
Journal of Algebra 570 (2021) 119–139
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Self-dual modules in characteristic two and normal 
subgroups

Rod Gow a, John Murray b,∗

a School of Mathematical Sciences, University College Dublin, Ireland
b Department of Mathematics and Statistics, Maynooth University, Ireland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 August 2020
Available online 1 December 2020
Communicated by Markus 
Linckelmann

Keywords:
Finite groups
Representation theory
Brauer characters
Clifford theory
Duality
Quadratic modules
Brauer blocks
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characteristic 2.
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and let ϕ be an irreducible 2-Brauer character of N . We show 
that ϕ occurs with odd multiplicity in the restriction of some 
self-dual irreducible Brauer character θ of G if and only if ϕ
is G-conjugate to its dual. Moreover, if ϕ is self-dual then θ is 
unique and the multiplicity is 1.
Next suppose that θ is a self-dual irreducible 2-Brauer 
character of G which is not of quadratic type. We prove 
that the restriction of θ to N is a sum of distinct self-
dual irreducible Brauer character of N , none of which have 
quadratic type. Moreover, G has no self-dual irreducible 2-
Brauer character of non-quadratic type if and only if N and 
G/N satisfy the same property.
Finally, suppose that b is a real 2-block of N . We show that 
there is a unique real 2-block of G covering b which is weakly 
regular with respect to N .
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1. Statement of results

Throughout the paper G is a finite group and N is a normal subgroup of G. We fix a 
2-modular system (K, R, F ) for G. So R is a complete discrete valuation ring which has 
field of fractions K of characteristic 0 and residue field F = R/J(R) of characteristic 2. 
We will assume that K and F are splitting fields for all subgroups of G. For example, 
this holds if K contains a primitive |G|-th root of unity. We use r∗ to denote the image 
of r ∈ R in F . Each integer m can be factored as m = m2m2′ , where m2 is a power of 2
and m2′ is odd.

We use Irr(G) to denote the irreducible K-characters of G. These have values in a 
cyclotomic subfield of K which can be identified with a subfield of C. So Irr(G) can 
be identified with the irreducible complex characters of G. Next recall that the Brauer 
character of an FG-module is an R-valued class function defined on the 2-regular (odd 
order) elements of G. The Brauer characters of the irreducible FG-modules are called 
the irreducible 2-Brauer characters of G. We use IBr(G) to denote all such characters. 
The dual of a character θ is the character θ defined by θ(g) := θ(g−1), for all g ∈ G. 
We say that θ is self-dual if θ = θ. This holds if and only if θ is the character of some 
self-dual module.

Let θ be an irreducible Brauer character of G and let ϕ be an irreducible Brauer 
character of a subgroup H of G. We say that θ lies over ϕ if θ is constituent of the induced 
character ϕ↑G. Likewise we say that ϕ lies under θ if ϕ is a constituent of the restricted 
character θ↓H . There is no analogue of Frobenius reciprocity for Brauer characters. So 
the fact that θ lies over ϕ does not imply that ϕ lies under θ, and conversely. However 
these implications do hold if H is normal in G [12, p. 155 and (8.7)]. Our first result 
is:

Theorem 1. Let ϕ be an irreducible 2-Brauer character of N . Then ϕ lies under some 
self-dual irreducible 2-Brauer character θ of G if only if ϕ is G-conjugate to ϕ. If such 
a self-dual θ exists, it can be chosen so that ϕ occurs with odd multiplicity in θ↓N .

Our second result is:

Theorem 2. Let ϕ be a self-dual irreducible 2-Brauer character of N . Then

(i) ϕ extends to its stabilizer in G, and exactly one of these extensions is self-dual.
(ii) G has a unique self-dual irreducible 2-Brauer character θ such that ϕ occurs with 

odd multiplicity in θ↓N .
(iii) ϕ occurs with multiplicity 1 in θ↓N .

We will refer to θ as the canonical irreducible Brauer character of G lying over ϕ. The 
module form of this theorem is stated and proved in Theorem 9 below.
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Replacing the normal subgroup N by a subnormal subgroup H, part (ii) of The-
orem 2 still holds. However part (iii) need not hold. Indeed the multiplicity can be 
arbitrarily large, as J. Müller has pointed out. We outline his example at the end of 
Section 3.

Theorem 2 is similar in flavour to a result of I. M. Richards. In [13] he proved that 
when G/N has odd order, each self-dual irreducible K-character of N extends to its 
stabilizer in G, and has a unique self-dual extension.

Example. Let G be the semi-dihedral group of order 2n ≥ 16, and let N be the centre of 
G. Then N has a unique, hence self-dual, non-trivial irreducible K-character. However 
all faithful irreducible K-characters of G have degree 2 and none of them is self-dual. 
So neither Theorems 1 nor 2 generalize to irreducible K-characters nor to irreducible 
p-Brauer characters, for primes p �= 2.

Next recall that a non-trivial irreducible 2-Brauer character of G is said to have 
quadratic type if the corresponding FG-module affords a non-zero G-invariant quadratic 
form. Our first application is:

Theorem 3. Let θ be a non-quadratic type self-dual irreducible 2-Brauer character of G

which does not lie over the trivial character of N . Then θ↓N is a sum of non-quadratic 
type self-dual irreducible Brauer characters of N , each occurring with multiplicity 1.

The second application is to blocks. For undefined notation, see Section 6 below and 
for a full exposition of block theory, see Chapter 5 of [11].

Let B be a 2-block of irreducible K-characters of G. Then the duals of the characters 
in B form another 2-block Bo, called the contragredient of B. We say that B is real if 
B = Bo. Recall that B is said to cover a 2-block b of N if the restriction of an irreducible 
character in B contains an irreducible character in b, and that B is said to be weakly 
regular (with respect to N) if it has maximal defect among the blocks of G which cover b.

Theorem 4. Let b be a 2-block of N . Then

(i) G has a real weakly regular 2-block covering b if and only if b is G-conjugate to bo.
(ii) G has a unique real weakly regular 2-block covering b if b = bo.

We prove (i) in Lemma 18 and (ii) in Lemma 20.
Recall that corresponding to each irreducible 2-Brauer character θ, G has a principal 

indecomposable character Φθ. Then Φθ is a K-character of G which vanishes off the 2-
regular elements of G. We use the following result, which is implicit in [5, 1.4], to prove 
Theorem 4. As it may be of independent interest, we include a short proof here:

Lemma 5. Let B be a 2-block of G. Then B has an odd number of height 0 irreducible 
Brauer characters θ such that Φθ(1)2 = |G|2.



122 R. Gow, J. Murray / Journal of Algebra 570 (2021) 119–139
Proof. Let D be a defect group of B. Then Brauer showed that dim(B)
|G||G:D| is a unit in 

R. See [11, 5.10.1]. Now dim(B) =
∑

θ∈IBr(b) Φθ(1)θ(1). It is known that Φθ(1)/|G| and 
θ(1)/|G : D| belong to R, for all θ ∈ IBr(B). So Brauer’s result gives us an identity in 
F :

∑
θ∈IBr(B)

(
Φθ(1)
|G|

)∗ (
θ(1)

|G : D|

)∗
=

(
dim(B)

|G||G : D|

)∗
= 1F .

The contribution of θ to the left hand side is 1F , if θ has height 0 and Φθ(1)2 = |G|2. 
Otherwise the contribution is 0F . So the lemma follows directly from the above equal-
ity. �

Many 2-blocks have an odd number of height 0 irreducible Brauer characters. For 
example, the main result of [8] is that each 2-block of a symmetric group has a unique 
height 0 irreducible Brauer character. Furthermore, it is known that each principal in-
decomposable character Φ of a finite solvable group satisfies Φ(1)2 = |G|2. So Lemma 5
implies that each 2-block of a finite solvable group has an odd number of height 0 irre-
ducible Brauer characters. However, as B. Sambale has pointed out, the faithful 2-block 
of 3.Suz.2 has four height 0 irreducible Brauer characters. Three of these satisfy the 
condition of Lemma 5 on their principal indecomposable character degree. T. Wada and 
J. Müller have independently noted this example, and the fact that it is unique in the 
database [10].

2. Real orbits of irreducible Brauer characters

Recall that g ∈ G is said to be real in G if xgx−1 = g−1, for some x ∈ G. Similarly 
a conjugacy class of G is real if its elements are real, and 2-regular if its elements have 
odd order. Now G acts on the conjugacy classes, the irreducible K-characters and the 
Brauer characters of its normal subgroup N . We say that a G-orbit of conjugacy classes 
of N is real if its union is a real conjugacy class of G. Likewise we say that a G-orbit of 
irreducible Brauer characters of N is real if it contains the duals of its characters.

Proof of Theorem 1. It is clear that each self-dual irreducible Brauer character of G lies 
over a real G-orbit of irreducible Brauer characters of N .

Suppose that G has � conjugacy classes of 2-regular elements, with representatives 
g1, . . . , g�. Let θ1, . . . , θ� be the irreducible Brauer characters of G and let Φ1, . . .Φ� be 
the corresponding principal indecomposable characters of G. The second orthogonality 
relations give

∑
χ(g−1

i )χ(gj) = δi,j |CG(gi)|, for all i, j ∈ {1, . . . , �}.

χ∈Irr(G)
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Now for all χ ∈ Irr(G), we have χ(gj) =
∑�

u=1 dχ,θuθu(gj), where the dχ,θu are non-
negative integers, called decomposition numbers. Then for all u = 1, . . . , �, we have 

Φu(gi) =
∑

χ∈Irr(G) dχ,θuχ(gi). It is known that Φu(g−1
i )

|CG(gi)| ∈ R, for all u, i. So the above 
displayed equation can be rewritten in R as

�∑
u=1

Φu(g−1
i )

|CG(gi)|
θu(gj) = δi,j , for all i, j ∈ {1, . . . , �}. (1)

In particular the Brauer character table [θi(gj)] of G is a non-singular � × � matrix.
(We note that the proof of [12, (2.18)] shows that det[θi(gj)]2 = ± 

∏�
j=1 | CG(gj)|2′ .)

Suppose that G has r real conjugacy classes of 2-regular elements, which we may 
assume have representatives g1, . . . , gr. We choose notation so that θ1, . . . , θr are the 
self-dual irreducible Brauer characters of G. Then the self-dual Brauer character table 
of G is the r × r submatrix T := [θi(gj)] of the Brauer character table. Suppose that 
u ∈ {r+1, . . . , �}. Then there is a unique u ∈ {r+1, . . . , �}, with u �= u, such that θu = θu. 
So Φu(g−1

i )
|CG(gi)|θu(gj) = Φu(g−1

i )
|CG(gi)|θu(gj), for all i, j. So the contribution of the summands 

indexed by u and u to (1) is 0 mod J(R), and we deduce that

r∑
u=1

Φu(g−1
i )

|CG(gi)|
θu(gj) ≡ δi,j mod J(R), for all i, j ∈ {1, . . . , r}.

As R is a local ring, it follows that T is invertible, with inverse congruent to the r × r-

matrix 
[

Φi(g−1
j )

|CG(gj)|

]
mod J(R). In particular det(T ) /∈ J(R).

Now suppose that G has t real conjugacy classes of 2-regular elements which are 
contained in N , with representatives n1, . . . , nt. We relabel the θ1, . . . , θr so that the 
t × t submatrix S := [θi(nj)] of T satisfies det(S) /∈ J(R).

For i = 1, . . . , t, let ϕi be an irreducible Brauer character of N which is a constituent 
of θi↓N , and set ϕ̂i as the sum of the distinct G-conjugates of ϕi. Then θi↓N = eiϕ̂i, 
for some positive integer ei. The non-singularity of S implies that all the multiplicities 
e1, . . . , et are odd and ϕ1, . . . , ϕt lie in distinct G-orbits. Moreover each of these orbits 
is real, as each θi is self-dual.

By the non-singularity of the Brauer character table of N and Brauer’s permutation 
lemma, G has t real orbits on the irreducible Brauer characters of N . So ϕ1, . . . , ϕt

represent all real G-orbits of irreducible Brauer characters of N .
Our work above shows that if ϕ is an irreducible Brauer character of N which is G-

conjugate to ϕ, then G has a self-dual irreducible Brauer character θ such that ϕ occurs 
with odd multiplicity in θ↓N . This concludes the proof. �
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3. Clifford theory for self-dual irreducible modules

We prove Theorem 2 in this section. Recall that the dual of an FG-module V is the 
FG-module V ∗ := HomF (V, F ). We say that V is self-dual if V ∼= V ∗ as FG-modules. 
For the reader’s convenience, we begin by stating a module version of Clifford’s Theorem:

Lemma 6 (Clifford 1937). Let F be an arbitrary field, let V be an irreducible FG-module 
and let W be an irreducible submodule of V ↓N . Set T as the stabilizer of W in G. Then

(i) V ↓N ∼= e(W1⊕· · ·⊕Wn) for some integer e > 0, where W1, . . . , Wn are the distinct 
G-conjugates of W . In particular V ↓N is semi-simple.

(ii) Let U be the sum of all submodules of V ↓N which are isomorphic to W . Then U
is an irreducible FT -module, U↓N = eW and U↑G = V .

(iii) If W is absolutely irreducible, it extends to a projective FT -module Ŵ and U ∼=
P ⊗ Ŵ , for some projective F (T/N)-module P .

(iv) If W extends to an FT -module Ŵ , then the distinct irreducible FG-modules lying 
over W are (S1⊗Ŵ )↑G, . . . , (St⊗Ŵ )↑G where S1, . . . , St are the distinct irreducible 
F (T/N)-modules.

Proof. See for example Huppert and Blackburn, Finite Groups II, VII, 9.12. �
Next we point out that the following result, generally known as Fong’s Lemma, holds 

for an arbitrary field F of characteristic 2. In particular F need not be perfect:

Lemma 7. Let G be a finite group, let F be an arbitrary field of characteristic 2 and 
let V be a non-trivial self-dual irreducible FG-module. Then V affords a non-degenerate 
G-invariant alternating bilinear form. In particular dim(V ) is even.

Proof. The self-duality of V is equivalent to the existence of a non-degenerate G-invariant 
bilinear form B : V ×V → F . If B is not symmetric, set B̂(v1, v2) = B(v1, v2) +B(v2, v1), 
for all v1, v2 ∈ V . Then B̂ is a G-invariant non-zero symmetric bilinear form on V . Now 
rad(B̂) is a submodule of V and V is irreducible. So rad(B̂) = 0 and B̂ is non-degenerate.

The first paragraph shows that V affords a G-invariant non-degenerate symmetric 
bilinear form, henceforth denoted B. We claim that B is alternating, meaning B(v, v) =
0, for all v ∈ V . For suppose otherwise. Set Q(v) := B(v, v), for all v ∈ V . Then Q is a 
non-zero G-invariant quadratic form on V . Now Q is additive, as for all v1, v2 ∈ V , we 
have

Q(v1 + v2) = B(v1 + v2, v1 + v2)

= B(v1, v1) + B(v1, v2) + B(v2, v1) + B(v2, v2)

= Q(v ) + Q(v ), using B(v , v ) + B(v , v ) = 0.
1 2 1 2 2 1
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Moreover Q(λv) = λ2Q(v), for all λ ∈ F and v ∈ V . Define U := {v ∈ V | Q(v) = 0}. 
Then our work shows that U is a submodule of V . But U �= V , as Q �= 0. So U = 0, by 
irreducibility of V . Let v ∈ V and g ∈ G. Then Q(gv + v) = Q(gv) + Q(v) = 0, as Q is 
additive and G-invariant. So gv + v ∈ U , whence gv = v. But then G acts trivially on 
V , contrary to hypothesis. This proves our claim.

The final statement follows as every symplectic vector space has even dimension. �
Corollary 8. Let G be a finite group and let F be an arbitrary field of characteristic 2. 
Then the radical of FG has odd codimension in FG.

Proof. We use rad(FG) to denote the radical of FG, which is the intersection of the 
annihilators of all irreducible FG-modules. Suppose first that F is a splitting field for 
G. Let θ1, . . . , θ� be the irreducible Brauer characters of G, with θ1, . . . , θr precisely the 
self-dual characters, and θ1 the trivial Brauer character. We have

dim(FG) − dim(rad(FG)) = θ1(1)2 + · · · + θ�(1)2.

Now θ1(1) = 1 and θi(1) is even for 2 ≤ i ≤ r, by Fong’s Lemma. If i > r, we may pair 
θi with its dual, and these two characters have the same degree. It is now clear that

θ1(1)2 + · · · + θ�(1)2

is odd, and the result follows in this case.
Now suppose that F is any field of characteristic 2. Set E = F (ω), where ω is a 

primitive |G|2′ -th root of unity in an extension field of F . Then E is a splitting field 
for G and a finite separable extension of F . As FG contains an E-basis of EG, it is a 
standard fact that rad(EG) is the E-span of rad(FG). In particular dimE(rad(EG)) =
dimF (rad(FG)). The first part shows that dimE(EG) − dimE(rad(EG)) is odd. So 
dimF (FG) − dimF (rad(FG)) is odd in this case also. �

For the rest of this section F is a perfect field of characteristic 2. Here is the module 
version of Theorem 2:

Theorem 9. Let W be a self-dual irreducible FN -module. Then W extends to its stabilizer 
in G, and there is a unique extension Ŵ which is self-dual.

Set V := Ŵ↑G. Then V is a self-dual irreducible FG-module, and V ↓N ∼= W1 ⊕ · · · ⊕
Wn, where W1, . . . , Wn are the distinct G-conjugates of W . Moreover V is the unique 
self-dual irreducible FG-module such that W occurs with odd multiplicity in V ↓N .

Proof. We may assume that W is non-trivial and G-invariant. As W is a self-dual FN -
module, it affords a non-degenerate N -invariant bilinear form B : W × W → F . An 
application of Schur’s Lemma shows that B is unique up to scaling.
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Let X : N → GL(W ) be the F -representation given by W . For each g ∈ G, we define 
the conjugate representation Xg of N by

Xg(n) = X(gng−1), for all n ∈ N .

Then X and Xg are equivalent representations, as W is G-invariant. So there is Y (g) ∈
GL(W ) such that

Y (g)X(n) = Xg(n)Y (g), for all n ∈ N .

We choose Y (g) = X(g), whenever g ∈ N . Now for all g, h ∈ G, we have

[Y (gh)−1Y (g)Y (h)]X(n) = X(n) [Y (gh)−1Y (g)Y (h)].

So by Schur’s Lemma there is a non-zero α(g, h) ∈ F such that

Y (gh) = α(g, h)Y (g)Y (h). (2)

Then α : G ×G → F× is an F -valued cocycle and Y is a projective representation of G
which extends X.

Next, for all g ∈ G, we define the bilinear form Bg : W ×W → F by

Bg(u, v) = B(Y (g)u, Y (g)v), for all u, v ∈ W .

Then for all n ∈ N we have

Bg(X(n)u,X(n)v) = B(Y (g)X(n)u, Y (g)X(n)v)

= B(X(gng−1)Y (g)u,X(gng−1)Y (g)v)

= B(Y (g)u, Y (g)v), as B is X-invariant

= Bg(u, v).

This shows that Bg is X-invariant. As B is unique up to scalars

Bg = λ(g)B, for some λ(g) ∈ F×. (3)

As B is N -invariant, we have λ(n) = 1, for all n ∈ N .
Now for all g, h ∈ G we have Bgh = λ(gh)B. On the other hand

Bgh(u, v) = B(Y (gh)u, Y (gh)v)

= B(α(g, h)Y (g)Y (h)u, α(g, h)Y (g)Y (h)v), by (2),

= α(g, h)2λ(g)λ(h)B(u, v), by (3).
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Comparing these expressions, we see that

λ(gh) = α(g, h)2λ(g)λ(h). (4)

Since F is perfect, for each g in G, there exists μ(g) ∈ F such that μ(g)2 = λ(g). 
Set Ŷ (g) = μ(g)−1Y (g) for all g ∈ G. Then Ŷ is a projective representation of G which 
extends X. Moreover Ŷ corresponds to the cocycle β(g, h) := μ(g)μ(h)μ(gh)−1α(g, h).

Now β(g, h)2 = λ(g)λ(h)λ(gh)−1α(g, h)2 = 1 and char(F ) = 2. So β(g, h) = 1, for all 
g, h ∈ G. This means that Ŷ is an F -representation of G which extends X.

If we now consider the action of the elements Ŷ (g) on the bilinear form B, a repetition 
of an earlier argument shows that for all u and v in W , and all g ∈ G,

B(Ŷ (g)u, Ŷ (g)v) = ε(g)B(u, v)

for some nonzero scalar ε(g). The fact that Ŷ is a representation of G, and B is N -
invariant now implies that ε is a homomorphism G/N → F×.

Finally, as F has characteristic 2, ε has odd order in the character group of G/N . 
So as F is perfect, ε = δ2 for a unique homomorphism δ : G/N → F×. Then if we set 
X̂(g) = δ(g)−1Ŷ (g), we find that X̂ is also an F -representation of G which extends X. 
Moreover X̂ is self-dual, as we can easily check that it leaves B invariant.

Let Ŵ be the irreducible self-dual FG-module corresponding to X̂. So Ŵ extends 
W . Then S ⊗ Ŵ give all irreducible FG-modules lying over W , as S ranges over all 
irreducible FG/N -modules. Recall that S⊗Ŵ ∼= S′⊗Ŵ if and only if S ∼= S′. So S⊗Ŵ

is self-dual if and only if S is self-dual. Fong’s Lemma implies that dim(S⊗Ŵ ) is an even 
multiple of dim(Ŵ ), if S is non-trivial and self-dual. So Ŵ is the unique extension of W
to G which is self-dual. The statements about V are now consequences of Lemma 6. �

We will refer to V as the canonical self-dual irreducible FG-module lying over W . 
Our Corollary, which is probably known, is an analogue of Richards’ Theorem [13] for 
irreducible 2-Brauer characters:

Corollary 10. Suppose that |G : N | is odd. Then

(i) If W is a self-dual irreducible FN -module, then W↑G has a unique self-dual com-
position factor, up to isomorphism.

(ii) If V is a self-dual irreducible FG-module then V ↓N is a sum of distinct self-dual 
irreducible FN -modules.

In particular induction-restriction defines a natural correspondence between the self-dual 
irreducible FG-modules and the G-orbits of self-dual irreducible FN -modules.

Proof. We may assume that W is G-invariant. Let Ŵ be the unique self-dual irreducible 
FG-module which extends W . Then all irreducible FG-modules lying over W have the 
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form U ⊗ W , for some irreducible FG/N -module U . But G/N has odd order. So U is 
self-dual if and only if it is trivial. It follows that Ŵ is the unique self-dual irreducible 
FG-module lying over W . All composition factors of W↑G lie over W . So (i) holds.

For (ii), write V ↓N = e(W1 ⊕ · · · ⊕Wt), where e, t ≥ 1 and W1, . . . , Wt are distinct 
irreducible FN -modules. Now V ↓N is a self-dual irreducible FN -module. So for each 
i = 1, . . . , t, W ∗

i
∼= Wj , for some j = 1, . . . , t. The map i → j is an involutary permutation 

of {1, . . . , t}. But t is odd, as by Clifford Theory it divides |G : N |. So there exists i such 
that W ∗

i
∼= Wi, whence all W1, . . . , Wt are self-dual. Now by part (i), V is the unique 

self-dual irreducible FG-module lying over W1. It then follows from Theorem 9 that 
e = 1 i.e. V ↓N = W1 ⊕ · · · ⊕Wt.

The last statement follows from (i) and (ii). �
We note that Lemma 6 can be used to show that the restriction of an irreducible FG-

module to a subnormal subgroup of G is semi-simple. Part (ii) of Theorem 2 extends to 
subnormal subgroups:

Corollary 11. Let H be a subnormal subgroup of G and let U be a self-dual irreducible 
FH-module. Then there is a unique self-dual irreducible FG-module V such that U occurs 
with odd multiplicity in V ↓H .

Proof. We use induction on |G : H|. By Theorem 9 we may assume that H is not a 
normal subgroup of G. So there exists H � N � G such that H is subnormal in N and 
N is normal in G. As |N : H| < |G : H|, our inductive assumption implies that there is 
a unique self-dual irreducible FN -module W such that U has odd multiplicity in W↓H . 
Let V be the canonical FG-module over W .

Now V ↓N = W ⊕W2 ⊕ · · · ⊕Wt is the sum of the distinct G-conjugates of W . As W
is self-dual, all the Wi are self-dual. By choice of W , U appears with even multiplicity 
in Wi↓H , for i = 2, . . . , t. Since V ↓H = W↓H ⊕W2↓H ⊕ · · · ⊕Wt↓H , we deduce that U
appears with odd multiplicity in V ↓H .

Now let V ′ be a self-dual irreducible FG-module such that U occurs with odd multi-
plicity in V ′↓H . Write V ′↓N = e(W ′

1⊕· · ·⊕W ′
s), for some odd integer e, where W ′

1, . . . , W
′
s

are distinct irreducible FN -modules. We claim that one and hence all W ′
i are self-dual. 

For suppose otherwise. As V ′↓N is self-dual, for each i there is a unique j �= i such that 
W ′ ∗

i
∼= W ′

j . Then U , being self-dual, occurs with the same multiplicity in W ′
i↓H as in 

W ′
j↓H . So U occurs with even multiplicity in e(W ′

i ⊕W ′
j), and hence with even multi-

plicity in V ′↓H . This contradiction proved our claim. So e = 1 and V ′ is the canonical 
FG-module over each W ′

i . Now we may assume that U appears with odd multiplicity in 
W ′

1↓H . So W ∼= W ′
1, by uniqueness of W over U , and then V ′ ∼= V , by uniqueness of V

over W . �
We thank J. Müller for allowing us to include the following example. In the context 

of the Corollary it shows that the multiplicity of U in V ↓H can be arbitrarily large.
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Example. Let p be an odd prime, let F = GF(p) and let E = GF(p2). Considering the 
additive group of E, let Z be the group of scalars in GL(E) ∼= GL2(F ) and let S be a 
Sylow 2-subgroup of GL(E). We choose an involution t ∈ S, depending on the residue 
class of p mod 4, as follows.

If p ≡ 1 (mod 4), let C be a Sylow 2-subgroup of the multiplicative group F×. Then 

we may assume that S =
{[

a 0
0 b

]
,

[
0 a
b 0

]
| a, b ∈ C

}
and we take t =

[
0 1
1 0

]
.

If p ≡ 3 (mod 4), we take t to be the Frobenius map λ → λp, for all λ ∈ E. So 
S = C � 〈t〉, where C is a Sylow 2-subgroup of the multiplicative group E×.

Now let e1, e2 ∈ E be non-trivial, such that t(e1) = e1 and t(e2) = −e2. So E =
Fe1 ⊕ Fe2, as F -vector spaces. For our example we take G = E � ZS and its subgroup 
H = Fe2�〈t〉. Then H is a dihedral group which is subnormal in G, for example because 
it is normal in E � (Z × 〈t〉), and G/(E � Z) is nilpotent (as it is a 2-group).

As E is abelian, each of its irreducible K-characters is linear and as |E| is odd, each 
K-character may be regarded as a 2-Brauer character. Let θ ∈ Irr(E) have kernel Fe2. 
Then θ has stabilizer E� 〈t〉 in G, from our descriptions of Z and S. Let θ̂ be the unique 
extension of θ to a Brauer character of E � 〈t〉. Then ψ := θ̂↑G is an irreducible Brauer 
character of G and ψ↓E is the sum of ψ(1) distinct G-conjugates of θ.

Let g ∈ ZS and let μ be a nontrivial linear character of Fe2. So φ := μ↑H is an 
irreducible 2-Brauer character of H. Now ZS acts on the 1-dimensional F -subspaces of 
E, and Z〈t〉 is the stabilizer of the subspace Fe1 in ZS. We set s = |ZS : Z × 〈t〉|.

Now θg is trivial on Fe2 if and only if g ∈ Z〈t〉. Consequently ψ↓H contains the trivial 
Brauer character of H with multiplicity |Z| = p −1. Suppose that g /∈ Z〈t〉. Then θg↓Fe2

is a non-trivial character of Fe2. So there is a unique z ∈ Z such that θgz↓Fe2 = μ. It 
follows from this that ψ↓H contains φ with multiplicity s − 1. Finally, p2 − 1 has 2-part 
2s ≥ 8. So ψ is the canonical character of G lying over φ, with odd multiplicity s −1 ≥ 3.

4. Irreducible self-dual modules of non-quadratic type

Let V be a non-trivial self-dual irreducible FG-module. Then by Lemma 7, V affords 
a non-degenerate G-invariant alternating form B. Let Q : V → F be a quadratic form 
which polarizes to B. This means that Q(λv1) = λ2Q(v1) and Q(v1 + v2) = Q(v1) +
B(v1, v2) + Q(v2), for all λ ∈ F and v1, v2 ∈ V . However, contrary to what happens 
when char(F ) �= 2, Q is not uniquely determined by B. In particular Q need not be 
G-invariant.

On the other hand, for many FG-modules each G-invariant quadratic form is uniquely 
determined by its polarization:

Lemma 12. Let G be a finite group and let F be an arbitrary field of characteristic 2. 
Suppose that V is an FG-module which affords a non-degenerate G-invariant alternating 
bilinear form B but V has no trivial quotient. Then V affords at most one G-invariant 
quadratic form which polarizes to B.
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Proof. Let Q1 and Q2 be G-invariant quadratic forms on V which polarize to B. Then 
P := Q1 +Q2 is a G-invariant quadratic form which polarizes to 2B = 0. Thus P (λv1) =
λ2P (v1), and P (v1 + v2) = P (v1) + P (v2), for all λ ∈ F and v1, v2 ∈ V .

Set U := {m ∈ V | P (v) = 0}. Then U is a submodule of V . Let g ∈ G and v ∈ V . 
Then gv + v ∈ U , as P (gv + v) = P (gv) +P (v) = 0. So G acts trivially on V/U , whence 
U = V by our hypothesis on V . We conclude that P = 0, or equivalently Q1 = Q2. �

Recall the notion of a canonical irreducible FG-module introduced after Theorem 9.

Proposition 13. Let W be a non-trivial self-dual irreducible FN -module and let V be the 
canonical self-dual irreducible FG-module lying over W . Then V has quadratic type if 
and only if W has quadratic type.

Proof. We adopt the notation of Theorem 9. So W has a unique self-dual extension Ŵ
to its stabilizer T and V = Ŵ↑G. Also V ↓N is the sum of the distinct G conjugates of 
W , each occurring with multiplicity 1. So we can identify W with an F -subspace of V .

Suppose first that V affords a G-invariant quadratic form Q, and let B be its po-
larization. So B is a non-degenerate G-invariant alternating form on V . Let W⊥ =
{v ∈ V | B(v, w) = 0, for all w ∈ W}. Then W⊥ is a submodule of V ↓N and 
V ↓N/W⊥ ∼= W ∗ ∼= W as FN -modules. As W occurs with multiplicity 1 in V ↓N , we 
deduce that W ∩ W⊥ = 0. So the restriction B↓W to W is non-degenerate. Moreover 
the restriction Q↓W of Q to W is an N -invariant quadratic form on W which polarizes 
to B↓W . So W has quadratic type.

Conversely, suppose that W affords a non-degenerate N -invariant quadratic form q, 
and let b be its polarization. Then b is a non-degenerate N -invariant alternating form on 
W . We identify W and Ŵ as F -vector spaces. As Ŵ is self-dual and irreducible, it affords 
a T -invariant non-zero bilinear form, say b′. Now all N -invariant non-zero bilinear forms 
on W are scalar multiples of each other, as W is irreducible. So b is a scalar multiple of 
b′, and in particular b is T -invariant.

For t ∈ T , we define a quadratic form qt on W by setting

qt(w) := q(tw), for all w ∈ W .

It is clear that qt is N -invariant, and also that qt polarizes to b, as b is T -invariant. So 
qt = q, according to Lemma 12. This establishes that q is T -invariant, and shows that 
Ŵ is of quadratic type.

Next, we may decompose V = Ŵ↑G as F -vector space

V = (g1 ⊗ Ŵ ) ⊕ (g1 ⊗ Ŵ ) ⊕ · · · ⊕ (gn ⊗ Ŵ ),

where g1, . . . , gn is a transversal to T in G. By a standard procedure, we may define the 
induced forms b↑G and q↑G on V using
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b↑G
⎛
⎝ n∑

i=1
gi ⊗ wi,

n∑
j=1

gj ⊗ xj

⎞
⎠ =

n∑
i=1

b(wi, xi),

q↑G
(

n∑
i=1

gi ⊗ wi

)
=

n∑
i=1

q(wi),

for all wi, xj ∈ Ŵ . Then b↑G is a G-invariant alternating bilinear form on V and q↑G is a 
G-invariant quadratic form on V which polarizes to b↑G. So V is of quadratic type. �
Proposition 14. Let V be a self-dual irreducible FG-module and suppose that some self-
dual irreducible FN -module W occurs with multiplicity e > 1 in V ↓N . Then e is even 
and V has quadratic type.

Proof. We adopt the notation of Theorem 9. So W has a unique self-dual extension 
Ŵ to its stabilizer T and V = (S ⊗ Ŵ )↑G, where S is a self-dual irreducible F (T/N)-
module. Now W occurs with multiplicity 1 in (Ŵ↑G)↓N . So the multiplicity e of W in 
V ↓N equals dim(S). As e > 1, we deduce that S is non-trivial. But then dim(S) is even, 
according to Lemma 7. Finally, since S and Ŵ are both non-trivial and self-dual, S⊗ Ŵ

has quadratic type, by the remark below. This in turn implies that V = (S ⊗ Ŵ )↑G has 
quadratic type. �
Remark. Suppose that U and V are FG-modules which afford non-degenerate G-
invariant alternating bilinear forms BU and BV , respectively. According to Sin and 
Willems [14, Proposition 3.4] there is a quadratic form Q on U ⊗F V , which polar-
izes to BU ⊗ BV , such that Q(u ⊗ v) = 0, for all u ∈ U and v ∈ V . These properties 
uniquely specify Q. For, if u1, . . . , un and v1, . . . , vm are bases for U and V , respectively, 
then for all λij ∈ F

Q
(∑

λijui ⊗ vj

)
:=

∑
λijλi′j′BU (ui, ui′)BV (vj , vj′),

where i, i′ range over 1, . . . , n and j, j′ over 1, . . . , m. Any basic tensor u ⊗ v can be 
written as 

∑
αiβjui ⊗ vj , for scalars αi, βj . Then in the expression for Q(u ⊗ v), the 

term indexed by (i, j), (i′, j′) can be cancelled with the term indexed by (i′, j), (i, j′), for 
i �= i′. Likewise pairs of terms with j �= j′ cancel. Finally, all terms with i = i′ or j �= j′

are zero as BU and BV are alternating. It is now clear that Q is G-invariant.
We turn our attention to those irreducible FN -modules that are not self-dual but are 

G-conjugate to their duals. To investigate these, we require a familiar concept.
Suppose that W is an irreducible FN -module, with stabilizer T in G. Then

T ∗ = {g ∈ G | W g ∼= W or W g ∼= W ∗}

is a subgroup of G containing T , called the extended stabilizer of W . If W and W ∗ are 
non-isomorphic and G-conjugate, then |T ∗ : T | = 2. Otherwise T = T ∗.
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Proposition 15. Let W be an irreducible FN -module which is not self-dual. Then all 
self-dual irreducible FG-modules lying over W are of quadratic type.

Proof. If W is not G-conjugate to W ∗, there are no self-dual irreducible FG-modules 
lying over W . So we may assume that W is G-conjugate to W ∗ and that |T ∗ : T | = 2.

Let V be a self-dual irreducible FG-module lying over W . Then V = U↑G, where U
is the unique irreducible submodule of V ↓T lying over W . Likewise V ∼= V ∗ = (U∗)↑G. 
So U∗ is the unique irreducible submodule of V ↓T lying over W ∗. Note that U∗ � U , as 
W and W ∗ are not T -conjugate.

Set X := U↑T∗ . Then V = X↑G, and X is an irreducible submodule of V ↓T∗ . Now U
is a submodule of X↓T . So by uniqueness of U , X is the unique irreducible submodule 
of V ↓T∗ lying over W . Likewise X∗ is the unique irreducible submodule of V ↓T∗ lying 
over W ∗. But X lies over W ∗, as W and W ∗ are T ∗-conjugate. So X ∼= X∗.

Let τ ∈ T ∗\T . Then X↓T = U ⊕ τU . But U and U∗ are non-isomorphic irreducible 
submodules of X↓T . So X↓T = U ⊕ U∗, whence τU ∼= U∗.

Let B be a G-invariant non-degenerate alternating bilinear form on V , and let X⊥ be 
the orthogonal complement of X in V ↓T∗ with respect to B. Then X ∼= X∗ ∼= V/X⊥. 
So X ∩X⊥ = 0, by uniqueness of X. This shows that the restriction BX of B to X is a 
(T ∗-invariant) non-degenerate alternating bilinear form on X. Since U is irreducible but 
not self-dual, it is totally isotropic with respect to BX , and likewise, so is τU . We define 
Q : X → F via

Q(u1 + τu2) = B(u1, τu2), for all u1, u2 ∈ U .

Then Q is a quadratic form which polarizes to BX . As Q vanishes on the subspaces U
and τU , it is an example of a hyperbolic form.

We now check that Q is T ∗-invariant. It is certainly T -invariant, as T fixes U and τU , 
and preserves B. Suppose that τ ′ ∈ T ∗\T . Then τ ′u1 ∈ τU and τ ′τu2 ∈ U . So

Q(τ ′(u1 + τu2)) = B(τ ′τu2, τ
′u1) = B(τu2, u1) = B(u1, τu2) = Q(u1 + τu2),

since τ ′ also leaves B invariant. So Q is indeed T ∗-invariant.
Finally, the induced form Q↑G is a G-invariant quadratic form on V which polarizes 

to the G-invariant non-degenerate alternating bilinear form BX↑G. So V is of quadratic 
type, as required. �
Proof of Theorem 3. Let V be a self-dual irreducible FG-module which is not of 
quadratic type, such that N does not act trivially on V . Write V ↓N = e(W1 ⊕· · ·⊕Wt), 
where e > 0 and W1, . . . , Wt is a G-orbit of irreducible FN -modules, each of which is 
irreducible and non-trivial.

It follows from Proposition 15 that each Wi is self-dual, and then from Proposition 14
that e = 1. So V is the canonical self-dual irreducible FG-module over each Wi. Then 
Proposition 13 implies that each Wi has non-quadratic type. �
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We now show how the techniques we have developed above can be employed to obtain 
a criterion for all self-dual irreducible FG-modules to be of quadratic type.

Corollary 16. Let N be a normal subgroup of G. Then all non-trivial self-dual irreducible 
FG-modules are of quadratic type if and only if the same is true of both FN and FG/N .

Proof. Suppose first that all non-trivial self-dual irreducible FG-modules are of 
quadratic type. Then the same is obviously true for G/N and we must show that it 
is true for N . Let W be a non-trivial self-dual irreducible FN -module and let V be the 
canonical self-dual irreducible FG-module over W . Then V is irreducible and of quadratic 
type, from the hypothesis. So W is of quadratic type, according to Proposition 13.

Conversely, suppose that all non-trivial self-dual irreducible modules of both N and 
G/N are of quadratic type. Then for the sake of contradiction, suppose that V is a 
self-dual irreducible FG-module which has non-quadratic type. Theorem 3 implies that 
N acts trivially on V . So V is a self-dual irreducible F (G/N)-module of non-quadratic 
type, contrary to hypothesis. �
5. Irreducible self-dual modules of non-abelian finite simple groups

The proof of Corollary 16 shows that in an inductive approach to deciding whether a 
self-dual irreducible FG-module is of quadratic type, the main difficulty lies in solving 
the problem for non-abelian simple groups, and as far as we know, this is an unsolved 
and difficult question. See [15, Remark 3.4(a)].

At a simpler, but by no means straightforward, level, we can ask if every non-abelian 
simple group has a non-trivial irreducible module of quadratic type. The answer is no, 
for according to [7], the Mathieu simple group M22 has no such modules. We were unable 
to find an explicit reference to the calculations needed to verify this in the literature. So 
we outline a proof here, which only assumes some knowledge of the irreducible Brauer 
characters of certain groups.

We use the notation and decomposition matrices from [10] and character tables from 
[3]. So M22 has exactly two non-trivial self-dual irreducible Brauer characters φ4 and φ7, 
with degrees 34 and 98, respectively.

Now M22 has two conjugacy classes of maximal subgroups isomorphic to the alternat-
ing group A7. The restriction of φ4 to any A7 is the sum of an irreducible character ψ of 
degree 20 plus another of degree 14. In turn, the restriction of ψ to A6 is the sum of an 
irreducible character μ of degree 4 plus two irreducible characters of degree 8. Examining 
the values of μ, we see that it is the Brauer character of a representation defined over 
F2. So μ cannot be of quadratic type. For the order of A6 is greater than the order of 
each of the two orthogonal groups O+(4, 2) ∼= S3 � C2 and O−(4, 2) ∼= S5. It now follows 
from [6, Lemma 1.2] that φ4 is not of quadratic type.

Next we observe that φ2φ3 = 2φ1 + φ7. Here φ2 and φ3 = φ4 are of degree 10, and 
φ1 is the trivial Brauer character. Now φ2φ3 is the Brauer character of the ring E of 
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F -endomorphisms of a module affording φ2. Let Tr : E → F be the trace map and let 
W = {A ∈ E | Tr(A) = 0F }. Then W is a submodule of E and E/W is the trivial 
module. So W has Brauer character φ1 + φ7. Clearly the identity map I ∈ E spans the 
unique trivial submodule of W . Now for each A ∈ W , set Q(A) as the coefficient of xn−2

in the F -characteristic polynomial of A. Then Q is a G-invariant quadratic form, with 
polarization B(A, B) = Tr(AB), for all A, B ∈ W . In particular I spans Rad(Q). As I
has characteristic polynomial (x −1)10 = x10+x8+x2+1, we see that Q(I) = 1F . So the 
singular radical Rad0(Q) is 0. Now [6, Theorem 1.3] implies that φ7 is not of quadratic 
type.

On the other hand, each of the remaining 25 sporadic finite simple groups does have 
irreducible FG-modules of quadratic type. To show this, we need [2, Corollary IV.11.9]. 
We give an elementary proof here, for the convenience of the reader:

Lemma 17. Let G be a finite group and let F be a perfect field of characteristic 2. Then 
each self-dual but non-quadratic irreducible FG-module is in the principal 2-block of G.

Proof. Let M be a self-dual irreducible FG-module which is not in the principal 2-block 
of G. We aim to show that M has quadratic type. For this, we exploit the fact that there 
is no module W such that soc(W ) is the trivial module and W

soc(W )
∼= M .

Let B be a G-invariant non-degenerate symplectic bilinear form on M , and let Q be 
a quadratic form on M which polarizes to B. For all g ∈ G, define Qg(m) := Q(gm). 
Then Qg is a quadratic form which polarizes to B, as

Qg(m1 + m2) = Q(gm1) + B(gm1, gm2) + Q(gm2) = Qg(m1) + B(m1,m2) + Qg(m2).

Consider the quadratic form Q + Qg. This is additive and satisfies (Q + Qg)(λm) =
λ2(Q + Qg)(m), for all λ ∈ F and m ∈ M . As F is perfect, there exists φg ∈ M∗ such 
that Q(gm) = Q(m) + φg(m)2, for all m ∈ M . Now for g, h ∈ G, and m ∈ M we have

Q(m) + φgh(m)2 = Q(ghm)

= Q(hm) + φg(hm)2

= Q(m) + φh(m)2 + h−1φg(m)2

So φ : G → M∗ satisfies the cocycle condition φgh = φh + h−1φg, for all g, h ∈ G.
Now take W to be the Cartesian product M ×F , endowed with the obvious F -vector 

space structure. Define an FG-module structure on W via

g(m,λ) = (gm, φg(m) + λ), for all m ∈ M,λ ∈ F and g ∈ G.

This is an action because for all g, h ∈ G, we have



R. Gow, J. Murray / Journal of Algebra 570 (2021) 119–139 135
(gh)(m,λ) = (ghm, φgh(m) + λ)

= (ghm, φg(hm) + φh(m) + λ)

= g(hm, φh(m) + λ)

= g(h(m,λ)).

Clearly W has a submodule 0 ×F isomorphic to the trivial FG-module F , and W modulo 
this submodule is isomorphic to M . Our assumption on M forces W ∼= M ⊕ F as FG-
modules. So there is ψ ∈ M∗ such that m → (m, ψ(m)), for m ∈ M , is an injective 
FG-module map M → W .

Now on the one hand g(m, ψ(m)) = (gm, ψ(gm)). On the other hand g(m, ψ(m)) =
(gm, φg(m) +ψ(m)). Comparing these expressions, we see that φg(m) +ψ(gm) = ψ(m), 
for all g ∈ G. Finally, define the quadratic form Q̂ on M via

Q̂(m) = Q(m) + ψ(m)2, for all m ∈ M .

Then it is clear that Q̂ polarizes to B. Furthermore, for all g ∈ G we have

Q̂(gm) = Q(gm) + ψ(gm)2 = Q(m) + φg(m)2 + ψ(gm)2 = Q(m) + ψ(m)2 = Q̂(m).

So Q̂ is G-invariant. �
Using [3] and [10], the only sporadic finite simple groups which do not have a real non-

principal 2-block are M11, M22, M23 and M24. Now M11 has an orthogonal irreducible 
K-character χ2, of degree 10, whose restriction to 2-regular elements is a self-dual irre-
ducible Brauer character φ2. So φ2 has quadratic type. Similarly M24 has an orthogonal 
irreducible K-character χ7, of degree 252, whose restriction to 2-regular elements con-
tains the self-dual irreducible Brauer character φ6 with multiplicity 1, but does not 
contain the trivial Brauer character. So φ6 has quadratic type. Finally, φ6 restricts to an 
irreducible Brauer character of a maximal subgroup M23. So M23 also has a quadratic 
type irreducible Brauer character.

All other simple group whose modular representations are tabulated in the modular 
[1] have quadratic type irreducible Brauer characters, and we suspect that M22 may be 
unique among all non-abelian finite simple groups in not having such a character. We 
note that the automorphism group of M22 does have irreducible modules of quadratic 
type, since Proposition 15 applies to certain irreducible modules of the automorphism 
group that are induced from irreducible modules of M22 that are not self-dual.

6. Real weakly regular 2-blocks

We continue to assume that G is a finite group and N is a normal subgroup of G. 
The results in this section include real refinements of [9, Theorem 4.4, Corollary 4.5]. If 
C is a conjugacy class of G, then C+ is the sum of its elements in RG. Also Co is the 
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class consisting of the inverses of the elements of C. Each z ∈ Z(FG) can be written 
z =

∑
β(z, C)C+, where C ranges over the conjugacy classes of G and β(z, C) ∈ F .

We use standard notation and results on blocks. In particular, corresponding to each 
2-block B of G, there is a primitive idempotent eB of the centre Z(FG) of FG, an 
F -algebra homomorphism ωB : Z(FG) → F , called the central character of B, and a 
2-subgroup D of G called a defect group of B. Then D is only determined up to G-
conjugacy, and |D| = 2d, where d ≥ 0 is called the defect of B. We use Irr(B) and 
IBr(B) to denote the irreducible K-characters and irreducible Brauer characters in B, 
respectively.

Let χ ∈ Irr(B), let ψ be an irreducible constituent of χ↓N and let b be the 2-block 
of N containing ψ. Then B is said to cover b, and the 2-blocks of N covered by B form 
a single G-orbit. Set eGb as the sum of the distinct G-conjugates of eb. Then eGb is an 
idempotent in Z(FG) which is the sum of the block idempotents of all blocks of G which 
cover b.

Recall that B is said to be weakly regular (with respect to N) if it has maximal defect 
among the set of blocks of G which cover b. This happens if and only if B has a defect 
group D such that DN/N is a Sylow 2-subgroup of the stabilizer of b in G.

Let χ be a K-character or Brauer character belonging to B. Then χ(1)2 ≥ |G : D|2. 
If equality occurs, we say that χ has height 0. Recall that if χ is irreducible, its central 
character is defined by ωχ(C+) := χ(C+)/χ(1), for all conjugacy classes C of G. It is 
classical that ωχ(C+) ∈ R. Indeed its image ωχ(C+)∗ in F is independent of χ ∈ Irr(B), 
as it equals ωB(C+). Suppose now that θ ∈ IBr(B) has height 0. We claim that for all 
2-regular conjugacy classes C of G

θ(C+)
θ(1) ∈ R and

(
θ(C+)
θ(1)

)∗
= ωB(C+). (5)

For, it is known that there are integers nχ such that θ ≡
∑

χ∈Irr(B) nχχ on the 2-regular 
elements of G. As χ(C+)/χ(1) and χ(1)/θ(1) belong to R, we get

θ(C+)
θ(1) =

∑
χ∈Irr(B)

(
χ(C+)
χ(1)

)(
nχχ(1)
θ(1)

)
belongs to R.

Moreover 
(

θ(C+)
θ(1)

)∗
= ωB(C+) 

(∑
χ∈Irr(B) nχχ(1)

θ(1)

)∗
= ωB(C+).

Our first result includes a proof of part (i) of Theorem 4:

Lemma 18. Let b be a 2-block of N . Then G has an odd number of weakly regular 2-
blocks covering b. So G has a real weakly regular 2-block covering b if and only if b is 
G-conjugate to bo.

Let B be a weakly regular 2-block of G which covers b and let C be a conjugacy class 
of G which is contained in N . Then β(eB, C)ωB(C+) = β(eGb , C)ωb(C+),
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Proof. The first statement is proved in Lemma 5.1 of [4], so we merely summarize the 
argument here. There is a defect preserving bijection between the blocks of G covering b
and the blocks of the G-stabilizer of b covering b. So we may assume that b is G-invariant.

Let B be as in the statement. In particular eB = eBeb. So 1F = ωB(eB) = ωB(eb). 
Thus there is a conjugacy class L of G contained in N such that β(eb, L)ωB(L+) �= 0F . 
Now L is 2-regular, as it is in the support of the block idempotent eb. As eb is a sum 
of block idempotents of blocks of G with a defect group contained in D, L has a defect 
group contained in D. But ωB(L+) �= 0F . So L has a defect group containing the defect 
group D of B. We deduce that D is a defect group of L.

Corollary 3.2 of [4] implies that β(eB , L) = ωB(Lo+). But ωB(Lo+) = ωB′(Lo+), for 
each block B′ of G which covers b, as L ⊆ N . So, again by Corollary 3.2 of [4] β(eB , L) =
β(eB′ , L), if B′ is in addition weakly regular. On the other hand β(eB′ , L) = 0F , if B′ is 
not weakly regular. As eb is the sum of the block idempotents of all blocks of G covering 
b, we see that β(eb, L) = β(eB , L)ρ, where ρ is the number of weakly regular 2-blocks of 
G covering b. It follows from this that ρ is odd.

Suppose that there is a real weakly regular 2-block B of G which covers b. Then 
B = Bo also covers bo. So b is G-conjugate to bo. Conversely, suppose that b is G-
conjugate to bo. Then taking contragredients of blocks is an involution on the set of 
weakly regular 2-block of G covering b. As this set has odd size ρ, we deduce that there 
is a real weakly regular 2-block of G which covers b.

For the last statement, let C be a conjugacy class of G which is contained in N
for which β(eB, C)ωB(C+) �= 0F or β(eb, C)ωb(C+) �= 0F . As ωB(C+) = ωb(C+), the 
argument above implies that D is a defect group of C. But then β(eb, C) = β(eB , C)ρ =
β(eB , C), as char(F ) = 2. We conclude that β(eB, C)ωB(C+) = β(eb, C)ωb(C+). �

We need one more result before proving part (ii) of Theorem 4:

Lemma 19. Let b be a real G-invariant 2-block of N . Then G has a self-dual Brauer 
character φ such that φ vanishes off N and φ↓N = e(θ1 + · · · + θt) where both e and t
are odd and θ1, . . . , θt are distinct self-dual height 0 irreducible Brauer characters in b.

Proof. Note that we are not claiming that φ is irreducible.
Consider the G-set X := {θ ∈ IBr(b) | θ has height zero and Φθ(1)2 = |N |2}. Then 

|X| is odd, according to Lemma 5. Also duality is an involution on X. So there is a 
G-orbit θ1, . . . , θt in X, with t odd and all θi self-dual and of height 0.

Let T be the inertial group of θ1 in G. Then T contains a Sylow 2-subgroup S of G. 
As SN/N is a 2-group, θ1 has a unique extension θ̂1 to an irreducible Brauer character 
of SN . Notice that θ̂1 vanishes off N , as N contains all 2-regular elements of SN .

Set φ := θ̂1↑G. Then φ is self-dual and φ↓N = 1
[SN :N ] (θ1↑G)↓N = e(θ1 + · · · + θt), 

where e = [T : SN ] is odd. Finally φ vanishes off N as θ̂1 vanishes off N . �
We now prove the uniqueness part (ii) of Theorem 4:
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Lemma 20. Let b be a real 2-block of N . Then G has a unique real 2-block which covers 
b and which is weakly regular with respect to N .

Proof. We may assume that b is G-invariant, and we let B be any real weakly regular 
2-block of G covering b. Let φ be the Brauer character of G defined in Lemma 19. 
So φ↓N = e(θ1 · · · + θt) where et is odd and θ1, . . . , θt are distinct self-dual height 0
irreducible Brauer characters in b. Write φ =

∑
μ∈IBr(G) mμμ, where mμ are non-negative 

integers. Then φB :=
∑

μ∈IBr(B) mμμ is the B-part of φ.
Let C be a 2-regular conjugacy class of G which is contained in N . Then θi(C+) =

θ1(C+), for i = 1, . . . , t, as θi is G-conjugate to θ1. So

(
φ(C+)
θ1(1)

)∗
=

(
etθ1(C+)
θ1(1)

)∗
= ωb(C+) = ωB(C+),

where we have used (5).
Next let êB be the unique idempotent in Z(RG) with êB

∗ = eB . Then for all μ ∈
IBr(G) we have μ(êB) = μ(1) or 0R, as μ does or does not belong to B, respectively. So

(
φB(1)
θ1(1)

)∗
=

(
φ(êB)
θ1(1)

)∗
=

∑
β(eB , C+)ωB(C+)

=
∑

β(eb, C+)ωb(C+) = ωb(eb) = 1F .

Here in both sums, C ranges over the conjugacy classes of G which are contained in N , 
as φ vanishes off N . Also the middle equality arises from the last assertion in Lemma 18.

Now for each μ ∈ IBr(B) with mμ �= 0, we have μ↓N = eμ(θ1 · · ·+θt), for some integer 
eμ > 0. Then by the previous displayed equation

φB(1)
θ1(1) = t

∑
μ∈IBr(B)

mμeμ is an odd integer.

As mμeμ = mμeμ, it follows that there is a self-dual μ ∈ IBr(B) such that mμeμ is 
odd. Then μ is the canonical irreducible Brauer character of G lying over θ1 given by 
Theorem 2. As θ1 determines μ, which in turn determines B, we conclude that B is the 
only real weakly regular 2-block of G which covers b, as we wished to show. �
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