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The relative contributions of both copy number variants (CNVs) and single nucleotide
polymorphisms (SNPs) to the additive genetic variance of carcass traits in cattle is not well
understood. A detailed understanding of the relative importance of CNVs in cattle may
have implications for study design of both genomic predictions and genome-wide
association studies. The first objective of the present study was to quantify the relative
contributions of CNV data and SNP genotype data to the additive genetic variance of
carcass weight, fat, and conformation for 945 Charolais, 923 Holstein-Friesian, and 974
Limousin sires. The second objective was to jointly consider SNP and CNV data in a least
absolute selection and shrinkage operator (LASSO) regression model to identify genomic
regions associated with carcass weight, fat, and conformation within each of the three
breeds separately. A genomic relationship matrix (GRM) based on just CNV data did not
capture any variance in the three carcass traits when jointly evaluated with a SNP-derived
GRM. In the LASSO regression analysis, a total of 987 SNPs and 18 CNVs were
associated with at least one of the three carcass traits in at least one of the three
breeds. The quantitative trait loci (QTLs) corresponding to the associated SNPs and
CNVs overlapped with several candidate genes including previously reported candidate
genes such as MSTN and RSAD2, and several potential novel candidate genes such as
ACTN2 and THOC1. The results of the LASSO regression analysis demonstrated that
CNVs can be used to detect associations with carcass traits which were not detected
using the set of SNPs available in the present study. Therefore, the CNVs and SNPs
available in the present study were not redundant forms of genomic data.
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INTRODUCTION

Carcass value is an important component of both beef-on-beef
(Connolly et al., 2016) and beef-on dairy (Berry et al., 2019)
breeding objectives. The use of genomic data in estimating
breeding values for cattle has the potential to further increase
the efficiency of beef breeding strategies by shortening the
generation interval thereby accelerating genetic gain
(Meuwissen et al., 2001). Genomic predictions and genome-
wide association studies in cattle tend to use single nucleotide
polymorphism (SNP) data, and increasingly (imputed) whole
genome sequence, as the genomic features (Gutierrez-Reinoso
et al., 2021). While multiple genome-wide association studies of
carcass traits in cattle have successfully identified genomic
regions associated with carcass metrics using SNP genotype
data (de Oliveira Silva et al., 2017; Hay and Roberts, 2018;
Purfield et al., 2019), SNP genotypes are not the only type of
genomic data that can be derived from SNP arrays. Copy number
variants (CNVs) are a type of genetic variant formed by deletion
or duplication of genomic DNA (Feuk et al., 2006); typically
CNVs are defined to have a minimum genomic length of between
50 bp (Mills et al., 2011) and 1 kb (Feuk et al., 2006). Duplications
or deletions below the minimum genomic length threshold of a
CNV are usually referred to as insertion or deletions (InDels)
(Werdyani et al., 2017). Several CNV association analyses in
cattle have identified CNVs associated with important traits,
including meat quality traits (da Silva et al., 2016), carcass
merit (Zhou et al., 2016), and milk yield (Xu et al., 2014;
Prinsen et al., 2017). While these CNV association analyses
have identified genomic regions associated with important
traits in cattle using only CNV data, it is not always clear
whether those same genomic regions could have been detected
using another type of genetic marker such as SNPs. A
fundamental principle of genome-wide association studies is
that linkage disequilibrium exists between the genetic markers
and the causal mutation(s) affecting the trait of interest (Balding
et al., 2006). Adding CNV information to existing SNP genotype
data in genomic evaluations or genome-wide association analyses
may not contribute any new information if the CNVs are in
strong linkage disequilibrium with genotyped SNPs. Previous
studies estimate that approximately 75% of deletion CNVs are in
linkage disequilibrium with flanking SNP genotypes (Xu et al.,
2014; Hay et al., 2018). However, imputation analyses
demonstrated that CNVs cannot be consistently imputed with
high reliability from flanking SNP haplotypes (Handsaker et al.,
2015; Rafter et al., 2020); this implies that CNVs are frequently
not in linkage disequilibrium with flanking SNP haplotypes.
Given that there is some degree of incomplete linkage between
CNVs and SNP genotypes, it could mean that genomic analyses
that only use SNP genotypes as genetic markers may not detect
associations where the causal variant is a CNV. Hay et al. (2018)
carried out the first genomic predictions of carcass traits in cattle
using both SNP and CNV data and found that, for some traits,
exploiting CNV information increased the accuracy of the
genomic predictions. While this study by Hay et al. (2018) did
not directly calculate the additive genetic variance accounted for
by CNVs, it suggests that CNVs do account for some of the

additive genetic variance of carcass traits which cannot be
accounted for by SNP data.

The objective of the present study was to quantify the relative
contribution of CNV data and SNP genotype data to the additive
genetic variance of carcass traits in cattle. A secondary objective
was to jointly evaluate SNP genotypes and called CNVs in a least
absolute selection and shrinkage operator (LASSO) regression
model to identify genomic regions associated with carcass traits in
cattle.

MATERIALS AND METHODS

Genotype Data
All animals in the dataset were genotyped on the Illumina
BovineHD (Illumina Inc. San Diego, CA) SNP genotype array
(777,962 SNPs). The chromosome and positions of the SNPs were
taken from the UMD3.1. (Zimin et al., 2009) assembly of the
cattle genome. Animals which had less than 95% of their SNPs
called were discarded from the dataset. Similarly, SNPs with a
call-rate less than 95% were discarded, as were SNPs on the X and
Y chromosomes, or SNPs without a recorded chromosome or
position. A further 1,611 SNPs that deviated from expected
Mendelian inheritance patterns in more than 2% of parent-
progeny pairs (Purfield et al., 2015) were also discarded from
the final dataset; these SNPs were detected using the 1,477 parent-
progeny pairs in the dataset. After genotype edits, the dataset
consisted of 1,324 Holstein-Friesians, 981 Charolais, and 1,129
Limousins, each with 712,555 SNPs.

Phenotype Data
Estimated breeding values (EBVs) for carcass weight, carcass fat,
and carcass conformation were obtained for each genotyped
animal in the dataset from the January 2019 national genetic
evaluation of the Irish Cattle Breeding Federation (ICBF)
database (Bandon, Co. Cork). Each of the animals in the
present study were sires. The EBVs of these sires were
estimated from their descendants; the EBVs of the sires were
the equivalent to >150,000 effective phenotypic records. Carcass
weight is the weight of the animal, in kg, after organs, visceral fat,
limbs, and head have been removed (Englishby et al., 2016).
Carcass fat and carcass conformation scores were obtained from
video imaging analysis; these scores are based on the 15-point EU
beef classification system (Pabiou et al., 2011). The EBVs of each
of the three carcass traits were deregressed using Mix99 software
(Stranden and Lidauer, 1999) using the Secant method (Stranden
and Mantysaari, 2010). The effective record contribution of each
animal in the population was calculated using the method
described by Harris and Johnson (1998). Animals with an
effective record contribution of <1 were excluded from the
final dataset. The number of animals available in each breed
for each of the three carcass traits after edits is in Table 1.

Copy Number Variant Detection
Copy number variants were called from the edited high-density
SNP array (712,555 autosomal SNPs) data using PennCNV
(Wang et al., 2007) and QuantiSNP (Colella et al., 2007).
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PennCNV and QuantiSNP were both used separately to call
CNVs from each animal in the population; CNVs called by
either PennCNV or QuantiSNP which contained at least 3
SNPs were retained in the dataset. Diskin et al. (2008)
reported that the guanine-cytosine (GC) content of DNA
biases CNV detection from SNP array data. An adjustment for
GC bias in CNV detection was applied by both QuantiSNP and
PennCNV, the GC content of the genome was calculated using
the UMD3.1 assembly of the cattle genome, compiled as of June
2014. A CNV was considered to have been called by both
PennCNV and QuantiSNP when the endpoints of the CNV
called by one of the algorithms was within 1 SNP of the
endpoints called by the other algorithm. A single SNP
difference in endpoint identification between PennCNV and
QuantiSNP was allowed for because if there is a difference
between the true endpoint of a CNV and the called endpoint,
the called endpoint is typically only a single SNP from the true
endpoint of the CNV (Colella et al., 2007; Dellinger et al., 2010).
Copy number variants called by either PennCNV or QuantiSNP
were included in the dataset; CNVs called by both algorithms
from the same animal were not double counted. Finally, CNVs
had to be present in at least 3 animals within breed to be included
in the final dataset. The final number of CNVs available for each
breed and trait after edits is in Table 1.

Genomic Relationship Matrix
Genomic relationship matrices (GRMs) were calculated
separately for the CNV data and the SNP genotype data
within each of the three breeds using method 1 described in
VanRaden (2008):

GRM � (M − P)(M − P)T
2∑pi(1 − pi)

whereM is the matrix of genetic marker genotypes recoded as -1,
0, 1 representing the homozygote, heterozygote, and the other
homozygote, respectively, P is a matrix of allele frequencies for
each genetic marker in the dataset, ith column vector of P is given
by 2(pi − 0.5)where pi is the frequency of the second allele for the
ith genetic marker. Prior to the calculation of the SNP-derived

GRMs, any missing genotypes were imputed within breed using
the imputation software FImpute (Sargolzaei et al., 2014).

For each breed, the CNV-derived GRM was calculated twice
using two separate procedures. In the first procedure, double-
deletions and double-duplications were recoded as -1, single-
deletions and single-duplications were recoded as 0, and the
normal state (i.e. the absence of a CNV) was recoded as 1. In
the case of mixed-CNVs (CNVs which are present as both
deletions and duplications in the population), in order to
avoid treating deletions and duplications as identical variants,
each mixed-CNVwas treated as two distinct loci, one to represent
the deletions and the other to represent the duplications. For the
deletion locus, duplications were recoded as normal state (i.e. no
CNV); similarly for the duplication locus, any deletions were
recoded as normal state. In the second procedure to calculate the
CNV-derived GRM, mixed-CNVs were not treated as two
distinct loci but instead all deletions were recoded as -1, the
normal state was recoded as 0, and all duplications were
recoding as 1.

Population Structure
A GRM of the entire population (i.e. the combined Charolais,
Holstein-Friesian, and Limousin populations) was constructed
using the imputed SNP genotype data (712,555 SNPs) for all
available animals. Principal components analysis of this GRM
was used to determine population substructure within the entire
population of available animals (Patterson et al., 2006; Kelleher
et al., 2017). Separately, principal components analysis was also
carried out individually on the SNP-derived GRMs for the
Charolais, Holstein-Friesian, and Limousin populations.

Variance Components Analysis
To calculate the relative contribution of CNV data and SNP
genotype data to variance in the deregressed EBVs for each
animal in the population, the variance explained by a SNP-
derived GRM and the variance explained by a CNV-derived
GRM were jointly considered in a linear mixed model. The
fitted model was:

dEBV � μ + Za +Wb + e

TABLE 1 | The number of animals and copy number variants (CNVs) available for each breed and trait along with the number of SNPs and CNVs associated with each of the
three carcass traits within breed, and the percentage of the genetic variance accounted for by the associated CNVs identified by the LASSO regression analysis for each
breed and trait.

Breed Trait Sample size Number of
CNVs

Associated SNPs Associated CNVs Variance explained
by CNVs

(%)

Charolais Weight 945 3,954 116 2 1.236
Charolais Fat 945 3,954 254 9 1.142
Charolais Conformation 945 3,954 218 3 0.101
Holstein-Friesian Weight 892 13,899 0 0 0.000
Holstein-Friesian Fat 923 13,953 22 0 0.000
Holstein-Friesian Conformation 915 13,969 49 2 0.645
Limousin Weight 974 2,805 11 0 0.000
Limousin Fat 973 2,804 254 1 0.091
Limousin Conformation 974 2,805 63 1 0.261
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where dEBV was a vector of deregressed EBVs of each animal in
the population. The intercept of the model was denoted by μ and
was treated as a fixed effect, the vector a was a random effect with
distribution N(0,GSNPσ2g) whereGSNP was the SNP-derived GRM
and σ2g was the variance component of the random effect, the
vector b was a random effect with distribution N(0, GCNVσ2c )
where GCNV was the CNV-derived GRM and σ2c was the variance
component of the random effect, and e was the random residual
effect with distribution N(0, D−1σ2e), where D was the diagonal
matrix of weights on the deregressed EBVs for each animal and σ2e
was the residual variance component. ThematricesW and Zwere
design matrices that related the random effects to each animal in
the population.

Linear mixed models with a single random effect were also
used to estimate the total additive genetic variance that can be
explained by the SNP-derived GRM, the CNV-derived GRM, and
the GRM derived from the combined SNP and CNV data. The
fitted model was:

dEBV � μ + Za + e

where dEBV was a vector of deregressed EBVs, μ was the
intercept term which was treated as a fixed effect, a was the
polygenic random effect in the model which had the distribution
N(0,Gσ2a), where G represents either the SNP-derived GRM, the
CNV-derived GRM, or the GRM derived from the combined SNP
and CNV data, and the additive genetic variance component was
σ2a . The residual term e was treated as a random effect with
distribution N(0,D−1σ2e), the matrixDwas a diagonal matrix with
the weights of each deregressed EBV along the diagonal, and σ2e
was the residual variance component. The designmatrix Z related
the random effect to each animal in the population.

The equation used to calculate the weighting on each
deregressed EBV is presented by Garrick et al. (2009):

w � (1 − h2)/[c + 1 − r2i
r2i

]h2

The heritability of each trait was denoted by h2, the reliability
of the EBV for the ith animal was given by ri

2. The value of c,
which was the proportion of genetic variation not explained by
the model, was set to 0.9 for each trait as per Purfield et al. (2015).

A log-likelihood ratio test was used to compare the model with
the two random genetic effects versus a model with only one
random effect. The log-likelihood ratio test was done separately
for each trait and breed to determine if the CNV-derived GRM
can account for any variance in the random polygenic effect
between animals. All mixed models were solved using the
software suit ASREML 4.2 (Gilmour et al., 2015).

Separately, a two-step procedure was also undertaken to
quantify the additive genetic variance of carcass traits
attributable to the CNV-derived GRM after accounting for
the effect of the SNP-derived GRM. The first step of this
procedure was to model the deregressed EBVs using a linear
mixed model in which the covariance structure of the random
effect was reflected by the SNP-derived GRM. In the second
step of this procedure, the residual term from this first step
(after adding back the intercept values) was used as the

dependent variable in a second linear mixed model. The
fitted model was:

E� μ + Za + ε

where E is the sum of the residual and intercept term from the
first model, μ was the intercept term which was treated as a fixed
effect, a was the random effect vector which had the distribution
N(0, GCNVσ2c) where GCNV was the CNV-derived GRM and σ2c
was the variance component of the random effect, Z was a design
matrix that related each animal in the dataset to the random
effect, and ε was the random residual effect with distribution N(0,
D−1σ2ε), where D was a diagonal matrix in which the diagonal
elements were the weights on the deregressed EBVs for each
animal and σ2ε was the residual variance component.

The variance component of the random effect of the second
model, σ2c , was the additive genetic variance attributable to CNV-
derived GRM after accounting for the effect of the SNP-
derived GRM.

Association Analyses
A LASSO regression model was conducted to jointly evaluate the
association between individual SNPs and CNVs and the
deregressed carcass EBVs. The principal components of the
SNP-derived GRM and the CNV-derived GRM were also
included in the model as covariates to account for population
stratification. The LASSO models were solved separately for each
breed and trait using the R package “glmnet” (Friedman et al.,
2010). Only the SNPs and CNVs with non-zero coefficients in the
LASSOmodel were considered to be associated with the trait. The
equation for the LASSO model was:

βlasso � minimize{ 1
2N

����(y − Xβ)2���� + λ
����β����}

The dependent variable, y, was the weighted deregressed EBVs
for each animal. ThematrixX consisted of the full set of SNPs and
CNVs, the principal components the SNP and CNV GRMs, and
an intercept term. The vector βwas the effect of each independent
variable in matrix X, λ was the penalty factor in the model, and
the solutions, βlasso, were obtained by minimising the prediction
error of the general linear model with the penalty factor. The
number of observations in the dataset was given by N and the
notation ||.|| denotes the Euclidean norm.

Since none of the CNVs detected had at least 5 animals of a
given breed carrying either a double-deletion or a single-deletion,
the identified double-deletions were assumed as a single-deletion
and were collapsed into a single deletion class. Similarly, all
duplications were collapsed into a single duplication class and
considered as single-duplications because there was no CNVwith
at least 5 animals within breed carrying either a double-
duplication or a single-duplication. The number of animals
and CNVs available for each breed and trait is in Table 1.

The LASSO model is a biased estimator of the regression
coefficients for the associated genetic markers due to the inclusion
of the penalty term in the LASSO model (Hastie et al., 2015). To
obtain unbiased estimates of the regression coefficients, all of the
genetic markers associated within breed for a particular trait were
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evaluated concurrently in a linear regression model without the
penalty term used in the LASSO model; this process was carried
out separately within breed for each trait analysed. This two-step
procedure of identifying associated variants using the LASSO
model and then obtaining unbiased estimates of the regression
coefficients for the associated variants using simple linear
regression is known as the relaxed-LASSO (Meinhausen, 2007;
Hastie et al., 2015). The proportion of the genetic variance
explained by associated CNVs was calculated separately for
each CNV using the regression coefficients obtained from the
unbiased model with the following equation:

2(pi)(1 − pi)a2i /σ2g
where pi is the population frequency of the CNV as a proportion
of the total population size, ai is the regression coefficient of the
CNV (i.e., the allele substitution effect) taken from the unbiased
linear model, and σ2g is the within breed genetic variance for the
carcass trait as used in the national genetic evaluation. The
cumulative proportion of the genetic variance accounted for
by the associated CNVs for each trait was calculated within
breed by summing the proportion of the genetic variance
attributable to each CNV associated with the carcass trait
within breed.

To compare the results of the LASSO analysis with a more
traditional genome-based association analysis, each of the
associated variants identified by the LASSO analysis were
individually re-analysed, within breed, using a linear mixed
model approach. Along with an intercept term and the SNP
genotype, the direct additive genetic effect of the animal was
accounted for by fitting the SNP-derived GRM. The
association of the genetic variant with the trait of interest
was tested using a t-test under the null hypothesis that there
was no association between the genetic variant and the trait of
interest.

Quantitative Trait Loci
For each associated SNP and CNV, a quantitative trait locus
(QTL) region was designated as 50 kb upstream and 50 kb
downstream of the SNP or CNV. When an associated SNP or
CNV was located within 50 kb of another associated SNP or
CNV, respectively, then they were merged into the same QTL; the
boundary of these QTLs were 50 kb upstream and 50 kb
downstream of the outermost variants in the QTL. The
genomic position for each associated SNP and CNV were
updated to the genomic positions given in the ARS-UCD1.2
assembly of the cattle genome (Rosen et al., 2020) in order to
identify genes, as per the Ensembl bovine genome browser
(http://ensembl.org), which overlapped in genomic position
with each of the QTLs.

Gene set enrichment analysis was performed on the set of
genes that overlapped with the QTL regions of each of the
associated CNVs and SNPs identified by the LASSO regression
analysis using the Database for Annotation, Visualisation, and
Integrated Discovery (DAVID). This enrichment analysis was
carried out separately per breed for the QTLs associated with each
of the three traits. The DAVID algorithm identifies clusters of

genes, assigns an enrichment score for the gene cluster, and gives
a p-value for the observed enrichment score under the null
hypothesis that there is no gene set enrichment.

RESULTS

The population structure of the entire population was examined
using principal components analysis; the first principal
component accounted for 6.2% of the total variance in the
SNP-derived GRM and the second principal component
accounted for 3.3% of the total variance in the SNP-derived
GRM (Supplementary Figure S1). The top principal component
of SNP-derived GRM for the Holstein-Friesians accounted for
approximately 4.1% of the total variance. This was more than
three times greater than the percentage variance explained by the
top principal component of the SNP-derived GRMs for either the
Charolais or the Limousin populations.

Variance Components Analysis
After edits 13,969, 3,954, and 2,805 CNVs were available to
calculate the CNV-derived GRMs for the Holstein-Friesian,
Charolais, and Limousin populations, respectively, whereas for
each breed, 712,555 SNPs were used to calculate the SNP-derived
GRMs. For each breed, the CNV-derived GRM was calculated
twice using the two separate procedure described in the methods.
The variance components analysis was conducted separately for
these two sets of CNV-derived GRMs; there was no difference in
the results of the variance components analysis using either of
these two sets of CNV-derived GRMs. The proportion of the
variance accounted for by the SNP-derived GRM when
considered in a linear mixed model was between 0.032 and
0.291 for the three carcass traits analysed in the three breeds
(Supplementary Table S1). In comparison, when considered
singly, the CNV-derived GRM explained almost none of the
variance in the deregressed EBVs; this was the case for all traits in
all breeds (Supplementary Table S1). When the CNV-derived
GRM and SNP-derived GRMwere considered jointly in the same
model, the CNV-derived GRM did not account for any of the
variance in the deregressed EBVs for any trait in all three breeds.
The marginal contribution of the CNV-derived GRM to the
additive genetic variance of the carcass traits was also
calculated using a stepwise approach in which the CNV-
derived GRM was used to model the random polygenic effect
of each animal after accounting for the effect of the SNP-derived
GRM. The conclusion from this approach was the same as that
from the joint evaluation of the CNV-derived GRM and SNP-
derived GRM. Similarly, for all traits and all breeds, no difference
in fit existed between a model that accounted for the polygenic
random effect using only the SNP-derived GRM, or a model
which accounted for the polygenic random effect using a single
GRM derived from the combined SNP and CNV datasets.

Association Analyses
A total of 987 SNPs and 18 CNVs were associated with at least
one of the three carcass traits in at least one of the three breeds
analysed. The number of CNVs and SNPs associated with each of
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the three carcass traits per breed is given Table 1. None of the 18
associated CNVs were located within 50 kb of another associated
CNV; hence there were 18 distinct CNV QTLs. The 987 SNPs
formed 699 distinct SNP QTLs. One QTL harboured both an
associated SNP and an associated CNV; therefore, overall 717
QTLs were identified in the present study. There was no gene set
enrichment for any biological functions among the sets of genes
which overlapped with the QTLs associated with each of the
carcass traits within breed. A list of all 18 CNV QTLs is given in
Table 2; 15 of the 18 CNV QTLs overlapped with a previously
reported CNV region as per the Ensembl bovine genome browser.
For each of the three carcass traits, the associated CNVs identified
by the LASSO regression analysis cumulatively accounted for

between 0.000% (carcass weight in the Holstein-Friesians) and
1.236% (carcass weight in the Charolais) of the total genetic
variance. The genetic variance explained by the associated CNVs
for each of the three carcass traits within breed is inTable 1. None
of the CNVs were associated with more than one trait within
breed or across breeds. Furthermore, none of the CNVs were
associated with the same trait in more than one breed even
though 10 of the 18 associated CNVs were present in more than
one breed.

The QTL with an associated CNV and an associated SNP was
associated with carcass fat in the Charolais and was located on
chromosome 29 between 36.70 and 36.77Mb. The CNV in this QTL
was a duplication present in 8 animals and the associated SNP in this

TABLE 2 | Chromosome, position, and candidate gene(s) for each copy number variant (CNV) quantitative trait locus (QTL) associated with each of the carcass traits in
Charolais (CH), Holstein-Friesian (HF), and Limousin (LM). When no genes overlapped the QTL region none is reported in the candidate gene column.

Breed Trait Chromosome QTL start, mb QTL end, mb Candidate Genes

CH Conformation 1 102.44 102.46 U6
CH Conformation 12 37.44 37.44 None
CH Conformation 15 83.77 83.80 None
CH Fat 2 123.74 123.79 None
CH Fat 4 54.37 54.40 None
CH Fat 5 80.51 80.53 None
CH Fat 9 2.55 2.57 None
CH Fat 12 57.90 57.91 None
CH Fat 17 71.37 71.39 CABIN1
CH Fat 17 71.70 71.74 BCR, SPECC1L
CH Fat 25 15.49 15.50 XYLT1
CH Fat 29 36.70 36.77 ADAMTS8, ADAMTS15,
CH Fat 12 60.28 60.28 None
CH Weight 4 83.86 83.87 5s_rRNA
CH Weight 9 7.13 7.14 None
HF Conformation 20 42.99 43.02 None
LM Conformation 7 43.87 43.90 REEP6, PCSK4, APC2, ADAMTSL5
LM Fat 10 39.64 39.65 RPL10L

FIGURE 1 | The number quantitative trait loci (QTLs) associated with carcass conformation, carcass fat and carcass weight in the Charolais, Holstein-Friesians, and
Limousins. Quantitative trait loci that overlapped in genomic position with another QTL associated with a different trait in the same breed were considered a single QTL
shared between the two traits.
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QTL, rs109364153, was located within the genomic position of the
associated CNV; this QTL overlapped in genomic position with a
single gene which was the RNA gene bta-mir-584-7. Single nucleotide
polymorphisms close to this QTL region were also associated with
carcass conformation and weight in the Limousins.

Twenty-eight SNP QTLs were associated with more than one
trait within breed (Figure 1) and another 4 SNP QTLs were
associated with the same trait in more than one breed (Figure 2).
In the Charolais, the QTL with largest number of associated SNPs
contained 8 SNPs associated with carcass fat. This QTL was
located on chromosome 2 between 6.25 and 6.29 Mb and SNPs
within this genomic region were also associated with carcass
conformation and carcass weight in the Charolais. Similarly in the
Limousins, a SNP QTL also associated with carcass fat was
located on chromosome 2 between 6.14 and 6.25 Mb and
contained 18 associated SNPs. In the Limousins, this QTL had
the greatest number of SNPs associated with any trait; SNPs in the
genomic region of this QTL were also associated with carcass
conformation in the Limousins. The protein coding gene MSTN
is the most likely candidate gene for these two QTLs identified in
the Limousins and the Charolais. None of the 26 SNPs in the
genomic region of these two QTLs were associated with any of the
three carcass traits in the Holstein-Friesians, even though each of
the 26 SNPs were segregating in the Holstein-Friesians. A list of
the top five SNP QTLs associated with each of the three carcass
traits within breed is given in Supplementary Tables S2–S4.

All of the associated SNPs and CNVs were re-analysed singly
using a linear mixed model approach; the nominal p-values for
each of the tested variants was between 0.027 and 1.4 × 10−15

(Supplementary Figure S2).

DISCUSSION

Copy number variants have been documented to be associated
with several performance traits in cattle such as meat quality (da

Silva et al., 2016), carcass merit (Zhou et al., 2016), and milk yield
(Xu et al., 2014; Prinsen et al., 2017). While these studies
demonstrate that CNVs can be used to identify genomic
regions associated with important traits in cattle, it is often
uncertain whether CNVs uniquely identify these genomic
regions or if SNP genotype data could have been used to
detect the same genomic regions. Based on a population of
2,230 Nellore cattle, Hay et al. (2018) performed the first
genomic predictions of carcass traits in cattle that used both
SNP and CNV data; they found that, for some traits, the CNV
data improved the accuracy of genomic predictions. However, it
is still unclear how additive genetic variance is partitioned
between CNVs and SNPs, or if CNV data can identify
genomic regions in a genome-wide association analysis that
would otherwise be undetected if SNP genotypes were the
only genetic markers used in the analysis.

Based on the top two principal components of the SNP-
derived GRM for the entire population (Supplementary
Figure S1), two closely related clusters of animals existed in
the Holstein-Friesian population, whereas for the Charolais and
Limousin populations each breed consisted of only a single
cluster of animals. This indicated that the Holstein-Friesian
population in the present study was less homogeneous than
either the Charolais or the Limousin populations which is not
unexpected given that both Holstein and Friesian founder
animals will have contributed to the Holstein-Friesian
population in the present study. This may account for the
greater number of observed CNVs in the Holstein-Friesian
population when compared to the Charolais or the Limousin
populations.

Copy Number Variant Association Analysis
Although the CNV-derived GRM could not account for any
additive genetic variation in the three carcass traits, the LASSO
regression model identified 18 CNVs associated with at least one
of the three carcass traits across the three breeds analysed. While

FIGURE 2 | The number quantitative trait loci (QTLs) associated with carcass weight, carcass fat, and carcass conformation for the Charolais, Holstein-Friesian,
and Limousin populations. Quantitative trait loci that overlapped in genomic position with another QTL associated with the same trait in another breed were considered a
single QTL shared between the two breeds.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7615037

Rafter et al. Genetic Analysis of Carcass Traits

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


the results of LASSO analysis and the CNV-derived GRM analysis
appear to be in opposition, in reality the associated CNVs
identified by the LASSO regression analysis only explained
between 0.000 and 1.236% of the total genetic variance for
each of the three carcass traits analysed (Table 1). So the
actual difference in the genetic variance explained by the
variance components analysis and the LASSO regression
analysis was small. Considering that the proportion of the
genetic variance explained by the CNVs was small, it may be
the case that a CNV-derived GRM is unable to detect this genetic
variance when jointly evaluated in a model with a SNP-derived
GRM. This may also explain why Hay et al. (2018) found that
exploiting CNV information improved the accuracy of genomic
predictions for some carcass traits because, in that study, the
CNVs were modelled as fixed effects in the genomic prediction
models. The LASSO model might be better suited at detecting the
genetic variance explained by CNVs because CNVs which tend to
have low population frequency (Supplementary Figure S3) and
low reproducibility may be preferentially removed from the
LASSO model. Genetic markers with low population
frequencies have less power to detect associations in an
association analysis (Bush and Moore, 2012) and errors in
genotype assignment or CNV copy number assignment also
reduce the power to detect associations when the error is
independent of the phenotypic value (Pompanon et al., 2005;
Cook et al., 2014; Hou et al., 2017). In a LASSO model, genetic
markers with no detectable effect tend to be eliminated from the
model (Hastie et al., 2015); therefore those CNVs which have no
detectable effect should be preferentially removed from the
LASSO model. Hence the LASSO model may be better suited
to accounting for the genetic variance explained by CNVs rather
than the variance components analysis.

Several of the associated CNVs overlapped in genomic
position with genes and CNVs that have previously been
associated with carcass traits in cattle. For instance, a deletion
present in 3 animals in the Charolais, located on chromosome 5
between 80.51 and 80.76 Mb, was approximately 170 kb from
FAR2. FAR2 is a gene related to fatty acid synthesis in mammals
(Cheng et al., 2004) and has been associated with meat quality in
Hanwoo cattle (Lim et al., 2016). A duplication CNV present in 4
animals in the Charolais population of the present study was
associated with carcass fat and was located approximately 390 kb
from the RNA geneMetazoa_SRP. Differential expression of this
gene in Qinchuan cattle is related to the development of skeletal
muscle (Li et al., 2016). A CNV located on chromosome 17
between 71.37 Mb and 71.39 Mb was associated with carcass fat
in the Charolais and overlapped with CNVs identified in another
study that were associated with stature in Holstein cattle (Sassi
et al., 2016). The QTL on chromosome 17 between 71.37 Mb and
71.39 Mb was located approximately 310 kb from the protein
coding gene PRAME which has previously been associated with
carcass yield in a CNV association study (Zhou et al., 2016). The
CNV on chromosome 17 between 71.37 Mb and 71.39 Mb was
also located 340 kb from a second CNV between 71.70 Mb and
71.74 Mb which was also associated with carcass fat in the
Charolais in the present study; both CNVs were called in
different cohorts of animals. Furthermore, no other CNVs

existed in the Charolais, Holstein-Friesian, or Limousin
populations which overlapped the genomic position of both
CNVs. This suggests that these two CNVs, despite being in
close genomic proximity, were two distinct CNV regions.
Given that some of the associated CNVs detected in the
present study overlapped with (or were flanked by) genes and
CNVs associated with carcass and related traits in cattle, it
suggests that at least some of the 18 associated CNVs were
true associations.

In addition to these genes which have previously been
associated with carcass traits in cattle, several novel candidate
genes also overlapped with CNV QTLs. The protein coding gene
PTPRU was located approximately 450 kb from a CNV QTL on
chromosome 2 between 123.74 and 123.79 Mb; this CNV was
associated with carcass fat in the Charolais and none of the
associated SNPs identified in the present study overlapped in
genomic position with this QTL. This gene has not previously
been associated with carcass traits in cattle although it has been
associated with feed conversion rate in pigs (Horodyska et al.,
2017) and wither height in Yaks (Jia et al., 2019).

Single Nucleotide Polymorphism
Association Analysis
The fact that the Charolais and the Limousins shared more
QTLs than either breed shared with the Holstein-Friesians
substantiates the known shared genetic ancestry of these
breeds (Bouquet et al., 2011; Kelleher et al., 2017). Several of
the QTLs that were shared between breeds also overlapped in
genomic position with genes which have previously been
associated with carcass traits in cattle. The protein coding
gene RSAD2 overlapped in genomic position with a SNP
QTL located on chromosome 11 at 90.11 Mb which was
associated with carcass fat in the Charolais and the
Limousins. This gene has previously been associated with
carcass traits in Nellore cattle (Silva-Vignato et al., 2017) and
width of withers in Hereford cattle (Doyle et al., 2020).

In addition to the candidate genes which have previously been
identified in genome-wide association studies of carcass traits in
cattle, several novel candidate genes were also identified in the
present study. The protein coding gene USP24 was located in
close genomic proximity (<370 kb) to two SNP QTLs. The first
SNP QTL was located on chromosome 3 between 90.89 and
90.90 Mb and was associated with carcass conformation in the
Charolais; the second SNP QTL was located on chromosome 3 at
90.76 Mb and was associated carcass conformation in the
Limousins. This gene has previously been associated with milk
yield and mastitis resistance in cattle (Cai et al., 2020) and growth
traits in pigs (Xiong et al., 2015), but has not previously been
associated with carcass traits in cattle. The protein coding gene
ACTN2 was located 230 kb from a SNP positioned on
chromosome 28 at 9.09 Mb which was associated with carcass
fat in the Charolais. ACTN2 also overlapped with a SNP on
chromosome 28 at 9.35 Mb which was associated with carcass fat
in the Limousins. In mammals, ACTN2 is highly expressed in
skeletal and cardiac muscle (Lornage et al., 2019) and mutations
in ACTN2 cause cardiac myopathy (Lornage et al., 2019) and
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muscular dystrophy (Lornage et al., 2019; Savarese et al., 2019) in
humans. Another novel candidate gene identified in the present
study was THOC1; this gene overlapped with a SNP QTL on
chromosome 24 between 35.22 and 35.25 Mb which was
associated with carcass fat in the Charolais and Limousins.
THOC1 may have a role in muscle cell proliferation in pigs
(Zappaterra et al., 2020).

The 28 SNP QTLs which were associated with more than one
trait within breed may be contributing to the genetic correlation
between carcass traits in cattle (Hickey et al., 2007; Kause et al.,
2015). Two SNP QTLs were associated with all three carcass traits
within a single breed, possibly contributing to the genetic
correlation between all three traits. MSTN overlapped with a
SNP QTL that was associated with all three traits in the Charolais
as well as carcass fat and conformation in the Limousins.MSTN is
known to have a large effect on carcass traits in cattle (Grobet
et al., 1997; Kambadur et al., 1997; McPherron et al., 1997).

The dataset used in the present study had previously been used
as part of a larger dataset which consisted of 28,470 sires across six
different breeds with each of the sires imputed to 41,389,526
SNPs. This dataset was used by Purfield et al. (2019) to perform a
traditional genome-based association analysis of carcass traits in
cattle. A total of 55 SNP QTLs (7.7% of all QTLs) identified in the
present study overlapped in genomic position with the QTLs
identified by Purfield et al. (2019). In Purfield et al. (2019), as in
the present study, the associated SNPs located near MSTN,
NCAPG, and LCORL were associated with at least one of the
carcass traits in the Charolais and the Limousin populations.
Purfield et al. (2019) identified only one SNP QTL which was
associated with carcass weight in the Holstein-Friesians; this SNP
QTL was located on chromosome 14 between 24.49 and
25.33 Mb. This result was similar to the present study in
which no SNPs or CNVs were associated with carcass weight
in the Holstein-Friesians.

CONCLUSION

The CNV-derived GRM did not account for any additive
genetic variance in the three carcass traits when jointly
evaluated with a SNP-derived GRM in a linear mixed model
for each of the three breeds. A LASSO regression analysis
which jointly evaluated SNPs and CNVs did, however, identify
18 CNVs associated with at least one of the three carcass traits
in the three breeds analysed although the proportion of genetic
variance explained was small. Some of these associated CNVs
overlapped with genes that have previously been associated
with carcass traits, which suggests that these CNVs represent
true associations. In addition to reaffirming candidate genes

that have previously been associated with carcass traits in
cattle, several novel candidate genes where also identified.
Novel candidate genes which overlapped with CNV QTLs
included PTPRU and novel candidate genes which
overlapped with SNP QTLs included ACTN2, THOC1, and
USP24.
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