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Background: Hamstring strain injuries are the most common injuries in team sports. Biceps femoris long head architecture is
associated with the risk of hamstring injury in soccer. To assess the overall predictive ability of architectural variables, risk factors
need to be applied to and validated across different cohorts.

Purpose: To assess the generalizability of previously established risk factors for a hamstring strain injury (HSI), including demograph-
ics, injury history, and biceps femoris long head (BFlh) architecture to predict HSIs in a cohort of elite Australian football players.

Study Design: Cohort study; Level of evidence, 3.

Methods: Demographic, injury history, and BFlh architectural data were collected from elite soccer (n = 152) and Australian foot-
ball (n = 169) players at the beginning of the preseason for their respective competitions. Any prospectively occurring HSIs were
reported to the research team. Optimal cut points for continuous variables used to determine an association with the HSI risk
were established from previously published data in soccer and subsequently applied to the Australian football cohort to derive
the relative risk (RR) for these variables. Logistic regression models were built using data from the soccer cohort and utilized
to estimate the probability of an injury in the Australian football cohort. The area under the curve (AUC) and Brier score were
the primary outcome measures to assess the performance of the logistic regression models.

Results: A total of 27 and 30 prospective HSIs occurred in the soccer and Australian football cohorts, respectively. When using
cut points derived from the soccer cohort and applying these to the Australian football cohort, only older athletes (aged �25.4
years; RR, 2.7 [95% CI, 1.4-5.2]) and those with a prior HSI (RR, 2.5 [95% CI, 1.3-4.8]) were at an increased risk of HSIs. Using
the same approach, height, weight, fascicle length, muscle thickness, pennation angle, and relative fascicle length were not sig-
nificantly associated with an increased risk of HSIs in Australian football players. The logistic regression model constructed using
age and prior HSIs performed the best (AUC = 0.67; Brier score = 0.14), with the worst performing model being the one that was
constructed using pennation angle (AUC = 0.53; Brier score = 0.18).

Conclusion: Applying cut points derived from previously published data in soccer to a dataset from Australian football identified
older age and prior HSIs, but none of the modifiable HSI risk factors, to be associated with an injury. The transference of HSI risk
factor data between soccer and Australian football appears limited and suggests that cohort-specific cut points must be
established.
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Hamstring strain injuries (HSIs) are the most common
injuries in team sports such as soccer5,6,10 and Australian
football,15 lead to reduced performance after return to
play,27 and pose a significant financial burden for athletes
and their sporting organizations.11 As such, identifying

factors that increase the risk of an HSI has been the focus
of ongoing research. Indeed, 2 of the most consistently
identified risk factors are older age and a prior HSI, both
of which are nonmodifiable.8 Recent work has focused on
identifying modifiable factors that could be targeted via
an intervention to potentially mitigate the risk of future
HSIs. Among this work, a study conducted in elite soccer
players reported that athletes with biceps femoris long
head (BFlh) fascicles shorter than 10.56 cm were approxi-
mately 4 times more likely to sustain a prospective HSI
than their counterparts with ‘‘longer’’ fascicles.24 However,

The American Journal of Sports Medicine
2021;49(13):3687–3695
DOI: 10.1177/03635465211041686
� 2021 The Author(s)

3687

http://crossmark.crossref.org/dialog/?doi=10.1177%2F03635465211041686&domain=pdf&date_stamp=2021-09-30


this cut point was determined retrospectively from the
data to which it was ultimately applied. While such an
approach is commonly used to establish associations
between factors and the risk of an injury, its use to identify
the risk of injuries at an individual level requires further
validation.

To determine the predictive ability of injury risk factors,
Bahr1 proposed a 3-step process. First, a risk factor and its
associated cut point must be established in a specific cohort.
Subsequently, the generalizability of risk factors and their
cut points must be validated in separate cohorts (whose
data were not used to determine the cut point). The final
step is to conduct randomized controlled trials to test the
effectiveness of a combination of risk factor screening (based
on data generated from the first 2 steps) and interventions
targeted at those deemed ‘‘at risk.’’ It should be noted that
the framework outlined by Bahr1 specifically relates to the
application of dichotomized risk factor data (cut points
used to assign high- and low-risk groups), and while this
is an appropriate series of steps to determine the utility
and generalizability of risk factors, it does not directly
assess the predictive performance of continuous variables.
Bahr1 further stated that the eventual goal of injury predic-
tion is the successful development of a screening tool. As an
extension of the Bahr1 framework, techniques such as logis-
tic regression, which establish univariate and multivariate
models to estimate the probability of future (hamstring
strain) injuries, can be used to assess the performance of
factors associated with future HSIs to predict injury occur-
rence at the individual level. While logistic regression is
a commonly employed statistical approach, there is a dearth
of work in sports injury research that has developed logistic
regression models in one cohort and then applied these mod-
els to a separate cohort in a different sport. The addition of
a separate cohort is necessary for the theoretical screening
tool that is proposed by Bahr,1 who further suggested that
such tools need to be validated in all cohorts that could
use the tool. Such an approach would allow for a more thor-
ough understanding of the generalizability of factors that
may be associated with future HSIs across cohorts.23

Despite architectural characteristics of the BFlh being
associated with the risk of future HSIs in elite soccer play-
ers, no research has investigated the generalizability of
these risk factor cut points when applied to a separate
cohort, nor has the predictive ability of these data in
another cohort of athletes from a different sport been
determined. Accordingly, this study aimed to assess the
ability of BFlh architecture, in conjunction with age and

prior injury (which are previously established cut points
determined in elite soccer players), to identify the risk of
HSIs in elite Australian football players at both a group
level and an individual level. We hypothesized that previ-
ously established cut points for HSI risk factors derived
from BFlh architectural, age, and prior HSI data in soccer
players would be associated with an HSI in Australian
football players.

METHODS

Study Design

Data for this prospective cohort study were collected during
the 2014-2015 A-League season and the 2018 Australian
Football League (AFL) season. The A-League and the AFL
are the premier competitions in Australia for soccer and
Australian football, respectively. For both cohorts, demo-
graphic (age, height, weight), injury history, and BFlh
architectural data were collected at the beginning of the
preseason periods (soccer cohort: June 2014; Australian
football cohort: November 2017). Any prospectively occur-
ring HSIs throughout the preseason and in-season periods
(excluding finals) of both leagues (soccer cohort: June
2014–May 2015; Australian football cohort: November
2017–August 2018) were reported to the research team;
these included injuries incurred in training or in match
play. Data collected during the 2014-2015 A-League season
have been previously published.24 Ethical approval for the
collection of both datasets was granted by the Australian
Catholic University Human Research Ethics Committee
(No. 2014-26V [soccer dataset] and No. 2017-208H [Austra-
lian football dataset]).

Participants

A total of 321 athletes (152 soccer players from 9 teams;
169 Australian football players from 4 teams) provided
informed consent to participate before data collection.
The age (years), height (cm), and weight (kg) of each ath-
lete were provided at the beginning of the preseason period
for both cohorts. Additionally, team medical staff com-
pleted a retrospective injury questionnaire that reported,
in a binary manner (yes/no), each athlete’s history of ham-
string injuries in the past 12 months as well as the history
of anterior cruciate ligament injuries at any stage through-
out the athlete’s career.
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BFlh Architectural Assessment

The collection of BFlh architectural characteristics of both
cohorts was undertaken as previously reported.12,16-18,24

Muscle thickness, pennation angle, and fascicle length of
the BFlh were determined from images taken along the lon-
gitudinal axis of the muscle belly utilizing 2-dimensional B-
mode ultrasound (frequency: 12 MHz; depth: 8 cm; field of
view: 14 3 47 mm) (Vivid i; GE Healthcare). The scanning
site was determined as the halfway point between the
ischial tuberosity and the knee joint fold along the BFlh.
All architectural assessments were performed with partici-
pants in a relaxed, prone position with the hips in neutral
and knees fully extended. To gather ultrasound images,
the linear array ultrasound probe, with a layer of conductive
gel, was placed on the skin over the scanning site, aligned
longitudinally and perpendicular to the posterior thigh
with the hips in normal unrestrained rotation. Care was
taken to ensure that minimal pressure was placed on the
skin by the probe and the operator. Finally, the orientation
of the probe was manipulated slightly by the operator to
optimize fascicle identification. Ultrasound image analysis
was undertaken offline (MicroDicom version 0.7.8). For
each image, 6 points were identified as described by Kellis
et al.13 Muscle thickness was defined as the distance
between the superficial and intermediate aponeuroses of
the BFlh. The fascicle of interest, which was the clearest
and could be seen across the entire field of view, was out-
lined and marked on the image. The angle between this fas-
cicle and the intermediate aponeurosis was defined as the
pennation angle. The angle of the superficial and intermedi-
ate aponeuroses was determined as the angle between the
line marked as the aponeurosis and an intersecting horizon-
tal reference line input across the captured image. Fascicle
length was determined as the length of the outlined fascicle
between the aponeuroses. As the entire fascicle was not vis-
ible in the probe’s field of view, it was estimated via the fol-
lowing validated equation25:

FL 5 sin AA 1 908
� �

3 MT=sin 1808 � AA 1 1808 � PA
� �� �

;

where FL is fascicle length, AA is aponeurosis angle, MT is
muscle thickness, and PA is pennation angle. Fascicle
length was reported in absolute terms (cm) and relative
to muscle thickness (the quotient of the fascicle length
and muscle thickness). All BFlh architectural assessments
and analyses were conducted by the same operator (R.G.T.)
with published reliability (intraclass correlation coefficient
range = 0.95-0.99; typical error range = 2.1%-3.4%).25 The
extrapolation technique and equation have been validated
against cadaveric tissues.13

Prospective HSI Data

A prospective HSI was defined as acute pain in the poste-
rior thigh that resulted in the cessation of activity. Each
injury was confirmed by a clinical examination conducted
by the medical officials (ie, physical therapist, doctor) of
each club. Club medical officials subsequently provided
the research team with a medical report detailing the
injured limb, the location and mechanism of the injury,
and the number of days taken to return to full match
availability.

Statistical Analysis

Differences between the 2 cohorts were assessed using an
independent t test. After this, using the soccer cohort’s
dataset, receiver operating characteristic curves were uti-
lized to determine optimal cut points for continuous varia-
bles. These cut points were established as the value that
maximized the difference between sensitivity and 1 – spec-
ificity, as described in the original work.24 All cut points
derived from the soccer cohort were then applied to the
Australian football cohort to determine relative risks
(RRs), the associated 95% CIs, and sensitivity and specific-
ity. As a prior HSI is a dichotomous variable, the cut point
used to determine the RR of future HSIs in the Australian
football cohort was determined by comparing those with
and without a history of HSIs. All variables included in
the RR analyses can be found in Table 1. A RR was deemed

TABLE 1
Variables Used to Determine the RR and to Build Univariable and Multivariable Logistic Regression Modelsa

RR Univariable Logistic Regression Model Multivariable Logistic Regression Model

Age Age Age and prior HSI
Prior HSI Prior HSI Age, prior HSI, and fascicle length
Height Fascicle length Age, prior HSI, and pennation angle
Weight Pennation angle Age, prior HSI, and relative fascicle length
Fascicle length Relative fascicle length All variablesb

Muscle thickness
Pennation angle
Relative fascicle length

aAll architectural variables (fascicle length, muscle thickness, pennation angle, and relative fascicle length) were derived from the biceps
femoris long head. No interaction terms were included in any of the models. HSI, hamstring strain injury; RR, relative risk.

bAll variables (age, prior HSI, height, weight, fascicle length, muscle thickness, pennation angle, and relative fascicle length) were
included in a stepwise regression model. The final model was built using the subset of variables that minimized the model’s Akaike infor-
mation criterion.
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to be significant when the 95% CI did not cross 1.0. After
the determination of RR, univariable and multivariable
logistic regression models were built using the soccer data-
set and then subsequently applied to the Australian foot-
ball dataset to assess the generalizability and predictive
performance of these models. The variables included in
these models and the process by which they were built
can be found in Table 1 and Figure 1, respectively.

To assess the performance of each logistic regression
model to predict future HSIs in the Australian football
cohort, the area under the curve (AUC) and the Brier score
were determined. The AUC, determined from a receiver oper-
ating characteristic curve, measures the ability of a model to
distinguish between prospectively injured and uninjured
observations. An AUC of 1.0 indicates that the predicted
injury probabilities for the prospectively injured athletes
are all greater than the predicted injury probabilities for
the uninjured athletes. An AUC of 0.5 indicates a classifica-
tion of no better than random chance. The AUC could also
be considered as analogous to a percentage where an AUC
of 0.5 equates to a successful prediction 50% of the time
and an AUC of 1.0 equates to a successful prediction 100%
of the time. The Brier score, graded on a scale from 0 to 1,
is a measure of the precision of probabilistic predictions,
with a Brier score closer to 0 indicating better precision. Cal-
ibration plots for all logistic regression models were con-
structed to provide a visual representation of how well

a model can estimate the probability of an event (ie, prospec-
tive HSI) across the spectrum of predicted probabilities.

All statistical analyses were performed using the R statis-
tical programming language19 and the following packages:
caTools, dplyr, ggplot2, DescTools, scoring, OptimalCut-
points, and ggpubr.

RESULTS

Participant Characteristics

Complete prospective follow-up data were obtained for all
participants. A total of 152 soccer players (age, 24.7 6

5.0 years; height, 179 6 6 cm; weight, 75.6 6 6.6 kg) and
169 Australian football players (age, 23.6 6 3.5 years;
height, 188 6 8 cm; weight, 86.4 6 8.7 kg) were included
in the analyses. All descriptive data and differences
between the 2 cohorts can be observed in Appendix Table
A1 (available in the online version of this article). Of the
athletes who were included in this study, 27 soccer players
and 30 Australian football players sustained a prospective
HSI during their respective seasons. For both cohorts,
more HSIs were sustained in matches (soccer: n = 20; Aus-
tralian football: n = 17) compared with during training
(soccer: n = 6; Australian football: n = 13), although not
all injuries had this information available (soccer: n = 1;
Australian football: n = 0). For soccer players, the number
of HSIs sustained per position was the following: mid-
fielder, 11; forward, 9; and defender, 7. For Australian foot-
ball players, the number of HSIs was the following:
midfielder, 6; forward, 11; back, 11; and ruck, 2. Descrip-
tive statistics for both the prospectively injured and unin-
jured athletes of both cohorts can be found in Table 2.

RR, Sensitivity, and Specificity

The RR of Australian football players sustaining a prospec-
tive HSI, as well as sensitivity and specificity values, based
on the cut points derived from the soccer cohort can be
found in Figure 2. Older athletes (aged �25.4 years; RR,
2.7 [95% CI, 1.4-5.2]) and those with a prior HSI (RR, 2.5
[95% CI, 1.3-4.8]) were at an increased risk of HSIs.
Height, weight, fascicle length, muscle thickness, penna-
tion angle, and relative fascicle length were not associated
with an increased risk of HSIs in Australian football play-
ers when using cut points derived from the soccer cohort
(Figure 2). All RR, sensitivity, and specificity data can be
found in Appendix Table A2.

Logistic Regression Models

The AUC and Brier score of each logistic regression model
that was built using the soccer dataset and subsequently
applied to the Australian football dataset can be found in
Table 3 (model coefficients are provided in Appendix Table
A3, and variable importance for each individual model is
provided in Appendix Figure A1). The model constructed
using age and prior HSIs performed best (AUC = 0.67;
Brier score = 0.14), with the worst performing model being
a univariable model containing pennation angle (AUC =

Figure 1. The logistic regression modeling approach imple-
mented in this study.
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0.53; Brier score = 0.18). The calibration of each univari-
able model and multivariable model is illustrated in Fig-
ures 3 and 4, respectively.

DISCUSSION

The key finding of this study was that previously reported
risk factors derived from BFlh architectural variables in
soccer players were not associated with a risk of future

HSIs in Australian football players. However, the risk of
future HSIs in Australian football players was associated
with older age (�25.4 years) and prior HSIs, with the age
cut point generated from a previously collected dataset in
soccer. This study is the first to apply statistical cut points
derived from one sporting cohort to determine the risk of
HSIs in another sporting cohort, which is recommended
as a critical step in establishing the predictive ability of
risk factor data.1,20

TABLE 2
Athlete Characteristicsa

Australian Football Soccer

Injured (n = 30) Uninjured (n = 139) P Value Injured (n = 27) Uninjured (n = 125) P Value

Age, y 24.9 6 3.5 23.3 6 3.5 .029 27.0 6 3.8 24.2 6 5.1 .002
Prior HSI, n 10 18 \.001 9 21 .063
Height, cm 186 6 7 188 6 8 .850 180 6 7 179 6 6 .395
Weight, kg 84.8 6 8.5 86.8 6 8.7 .253 76.4 6 6.7 75.4 6 6.6 .463
Fascicle length, cm 10.10 6 0.89 10.20 6 0.60 .581 10.30 6 1.48 11.10 6 1.49 .018
Muscle thickness, cm 2.60 6 0.22 2.61 6 0.26 .862 2.52 6 0.31 2.51 6 0.32 .918
Pennation angle, deg 15.6 6 1.0 15.4 6 1.2 .561 14.2 6 1.4 13.2 6 1.5 .002
Relative fascicle lengthb 3.88 6 0.31 3.94 6 0.26 .217 4.11 6 0.45 4.44 6 0.50 .001

aData are presented as mean 6 SD unless otherwise indicated. All architectural variables (fascicle length, muscle thickness, pennation
angle, and relative fascicle length) were derived from the biceps femoris long head. HSI, hamstring strain injury.

bRelative fascicle length refers to fascicle length relative to muscle thickness.

Figure 2. The relative risk (RR) of Australian football players sustaining a prospective hamstring strain injury (HSI), as well as sen-
sitivity and specificity values, based on risk factor cut points derived from a previously collected dataset in soccer. If the 95% CI
(represented by the black horizontal lines) crosses the gray vertical line (RR, 1.0), this indicates a nonsignificant RR. All architectural
variables (fascicle length, muscle thickness, pennation angle, and relative fascicle length) were derived from the biceps femoris long
head. *The RR and 95% CI for pennation angle could not be calculated because of a sensitivity value of 1.00, which indicates that
there were no HSIs in the low-risk group. ^Relative fascicle length refers to fascicle length relative to muscle thickness.
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In contrast to the findings of the original investigation
of the soccer cohort,24 cut points derived from BFlh archi-
tectural variables in soccer players were not associated
with the risk of HSIs when applied to an Australian foot-
ball cohort. Previous research has reported that soccer
players with BFlh fascicles shorter than 10.56 cm were
at a 4-fold increased risk of HSIs compared with their
counterparts with longer fascicles.24 In the current study,
however, BFlh fascicle length was not associated with
the risk of HSIs, with Australian football players possess-
ing fascicles shorter than 10.56 cm having a similar level
or risk (RR, 1.1) compared with athletes with longer
BFlh fascicles. This suggests that while BFlh architecture
may play an important role in identifying elite soccer play-
ers’ risk of future HSIs, injury risk cut points derived from
this cohort are not generalizable to Australian football
players. There are a number of potential reasons as to
why data from soccer may not readily transfer to Austra-
lian football, not least because of differences in anthropo-
metric and architectural characteristics between cohorts
(Appendix Table A1). While it might be expected that
risk factor cut point data from one sport, subsequently
applied to another, are unlikely to have transference, in
reality, practitioners from various sports rely on literature
not specific to their sport to guide their HSI prevention
and/or risk mitigation strategies. The present work pro-
vides evidence that an assumption of transference between
sports cannot be guaranteed for modifiable risk factor cut

points and highlights the importance of replication work
across different cohorts for variables found to be associated
with future HSIs. However, age and a prior HSI were asso-
ciated with an increased risk of HSIs in the soccer cohort,24

and when these same cut points were applied to Australian
football players, an association was still present. These
findings add to the existing body of evidence reporting
age and prior HSIs as strong, albeit nonmodifiable, risk
factors for a future HSI.9

When identifying the risk of HSIs at an individual level
(via logistic regression) the model built using age and prior
HSI was superior to all other models. In prior research,
models built using the BFlh tended to outperform other
models24; however, in the current study, including BFlh
architectural variables in the models typically reduced
their predictive performance. The results of the logistic
regression models are in line with the RR (association)
data suggesting that age and prior HSIs offered the best
predictive ability within the Australian football cohort.
Despite this, the model built using age and prior HSIs
only had an AUC of 0.67. This value suggests that if we
were to randomly select a prospectively injured athlete
and an uninjured athlete, the likelihood that the best per-
forming model would have allocated the prospectively
injured athlete with a higher predicted injury probability
(compared with the uninjured athlete) is only equal to
67%. While there is no consensus on how to subjectively
describe and/or interpret AUC data, an AUC of .0.75 indi-
cates that model performance was closer to perfect predic-
tion than random chance. Given that all AUC values of the
logistic regression models reported in the current work
were �0.67, this suggests that their ability to correctly
classify the prospectively injured and uninjured athletes
was closer to random chance than it was to perfect predic-
tive performance; as illustrated by the multivariable cali-
bration curves (Figure 4), the models tended to
overestimate the probability of future HSIs. This is likely
a function of the models being built using data from the
soccer cohort in which BFlh architecture influenced the
risk of HSIs and highlights the fragility of the transference
of logistic regression models between different sports.

Prior research has attempted to investigate the ability
of other variables to identify the risk of HSIs in elite Aus-
tralian football players. For example, an association
between high-speed running distances and the risk of
HSIs at a group level in elite Australian football players
has been reported previously.22 At an individual level,
one study4 has investigated the ability of internal and
external training load data to predict lower limb noncon-
tact injuries in elite Australian football players. In this
previous study, data from 2 seasons were used to predict
injury occurrence in a third season. The best performing
model was able to classify the athletes who sustained a pro-
spective hamstring injury and the uninjured athletes with
an AUC of 0.72. While this study utilized an independent
training and testing dataset (as per the current methods),
it is important to note that the cohorts were not entirely
independent. Whether the ability of internal and external
training loads to predict the occurrence of HSIs is general-
izable across cohorts from different sports remains to be

TABLE 3
AUC and Brier Score for Each Logistic Regression Modela

AUC Brier Score

Univariable
Age 0.64 0.14
Prior HSI 0.60 0.14
Fascicle length 0.54 0.15
Pennation angle 0.53 0.18
Relative fascicle length 0.56 0.16

Multivariable
Age and prior HSI 0.67 0.14
Age, prior HSI, and fascicle length 0.65 0.14
Age, prior HSI, and pennation angle 0.62 0.17
Age, prior HSI, and relative fascicle length 0.65 0.15
Stepwise regressionb 0.65 0.15

aModels were built using data from the soccer cohort and uti-
lized to estimate the probability of prospective HSIs in the Austra-
lian football cohort. Estimated injury probabilities were compared
with the actual outcomes to determine the predictive performance
of each model. All architectural variables (fascicle length, muscle
thickness, pennation angle, and relative fascicle length) were
derived from the biceps femoris long head. AUC, area under the
curve; HSI, hamstring strain injury.

bAll variables (age, prior HSI, height, weight, fascicle length,
muscle thickness, pennation angle, and relative fascicle length)
were included in a stepwise regression model. The final model
was built using the subset of variables that minimized the model’s
Akaike information criterion. The final variables included were
age, prior HSI, and relative fascicle length. Note that these are
the same variables that were included in one of the a priori–
determined models.
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Figure 3. Calibration plots for all univariable logistic regression models with actual and predicted rates of a hamstring strain injury
(HSI). Calibration is a measure of how well a model can estimate the probability of an event. For example, if we were to take every
observation with a predicted injury probability of 25%, a perfectly calibrated model would suggest that the actual rate of injuries
for these observations was equal to 25%. The 45� diagonal line represents perfect calibration, and the gray shaded areas indicate
the 95% CI. All architectural variables (fascicle length, muscle thickness, pennation angle, and relative fascicle length) were
derived from the biceps femoris long head. Relative fascicle length refers to fascicle length relative to muscle thickness. Points
at 100 on the y-axis represent predicted injury probabilities of subsequently injured athletes (with predicted probabilities shown
on the x-axis), while points at 0 on the y-axis represent predicted injury probabilities of athletes who avoided subsequent injuries.
Excluding plot B (prior HSI), all points are separated by height for visual clarity: (A) age, (B) prior HSI, (C) pennation angle, (D)
fascicle length, and (E) relative fascicle length.

Figure 4. Calibration plots for all multivariable logistic regression models with actual and predicted rates of a hamstring strain
injury (HSI). Calibration is a measure of how well a model can estimate the probability of an event. For example, if we were to
take every observation with a predicted injury probability of 25%, a perfectly calibrated model would suggest that the actual
rate of injuries for these observations was equal to 25%. The 45� diagonal line represents perfect calibration, and the gray shaded
areas indicate the 95% CI. All architectural variables (fascicle length, muscle thickness, pennation angle, and relative fascicle
length) were derived from the biceps femoris long head. Relative fascicle length refers to fascicle length relative to muscle thick-
ness. Points at 100 on the y-axis represent predicted injury probabilities of subsequently injured athletes (with predicted proba-
bilities shown on the x-axis), while points at 0 on the y-axis represent predicted injury probabilities of athletes who avoided
subsequent injuries. (A) Age and prior HSI; (B) age, prior HSI, and fascicle length; (C) age, prior HSI, and pennation angle; (D)
age, prior HSI, and relative fascicle length; and (E) stepwise regression including all variables as inputs (final model included
age, prior HSI, and relative fascicle length).
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seen. These results do, however, suggest that the addition
of internal and external training load data may contribute
to the improvement of multivariable HSI prediction models
in Australian football players.

Another study with a similar design to the current
investigation has reported on the predictive performance
of HSI risk factors in elite Australian football players.23

Low levels of eccentric knee flexor strength, in addition to
older age and a history of HSIs, have previously been asso-
ciated with an increased risk of HSIs in a cohort of elite Aus-
tralian football players.14 A follow-up to the original
investigation used these data to build predictive models
and identify the risk of injuries in another cohort of elite
Australian football players 2 years later.23 Despite age,
prior HSIs, and eccentric knee flexor strength being
strongly associated with the risk of HSIs in the original
dataset,14 the predictive models built using these variables
were only able to classify the prospectively injured and
uninjured athletes in the follow-up cohort with a mean
AUC of 0.52.23 In comparison, the worst performing multi-
variable model in the current study was that which was
built using age, prior HSIs, and pennation angle (AUC =
0.62). The current findings suggest that the architectural
variables included in this study, while not displaying a sig-
nificant association with the risk of HSIs, may facilitate bet-
ter predictive performance than eccentric knee flexor
strength. However, as mentioned previously, prior research
used independent training and testing datasets from the
same sport.4,23 Accordingly, the results may be difficult to
compare to the current study, which is the first to use test-
ing and training datasets from 2 different sporting cohorts.

Recent recommendations3 have suggested using the
Brier score as a predictive performance metric, which has
been rarely, if ever, reported in the sports injury literature.
While the Brier score did not offer a different interpretation
of the current results in comparison to the AUC, it is impor-
tant for researchers and practitioners alike to understand
how to interpret the Brier score as a means to facilitate com-
parisons between future studies. Graded on a scale from 0 to
1, the Brier score is a measure of the precision of probabilis-
tic predictions, with a lower Brier score indicating better
precision. When building predictive models, it is important
to assess not only the ability of a model to distinguish
between the prospectively injured and uninjured athletes
(for which the AUC is a metric well suited to do so) but
also how precise the predicted injury probabilities are. The
Brier score reflects the ability of a model to correctly predict
the actual rate of injuries observed. In the current study,
the multivariable model with the lowest Brier score was
built using age and prior HSIs (Brier score = 0.14). The
addition of fascicle length to this model did not negatively
affect the Brier score, although it did reduce the AUC
from 0.67 to 0.65. The addition of all other architectural var-
iables, however, negatively impacted the Brier score (Table
3). The calibration curves illustrated in Figures 3 and 4 pro-
vide a visual representation of each model’s ability to cor-
rectly predict the actual observed injury rates. The use of
calibration curves, while requiring a subjective interpreta-
tion, can provide a more granular understanding of model
errors when considered in conjunction with AUC and Brier

score data. These curves suggest that the addition of the
architectural variables to the multivariable models tends
to result in an overestimation of injury rates (Figure 4),
and this would have been indeterminate based on the objec-
tive measures of model performance only.

From a practical perspective, the results of this study
suggest that practitioners must proceed cautiously when
interpreting and translating the findings of an investigation
in one sporting cohort to another sporting cohort as it
relates to HSI risk factors. It may be tempting, based on
the seminal work,24 to conclude that 10.56 cm is an appro-
priate cut point for classifying athletes as having either
short or long BFlh fascicles. However, this cut point was
determined retrospectively from the data to which it was
applied and, as a result, is closely fit to the original soccer
cohort. While this cut point displays some level of predictive
ability in the soccer cohort,24 it was not appropriate for iden-
tifying Australian football players at an increased risk of
HSIs. The best performing model in the current study
achieved an AUC of 0.67. This indicates that if we were to
randomly observe a prospectively injured athlete and an
uninjured athlete, the likelihood that the model will have
allocated the prospectively injured athlete with a higher
predicted injury probability is equal to 67%. These results
suggest a poor ability to correctly identify the risk of HSIs
at an individual level, even using previously reported risk
factors. Accordingly, practitioners should be cautious when
using risk factor data from a different sport to make inferen-
ces regarding their athletes’ risk of future HSIs.

There are limitations in this study that must be acknowl-
edged. First, the measure of BFlh fascicle length is an esti-
mation made from the validated equation reported in the
Methods section.2,13 This estimation is necessary because
of the small transducer field of view utilized in this study.
The methodology and equation employed for this estimation
have been compared against cadaveric hamstring samples,
have been reported as valid and reliable,13,25 and have
been associated with the risk of injuries.24 However, the uti-
lization of other methods for determining BFlh architec-
ture7 may have provided different results. This
notwithstanding, the validity of the current work is
strengthened, as the method of BFlh architectural assess-
ment and analysis was consistent across both cohorts. Sec-
ond, the data used to build the predictive models in this
study was collected at the beginning of preseason training
for each study period. It is unknown whether more frequent
measures of the architectural variables included in this
study would have impacted predictive performance. Addi-
tionally, although a prior HSI was significantly associated
with the risk of injuries in this study, previous research
has suggested that more granular measures of the effect
of prior injuries (such as measures of session availability)
may provide more insight.21 Third, BFlh architectural
data were used to predict all HSIs. While the exclusive pre-
diction of BFlh injuries may have resulted in different find-
ings, it would have also negatively affected statistical
power. Finally, the current study does not report running
exposure data from either cohort. Previous literature has
shown that Australian football players cover significantly
longer distances during high-velocity running and sprinting
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as well as exert significantly more sprint efforts compared to
soccer players.26 Differences in running exposure between
the 2 cohorts may have influenced our findings; however,
we were unable to account for this.

In conclusion, modifiable HSI risk factors and their cut
points previously established in a cohort of elite soccer
players were not able to identify the risk of HSIs in a cohort
of elite Australian football players at both a group level
and an individual level. Currently, the ability of predictive
models to correctly identify athletes at an increased risk of
HSIs is suboptimal. While the efficacy of the current meth-
ods to identify the risk and predict the occurrence of HSIs
may warrant further investigation, practitioners should
proceed with caution when interpreting and implementing
the findings of previous research that is not specific to their
cohort of interest.
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5. Ekstrand J, Hägglund M, Waldén M. Injury incidence and injury pat-

terns in professional football: the UEFA injury study. Br J Sports Med.

2011;45(7):553-558.
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