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Abstract 

This study investigates the use of a statistical anomaly detection method to analyse in-situ process monitoring data obtained during the Laser-
Powder Bed Fusion of Ti-6Al-4V parts. The printing study was carried out on a Renishaw 500M Laser-Powder Bed Fusion system. A photodiode-
based system called InfiniAM was used to monitor the melt-pool emissions along with the operational behaviour of the laser during the build 
process. The analysis of the in-process data was carried out using an unsupervised machine learning approach called the Search and TRace 
AnomalY algorithm. The ability to detect defects during the manufacturing of metal alloy parts was demonstrated. 
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1. Introduction 

Laser Powder Bed Fusion (L-PBF) is an additive 
manufacturing (AM) technique which fabricates metal parts on 
a layer-by-layer basis. This process can allow for the creation 
of complex structures which could not otherwise be fabricated 
using traditional manufacturing methods [1]. Ti-6Al-4V is a 
widely used alloy in L-PBF for both the medical device and 
aerospace sectors due to its superior material properties, 
including corrosion resistance and resistance to fatigue loading 
[2][3][5]. Lattice structures, a type of cellular structure 
composed of non-stochastic in-fill and a high volume of open 
pores, are an example of complex shaped metallic parts that are 
producible through L-PBF [6][7]. Despite the many advantages 
of L-PBF, concerns around the consistency of parts produced 
have partially limited the wider adoption of this manufacturing 
method for mission-critical components and necessitate the 
need for significant post-build quality control checks [8]. 

Defects occurring during L-PBF include porosity, crack 
initiation, and/or geometric distortion [9]. 
 
The post-build quality control processes currently used in 
industry face limitations of cost and time [10]. As defects may 
form at any layer during L-PBF and become permanently 
sealed in by subsequent layers, a build must be completed 
before defects and sub-standard mechanical properties can be 
identified by destructive/non-destructive testing procedures 
[9][10][11]. To overcome the limitations of post-build checks, 
in-situ process monitoring (PM) data of the L-PBF process can 
be utilised for in-situ quality control to identify defective parts 
as they are being built [10].  
 
In-situ PM is becoming increasingly applied in advanced 
manufacturing processes [12]. Data can be attained by use of 
in-situ sensors or by capturing images of the powder bed layer 
[10][11]. A routine difficulty with data obtained from L-PBF 
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1. Introduction 

Laser Powder Bed Fusion (L-PBF) is an additive 
manufacturing (AM) technique which fabricates metal parts on 
a layer-by-layer basis. This process can allow for the creation 
of complex structures which could not otherwise be fabricated 
using traditional manufacturing methods [1]. Ti-6Al-4V is a 
widely used alloy in L-PBF for both the medical device and 
aerospace sectors due to its superior material properties, 
including corrosion resistance and resistance to fatigue loading 
[2][3][5]. Lattice structures, a type of cellular structure 
composed of non-stochastic in-fill and a high volume of open 
pores, are an example of complex shaped metallic parts that are 
producible through L-PBF [6][7]. Despite the many advantages 
of L-PBF, concerns around the consistency of parts produced 
have partially limited the wider adoption of this manufacturing 
method for mission-critical components and necessitate the 
need for significant post-build quality control checks [8]. 

Defects occurring during L-PBF include porosity, crack 
initiation, and/or geometric distortion [9]. 
 
The post-build quality control processes currently used in 
industry face limitations of cost and time [10]. As defects may 
form at any layer during L-PBF and become permanently 
sealed in by subsequent layers, a build must be completed 
before defects and sub-standard mechanical properties can be 
identified by destructive/non-destructive testing procedures 
[9][10][11]. To overcome the limitations of post-build checks, 
in-situ process monitoring (PM) data of the L-PBF process can 
be utilised for in-situ quality control to identify defective parts 
as they are being built [10].  
 
In-situ PM is becoming increasingly applied in advanced 
manufacturing processes [12]. Data can be attained by use of 
in-situ sensors or by capturing images of the powder bed layer 
[10][11]. A routine difficulty with data obtained from L-PBF 
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processes is that it often contains a considerable level of 
‘noise’, or random variation in the signal.  
 
Methods of noise reduction for such processes include the use 
of digital filters to smoothen signals. One such approach is the 
use of a Savitzky-Golay filter to calculate smoothed signal 
values from local polynomial regression [13]. A linear least 
squares method is used to fit the polynomial in the time domain. 
This technique has been demonstrated to remove noise from 
acoustic emission data coming from a Directed Energy 
Deposition AM process [13]. For the Savitzky-Golay filter, the 
parameters are the filter order and filter length. Another method 
for smoothing AM signals is a low-pass Butterworth filter, 
which has previously been used on the pyrometry data of an L-
PBF process obtained during the printing of stainless steel [14]. 
When employing this filter, a cut-off frequency value is used 
to determine which frequencies of the signal remain 
unchanged, and which frequencies are attenuated [15]. The 
order of the filter also affects its behaviour, where an increase 
in order improves the rate of attenuation after the cut-off 
frequency. The method of Moving Average smoothing has 
been used on L-PBF data obtained during the printing of a Ti-
6Al-4V lattice structure [16]. This filter operates by averaging 
multiple points in a recursive fashion and is applicable to 
signals in the time domain. Additionally, noise removal has 
been achieved using a Gaussian filter on L-PBF powder bed 
images [17]. This was performed by convolving the images 
with a matrix of numbers that represents the shape of a 
Gaussian ‘bell-curve’. Gaussian smoothing of in-situ PM 
signal data can be achieved by multiplying the signal by a 
Gaussian window function, where the product is zero-valued 
outside of the interval determined by a Gaussian function [18]. 
The window size controls the number of data-points to be 
isolated and filtered. 
 
Sophisticated statistical methodologies are required in order to 
harness the capability of in-situ PM data to detect anomalies 
during production, improve performance and efficiency and 
provide decision support for machine operators. In statistics, 
anomaly detection is concerned with identifying atypical 
behaviours of a system. Anomaly detection has two main, 
conflicting objectives: One downgrades the value of anomalies 
and attempts to eliminate them, while the other demands 
special attention be paid to anomalies and root-cause analysis 
be conducted [19][20][21]. Reviews of anomaly detection 
methods using statistics, machine learning, and experimental 
studies can be found in [22][23][24]. 
 
This article evaluates a newly published unsupervised machine 
learning approach called the Search and TRace AnomalY 
(STRAY) algorithm for the evaluation of in-situ PM data 
obtained during the L-PBF of lattice structures. STRAY uses 
the k-nearest neighbour (knn) distances between data-points to 
calculate an anomalous score, and then implements extreme 
value theory to determine an anomalous threshold from these 
scores [20]. The algorithm works by first normalizing the 
recorded data for a single attribute/variable to eliminate the 
effects of large variance in observations on the nearest 
neighbour distances. STRAY then calculates the knn distances 
for all datapoints and orders the successive differences between 
knn distances. The largest difference between each datapoint’s 
successive knn distances is deemed its ‘anomalous score’. The 

anomalous threshold calculation begins from a subset of 50% 
of the points with the lowest anomalous scores, under the 
assumption that this subset contains the anomalous scores 
corresponding to typical data points and that the remaining 
subset contains scores corresponding to possible anomalies. 
Following the Weissman spacing theorem from extreme value 
theory, an exponential distribution is applied to the upper tail 
of anomalous scores in the first subset, and an anomalous 
threshold for the next anomalous score is calculated from a 
fitted cumulative distribution function. The lowest anomalous 
score is chosen from the second subset, which is used to either 
flag all the other points in the subset as anomalies if the score 
exceeds the threshold or is otherwise declared typical and 
added to the first subset, where the threshold is updated. 
 
Amongst the advantages of STRAY, is its versatility. For 
example, it can be applied to one dimensional data for 
univariate analysis, where the dataset has a single attribute, as 
well as high-dimensional data for multivariate analysis, where 
the dataset contains multiple attributes. STRAY has been 
successfully applied to high-dimensional datasets; however, it 
has not previously been applied to process monitoring data 
obtained from manufacturing operations.  
 
In this study, the capabilities of the STRAY algorithm for 
anomaly detection of in-situ PM data have been assessed using 
F1-scores. The F1-score is an assessment of predictive model 
accuracy, which is calculated from the precision and recall 
values of the model. While an increase in the precision of a 
predictive model decreases its recall capability, the two metrics 
can be optimally blended using their harmonic mean, the F1-
score, which is widely used to measure the success of a binary 
classifier when one class is rare [25]. 

2. Creation of lattice structures 

Ti-6Al-4V lattice structures were created using a Renishaw 
500M L-PBF system. This system utilises a 500 W laser (λ = 
1.07 μm), with a focused spot size diameter of approximately 
80 μm. All test pieces were fabricated using Ti-6Al-4V grade 
23 powder, obtained from AP & C, with powder particle 
diameters in the range of 15–45 μm. Prior to the build 
commencing, a vacuum was used to remove the level of oxygen 
in the chamber. Following this, argon gas was introduced to 
achieve an inert atmosphere. The build platform was 
maintained at a temperature of 170 °C. During the build, a 
photodiode based in-situ process monitoring system called 
InfiniAM was used to provide feedback on the laser energy 
input, known as the Beam Dump (BD) signal [16]. The system 
employs a further two photodiodes to monitor the emissions 
emitted from the melt-pool during the melting process, known 
as photodiode 1 (PD1) and photodiode 2 (PD2). These melt-
pool monitoring photodiodes detect in two different 
wavelength ranges, providing information relating to the 
plasma (PD1) and infrared (IR) (PD2) emissions created during 
the L-PBF process.  
 
The photodiodes measure the melt-pool emissions in Volts, 
which the InfiniAM system converts into bits. These 
measurements can be used to monitor the presence of process 
defects and by-products on the powder bed, where higher IR 
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and plasma emissions may be caused by the insulative 
properties of powder located inside pores/cavities over which 
the laser scans, and lower emissions may indicate the presence 
of conductive by-products, such as spatter. The data acquired 
by the InfiniAM system is considered high dimensional, as a 
measurement from all three sensors is captured at an 
acquisition-rate of 100 kHz.  For every layer of data generated, 
the mean of each photodiode was found, and these values were 
used for analysis. 
 
The lattice test specimens consist of a 15 × 15 × 28 mm lattice 
structure, composed of 1.5 mm diamond unit cells and were 
created using an exposure time and laser power of 750 μs and 
150 W respectively, at a layer height of 30 μm. Control samples 
were printed using these parameters throughout the entire 
structure, while the other test samples were created containing 
layers with reduced input laser power to assess anomaly 
detection capabilities. It would be expected that greater 
reductions in power would lead to layers being more accurately 
identified as anomalous, due to the greater contrast in sensor 
readings between layers built at the typical energy level and 
layers of reduced energy. 
 
Three batches of lattice specimens were created, each 
incorporating a number of layers printed with reduced laser 
power. In the first batch, an energy reduction of 33% was used, 
referred to as the S1 sample batch. The second and third batch 
of samples used an energy reduction of 66% and 100%, 
referred to as S2 and S3 respectively, where the laser did not 
fire during the selected layers of the S3 batch. The number of 
layers with reduced laser energy was varied between 1, 3, 5, 7 
and 9. The reduction in laser energy occurred between layers 
613 and 621, as shown in Figure 1. In this text, samples have a 
notation of SxVy, where x indicates the level of energy 
reduction and y indicates the number of affected layers. For 
example, S1V3 corresponds to a 33% reduction for 3 layers of 
the build. Note that samples S3V5, S3V7 and S3V9 were 
excluded from the study as the parts could not be built due to 
the high number of layers with no input energy. The sample 
size for each specimen type was n = 4, where the samples were 
printed close to the four corners of the build-plate to account 
for emission variations due to build-plate location. The notation 
associated with each test sample can be viewed in Table 1.  

Table 1: Notation associated with each test sample produced in this study, 
where the S value indicates the level of reduction in laser power for the number 
of layers given by the V value. Note that samples marked with * were excluded 
from the study as the parts could not be built due to the high number of layers 
with no input energy. 

No. of layers Reduction in laser power 

 33% 66% 100% 

1 S1V1 S2V1 S3V1 

3 S1V3 S2V3 S3V3 

5 S1V5 S2V5 S3V5* 

7 S1V7 S2V7 S3V7* 

9 S1V9 S2V9 S3V9* 

 
 
 
 

 
During the build process, a designed control sample was 
subject to interference from wiper damage, which resulted in 
the formation of a gross defect with a diameter of approx. 2 
mm, as seen in Figure 2. The in-situ PM data corresponding to 
this lattice structure was examined as an example of a defect 
occurring at the melt-pool.  

3. Application of STRAY to L-PBF in-situ process data 

During the L-PBF processes, an in-situ monitoring system 
was utilised to gather melt-pool and laser related data. In-situ 
PM data was obtained for 752 layers during the printing of parts 
containing intentional defects based on the reduction in energy 
during the printing of up to 9 layers of the Ti-6Al-4V lattice 
structures. The mean sensor values of each test specimen were 
calculated for every layer of the build. The mean sensor values 
of each layer were compared to the mean sensor values of the 
control sample data in the same layer, and this deviation from 
the behavior of the control sample was recorded. The sample 
size for each test was n = 4. The mean deviation values of these 

Figure 1: Effect of energy reduction level and the number of affected layers on 
the deviation between the data obtained from a control build and that from the 
reduced energy build, displayed in the BD signal. 

Fig. 2. An unintentional defect present in a lattice structure due to a wiper 
tear. 
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samples were used as an input to the STRAY algorithm. The 
STRAY algorithm classifies all layers as ‘anomalous’ or 
‘typical’, depending on whether the anomaly score of the layer 
exceeds an anomalous threshold that has been calculated from 
the dataset, using extreme value theory. Data was also obtained 
from an unintentional defect based on wiper damage during 
production. The wiper defect, which was outlined earlier, 
resulted in a 2 mm diameter pore which is approximately 
located between layers 690 and 757. The mean sensor values 
of the test specimen were calculated for every layer of the build, 
and the deviation from the behavior of the control sample was 
used as an input to the STRAY algorithm. 

 
Univariate and multivariate analyses were conducted on 

both L-PBF process datasets to assess the capabilities of the 
STRAY algorithm to detect anomalies using data from a single 
sensor, or from multiple sensors. The effects of 
smoothing/filtering techniques were also investigated. The 
techniques considered in this study were Savitzky–Golay 
filtering, low-pass Butterworth filtering, Moving Average 
filtering, and Gaussian filtering. To mitigate the effects of 
individual filter parameter choices on the results of anomaly 
detection, anomaly detection was executed at a range of values 
for each filter parameter. Only the anomalies that were 
commonly identified at each filter parameter value were 
recorded. For the Savitzky-Golay filter, the variable parameters 
were the filter order and filter length. The parameters involved 
in Butterworth filtering were filter order and cut-off frequency. 
The window size was the variable parameter used in the 
Moving Averaging and Gaussian filtering. The range of values 
for each filtering parameter was chosen through 
experimentation, and further experimentation is needed for 
parameter optimisation. 

 
The average F1-scores of the 12 parts built with intentional 

defects were recorded to assess the capability of the STRAY 
algorithm to detect anomalies in filtered and unfiltered signals. 
The capability of the STRAY algorithm to detect anomalies in 
the filtered and unfiltered data of the specimen with an 
unintentional defect was visually assessed, as precision and 
recall values cannot be properly calculated when the exact 
number of layers affected by the wiper tear is unknown. 

4. Results 

4.1. Dataset with intentional defects 

Univariate analysis of sensor deviation data 

For the Beam Dump (BD) univariate analysis of 
intentionally designed defects, the number of anomalies 
detected in the unfiltered signal closely matched the designed 
number of layers with an intentional defect. Most filtering 
methods resulted in mediocre F1-scores, as can be seen in 
Table 2, as false positive anomalous layers were present in the 
Savitzky-Golay, Butterworth and Moving Average signals.  
For the univariate analysis of PD1 in the dataset of intentionally 
designed defects, no anomalies were detected in the unfiltered 
signal. Certain filtering methods also occasionally resulted in 

instances of no anomalies being detected, leading to false 
negative results being recorded. The analyses where such 
instances occurred are denoted by * in Table 2, and the number 
of instances can be seen in Table 3. An example of anomaly 
detection in the PD1 signal for part S3V3 can be seen in Figure 
3, where there was a 100% input energy reduction over 3 
layers. Note that the plot contains overlaid anomalies from each 
filtering method, which may limit visibility of some anomalies. 
Similar to PD1, no anomalies were detected in the unfiltered 
signal during the univariate analysis of PD2. Certain filtering 
methods occasionally resulted in instances of no anomalies 
being detected, as shown in Table 3. The Savitzky-Golay and 
Moving Average are examples of filtering methods which 
occasionally led to false negatives being recorded, but 
otherwise contributed towards high F1-scores scores in PD1 
and PD2, as detailed in Table 2. The Butterworth filter showed 
no instances of recording false negatives, but occasionally 
recorded false positives. The Gaussian filter predominantly 
resulted in no anomalies being recorded in PD1 and PD2, 
except for part S3V3 in PD1. 

Table 2: F1-scores of univariate (U.V) and multivariate (M.V) analyses of parts 
with intentional defects. Analyses where no anomalies have been detected in 
certain samples are denoted by: * 

Method BD (U.V) PD1 (U.V) PD2 (U.V) M.V 

No filter 0.98 -* -* 1* 

Savitzky-Golay 0.38 0.68* 0.74* 0.52*  

Butterworth 0.42 0.65 0.58 0.44 

Moving Average 0.45 0.84* 0.84* 0.71*  

Gaussian 0.82 1* -* 1* 

Figure 3: Anomalies identified in the univariate PD1 deviation signal of a part 
with an intentional defect, where layers 600 – 655 are displayed on the 
horizontal axis. The colours/shapes indicate the anomalies identified using 
STRAY with different smoothing techniques. 
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Table 3: Number of instances where no anomalies have been detected in a 
sample during univariate (U.V) and multivariate (M.V) analyses of parts with 
intentional defects. 

  
The magnitude increase of signal deviation in PD1 closely 
mirrors the decrease of input laser energy. This can be seen in 
Figure 3 where an energy reduction of 100% in sample S3V3 
has led to a signal deviation of approximately 91% being 
recorded in the plasma data for the corresponding layers. This 
phenomenon is also evident, but less pronounced, in the IR 
data, with a signal deviation of approximately 78% being 
recorded over the corresponding layers of the same sample. 

Multivariate analysis of sensor deviation data 

The results of multivariate analysis for this dataset can be seen 
in Table 2 and 3. By contrast to the univariate analysis, the 
unfiltered signal has led to the correct number of anomalies 
being detected in 2 lattice samples. The Savitzky-Golay and 
Moving Average methods of smoothing have resulted in a 
lower number of instances where no anomalies have been 
detected in a sample than in univariate analysis. Gaussian 
filtered data resulted in certain instances of false negatives, 
however, the STRAY algorithm has performed well when 
using Gaussian filtered data in all samples where the reduction 
in input energy is greater than 33%. 

4.2. Dataset with unintentional defect 

The wiper defect resulted in a 2 mm diameter pore, 
occurring approximately between layers 690 and 757. This 
experimental observation of a processing defect is valuable, as 
it provides a dataset which contain both anomalous and normal 
behaviour generated by the melt-pool sensors. As the anomaly 
was caused by a wiper tear, the laser input energy data did not 
change from that obtained for the rest of the lattice sample. 
Both univariate and multivariate analysis was carried out using 
STRAY, and the effects of smoothing/filtering techniques were 
also investigated on this data by executing anomaly detection 
at a range of values for each filter parameter and recording only 
the anomalies that were commonly identified at each filter 
parameter value. 

Univariate analysis of sensor deviation data 

For the univariate analysis of the BD signal, it is evident 
from Figure 4 that over identification has occurred, particularly 
in the unfiltered signal, as no anomalous behaviour should be 
present in this signal. This is not the case for the PD1 and PD2 
photodiode signals, where each identified anomaly is present 
within the expected range of defective layers. Analysis of the 
PD1 data has shown that 7 anomalies were identified in the 

unfiltered data. The same number of anomalies has been 
detected in the Butterworth, Moving Average, and Gaussian 
filtered signals, while 10 anomalies were identified in the 
Savitzky-Golay filtered signal. For the analysis of PD2 in this 
dataset, 2 anomalies were identified by using the unfiltered and 
Butterworth filtered signals. One anomaly was identified using 
the Savitzky-Golay and Moving Average filtered signals, and 
7 were identified using the Gaussian filtered signal. This result 
demonstrates that univariate analysis can detect the process 
defect from the in-situ PM data, while also showing how data 
filtering can improve analysis, particularly in the BD signal. 

Method BD (U.V) PD1 (U.V) PD2 (U.V) M.V 

No filter 0 12 12 10 

Savitzky-Golay 0 4 4 1 

Butterworth 0 0 0 0 

Moving Average 0 3 5 1 

Gaussian 0 11 12 5 

Figure 4: Anomalies identified in the individual signals during univariate 
analysis of a part with an unintentional defect, where layers 650 –797 are 
displayed. The vertical, dashed lines indicate the approximate region where the 
wiper tear has affected the build. 

Figure 5: Anomalies identified during multivariate analysis of a part with an 
un-intentional defect, displayed on the PD1 signal for layers 650 - 797. 
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Multivariate analysis of sensor deviation data 

For multivariate analysis of an unintentionally designed 
defect, 2 anomalies were identified in the unfiltered signal. No 
anomalies were identified using the Savitzky-Golay or Moving 
Average methods of filtering, while the Butterworth and 
Gaussian methods reported 1 and 2 anomalies, respectively. 
This result can be seen in Figure 5.  This result shows that the 
multivariate analysis is under-detecting anomalous layers, as 
approximately 67 layers were affected by the wiper tear during 
this build. The detected anomalies are present at the most 
extremely deviated layers where the defect has started to form 
in the lattice structure. 

5. Conclusions 

Univariate and multivariate analyses have been conducted 
on two datasets, one with data from parts containing intentional 
defects based on the reduction in energy during the printing of 
Ti-6Al-4V lattice structures, and a second with data from a part 
containing an unintentional defect due to wiper damage during 
printing. When performing univariate analysis on the 
intentional defect dataset, the unfiltered Beam Dump signal 
demonstrated a high F1-score when identifying the designed 
defective layers. By contrast, no anomalies were detected in the 
unfiltered melt-pool signals which is most likely due to the 
large level of noise which occurs in these signals. The use of 
filtering techniques improved this analysis. Multivariate 
analysis of this dataset showed fewer instances where no 
anomalies were detected, compared with the results obtained 
using the univariate PD1 and PD2 analyses. Difficulties in 
detecting anomalies were observed in the case of prints with 
fewer layers of reduced energy, as well as where the level of 
energy reduction was smaller. 

 
From analysis of the part containing an unintentional defect, 

the STRAY algorithm was found to identify multiple false 
positive anomalies during univariate analysis of the Beam 
Dump signal, particularly when unfiltered data was used. The 
most extreme points in the Beam Dump signal data were found 
to be incorrectly labelled anomalous, due to a lack of 
contrasting anomalous behaviour. Anomaly detection accuracy 
is enhanced when the data from PD1 and PD2 was examined, 
compared with that from the Beam Dump signal, as the wiper 
tear has affected the photodiode signals. The multivariate 
analysis results demonstrate how the number of anomalies is 
greatly reduced for this dataset when taking data from all three 
sensors into account. This could be caused by the behavioural 
similarities between PD1 and PD2 resulting in lower anomaly 
scores being calculated for the wide range of defective layers. 
The anomalies detected in the multivariate analysis are present 
at the most extremely deviated layers from the control, where 
the defect has started to form in the structure.  

 
The use of Savitzky-Golay, Butterworth, Moving Average 

and Gaussian filtering methods have demonstrated an 
improvement to the STRAY analysis of noisy signals, where 
the Savitzky-Golay, Moving Average and Gaussian tend to 
contribute towards under-detection, and the Butterworth tends 

to contribute towards over-detection. While these filters were 
suitable to the L-PBF process, further investigation is needed 
to determine suitability to other printing methods and materials. 
 

It was observed that the increase in magnitude of melt-pool 
signal deviation closely mirrors the decrease of input laser 
energy in the samples containing intentional defects. In the case 
of the unintentional defect, it is noticeable that the greatest 
increase in plasma and IR emissions occurs at the beginning of 
the defect formation, and this deviation decreases as the process 
corrects itself. This is believed to be a result of the thermal 
conductivity of the powder, a phenomenon which has been 
previously investigated by Egan et al. during a study of L-PBF 
parts being built with designed cavities of various sizes [26]. 
Due to poor thermal conductivity in the powder bed, the 
underlying powder in the cavities acted as a thermal insulator 
when the laser scanned above the defect. As more energy was 
applied to a given area using the laser, the heat was poorly 
conducted away from the powder, which resulted in an 
increased melt-pool size and higher temperature. Higher 
thermal emissions were, therefore, detected in areas where a 
cavity was detected by the InfiniAM system. Sudden drops in 
the InfiniAM IR emissions could be caused by the laser firing 
onto redeposited spatter, as was hypothesized by Keaveney et 
al. [27]. This hypothesis is based on the large size of spatter and 
how it bonds to the previous layer's surface when redeposited, 
which would conduct the laser's heat into the specimen as 
opposed to emitting it back out of the melt-pool. 
 

In this study, multivariate analysis took three sensors into 
account. The STRAY algorithm has the potential to analyse a 
further number of sensors should they be incorporated into an 
AM printer, due to its ability to quickly process high-
dimensional datasets. This could allow for further sensors to be 
utilized to maximize the understanding of machine behaviour 
in typical and anomalous situations. 

 
 This study has demonstrated the success of the STRAY 
algorithm to rapidly process (within seconds) data from 752 
layers, obtained using three different photodiodes. By 
comparison, each layer from the build of Ti-6Al-4V lattice 
structures took approximately 2 minutes to complete. Due to 
this speed of processing, this algorithm has the potential to 
detect anomalies in high-dimensional datasets in real-time. 
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