(M1); 
that is, there exists a unique sub-space Ψnl such that 
comp(M)=Ψnl for any M which is minimal for F. 
 
Proof  From the minimal decomposition lemma, M minimal 
implies that nul ; that is, all minimal M 

possess the same null space.  Since comp(M) is the 
orthogonal complement of null(M), it follows that this is also 
identical for all minimal M. 

l null
D

( ) ( ( )M H
z F= ∩
∈

)z

l

θr

p

 
 
 Consider a set, {zi}, i=1,…,K, of values of the explanatory 
variable, z, sufficiently large and disparate that 
rank( )=dim(ΨHF

K

0,

l), where =[HHF
K

F(z1),…,HF(zK)]T. The 
minimality condition is equivalent to 

. To determine ΨH v vF
K

i i basis{$ $ }= ∀ ∈ Ψ

VF
K ( )θ = 0

l, assuming 
r=dim(Ψl) is known, it is sufficient to determine a value of θ 
such that  where 

V

H z v H z v H z v H z v
F

F F F F

K

T T T
K

T T

( )

[( ( ) $ ( )) ( ( ) $ ( )) , ( ( ) $ ( )) ( ( ) $ ( )) ]

θ

θ θ θ

=

1 1 1 2 1L Lr

 

and { v , i=1…r} is an explicit parameterisation of all the 
sets of r orthonormal vectors. The non-uniqueness of θ is 
immaterial as it is the unique invariant subspace Ψ

$ ( )i θ

l which is 
of interest. 
 
 
3.   Nonlinear Structure Identification 
 
 The structural decomposition analysis in section 2 is 
deterministic. In this section, the extension to the probabilistic 
case with noisy data is considered. Matrices are generically 
full rank and so under noisy conditions the null space of 

 will almost always consist simply of the zero vector.  
Instead, the requirement must be to determine the largest sub-
space within which the range of the estimated Hessian is, in 
some appropriate sense, close to zero (rather than precisely 
equal to zero as in the noise-free case). 

H zF ( )

 It is assumed that the joint probability distribution is 
available for  (for any θ). In the identification context, 
this probability distribution is inferred from a data set, 
X=[x

VF
K( )θ

1,…,xN]T, and so is conditional on the data set. The 
objective is to use this probabilistic description to derive 
relevant information pertaining to the structural 
decomposition into linear and nonlinear components. 
 
Remarks 
(i) An appropriate choice of representation for F(z) could be 
by means of a stochastic process model from which is derived 

a stochastic process model for HF(z)v, for all v,  and, thereby, 
the joint probability distribution for V . (For example, in 
the case of Gaussian stochastic process models, the mean and 
covariance of the Gaussian process model for H

F
K( )θ

F(z)v are 
appropriate derivatives of the mean and covariances of the 
Gaussian process model for F(z) – see Appendix).  It is 
perhaps worth emphasising that this certainly does not require 
differentiation of the raw, noisy data. The latter is, of course, 
highly inadvisable. 
 
(ii) It is important to note that stochastic process descriptions 
do not necessarily require the imposition of a parametric 
model structure. Non-parametric descriptions (e.g. Green & 
Silverman 1994, Neal 1996, Williams 1998) are characterised 
by drawing inferences directly from the measured data using 
smoothness information but without assuming an underlying 
parameterisation. (Various forms of smoothness assumption 
are typically employed: any specific assumption may of 
course be more or less appropriate in a particular application 
context). An example of a non-parametric nonlinear 
description is a Gaussian process prior model: see the 
Appendix. 

3.1 Summarising Nonlinear Dependence in a Region 
 It is again assumed again that r=dim(Ψl) is known. Let 
pX(χ) be the probability density function for X and let 
pV(ω|θ,χ) be the probability density function for  
conditional on θ and χ. The joint probability density function 
for ( , X) is 

VF
K ( )θ

VF
K ( )θ

          p p,V X V X( , | ) ( | , ) ( )ω χ θ ω θ χ χ=  (4) 

and pV,X(0,X|θ) is the likelihood of θ with  and X, 
a specific data set; that is, the likelihood that the 

VF
K ( )θ = 0

$ , ,vi ( ),  i rθ = 1L , are a basis for Ψl. A maximum likelihood 
estimate of the decomposition into linear and nonlinear sub-
spaces, Ψl and Ψnl, is thus provided by any θM for which the 
likelihood pV,X(0,X|θ) is maximal, or equivalently, since 
pX(χ) is independent of θ, pV(0|θ, X) is maximal. 
 
Remark 
Suppose, as is the case for the Gaussian process prior models 
of the appendix, that the joint probability distribution for 

 and X is Gaussian or, more specifically, N(0,Λ) with VF
K( )θ

Λ
Λ Λ
Λ Λ

=
L
NM

O
QP

ωω ωχ

χω χχ
 

then pV(ω|θ,X) = N ( , )ω Ω  with ω Λ  and 

. Consider any two sets of 
orthonormal vectors, 

Λ= −
ωχ χχ

1 X

Ω Λ Λ Λ Λ= − −
ωω ωχ χχ χω

1

$vi ( )θ1

K r⊗

 and , spanning the same 

sub-space. There exist t

$ (vi θ2

$

( )

)

( ) $ (v vi ij
j

jθ θ2
1

1=
=

∑ t
r

VF θ1

ij such that  and, 

hence,  where the ij-th element 
of T is t

)

VF
K I T( ) ( (θ2 = ⊗ KI ))

ij. Since T is clearly non-singular, 
pV(0|θ1,X)= pV(0|θ2,X) 
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and the non-uniqueness of θM is again immaterial. 
 
 As the variance of the measurement noise increases, so do 
the variances for the posterior probability distributions. It is 
important to test the statistical significance of any inference 
made on the basis of the data. A suitable test statistic is 
discussed below.  Let pX(χ |ω,θ) be the probability density 
function for the data set conditioned on ω and θ. The 
confidence in the estimated decomposition into Ψl and Ψnl 
can be assessed by the generalised likelihood ratio test; 
specifically, with θ=θM, the relative tenability for the data set 
of the hypothesis ω=0 and the hypothesis ω  is compared. 
The test statistic is 

≠ 0

η =

=

p p

p
p

p
p

M M

M

M

M

M

X X

V

V

V

V

X X

X X

( | , ) / max ( | , )

( | , )
( | )

max
( | , )

( | )
/

0

0
0

θ ω

θ
θ

ω θ
ω θ

ω

ω

θ

 

For data of reasonable quality, the variance of pV(ω|θΜ, X) is 
much less than the variance pV(ω|θΜ) and, in the vicinity of 
its maximum, its value is more variable. In these 
circumstances, 

η η= ≈p pM MV VX X( | , ) / max ( | , )0 θ ω θ
ω

 

is a suitable alternative test statistic. 
  
Remark 
For the same situation as in the previous remark, when 
dim(Λχχ) ≤ dim(Λωω), 
− = −

=

− −

− − − − −

2 1 1

1 1 1 1 1

ln( ) ( )

( ) ( )

η X XT

T

Λ Λ Λ Λ

ω Ω Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ ω

χχ χω ωω ωχ

ωχ χω ωω ωχ χχ χω ωω ωχ χω ωω
−1

 

and, when dim(Λχχ) ≥ dim(Λωω), 
− = −

=

− − − − −

− − −

2 1 1 1 1 1

1 1 1

ln( ) ( ) ( )

( )

η XT

T

Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ

ω Ω Λ Λ Λ Λ ω
χχ χω ωω ωχ χω ωχ χχ χω ωχ χχ

ωω ωχ χχ χω

max ( | ) ( | )
ω

ω θ

X

Clearly, in both cases, the test statistic, -2ln(η), is the same 
for all possible θM spanning Ψl. Since the means of the 
probability distributions of the Gaussian process prior model 
considered here are zero, θp pM MV V= 0  and 

− = −2 1ln( )η ω Ω ωT  is a more conservative test statistic than 
-2ln(η). For data of reasonable quality, a rejection criterion 
with significance level α for the hypothesis ω=0 is, thus, 

− ≈ − >2 2 2ln( ) ln( ) ( )η η χ rK α  
 

 Assuming that the dimension of Ψl is known, a set of 
orthonormal vectors for which the likelihood, p(0,X|θ), is 
maximal provides an estimate of the basis for the linear sub-
space, Ψl. An estimate of the nonlinear sub-space Ψnl is 
obtained as the orthogonal complement of Ψl. When the 
dimension of Ψl is not known, the dimension of Ψl may be 
sequentially increased and its basis re-estimated. Let Ψ  
denote the estimated sub-space of dimension i and let Ψ

l
i

l and 
Ψnl denote the true linear and nonlinear sub-spaces. It follows 
that the dimension of Ψl is m+n-q, where q is the dimension 
of Ψnl.  It must be that ≠{0} for i>m+n-q. 

Consequently, as i is increased beyond the true dimension 
m+n-q, the value of η can be expected to abruptly decrease 
(since H

Ψ Ψl
i

nl∩

F(z)v≠0 ∀ ∈v

Ψnl
i-1

basis{Ψnl}) and, consequently, the 
dimension can be inferred from the data. 

l

)

i

( )H zF F

i

 In the above sequential estimation approach the re-
estimation of Ψl at each step can be implemented efficiently 
by making use of the previous estimate, Ψ , when 
estimating . The procedure is the following: search for the 
direction within , the orthogonal complement of Ψ , 
along which H

l
i-1

Ψl
i

l
i−1

F(z)v is most likely to be zero. Letting vi  
denote this direction, Ψ  is then obtained as span(i Ψl

i ⊕ vi ). 
This leads to the following algorithm (expressed in terms of 
matrices, Vi and Mi, whose columns form orthonormal basis 
for  and Ψ , respectively, such that Ψ Ψ ). Ψl

i
nl
i

nl
i

l
i∩ = { }0

 
Iterative Estimation Procedure 
1. Let i=1, Ψnl

i=ℜn+m. 
2. Determine the most likely unit direction v , lying within 

the current estimate,Ψ
i

)
nl

i, of the nonlinear subspace; that is, 
with  defined using VF

K (θ $ (v θ  an explicit 
parameterisation of all unit vectors in Ψnl

i, the unit vector, 
$ ( )v θ , which maximises the likelihood pV,X(0,X|θ).  

Letting the columns of Mi be an orthonormal basis 
spanning Ψnl

i, then v  may be parameterised as M$ ( )θ iλ 
and the maximisation of pV,X(0,X|θ) can be formulated as 
an  optimisation in  the elements of the vector, λ. 

3. Let the columns of Vi be an orthonormal basis spanning 
null(Mi) and Vi+1=[Vi | v i ].  Let the columns of Mi+1 be an 
orthonormal basis spanning null(Vi+1), then the columns 
of Mi+1 are also an orthonormal basis of Ψnl

i+1.  A 
diagnostic for the validity of updating the sub-space, Ψnl

i, 
to Ψnl

i+1 is the test statistic, η, evaluated with the 
orthonormal set of vectors defining V  chosen to be 
the single vector, 

F
K

M(θ
v . 

)

4. If i<n+m then i=i+1, go to 2. 
 
(i) Dimension of the minimal sub-space.  
 In step (2), η can be expected to abruptly decrease when 
the rank of Mi becomes less than the dimension of the 
minimal nonlinear subspace.  Such a transition can be utilised 
to estimate the dimension, q, of the minimal nonlinear 
subspace.  Transitions can, of course, be obscured by noise 
but the validity of a choice of dimension, q, can be further 
assessed/confirmed using the pointwise estimation methods 
discussed in section 4 below. 
(ii) Special case enabling simplified procedure.  
 Assume that 
E E Ei m i m j n j n

T
mn[( [ ])( [ ]) ]( ) ( ) ( )H z e e H z e H z eF F− − ∝ Iδ

z v H z vF F F= [( ( ) $ ) ( ( ) $ ) ]1 i
T

i
T TL K

i

where the jth component of the vector, ei, is δij. It follows that, 
Λ, the covariance of h H , is 
independent of $v . Since Λ is, by definition, positive definite, 
Λ-1 can be decomposed as RTR, and 
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     (5) 
− ∝ +

= +

−ln ( | , ) | |

| |

p   lo

 log

V F F

F F

X h h

h R R h

0 1θ Λ

Λ

E E

E E

T

T T

i i

i i

d i d i
d i d i

g Λ

Λ
Hence, 
   (6) − ∝ +ln ( | , ) $ $ log| |p  V X0θ v W WvT

i
T

i

with . (This is available 
under the assumption that the joint probability distribution for 

 is available for any θ). Since log |Λ| is constant it 
does not affect the minima of .  The minimum 
under the constraint that v basis{null(M)} can be expressed 
in closed-form: letting the singular value decomposition of W 
be W=U

VF
K

M(θ

$
i ∈

−ln ( | , )pV X0θ
$

i ∈

TΣU, it follows immediately that (6) is minimised 
with v basis{null(M)} when M=Uq, where Uq is the matrix 
consisting of the first n+m-q rows of U.  This can be 
calculated very efficiently.  More generally, this value can be 
used to initialise the optimisation in the iterative procedure 
above. 

W R H H=  E K
T[ ( ) ( )]F Fz z1 L

)

n )

 
3.2 Examples 
(i) Consider the nonlinear dynamic system 
   (7) y t G tn( ) . ( ( )+ =1 05 ρ M =  

where G(ρ)=tanh(ρ)+0.01ρ and ρ=r-y. The plant output in 
response to a Gaussian input with mean zero and variance 3 
units is measured and 300 data points collected.  Gaussian 
white noise of standard deviation 0.1 units is added to the 
output measurement (the underlying signal has a peak 
magnitude of 0.5, so this represents a substantial level of 
noise). 
 The measured data, together with the corresponding 
predicted fit from a non-parametric Gaussian process prior 
model of this data, are illustrated in figure 1a (explanatory 
variables are (r(tn),y(tn)) and model output is y(tn+1)). The 
change in )2ln(η−  as the dimension of the nonlinear sub-
space is reduced is shown in Table 1.  It can be seen that, as 
expected, the cost rises abruptly when the dimension falls 
below unity; that is, the dimension of the minimal nonlinear 
sub-space. The estimated basis, M, of the minimal nonlinear 
subspace is [0.697  -0.717]; that is, ρ is estimated to be 
0.697r-0.717y.  Subject to an arbitrary normalisation factor, it 
is evident that the identification procedure successfully infers 
the nonlinear dependence of the plant dynamics. 
 This example is, of course, simple having been selected to 
be low order to enable results to be readily visualised.  
Nevertheless, it should be noted that working directly in 
terms of the explanatory variables r and y requires the 
development of a model of the two dimensional mapping 
relating (r(tn),y(tn)) to y(tn+1); for example, a radial basis 
function (RBF) model (e.g. see Bishop 1995) with 10 centres 
per axes has 100 centres in total and 200 parameters.  
Inference of the scalar nature of the nonlinear dependence 
during initial data exploration allows the task to be simplified 
to modelling a one dimensional mapping only: an RBF model 
with 10 centres per axes now has 10 centres in total and 20 
parameters.  Hence, even in the case of a simple system the 
benefits of dimensionality reduction stemming from the 

identification of the nonlinear structure are potentially 
considerable.   
 
(ii) Consider the Wiener-Hammerstein nonlinear system 
illustrated in figure 1b.  Reformulating the dynamics in terms 
of the measured variables (input, r, and output, y) yields 
  y tn( ) . .= +0 3 01651

3
2
3r r

where ρ with = − − −M r t r t r t r tn n n n
T( ) ( ) ( ) ( )1 2 3

 M =
L
NM

O
QP 

0.9184 0.3674 0 0
0 0 0.9184 0.3674

              

and ρi, i=1,2 denotes the ith element of vector ρ. The plant 
output in response to a Gaussian input is measured: data is 
collected for 15 seconds with a sampling interval of 0.1 
seconds (150 data points). A non-parametric Gaussian 
process prior model is used with explanatory variables [r(tn) 
r(tn-1) r(tn-2) r(tn-3)]T and model output y(tn).  The change in the 
test statistic, –2ln(η), as the dimension of the nonlinear sub-
space is varied indicates that a minimal nonlinear subspace of 
dimension two.  The associated estimate of the nonlinear 
dependence is 

 $ L
NM

O
QP

0.9292 0.3694 -0.0008 0.0018
-0.0015 0.0040 0.9282 0.3719

             

The estimate evidently agrees well with the true nonlinear 
dependence, particularly in view of the small number of data 
points on which it is based (150 points from a four 
dimensional mapping). 

 
Remark Wiener-Hammerstein systems form an important 
class and the identification of such systems remains a 
challenging problem in its own right.  Consider the 
transversal Wiener-Hammerstein system 
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d i
Reformulating the dynamics in terms of the input, r, and   
output, y yields 

y b f b fm m o= + ++ρ ρ1 1b g b... g  
where 

 ρ =

L

N

MMMM

O

Q

PPPP
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− − −
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q r
q r

r

n o

n o

n o

n m

n m

L L

L L

O

L L

M

0 0
0 0 0

0 0

1

  (8)

and ρi, i=1..m+1 denotes the elements of vector ρ.  (Note, 
when a coefficients bi is zero, the corresponding row in (8) is 
deleted and the dimension of ρ correspondingly reduced, see 
above example).  Using the delayed inputs as explanatory 
variables, and assuming that the overall order of the system is 
known (this might be inferred in an iterative manner), it can 
be seen that the nonlinear dependence has a specific block 
diagonal structure.  By inspection, the coefficients, ai, of the 
input filter and the delay taps of the output filter can be 
directly inferred.  As one of the main task with Wiener-
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Hammerstein systems is identifying the partitioning into input 
and output filters, identification of the remaining system 
elements is now relatively straightforward.  Specifically, once 
the input filter is known, the output filter can be inferred from 
the transfer function of the linearisation about any 
equilibrium point and the system nonlinearity then directly 
estimated.   
 
4. Locally Validating Nonlinear Dependence in a Region 
 The foregoing methods developed for summarising the 
nonlinear dependence in a region can be immediately applied 
to summarise the nonlinear dependence locally to a single 
point.  By studying the local nonlinear dependence at a 
number of points drawn from a region of interest, D, the 
validity of the regional estimate of the minimal nonlinear 
subspace can be assessed in a fairly direct manner.  
Specifically, for any function (3) we have that 
(i)    (ii)dim( ( ( ))) dimnull H zF ≥ lΨ ∩ =

∈z FH z
D lnull( ( )) Ψ  

 
Typically (but not always), the dimension of the null space of 
the Hessian HF(z) is greater than that of ψl only for a set of 
points of measure zero in D. Almost everywhere the 
dim(null(HF(z))) is uniformly equal to dim(ψl) with 
null(HF(z)) necessarily equal to ψl.  Consequently, good 
agreement between the local nonlinear dependencies and the 
regional estimate provides a degree of confidence that the 
nonlinear dependence is well summarised. Conversely, if, for 
example, it appears that the domain can be decomposed into 
sub-regions each exhibiting consistently different local 
nonlinear dependence, this might indicate limitations in the 
use of a single summary of the nonlinear dependence over the 
region. 
 
Remark It is important to note that the regional estimate for 
the basis of Ψl is equivalent to the mean of the pointwise 
estimates over the region of interest (owing to the correlation 
that generally exists between the pointwise estimates). 
  
4.2 Examples 
 (i) Returning to the system, (7), considered in section 3.3 
above, figure 2a shows the variation in pointwise test statistic, 

)2ln(η− , with respect to the dimension of the nonlinear sub-
space at 50 operating points selected uniformly from the 
domain covered by the measured data. (In this case, the 
rejection criterion, , is 9.21 for the dimension of 
Ψ

χ rK
2 0 99( . )

nl being 0 and 6.63 for the dimension being 1). It can be 
seen that, in accordance with the previous results, the test 
statistic rises abruptly when the dimension falls below unity.  
The corresponding estimates of M, a basis for the minimal 
nonlinear sub-space estimated at each point are shown in 
figure 2b.  Evidently, the pointwise estimates are in good 
agreement with the overall regional estimate of the nonlinear 
dependence, indicating that ρ equals r-y, and this helps give 
some confidence in the regional estimate. 
(ii) Consider a system also of the form (7) but with ρ equal to 
r-sin(ay)/a, and a=1.  For values of y close to zero, sin(ay)/a is 
nearly linear in y and this system accurately approximates the 

previous system for which ρ=r-y.  However, when a wider 
region is considered, the distinction between the two systems 
can be expected to become more noticeable as the impact of 
the difference in dimension of the nonlinear sub-spaces when 
ρ=r-y and ρ=r-sin(ay)/a (dimension one and dimension two, 
respectively) becomes significant. A lower level of 
measurement noise, with standard deviation 0.01 units, is 
used in this example so as to avoid obscuring the fine detail 
of the plots, particularly Figure 3a. Applying the techniques 
developed in section 3, and using the domain considered in 
Example (i), the estimate of the basis, M, of the minimal 
nonlinear subspace is  [0.756 -0.655 ]. When the input and 
initial conditions are now constrained such that the data is 
confined to a region close to the origin, the corresponding 
estimate of M becomes  [0.708  -0.703].   The latter agrees 
well with the results for Example (i), as expected.  However, 
the results for the larger region provide little insight into the 
nature, or degree, of the difference between the system in 
Example (i) and that considered here. 
 With regard to gaining insight into the differences 
between these systems, consider the pointwise estimates of 
the local nonlinear sub-space as shown in Figure 3a.  This 
plot uses more data points than the previous plots in order to 
reveal the detailed structure of the variation in the pointwise 
estimates across the domain. Measurement noise generally 
results in uncorrelated variations in the pointwise estimates 
across the domain, while a strong spatial correlation is 
evident between the estimates in Figure 3a.  This structure is 
visually quite striking, particularly when compared with the 
corresponding plot for the system in Example (i). In the 
vicinity of the line y=0, the pointwise estimates of M agree 
well with those for the system of Example (i); this is not 
unexpected since, as noted previously, sin(ay)/a is nearly 
linear for small y and so the nonlinear dependence is locally 
similar near to this line. As the parameter, a, is decreased the 
pointwise estimates of M become more like those observed in 
Example (i); for example, the pointwise estimates obtained 
for a=0.1 are shown in Figure 3b.  This is in accordance with 
the fact that sin(ay)/a →y as a→0 and thus ρ→r-y as in 
Example (i).  Detailed diagnostic analysis of pointwise 
estimates beyond the simple observations noted above is not 
pursued further here as it is not essential in the present 
context.  That the correct dimension of ρ has been identified, 
or not, is validated by the uniformity, or otherwise, of the 
pointwise estimates and this example illustrates that pointwise 
estimates thereby provide a useful tool for validation. 

5. Conclusions 
 This paper investigates new ways of inferring nonlinear 
dependence from measured data.  The existence of unique 
linear and nonlinear sub-spaces, that are structural invariants 
of general nonlinear mappings, is established and necessary 
and sufficient conditions determining these sub-spaces are 
derived. The importance of these invariants in an 
identification context is that they provide a tractable 
framework for minimising the dimensionality of the nonlinear 
modelling task.  Specifically, once the linear/nonlinear sub-
spaces are known, by definition the explanatory variables 
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may be transformed to form two disjoint sub-sets spanning, 
respectively, the linear and nonlinear sub-spaces.  The 
nonlinear modelling task is confined to the latter sub-set, 
which will typically have a smaller number of elements than 
the original set of explanatory variables.  A constructive 
algorithm is proposed for inferring the linear and nonlinear 
sub-spaces from noisy data and its application is illustrated in 
a number of simple examples (as the focus of the present 
paper is on theoretical issues, large scale applications are not 
pursued here).  Algorithms for inferring pointwise sub-space 
estimates are proposed and the use of pointwise estimates for 
validating regional estimates of nonlinear dependence is 
demonstrated. 
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Appendix – Non-parametric Gaussian process priors 
 

Consider a smooth function f(.) dependent on the 
explanatory variable, z∈ ⊆ .  To avoid cumbersome 
notation, f is scalar (the generalisation to vector functions is 
straightforward). Suppose N measurements, l , of 
the value of the function with additive Gaussian white 
measurement noise, i.e. y

ℜD p

( , )z i i i
Ny q =1

i=f(zi)+ni,  are available and denote 
them by M.  It is of interest here to use this data to learn the 
mapping f(z) or, more precisely, to determine a probabilistic 
description of f(z) on the domain, D, containing the data. 
Note that this is a regression formulation and it is assumed the 
input z is noise free1. 

 The probabilistic description of the function, f(z), adopted 
is the stochastic process, f , with the E[fz

D

z ], as z varies, 
interpreted to be a fit to f(z). By necessity, to define the 
stochastic process, fz, the probability distributions of f  for 
every choice of value of z∈  are required together with the 
joint probability distributions of f  for every choice of finite 
sample, {z

z

zi

1,…,zk}, from D, for all k>1. Of course, the joint 
probability distributions of lower dimensionality must be the 
marginal distributions of those of higher dimensionality. 
Given the joint probability distribution for f , i=1..N, and the 

joint probability distribution for , i=1..N, the joint 
probability distribution for , i=1..N, is readily obtained 
since the measurement noise, n

zi

ni

i

yi

i, and the f(zi) (and so the f ) 
are statistically independent. M is a single event belonging to 
the joint probability distribution for , i=1..N. 

zi

y
 In the Bayesian probability context, the prior belief is 
placed directly on the probability distributions describing fz 

which are then conditioned on the information, M, to 
determine the posterior probability distributions.  In 
particular, in the Gaussian Process prior model considered 
here, it is assumed that the prior probability distributions for 
the  are all Gaussian with zero mean (in the absence of any 
evidence the value of f(z) is as likely to be positive as 
negative). To complete the statistical description, requires 
only a definition of the covariance function 
C(f ,f )=E[f ,f ], for all z

fz

zi z j zi z j
i and zj. The resulting posterior 

probability distributions are also Gaussian. The Gaussian 
assumption may seem strangely restrictive initially, but recall 
that this is simply a prior on the relevant stochastic process 
space and so places few inherent restrictions on the class of 
nonlinear functions that can be modelled.  Indeed, it can be 
shown that the result is, in fact, a Bayesian form of kernel 
regression model (Green & Silverman 1994) subsuming, 
amongst others, RBF, spline and many neural network 
models (Williams 1998). The Gaussian process prior model is 
non-parametric in the sense that the imposition of a specific 
parametric structure is avoided. This model is used to carry 
out inference as follows.  

                                                           
1No attempt to being made here to propagate a Gaussian or 
other distribution through a nonlinear function. 

 Clearly p f M p f M p M( | ) ( , ) / ( )z z=  where p(M) acts as a 
normalising constant.  Hence, with the Gaussian prior 
assumption, 

 p f M f
fT

( | ) expz z

zY
Y

  ∝ −
L
NM

O
QP
L
NM
O
QP

L
N
MM

O
Q
PP

−

1

2
11

22

1

21

21

T Λ Λ

Λ Λ
 

where , ΛY = [ , , ]y yN

T

1 L

yi z

11 is C(f ,f ), the ijz

y j

z
th element of 

the covariance matrix Λ22 is C( , ) and the iyi
th element of 

vector Λ21 is C( ,f ).  Both Λ11 and Λ21 depend on z.  
Applying the partitioned matrix inversion lemma, it follows 
that 

 p f M f f f f( | ) exp ( $ ) ( $ )z z z z

-

z z,   ∝ − − −L
NM

O
QP

1

2
Λ 1   

with .  Therefore, the 
prediction from this model is that the most likely value of 

$ ,f T
z zY=

−
= −

−Λ Λ Λ Λ Λ21 22
1

11 21 22
1

21 Λ Λ T

f( )z is the mean, $f , with variance Λz

21 22

1T −

z. Note that $f  is simply a 
z-dependent weighted linear combination of the measured 
data points, Y, using weights Λ Λ . 

z

 The measurement noise, ni, has covariance nδij and is 
statistically independent of f(zi). Hence, the covariances for 
the measured output, yi, are simply 
 C(yi,yj) = (C(f ,f )+ nδzi z j

ij) ; C(yi, fz) = C(f , fzi
z)   

 In addition, assume that the related stochastic process, 
, where f f  and efz

eiδ f
iz

e
z e z

δ
δ δi = −+( ( )

z
e i

z
e

) / i is a unit basis vector, 
is well-defined in the limit as δ → , i.e. all the necessary 
probability distributions for a complete description exist. 
Denote the derivative stochastic process, i.e. the limiting 
random process, by f . The E[f ] as z varies is interpreted 

as a fit to 

0

i

∂

∂

f

zi

( )z  when the partial derivative of f(z) in the 
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direction ei exists.  Provided the covariance C(f ,f ) is 
sufficiently differentiable, it is well known (O’Hagan 1978) 
that  f  is itself Gaussian and that 

zi z j

z
e i

f[ z
e

z
e

0 1

i

( ,

yi j( ,

]

α

α

k , ))γ

  E f  (9) 
z

h h
i

f f[ ] ( ) ; ( ) [z
e z zi =

∂

∂
= zE f ]

βδ

where zi denotes the ith element of z ; that is, the expected 
value of the derivative stochastic process is just the derivative 
of the expected value of the stochastic process.  Furthermore, 
  E f  (10) C C E f fi j f f] ( , ) ; ( , ) [ z z

j z z z z
0 1

1 2

0 1 0 1= ∇ ∇ =

where Q(z∇ i
1

o,z1) denotes the partial derivative of Q(zo,z1) 
with respect to the ith element of its first argument,  etc. 
 The above procedure can be repeated to construct second 
derivative stochastic processes. The means and covariances 
can be determined by recursive application of (9) and (10). 
 In the examples discussed in sections 3 and 4 of this 
paper, a straightforward smoothness prior covariance function 
is used which ensures that measurements associated with 
nearby values of the explanatory variable should have higher 
covariance than more widely separated values of the 
explanatory variable; specifically, 

C f f
i j i k j k k

k k

) exp /z z = − −
L
NM

O
QP∑γ z zb g d ie j

2
2       (11) 

where (zi)k denotes the kth element of vector zi.  The value of 
αk characterises the rate of variation of the function in 
dimension k, thereby, estimating the degree of nonlinearity or 
the relative smoothness in different directions of the 
explanatory variable. The corresponding covariance for yi is 

 C y     (12) i k j k k
k

ij) exp /= −L
NM

O
QP +−∑γ z zb g d ie j

2
2

The parameter β is the variance of the measurement noise, n, 
on the output.  To obtain a model given the data, M, the 
hyperparameters (β, αk, γ), whilst constrained to be positive, 
are adapted to maximise the likelihood p M( | ( ,β α . The 
covariance function, (11), is sufficiently smooth for the 
derivative and second derivative stochastic processes to be 
well-defined and the relations (9) and (10) to apply (O’Hagan 
1978).  
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Dimension of Ψnl )2ln(η−  χ rK

2 (0.99)  
2 
1 
0 

0 
99.92 

5963.46 

- 
360 
684 

 
Table 1  )2ln(η− vs dimension of Ψnl in Example (i) of 
section 3.2.  
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Figure 1a Measured data (+) and associated Gaussian 
Process model in Example (i) of section 3.3.  
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Figure 2b Point estimates of M (Example (i) of section 4.2). 
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Figure 3a Point estimates of M in Example (ii) of section 4.2 
with a=1. 
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Figure 3b Point estimates of M in Example (ii) of section 4.2 
with a=0.1. 
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