
1414  |   	﻿�  J R Stat Soc Series A. 2021;184:1414–1451.wileyonlinelibrary.com/journal/rssa

Received: 29 November 2019  |  Accepted: 30 April 2021

DOI: 10.1111/rssa.12712  

O R I G I N A L  A R T I C L E

Clustering longitudinal life-course sequences using 
mixtures of exponential-distance models

Keefe Murphy1   |   T. Brendan Murphy2,3   |   Raffaella Piccarreta4   |    
I. Claire Gormley2,3

This is an open access article under the terms of the Creat​ive Commo​ns Attri​bution License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited.
© 2021 The Authors. Journal of the Royal Statistical Society: Series A (Statistics in Society) published by John Wiley & Sons Ltd on behalf of 
Royal Statistical Society

1Department of Mathematics and Statistics, 
Maynooth University, Maynooth, Ireland
2School of Mathematics and Statistics, 
University College Dublin, Dublin, Ireland
3Insight Centre for Data Analytics, 
University College Dublin, Dublin, Ireland
4Department of Decision Sciences, 
Università Bocconi, Milano, Italy

Correspondence
Keefe Murphy, Department of Mathematics 
and Statistics, Maynooth University, 
Maynooth, Ireland.
Email: keefe.murphy@mu.ie

Funding information
Science Foundation Ireland, Grant/Award 
Number: SFI/12/RC/2289_P2; MIUR-
PRIN, Grant/Award Number: 20177BRJXS

Abstract
Sequence analysis is an increasingly popular approach 
for analysing life courses represented by ordered col-
lections of activities experienced by subjects over time. 
Here, we analyse a survey data set containing informa-
tion on the career trajectories of a cohort of Northern Irish 
youths tracked between the ages of 16 and 22. We pro-
pose a novel, model-based clustering approach suited to 
the analysis of such data from a holistic perspective, with 
the aims of estimating the number of typical career trajec-
tories, identifying the relevant features of these patterns, 
and assessing the extent to which such patterns are shaped 
by background characteristics. Several criteria exist for 
measuring pairwise dissimilarities among categorical se-
quences. Typically, dissimilarity matrices are employed 
as input to heuristic clustering algorithms. The family of 
methods we develop instead clusters sequences directly 
using mixtures of exponential-distance models. Basing 
the models on weighted variants of the Hamming dis-
tance metric permits closed-form expressions for param-
eter estimation. Simultaneously allowing the component 
membership probabilities to depend on fixed covariates 
and accommodating sampling weights in the clustering 
process yields new insights on the Northern Irish data. In 
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1   |   INTRODUCTION

Sequence analysis (SA) is an umbrella term for tools defined to explore and describe categorical life-
course data. Specifically, attention is focused on the ordered sequence of states (or activities) experi-
enced by individuals over a given time span (usually at T equally spaced discrete time periods). Here 
we focus on the transition from school to work for a cohort of Northern Irish youths, using survey 
data obtained from the 1999 sweep of the Status Zero Survey (McVicar, 2000; McVicar & Anyadike-
Danes, 2002)—henceforth referred to as the MVAD data—in which, for each individual, a sequence 
of monthly labour market activities experienced between the ages of 16 and 22 is recorded.

Typically, the goal of SA is to identify the most relevant patterns in the data. To this end, pairwise 
dissimilarities among sequences in their entirety are first assessed. Dissimilarity matrices are then 
employed to identify the most typical trajectories using, in the vast majority of applications, cluster 
analysis. These problems are receiving increasing attention in the demographic and social literature, 
also due to the increasing number of retrospective as well as prospective longitudinal studies, such as 
the British Household Panel Survey (BHPS)1 and the subsequent larger and more wide-ranging UK 
Household Longitudinal Study (Understanding Society)2, or the Socio-Economic Panel for Germany 
(SOEP)3, the National Longitudinal Surveys for the USA (NLS)4 and the Generations & Gender 
Programme for selected European countries (GGP)5. All of these surveys, much like the MVAD data 
considered in this paper, collect information about labour market activities, as well as other significant 
life events.

Quantifying the distance between such categorical sequences is not a trivial task. Optimal match-
ing (OM), developed by Abbott and Forrest (1986) and extended to sociology by Abbott and Hrycak 
(1990), is popular among the SA community. OM is derived from the edit distance originally proposed 
in the field of information theory and computer science by Levenshtein (1966). The OM metric assigns 
costs to the different types of edits, namely insertion, deletion, and substitution. Typically, insertion 
and deletion are assigned a cost of 1 while substitution costs are allowed to vary. However, specifying 
these costs often involves subjective choices, which may lead to violations of the triangle inequality 
if not done carefully. Several proposals in the literature introduced criteria to improve or guide the 
choice of costs in OM; Muñoz-Bullón and Malo (2003), for instance estimate the substitution-cost 
matrix in a data-driven fashion using the between-states transition rates. Alternative dissimilarity 
criteria have also been introduced to allow control over the importance assigned to the characteristics 

 1https://www.iser.essex.ac.ul.bhps.

 2https://www.under​stand​ingso​ciety.ac.uk.

 3https://www.diw.de/en/soep.

 4https://www.bls.gov/nls/.

 5https://www.ggp-i.org.

particular, we find that school examination performance is 
the single most important predictor of cluster membership.

K E Y W O R D S

exponential-distance models, gating covariates, life-course 
sequences, model-based clustering, survey sampling weights, 
weighted Hamming distance
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of the sequences (namely, the collection of experienced states, their timing or their duration) in the 
assessment of their differences: see Studer and Ritschard (2016) for an excellent discussion. Even so, 
there are no results proving that one procedure is superior to others and the choice of dissimilarity 
measure remains a fundamental question for researchers.

Given a dissimilarity matrix D obtained from a set of sequences S =
(
s1, …, sn

)
, where n is the 

number of subjects, cluster analysis is usually applied to group sequences and identify the most typical 
trajectories experienced by the sampled individuals. Heuristic clustering algorithms, either hierarchi-
cal or partitional, are typically used. In many applications, it is also of interest to relate sequences to a 
set of baseline covariates. Within the described framework, this is solely done by relating the uncov-
ered hard clustering partition to covariates using, for example, multinomial logistic regression (MLR). 
This approach was adopted in McVicar and Anyadike-Danes (2002), after applying Ward's agglomer-
ative clustering algorithm (Ward, 1963) to an OM dissimilarity matrix to obtain G = 5 clusters of the 
MVAD sequences, without performing model selection. Such an approach is questionable from a few 
points of view. First, the original sequences are substituted by a categorical variable indicating cluster 
membership, thus disregarding the heterogeneity within clusters. This is clearly only sensible when 
the clusters are sufficiently homogeneous, otherwise sequences which are weakly related to clusters 
would be regarded as similar to those in their cluster. However, a clear clustering structure can often 
be obtained only by increasing the number of clusters (often with some clusters possibly small in 
size). More importantly, suitable partitions do not necessarily lead to suitable response variables as 
input for the MLR. It thus seems desirable to cluster sequences and relate the clusters to the covariates 
simultaneously.

Thus, the aim of our analysis is threefold: to estimate the number of typical trajectories in the 
MVAD data, to identify the relevant features of these patterns and to establish to what extent such 
patterns are shaped by the individuals’ background characteristics, as captured by a set of baseline 
covariates measured at age 16. To address these issues, we propose to cluster the MVAD sequences 
in a model-based fashion, allowing the covariates to affect the soft cluster membership probabilities, 
rather than leaving them exogenous to the clustering model. This permits us to better understand if and 
to what extent the typical sequence patterns characterising each cluster are affected by specific covari-
ates. Model-based clustering methods typically assume that the data arise from a finite mixture of G 
distributions; Bouveyron et al. (2019) provide an excellent overview. In principle, any distribution(s) 
can be used, though the term ‘model-based clustering’ was popularised by Banfield and Raftery 
(1993), in which the component distributions are assumed to be parsimoniously parameterised mul-
tivariate Gaussians with component-specific parameters. Such models have been recently extended 
to the mixture of experts setting (Gormley & Frühwirth-Schnatter, 2019) to facilitate dependence on 
fixed covariates (Murphy & Murphy, 2020). However, these models can be problematic when applied 
to dissimilarity matrices, either due to non-identifiability or because the input data are usually far from 
Gaussian. This problem cannot be addressed by applying multidimensional scaling to D because the 
resulting low-dimensional configuration is also typically far from Gaussian. Notably, our attempts to 
fit non-Gaussian mixtures in these settings did not yield useful results.

Another popular framework for clustering categorical data is latent class analysis (LCA; Lazarsfeld 
& Henry, 1968). Agresti (2002) shows the connection between model-based clustering and LCA. Such 
models are finite mixtures in which the component distributions are assumed to be multi-way cross-
classification tables with all variables mutually independent. Latent class regression models (LCR; 
Dayton & Macready, 1988) are particularly interesting, because their connection to the mixture of ex-
perts framework permits the inclusion of covariates to predict the latent class memberships. However, 
fitting such models is challenging when the sequence length, the number of categories, or the number 
of latent classes are even moderately large, due to the explosion in the number of parameters.
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Evidently, there is a conflict of perspectives between the model-based and the heuristic, distance-
based approaches to clustering in the SA community. For this reason, and the others mentioned above, 
we model the sequences directly (in the sense that the sequences themselves are treated as inputs, 
rather than D) with the implicit substitution costs which define the distance metric being estimable 
parameters of a generative probability model rather than inputs (either estimated or subjectively spec-
ified), via D, to a heuristic clustering algorithm. This is achieved using parsimonious mixtures of 
exponential-distance models, which typically depend on a central sequence and a precision parameter 
in a way that relates to the chosen distance metric. Our framework for analysing the MVAD data, as 
a model-based approach which nonetheless relies on distances, thus reconciles the aforementioned 
conflict.

Mostly for reasons of computational convenience, we use dissimilarities based on simple match-
ing, in particular the Hamming distance (Hamming, 1950). Although the focus on substitution oper-
ations has the sociological advantage of targeting trajectories with contemporaneous similarities—in 
contrast to the prohibited insertion and deletion operations, which focus on matching states irrespec-
tive of their timing—this distance is liable to suffer from temporal rigidity, since anticipations and/
or postponements of the same choices in life courses are not accounted for. Hence, similar sequences 
shifted by one time period may be maximally distant from one another. While misalignment is less 
of a concern for sequences exhibiting long durations in the same state, we address the issue using 
weighted variants of the Hamming distance, characterised by a range of constraints on the precision 
parameters in the mixture setting. This leads to the novel MEDseq model family, which can be seen 
as similar to a version of the k-medoids/PAM algorithm (Kaufman & Rousseeuw, 1990, Chapter 2) 
based on the Hamming distance with some restrictions relaxed. We defer the comparison to Section 
4.2 as the parallels relate to technical issues of model estimation.

Importantly, information is also available with the MVAD data on the survey sampling weights, 
which are only incorporated in the MLR stage of the analysis in McVicar and Anyadike-Danes (2002). 
While sampling weights can be incorporated into heuristic clustering algorithms, such as Ward's hi-
erarchical clustering (by weighting the linkages between clusters) or k-medoids, and subsequently in 
the MLR, one of the advantages of our approach is that both the covariates and the weights are in-
corporated simultaneously. This is achieved by leveraging the model-based paradigm; the weights are 
incorporated by appropriately weighting the likelihood function and the covariates are incorporated 
by assuming they influence the soft component membership probabilities.

MEDseq models, like standard SA heuristic clustering algorithms and LCA models, approach the 
clustering task from the holistic perspective of treating trajectories as whole units of analysis, in order 
to uncover groups of similar sequences. In contrast, a number of multistate models employing finite 
mixtures with Markov components (e.g. Melnykov, 2016a; Pamminger & Frühwirth-Schnatter, 2010) 
or with hidden Markov components (Helske et al., 2016) have recently attained popularity for the anal-
ysis of categorical sequence data. Such models focus on modelling instantaneous transitions within 
the life course and on factors that might explain the probability of experiencing them. As described 
by Wu (2000), this amounts to a difference between considering sequences in their entirety under the 
MEDseq framework or as time-to-event processes under the Markovian framework. Indeed, as our aim 
is to establish sequence typologies for the MVAD data, a holistic approach is preferable to Markovian 
approaches. The former concentrates on questions of global similarities and considers the full richness 
of the trajectories without discarding the details of episode ordering, duration, or transition (Muñoz-
Bullón & Malo, 2003), while the latter framework makes the often unsuitable simplifying assumption 
that trajectories can be efficiently summarised only by their recent past (Piccarreta & Studer, 2019).

The remainder of the article is organised as follows. Section 2 presents some exploratory analy-
sis of the MVAD data. Section 3 develops the MEDseq family of mixtures of exponential-distance 

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/184/4/1414/7068854 by guest on 14 D

ecem
ber 2023



MURPHY et al.1418  |    

models. Section 4 describes the model fitting procedure and discusses factors affecting performance. 
Section 5 presents results for the MVAD data, including applications of MEDseq models and compar-
isons to other methods. The insights gleaned from the MVAD data under the optimal MEDseq model 
are summarised in Section 6. The paper concludes with a discussion on the MEDseq methodology and 
potential future extensions in Section 7. A software implementation of the full MEDseq model family 
is provided by the associated R package MEDseq (Murphy et al., 2020). The package was developed 
specifically for this application and is available from https://www.r-proje​ct.org (R Core Team, 2020).

2  |   STATUS ZERO SURVEY: MVAD DATA

The term ‘MVAD data’ refers throughout to a cohort of n  =  712 Northern Irish youths aged 16 
and eligible to leave compulsory education as of July 1993 who were observed at monthly intervals 
until June 1999 as part of the Status Zero Survey (Armstrong et al., 1997; McVicar, 2000; McVicar 
& Anyadike-Danes, 2002). The subjects were interviewed about the labour market activities they 
experienced, distinguishing between employment (EM), further education (FE), higher education 
(HE), joblessness (JL), school (SC) or training (TR). Each observation i is represented by an or-
dered categorical sequence of length T = 72, with an alphabet  of size v = 6 possible states, for 
example si =

(
si,1, si,2, …, si,72

)⊤
= (SC, SC,… ,TR, TR, …, EM, EM)⊤. The sequences share a 

common length, the time periods are equally spaced and there are no missing data. In the context 
of the Northern Irish education system at the time, SC refers to secondary school, which may be a 
grammar school to which entrance is granted upon completion of an exam. At age 16, students take 
General Certificate of Secondary Education (GCSE) examinations; students who do well are eligible 
to continue in school for a further 2 years (to sit A-level exams) or to leave, for example to a training/
apprenticeship programme (TR). Further education (FE) is distinguished from higher education (HE); 
FE typically refers to applied post-GCSE courses while HE refers to third-level/university courses, 
typically pursued at age 18 after the successful completion of A-level exams. Notably, the transitions 
HE ⇝ SC and TR ⇝ HE are never observed.

It is of interest to relate the MVAD sequences to covariates in order to understand whether dif-
ferent characteristics (related to gender, community, geographic and social conditions, and personal 
abilities) impact on the school-to-work trajectories. These covariates are summarised in Table 1. All 
covariates were measured at the age of 16 (i.e. at the start of the study period in July 1993), with the 
exception of ‘Funemp’ and ‘Livboth’, and are thus static background characteristics. As achieving 5 
or more grades at A–C in GCSE exams is the traditional cut-off point for progression to the additional 
two-years of secondary school required for a transition to HE, we expect the ‘GCSE5eq’ covariate in 
particular to be strongly associated with the clustering. The MVAD data also come with associated 
observation-specific survey sampling weights, which depend on the ‘Grammar’ and ‘Location’ co-
variates. Specifically, the sample was stratified in such a way that a predetermined number of subjects 
were in each state, for each location and both school types, immediately after the end of the compul-
sory education period (Armstrong et al., 1997).

The MVAD data are available in the R packages MEDseq and TraMineR (Gabadinho et  al., 
2011). As the data have been used to illustrate some of the functionalities of the TraMineR package 
in its associated vignette6, interesting features of an exploratory analysis of the data can be found 
therein. However, we reproduce plots of the transversal state distributions in Figure 1 and the transver-
sal entropies in Figure 2, that is the Shannon entropies of the state distributions at each time point 

 6https://cran.r-proje​ct.org/web/packa​ges/TraMi​neR/vigne​ttes/TraMi​neR-state​-seque​nce.pdf.
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(Billari, 2001), with the sampling weights accounted for in both cases. Notably, fewer than v states are 
observed in certain months.

Figure 1 shows that the number of subjects who found employment increased over time. Conversely, 
fewer students were in training or further education by the end of the observation period. Most stu-
dents appear to have entirely left school within 2/3 years of the commencement of the survey. Finally, 
while students only reached the age of 18 and began to pursue higher education from July 1995 on-
wards, a number of students had already pursued further education during the two preceding years. 

T A B L E  1   Available covariates for the MVAD data set. For binary covariates, the event denoted by 1 is indicated. 
Otherwise, the levels of the categorical covariate ‘Location’ are grouped in curly brackets

Covariate Description

Catholic 1 = yes

FMPR SOC code of father's current or most recent job as of the beginning of the survey, 1 = SOC1 
(Standard Occupational Classification: professional, managerial, or related)

Funemp Father's employment status as of June 1999, 1 = employed

GCSE5eq Qualifications gained by the end of compulsory education, 1 = 5+ GCSE grades at A–C, or 
equivalent

Gender 1 = male

Grammar Type of secondary education, 1 = grammar school

Livboth Living arrangements as of June 1995, 1 = living with both parents

Location Location of school, one of five Education and Library Board areas in Northern Ireland, {Belfast, 
North Eastern, South Eastern, Southern, Western}

F I G U R E  1   Overall state distribution for the weighted MVAD data, coloured by state [Colour figure can be 
viewed at wileyonlinelibrary.com]
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Figure 2 confirms that the level of heterogeneity in the state distribution varies over time. In particular, 
the entropy declines after Sep 1995, by which point most students had left school.

Interestingly, many students were jobless during the first two months of observation. As the vast 
majority of cases notably remained in the same state in this period, which coincided with the sum-
mer break from school, all subsequent analyses are conducted on a version of the data with the first 
two time points removed. Hence, we work hereafter with sequences of length T = 70, commencing 
with the return to school in September 1993. As the sampling design depends on ‘Grammar’ and 
‘Location’, the term ‘all covariates’ henceforth refers to all other covariates in Table 1. While Murphy 
and Murphy (2020) show that the same covariate can affect more than one part of a mixture of experts 
model, and in different ways, removing the quantities used to define the weights eases the interpret-
ability of the results.

3  |   MODELLING

In this section, we introduce the novel family of MEDseq models. The exponential-distance model is 
described in Section 3.1, extended to account for the sampling weights in Section 3.2, expanded into 
a family of mixtures in Section 3.3, and finally, embedded within the mixture of experts framework in 
Section 3.4 in order to accommodate the available covariates.

3.1  |  Exponential-distance models

For an arbitrary distance metric d(·, ·), location parameter θ, and precision parameter λ, the probability 
mass function (PMF) of an exponential-distance model (EDM) for sequences is

(1)f
�
si��, �, d

�
=

exp
�
− �d

�
si, �

��
∑

�∈T
v
exp ( − � d (�,�))

= Ψ (�,��T , v)−1 exp
�
− � d

�
si,�

��
,

F I G U R E  2   Transversal entropy plot for the weighted MVAD data
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with the corresponding log-likelihood function given by

Such a model is analogous to the Gaussian distribution (characterised by the squared Euclidean 
distance from the mean) and similar to the Mallows model for permutations (Mallows, 1957). Indeed, 
mixtures of Mallows models have been used to cluster rankings (Murphy & Martin, 2003). We only 
consider models with λ ≥ 0. When λ = 0, the distribution of sequences is uniform. For λ > 0, the 
central sequence � =

(
�1, …, �T

)
 is the mode, that is the sequence with highest probability, and the 

probability of any other sequence decays exponentially as its distance from θ increases. The precision 
parameter λ controls the speed of this decay. Larger λ values cause sequences to concentrate around θ, 
tending towards a point-mass as λ → ∞. Notably, λ is not identifiable when all sequences are identical.

The log-likelihood in Equation (2) is generally intractable, as the normalising constant Ψ(λ, θ|T, v) 
depends on the parameter λ (under OM and other, more complicated distances, it can also depend on 
θ), as well as the fixed constants T > 1 and v > 1, and requires a sum over all possible sequences. With 
reference to the MVAD data, for example, computing Ψ(λ,θ|T,v) is practically infeasible as there are 
card

(
T

v

)
= vT = 670 possible sequences. Fortunately, however, the normalising constant exists in 

closed form under the Hamming distance, dH

�
si, sj

�
=

∑
T
t=1

�
�
si,t ≠ sj,t

�
, in a manner which facili-

tates direct enumeration and crucially does not depend on θ, as a sum with only T+1 terms. Consider, 
for example, the Hamming distances between all ternary (v = 3) sequences of length T = 4. From the 
arbitrary reference sequence (0, 0, 0, 0), there is 1 count of a distance of 0, 8 counts of a distance of 
1, 24 counts of a distance of 2, 32 counts of a distance of 3, and 16 counts of a distance of 4. Thus, 
ΨH (�|T = 4, v = 3) = e0 + 8e−� + 24e−2� + 32e−3� + 16e−4�. Hence, the normalising constant 
under the Hamming distance metric depends on the parameter λ, the sequence length T, and the num-
ber of categories v, and simplifies greatly:

Inspired by the generalised Mallows model (Irurozki et al., 2019), the EDM in Equation (1) based 
on the Hamming distance can be extended to one based on the weighted Hamming distance. By in-
troducing T precision parameters λ1, …, λT, one for each time point (i.e. sequence position), and ex-
pressing the exponent in Equation (1) as dWH(si, � ��1, …, �T ) =

∑
T
t=1

�t�
�
si,t ≠ �t

�
 rather than 

�dH(si, �) = �
∑

T
t=1

�
�
si,t ≠ �t

�
, different time periods can contribute differently to the overall dis-

tance, weighted according to the period-specific precision parameters. Thus, the distance from θ to si 
under dWH ( ⋅ , ⋅ | ⋅ ) becomes a sum of the λt values associated with each time point which differs from the 
corresponding θt, across the whole sequence. This acts as implicit variable selection and allows modelling 
situations in which there is high consensus regarding the state values of some time periods, with large un-
certainty about the values of others. Accounting for the alignment of contemporaneous matchings in this 
way helps to prevent sequences with the same (Hamming) distance from θ from having the same probabil-
ity. Given that sequences equidistant from θ can nevertheless exhibit element-wise mismatches between 
themselves, this may help later, in the mixture setting, to induce stronger between-cluster separation and 
within-cluster homogeneity. The non-constant transversal entropies in Figure 2 suggest that this exten-
sion may also be fruitful in terms of capturing different degrees of dispersion in the state distributions 
of the MVAD data over time. Crucially, the various benefits outlined above can be achieved without any 

(2)� (�, �|S, d) =

n∑

i= 1

logf
(
si|�, �, d

)
= − �

n∑

i= 1

d
(
si,�

)
− nlogΨ (�, �|T , v) .

(3)ΨH (�|T , v) =

T∑

p= 0

(
T

p

)

(v − 1)p exp ( − �p) =
(
(v − 1)e−� + 1

)T
.
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tractability sacrifices. The log-likelihood in Equation (2) is merely rewritten with the weighted Hamming 
distance decomposed into its T components and the normalising constant in Equation (3) also modified 
accordingly:

Though other dissimilarity measures are available for sequences, we henceforth consider measures based 
on the Hamming distance only, chiefly for the computational reasons outlined above. In our setting, 
λdH(·, ·) can be seen as a special case of OM with all substitution costs set to λ and no insertions or dele-
tions. As it has time-varying substitution costs, dWH ( ⋅ , ⋅ | ⋅ ) is similar to the dynamic Hamming distance 
(Lesnard, 2010), a prominent alternative to OM. However, such costs in our models are always assumed 
to be common with respect to each pair of states. Hence, dWH ( ⋅ , ⋅ | ⋅ ) equates to the Gower distance be-
tween nominal variables (Gower, 1971) with equally weighted states and unequally weighted time points.

3.2  |  Incorporating sampling weights

Sampling weights are often associated with life-course data, as the data typically arise from sur-
veys where the weights are used to correct for representivity bias under stratified sampling designs. 
Following Chambers and Skinner (2003), the sampling weights w =

(
w1, …, wn

)
 are incorporated 

into the EDM by exponentiating the likelihood of each sampled unit by the attached weight wi, which 
is akin to unit i being observed wi times. The resultant pseudo likelihood w ( ⋅ | ⋅ ) reweights the 
likelihood contribution for each unit in order to rebalance the information in the observed sample to 
approximate the balance of information in the target finite population. The sampling weights w are 
thus interpretable as being inversely proportional to the unit inclusion probabilities, remain fixed, and 
are confined to those included in the sample. Notably, f

(
si|�, �, d

)wi ∝ f
(
si|�, wi�, d

)
, such that the 

weights induce a unit-specific rescaling of the precision parameter; it follows that the observed data 
are independent but not identically distributed.

A secondary benefit of incorporating weights is that it facilitates computational gains in the pres-
ence of duplicate cases. Such duplicates are likely when dealing with discrete life-course data. This 
non-uniqueness can be exploited using likelihood weights for computational efficiency, by fitting 
models to the subset of unique sequences only, weighted by the sum of the sampling weights (if avail-
able, otherwise wi = 1∀ i) across each corresponding set of duplicates. In modifying w in this way, 
cases with different sampling weights which are otherwise duplicates are also treated as duplicates, 
in such a way that the (pseudo) likelihood is unaltered. The number of duplicates clearly lowers when 
considering both the sequences themselves and their associated covariate patterns. In particular, all 
cases are unique when there are continuous covariates. Nonetheless, in the MVAD data, and in many 
applications, the covariates are all categorical. Hence, exploiting non-uniqueness in this manner can 
be extremely computationally convenient. For instance, only 490 of the n = 712 sequences in the 
MVAD data set are distinct. However, to avoid notational confusion, all subsequent expressions are 
written as though duplicate cases have not been discarded.

Though the weights for the MVAD data sum to ≈ 711.52, we henceforth follow Xu et al. (2013) 
in always assuming that the weights have been normalised to sum to the sample size n. In doing so, 
subsequent expressions are simplified further and the use of model selection criteria (see Section 4.3) 
relying on the pseudo likelihood is facilitated. While the resultant rescaling of the MVAD weights is 
negligible, we note that multiplying w by a scalar does not affect parameter estimation.

�
(
�, �1, …, �T |S, dWH

)
= −

n∑

i= 1

[
T∑

t= 1

(
�t�

(
si,t ≠ �t

)
+ log( (v − 1) e−�t + 1)
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]
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3.3  |  A family of mixtures of exponential-distance models

Extending the EDM based on the Hamming distance with sampling weights to the model-based clus-
tering setting yields a pseudo likelihood function of the form

where the mixing proportions τ1,  …,  τG are positive and sum to 1. Thus, the clustering approach is 
both model-based and distance-based, thereby bridging the gap between these two ‘cultures’ in the SA 
community.

The mixture setting naturally suggests a further extension, whereby the precision parameter λ 
can be constrained or unconstrained across clusters, in addition to the aforementioned allowance for 
the precision parameters to vary (or not) across time points. Within a family of models, we term 
‘MEDseq’, we thus define the CC, UC, CU and UU models, where the first letter denotes whether 
precision parameters are constrained (C) or unconstrained (U) across clusters and the second denotes 
the same across time points. Notably, all models deviate from the simple matching distance on which 
they are based, as even the most constrained CC model could be said to employ a weighted variant 
thereof, by virtue of allowing for λ ≠ 1. The model family allows moving between more parsimonious 
models and more heavily parameterised, flexible models which may provide a better fit to the data. 
As the precision parameters relate to the substitution costs characterising variants of the Hamming 
distance, quantities used to define the overall distance measure are allowed to vary in different ways, 
while still being treated as model parameters rather than inputs. In particular, models with names be-
ginning with U reflect scenarios in which the implicit substitution costs differ across clusters. Hence, 
the UU model is analogous to the hierarchical Wardp algorithm (de Amorim, 2015), in the sense of 
having cluster-specific feature weights (albeit with no tuning required).

Given the role played by λ when it takes the value 0, whereby the state distribution is uniform, it is 
convenient and natural to include a noise component (denoted by N), whose single precision parameter 
is fixed to 0, to robustify inference by capturing deviant cases and minimising their deleterious effects 
on parameter estimation for the other, more defined clusters. Adding this extension to each of the 4 
models above, regardless of how precision parameters are otherwise specified, completes the MEDseq 
model family with the CCN, UCN, CUN, and UUN models. When G = 1, the CC, CU, and CCN mod-
els can be fitted. When G = 2, the UCN and UUN models are equivalent to the CCN and CUN models, 
respectively, as there is only one non-noise component. As the noise component arises naturally from 
restricting the parameter space, we consider the noise component as one of the G components, denoted 
hereafter with the subscript 0. All 8 model types are summarised further in Appendix A.

3.4  |  Incorporating covariates

We now illustrate how to incorporate the available covariate information into the clustering process, 
both to guide the construction of the clusters and to find the typical trajectories which can be best 
predicted by covariates. As is typical for model-based clustering analyses, the data are augmented 
in MEDseq models by introducing a latent cluster membership indicator vector zi =

(
zi,1, …, zi,G

)⊤,  
where zi,g = 1 if observation i belongs to cluster g and zi,g = 0 otherwise. The MEDseq approach can 
be easily extended to incorporate the possible effects of covariates on the assignments of sequences 

w
(
�1, …, �G, �|S, w, dH

)
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[
G∑
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to clusters by allowing the covariates to influence the distribution of the latent variable zi. Thus, such 
covariates are interpreted differently from those used to define the sampling weights, if any.

The inclusion of covariates is achieved under the mixture of experts framework (Gormley & 
Frühwirth-Schnatter, 2019; Jacobs et al., 1991), by extending the mixture model to allow the mixing 
proportions for observation i to depend on covariates xi. This, rather than having covariates enter 
through the component distributions, is particularly attractive, as the interpretation of the remaining 
component-specific parameters is the same as it would be under a model without covariates. For ex-
ample, in the case of the CC MEDseq model

where the mixing proportions �g

(
xi|�g

)
 (henceforth �g

(
xi

)
, for simplicity) are referred to as the ‘gat-

ing network’, with 𝜏g

(
xi

)
> 0 and ∑ G

g=1
�g

�
xi

�
= 1, as usual, and �1, …, �G are the gating network 

regression parameters. Such a model can be seen as a conditional mixture model (Bishop, 2006) be-
cause, given the covariates xi, the distribution of the sequences is a finite mixture model under which zi 
has a multinomial distribution with a single trial and probabilities equal to �g

(
xi

)
. The distance-based 

k-medoids algorithm, though closely related (see Section 4.2), does not accommodate the inclusion of 
gating covariates in this way.

Incorporating covariates in ‘hard’ clustering algorithms using MLR, as done by McVicar and 
Anyadike-Danes (2002), has been criticised because the hard assignment of extraneous cases can 
negatively impact internal cluster cohesion and the MLR coefficient estimates (Piccarreta & Studer, 
2019). An advantage of the noise component in MEDseq models is that it captures uniformly distrib-
uted sequences that deviate from those in the other, more defined clusters. Filtering outliers in this 
way lessens their impact on the non-noise gating network coefficients, thereby enabling more accu-
rate inference and improving the interpretability of the effects of the covariates. Moreover, the ‘soft’ 
partition obtained under the model-based paradigm allows the cluster membership probabilities for 
sequences lying on the boundary between two neighbouring clusters to be quantified and the effect of 
such sequences on the gating network coefficients to be mitigated.

As per Murphy and Murphy (2020), the CCN, UCN, CUN and UUN models which include an 
explicit noise component can be restricted to having covariates only influence the mixing proportions 
for the non-noise components, with all observations therefore assumed to have equal probability of 
belonging to the uniform noise component (i.e. by replacing �0

(
xi

)
 with τ0). We refer to the former 

setting as the gated noise (GN) setting and to the latter as the non-gated noise (NGN) setting. The 
NGN setting is the more parsimonious one, makes more clear the distinction between EDM compo-
nents and the uniform component, and is particularly apt when τ0 is expected to be small and/or the 
sequences are expected to overwhelm the gating covariate(s) in determining which cases are noise. 
Gating covariates can only be included when G ≥ 2 under the GN setting or when there are 2 or more 
non-noise components under the NGN setting.

4  |   MODEL ESTIMATION

This section describes our model-fitting approach and some implementation issues that arise in prac-
tice. Specifically, Section 4.1 outlines the ECM algorithm employed for parameter estimation, Section 
4.2 discusses the initialisation thereof with reference to the similarities between MEDseq models and 

f
(
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the k-medoids and k-modes (Huang, 1997) algorithms, and the issues of model selection, covariate 
selection, and model validation are treated in Section 4.3.

4.1  |  Model fitting via ECM

Parameter estimation is greatly simplified by the existence of a closed-form expression for the normal-
ising constant for MEDseq models based on the Hamming or weighted Hamming distances. We focus 
on maximum (pseudo) likelihood estimation using a simple variant of the EM algorithm (Dempster 
et al., 1977). For simplicity, model fitting details are described chiefly for the CC MEDseq model 
with sampling weights and gating covariates. Additional details for other model types are deferred to 
Appendix B; so, too, are technical details pertaining to estimation of the precision parameter(s). The 
complete data pseudo likelihood for the CC model is given by 

and the complete data pseudo log-likelihood hence has the form: 

Under this model, the distribution of si depends on the latent cluster membership variable zi, which in turn 
depends on covariates xi, while si is independent of xi conditional on zi.

The iterative algorithm for MEDseq models follows in a similar manner to that for standard mix-
ture models. It consists of an E-step (expectation) which replaces for each observation the missing 
data zi with their expected values ẑi, which sum to 1, followed by a M-step (maximisation), which 
maximises the expected complete data pseudo log-likelihood. The M-step consists of a series of con-
ditional maximisation (CM) steps in which each parameter is maximised individually, conditional on 
the other parameters remaining fixed. Hence, model fitting is in fact conducted using an expectation 
conditional maximisation (ECM) algorithm (Meng & Rubin, 1993). Aitken's acceleration criterion is 
used to assess convergence of the non-decreasing sequence of weighted pseudo log-likelihood esti-
mates (Böhning et al., 1994). Parameter estimates produced on convergence achieve at least a local 
maximum of the pseudo likelihood function. Upon convergence, cluster memberships are estimated 
via the maximum a posteriori (MAP) classification, that is cases are assigned to the cluster g to which 
they most probably belong via MAP

(
ẑi

)
= arg maxg∈{1, …, G} (̂zi,g).

The E-step (with similar expressions when λ is unconstrained across clusters and/or time points) 
involves computing the expression in Equation (5), where (m + 1) is the current iteration number: 

Note that the weights wi appear in neither the numerator nor the denominator, leaving the E-step un-
changed regardless of the inclusion or exclusion of weights.
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Subsequent subsections describe the CM-steps for estimating the remaining parameters in the 
model. These individual CM-steps rely on the current estimates Ẑ

(m+1)
= (̂z

(m+1)

1
, …, ẑ

(m+1)

n
) to pro-

vide estimates of the gating network regression coefficients �̂
(m+1)

g
, and hence the mixing proportion 

parameters �̂ (m+1)

g

(
xi

)
, as well as the central sequence(s) �̂

(m+1)

g
 and component precision parame-

ter(s) ̂�
(m+1)

, though technical details for the latter, as they are the element which distinguishes the var-
ious MEDseq model types, are deferred to Appendix B. It is clear from Equation (4) that the sampling 
weights can be accounted for by simply multiplying every ẑ

(m+1)

i
 by the corresponding weight wi.   

Conversely, in the CM-steps which follow, corresponding formulas for unweighted MEDseq models 
can be recovered by replacing ẑ(m+1)

i,g
wi with ẑ(m+1)

i,g
.

4.1.1  |  Estimating the gating network coefficients

The portion of Equation (4) corresponding to the gating network, given by 
∑

n
i=1

∑
G
g=1

zi,gwilog�g

�
xi

�
,   

is of the same form as a MLR model with weights given by wi, here written with component 1 as the 
baseline reference level for identifiability reasons:

where x̃i =
(
1, xi

)
. Thus, methods for fitting such models, with Ẑ

(m+1)
 as the response, can be used to 

estimate the gating network regression parameters �̂
(m+1)

g
. As closed-form updates are unavailable for 

MLR coefficients, due to the nonlinear numerical optimisation involved, this step merely increases (rather 
than maximises) the expectation of this term. However, the monotonicity of the sequence of pseudo log-
likelihood estimates is preserved and convergence is still guaranteed. Subsequently, the mixing propor-
tions are given by

Conversely, τ is estimated exactly via �̂ (m+1)

g
= n−1

∑
n
i=1

ẑ
(m+1)

i,g
wi when there are no gating covariates. 

Since 
∑

n
i=1

wi = n, this is simply the weighted mean of the gth column of the matrix Ẑ(m+1). However, τ 
can also be constrained to be equal (i.e. τg = 1/G ∀ g) across clusters. Thus, situations where � i,g = �g

(
xi

)
,  

τi,g = τg, or τi,g = 1/G are accommodated.
The standard errors of the gating network's MLR at convergence are not a valid means of assessing 

the uncertainty of the coefficient estimates as the cluster membership probabilities are estimated rather 
than fixed and known. Therefore, we adapt the weighted likelihood bootstrap (WLBS) of O’Hagan 
et al. (2019) to the MEDseq setting. This is implemented by multiplying the sampling weights w by 
draws from an n-dimensional symmetric uniform Dirichlet distribution and refitting the MEDseq model. 
To ensure stable estimation of the standard errors, B = 1000 such samples are used here. To ensure 
rapid convergence and to circumvent label-switching problems, the estimated Ẑ matrix from the original 
model is used to initialise the ECM algorithm for each sample with new likelihood weights. Finally, 
the standard errors of the gating network coefficients across the B samples are obtained. Although this 
approach does not produce fully valid variance estimates when there are sampling weights which arise 
from stratified designs, we adopt the WLBS in what follows in order to provide approximate standard er-
rors. This issue is particularly pronounced when the probability of being included in the sample depends 

log
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(
xi

)

𝜏1

(
xi
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on quantities being modelled. This concern provides additional justification for the aforementioned re-
moval of the Grammar and Location covariates from our analysis.

4.1.2  |  Estimating the central sequences

The location parameter θ is sometimes referred to as the Fréchet mean or the central sequence. The k-
medoids/PAM algorithm, which is closely related to the MEDseq models with certain restrictions im-
posed (see Section 4.2), fixes the estimate of ̂�g to be the medoid of cluster g (Kaufman & Rousseeuw, 
1990), that is the observed sequence si ∈ S with minimum weighted distance from the others cur-
rently assigned to the same cluster. This estimation approach is especially quick as the Hamming 
distance matrix for the observed sequences is pre-computed. Notably, this greedy search strategy may 
fail to find the optimum solution.

However, for a G = 1 unweighted EDM based on the Hamming distance, the maximum like-
lihood estimate (MLE) of θ is given simply by the modal sequence, meaning that each �̂t is inde-
pendently given by the most frequent state at the tth time point. This is intuitive when dH

(
si,�

)
 

is expressed as T −
∑

T
t=1

�
�
si,t = �t

�
, as �̂ maximises the number of element-wise agreements. 

Thus, the parameter has a natural interpretation. For more complicated distance metrics, the first-
improvement algorithm (Hoos & Stützle, 2004) or a genetic algorithm could be used to estimate 
θ. Notably, the modal sequence need not be an observed sequence in S. It is also notable that any 
�̂t may be non-unique under any of the proposed estimation strategies. Such ties, if any, are broken 
at random.

For G > 1, under the ECM framework, central sequence position estimates �̂
(m+1)

g,t
 are given by 

arg max�∈t
(
∑

n
i=1

ẑ
(m+1)

i,g
wi�

�
si,t = �

�
), where t is the subset of vt ≤ v states observed at time point 

t across all cases. As this expression is independent of the precision parameter(s), it holds for all 
MEDseq model types, including those based on weighted Hamming distance variants. Thus, �̂

(m+1)

g
 

is similarly estimated easily and exactly via a weighted mode (much like k-modes), whereby each 
�̂

(m+1)

g,t
 is given by the category corresponding to the maximum of the sum of the weights ẑ

(m+1)

i,g
wi 

associated with each of the vt observed state values. Similarly, the central sequence under a weighted 
G = 1 model is also estimated via a weighted mode, with the weights given only by wi. Notably, to 
estimate the central sequences for a MEDseq model of any type without sampling weights, one need 
only remove wi from these terms. Note also that �0 does not need to be estimated for models with an 
explicit noise component as it does not contribute to the likelihood.

4.2  |  ECM initialisation and comparison to k-medoids

MEDseq models share relevant features with the PAM algorithm. Both consider sequences from a 
holistic perspective and both rely on distances to a cluster centroid. However, PAM treats the matrix 
of pairwise distances between sequences as a pre-computed input, while under MEDseq models the 
distances to the centroids (and the costs which define the distance metric) are recomputed at each it-
eration, with the sequences themselves as input. Otherwise, compared to PAM based on the Hamming 
distance, MEDseq models differ only in that (i) �g is estimated by the modal sequence rather than 
the medoid, (ii) τ is estimated, or dependent on covariates via �g

(
xi

)
, rather than constrained to be 

equal, (iii) λ is free to vary across clusters and/or time points, rather than being implicitly set to 1, 
(iv) a noise component can be included, and (v) the ECM algorithm rather than the classification EM 
algorithm (CEM; Celeux & Govaert, 1992) is used. The CEM algorithm employed by PAM uses hard 
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assignments z̃i,g, computed in its C-step, such that z̃
(m+1)

i,g
= 1 if g = MAP (̂z

(m+1)

i
) and z̃

(m+1)

i,g
= 0 

otherwise, for which the denominator in Equation (5) need not be evaluated.
Thus, a CC model fitted by CEM, with λ = 1, equal mixing proportions, and the central sequences 

estimated by the medoid rather than the modal sequence, is equivalent to k-medoids based on the 
Hamming distance. We leverage these similarities by applying k-medoids to the Hamming distance 
matrix in order to initialise the ECM algorithm with ‘hard’ starting values for the allocation matrix Z. 
In particular, we rely on a weighted version of PAM available in the R package WeightedCluster 
(Studer, 2013), itself initialised using Ward's hierarchical clustering. The more closely related k-modes 
algorithm (Huang, 1997) is not used, as case-weighted implementations are currently unavailable. In 
any case, our strategy is less computationally onerous than using multiple random starts. Moreover, 
our experience suggests that the ECM algorithm converges quickly when our initialisation strategy is 
adopted and that a great many number of random starts are required in order to achieve comparable 
performance. For models with an explicit noise component, an initial guess of the prior probability τ0 
that observations are noise is required. Allocations are then initialised, assuming the last component 
is the one associated with λg = 0, by multiplying the initial (G − 1)-column Z matrix by 1 − τ0 and 
appending a column in which each entry is τ0. We caution that the initial τ0 should not be too large.

4.3  |  Model selection and validation

In contrast to heuristic clustering approaches like k-medoids and Ward's hierarchical method, the model-
based paradigm facilitates principled model-selection using likelihood-based information criteria. In the 
MEDseq setting, the notion of model selection refers to identifying the optimal number of components 
G in the mixture and finding the best MEDseq model type in terms of constraints on the precision pa-
rameters. Variable selection on the subset of covariates included in the gating network can also improve 
the fit. For a given set of covariates, one would typically evaluate all model types over a range of G val-
ues and choose simultaneously both the model type and G value according to some criterion. Thereafter, 
different fits with different covariates can be compared according to the same criterion.

The Bayesian information criterion (BIC; Schwarz, 1978) includes a penalty term which depends 
on the number of free parameters k in the model. The parameter counts can be deceptive for MEDseq 
models. In particular, regarding the estimation of �̂g,t, we note that identifying the modal state for a 
given time point implicitly involves estimating occurrence probabilities for (vt − 1) states and then 
selecting the most common. This is accounted for in Appendix A, wherein the number of free parame-
ters under each MEDseq model type is summarised. We also note that the penalty k log n is applied to 
the maximum pseudo log-likelihood estimate in the sample-weighted setting (Xu et al., 2013).

Beyond its use in identifying the optimal G and precision parameter settings, the BIC is also em-
ployed in greedy stepwise selection algorithms in order to guide the inclusion/exclusion of relevant 
gating covariates. We propose a bidirectional search strategy in which each step can potentially consist 
of adding or removing a non-noise component or adding or removing a covariate. Interaction terms are 
not considered. Every potential action is evaluated over all possible model types at each step, rather 
than considering changing the model type as an action in itself. Changing the gating covariates or 
changing the number of components can affect the model type, as observed by Murphy and Murphy 
(2020). While this makes the stepwise search more computationally intensive, it is less likely to miss 
optimal models as it explores the model space. For steps involving both gating covariates and a noise 
component, models with both the GN and NGN settings can be evaluated and potentially selected.

A backward stepwise search starts from the model, with all covariates included, considered optimal in 
terms of the number of components G and the MEDseq model type. On the other hand, a forward stepwise 
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search uses the optimal model with no covariates included as its starting point. In both cases, the algorithm 
accepts the action yielding the highest increase in the BIC at each step. The computational benefits of up-
weighting unique cases and discarding redundant cases are stronger for the forward search, as early steps 
with fewer covariates are likely to have fewer unique cases across sequence patterns and covariates.

As a means of validating the model chosen by BIC, we turn to silhouette analysis to assess the qual-
ity of the clustering in terms of internal cohesion, where high cohesion indicates high between-cluster 
distances and strong within-cluster homogeneity. Typically, the silhouette width is defined for clustering 
methods which produce a ‘hard’ partition (Rousseeuw, 1987), and the average silhouette width (ASW) 
or weighted average silhouette width (wASW; Studer, 2013) is used as a model selection criterion. 
However, Menardi (2011) introduces the density-based silhouette (DBS) for model-based clustering 
methods. This allows the ‘soft’ assignment information to be used, which is discarded when using the 
MAP assignments in the computation of the wASW. The empirical DBS for observation i is given by

As observations are assigned to clusters via the MAP classification, d̂bsi is proportional to the log-
ratio of the posterior probability associated with the MAP assignment of observation i (denoted by ẑ0

i
) 

to the maximum posterior probability that the observation belongs to another cluster (denoted by ẑ1

i
). 

Use of the MAP classification implies 0 ≤ d̂bsi ≤ 1∀ i, with high values indicating a well-clustered 
data point. Ultimately, the mean or the median d̂bs value can be used as a global quality measure, 
albeit with two modifications. First, we identify a set of crisply assigned observations having ẑ1

i
 lower 

than a tolerance parameter ε, here set equal to 10−100. These observations are given d̂bsi values of 1 
and are excluded from the computation of the maximum in the denominator of Equation (6) for rea-
sons of numerical stability. Second, we account for the sampling weights by computing a weighted 
mean density-based silhouette criterion (wDBS). While neither the wDBS nor wASW are defined for 
G = 1, unlike the BIC, they are not employed here as model selection criteria. These silhouette sum-
mary measures are used only to validate MEDseq clustering solutions and to facilitate comparisons 
with other methods in Section 5.2. Higher values are preferred for both criteria.

5  |   ANALYSING THE MVAD DATA

Results of fitting MEDseq models to the weighted MVAD data are provided in Section 5.1. All results 
were obtained via our purpose-built R package MEDseq (Murphy et al., 2020). The impact of discard-
ing the sampling weights is also studied. A comparison against other approaches, including hierarchi-
cal, partitional and model-based clustering methods, is included in Section 5.2. A discussion of the 
insights gleaned from the solution obtained by the optimal MEDseq model is deferred to Section 6.

5.1  |  Application of MEDseq

Weighted MEDseq models are fit for G = 1, …, 25, across all 8 model types (where allowable), first 
with all covariates included in the gating network (again, where allowable). The noise components, 
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where applicable, are treated using the NGN setting. Figure 3 shows the behaviour of the BIC for 
these models. To better highlight the differences in BIC, lower values for G < 5 are not shown. Under 
these conditions, a G = 11 UUN model is identified as optimal. The same model type and number of 
components are identified as optimal when the noise components are treated with the GN setting, and 
when the same analysis is repeated with no covariates at all.

In refining the model further via greedy stepwise selection, both the forward search (see Table 
2) and backward search (see Table 3) thus begin with the same number of components and the same 
model type. As previously stated, covariates used to define the sampling weights are excluded in both 
cases. Notably, no step in either search elects to modify G or the model type. Both searches converge 
to the same G = 11 UUN model with only the single covariate ‘GCSE5eq’ in the NGN gating net-
work, though the search in the forward direction does so in fewer steps. Under this model, the proba-
bility of belonging to the noise component is constant and does not depend on the included covariate.

Notably, there is little difference between the respective clusterings produced by the various mod-
els including no covariates, all covariates, and only GCSE5eq. Indeed, both the soft Ẑ matrices and 
hard MAP assignments are almost identical between each pair of models; relative to the optimal model 
after stepwise selection, there are only 1 and 2 cases assigned to different clusters under equivalent 
models with no covariates and all covariates, respectively. Thus, the sequences themselves overwhelm 
the covariates and there is little confounding between the simultaneous roles of GCSE5eq under the 
optimal model in guiding both the construction of the clusters and their interpretation. Moreover, 
the parsimony afforded by discarding the other covariates simplifies the interpretation greatly. Thus, 
while adapting the ‘two-step’ approach introduced for LCR (Bakk & Kuha, 2018) to the MEDseq 

F I G U R E  3   Bayesian information criterion values for all MEDseq model types, with weights and all covariates, 
for a range of G values [Colour figure can be viewed at wileyonlinelibrary.com]
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setting may be of interest for other applications, the results for the MVAD data do not differ greatly 
from those presented in Section 6, as shown in Appendix C.

For completeness, the analysis above is repeated with the sampling weights discarded entirely and 
consideration given where appropriate to the two covariates used to define w. In doing so, identical 
inference is obtained on the model type; however, the results differ in terms of the optimal G (now 
10), the uncovered partition, and the estimated model parameters. This is not surprising, as failure to 
account for w in the clustering produces biased estimates of the component-specific parameters and 
the cluster membership probabilities, as well as the gating network coefficients. Additionally, an extra 
gating covariate (Grammar) is included after stepwise selection in the unweighted analysis. However, 
the results are reasonably robust to a coarsening of the sequences; in repeating all analyses with the 
data subsetted into six-monthly intervals, similar inferences are again obtained. Notably, the ECM 
algorithm's runtime is not greatly reduced in doing so. Indeed, MEDseq models scale more poorly 
with n (or, more specifically, the number of unique cases) rather than T or v, as the number of (pseudo) 
likelihood evaluations required for large n is more computationally expensive than the number of sim-
ple matching evaluations required for long sequences.

5.2  |  Other clustering methods

To contrast the MEDseq results for the MVAD data with those obtained by other methods, we pre-
sent a non-exhaustive comparison against some distance-based and some Markovian approaches. 
Regarding the former, we present only some common heuristic methods which treat the distance 

T A B L E  2   Summary of the steps taken to improve the Bayesian information criterion (BIC) in the forward 
direction

Optimal step G Model type Gating covariates Gating type BIC

— 11 UUN — −93190.08

Add ‘GCSE5eq’ 11 UUN GCSE5eq NGN −92953.85

Stop 11 UUN GCSE5eq NGN −92953.85

T A B L E  3   Summary of the steps taken to improve the Bayesian information criterion (BIC) in the backward 
direction

Optimal step G
Model 
type Gating covariates

Gating 
type BIC

— 11 UUN Catholic, FMPR, Funemp, 
GCSE5eq, Gender, Livboth

NGN −93111.30

Remove ‘FMPR’ 11 UUN Catholic, Funemp, GCSE5eq, 
Gender, Livboth

NGN −93068.09

Remove ‘Livboth’ 11 UUN Catholic, Funemp, GCSE5eq, 
Gender

NGN −93025.73

Remove ‘Catholic’ 11 UUN Funemp, GCSE5eq, Gender NGN −92994.32

Remove ‘Funemp’ 11 UUN GCSE5eq, Gender NGN −92967.23

Remove ‘Gender’ 11 UUN GCSE5eq NGN −92953.85

Stop 11 UUN GCSE5eq NGN −92953.85
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matrix as the input using distance metrics which are commonly adopted in the literature on life-
course sequences, namely PAM and Ward's method based on the Hamming distance and OM. We 
note that fuzzy clustering offers an alternative distance-based perspective which also allows for soft 
assignments (see D’Urso (2016) for an excellent overview), with further, separate extensions for in-
corporating covariates and including a noise cluster in Studer (2018) and D’Urso and Massari (2013), 
respectively. However, this paradigm is not considered further, both for the sake of brevity and be-
cause case-weighted implementations are currently unavailable. LCA and LCR, fit via the R package 
poLCA (Linzer & Lewis, 2011), are also excluded, as they encounter computational difficulties due to 
the explosion in the number of parameters for G ≥ 3. Among the considered methods, only MEDseq 
and the distance-based methods can accommodate the sampling weights.

First, MEDseq models with no covariates and all covariates are compared against weighted ver-
sions of k-medoids, using the R package WeightedCluster (Studer, 2013), and Ward's hierar-
chical clustering. Here, k-medoids is itself initialised using Ward's method. Neither method can be 
compared to MEDseq models in terms of BIC or wDBS values, as they are not model-based and do 
not yield ‘soft’ cluster membership probabilities, respectively. Thus, Figure 4 shows a comparison of 
wASW values using MAP classifications where necessary. Only the MEDseq model type (and gating 
network setting, for models with covariates) with the highest wASW for each G value is shown, for 
clarity. Note that the wASW is computed using the observed Hamming distance matrix, which both 
comparators in Figure 4 utilise directly, while MEDseq models are only based on the Hamming met-
ric. Nonetheless, MEDseq models show superior or competitive performance across the majority of G 

F I G U R E  4   Values of the wASW measure, using Hamming distances, for the best MEDseq model type for 
each G value with no covariates and all covariates. Corresponding values for weighted versions of k-medoids and 
Ward's hierarchical clustering based on the Hamming distance are also shown [Colour figure can be viewed at 
wileyonlinelibrary.com]
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values. In particular, the optimal model identified after stepwise selection achieves wASW = 0.386. 
The superior wASW values achieved by MEDseq models provide evidence that the proposed meth-
odology, which embeds features of the distance-based approaches into a model-based setting, yields 
more compact and well-separated clusters. Notably, similar conclusions are drawn when OM—with 
the same cost settings as used in McVicar and Anyadike-Danes (2002)—is used in place of the 
Hamming distance for k-medoids and Ward's method.

Second, finite mixtures with first-order Markov components, fit via the R package ClickClust 
(Melnykov, 2016b), are also included in the comparison. This package allows the initial state proba-
bilities to be either estimated or equal to 1/v for all categories; both scenarios are considered and other 
function arguments are set to their default values. The wASW values for the ClickClust models 
are not shown in Figure 4; they are much lower than those of the other methods up to G = 5 and turn 
negative thereafter. Though this implies inferior clustering behaviour for ClickClust models, the 
method also returns a Ẑ matrix of cluster membership probabilities. Hence, these models are also 
compared to MEDseq in terms of the wDBS measure in Figure 5. Again, only the best model of each 
type is shown for each G value; here, the MEDseq models again exhibit the best performance over the 
entire range. Notably, the optimal G = 11 UUN MEDseq model with ‘GCSE5eq’ in the gating net-
work achieves wDBS = 0.455. An advantage of ClickClust is that it allows sequences of unequal 
lengths, but this is not a concern for the MVAD data.

Third, the R package seqHMM (Helske & Helske, 2019) provides tools for fitting mixtures of hidden 
Markov models, with gating covariates influencing cluster membership probabilities. Such models allow 
cluster memberships to evolve over time, similar to mixed membership models (Airoldi et al., 2014). They 

F I G U R E  5   Values of the wDBS measure for the best MEDseq model type at each G value with no covariates 
and all covariates. Corresponding values for the best ClickClust model are also shown [Colour figure can be 
viewed at wileyonlinelibrary.com]
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thus cannot be directly compared to MEDseq models. However, we note that the seqHMM package provides 
a pre-fitted model for the MVAD data, with the first 2 months also discarded and no covariates. The model 
has 2 clusters, with 3 and 4 hidden states, respectively, and achieves wDBS = 0.50 and wASW = 0.23. 
Otherwise identical seqHMM models, including either all covariates or only the GCSE5eq covariate chosen 
for the optimal MEDseq model via stepwise selection, both achieve wDBS = 0.47 and wASW = 0.23. 
Notably, these wDBS and wASW values are much worse than those for MEDseq models with G = 2. 
Overall, the ClickClust and seqHMM results suggest that holistic approaches—MEDseq models, in 
particular—yield better clusterings than Markovian ones for the MVAD data.

6  |   DISCUSSION OF THE MVAD RESULTS

To better inform a discussion of the results obtained by the optimal G = 11 UUN model for the 
MVAD data, with the covariate GCSE5eq in the NGN gating network, its estimated central sequences 
are first shown in Figure 6. Seriation has been applied, using the observed Hamming distance matrix 
and the travelling salesperson combinatorial optimisation algorithm (Hahsler et al., 2008), in order to 
give consecutive numbers to clusters with similar estimated (weighted) modal sequences. Each clus-
ter's label is derived from the representation of �̂g in state-permanence-sequence format (SPS; Aassve 
et al., 2007). The same ordering and labels are used in all subsequent graphical and tabular displays of 
results. The uncovered clusters are shown in Figure 7, to which additional seriation has been applied 
in order to also group the observations within clusters, for visual clarity. Finally, the average time 

F I G U R E  6   Central sequences of the optimal G = 11 UUN model with the GCSE5eq gating covariate. The state-
permanence-sequence labels on the right characterise each non-noise cluster by the distinct successive states in �̂

g
, 

with associated durations (in months) [Colour figure can be viewed at wileyonlinelibrary.com]
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spent in each state by cluster—weighted by wi and the estimated cluster membership probabilities—is 
shown in Table 4, along with the cluster sizes.

This solution tends to group individuals who experience trajectories that are similar or that differ 
only for relatively short periods. In particular, the dominating combinations of states experienced 
over time are clearly identified, and differences in durations and/or age at transition are quite limited 
in size. Within clusters, substantial reduction of misalignments and/or differences in the durations of 
spells is evident. Ultimately, the partition is characterised not only by the sequencing (i.e. the expe-
rienced, ordered combinations of states), but also by the spell durations and the ages at transitions 
which appear mostly homogeneous within clusters. This can be explained by the fact that cases in the 
identified groups tend to dedicate the same period of time (spells of 1, 2 or 3 years) to further/higher 
education and/or training. This is interesting because one might expect the chosen dissimilarity met-
ric, as it based on the Hamming distance, to attach higher importance to the sequencing.

F I G U R E  7   Clusters uncovered under the optimal G = 11 UUN model with the GCSE5eq gating covariate. The 
rows correspond to the n = 712 observed sequences, including duplicate cases previously discarded during model 
fitting, grouped according to the MAP classification and ordered according to the observed Hamming distance matrix. 
Each cluster is named according to the state-permanence-sequence representation of �̂

g
 [Colour figure can be viewed 

at wileyonlinelibrary.com]
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The 11-cluster solution for the MVAD data separates individuals who continued in school (clusters 1, 
3 and 4), or otherwise prolonged their studies after the end of compulsory education (clusters 2, 8 and 9), 
from those who entered the labour market (clusters 5, 6 and 7). The clear division visible for some clus-
ters in Figure 7 around Autumn 1995, when new semesters of further and higher education commenced 
and the majority of those still remaining in school had eventually left, corresponds to the time point in 
Figure 2 after which the entropies declined. Interestingly, individuals who experienced prolonged periods 
of unemployment are mostly isolated in cluster 10; this is particularly important because the Status Zero 
Survey aimed to identify such ‘at risk’ subjects. From this, we conclude that youth unemployment in 
Northern Ireland in this period was predominantly a problem of small numbers experiencing long spells 
of non-participation in the labour market rather than large numbers dipping into brief, frictional spells.

Clusters 1, 3 and 4 include subjects who continued school for about 2 years, presumably to retake 
previously failed examinations or to pursue academic or vocational qualifications. These individuals 
are split into two groups depending on whether they continued their studies (FE: cluster 3, or HE: clus-
ter 1) or were employed directly (cluster 4). Clusters 2, 8 and 9 group subjects who initially entered 
further education, for about 2 years (clusters 2 and 8) or more (cluster 9). Most subjects in clusters 
8 and 9 entered employment directly after further education, whereas the vast majority of those in 
cluster 2 transitioned to higher education, where they remained until the end of the observation period.

As for the clusters of individuals who moved quickly to the labour market after the end of compul-
sory education, it is possible to distinguish between individuals who almost immediately found a job 
and remained in employment for most of the observation period (the large cluster 7) and individuals 
who entered government-supported training schemes (clusters 5 and 6). A further separation is be-
tween subjects who were employed after about 2 years of training (cluster 6) and those who partici-
pated in training for a much longer period (cluster 5). Importantly, most of the individuals in these two 
clusters were able to find a job even if some respondents experienced some periods of unemployment.

It is interesting to observe that the cluster of careers dominated by persistent unemployment (clus-
ter 10) is characterised by different experiences at the end of the compulsory education period. Indeed, 
some subjects entered employment directly after the end of compulsory education but left or lost their 
job after some months, while some prolonged their education before becoming unemployed. However, 
the majority entered a training period that did not evolve into steady employment.

Notably, the optimal model identified is a UUN model, i.e. one whose precision parameters vary 
across both clusters and time points. Thus, model selection favours a flexible, heavily-parameterised 
MEDseq variant which, while based on the simple Hamming distance, has cluster-specific and period-
specific costs which allow element-wise mismatches between sequences and the central sequences in 
different time periods in different clusters to contribute differently to the overall distance measure. 
While a display of the estimated precision parameters is omitted, for brevity, their values can be easily 
examined via the MEDseq R package. Nonetheless, it is already clear that the model captures differ-
ent degrees of heterogeneity in the cluster-specific state distributions of each month.

The coefficients of the gating network with associated WLBS standard errors are given in Table 
5, from which a number of interesting effects can be identified. The interpretation of the effects of 
the covariates is made clearer by virtue of there being just one included after stepwise selection. For 
completeness, gating network coefficients and associated WLBS standard errors for the model with 
all covariates included are provided in Appendix C.

Relative to the reference cluster (cluster 1), characterised by those who prolonged their schooling 
for two years to sit A-level exams before successfully transitioning to higher education, all slope co-
efficients are notably negative. All students achieving 5 or more grades at A–C in GCSE exams are 
therefore less likely to belong to all other clusters, relative to cluster 1. Thus, the reference level for the 
effect of GCSE5eq is appropriate and the interpretation is guided only by the magnitude of the slope 
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coefficients and their associated standard errors, as well as the intercepts. First, the effects for clusters 
2 and 3, capturing other subjects who were in higher education by the end of the observation period, 
appear slight (on the basis of the size of the standard errors of their slopes). Coupled with the negative 
intercepts for these clusters, this suggests, as expected, that more academically inclined students tend 
to prolong their education in order to improve their job prospects.

Conversely, all other intercepts are positive and all other slope coefficients appear to be significantly 
different from 0. We can say, therefore, despite the 2-year continuation in school of subjects in cluster 
4, that students who do well in GCSE exams are less likely to belong to this cluster. Furthermore, we 
can see the coefficient magnitudes increasing and the standard errors decreasing as we move from 
cluster 5 to cluster 7. As these clusters are distinguished only by the length of the training period prior 
to securing stable employment, this again suggests that academically poor students are quick to find a 
job, presumably in an unskilled capacity. Similar conclusions can be drawn for clusters 8 and 9, that is 
subjects who secured employment of some kind after some time in further education rather than third-
level education. Finally, those who achieved 5 or more high GCSE grades are less likely to experience 
persistent spells of joblessness (cluster 10).

The optimal G = 11 UUN model contains a uniform noise component. The BIC chooses such a 
model over G = 10 models without a noise component and G = 11 models with all non-noise com-
ponents. Detecting outliers in this way allows the remaining non-noise clusters to be modelled more 
clearly. Figure 8 focuses on the noise component, which isolates errant, directionless subjects who 
don’t neatly fit into any of the defined clusters and transition quite frequently between states. This 
includes transitions in and out of further education, employment, and training. Most subjects here 
are early school-leavers. Under the model's NGN gating network, the probability of belonging to this 
noise component is constant (≈ 0.025) and independent of the included GCSE5eq covariate.

7  |   CONCLUSION

The Status Zero Survey followed a sample of Northern Irish youths over a 6-year period, recording their 
employment activities at monthly intervals, in order to explore their unfolding career trajectories and 

T A B L E  5   Multinomial logistic regression coefficients and associated weighted likelihood bootstrap (WLBS) 
standard errors (in parentheses), with state-permanence-sequence (SPS) labels, for the non-gated noise gating network 
of the optimal G = 11 UUN model with the GCSE5eq covariate. Recall that GCSE5eq = 1 for subjects who achieved 
5 or more grades at A–C (or equivalent) in GCSE exams

Cluster: g (SPS) (Intercept) GCSE5eq

1 (SC,25)-(HE,45) — —

2 (FE,25)-(HE,45) −0.95 (0.44) −0.47 (0.49)

3 (SC,24)-(FE,36)-(HE,10) −0.46 (0.63) −1.23 (0.73)

4 (SC,25)-(EM,45) 0.58 (0.44) −2.18 (0.58)

5 (TR,37)-(EM,33) 1.03 (0.38) −3.43 (0.55)

6 (TR,22)-(EM,48) 1.19 (0.35) −3.73 (0.50)

7 (TR,5)-(EM,65) 1.70 (0.32) −4.09 (0.47)

8 (FE,22)-(EM,48) 0.60 (0.38) −2.20 (0.42)

9 (SC,10)-(FE,36)-(EM,24) 0.95 (0.39) −3.20 (0.55)

10 (TR,10)-(JL,2)-(TR,3)-(JL,55) 0.90 (0.36) −3.73 (0.72)
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identify those at risk of prolonged unemployment. Here we present a model-based clustering approach, 
with the aims of assessing how many typical trajectories there are, what kinds of typical trajectories there 
are, and what kinds of individuals are more likely to experience which kinds of trajectories. Our ap-
proach is contrasted to heuristic approaches previously employed in analyses of these data. In McVicar 
and Anyadike-Danes (2002), Ward's hierarchical clustering algorithm is applied to an OM dissimilarity 
matrix to identify relevant patterns in the data, with subjective costs. Notably, reference is not made to 
the associated covariates until the uncovered clustering structure is examined. In particular, MLR is used 
to relate the hard assignments of the sequences to clusters to a set of baseline covariates. It is also notable 
that the sampling weights are incorporated only in the MLR stage and not in the clustering itself. This 
is arguably a three-step approach, comprising the computation of pairwise string distances using OM 
(or some other distance metric), the hierarchical or partition-based clustering, and the (weighted) MLR.

MEDseq models, conversely, offer a more coherent ‘one-step’ model-based approach. The se-
quences are modelled directly using a finite mixture of exponential-distance models, with the 
Hamming distance and weighted variants thereof employed as the distance metric. A range of pre-
cision parameter settings have been explored to allow different time points contribute differently to 
the overall distance. Thus, varying degrees of parsimony are accommodated. Sampling weights are 
accounted for by weighting each observation's contribution to the pseudo likelihood. Dependency 
on covariates is introduced by relating the cluster membership probabilities to covariates under the 

F I G U R E  8   Observations assigned to the noise component of the optimal G = 11 UUN model with the GCSE5eq 
covariate in the non-gated noise gating network [Colour figure can be viewed at wileyonlinelibrary.com]

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/184/4/1414/7068854 by guest on 14 D

ecem
ber 2023

www.wileyonlinelibrary.com


MURPHY et al.1440  |    

mixture of experts framework. Thus, MEDseq models treat the weights, the relation of covariates to 
clusters, and the clustering itself simultaneously. Hence, MEDseq provides a coherent framework for 
estimating the number of clusters, identifying the relevant features of these patterns, and assessing 
whether these patterns are somehow influenced or shaped by the subjects’ background characteristics.

Model selection in the MEDseq setting identifies a reasonable solution for the MVAD data and 
shows that clustering the sequences in a holistic manner allows new insights to be gleaned from these 
data. In particular, 11 distinct components are found, of which 10 have interpretable typical trajecto-
ries and one is an additional noise component which captures deviant cases. Thus, supported by the 
use of an information criterion appropriate for this model-based analysis, a more granular view of 
the MVAD cohort than the 5 groups uncovered in McVicar and Anyadike-Danes (2002) is provided. 
Furthermore, allowing for the other covariates with which the sampling weights used here are defined, 
GCSE exam performance at the end of the compulsory education period is found to be the most single 
most important predictor of cluster membership.

Opportunities for future research are varied and plentiful. Co-clustering approaches could be used to si-
multaneously provide clusters of the observed sequence trajectories and the time periods (Govaert & Nadif, 
2013). Such an approach could be especially useful for the UUN model type identified as optimal for the 
MVAD data, as it would reduce the number of within-cluster period-specific precision parameters required. 
Indeed, parsimony has been achieved in a similar fashion in the context of finite mixtures with Markov 
components (Melnykov, 2016a). Additionally, grouping trajectories across time as well would enable more 
efficient summaries of the durations of the spells in specific states, which tend to be long for the MVAD 
data. In particular, using co-clustering approaches which respect the ordering of the sequences by restricting 
the column-wise clusters to form contingent blocks would be particularly desirable. Indeed, failure to fully 
account for the temporal ordering of events, due to the invariance of the Hamming distance to permutations 
of the time periods, is a general limitation of our framework which future work will endeavour to address.

It may also be of interest for other applications to extend the MEDseq models to accommodate 
sequences of different lengths, for which the Hamming distance is not defined. These different lengths 
could be attributable to missing data, either by virtue of sequences not starting on the same date, 
shorter follow-up time for some subjects, or non-response for some time points. While the Hamming 
distance is only defined for equal-length strings, adapting the MEDseq models to such a setting would 
be greatly simplified if aligning the sequences of different lengths is straightforward. Another limita-
tion of MEDseq models is that time-varying covariates are not accommodated in the gating network. 
Notably, neither of these concerns are relevant for the MVAD data.

However, our analysis of the MVAD data is limited by two aspects of the gating network portion 
of our framework. The first substantive limitation relates to the WLBS approach used for quantifying 
uncertainty in the MLR coefficients. As the sampling weights arise from stratification, the standard 
errors obtained in this fashion are approximate. Thus, examining alternative approaches to produce 
fully valid variance estimates in the MEDseq setting in the presence of complex sampling designs is 
an interesting future research avenue.

The second limitation relates to the stepwise procedure used to identify relevant covariates. As this 
strategy depends on an information criterion, namely the BIC, whose penalty term is based on a pa-
rameter count, it may be prudent to relax the assumption that gating covariates must affect all compo-
nents. As the number of components chosen here (G = 11) is moderately large, a large number of extra 
parameters are associated with each extra covariate (see Appendix A). Thus, only GCSE5eq is iden-
tified as optimal, as it is significantly associated with many of the typical trajectories. However, we 
note, for example, that Catholics are largely underrepresented in cluster 7 and largely overrepresented 
in cluster 10 (characterised by persistent employment and persistent joblessness, respectively) despite 
the omission of the covariate indicating religious affiliation from the optimal model. Incorporating 
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regularisation penalties into the MLR to shrink certain gating network coefficients to zero could thus 
be a fruitful alternative to the present stepwise covariate-selection method.

Another potential extension is to consider MEDseq models with alternative distance metrics. The 
distance metric in García-Magariños and Vilar (2015), which accounts for the temporal correlation in cat-
egorical sequences, is of particular interest; so, too, is OM. In general, heuristic distance-based clustering 
(including fuzzy methods) can more easily accommodate more sophisticated distances, while changing 
the MEDseq distance metric fundamentally alters the model, which needs the normalising constant and 
the conditional maximisation steps for parameter estimation to be tailored to the choice of metric.

MEDseq models, by virtue of being based on the Hamming distance for computational reasons, im-
plicitly assume substitution-cost matrices with zero along the diagonal and a single value common to all 
other entries. The relationship between the exponent of an EDM based on the Hamming distance and the 
Hamming distance itself (with a common cost, typically equal to 1) is apparent from the fact that multiply-
ing the substitution-cost matrix by any positive scalar, as per normalised variants of the Hamming distance 
(Elzinga, 2007; Gabadinho et al., 2011), yields the same model, because its value is absorbed into λ. This 
is also the case for models employing weighted Hamming distance variants under which the precision 
parameters, and hence the otherwise common substitution costs, vary across clusters and/or time points. 
However, all model types in the MEDseq family cannot account for situations in which some states are 
more different than others—for example one where the cost associated with moving from employment to 
joblessness is assumed to be greater than the cost associated with moving from school to training—as they 
assume that substitution costs are the same between each pair of states. Such concerns are most pronounced 
when there is an explicit ordering to the states, for example education levels (Studer & Ritschard, 2016).

Basing MEDseq on OM, for instance, would require the subjective specification, or preferably 
estimation, of the v(v − 1)/2 off-diagonal entries of symmetric substitution-cost matrices. Potentially, 
as per the range of precision settings used for the MVAD application, the substitution-cost matrices 
could also be allowed to vary across clusters and/or time points. However, the normalising constant 
under an EDM using OM depends both on the heterogeneous substitution costs and on θ and is un-
available in closed form, thereby greatly complicating model fitting. Indeed, dependence on θ renders 
even offline pre-computation of the normalising constant infeasible for even moderately large T or v. 
Truncation of the sum over all sequences or importance sampling techniques could be used to address 
the intractability. Though not a concern for the MVAD data, as one substitution is equivalent to a 
deletion and an insertion for equal-length sequences, considering insertions and deletions also would 
present further challenges. In any case, some level of approximation would be required, while the 
ECM algorithm for MEDseq models based on simple matching is exact.

As well as removing the normalising constant's dependence on θ, another positive consequence of 
the homogeneity of substitution costs with respect to pairs of states under the Hamming distance is 
that the ECM algorithm used for parameter estimation scales well with the sequence length T and the 
size of the alphabet v, especially since such normalising constants need to be computed once, G times, 
or G−1 times per iteration, depending on the precision parameter settings. Though potentially restric-
tive, having only one parameter associated with each substitution-cost matrix, regardless of its order 
v, helps address concerns about overparameterisation (Studer & Ritschard, 2016), especially when the 
substitution costs implied by the precision parameter(s) vary across clusters and/or time points.

Furthermore, it is likely that results on the MVAD data would not differ greatly with OM used 
in place of the Hamming distance, particularly for models where λ varies across clusters and/or 
time points, save for a solution with potentially fewer clusters being found. Indeed, McVicar and 
Anyadike-Danes (2002) also consider a setting with common substitution costs and find that their 
results do not greatly differ from their solution with state-dependent costs. This implies that the 
notion that some states in the MVAD data are closer to each other than others can be questioned. 
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Ultimately, the UUN model adopted here preserves the timing of events, by prohibiting time-
warping insertion and deletion operations, while accounting (in a cluster-specific fashion) for 
the timing, as well as the number, of element-wise mismatches between sequences, in such a way 
that all states are assumed to be equally different. Given the correspondence between Hamming 
distance weights, precision parameters, and implicit substitution costs in MEDseq models, it is no-
table that these are treated as parameters rather than inputs, and are thus estimated as part of model 
fitting rather than pre-specified along with the matrix of pairwise distances between sequences.

Overall, our analysis of the MVAD data provides a more granular view of the cohort of Northern 
Irish youths than previously available, supplemented by interpretable parameter estimates achieved 
through a coherent model-based framework. The MEDseq model family appears promising from the 
perspective of reconciling the distance-based and model-based cultures within the SA community. 
Indeed, the results for the MVAD data are encouraging in this respect; they seem to suggest that the 
unconstrained precision parameter settings adequately address the misalignment issues inherent in 
the use of the Hamming distance. It remains to be seen if this holds for more turbulent sequences, for 
example those related to employment activities tracked over longer periods.
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APPENDIX A

THE MEDseq MODEL FAMILY: PARAMETER COUNTS
The models in the MEDseq family differ only in their treatment of the precision parameters, which 
differentiate the Hamming distance and the weighted variants thereof. The BIC is used in order to 
choose between the 8 model types, identify the optimal G, and guide the inclusion of gating co-
variates. Table A1 summarises the number of free parameters k in the BIC penalty term under each 
MEDseq model type, in order to demonstrate the increasing level of complexity in moving from the 
most parsimonious CCN model to the most heavily parameterised UU model.

The number of parameters contributing to each �̂g estimate notably depends on the number of states 
represented across all cases in each time point. Note also that parameters relating to �̂g,t corresponding 
to estimated precision parameters are counted, while those associated with fixed precision parameter 
values of 0 are not counted. Similarly, precision parameters estimated as 0 are counted, but precision 
parameters fixed at 0 associated with the noise component are not.

The number of gating network parameters is not accounted for in Table A1. When covariates are 
included, there are (r + 1)×(G − 1) or (r + 1) × (G − 2) + 1 extra parameters—under the GN and 
NGN settings, respectively—where r + 1 is the dimension of the associated design matrix, including 
the intercept term. When τ is not covariate-dependent, there are G − 1 extra parameters when τ is 
unconstrained or only 1 extra parameter if τ is constrained and the model includes a noise component, 
in which case τ0 is allowed to vary.

APPENDIX B

ESTIMATING MEDSEQ PRECISION PARAMETERS
For fixed θ, the PMF in Equation (1) belongs to the exponential family with natural parameter λ. Thus, 
under any distance metric, the method of moments estimate of λ is equal to the MLE. Hence, with �̂ 
already estimated as per Section 4.1.2, �̂ ensures that the expected distance of observations from �̂ is 
equal to the observed average distance from �̂, since the solution of

T A B L E  A 1   Number of estimated parameters under each MEDseq model type. Models with names ending 
with the letter N, indicating the presence of a noise component for which the single precision parameter is fixed to 
0, behave like the corresponding model without this component for all other components. Thus, λ and all subscript 
variants thereof refer here to the non-noise components only

Model Precision λg (Clusters) λt (Time points)

Number of parameters

Central sequence(s) Precision

CC λg,t = λ Constrained Constrained G
∑

T
t= 1

�
vt − 1

�
1

CCN (G − 1)
∑

T
t= 1

�
vt − 1

�
�(G > 1)

UC λg,t = λg Unconstrained Constrained G
∑

T
t= 1

�
vt − 1

�
G

UCN (G − 1)
∑
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�
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�
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CU λg,t = λt Constrained Unconstrained G
∑

T
t= 1

�
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∑
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∑
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implies

Under the Hamming distance, the value of the expectation in Equation (A1) holds for any arbitrary 
reference sequence in place of �̂. As the denominator in Equation (A1)—corresponding to the nor-
malising constant in Equation (3), under the Hamming distance—is a function of λ, it is crucial that it 
exists in closed form in order to estimate the precision parameter. Hence, with known �̂, the MLE for 
λ for an unweighted single-component CC model can be obtained as follows:

which notably relies on the inverse of the average Hamming distance normalised by the sequence length T. 
However, this can yield a negative value for �̂. Recall that we only consider λ ≥ 0. Since all distances are 
non-negative and typically not identical, �𝓁( ⋅ )��  is negative ∀  λ > 0 in the case where the sufficient statistic 
dH

(
S, ��

)
> v−1T (v − 1), with lim�→∞

�𝓁( ⋅ )

��
= − ndH

(
S, �̂

)
. Thus,

When dH

(
S, ��

)
< v−1T (v − 1), such that �𝜆 > 0, the identity log (c(a/b − 1)) = log (c) + log (a − b) 

− log (b) is used for numerical stability, otherwise �̂ is set to 0. When sampling weights are included, 
following the same steps as above yields the corresponding estimate

The ECM algorithm is employed when G > 1, in which case the CM-step for �̂
(m+1)

 under a CC 
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As per Equation (A2), this requires the current estimate of each component's central sequence. When 
there are no sampling weights, one need only drop the wi terms from Equations (A2) and (A3) to estimate 
the precision parameters of unweighted MEDseq models. While �̂ can potentially be estimated as zero, 
the inclusion of a noise component in the CCN, UCN, CUN, and UUN models makes this explicit, by 
restricting one cluster to have λg,t = 0  ∀  t = 1, …, T.

However, when �̂g,t is estimated as zero rather than fixed to zero, the corresponding θg,t parameter 
must be estimated, as it affects the likelihood indirectly through its role in estimating the precision 
parameter(s). In particular—taking the UU model as an example—all state values in the t-th sequence 
position with non-zero ẑ

(m+1)

i,g
 are identical to �̂(m+1)

g,t
 when the corresponding denominator in Table B2 

evaluates to zero, such that �̂(m+1)

g,t
→∞.

Expressions for the weighted complete data pseudo likelihood functions for all model types in the 
MEDseq family are given in Table B1. All models are written here as though gating network covari-
ates xi are included. However, the gating networks of models with a noise component are written in 
the NGN form employed by the optimal model identified in Section 5.1 rather than the GN form, i.e. 
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T A B L E  B 1   Weighted complete data pseudo likelihood functions for all MEDseq model types, which differ 
according to the constraints imposed on the precision parameters across clusters and/or time points. The expressions 
for the various weighted Hamming distance metric variants employed, and the associated normalising constants, are 
given in full
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it is assumed that τ0 is constant, meaning the covariates do not affect the probability of belonging to 
the noise component (see Section 3.4).

Table B2 outlines the corresponding CM-steps for the precision parameter(s). All derivations 
closely follow the same steps as in Equation (A3) for the CC model and the normalised sampling 
weights are accounted for in all cases. These formulas can be simplified somewhat for unweighted 
models and/or models without gating covariates. Recall that the first letter of the model name denotes 
whether the precision parameters are constrained/unconstrained across clusters, the second denotes 
the same across time points (i.e. sequence positions), and model names ending with the letter N in-
clude a noise component.

APPENDIX C

MVAD DATA: GATING NETWORK COEFFICIENTS
Multinomial logistic regression coefficients and associated WLBS standard errors of the NGN gating 
network of a G = 11 UUN model with the GCSE5eq covariate are provided in Table 5. For complete-
ness, coefficients and standard errors for an otherwise equivalent model with all covariates included 
(except those used to define the sampling weights) are given in Table C1. Such a model achieves a 
BIC value of −93111.30 (see Table 3), compared to −92953.85 for the optimal model with only the 
GCSE5eq covariate detailed in Section 5.1. Notably, G = 11 and the UUN model type are both also 
optimal for the model with all covariates included. Furthermore, both models yield identical SPS la-
bels, derived from ̂�g. Thus, Table 5 and Table C1 share the same reference level. In the latter case, we 
caution that the covariates ‘Livboth’ and ‘Funemp’ were measured after the observation period had 

T A B L E  B 2   CM-steps for the precision parameter(s) of the non-noise components for all MEDseq model types, 
which differ according to the constraints imposed across clusters and/or time points
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begun, which complicates interpretation. In particular, subjects’ living arrangements were recorded 
after two years, and the father's employment status was recorded in the final month of June 1999.

The MLR coefficients in Table 5 are estimated under a one-step approach, under which clustering 
and the relation of clusters to covariates are performed simultaneously. There are subtle interpreta-
tional differences between covariates serving as predictors of cluster-membership under a one-step 
approach compared to covariates enabling interpretation of the type of observation characterising 
each cluster under a two-step approach. Fortunately, the MEDseq framework permits both types of 
analysis. Thus, we present coefficients obtained under two 2-step approaches in Table C2 in order to 
contrast them to those in Table 5.

Firstly, a model without any covariates which is otherwise exactly equivalent to the optimal one 
including only GCSE5eq as a covariate is fitted (BIC = −93190.08). Thereafter, MLR is used (with 
the GCSE5eq covariate, with the same reference level) firstly with the ‘soft’ Ẑ matrix as the response 
and secondly with the hard MAP partition used as the response. The sampling weights are accounted 
for in both cases; so too is the removal of the noise component, as per the NGN gating network set-
ting shown in Table 5, by appropriately renormalising Ẑ prior to estimating each MLR (i.e. prior to 
constructing the MAP partition under the hard approach). Notably, there is little difference between 
the coefficients obtained under the one-step and soft two-step approaches. However, the estimates 
differ more greatly under the hard two-step approach, which suggests that relating covariates to hard 
partitions is inappropriate when the clusters are insufficiently homogeneous, as the hard partitions do 
not necessarily lead to appropriate responses for the MLR.

Notably, similar conclusions are drawn when the coefficients in Table C1 are compared to those 
obtained (but not shown here) when similar soft and hard two-step approaches are used with the same 
set of ‘all’ covariates; namely, the coefficients differ little between the one-step and soft two-step ap-
proach, but differ greatly between the one-step and hard two-step approach. However, the coefficients 
differ only in magnitude and not in sign in all pairwise comparisons.
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