

Modelling Professional Singers:

A Bayesian Machine Learning Approach with
Enhanced Real-time Pitch Contour Extraction

and Onset Processing from an Extended Dataset

Behnam Faghih

A thesis submitted for the degree of

Doctor of Philosophy

Department of Computer Science

Maynooth University

Supervisor and Head of Department: Dr Joseph Timoney

October 2022

ii

Table of Contents

List of Figures ... viii

List of Tables .. xi

Acknowledgements... xiv

Abstract ... xv

CHAPTER 1 INTRODUCTION ...1

1.1 Motivation ... 2

1.2 An overview of the studies on music tools ... 4

1.3 Key common steps in musical signal processing .. 6

1.3.1 Input signal .. 6

1.3.2 Pre-processing .. 7

1.3.3 Spectrogram extraction... 7

1.3.4 Post-processing... 8

1.3.5 Features Extraction .. 9

1.3.6 Processing extracted features.. 10

1.4 Thesis objectives...11

1.4.1 Investigating real-time singing pitch detector algorithms .. 11

1.4.2 Real-time smoothing pitch contours generated from singing signals .. 11

1.4.3 Real-time onset, offset, and transition extraction from singing signals... 11

1.4.4 Generating an annotated singing dataset to analyse professional singers’ performances 12

1.4.5 Calculating notes’ pitch frequencies and duration according to singing technique and their

positions in a piece of music ... 12

1.5 Chapters summary ..12

CHAPTER 2 BACKGROUND AND APPLICATIONS ... 14

2.1 Features affecting the singing waveform ..15

2.1.1 Musical instruments are usually tuned .. 15

2.1.2 Vibration .. 15

2.1.3 Pitch drift ... 16

iii

2.1.4 Transition between notes ... 17

2.1.5 Vocal syste m ... 18

2.2 Literature review ..18

2.2.1 Investigating real-time singing pitch detector algorithms objective .. 19

2.2.2 Real-time smoothing pitch contours generated from singing signals objective............................. 22

2.2.3 Real-time onset, offset, and transition extraction from singing signals objective 28

2.2.4 Generating an annotated singing dataset objective .. 32

2.2.5 Calculating notes’ pitch frequencies and duration according to singing technique and their

positions in a piece of music objective ... 36

2.3 Applications ...42

2.3.1 Aligning sung notes with ground truth... 42

2.3.2 Score following ... 48

2.3.3 Singing Assessment Syste ms .. 50

2.3.4 Automatic tuning of singing ... 58

2.3.5 Singing imitation synthesis ... 58

2.3.6 Automatic singing transcription .. 60

2.4 Conclusion ...60

CHAPTER 3 PITCH DETECTION FROM SINGING SIGNALS 62

3.1 Methodology ...63

3.1.1 Dataset ... 63

3.1.2 Tools ... 65

3.2 Pitch detection algorithms ...66

3.3 Results ..68

3.4 Conclusion ...71

CHAPTER 4 AN INVESTIGATION INTO SEVERAL REAL-TIME PITCH DETECTION

ALGORITHMS IN SINGING SIGNALS.. 73

4.1 Materials and Methods..74

4.1.1 Pitch detection algorithms ... 74

4.1.2 Generating a Dataset ... 75

iv

4.1.3 Post-processing... 77

4.1.4 The difference between estimated pitch contour and ground truth ... 79

4.1.5 Labelling estimated pitch contours... 79

4.2 Results and Discussions ...81

4.2.1 Correctness.. 82

4.2.2 Delay ... 86

4.2.3 Evaluating the accuracy of the estimated F0 .. 88

4.3 Conclusions..96

CHAPTER 5 PITCH CONTOUR SMOOTHER .. 98

5.1 Current Contour Smoother Algorithms ...99

5.1.1 Gaussian Filter...102

5.1.2 Savitzky–Golay Filter ..102

5.1.3 Exponential Filter ...103

5.1.4 Window-Based Finite Impulse Response Filter...103

5.1.5 Direct Spectral Filter ..104

5.1.6 Polynomial ...105

5.1.7 Spline ..105

5.1.8 Binner ...105

5.1.9 Locally Weighted Scatterplot Smoothing (LOWESS) Smoother ...106

5.1.10 Seasonal Decomposition...106

5.1.11 Kalman Filter ...106

5.1.12 Moving Average ...107

5.1.13 Median Filter...107

5.1.14 Okada Filter ...108

5.1.15 Jlassi Filter ...108

5.2 Materials and Methods.. 109

5.2.1 Dataset ...109

5.2.2 Ground Truth...109

5.2.3 Pitch Detection Algorithms to Generate Pitch Contours ..110

5.2.4 Evaluation Method...111

5.3 Smart-Median: A Real-Time Pitch Contour Smoother Algorithm ... 114

5.3.1 Smart-Median Algorithm ..114

v

5.4 Results .. 117

5.5 Discussion ... 120

5.5.1 Comparing the Results of Each Metric ...120

5.5.2 Comparing Moving Average, Median, Okada, Jlassi, and Smart-Median121

5.5.3 Accuracy of the Contour Smoother Algorithms..122

5.6 Conclusions.. 123

CHAPTER 6 ONSET AND OFFSET DETECTION... 124

6.1 Materials and Methods.. 125

6.1.1 Datasets ...125

6.1.2 State of-the-Art Onset De tection Algorithms ...126

6.1.3 The Methods for Evaluation ...128

6.2 The Proposed Algorithm .. 128

6.2.1 Estimating F0s ...129

6.2.2 Stretching Pitch Contour ...130

6.2.3 Calculating the Stretched Pitch Contour Slopes ...131

6.2.4 Calculating the Summation of Slopes in the following Line ...133

6.2.5 Calculating the Mean of the Local Slopes ..135

6.2.6 Calculating the Standard Deviation of the Local Slopes ..136

6.2.7 Comparing the Current Slope with the Mean and Standard Deviation ...136

6.3 Results and Discussion... 138

6.4 Conclusions.. 142

CHAPTER 7 GENERATING AN ANNOTATED SINGING DATASET......................... 143

7.1 Steps to Generate the Dataset .. 144

7.1.1 Estimating Fundamental Frequencies ..144

7.1.2 Detecting Onsets, Offsets, and Transitions ...145

7.1.3 Extracting Notes Features...147

7.1.4 Combining Extracted Notes with Ground Truth Scores ..148

7.1.5 Checking Annotation Correctness ...149

7.2 Dataset Description... 150

7.2.1 Raw Directories...151

vi

7.2.2 Extended Directories ...151

7.3 Summary of the generated data .. 152

7.4 Comparing the Four Methods of Selecting the Positions of Onset, Offset, and Transition 155

7.5 Conclusions.. 158

CHAPTER 8 MODELS TO ESTIMATE THE PITCH FREQUENCY AND DURATION RANGES

FOR AN ACCEPTABLE NOTE IN SINGING.. 159

8.1 Materials and Methods.. 160

8.1.1 Dataset ...160

8.1.2 Variables ..162

8.1.3 Methods of evaluations ..164

8.1.4 Estimating the range of a note’s duration and F0 sung by trained-professional singers............167

8.1.5 Model validation...168

8.2 Results .. 169

8.2.1 Estimating the effect of the variables on deviation from ground truth F0169

8.2.2 Estimating the effect of the variables on the deviation from the ground truth duration171

8.3 Discussion ... 173

8.3.1 An illustration to show how to calculate the expected MIDI pitch code and duration of notes173

8.3.2 The effect of rest before or after a note on the deviation of its performed F0 and duration from

the ground truth ...176

8.3.3 The effect of the ground truth MIDI pitch code on the deviations of its performed F0 and

duration from ground truth ..176

8.3.4 The effect of the ground truth note’s duration on the deviations of its performed F0 and

duration from the ground truth ...176

8.3.5 The effect of the pitch interval to the previous and following notes on the deviations of

performed F0 and duration from the ground truth ...177

8.3.6 The effect of the singing techniques on the deviation of the performed F0 and duration from

the ground truth ...177

8.3.7 The effect of the note’s repetition on the performed F0 deviation from the ground truth pitch

(pitch drift) ...178

8.4 Conclusions.. 179

vii

CHAPTER 9 CONCLUSION AND FUTURE WORK .. 180

9.1 Conclusion and future work of investigating real-time singing pit ch detector algorithms study . 181

9.2 Conclusion and future work of real-time smoothing pitch contours generated from singing signals

study... 183

9.3 Conclusion and future work of real-time onset, offset, and transition extraction from singing

signals study... 184

9.4 Conclusion and future work of generating an annotated singing dataset 186

9.5 Conclusion and future work of calculating notes’ pitch frequencies and duration according to

singing technique and their positions in a piece of music study... 186

APPENDIX ... 189

REFERENCES .. 194

viii

List of Figures

Figure 1-1. Musical scores, as an example of notes, that should be sung by a singer .. 2

Figure 1-2. A diagram of a representation of the notes in Figure 1-1. The black lines are the theoretical MIDI pitch
code and duration of the notes, while the red lines are a hypothetical performance of a singer. 3

Figure 1-3. The fundamental steps of musical signal processing .. 6

Figure 1-4 Raw audio input signals in time domain representation ... 7

Figure 1-5 Different harmonies of the input signal, from Figure 1-4, represented in a pitch-frequency domain
(spectrogram). (a) includes all harmonies in the input signal, (b) is the lowest harmony called fundamental
frequency (F0). ... 8

Figure 1-6 An example of post-processing in estimated F0s.(a) shows the output of a pitch estimator algorithm
that included several errors. (b) shows the result of a pitch contour smoother on altering the errors in (a)
 .. 9

Figure 1-7 Extracted notes from a pitch contour. The vertical lines show onsets, offsets, and transitions between
notes. ... 9

Figure 1-8 An example of a music score .. 10

Figure 2-1 illustrations of soft onset as compared to a sharp onset .. 18

Figure 2-2 Illustration of paths of index pairs for some sequence X of length N =9 and some sequence Y of length
M =7. (a) Admissible warping path satisfying the conditions (1), (2), and (3). (b) the boundary condition is
violated. (c) the monotony condition is unsatisfied, (d) the step size condition is disregarded (Müller, 2007)
 .. 43

Figure 2-3 Grouping process of several segments (grey) into one music note (blue) (Schramm, Nunes and Jung,
2015) .. 45

Figure 2-4 A screenshot from Singstar application [www.gamestop.ie].. 51

Figure 2-5 A screenshot of Sing&See software... 53

Figure 2-6 Overview of the analysis and note segmentation/expression transcription process proposed by Mayor
et al. (Mayor, Bonada and Loscos, 2006) ... 54

Figure 2-7 Gamma probability density functions estimated from two distinct training datasets. (a) annotated by
30 expert listeners. (b) annotated by five expert listeners. The parameters pitch, onset, and offset are
labelled as correct or incorrect based on the annotation (votes) given by the experts (Schramm, Nunes
and Jung, 2016).. 57

Figure 2-8 A screen shot of Vocaloid software ... 60

Figure 3-1 Example of the interface for Spear with the fundamental frequencies highlighted in red. In general,
strong components are black, and weak ones are grey. .. 66

Figure 3-2 Example outputs of the various pitch detection algorithms ... 70

Figure 3-3 This picture depicts the PLL algorithm problem at the beginning of sounds... 70

ix

Figure 4-1. Illustrating post processes on detected pitches. (a) is the detected frequencies, (b1) is the detected
pitches after replacing invalid frequencies with Smart-Median, (b2) is exactly frequencies in (a) without
correcting the invalid pitches. (c1) and (c2) are setting the silence duration at the beginning of the
estimated frequencies as long as the ground truth. Frequencies are shifted in (d1) and (d2) to find the best
alignment with the ground truth. (e1) and (e2) show the difference between ground truth and estimated
frequencies. .. 78

Figure 4-2. The three categories for estimated pitch contours based on their correctness. (a) almost all the pitches
are correct. (b) most of the pitches are incorrect, and (c) a few of the estimated pitches are incorrect, but
it is expected that the incorrect pitches can be fixed with more post-processing.. 80

Figure 4-3. Trimming estimated pitch contour. (a1) and (a2) are post-processed estimated pitch contours with
window sizes 1024 and 2048, respectively. (b1) and (b2) represent (a1) and (a2) by removing 15% of
duration from the beginning and also 15% from the end of the pitch contours... 89

Figure 4-4. The acceptable range for the Yin algorithm in the three methods: Distance, Standard Deviation, and
Percentage. Each colour shows the acceptable range by each algorithm. ... 93

Figure 4-5. The acceptable range for the YinFast algorithm in the three methods: Distance, Standard Deviation,
and Percentage. Each colour shows the acceptable range by each algorithm. ... 94

Figure 4-6. The acceptable range for the YinFFT algorithm in the three methods: Distance, Standard Deviation,
and Percentage. Each colour shows the acceptable range by each algorithm. ... 94

Figure 4-7. The acceptable range for the FComb algorithm in the three methods: Distance, Standard Deviation,
and Percentage. Each colour shows the acceptable range by each algorithm. ... 95

Figure 4-8. The acceptable range for the MComb algorithm in the three methods: Distance, Standard Deviation,
and Percentage. Each colour shows the acceptable range by each algorithm. ... 95

Figure 5-1. The effect of each contour-smoother algorithm on a pitch contour from a female singer producing
arpeggios in the C major scale. The pitch estimator algorithm was FComb. GT = Ground Truth (PYIN), ST =
Estimated pitch contour. The smoothed contours are plotted in parts (a–h) for more straightforward
observation. Each panel (a–f) plots three smoothed contours, while panels (g,h) have four contours each.
Descriptions of the algorithms’ codes are provided in Table 5-1. ..101

Figure 5-2. Pitch contours for a female singer of arpeggios in the C scale. (a) pitch contour estimated by PYIN
(ground truth), Praat, Yin, and YinFFT algorithms. (b) pitch contour estimated by PYIN (ground truth),
Fcomb, Schmitt, Mcomb, and Specacf. ...111

Figure 5-3. The central part of the Smart-Median algorithm for smoothing a pitch contour.114

Figure 6-1 The main steps to find onsets in the proposed algorithm...129

Figure 6-2 The effect of stretching on pitch contour’s slopes. (c, d) are the stretched pitch contours of (a, b),
respectively...131

Figure 6-3 Analyzing the pitch contour. (a) The original pitch contour of three notes, the first two notes are the
same, and the third one is lower than the previous notes, (b) the stretched estimated values for the
fundamental frequencies in (a), and (c) the slope of the pitch contour computed using differentiation. The
red lines show the possible points for offsets, and the green lines are possible onsets.132

Figure 6-4 Points’ statuses on a pitch contour. There are three notes: F4, F4, and E4, in order, sung by a
professional female singer. The average pitch frequencies of the notes are 359, 362, and 323 Hertz,
respectively...133

x

Figure 6-5 Calculating the summation of the following slopes of the differentiated contour.134

Figure 6-6 Box and whisker of the estimated notes’ duration in the SVNote1 and the Erkomaishvili datasets.135

Figure 6-7 The algorithm for finding a significant change to find onset, offset, and transition.138

Figure 6-8 An example illustrates the position of the onset point in the Erkomaishvili dataset (ground truth)
compared to the onset, offset, and transition points indicated by the proposed algorithm. Panel (a) shows
the pitch frequencies, and panel (b) depicts the slope contour according to panel (a).............................139

Figure 7-1. The software tool used to check and correct F0, onset, offset, and transition annotations by indicating
them with different colours. ...146

Figure 7-2. Points’ statuses on a pitch contour. Two notes, E4 and F4, are sung by a professional female singer.
(a) Showing offset, the start of a transition, the end of a transition, and onset events in order. (b) The
transition was not considered, and the onset started immediately after the offset point according to (a).
(c) Similarly, the transition was not considered, but the offset was annotated to lie immediately before
the onset point in (a). (d) Likewise, the transition was not considered, but the middle points between the
onset and offset points in (a) are annotated as offset and onset. ...147

Figure 7-3. The directories’ hierarchy of the Annotated-VocalSet. ..151

Figure 7-4 The total number of notes in each music type sung by males and females ..153

Figure 7-5 A box and whisker plot of the pitch frequencies sung by the singers. ..153

Figure 7-6 A box and whisker plot of the duration of the notes sung by the singers..154

Figure 7-7 The total number of notes categorized by their pitch intervals to the previous note (a) and the following
note (b)..155

Figure 8-1 Music scores of the audio files in the Annotated-VocalSet dataset: (a) is arpeggios in C and F, (b) is C
and F Scales, (c) is some long tones, (d) is the score of "row row row your boat", (e) is the score of "Dona
Nobis", and (f) is the score of "Caro mioben". ...161

Figure 8-2 Comparison of the density of the distribution of the predicted values and the distribution of the
observations. (a) Shows the comparison for the deviation in the MIDI pitch code model, and (b) shows the
comparison for the deviation in the duration model. ..168

Figure 8-3. The posterior distribution of the effects of the independent variables on deviation from the ground
truth MIDI pitch code. (a) shows the impact of the numerical and Boolean variables, and (b) depicts the
effect of the singing techniques. ..171

Figure 8-4. The posterior distribution of the effects of the independent variables on deviation from the ground
truth duration. (a) shows the impact of the numerical and Boolean variables, and (b) depicts the effect of
singing techniques...172

Figure 8-5. Musical scores as an example for estimating the pitch and duration of the notes173

Figure 8-6. A visual representation of the expected MIDI pitch code and duration of the notes and their
anticipated ranges, according to Table 8-10. The black-solid lines show the ground truth MIDI pitch code
and duration, and the red-dashed lines are the expected MIDI pitch code and the boxes around them
show the anticipated range of each note. The top panel shows the maximum anticipated duration of the
notes, the middle panel shows the expected duration of the notes, and the bottom panel show the
minimum anticipated duration. ..175

xi

List of Tables

Table 1-1. The corresponding MIDI pitch code of the notes in Figure 1-1. ... 2

Table 1-2 The theoretically pitch frequency and duration of each note in the example in Figure 1-8 10

Table 2-1. A list of the contour smoother algorithms with indicating the code(s) of their considerations according
to the list in section 2.2.2.1 ... 27

Table 2-2. A comparison of existing singing datasets.. 34

Table 3-1 The distribution and total number of repetitions of the notes played by the singers in selected files.64

Table 3-2 the number of incorrect instances of f0 determination in the pitch detection algorithms for the fast-
forte data .. 69

Table 3-3 The number of incorrect instances of f0 determination in the pitch detection algorithms for the slow-
forte data .. 69

Table 3-4 Diff between the standard deviation of each algorithm with ground truth... 71

Table 4-1. Categories and number of files in the generated dataset for each pitch detection algorithm. The
columns titled “with” mean post-processing, and the columns titled “without” mean without post-
processing. .. 77

Table 4-2. Number of correct and incorrect estimated pitch contours for each algorithm without post-processing
 .. 80

Table 4-3. Number of correct and incorrect estimated pitch contours for each algorithm after post-processing
 .. 81

Table 4-4. Total correctness of each algorithm categorised by gender, music type, post-processing, and window
size in both fast and slow performance .. 83

Table 4-5. Total correctness of each algorithm categorised by gender, music type, post-processing, and window
size in only fast performance .. 84

Table 4-6. Total correctness of each algorithm categorised by gender, music type, post-processing, and window
size in only slow performance ... 85

Table 4-7. The average delay in each algorithm categorised by gender, music type, post-processing, and window
size in both fast and slow performance (in milliseconds) .. 87

Table 4-8. The average delay in each algorithm categorised by gender, music type, post-processing, and window
size in only fast performance (in milliseconds) .. 88

Table 4-9. The average delay in each algorithm categorised by gender, music type, post-processing, and window
size in only slow performance (in milliseconds) .. 88

Table 4-10. The acceptable fixed distance from F0 in the ground truth.. 90

Table 4-11. The average standard deviation of differences between estimated pitches and ground truth with the
coefficient of the acceptable distance... 92

xii

Table 4-12. Per cent of ground truth F0 for finding the acceptable estimated pitch .. 92

Table 5-1. Code of each of the contour smoother algorithms with indicating the code(s) of their considerations
according to the list in section 2.2.2.1 ... 99

Table 5-2. Python libraries used for smoothing pitch contours. ...102

Table 5-3. Comparing the mean of pitch estimators and contour-smoother algorithms by ground truth based on
the four metrics. GT = Ground Truth, ES = Estimated pitch contour, SM = Smoothed contour.119

Table 5-4. Dividing the contour smoother algorithms into three categories (best, normal, and worst) based on
the standard deviation. ..120

Table 5-5. Comparison of metrics in different series of predicted data. ...121

Table 5-6. An example to illustrate the weakness of the moving average, Median, Okada, and Jlassi algorithms as
compared to the Smart-Median. ..122

Table 6-1 The average of the F-measures of all the algorithms on the Erkomaishvili dataset based on six window
sizes, from 10 to 250 ms. ...141

Table 6-2 The average of the F-measures of all the algorithms on the SVNote1 dataset based on six window sizes,
from 10 to 250 ms. ..141

Table 6-3 The average, standard deviation, minimum, and maximum typical duration of transitions in both the
datase ts and overall. ...142

Table 7-1 The percentages of the repetition of the notes in a piece of music out of total of 299117 notes......155

Table 7-2. p-values of the t-test applied to the difference between average frequency and nominal frequency.
 ..157

Table 7-3. p-values of t-test applied to the difference between AverageStd and nominal frequency.157

Table 7-4. p-values of t-test on the difference between median frequency and nominal frequency..................157

Table 7-5. The average and standard deviation of the difference between average frequency and nominal
frequency. ...157

Table 7-6. The average and standard deviation of the difference between AverageStd and nominal frequency.
 ..158

Table 7-7. The average and standard deviation of the difference between median frequency and nominal
frequency. ...158

Table 8-1. The slow and fast categories with their BPM and the number of notes sung in each speed162

Table 8-2. A statistical summary of the notes categorised by intervals, rest, duration, and MIDI code variables
 ..163

Table 8-3. The list of the singing techniques and count of all the notes sung in each technique163

Table 8-4. The average empirical prediction length (ePL) to calculate the ranges of deviations in F0 and the
duration of the notes sung by all the singers. ..168

xiii

Table 8-5. The mean and the 95% credible interval of the effect of the independent variables on deviation from
the ground truth MIDI pitch code. ...170

Table 8-6. The mean and the 95% credible interval of the effect of the singing techniques on deviation from the
ground truth MIDI pitch code ...170

Table 8-7. The mean and the 95% credible interval of the effect of the independent variables on deviation from
the ground truth duration. ..172

Table 8-8. The mean and the 95% credible interval of the effect of the singing techniques on deviation from the
theoretical duration. ...172

Table 8-9. The values of each of the variables for the notes in the score in the example provided in Figure 8-5.
 ..173

Table 8-10. The expected MIDI pitch code and duration of the notes and their anticipated ranges according to
Figure 8-5 and Table 8-9. The Straight Tone was considered the singing technique..................................174

xiv

Acknowledgements

First, I would like to express my profound gratitude to my parents, Khorshid Faghih and

Aniseh Attar, for their unwavering love, constant encouragement, and support throughout my

life.

Next, a special thanks to my beloved wife, Fatemeh Sadeghi, for her love and support

during this remarkable journey. Starting this PhD journey coincides with our marriage and

having our first child, Hannah, and my thesis was submitted when we had our second child,

Dara. She provided a supportive and peaceful situation that let me focus on my work and study

whilst we were busy with our two little loves, who have shown us the most beautiful side of

our life, and living apart from our families.

In addition, I would like to express my gratitude to Dr John Keating, Dr Ralf Bierig, and

Prof John McDonald for their support during my research by providing me with feedback on

my study plan and progress. Additionally, I appreciate Prof Adam Winstanley for his support

as the head of the Computer Science department during my first months of study.

Gratitude extends to my viva panel, comprising Prof Ronan Railly, Prof Gerard Lacey, and

Dr Andrew Hines, whose invaluable feedback and engaging discussions enriched my thesis.

Moreover, many thanks to Sutirtha Chakraborty, Azeema Yaseen, and Amin Shoari

Nejad, whom I had the pleasure of collaborating with as co-authors in a couple of publications

derived from my thesis.

Furthermore, thanks to Maynooth University and Higher Education Authority in the

Department of Further and Higher Education, Research, Innovation and Science in Ireland for

their financial support.

Last but not least, I am extremely grateful to Dr Joseph Timoney, my incredible

supervisor and head of the CS department. I could not have undertaken this journey without

his support. I have learnt not only a lot about music technology and signal processing from

him but also his personality and attitude inspired me that made me a different person from

when I started my study. I deeply appreciate his understanding and support during my study,

which made my research smooth, relaxed, and enjoyable.

xv

Abstract

Singing signals are one of the input data that computer systems need to analyse, and

singing is part of all the cultures in the world. However, although there have been several

studies on audio signal processing during the last three decades, it is still an active research

area because most of the available algorithms in the literature require improvement due to

the complexity of audio/music signals. More efforts are needed for analysing sounds/music in

a real-time environment since the algorithms should work only on the past data, while in an

offline system, all the required data are available. In addition, the complexity of the data will

be increased if the audio signals come from singing due to the unique features of singing

signals (such as vocal system, vibration, pitch drift, and tuning approach) that make the signals

different and more complicated than those from an instrument.

This thesis is mainly focused on analysing singing signals and better understanding how

trained- professional singers sing the pitch frequency and duration of the notes according to

their position in a piece of music and the singing technique applied. To do this, it is discovered

that by incorporating singing features, such as gender and BPM, a real-time pitch detection

algorithm can be found to estimate fundamental frequencies with fewer errors. In addition,

two novel algorithms were proposed, one for smoothing pitch contours and another for

estimating onset, offset, and the transition between notes. These two algorithms showed

better results as compared to several other state-of-the-art algorithms. Moreover, a new

vocal dataset that included several annotations for 2688 singing files was published. Finally,

this thesis presents two models for calculating pitches and the duration of notes according to

their positions in a piece of music. In conclusion, optimizing results for pitch-oriented Music

Information Retrieval (MIR) algorithms necessitates adapting/selecting them based on the

unique characteristics of the signals. Achieving a universal algorithm that performs

exceptionally well on all data types remains a formidable challenge given the current state of

technology.

Chapter 1
Introduction

This chapter provides the objectives of this PhD study, a brief literature

review, and the structure of the thesis. Some texts of this chapter come from one

of our publications listed in the following.

• Faghih, Behnam & Timoney, Joseph, “Considerations for the Next Generation
of Singing Tutor Systems”. AES 146th International Convention, Dublin,
Ireland.

2

1.1 Motivation

Since approximately 25 years ago, during my music classes where I learned to play the

Santour, an Iranian instrument, I became fascinated by the variations in musical

performances. Despite two musicians playing the same piece at the same tempo, their

interpretations differed significantly. Initially, I pondered the influence of note loudness on

these variations.

However, it became evident that loudness was not the sole factor modified by musicians

during their performances. I discovered that they also altered the duration of notes without

affecting the music's rhythm or meter. Additionally, I speculated that musicians, particularly

in singing and with instruments capable of altering pitch frequency, might also manipulate

notes’ pitches. Moreover, I believed these changes were influenced by the position of the

notes within a musical composition and the musicians' emotional state during the

performance. This curiosity consumed me for many years as I sought to understand how

trained professionals adjust pitch frequency, duration, and loudness in relation to note

position, music genre, technique, instruments, and emotion. Naturally, I recognized that one

study alone could not comprehensively answer this complex question.

To illustrate the problem, consider that a singer wants to sing the music score provided

in Figure 1-1.

Figure 1-1. Musical scores, as an example of notes, that should be sung by a singer

The MIDI pitch code representation of the notes in Figure 1-1 is provided in Table 1-1.

Table 1-1. The corresponding MIDI pitch code of the notes in Figure 1-1.

Note MIDI pitch code

C4 60

E4 64

G4 67

3

In addition, since the BPM of the music in Figure 1-1 is 60, the duration of the eighth and

quarter notes are 0.5 and 1 second, respectively. Thus, the black lines in Figure 1-2 depict a

visual representation of the notes.

Figure 1-2. A diagram of a representation of the notes in Figure 1-1. The black lines are the theoretical MIDI

pitch code and duration of the notes, while the red lines are a hypothetical performance of a singer.

As seen in Figure 1-2, the singer's performance, the red lines, may not fully align with

the corresponding ground truth values, the black lines. Thus, the question is which of the notes

sung by the singer in Figure 1-2 have a correct pitch and duration as compared to trained-

professional singers. In addition, C4, as an example, in Figure 1-1, is repeated three times: at

the beginning, middle, and end of the music. That brings another question: whether or not

the position of a note in a piece of music affects how trained-professional singers perform the

note’s pitch and duration.

Consequently, during my master's thesis at Shiraz University, I focused on identifying

the acceptable ranges of note durations as perceived by expert musicians. Building upon this

research, my doctoral thesis aimed to delve deeper into how musicians manipulate note pitch

and duration based on their position within a musical piece. This endeavour brought me closer

to unravelling the answer I had sought for so long.

To accomplish this, I chose to analyse singing signals, as singers can modify pitch

frequencies, note durations, and loudness, unlike certain instruments like the piano, where

4

the player lacks control over pitch frequency during a performance. In addition, singing is

universal, as every culture has activities associated with music and song.

1.2 An overview of the studies on music tools

This section aims to provide a comprehensive overview of the tools and studies related

to music technology, offering a broader perspective on this field of study.

Because of the widespread use of music in daily human life worldwide, researchers and

industries are working on developing different software/tools related to music. The purposes

of these tools are varied. The most common ones can be tools for listening to music, such as

Spotify 1, YouTube Music 2, Apple Music 3, SoundCloud 4, and Amazon Music 5. Some other ones

for writing music notations include Finale 6, Sibelius 7, MuseScore 8, and ABC notation tools9.

Regarding more advanced musical signal processing, the following list of applications, but not

limited to them, can be considered.

• Source separation (Défossez et al., 2019; Stöter et al., 2019; Hennequin et al.,

2020)

• Audio to music notation convertor (Krige and Niesler, 2006; Ryynänen, 2006,

2008; Molina et al., 2014; Dressler, 2016; McLeod et al., 2017; Pesek, Leonardis

and Marolt, 2017; Benetos et al., 2019; Liu and Benetos, 2021)

• Noise removal (Berger, Coifman and Goldberg, 1994; Shetty and R, 2014;

Abouzid et al., 2019)

• Beat tracking (Goto, 2001; McKinney et al., 2007; Al-Hussaini et al., 2018; Chuang

and Su, 2020)

• Music tempo estimation (Schreiber and Müller, 2018a, 2018b; Schreiber, Urbano

and Müller, 2020)

1 https://www.spotify.com/
2 https://music.youtube.com/
3 https://music.apple.com/
4 https://soundcloud.com/
5 https://music.amazon.com/
6 https://www.finalemusic.com/
7 https://www.avid.com/sibelius
8 https://musescore.org/
9 https://abcnotation.com/software

https://www.spotify.com/
https://music.youtube.com/
https://music.apple.com/
https://soundcloud.com/
https://music.amazon.com/
https://www.finalemusic.com/
https://www.avid.com/sibelius
https://musescore.org/
https://abcnotation.com/software

5

• Key detection (Weis, Schreiber and Muller, 2020)

• Query by humming like Shazam 1 and Shortcut for Google Sound Search 2

• Music genre classification (Karatana and Yildiz, 2017; Pelchat and Gelowitz, 2020;

Yu et al., 2020)

• Musical instrument classification (Bhalke, Rao and Bormane, 2016; Racharla et

al., 2020)

• Score following (Cont, 2010; Nakamura, Nakamura and Sagayama, 2013, 2016;

Dorfer, Arzt and Widmer, 2017)

• Optical Music Recognition (OMR) like SmartScore 3 and Scan-Score 4

• Music recommender systems (Schedl, 2017; Schedl, Knees and Gouyon, 2017;

Baracskay et al., 2022)

• Automatic music generators like SoundRaw 5 and AmperMusic 6

• Virtual Reality Instruments (Boem and Iwata, 2018; Zhang and Bryan-Kinns,

2022)

• Music education (Creech, 2020; Bharti, Singh and Malik, 2022)

Some of the studies are mainly on singing processing or analysis. The research and tools

on singing are in varied areas, as listed in the following, but not limited.

• Pitch correction tools like Auto-Tune Pro 7, Waves Tune Real-Time 8, Melodyne9,

and Logic Pro 10

• Separating vocal from a piece of music (Rafii and Pardo, 2012, 2013; Cano et al.,

2019)

• Singing education (Howard et al., 2004; Nakano, Goto and Hiraga, 2006, 2007;

Hoppe, Sadakata and Desain, 2006; Lal, 2006; Mayor, Bonada and Loscos, 2006;

Mayor, Oscar., Bonada, Jordi., Loscos, 2009; Cano, Dittmar and Grollmisch, 2011;

1 https://www.shazam.com/
2 https://play.google.com/store/apps/details?id=com.rocketsauce83.musicsearch&gl=IE
3 https://www.musitek.com/
4 https://scan-score.com/
5 https://soundraw.io/
6 https://www.ampermusic.com/
7 https://www.antarestech.com/product/auto-tune-pro/
8 https://www.waves.com/plugins/waves-tune-real-time#presenting-waves-tune-real-time
9 https://www.celemony.com/en/melodyne/what-is-melodyne
10 https://www.apple.com/uk/logic-pro/

https://www.shazam.com/
https://play.google.com/store/apps/details?id=com.rocketsauce83.musicsearch&gl=IE
https://www.musitek.com/
https://scan-score.com/
https://soundraw.io/
https://www.ampermusic.com/
https://www.antarestech.com/product/auto-tune-pro/
https://www.waves.com/plugins/waves-tune-real-time#presenting-waves-tune-real-time
https://www.celemony.com/en/melodyne/what-is-melodyne
https://www.apple.com/uk/logic-pro/

6

Molina, 2012; Abeßer et al., 2013; Molina et al., 2013; Lin et al., 2014; Schramm,

Nunes and Jung, 2015, 2016; Henry, 2015; Yu et al., 2016; Tardón et al., 2018;

Gupta, Li and Wang, 2018; Luo et al., 2018), Sing & See 1

• Singer recognition (Tong Zhang, 2003; Wei-Ho Tsai and Hsin-Min Wang, 2006; Li

and Li, 2018)

• Entertainment such as (Lal, 2006), Singstar 2, and Ultrastar 3

1.3 Key common steps in musical signal processing

There are some typical steps in most musical signal processing applications that this

study will follow the same approach, as depicted in Figure 1-3.

Figure 1-3. The fundamental steps of musical signal processing

1.3.1 Input signal

First, the input signals can directly come from a microphone (real-time) or a recorded

file (offline). The input signal is usually raw data that need to be processed, similar to Figure

1-4.

1 http://www.singandsee.com
2 https://www.singstar.com
3 http://ultrastardx.sourceforge.net/

http://www.singandsee.com/
https://www.singstar.com/
http://ultrastardx.sourceforge.net/

7

A
m

pl
itu

de
 (b

et
w

ee
n

-1
 a

nd
 1

)

Time

Figure 1-4 Raw audio input signals in time domain representation

1.3.2 Pre-processing

The input signals usually include some unnecessary data, such as noise or too high or

low amplitude, that need to be altered in the second step, denoted as pre-processing in Figure

1-3. This thesis mainly analyses singing signals; thus, the source of the signals that will be

processed in each step in Figure 1-3 will come from singing.

1.3.3 Spectrogram extraction

The sound spectrogram will be computed in the third step, usually by the Short-Time

Fourier Transform, as shown in Figure 1-5(a). According to the applications, some layer(s) of

the spectrogram will be used. One of the most crucial spectrogram layers of pitch frequencies

is the fundamental frequency (F0), which is usually considered the layer to refer to the pitch

frequency of the sound.

The F0 is the lowest frequency component of a periodic waveform. In music, the

fundamental frequency represents the perceived lowest pitch of a note, corresponding to the

lowest partial, as shown in Figure 1-5(b). The usage of the words “pitch” and “F0” is needed

to be clarified. The word “pitch” usually refers to how the human brain perceives sounds,

while the F0 refers to the lowest layer, the primary layer, of a sound that is directly related to

human pitch perception. Thus, although F0 and pitch are not exactly the same, in this thesis,

the difference between them was not counted, and these two words are considered

8

equivalent. The function of a pitch detection algorithm is to identify the frequency of F0 when

it exists in the signal and otherwise flag that it is not present.

(a)

Pi
tc

h
fre

qu
en

cy
 (H

er
tz

)

(b)

Pi
tc

h
fre

qu
en

cy
 (H

er
tz

)

 Time

Figure 1-5 Different harmonies of the input signal, from Figure 1-4, represented in a pitch-frequency domain
(spectrogram). (a) includes all harmonies in the input signal, (b) is the lowest harmony called fundamental

frequency (F0).

1.3.4 Post-processing

There can be some errors in the estimated F0s because there are many harmonics

besides the fundamental frequency in musical sounds like the human voice, as shown in Figure

1-5(a), whose energies may be greater than the fundamental frequency. In these cases, pitch

detection algorithms are known to have difficulties and instead return an incorrect frequency

value as F0. This problem is more common in real-time algorithms that detect a pitch contour.

Therefore, the extracted layers usually need some post-processing, as shown in Figure

1-6(a), such as pitch contour smoothing, as shown in Figure 1-6(b).

9

(a)

Pi
tc

h
fre

qu
en

cy
 (H

er
tz

)

(b)

Pi
tc

h
fre

qu
en

cy
 (H

er
tz

)

 Time

Figure 1-6 An example of post-processing in estimated F0s.(a) shows the output of a pitch estimator algorithm
that included several errors. (b) shows the result of a pitch contour smoother on altering the errors in (a)

1.3.5 Features Extraction

The fifth step is extracting the required features, such as musical notes, as shown in

Figure 1-7.

Pi
tc

h
fre

qu
en

cy
 (H

er
tz

)

 Time

Figure 1-7 Extracted notes from a pitch contour. The vertical lines show onsets, offsets, and transitions between
notes.

10

1.3.6 Processing extracted features

The last step is processing/analysing the extracted musical features from the previous

step. The analysis that this thesis will do is with respect to the behaviour of trained-

professional singers in changing notes’ pitches and frequencies according to their positions in

a piece of music. For example, if the music score is similar to Figure 1-8, then the pitch

frequencies and duration of the notes, in theory, are shown in Table 1-2. Nevertheless,

humans cannot play the notes exactly in these pitch frequencies and duration but in ranges of

pitch frequencies and durations. But the question is what are the ranges within which the

trained-professional singers would sing the notes? Another question is whether trained-

professional singers have different behaviours in singing the same note when its position in a

piece of music changes. For example, the note C4 in Figure 1-8 appears several times; thus,

will a trained-professional singer change the pitch and duration of C4 according to its position

in the music; if so, how? This thesis tries to answer these questions.

Figure 1-8 An example of a music score

Table 1-2 The theoretically pitch frequency and duration of each note in the example in Figure 1-8

Note Pitch frequency (in
Hertz) Duration (in second)

C4 261.63 0.5

E4 329.63 0.5

C4 261.63 0.5

E4 329.63 0.5

G4 392.00 0.5

G4 392.00 1

C4 261.63 0.5

Therefore, for analysing the singing signals to answer my question regarding how singers

would alter the pitch frequencies and duration of notes according to their positions in a piece

of music, I needed to do all these steps to extract the notes’ information to analyse them. At

the beginning of my study, I found several algorithms for each step; thus, I had a plan to spend

11

most of my study analysing singers’ behaviours in changing pitches, frequencies, and loudness.

However, after implementing some of the available algorithms, I realized that they were not

error-free, and I could not trust their results. Thus, I tried to design my own algorithms to

improve the results.

1.4 Thesis objectives

This dissertation includes five principal objectives listed in the following.

1.4.1 Investigating real-time singing pitch detector algorithms

A principal operation for analysing musical sounds is usually detecting the pitches in the

audio waveform because most subsequent analyses are based on identifying the correct notes

and their pitches. Therefore, the purpose of this objective is to evaluate several real-time pitch

detector algorithms to find the best ones according to the features of the singing signals, such

as the singer’s gender and the speed of the performance. Chapter 3 concludes with two

reliable offline pitch detector algorithms to be used in other chapters. Then, Chapter 4

compares the accuracy of several real-time pitch detector algorithms to achieve this objective.

1.4.2 Real-time smoothing pitch contours generated from singing signals

I realized that the pitch detector algorithms produce some errors when estimating the

F0 of singing signals, especially in real-time environments. Thus, these errors needed to be

altered. In addition, I realized that the currently available contour smoothing algorithms have

some difficulties in smoothing all the errors. Therefore, this objective aims to introduce a

novel real-time algorithm to smooth pitch contours generated by pitch detection algorithms

from singing signals. This objective will be achieved in Chapter 5.

1.4.3 Real-time onset, offset, and transition extraction from singing signals

Similarly, because of the limitations in the state-of-the-art algorithms in onset detection

in real-time singing, this goal is to design a new real-time algorithm for extracting notes from

a pitch contour. Chapter 6 discusses this objective in detail.

12

1.4.4 Generating an annotated singing dataset to analyse professional singers’

performances

A fully annotated dataset including several singers and a variety of songs was needed to

analyse singers' behaviours in changing pitch frequencies and duration. Thus, this objective

aims to create a more precise dataset that is fully annotated to facilitate analysis of the singing

notes. The considered annotations are pitch contour, onset, offset, the transition between

notes, notes’ fundamental frequencies and duration, pitch interval to the previous and

following notes, ground truth note name and duration, etc.

1.4.5 Calculating notes’ pitch frequencies and duration according to singing

technique and their positions in a piece of music

Finally, after preparing all the required information from the previous objectives, this

objective examines how trained-professional singers change notes’ pitch frequencies and

duration according to the position of the note in a piece of music. That is, performing musical

notes correctly does not mean that all the performers play the notes at the exact same pitch

and duration, but they normally perform the notes within acceptable psychoacoustic ranges,

which may vary according to the position of the note in a piece of music. Nevertheless, these

ranges are not determined yet, and this objective investigates creating some models to

calculate these ranges. This objective will be discussed in Chapter 8.

1.5 Chapters summary

This thesis includes nine chapters. The first chapter, this chapter, provides an

introduction to the aims of this study. Chapter 2 reviews related work and discusses several

potential applications of the thesis objectives. Next, Chapter 3 compares four offline and real-

time pitch detection algorithms and finds two reliable offline ones. Then, Chapter 4

investigates several real-time F0 detector algorithms to find the most accurate ones according

to the features of the signing signals. Although the assessment from Chapter 4 results in a list

of the best real-time F0 estimator algorithms, the estimated F0 contours still include

significant errors. Thus, Chapter 5 proposes a new method for smoothing pitch contours

generated from singing signals in real-time and offline environments to reduce errors.

13

Chapters 4 and 5 are related to each other in the way that Chapter 4 evaluates the

performance of the smoother algorithm presented in Chapter 5 to show how it can improve

the accuracy of the real-time pitch detection algorithms under different conditions, and

Chapter 5 assesses the smoother algorithm according to the pitch detector algorithms

presented in Chapter 4 but with a different approach. After correcting the F0 contours,

Chapter 6 introduces a new algorithm to estimate the onset, offset, and transition points from

the altered pitch contour to identify and extract the notes played by the singer in a real-time

environment. After extracting the notes, Chapter 7 introduces a new annotated dataset called

the Annotated-VocalSet. Subsequently, Chapter 8 analyses this new Annotated-VocalSet to

determine the effect that a note’s position in a piece of music has on its pitch frequency and

duration. Finally, the thesis will be closed with a conclusion and a number of

recommendations for future work in Chapter 9.

Chapter 2
Background and Applications

This chapter aims to review the literature and provide a list of applications of

the objectives of this thesis. Some texts of this chapter come from two of our

international conference publications listed in the following.

• Faghih, Behnam & Timoney, Joseph, “Considerations for the Next Generation of
Singing Tutor Systems”. AES 146th International Convention, Dublin, Ireland

• Timoney, Joseph & Faghih, Behnam & Gibney, Anthony & Korady, Benjamin
& Young, Gareth, “Singing Blocks: Considerations for a Virtual Reality Game to
create chords and Progressions”. International Conferences on Computer
Simulation of Musical Creativity (CSMC2018), Dublin, Ireland.

15

This chapter provides an overview of the related works to each of the objectives of this

thesis. In addition, several applications of the objectives will be reviewed in this chapter.

Before looking at the literature, some features of the singing signals that make them different

from signals produced by musical instruments are discussed to emphasize separate studies on

singing signals.

2.1 Features affecting the singing waveform

Although the results of the studies on musical instruments can be helpful in

processing/analysing singing signals, separate studies are needed on singing by considering

the ramifications of the particular singing features. Thus, this section discusses features of

singing that can affect the analysis of the user’s performance. These features are tunning

pitch, vibrato, pitch drift, transitions between notes, and the vocal system. These features are

strongly associated with singing and are not phenomena that occur in the playing of many

musical instruments. Therefore, it shows why the signal processing algorithms that work well

on instruments may not have the same accuracy and efficiency with singing signals. The

features are discussed in the following.

2.1.1 Musical instruments are usually tuned

Most of the instruments can be tuned before playing. For example, a piano will be tuned

before a performance, and if the instrument does not have bad quality, the instrument will

remain in tune during the performance. In addition, a tuner, a tool for tuning musical

instruments, can be used to tune the strings of a stringed instrument to exact frequencies.

On the other hand, we cannot tune a human voice before singing. Therefore, it cannot be

guaranteed that a person sings in tune or with exact pitch frequencies.

2.1.2 Vibration

“Vibrato corresponds to an almost sinusoidal undulation of F0 and thus can be called

frequency vibrato. It can be described in terms of two parameters: (1) the rate, that is, the

number of undulations occurring per second, and (2) the extent, that is, the depth of the

modulation expressed in cents (one cent is a hundredth of a semitone)” (Sundberg, 2013).

16

Although it is possible to have a vibration in some instruments like the violin family,

humans naturally use vibration when singing a song. Vibration makes the spectrogram

appear more complicated.

Based on Prame’s research (Prame, 1997), the vibrato rate lies typically between 5.5 and

6.5 Hz but tends to speed up somewhat toward the end of a long sustained tone. The extent

of vibrato depends strongly on the singer and the repertoire but typically lies in the range of

±30 cents and ±120 cents, the mean across tones and singers being about ±70 cents. In the

Sundberg study (Sundberg, 2013), the vibrato rate was 6.5 undulations per second, and the

extent was ±30 cents.

Besouw et al. (Besouw, Brereton and Howard, 2008) presented three-tone ascending

and descending arpeggios to musicians. The tuning of the middle tone, which either had or

lacked vibrato, was varied, and the listeners were asked to decide which notes were in tune

or untune. The results showed that the range of acceptable intonation of the middle tone was,

on average, about 10 cents wider when it had vibrato than when it lacked vibrato. In addition,

they found that if two voices sing perfectly “straight” (i.e., without vibrato), the demands on

accuracy concerning the F0 are higher than if they sing with vibrato (Sundberg, 2013).

Another study conducted by D’Alessandro and Castellengo (D’Alessandro and

Castellengo, 1991) measured the perceived pitch when tones are shorter than the duration of

a vibrato cycle. They found that when presented alone, the rising half of a vibrato cycle was

perceived as being 15 cents higher than the mean F0, while the falling half was perceived as

11 cents below the mean. They concluded that the ending of such short pitch glides is more

significant to pitch perception than the beginning.

Therefore, vibrations significantly affect the perceptual pitch frequencies of the notes,

and their effect depends on the note’s properties, such as duration.

2.1.3 Pitch drift

Pitch drift or intonation drift means changes in tuning throughout a timescale of seconds

or more while playing a piece of music (Seaton, Pim and Sharp, 2013). According to some

studies (Alldahl, 2006; Ryynänen and Klapuri, 2006), pitch drift mainly occurs in the downward

direction, i.e., downward intonation drift. In another study done by Müller et al. (Müller,

17

Grosche and Wiering, 2010), it is observed that pitch drift is common in unaccompanied solo

folk singing. Similarly, Mauch et al. (Mauch, Frieler and Dixon, 2014) also found evidence of

pitch drift in solo singing. They (Mauch, Frieler and Dixon, 2014) also realized that the pitch

drift extent is often tiny (<0.2 semitones over 50 notes) and not correlated to pitch accuracy,

interval accuracy, or musical background. Unlike the other studies, Mauch et al. (Mauch,

Frieler and Dixon, 2014) observed that the most significant drifts are upward.

Therefore, singers shift their voice pitch while singing a piece of music, but it rarely

happens when playing an instrument.

2.1.4 Transition between notes

In singing, when there is no rest between two consecutive notes, there is a smooth

movement from the first note to the second note (Mayor, Bonada and Loscos, 2006). In other

words, in some cases, the singer produces a series of frequencies between two consecutive

notes to move smoothly from the first to the second, which is defined as the Portamento

technique in music. On the other hand, playing the Portamento technique to ones’ playing is

impossible with some instruments, like the Piano, and they jump, in terms of frequency, from

one note to the next.

Estimating the start and end of a note with a soft onset is more complicated than for

one with a hard or sharp onset. A soft onset has a long attack duration or vague envelope

shape that becomes a challenge to any peak-picking procedure. Figure 2-1 shows how a soft

onset has a long and smooth movement between two consecutive notes, while the movement

in a sharp onset is much quicker and is thus more easily distinguishable. The underlying reason

for these issues is that the singing voice is classified as a pitched non-percussive (PNP)

instrument, and PNP instruments still present a challenge for onset detection (Collins, 2005a).

18

Figure 2-1 illustrations of soft onset as compared to a sharp onset

2.1.5 Vocal system

A singer must breathe in order to sing. Therefore, there is a natural constraint to the

duration of notes in legato singing. In addition, there are some limitations to the pitch range

and the length of the interval between notes. For example, it is easy for a beginner on the

Piano to play A2 and then play A7 immediately afterwards, but this is impossible for a singer.

According to the above observations, there are some unique characteristics to singing

signals as compared to signals from musical instruments, and thus, this demands separate

studies for singing signals.

2.2 Literature review

This section provides a review of related works. Since this thesis includes several

objectives, a review of the relevant work for each objective is separately discussed in the

following.

19

2.2.1 Investigating real-time singing pitch detector algorithms objective

The estimation of the fundamental frequency (F0) of a waveform is known in the

literature as the problem of pitch detection. This has been a long-standing task in signal

processing, and many different algorithms have been proposed over the years. Up until about

20 years ago, the problem of monophonic pitch detection only was considered, but since then,

the much more difficult task of polyphonic pitch detection has been tackled. Although some

sample-by-sample detection methods have been proposed, most algorithms first separate the

audio signal in short frames, generally of the order of 15-35 ms in length, within which it is

assumed that the frequency information is stationary. The pitch is then computed for each

frame. The analysis is done either in the time domain, using an algorithm that relies on

computing the autocorrelation function or a variant, or in the frequency domain, using an

algorithm that applies a type of Fourier transform. The initial algorithm outputs are assumed

to be raw estimates that require post-processing. It is this later stage that can really

differentiate the effectiveness of an approach.

The idea behind using the autocorrelation function for a time-domain algorithm is that

when applying this function to a waveform, it should produce a representation that shows

significant peaks at positions related to the period of the waveform, with the largest peak

occurring first. A well-known variant is the Average Magnitude Different function, which was

introduced as a computationally efficient alternative to the autocorrelation function. In more

recent times, the Yin algorithm (de Cheveigné and Kawahara, 2002) has become very popular

and uses a related cumulative mean normalized difference function. To enhance the accuracy

of the estimate around the detected peak in the computed time-domain function, some form

of interpolation is required, for example, parabolic interpolation.

For frequency-based methods, the frame is transformed into the frequency domain,

often using the Fourier transform. An early algorithm implemented a further transformation

of the Fourier spectrum into what was termed the ‘Cepstrum’1 (Noll, 1967), essentially

dividing the spectrum into a fast-varying (because of pitch harmonics) and slowly-varying

1 The cepstrum, in Fourier analysis, is obtained by performing the inverse Fourier transform (IFT) on the logarithm of

the estimated signal spectrum. This method serves as a valuable tool for examining periodic structures within frequency spectra.
Specifically, the power cepstrum finds applications in the analysis of human speech. The name "cepstrum" originates from
reversing the first four letters of ‘spectrum’.

20

components (because of the spectral envelope). Isolating the fast-varying component

facilitated a pitch estimate. Another technique was the Harmonic Product Spectrum

(Schroeder, 1968). This attempts to emphasize the harmonic peak of the fundamental

component in the spectrum by a succession of decimations of the original spectral

representation and then adding them together. More recent algorithms use a template

approach where the spectral representation is compared with a template of the known

fundamental frequency. The one with the best match signifies the pitch.

Both these techniques benefit from a tracking stage that follows. All algorithms can

produce incorrect pitch estimates, particularly if the second harmonic or a subharmonic is too

strong, leading to the problem of octave-doubling or octave-halving, or if the harmonicity of

the signal is weak, leading to erroneous values. Thus, the pitch estimates need to be tracked

and refined to remove any unexpected jumps from a ‘smooth’ contour. Tracking can be done

in a forward manner, that is, as the estimates are produced and then it is determined how

well they fit with previous values. It can also be done in a backward manner, using an

algorithm such as dynamic programming, where estimates are obtained from the start to the

end of the signal, and then the best possible contour is traced out from the end to the

beginning. A good example of this is the pitch detector in the Pratt software package (Boersma

and van Heuven, 2001). Another recent approach is PYIN (Mauch and Dixon, 2014), which has

included a Hidden Markov Model (HMM) with the Yin algorithm (de Cheveigné and Kawahara,

2002). The HMM uses the Viterbi algorithm, which is a dynamic programming technique.

As an recent study on offline pitch detection is undertaken by de Obaldía and Zölzer (de

Obaldía and Zölzer, 2019). They proposed an algorithm for improving the determination of

correct pitch candidates by applying the autocorrelation function and simple heuristics. They

evaluated their algorithm with a dataset of musical instruments files and a dataset of vocals.

They found that the performance of their proposed algorithm was better than that of Yin (de

Cheveigné and Kawahara, 2002), RAPT (Talkin, 1995) and PEFAC (Gonzalez and Brookes, 2014)

algorithms. However, their proposed algorithm could not correctly estimate F0 in all cases.

For example, errors occurred both in detecting the moments where transitions happened and

for accurate voiced segment determination. In total, they obtained a correct pitch estimation

around 90% of the time for the vocal sounds in the dataset they used.

21

Moreover, there are several studies, such as Drugman et al. (Drugman et al., 2018) and

Khadem-hosseini et al. (Khadem-hosseini et al., 2020), on offline pitch detection by machine

learning algorithms, which in essence apply forms of statistical methods to all the spectrogram

channels of detected frequencies and are enhanced with training sets to estimate F0.

As expected, offline detection techniques are superior in accuracy as it is possible to

detect the whole contour and then iteratively refine the result until it matches some criterion

of optimality. On the other hand, real-time detection is more difficult as only previous pitch

values are available for verifying the current value.

Recently, some sample-by-sample methods for pitch detection have appeared. This

obviates the need for explicit tracking following the estimation as it is built into the algorithm.

These use techniques from other areas of signal processing, that are the Phase-locked loop

(PLL) (Zolzer, Sankarababu and Moller, 2012), a communications tool, and the Extended

Kalman filter (Das, Smith and Chafe, 2017), which are more familiar in statistical signal

detection. These take as input the audio signal and provide a value for the pitch at every

sample. The initial PLL method was augmented to have a set of PLLs to track the pitch and

select the most likely pitch value (Zolzer, Sankarababu and Moller, 2012). The Extended

Kalman Filter can produce good results, according to (Das, Smith and Chafe, 2017), but care is

required when setting the parameters of the signal model. Another recent work is the

Harmonic locking Loop (Bittner, Wang and Bello, 2017), which extends the tracking idea to all

harmonics to produce an improved estimate. The difficulty again is that parameter values

need to be set. It is noteworthy that PLL and Kalman Filter have been evaluated mainly with

instruments, that is, PLL with the cello (Zolzer, Sankarababu and Moller, 2012) and the Guitar

(Böhler and Zölzer, 2016), and Kalman Filter with the Guitar (Das, Smith and Chafe, 2017).

One of the recent studies on pitch detection of the human voice in real-time is by Makov

et al. (Makov et al., 2019), and was based on the spectral approach. They compared their

proposed algorithm with a ground truth assessed offline using the algorithm built into the

Praat software (Boersma and van Heuven, 2001) and determined that their algorithm

estimated F0 correctly, with less than a 1% difference on average with Praat. However, since

the details of their evaluation, such as their dataset, are not provided, it is impossible to figure

out precisely under which conditions their algorithm will work as claimed.

22

Once the pitch contour is found, the next stage is to convert this into a melodic

representation. In the case of singing, it has to be recognized that singers use many

techniques, such as portamento and vibrato, in their style, so a true description needs to

retain these qualities (Besouw, Brereton and Howard, 2008; Anand et al., 2012; Sundberg,

2013).

To sum up, as was mentioned, several offline pitch detector algorithms work well on

both singing and instrumental signals, such as PYIN (Mauch and Dixon, 2014) and the Boersma

algorithm (Boersma, 1993) implemented in the Praat tool (Boersma and van Heuven, 2001).

However, a reliable real-time pitch detection algorithm for singing that works accurately in

different circumstances has not been found. Most algorithms show reasonable results with

speech, such as (Makov et al., 2019) and a comparison between them is provided by Jouvet

and Laprie (Jouvet and Laprie, 2017). In addition, several studies worked on offline pitch

detection algorithms for singing signals, and a comparison across a selection of these

algorithms was discussed in Gawlik and Wszołek’s study (Gawlik and Wszołek, 2018).

However, the real-time experiences in detecting F0 from singing signals have some limitations.

That is, their accuracy is not high enough, as described in studies such as Das et al. (Das, Smith

and Chafe, 2017, 2020) and reported by (Faghih and Timoney, 2019a).

Therefore, it is necessary to introduce a new algorithm or evaluate the current

algorithms to find the best one for singing signals with respect to their different features, such

as note duration, range of pitch frequencies, and the interval between notes. Thus, Chapter 3

compares some offline and real-time pitch detection algorithms on singing signals and

identifies a trustworthy offline algorithm to be used for generating ground truth data that will

be helpful for later assessments. Subsequently, Chapter 4 evaluates several real-time pitch

detection algorithms based on the different singing features to determine the best real-time

F0 detection algorithms for singing signals.

2.2.2 Real-time smoothing pitch contours generated from singing signals objective

It has been observed that none of the investigated real-time pitch detector algorithms

could work perfectly on singing signals, and all of them return some errors in their output.

Thus, the estimated pitch contours must be smoothed to minimise the errors/outliers.

23

These errors are often due to doubling or halving estimates of the true pitch value, and

are therefore impulsive in appearance rather than random (Zhao, O’Shaughnessy and Nguyen,

2007; So, Jia and Cai, 2012; Faghih and Timoney, 2019a, 2022a; Ferro and Tamburini, 2019).

Furthermore, incorrect pitch estimation often happens in real-time pitch detection, especially

when the sound source is a human voice (Faghih and Timoney, 2022a). Therefore, a contour-

smoother algorithm is necessary to filter the incorrectly estimated F0 before further analysis.

Generally, contour smoothers can be divided into two categories: 1—contour

smoothing to show the data trend; and 2—contour smoothing to remove errors, noise, and

outlier points.

There are several algorithms for showing a contour trend, such as polynomial (Luers and

Wenning, 1971), spline (Craven and Wahba, 1978; Hutchinson and de Hoog, 1985), Gaussian

(Deng and Cahill, 1994), Locally Weighted Scatterplot Smoothing (LOWESS) (Cleveland, 1979,

1981), and seasonal decomposition (Wen et al., 2020). One of the applications of trend

detection using pitch contours is to find out how two melodies are similar to each other (Lin,

Wu and Kao, 2008; Wu, 2013; Chatterjee et al., 2018; Sampaio, 2018). Other contour

smoothers, such as moving average (Smith, 1999) and Median filter, function by attenuating

or removing outliers in the contour (Faghih and Timoney, 2022a). None of these contour-

smoother algorithms was explicitly designed for smoothing pitch contours; they can be used

for any contour from any data series. They have been applied to smoothing pitch contours,

such as in the study by Kasi and Zahorian (Kasi and Zahorian, 2002) that used the Median filter.

However, there are certain adjusted versions of these algorithms for smoothing estimated

pitches; for example, Okada et al. (Okada, Ishikawa and Ikegaya, 2016) and Jlassi et al. (Jlassi,

Bouzid and Ellouze, 2016) introduced pitch contour algorithms based on the Median filter. In

the following, some of these adjusted algorithms are discussed.

Zhao et al. (Zhao, O’Shaughnessy and Nguyen, 2007) introduced a pitch smoothing

method for the Mandarin language based on autocorrelation and cepstral F0 detection

approaches. They first used two pitch estimation techniques to determine two separate pitch

contours, and then both were smoothed. Finally, combining the two smoothed pitch contours

created a final smoothed contour. Generally, their approach was very similar to the idea of

this study, moving through a pitch contour to identify noisy estimates by comparing each point

24

to its previous and succeeding points, and finally editing out the noise. However, their

approach involved altering some correct parts of the data, which impacted peaks that were

not incorrect. Moreover, in their evaluation, they only checked the error reduction capability of

their algorithm for removing octave-doubling and sharp rises in estimated F0s. It would have

been preferable to compare their smoothed contours with a ground truth to realize how well

their algorithm could adjust the estimated contour to make it similar to that of the ground truth.

Liu et al. (Liu et al., 2013) introduced a pitch-contour-smoother algorithm for Mandarin

tone recognition. They used several thresholds for finding half, double, and triple errors by

comparing each point with its previous point. Then, an incorrect frequency was doubled,

halved, or divided by three, according to the type of error detected. They indicated that

experiments should be carried out to determine the threshold values, but did not provide any

guidelines for selecting or adjusting these. In addition, the threshold values they used were

not revealed. Therefore, how one could change the thresholds to optimize the result is

unclear. In addition, they tested their algorithm only on isolated Mandarin syllables, although

realistically, they should also have tried their approach on continuously spoken language.

Moreover, they did not compare the accuracy of their algorithm with other contour-smoother

algorithms to show how well their method performed in relation to others.

The smoothing approach presented by Jlassi et al. (Jlassi, Bouzid and Ellouze, 2016) was

designed for spoken English. Their smoothing system was based on the moving average filter.

However, they only calculated the average of the two immediately previous F0 points for

those points that showed more than a 30 Hz difference from their previous and following

points. They compared their algorithm with the Median filter and Exponentially Weighted

Moving Average (EWMA), and found improved accuracy using their approach. However, the

dataset (Plante, Meyer and Ainsworth, 1995) used in their study was small, i.e., 15 people

reading a short phonetically balanced text; that is, “The North Wind Story”. Thus, their dataset

included only 15 short files. Their results would have been much more convincing if they had

evaluated their algorithm with a more extensive dataset generated by various pitch-detector

algorithms. Moreover, several metrics could have been employed to measure how well they

smoothed the errors. Furthermore, their algorithm considered a difference of more than 30 Hz

from both the immediately previous and following points as an error; therefore, it was unable

25

to identify and smooth any errors existing over more than one point on the contour. Therefore,

a dataset including pitch contours generated by different pitch detection algorithms to produce

a variety of errors in a good balanced of human singing pitch frequencies range is needed to

evaluate the smoother algorithms.

Ferro and Tamburini (Ferro and Tamburini, 2019) introduced another pitch-smoother

technique for spoken English, based on Deep Neural Networks (DNN) and implemented

explicitly as a Recurrent Neural Network (RNN). However, they did not compare the

improvement offered by their approach and that of any other method. In addition, a

comparison of their datasets and the mixture of datasets suggests that their DNN architecture

may not work well with a new dataset.

As exemplified above, many pitch detection algorithms have been designed for and

tested on speech. However, although both speech and singing are produced with the same

human vocal system, because of the differences between speaking and singing, separate

studies are required for the pitch analysis of singing (Gawlik and Wszołek, 2018). In addition,

in real-time environments, the smoother algorithm should alter the contour within a

reasonable delay, mainly based on previous data, because there is no future data. The

reasonable delay can be varied according to the application of the pitch contour being used.

For example, a shorter delay is needed in real-time to reproduce what the user is singing

compared to a learning system that wants to show the user errors after singing each note.

The smoother algorithm should be based on the features and applications of the

contour, similar to the approach taken by Ferro and Tamburini (Ferro and Tamburini, 2019)

and the studies by So et al. (So, Jia and Cai, 2012) on smoothing contours generated from

speech. In other words, expected error types in the pitch contours for the specific data type

should be identified. Then, an investigation for a targeted contour-smoother algorithm to

solve these errors should be made. In addition, the applications of the smoothed contour

should also be considered. For example, when a highly accurate estimate of the F0 value at

each point is required, the smoother algorithm should not change any data except those

points identified as having been incorrectly estimated. Moreover, the smoother algorithm

should not have a significant delay in real-time environments. Therefore, several

26

considerations have been ascertained that a real-time smoother algorithm should consider

for singing signals as follows.

2.2.2.1 Considerations for smoothing pitch contour of singing signals

This section lists the considerations that need to be adhered to when designing a real-

time smoother algorithm for signing signals.

1) Only the incorrectly estimated pitches need to be changed. Therefore, it is

necessary to decide which jumps in a contour are incorrect.

2) Some of the estimated pitches around the incorrectly detected F0 should be

selected to alter their values. This represents the window length for the

calculation. Therefore, the decision on the number of estimated pitches before

and/or after the erroneously estimated pitches requires to define a window

length. Thus, a buffer delay is required in real-time scenarios to ensure that

sufficient successive pitch frequencies are available when correcting the current

pitch frequency.

3) There is a minimum duration for which a human can sing.

4) There is a minimum duration for which a human can rest between singing two

notes.

5) There is a maximum frequency that a human can sing.

6) There is a maximum interval during which humans can move from one note to

another when singing.

7) To sing a large pitch interval in a very short time is impossible.

Table 2-1 shows a list of the contour smoother algorithms demonstrating which of the

considerations mentioned above they cover. As the table shows, none of the algorithms have

addressed all the considerations.

27

Table 2-1. A list of the contour smoother algorithms with indicating the code(s) of their considerations
according to the list in section 2.2.2.1

Algorithm The Considerations

Gaussian (sigma = 1) 2

Savitzky–Golay filter 2

Exponential 2

 Window-based (window_type = ‘rectangular) 2

Window-based (window_type = ‘hanning’) 2

Window-based (window_type = ‘hamming’) 2

Window-based (window_type = ‘bartlett’) 2

Window-based (window_type = ‘blackman’) 2

Direct Spectral 2

Polynomial 2

Spline (type = ‘linear_spline’) 2

Spline (type = ‘cubic_spline’) 2

Spline (type = ‘natural_cubic_spline’) 2

Gaussian (sigma = 0.2, n_knots = 10) 2

Binner 2

LOWESS 2

Decompose (type = ‘Window-based’, method = ‘additive’) 2

Decompose (type = ‘lowess’, method = ‘additive’) 2

Decompose (type = ‘natural_cubic_spline’, method = ‘additive’) 2

Decompose (type = ‘natural_cubic_spline’, method = ‘multiplicative’) 2

Decompose (type = ‘lowess’, method = ‘multiplicative’) 2

Decompose (type = ‘natural_cubic_spline’, method = ‘multiplicative’) 2

Kalman (component = ‘level’) 2

Kalman (component = ‘level_trend’) 2

Kalman (component = ‘level_season’) 2

Kalman (component = ‘level_trend_season’) 2

Kalman (component = ‘level_longseason’) 2

Kalman (component = ‘level_trend_longseason’) 2

Kalman (component = ‘level_season_longseason’) 2

Kalman (component = ‘level_trend_season_longseason’) 2

Moving Average (simple = True) 2

Moving Average (simple = False) 2

Median Filter 2

Okada Filter 1, 2

Jlassi Filter 1, 2, 7

28

In summary, most of the contour smoother algorithms available in the literature were

not explicitly designed for musical signals, but they have been used in a number of studies for

smoothing pitch contours, such as the study by Kasi and Zahorian (Kasi and Zahorian, 2002)

that uses the Median filter. Furthermore, some of them have only been tested on smoothing

the pitch contour for speech signals, such as the Jlassi et al. (Jlassi, Bouzid and Ellouze, 2016)

study designed for smoothing pitch contour for spoken English. However, employing them to

smooth the F0 contours derived from singing signals may not be appropriate due to the

different features associated with singing, as discussed in section 2.1. Therefore, it is necessary

to design a novel algorithm for smoothing the F0 contours from singing signals in real-time

and offline environments, as done in Chapter 5.

2.2.3 Real-time onset, offset, and transition extraction from singing signals

objective

One of the fundamental processes of analysing audio signals is finding the start and

endpoint of the notes, which are called the onset and the offset, respectively. Onset and offset

are not exact points/times universally agreed as the starting and ending of a note but exist

within an acceptable range (Hoon Heo, Dooyong Sung and Kyogu Lee, 2013; Choi et al., 2020;

Rosenzweig, Scherbaum, et al., 2020; Bittner et al., 2021).

Several applications need the results of onset/offset detection, such as tempo and pitch

estimation, beat tracking, score following, automatic music transcription, and analysis of

recorded music. Real-time music applications demand almost instantaneous results, i.e., real-

time onset detection for systems such as the interactive music systems explained in Müller-

Rakow (Müller-Rakow and Flechtner, 2017) and Malloch (Malloch et al., 2019), or for music

transcriptions as discussed by Kroher and Díaz-Báñez (Kroher and Díaz-Báñez, 2019).

Therefore, minimising the time delay between the onset or offset and their detection in real-

time environments is vital.

Over the years, many research contributions have been made for onset detection, but

most work offline. If the onset detection function has been appropriately created, then onset

events will give rise to well-localized recognizable features, e.g., a peak, in the detection

function (Bello et al., 2005). Several common approaches for detecting onsets, such as spectral

difference, phase deviation, wavelet regularity modulus, negative log-likelihood, and high-

29

frequency content, are well explained in the Bello et al. (Bello et al., 2005) study and then

compared by Collins (Collins, 2005b). Moreover, Dixon (Dixon, 2006) has proposed multiple

future enhancements for some of these methods.

In addition, Lacoste and Eck (Lacoste and Eck, 2006) propose an offline music onset

detection algorithm using single and combined versions of Artificial Neural Networks (ANN)

trained with different hyperparameters, and Eyben et al. (Eyben et al., 2010) employ a

Recurrent Neural Network (RNN) based on Mel spectrograms. Furthermore, after pre-

processing with a time-variant filter, a method using Hidden Markov Models (HMMs) was

proposed by Degara et al. (Degara et al., 2011) for offline onset detection. Schlüter and Böck

(Schluter and Bock, 2014) refined the model proposed by Eyben et al. (Eyben et al., 2010) and

trained Convolutional Neural Networks (CNNs) with mini-batch gradient descent (this splits

the training dataset into small batches) to reduce model error, and the input to their model

was two log Mel-spectrograms. Their approach outperformed other traditional methods and

required less additional processing. However, the peak-picking approaches used for CNN and

RNN-based methods rely on future information (not probabilistic) to detect an event; thus,

they cannot work for real-time music onset detection.

Some of the studies are focused on detecting onsets from singing signals. For instance,

the singing onset detection method of Toh et al. (Toh, Zhang and Wang, 2008) is based on

audio features such as Mel Frequency Cepstral Coefficients, Linear Predictive Cepstrum

Coefficients, pitch stability zero-crossing rate, and signal periodicity. First, the extracted audio

features are classified into onset and non-onset frames using Gaussian Mixture Models

(GMM). After GMM scoring, the feature evaluation is preceded by a dual detection function

(feature level and decision level fusion) for higher accuracy in selecting the most optimal

features. This method resulted in an 86.5% precision, 83.9% recall, and an F-measure of 85.2%.

The recall shows the proportion of the cases correctly predicted positive. Use of positive

precision implies the fraction of predicted positive cases determined to be real positive. In

binary classification, the F-measure calculates a test’s accuracy. It is calculated from the

precision and recall of the test. The F-measure is the harmonic mean of the precision and the

recall. The value of an F-measure is between 0 and 1. The highest value specifies perfect

precision and recall, while the lowest shows whether the precision or the recall is zero

30

(Powers, 2020). However, despite the high F-measure score, it was still possible that their

result could contain bias because of the dataset they used. The training and test set came from

a tiny dataset comprising 18 singing recordings from four singers with 1127 onsets. This

amount of files may not generate a variety of conditions to sufficiently challenge an onset

detector algorithm in different situations, e. g., different sequences of pitch intervals and

singing techniques.

In the study conducted by Gong and Serra (Gong and Serra, 2018), a deep learning model

was trained for musical onset detection in solo singing, and the authors discussed how their

algorithm could lead to improve live onset detection models. They used two datasets, one of

which contains more than 25,000 onsets, mostly complex mixtures or solo instrumental

excerpts, and only three excerpts are of a solo singing voice, and the other dataset is a subset

of a solo Jingju singing voice that contains 100 recordings. They employed seven deep

learning-based architectures.

In the Gong and Serra (Gong and Serra, 2018) study, it was preferred to use the score-

informed method if the musical score information was available. Score-informed approaches

evaluate the data with the assistance of musical scores. Based on the results, score-informed

HMM outperformed peak picking for all of the architectures used in this experiment (Gong

and Serra, 2018). The reported F-measure for the combination of the peak picking method

and a no-dense neural network architecture was 73.88%, with a p-value of 0.002. For the

score-informed HMM method, a nine-layer CNN architecture worked best, giving an F-

measure of 80.90% and a p-value of 0.001. Learning strategies for inter-dataset knowledge

transfer were also studied, but due to the features of different musical patterns, the authors

claimed that when the musical patterns from the two datasets used to train their model were

different, the onset prediction was not accurate.

Despite these studies, the onset detection of a musical note remains a challenge,

primarily for the singing voice. Chang and Lee (Chang and Lee, 2014) explain several reasons,

including articulation inconsistency, singer-dependent tonal quality, and gradual variation in

onset envelopes over time. In other words, the time-varying spectral envelope and the

inconsistency of vocal tracks may produce fake maxima (i.e., peaks) in an onset detection

function that can lower the precision rate for onset detection. Therefore, detecting onsets

31

from the singing voice is still an active area of study because of waveform unpredictability and

the occurrence of many noisy segments. Moreover, most methods are only suitable for

recorded singing and are designed to work offline.

According to the previously published results, most existing approaches do not work

well for soft onsets, including singing music. A soft onset has a long attack duration or vague

envelope shape that becomes a challenge to the peak-picking procedure. The underlying

reason for these issues is that the singing voice is classified as a pitched non-percussive (PNP)

instrument, and PNP instruments still present a challenge for onset detection (Collins, 2005b).

The nature of the singing voice adds further complexity due to its natural inconsistency with

respect to pitch and time dynamics. Unlike some instruments, whose timbre is usually

consistent throughout a note, the singing voice inherently can produce more variations of

formant structures (for articulation); sometimes, it may even vary within the duration of a

single note (Lindblom and Sundberg, 2007). While most onset detection algorithms are based

on detecting spectral changes, they can fail to differentiate such variations in a singing voice

because of singing features such as vibration and soft onset.

Relevant challenges for onset detection in solo singing voices were identified in a report

from the Music Information Retrieval Evaluation eXchange 2012 (MIREX 2012). According to

this report, the best-performing detection method gives an F-measure of only 55.9% (Hoon

Heo, Dooyong Sung and Kyogu Lee, 2013), which becomes even lower for solo sustained

strings with an average F-measure of 52.8%. In addition, training datasets for dynamically

changing patterns in a singing voice is still a challenge (Gong and Serra, 2018; Schindler, Lidy

and Böck, 2020).

One of the missing parts of most of the onset detection algorithms is consideration of

the actual singing style features. In the Mayor et al. (Mayor, Bonada and Loscos, 2006) study,

it is shown that one of the crucial features that should be taken into account in onset detection

is the transition from one note to another note where there is no intervening silence, i.e., the

legato singing (Mayor, Bonada and Loscos, 2006). The transition means that a singer will take

a while to reach the target note. If the time for the transiting is not incorporated, the onset

detector cannot find the correct times for onset and offset events. These transitions are

categorized as a soft onset.

32

Therefore, as discussed in section 2.1, singing signals have some unique features that

significantly impact the approaches to detecting onsets. Thus, it was found to be necessary to

design a new onset detector algorithm according to the singing features. Thus, Chapter 6

explains the details of a novel real-time onset detection algorithm for singing sounds.

2.2.4 Generating an annotated singing dataset objective

Datasets are fundamental for analysing and understanding relationships and causes.

Gathering an adequate store of data is the primary step before considering the development

of signal processing or machine learning analytical tools for audio. Despite there being a

shortage of singing datasets, recently, several singing datasets, such as (Cuesta et al., 2018;

Choi et al., 2020; Rosenzweig, Cuesta, et al., 2020; Rosenzweig, Scherbaum, et al., 2020;

Bittner et al., 2021), have been published. However, many more datasets are needed

representing different categories, such as techniques, genres, countries, traditions, and

languages.

One recently released dataset that covers a wide range of singing techniques and

expressions is VocalSet (Wilkins et al., 2018). This dataset is already described and used in the

previous chapters.

Although the VocalSet offers a variety of audio files of singing, the notes sung by the

singers were not annotated. Therefore, the original VocalSet is a suitable resource for

evaluating machine learning algorithms for problems such as singer classification, vowel

classification, singing technique classification, and melody classification. Nevertheless, to use

the VocalSet for other purposes, such as pitch detection, pitch contour smoothing,

onset/offset estimation, note extraction, lyric estimation, and automatic transcription, it

would be necessary to annotate it. Therefore, this study aims to annotate the original VocalSet

to render it appropriate for the possible additional studies mentioned above. The annotations

added to the VocalSet include the fundamental frequencies (F0), amplitude, onset, offset,

transition, MIDI pitch, average/median F0 of each note, each note’s duration, and the lyric.

33

Table 2-2. A comparison of existing singing datasets.

Dataset Solo/
Mix

No. of
Files

Total
Duration

(min)
Annotations Scripts Number of

Singer Professional/Amateur

MIR1K (Chao-Ling
Hsu and Jang, 2010) Both 1000 133

F0, unvoiced
sounds and

vocal/non-vocal
segments, lyrics

No
8 female

(f), 11 male
(m)

Amateur

TONAS (Mora et
al., 2010; Gómez and
Bonada, 2013; Team,

2013)
Solo 72 20.6 F0, onset, note

F0 No >40 Professional

SVNote1 (Hoon
Heo, Dooyong Sung
and Kyogu Lee, 2013;
Chang and Lee, 2014)

Solo 30 16.6 Onset, offset,
MIDI pitch No 7 m, 3 f NI *

Evaluation
Framework

(Molina et al., 2014)
Solo 38 19.2 MIDI pitch No 8 Child, 8

m, 5 f Both

iKala (Chan et al.,
2015) Solo 252 126 F0, lyrics No 6 Professional

MedleyDB (Bittner
et al., 2014, 2016) Both 28 255 F0, meta data No NI NI

MASTmelody
(Bozkurt, Baysal and

Yüret, 2017)
Both 1018 90 F0 Yes NI Pupils

Dzhambazov
(Dzhambazov et al.,

2017)
Solo 13 7 F0, amplitude,

note MIDI pitch No NI NI

Choral Singing
(Cuesta et al., 2018) Choir 48 115.5 MIDI file No 16 Semi-professional

VocalSet (Wilkins
et al., 2018) Solo 3560 606 NA + Yes 11 m, 9 f Professional

CSD (Choi et al.,
2020) Solo 200 291.7

Onset, offset,
lyric, MIDI
pitch, MIDI

No 1 f Professional

Dagstuhl ChoirSet
(Rosenzweig, Cuesta,

et al., 2020)
Choir 81 55.5 MIDI, F0, beats No NI Amateur

Erkomaishvili
(Rosenzweig,

Scherbaum, et al.,
2020)

Solo 101 424.5
F0,

segmentation,
onset, lyric

Yes 1 m Professional

Vocadito (Bittner et
al., 2021) Solo 40 13.62 F0, lyric, note No 29 Varying levels of

training

DALI (Meseguer-
Brocal, Cohen-Hadria

and Peeters, 2018)
Mix 5358 NI Note, lyrics NA NI Amateur

Annotated-
VocalSet Solo 2688 406.7

F0, onset, offset,
note, lyric,
MIDI pitch

Yes 11 m, 9 f Professional

* NI = Not indicated, + NA = Not applicable.

34

2.2.4.1 A Review of Published Vocal Datasets

Several singing datasets have been published and made available to researchers. Table

2-2 lists these singing datasets with their properties, such as the number of files, total

duration, and annotations. As shown in Table 2-2, the Annotated-VocalSet dataset, which I

have generated and will be discussed in detail in Chapter 7, includes a broader range of

annotations and singers than the listed datasets. However, some other datasets include

properties, such as the singer’s amateur status or whether they are currently studying, which

the Annotated-VocalSet does not have.

2.2.4.2 A Review on Annotating Methods

This subsection reviews the other researchers’ approaches to annotating vocal datasets.

Generally, they use three main annotation approaches: manual, automated, and semi-

automated, as described in the following.

2.2.4.3 Manual Annotation

Some datasets, such as MIR-1K (Chao-Ling Hsu and Jang, 2010), iKala (Chan et al., 2015),

Dzhambazov (Dzhambazov et al., 2017), and Erkomaishvili (except for the F0 annotation)

(Rosenzweig, Scherbaum, et al., 2020), were annotated manually. To reduce human errors in

creating annotations, some researchers, such as TONAS (Team, 2013), after generating

annotations by the first person, asked some experts to double-check the initial annotations.

In addition, other researchers, such as the providers of the SVNote1 dataset (Hoon Heo,

Dooyong Sung and Kyogu Lee, 2013; Chang and Lee, 2014), asked more than one person to

generate manual annotations. The Erkomaishvili dataset (Rosenzweig, Scherbaum, et al.,

2020) used Sonic Visualiser (Cannam, Landone and Sandler, 2010) to include the onset

annotations manually. In addition, they added the musical scores along with the lyrics by hand

with the aid of the software tools named Finale (‘Finale’, no date) and Sibelius (‘Sibelius’, no

date).

2.2.4.4 Automatic Annotation

The fundamental frequencies in the MedleyDB dataset (Bittner et al., 2014, 2016) were

annotated with the PYIN algorithm (Mauch and Dixon, 2014).

To annotate the Choral Singing dataset (Cuesta et al., 2018), they used the spectral

autocorrelation (SAC) method proposed by Villavicencio et al. (Villavicencio et al., 2015) to

35

estimate F0, and they mentioned that the result of the SAC method contained some errors.

Therefore, to calculate the mean of the notes’ pitch frequencies, they considered a threshold

on the F0 values obtained for each note before computing the average. The threshold was set

to 60 cents to reduce the effect of outliers. Moreover, they used a Python library, pretty_midi

(Raffel and Ellis, 2014), to extract the note onsets and offsets from the synchronised MIDI files

and segmented the F0 array.

The DALI dataset (Meseguer-Brocal, Cohen-Hadria and Peeters, 2018) was generated

using the teacher-student machine learning paradigm. They synchronised the audio files from

karaoke games with lyrics and notes by applying machine-learning techniques to assist them.

2.2.4.5 Semi-Automatic Annotation

The fundamental frequencies in the Erkomaishvili dataset (Rosenzweig, Scherbaum, et

al., 2020) were automatically computed within the user-specified regions using an F0

estimation algorithm similar to Melodia (Salamon and Gomez, 2012). Then, the annotator

could guide the estimation process. Moreover, the tool’s audiovisual feedback mechanisms

helped the annotator validate and correct the computed F0-trajectories.

For annotating F0 in the MASTmelody dataset (Bozkurt, Baysal and Yüret, 2017), a

software tool, Melodia (Salamon and Gomez, 2012), was used. Then, since the pitch contours

were not error-free, they manually altered the pitch contours.

To manually annotate beats in the Dagstuhl ChoirSet dataset (Rosenzweig, Cuesta, et

al., 2020), the Sonic Visualiser tool (Cannam, Landone and Sandler, 2010) was employed. An

expert annotator corrected the annotations that a non-professional musician had created. To

synchronise notes with MIDI files, they employed the DTW approach presented by (Muller,

Kurth and Röder, 2004; Ewert, Muller and Grosche, 2009), using the beat annotations as

anchor points for the alignment. Therefore, they had each note’s onset, offset, and MIDI pitch

after the synchronisation. Regarding F0 annotation, they applied the PYIN (Mauch and Dixon,

2014) and CREPE (Kim et al., 2018) to estimate them. In addition, they also used a tool, Tony

(Mauch et al., 2015), to edit pitch contours manually.

Similarly, the F0s in the Vocadito dataset (Bittner et al., 2021) were estimated by Tony

(Mauch et al., 2015), which is based on the PYIN (Mauch and Dixon, 2014) algorithm, and then

an expert edited the estimated pitch contours. They used a similar approach for extracting

36

notes; Tony was used first to estimate the onset and offset of the notes. Then, two experts

corrected any errors identified in these extracted notes. Finally, for the lyrics, they manually

added the words that the singers sang without considering the timing of the words.

As can be seen from the related work in annotations, the current automatic tools are

not error-free, and humans need to review their results and alter any incorrect annotations.

Thus, we used the same approach; first, a tool automatically annotated the dataset, and then

manual intervention was used to alter any incorrect annotations.

2.2.5 Calculating notes’ pitch frequencies and duration according to singing

technique and their positions in a piece of music objective

Based on the psychoacoustic studies (Bjørklund, 1961; Seashore, 1967; Sundberg, Prame

and Iwarsson, 1995; Dalla Bella et al., 2007; Stables, Athwal and Bullock, 2011; Sundberg,

2011, 2013; Sundberg, Lã and Himonides, 2013; Mauch, Frieler and Dixon, 2014) the

perception of intonation and duration of a note are affected by how the brain processes

sound. It could be the case that a subtle drift in the previous or the following notes can

influence the acceptable ranges within which the note is judged to be correct by the listener.

Sundberg et al. (Sundberg, Prame and Iwarsson, 1995) studied what mean F0s were

accepted as being “in tune” and “out of tune”. The results showed that most of the tones

deemed to be in tune had an average F0 that varied within a narrow band of about ±7 cents,

whereas most tones judged as being out of tune were outside this frequency band. Moreover,

Sundberg et al. (Sundberg, Prame and Iwarsson, 1995) found that singers exhibited the same

patterns of changing intonation when performing the same notes but used slightly different

frequencies when they repeated these notes in other bars, that is, pitch drift.

According to the Seashore (Seashore, 1967) study, long notes were sung with an average

F0 that coincides with the theoretically correct value. Moreover, many long tones changed

their average frequency in various ways during the performance of the tone. Bjørklund

(Bjørklund, 1961) found that such deviations were typical for professional singers as opposed

to nonprofessional singers. With regard to short tones, the relationship between F0 and the

theoretical pitch seems to be considerably more complicated (Sundberg, 2013).

37

Sundberg & La (Sundberg and La, 2011) analysed the tuning of premier baritone singers

and found examples of significant deviations from equal-tempered tuning (ETT), sometimes

exceeding 50 cents. In particular, the highest note in phrases with an agitated emotional

character was often sharpened. The intonation of such tones was flattened to equal-tempered

tuning, and a listening test was run in which musician listeners were asked to rate the

expressiveness in a pair-wise comparison between the original version and the version with

manipulated tuning. There was a significant preference for the original versions. This result

indicates that intonation can be used as an expressive device in singing.

Based on the above explanation, researchers have found that the amount of

allowable/imperceptible frequency deviation in each sung note depends on its position in a

piece of music. However, because of some limitations in previous studies, the exact acceptable

ranges of note’s pitch and duration in a piece of music are not fully understood. Therefore,

after describing a newly created annotated singing dataset in Chapter 7, the dataset will be

examined in Chapter 8 to discover the genuine relationship regarding the acceptability

between the perceived F0 and duration of a note against its theoretical frequency and

duration. As a result, Chapter 8 provides a novel algorithm to calculate the acceptable range

of pitch frequencies and duration of each note based on its position in a piece of music.

Theoretically, each western music note has an exact pitch frequency and duration.

However, playing a note without pitch frequency and duration instability is practically

impossible. This issue is more challenging when the human voice sings musical notes. Because,

unlike musical instruments, it is impossible to tune the notes that the human voice is going to

produce before the performance. In other words, although a singer does the tuning, it is down

to the singer's skills to identify the correct tuning and then hold a steady tuning over the

duration of the note to be sung. In addition, using the same physiological system for breathing

and singing simultaneously, and how the humans’ brain perceives sounds bring more

limitations and complexity for a singer to play notes. In singing, subglottal pressure must be

tailored to both pitch and loudness. Since a change in subglottal pressure results in a change

in fundamental frequency, singers should accurately reach the target subglottal pressures

(Sundberg, 1992). Another issue that adds more complexity to in-tune singing is how the

human brain perceives sound. Several psychoacoustic studies, such as (Bjørklund, 1961;

38

Seashore, 1967; Sundberg, Prame and Iwarsson, 1995; Dalla Bella et al., 2007; Stables, Athwal

and Bullock, 2011; Sundberg, 2011, 2013; Sundberg, Lã and Himonides, 2013; Mauch, Frieler

and Dixon, 2014), showed that the perception of performed F0 and the duration of a note is

impacted by the brain's sound processing mechanism (Faghih and Timoney, 2019b).

Therefore, it is understood that singers should sing a note in an acceptable range of F0s and

duration.

Although several studies, as listed below, have been conducted to define the

perceptually acceptable performed F0s and duration ranges, they still have not precisely

identified the ranges according to a note’s position in a piece of music. Thus, this study’s

objective is to define these ranges more accurately by considering the effect of some variables

altogether.

According to Seashore (Seashore, 1967), the musical ear is generous and operates in the

interpretive mode when it listens to singing. However, there are certainly limits to this

generosity. Also, what appears to be generosity may be sensitivity to small, deliberate, and

meaningful deviations from what theoretically is "correct". For example, the human hearing

system can probably not track swift changes in pitches (Sundberg, 1972). For example,

Moore’s study (Moore, 2013) indicated that the human ear could not distinguish between two

transients less than 10 ms apart.

There is another challenge in defining singing in tune. As discussed in Sundberg’s study

(Sundberg, 2013), the challenge is that the pitch frequency bands corresponding to tones

perceived as being in tune did not always agree with the notes of Equal-Tempered Tuning

(ETT). Each octave is divided into equal interval steps in the ETT system. In the 12-ETT system,

each octave is divided into 12 steps, and each one is called a semitone.

Moreover, Sundberg (Sundberg, 2013) reported that for some tones, the mean

performed F0 accepted as being in tune was shown to vary wildly among expert listeners.

These tones seemed to be harmonically (simultaneously) or melodically (sequentially)

marked. Most singers seemed to adhere to certain principles in their deviations from the ETT.

One was to sing high tones sharp, adding an F0 correction that increased with pitch. The other

was to sharpen and flatten, respectively, the tones that were situated on the dominant (right)

39

and subdominant (left) side of the circle of fifths, where the root of the prevailing chord was

the “12 o’clock” reference.

Sundberg et al. (Sundberg, Prame and Iwarsson, 1995) studied what mean performed

F0s were accepted as being “in tune” or “out of tune” in 10 commercial recordings of a song

that were presented to expert listeners. The results showed considerable variability in the

judgments. Analysis of the tones accepted as being in tune by all experts or deemed out of

tune by most listeners revealed that most of the tones deemed to be in tune had an average

performed F0 that varied within a narrow band of about ±7 cents. In addition, most tones

judged as being out of tune were outside this frequency band. Moreover, they found that

singers exhibited the same patterns of changing intonation when performing the same notes.

Nevertheless, they mentioned that singers used slightly different frequencies when they

repeated these notes in other bars. They finally concluded that the deviation from the ETT is

not the sole correlate of out-of-tune perception. However, because of insufficient samples,

they could not definitively conclude under which circumstance of a particular note occurring

in a piece of music a singer would sing that note in a lower or higher pitch. Furthermore, their

study also exhibited some other limitations: firstly, all of their notes are in only one octave,

between D4 and D5. Secondly, the positions of the notes were not considered in their

evaluation. With these limitations, their result of ±7 cents cannot be considered as a precise

range in all cases. It is quite possible, for example, that the behaviour for higher or lower

pitches is different. This could also apply to notes with a shorter or longer duration.

As a counterexample to the ±7 cents finding by Sundberg et al. (Sundberg, Prame and

Iwarsson, 1995), Sundberg and La (Sundberg and La, 2011) analysed the tuning of premier

baritone singers. They found examples of quite large deviations from ETT, sometimes

exceeding 50 cents. In particular, the highest note in phrases with an agitated emotional

character was often sharpened. The intonation of such tones was flattened artificially by using

a signal processing algorithm to make it comply with ETT. Then, a listening test was run in

which musician listeners were asked to rate the expressiveness in a pair-wise comparison

between the original version and the version with manipulated tuning. There was a significant

preference for the original versions. This result indicates that intonation can be used as an

expressive device in singing.

40

Another study that showed that the pitch frequency of an individual note may change

according to the note position is Sundberg et al. research (Sundberg, Lã and Himonides, 2013).

They observed that a professional singer might sharpen tones sung in ETT, sometimes even

more than 50 cents. They found that most listeners failed to realise the intonation differences

as a pitch effect. They concluded that such sharpening might contribute to expressiveness but

that listeners did not appear to perceive pitch as a guide by which they could rate

expressiveness. In addition, the expert listeners perceived the original versions as more

expressive than those in which the intonation exactly followed equally tempered tuning.

According to the Seashore study (Seashore, 1967), long notes were sung such that the

average of the performed F0 coincides with the theoretically correct value. However, the long

tones are often slightly flat (approximately 90 cents on average) at the beginning and then

gradually corrected during the initial 200 milliseconds of the tone. Moreover, many of the long

tones changed their average frequency in various ways during the tone. Bjørklund (Bjørklund,

1961) found that such deviations were typical for professional singers as opposed to

nonprofessional singers. As an example to compare professional singers to untrained singers,

Sundberg (Sundberg, 1979) examined the maximal speed of voice pitch changes in

professional and untrained singers of both genders. He found differences between these four

groups (male-professional, female-professional, male-untrained, and female-untrained). It

was observed that professional singers change pitch more quickly than untrained subjects on

average. The same reflection is made regarding female subjects as compared with male ones.

In addition, it has been discovered that untrained singers perform pitch drops significantly

faster than pitch elevations.

Sundberg (Sundberg, 2013) found that the relationship between the performed F0 and

the theoretical pitch in short tones seems to be considerably more complicated. He observed

that each short note takes one vibrato period, and most of the vibrato periods seem to encircle

the target frequency approximately.

Bottalico et al. (Bottalico, Graetzer and Hunter, 2017) discussed that pitch inaccuracy in

singers is affected by the level of training, the tempo, articulation, semi-phrase direction

(ascending or descending), tessitura (low, medium, or high), and the level of the external

auditory feedback. According to their study, the mean pitch inaccuracy was between 13 and

41

58 cents. The worst case was detected for the nonprofessional singers in staccato, fast

arpeggio in the high tessitura, and in normal external auditory feedback conditions; and the

best case for the professionals was in legato and slow arpeggio in the high tessitura.

Another singing feature that affects pitch frequencies is the singer’s physical gestures.

For example, in the study by Brunkan and Bowers (Brunkan and Bowers, 2021), most solo

singers tended toward more in-tune singing while employing the pointing gesture, whereas

most participants became progressively more out of tune with the low in a circular gesture,

arms moving outward and upward in front of and to the side of the torso at hip height and

above. Similarly, in the study by Manternach (Manternach, 2016), it was discussed that the

conductor’s movements also affect the amplitude and fundamental pitch frequencies of the

songs sung by singers.

Based on the above explanation, researchers have found that the amount of pitch

deviation by singers in each sung note depends on their position in a piece of music, the

singer’s gesture, expressiveness, audience feedback, and the conductor's movement.

However, since these studies have some limitations, the exact explanation of singers’

behaviours in performing pitch and duration of a note in a piece of music are not identified.

Therefore, Chapter 8 investigates a dataset of recorded vocals to discover some particular

aspects of the relationship between the performed F0 and duration against its written note

and relative duration in a music score. In other words, this chapter introduces two novel

models to simulate trained-professional singers’ behaviours in singing notes’ pitches and

duration according to the position of the note in a piece of music and the singing technique

applied. Because of the limitations on available annotated singing datasets, some of the note’s

features that might affect trained-professional singers to change the pitch and duration of a

note were investigated in this study. Therefore, the note’s features considered for this

research are the note’s MIDI pitch code and duration in a music score, the pitch intervals to

the following and previous notes, the existence of a rest before or after a note, the signing

techniques, and whether the note is a repeat.

42

2.3 Applications

There are some common steps in most of the singing applications, as mentioned in

section 1.3. These steps are estimating pitch contour, pre-processing, extracting and

calculating notes’ pitches and duration, alignment, and analysing the estimated notes. The

objectives of this thesis can improve the state-of-the-art algorithms/tools in each of these

steps. First, chapters 3 and 4 will evaluate several pitch detection algorithms to find the more

accurate ones according to the features of the signing signals. Then, Chapter 5 will introduce

a new contour smoother algorithm as a pre-processing. In addition, a novel algorithm for

estimating onsets will be introduced in Chapter 6. Finally, two models for estimating the

expected ranges of a note’s pitch and duration in trained-professional singers will be proposed

in Chapter 8. These findings can be applied to different applications.

This section provides a list of possible applications of the results of this PhD study. These

applications include alignment, singing assessment, automatic tuning of singing, singing

imitation synthesis, and automatic singing transcription.

The following section, 2.3.1, mainly lays out the techniques used in the applications

discussed after that.

2.3.1 Aligning sung notes with ground truth

Several applications, such as score following and singing assessments, require

alignment. For example, to assess a singing performance, the user's notes should usually be

aligned with the ground truth before the assessment. The ground truth can be a musical score,

a sound recording, or a mixture of both with/without accompaniment. It should be mentioned

that in the alignment, both the duration and pitch of a note should be considered

simultaneously.

Some well-known alignment algorithms, such as DTW and HMM, will be explained in the

following.

43

2.3.1.1 DTW (Dynamic Time Warping)

Dynamic time warping (DTW) is a well-known technique to find an optimal alignment

between two given (time-dependent) sequences under certain restrictions. Then, the

sequences are warped nonlinearly to match each other (Müller, 2007).

An (N, M)-warping path is a sequence 𝑝𝑝 = (𝑝𝑝1,… , 𝑝𝑝𝐿𝐿) with 𝑝𝑝𝑙𝑙 = (𝑛𝑛𝑙𝑙 ,𝑚𝑚𝑙𝑙) ∈ [1:𝑁𝑁] ∗

[1:𝑀𝑀] for 𝐿𝐿 ∈ [1:𝐿𝐿] satisfying the following three conditions (Müller, 2007).

1- Boundary condition: 𝑝𝑝1 = (1,1) 𝑎𝑎𝑛𝑛𝑎𝑎 𝑝𝑝𝐿𝐿 = (𝑁𝑁,𝑀𝑀)

2- Monotonicity condition: 𝑛𝑛1 ≤ 𝑛𝑛2 ≤ ⋯ ≤ 𝑛𝑛𝐿𝐿 𝑎𝑎𝑛𝑛𝑎𝑎 𝑚𝑚1 ≤ 𝑚𝑚2 ≤ ⋯ ≤ 𝑚𝑚𝐿𝐿

3- Step size condition: 𝑝𝑝𝐿𝐿+1 − 𝑝𝑝𝐿𝐿 ∈ {(1,0),(0,1), (1,1)}𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿 ∈ [1:𝐿𝐿 − 1]

In addition, every index from the first sequence must be matched with one or more

indices from the other sequence and vice versa. Figure 2-2 depicts these conditions in DTW.

This figure illustrates the paths of index pairs for some sequence X of length N =9 and some

sequence Y of length M =7. In Figure 2-2(a), all the above conditions are satisfied, while in

panels b, c, and d, the boundary, monotony, and step size conditions are unsatisfied,

respectively.

Figure 2-2 Illustration of paths of index pairs for some sequence X of length N =9 and some sequence Y of

length M =7. (a) Admissible warping path satisfying the conditions (1), (2), and (3). (b) the boundary condition
is violated. (c) the monotony condition is unsatisfied, (d) the step size condition is disregarded (Müller, 2007)

The optimal match is denoted by the one that satisfies all the restrictions and rules. In

addition, the optimal match should have a minimal cost, where the cost is computed as the

sum cumulative of absolute differences, for each matched pair of indices, between their

values (Müller, 2007).

There are two ways that DTW can be employed for singing alignment.

44

a) Converting the musical notation (such as a MIDI file) to a sequence of frequencies and

then comparing the user voice with the frequencies from the MIDI file using DTW.

However, an attempt, as an example, to implement this procedure did not lead to a

good result based on the experience of Molina et al. (Molina et al., 2013).

b) Converting the user voice to MIDI values and then comparing it with the original MIDI

file.

Nevertheless, in real singing situations, the user may sing some extra notes or make

articulations that are not in the score. Additionally, they may miss some notes. In these

circumstances, it will be impossible for DTW to assess the similarity accurately.

Another problem identified with using DTW in this context is that although it may be

possible to create an alignment between the frequency contour of the sung notes with the

ground truth, it cannot inherently know the thresholds at which each sung note pitch and

duration should be considered as correct. For example, DTW can tell us that the difference

frequency between two notes is 50 hertz, but it cannot determine that the user performed

the sung pitch in a perceptually correct manner. This is the same situation for the sung note

duration. In practice, systems based on DTW (Dong et al., 2010; Molina et al., 2013; Schramm,

Nunes and Jung, 2015; Gupta, Li and Wang, 2017; Luo et al., 2018) have been recognised not

to be useful for singing assessment purposes, because the feedback of these systems is just a

number that indicates the minimum distance between user performance and the target

melody. However, as it is discussed in Chapter 8, there is a range of allowable pitch and

duration for each note according to its position in a piece of music.

Molina et al. (Molina et al., 2013) used the following cost formula of the DTW as given

in equation (2-1) in order to have a better result:

 𝑀𝑀𝑖𝑖𝑖𝑖 = min{(𝑓𝑓0 𝑇𝑇(𝑖𝑖)− 𝑓𝑓0𝑈𝑈 (𝑗𝑗))2 ,𝛼𝛼} (2-1)

where 𝑓𝑓0 𝑇𝑇(𝑖𝑖) is the fundamental frequency (𝑓𝑓0) value of the target melody in the frame

𝑖𝑖, 𝑓𝑓0𝑈𝑈 (𝑗𝑗) represents the 𝑓𝑓0 value of the user’s performance in the frame 𝑗𝑗,𝑀𝑀𝑖𝑖𝑖𝑖 is the cost value,

and 𝛼𝛼 is a constant user-defined threshold.

When the squared 𝑓𝑓0 of the difference becomes larger than 𝛼𝛼, it is assumed that a

spurious case has been found and its contribution to the cost matrix is limited. In Molina et al.

study (Molina et al., 2013), a discussion is made on limiting the DTW path between 10 and 80

45

degrees for intonation, but unfortunately, the exact value of α is not provided, nor is a formula

by which it can be calculated.

In the system by Schramm et al. (Schramm, Nunes and Jung, 2015), after obtaining

musical scores from the user performance by employing an automatic melodic transcription

algorithm, an alignment algorithm is used to assess the similarity between the ground truth

and the user performance. They presented a different alignment algorithm which is very

similar to DTW. However, their algorithm does not propagate the cumulative error since it

does not need to obey the boundary conditions of the DTW. When they tried to find a method

to match segments from the user performance with the ground truth, they discovered that

the sequence of the notes performed by the user could be determined to be similar to the

sequence of notes in the ground truth, but it will not consider any possibility of missing or

extra notes that could exist in the user’s sequence. Therefore, a combination of correct and

incorrect notes in close proximity in the user sequence could be adjusted by the warping

algorithm to a smaller size set/sequence in the ground truth that contains the correct notes

only. Thus, the combined duration in the sung version would be shrunk by warping (and very

likely with some level of distortion created) to fit the ground truth. Figure 2-3 provides an

example of this grouping and alignment process in which six segments in the lower part of the

figure, with a grey fill, are mapped into three notes, the upper part of the figure outlined in

green (Schramm, Nunes and Jung, 2015). As can be seen in Figure 2-3, this alignment algorithm

cannot identify the extra notes correctly because the algorithm simply combines them to

make a fit with the one note in the ground truth.

Figure 2-3 Grouping process of several segments (grey) into one music note (blue) (Schramm, Nunes and Jung, 2015)

46

Luo et al. (Luo et al., 2018) used Canonical Time Warping (CTW), which is very similar to

DTW. They tried to find an alignment between the user performance and a professional

version of that piece of music. Therefore, the result of this algorithm is the same as DTW, but

it is only a number that indicates the distance between two sounds. This kind of output cannot

be useful for users who want to understand and correct their singing errors.

In the Dong et al. (Dong et al., 2010) study, they researched a method to align the singing

voice with a MIDI file by using DTW. Instead of converting the user performance to MIDI, they

convert the MIDI values to a frequency which is not a better choice because it still does not

imitate human singing behaviour in changing pitches and duration. They used the following

formula, (2-2), to convert the MIDI to frequencies.

 𝑓𝑓 = �2
𝑝𝑝−69
12 � ∗ 440 (2-2)

Where f is the frequency in Hertz, and p is the midi-note value.

Although this formula generates a series of frequencies from the notes of the MIDI file,

it should be recognised that the MIDI representation of the notes is very different to the

intricacies of those notes created by a human voice. For example, human singing not only

comprises steady notes but also pitch transitions and modulations that are not captured by

digitally generated MIDI notes (Gupta, Li and Wang, 2017). In addition, as they only looked to

find a method to align a correct singing performance to its corresponding MIDI file, they did

not consider the possibility of mistakes in the actual performance and how to handle them

with their algorithm.

Some other situations in a singing assessment are also challenging for DTW. For

example, if the original note is a whole note, but the user sings eight notes in succession. From

a musical perspective, this would be a terrible performance, but DTW may determine it to be

not very bad. Indeed, while the duration and pitches should be considered together, DTW

compares them separately. This can be illustrated in the following example:

Consider two series of notes as [440, 493.88, 523.25] (A4, B4, C5) and [440, 493.88,

493.88, 523.25] (A4, B4, B4, C5) that are input to the DTW algorithm. The DTW-determined

minimum distance between the two series will be 0, implying that both series are the same.

47

However, in music notation, they are different. That is, the first series is , and the

second one is .

Another problem with using a DTW-based alignment algorithm is that the minimum

distance is unreliable. For example, if the target series is [261.63, 329.63, 392.00, 523.25]

(pitch frequencies of C4, E4, G4, and C5, respectively) and a user omits to sing the second or

the third note, the minimum distance is 8.91, but if the missing note is the last note, then the

minimum distance will be 18.75. Thus, in the case of this type of mistake, the DTW result is

changed significantly. However, this numerical result is not a reason to conclude that the

version's performance with the minimum distance of 8.91 is better than 18.75.

Moreover, as will be discussed in Chapter 8, acceptable ranges for the note’s pitch and

duration need to be considered. Therefore, the sung notes’ duration and pitches in DTW

should be compared with the acceptable ranges instead of the ground truth values. In this

case, the differences for the notes inside the acceptable boundaries should be assumed to be

zero.

2.3.1.2 HMM (Hidden Markov Model)

A Hidden Markov Model is a machine learning approach that works as a state machine

to model stochastic signal sources. Regarding singing transcription, the training data consists

of the frame-level features extracted from recorded singings, and the training is usually

performed unsupervised with the Baum-Welch algorithm (Ryynänen, 2006).

A HMM is constructed for each reference signal, in which the transition probabilities

describe note insertions and deletions, repeats, and skips, while pitch errors are described by

output probabilities. Then, the aligned signal is counted as an output sequence from the

HMM, and the most probable sequence of latent states is assessed with the Viterbi algorithm

for alignment (Nakamura, Yoshii and Katayose, 2017).

Nevertheless, HMMs cannot fully support the objectives of some applications, such as

singing assessment, because of its limitations that are discussed in the following.

Based on the Nakamura et al. (Nakamura, Yoshii and Katayose, 2017) study on

polyphonic piano performances, it has been discovered that deviations in performances due

to asynchronies between hands/voices require special treatments. Such asynchronies result

48

in the reordering of notes with different score times, which is the leading cause of alignment

errors for HMMs (and also DTWs) that are not specially designed to handle them (Nakamura,

Yoshii and Katayose, 2017). To illustrate, consider the case where a ground truth note is A4

with a frequency of 440 Hz, but the user performs it at 425 Hz, which is somewhere between

the notes of A4 and Ab4 (410.3 Hz). However, there is no note between A4 and Ab4 in western

music notation. Therefore, the algorithm will try to guess the intended note as either A4 with

a frequency of 440 Hz or Ab4 with a frequency of 410.3 Hz, and then associate this with the

ground truth note. The missing part of these studies is that each note should have an

acceptable pitch and duration range, which will be covered in Chapter 8.

2.3.1.3 Viterbi algorithm

One of the applications of the Viterbi algorithms is to make the HMM evaluation faster

by reducing the number of paths. In Ryynänen’s study (Ryynänen, 2006), the Viterbi algorithm

and the HMM technique were integrated. The resulting method was that when the HMM

parameters have been learned, the state sequence that maximises the observed data's

posterior probability will be estimated using the Viterbi algorithm. An alternative state-

sequence estimation scheme is the token-passing algorithm, which is designed to find the

most probable path through a network of connected HMMs (Ryynänen, 2006). In another

study by Mayor et al. (Mayor, Bonada and Loscos, 2006), a Viterbi Matrix was employed to

find the most probable path from all possible paths. Another application of the Viterbi

algorithms is finding the minimum path, which indicates the distance between the user

performance and the target melody, such as in the work done by Lal (Lal, 2006).

Thus, the findings in Chapter 8 can help Viterbi algorithms to have a better alignment

estimation by considering the acceptable range of pitch frequencies and duration.

2.3.2 Score following

One of the applications of this thesis’s objectives is in score-following, which is a real-

time alignment of the audio signals from musical performances to a given score (Nakamura,

Nakamura and Sagayama, 2016). Several studies have been done on the score following, such

as (Cont, 2010; Nakamura, Nakamura and Sagayama, 2013, 2016; Dorfer, Arzt and Widmer,

2017). The general approach uses a HMM to align the user performance with the music score.

49

According to Nakamura et al. (Nakamura, Nakamura and Sagayama, 2016), one of the

issues that should be considered during the alignment is the user’s errors since the audio

signals associated with music performances can vary widely even if the same score is used.

Nakamura et al. (Nakamura, Nakamura and Sagayama, 2016) provided four typical sources of

variety in a monophonic audio performance which are the following.

(a) Acoustic variations: Spectral features of audio performances depend on musical

instruments and are not stationary. In addition, audio performances usually include noise

caused by the surrounding environment and musical instruments (e.g. resonance, background

noise, breath noise, and other acoustics).

(b) Temporal fluctuations: The tempo of the performance, onset times, and durations

of performed notes deviate from those indicated in scores due to the performer’s skills,

physical limitations of musical instruments, and musical expressions. For example,

performances during practice are often rendered at a slow tempo to avoid errors. Moreover,

a technique in music termed Rubato, associated with the interpretation of the piece, gives the

player rhythmic freedom to change the speed.

(c) Performance errors/variation: Performers may make errors due to a lack of

performance skills or misreading the score. Errors are categorized into pitch errors

(substitution errors), dropping notes (deletion errors), and adding extra notes (insertion

errors). Besides, performers may pause between notes, for example, to turn a page of the

score and check the next note. Furthermore, for expression, this is the activity of interpreting

a score that every musician must do and distinguishes each musician's approach to a piece of

music.

(d) Repeats/skips: Performers may repeat and/or skip phrases during practice.

Furthermore, the performers generally add or delete a repeated section.

Most of the studies on score following algorithms have not resolved these errors entirely

(Orio, Lemouton and Schwarz, 2003; Schwarz, Orio and Schnell, 2004; Pardo and Birmingham,

2005; Nakamura et al., 2014). However, one of the well-developed systems that considered

these errors is the study by Nakamura et al. (Nakamura, Nakamura and Sagayama, 2016). They

used two HMMs, one to find the probability of the sequence of notes and the other for figuring

out the name of the note of the current signal. Still, there are some limitations to their

50

approach. As they mentioned, “the accuracy of score following generally depends on the

parameters of the emission probabilities”. In addition, “the parameters can be learned from

every musical instrument if necessary data is available, and we can form a detailed model for

a specific instrument” (Nakamura, Nakamura and Sagayama, 2016). They evaluated their

system for clarinet, and the substitution errors were restricted to three types typical in clarinet

performances: errors in semitone, whole-tone and perfect 12th. The first two errors are often

caused by fingering and misreading the score, and the last error is caused by overblowing on

a clarinet. Their proposed system could be evaluated with a human voice, and the errors that

often happen during singing should be considered instead. In addition, they compared their

algorithm with another tool known as Antescofo (Cont, 2010) and showed that their algorithm

could find errors better than Antescofo, but still, their algorithm could not identify all the

errors.

The objectives of this thesis can help with better note estimation and also alignment for

the score following application. The central requirement of the score following algorithms is

estimating the sung notes. As discussed in 2.3.4, the state-of-the-art note estimator

algorithms have some errors in estimating notes, especially from singing signals. Thus, after

selecting a more accurate algorithm to estimate pitch contour according to Chapters 3 and 4,

and then smoothing it based on the proposed pitch contour smoother algorithm in Chapter 5,

the notes can be estimated more accurately by the onset detection algorithm discussed in

Chapter 6. Finally, the alignment algorithms can benefit from the models proposed in Chapter

8, as discussed already in Section 2.3.1.

2.3.3 Singing Assessment Systems

Enhancing the singing assessment systems is other application of this thesis's goals.

Generally, we can divide the current singing assessment systems into two categories: (1)

Entertainment and (2) Educational.

2.3.3.1 Entertainment

In the commercial marketplace, there are several applications for judging singing. Their

general idea is the same: comparing the user's performance with the target melody and then

giving a score to the user based on the similarity between the user's performance and the

target melody. For example, Lal (Lal, 2006) presented an entertainment application which

51

compares user performance with the target melody and finally gives the user a score between

0 to 10 to indicate how much the user performance was similar to the target melody. Another

example is Singstar 1, a game app based on the PSx console. In this app, when a piece of music

is played, its user/users should sing its lyric. Users can see which notes they sang that had the

correct pitch, duration, and onset displayed on the screen. Finally, the user with the highest

score is the winner. A screenshot of Singstar can be seen in Figure 2-4. At the bottom of Figure

2-4, the blue part, the performance of one of the users, can be seen and at the top, the red

part, the performance of another user. On the right side of Figure 2-4, the score of each user

is presented.

Figure 2-4 A screenshot from Singstar application [www.gamestop.ie]

Ultrastar 2 can be considered as another example, which is very similar to Singstar. It

should be mentioned that none of these tools compares user performance with musical

scores, but they compare it with the original singer's version, which is a sound recording and

not transcribed. In addition, their purpose is not to teach singing but to be a fun activity for its

users.

1 Available online at https://www.singstar.com. Accessed on 01/11/2022.
2 Available online at http://ultrastardx.sourceforge.net/. Accessed on 01/11/2022.

https://www.singstar.com/
http://ultrastardx.sourceforge.net/

52

2.3.3.2 Education

Lin et al. (Lin et al., 2014) introduced a system that evaluates user singing performance

with a musical score and gives the users three scores to assess pitch, rhythm, and total score.

However, the primary drawback of their system is its use of DTW for evaluation, as critiqued

in 8.2.1.1.

WinSingad (Howard et al., 2004) is a software to display the pitch contour, spectral ratio,

and spectrogram to the user in real-time. Therefore, since the user receives immediate

feedback, they can try to fix any problems that arise. In this system, the user’s role is to analyse

their performance based on the pitch contour shown on the screen and then identify and fix

their problems. In other words, WinSingad does not offer any performance insights or clever

evaluation algorithm; it simply depicts the F0 of the singing performed by the user. To

estimate F0, they used the algorithm introduced by Gruenz and Schott (Gruenz and Schott,

1949), and then with several post-processing stages, they tried to correct any incorrectly

estimated pitches. Unfortunately, they did not provide an evaluation of their pitch contour

estimator's accuracy, and their codes or detailed algorithm were not outside evaluation. Thus,

the generated pitch contour's accuracy with their software is unclear.

Another software is Sing & See 1 , which displays the user's pitches in real-time, as seen

in Figure 2-5. This software also provides the spectrogram. Unfortunately, this software does

not evaluate user performance to determine users’ errors, but users must find their problems

by examining the pitch contour drawn on the screen. MiruSinger (Nakano, Goto and Hiraga,

2007) is similar to WinSingad and Sing&See, again looking to display the pitches performed by

the user without analysing and comparing user performance with the ground truth.

1 Available online at http://www.singandsee.com. Accessed on 01/11/2022.

http://www.singandsee.com/

53

Figure 2-5 A screenshot of Sing&See software

One of the other related works is (Molina et al., 2013). This looks to find a different

approach to singing voice assessment. Instead of using the musical score as the target melody,

they asked a professional singer to sing their target melody in order to have a set of human

ground-truth signals against which they could assess users’ performances. They used the

mean of the intonations and rhythm (onsets) to discover the similarity between the user

performance with the target melody. This appears to be the reason that their system was

found to give better results in comparing a user's performance with the target melody.

However, there are some weaknesses in their proposed system too. The main weakness is

that their system is based on a variant of DTW (by considering F0) and note-level similarity.

Generally, in automatic singing assessment, it is essential to discover each of the user’s

errors and highlight them individually to the user so that they can figure out the cause of each

one. In other words, the notes should be extracted and then compared to the ground truth,

and finally, each note's accuracy should be determined according to the note's position in the

melody.

Mayor et al. (Mayor, Bonada and Loscos, 2006; Mayor, Oscar., Bonada, Jordi., Loscos,

2009) introduced an algorithm for the tutoring of singing. Their main goal was to accurately

segment the user performance based on untrained HMMs with probabilistic models built out

54

of a set of heuristic rules. In addition, they used Viterbi to find out the best path of the input

sequence according to the reference MIDI score. An overview of their system can be seen in

Figure 2-6.

Figure 2-6 Overview of the analysis and note segmentation/expression transcription process proposed by Mayor

et al. (Mayor, Bonada and Loscos, 2006)

However, there are some issues with their system:

1- They used a tolerance of 30ms for the segmentation and considered boundaries within

this margin correct. However, they did not include the source of the evidence from

which they selected this value of 30ms. The boundaries for the notes of different

duration should most likely be quite variable, as discussed in section 2.2.5.

2- Their method is first based on the transcription of the user performance, which is then

compared with the reference MIDI score. The difficulties with this approach are

highlighted in section 2.3.1.

3- Although they mentioned that their segmentation was correct to a value of 95% over

1000 notes, they did not make their test cases available, so it is impossible to find out

under which conditions their systems can work to an accuracy of 95%.

4- In addition, regarding timing/tempo, they indicated that the “begin time and duration

should be close to the MIDI note onset and duration, respectively. Each note must have

a minimum duration. The beginning and the end of the note must have a pitch. The

average pitch of the note should match or be close to the reference pitch (after octave

55

correction), and the same should happen with intervals between two notes” (Mayor,

Bonada and Loscos, 2006). However, these are vague sentences because they did not

indicate how much numerically they should be close to the MIDI values.

2.3.3.3 Sight singing

Sight singing is one of the fundamental lesson activities for all music students, no matter

their musical discipline. In sight singing, pupils learn how to sing a written musical score by

interpreting notes' pitches, duration, and loudness in real-time. To acquire the skills to be a

good singer frequently involves a teacher and requires much time for practice on one’s own.

The most important things to learn from the beginning are to stay ‘in-tune’ and ‘in-time’, that

is, to have accurate intonation, a strong sense of rhythm, and accurate articulation (Henry,

2011). Typically, the teacher will help a student develop these capabilities using exercises and

offering them musical pieces at increasing difficulty levels. It is then up to the student to

practice these prior to the next lesson. However, they often find mastery of the essential skills

to be one of the most difficult challenges (Henry, 2011).

Usually, sight-singing classes are held as one or two sessions per week. Therefore, a

student should receive regular feedback. Nevertheless, if a student is practising his/ her lesson

incorrectly and does not absorb the feedback, they may get used to singing incorrectly, which

may take longer then to fix later on. Furthermore, stumbling over difficulties with no

encouragement can demoralise some to the point that they can feel that they will never

overcome certain musical obstacles. Therefore, having a tool that could give them immediate

and detailed feedback would be extremely useful and assist them in making more rapid and

confident progress (Henry, 2015; Schramm, Nunes and Jung, 2015).

In the last few years, several researchers have proposed software systems to assist the

learner in their practise that can give them feedback and, thus, accelerate their progress for

more serious students of music (Nakano, Goto and Hiraga, 2006, 2007; Hoppe, Sadakata and

Desain, 2006; Lal, 2006; Mayor, Bonada and Loscos, 2006; Mayor, Oscar., Bonada, Jordi.,

Loscos, 2009; Cano, Dittmar and Grollmisch, 2011; Molina, 2012; Abeßer et al., 2013; Lin et

al., 2014; Schramm, Nunes and Jung, 2015, 2016; Henry, 2015; Yu et al., 2016; Tardón et al.,

2018; Gupta, Li and Wang, 2018; Luo et al., 2018). The basics of these systems are pretty

straightforward: The user’s singing is digitized by the computer that, first of all, detects the

56

pitch of the notes they produce, and analyses the pitch contour to remove any algorithmic

errors. Following this, an alignment is made with a ground truth, often in the form of a

symbolic representation (such as MIDI) of the song melody using known techniques that

include Dynamic Time Warping (DTW) (Dixon and Effects, 2005; Dong et al., 2010; Devaney et

al., 2011; Abeßer et al., 2013; Molina et al., 2013; Lin et al., 2014; Schramm, Nunes and Jung,

2016; Valero-Mas, Salamon and Gómez, 2015; Schramm, Nunes and Jung, 2015; Yu et al.,

2016; Gupta, Li and Wang, 2017, 2018; Tardón et al., 2018; Luo et al., 2018), Hidden Markov

Models (HMM) (Mayor, Oscar., Bonada, Jordi., Loscos, 2009; Devaney et al., 2011; Nakamura,

Yoshii and Katayose, 2017), and the Viterbi algorithm. This process creates scores that

measure the goodness of the match between the sounds produced by the users and ground

truth for pitch intonation and rhythm accuracy.

One of the well-developed systems for teaching sight-singing is the study by Schramm

et al. (Schramm, Nunes and Jung, 2015, 2016). They analysed user hand gestures by using a

camera-based system as a timing measure instead of a computer-generated metronome. In

this case, their system can evaluate users’ performance based on their tempo. In addition,

since, on occasion, in some music pieces, it can be necessary to change tempo and/or time

signature, their system can handle these situations easily. Moreover, their system is one of

the rare systems that can analyse a user’s performance on a note-by-note basis; most of the

other systems give an overall score only as feedback to their users. Their evaluations on the

pitch, onset, and offset are based on a dataset generated by themselves and labelled by a

committee of sight singing experts. They analysed the experts’ labels (correct/incorrect pitch,

onset, and offset) by employing Gamma probability to determine the accuracy of a user’s

performance. The reason for using Gamma probability is that since the experts’ votes were

not precisely the same, they required a way to compute the probability of the correctness of

a note based on the aggregate experts’ opinions. Figure 2-7 depicts their Gamma probability

distributions for correct and incorrect answers based on the experts’ annotations where the

pitch is shown by 𝛥𝛥𝑓𝑓 in midi scale, onset by 𝛥𝛥𝛥𝛥 in seconds, and offset 𝛥𝛥𝛥𝛥 in seconds. The

authors of the paper mentioned their other work (Schramm, Jung and Miranda, 2015), where

the Gamma probability could work successfully, and how the characteristics of their data were

similar.

57

Figure 2-7 Gamma probability density functions estimated from two distinct training datasets. (a) annotated by
30 expert listeners. (b) annotated by five expert listeners. The parameters pitch, onset, and offset are labelled as

correct or incorrect based on the annotation (votes) given by the experts (Schramm, Nunes and Jung, 2016).

However, there are some difficulties with their study. In particular, there is an essential

question regarding the practicalities of the hardware equipment because it has a computer

vision element. There is some doubt about the percentage of pupils who want to learn sight

singing who would feel comfortable standing in front of a camera and moving their hand for

a long time to practice their sight-singing. Also, while this kind of system may be interesting

at the beginning, over time, it is not clear that which percentage of students who started using

these systems for learning would like to continue their learning with this system, particularly

because mastering sight singing requires several months or years of commitment.

Another issue in their study is that their method for finding the acceptable range of

values for pitch, onset, and offset is unreliable, as they mentioned they did not have sufficient

samples. In addition, their dataset was based on the five short pieces within which most of

the notes were only in one octave, from A3 to A4. Finally, the samples in their dataset came

from a small pool of just two music professors and three undergraduate students. Therefore,

it could be difficult to have a high level of confidence in the strength of their evaluations. This

is because the number of samples was inadequate, and only two of five performers most likely

had expertise in sight singing, and we do not know about the expertise of the other three

58

persons. Therefore, although the reported results appear to be reasonable(Lin et al., 2014;

Henry, 2015; Schramm, Nunes and Jung, 2015, 2016), some issues require attention. The most

important of these issues is how to align the sung notes with the ground truth, as discussed in

section 2.3.1.

This thesis’ aims can provide significant progress on automatic sight singing systems by

explaining how to capture and edit pitch contours in Chapters 3-5, extract notes in Chapter 6,

and distinguish the correctly sung note from the incorrect ones according to the findings in

Chapter 8.

2.3.4 Automatic tuning of singing

Tuning singing refers to changing pitch notes to be in tune. The current approaches for

auto tunning are based on comparing the sung notes with the nearest pitch frequency in an

equal-tempered scale (Salazar et al., 2015; Technologies, 2022), professional singers (Luo et

al., 2018), or the instrumental accompaniment track (Wager et al., 2020). However, several

concerns exist about the naturality of the sound generated by these software tools.

Therefore, the finding of this study can introduce a new approach that compares the

note with the features of the previous and the following notes. Thus, the shifting note can be

more natural and does not require professional song versions or instrumental accompaniment

tracks.

2.3.5 Singing imitation synthesis

Signing imitation synthesis refers to generating sound by hardware or software that

mimics a human performance to that the sounds are similar to human singing.

Goto et al. (Goto et al., 2012) analysed only the characteristics of notes, such as pitch

and amplitude, but not the position of the note in a piece of music to imitate singing.

Similarly, in the study by Zhou et al. (Zhou et al., 2020), a Generative Adversarial

Network was trained by extracting different Mandarin syllables. Then, their machine

generated sound for XML-Music files according to the trained machine. They asked ten people

to vote on the naturality of the generated sounds with their system, and used the Mean

Opinion Score (MOS) to calculate the average rating of the people's opinion. The MOS was

59

3.12 (out of 5). Their results can be improved by considering the effect of the position of the

notes in a piece of music on their pitches, duration, and loudnesses.

In the other study by Jeerapradit et al. (Jeerapradit, Suchato and Punyabukkana, 2018),

they considered several features of notes such as F0, volume, and interval to the previous and

following notes as well as the duration of them. However, their system can be improved by

considering more features such as singing technique or the existence of a rest before or after

notes.

Moreover, singing synthesizers, such as Synthesizer V 1 and Vocaloid 2, generate very

accurate pitches according to the equal temperament system, but as discussed in section

2.2.5, singers change the notes' pitches according to the positions of the notes in a piece of

music. Thus, these synthesizers can benefit from the findings of Chapter 8 to produce more

natural sounds. As an illustration, Figure 2-8 provides a screenshot from the Vocaloid. The

inputs of this software are musical scores and lyrics, and then the software will sing the lyrics

based on the notes. As shown in Figure 2-8, this tool plays the sounds with absolute pitches,

which is unnatural. Although articulations can be introduced, it is a complicated process and

difficult as the user has to try out each one until they find something that sounds good; this

could be very time-consuming as it needs to be done for every note. Thus, notes’ pitches and

duration must be changed according to their positions in the piece of music and the applied

singing technique, as discussed in section 2.2.5.

1 https://dreamtonics.com/en/synthesizerv/
2 https://www.vocaloid.com/

60

Figure 2-8 A screen shot of Vocaloid software

2.3.6 Automatic singing transcription

Automatic singing transcription refers to a computer tool that automatically converts

the sung notes to musical scores. Several commercial tools are available to convert sounds to

sheet music, such as Soundslice 1, Klangio 2, Melody Scanner 3, ScourCloud 4, and Sing2Notes5.

As reported by researchers such as (Nishikimi et al., 2019, 2021), one of the challenges in

automatic singing transcription is estimating the corresponding note in music score for each

sung note. The findings in Chapter 8 can lead to a better estimation approach for guessing the

pitches and the duration of the notes. In addition, the findings in Chapters 3 to 6 can result in

better approaches for estimating onsets as well as calculating pitches.

2.4 Conclusion

In conclusion, the state-of-the-art algorithms/tools have some difficulties correctly

estimating pitch contour from singing signals in a real-time environment. Thus, Chapters 3 and

4 guide the selection of a proper pitch detection algorithm according to the features of the

input signals. Then, they can benefit from the smoother pitch contour algorithm introduced

1 https://www.soundslice.com/transcribe/
2 https://klangio.com/
3 https://melodyscanner.com/
4 https://scorecloud.com/
5 https://sing2notes.com/

61

in Chapter 5. In addition, there are some problems with extracting notes from signing signals

such that the onset detection algorithm proposed in Chapter 6 would be suitable to improve

this task. Moreover, in general, having more data can lead to more accurate conclusions. Thus,

the annotated VocalSet dataset generated in Chapter 7 can help this objective. Finally, to

analyse and synthesise singing signals, it is necessary to quantify singers’ behaviour with

respect to changing notes’ pitches and duration according to their positions in a piece of

music. The algorithms provided in Chapter 8 can help us to understand better how trained-

professional singers perform the pitch and duration of a note according to its position in a

piece of music and the variety of singing techniques that they could apply.

Chapter 3
Pitch detection from

singing signals

This chapter aims to provide an overview on some offline and real-time state-

of-the-art pitch detection algorithms and evaluate their accuracies in singing signals.

This chapter provides a guidance of selecting pitch detection algorithm for singing

signals. The contents of this chapter are already published in the following paper.

• Faghih, Behnam & Timoney, Joseph, “An investigation into several pitch
detection algorithms for singing phrases analysis”, The 30th Irish Signals and
Systems Conference (ISSC 2019), Maynooth, Ireland.

63

This chapter's principal aim is to evaluate some state-of-the-art pitch detection

algorithms to find the most accurate one for singing signals. The following section will

introduce the dataset to be analysed and explain the difficulties associated with the pitch

detection of these files. It will also detail the software framework for the analysis. Lastly, it will

describe and justify the evaluation criteria. Section 3.2 will explain the pitch detection

algorithms and their implementations, including the importance of the parameters associated

with some of them. Then, section 3.3 will provide the results and explain each algorithm's

performance. The final section, 3.4, will conclude this chapter.

3.1 Methodology

3.1.1 Dataset

We used the VocalSet dataset (Wilkins et al., 2018), a singing voice dataset consisting of

more than 10 hours of monophonic recorded audio of professional singers demonstrating

both standard and extended vocal techniques on all five vowels. VocalSet contains recordings

from 20 different singers (11 males and nine females) with a range of voice types. VocalSet

has not only the full set of vowels but also a diverse set of voices on many different vocal

techniques, singing in contexts of scales, arpeggios, long tones, and excerpts. For this study,

the C scale and arpeggios performance of 10 males and nine females in both fast-forte and

slow-forte were selected; in other words, the musical material is the same and is of a loud

volume (forte), but in one case, it is sung at a quick tempo (fast) which in the second case the

tempo is much slower (slow). Therefore, the total number of files used was 76.

Table 3-1 illustrates the distribution of the notes in the selected files with the total

number of their reputations. As can be seen in the table, the paled notes are between C3,

130.815 Hz, and D5, 587.33 Hz. In addition, the minimum number of repetitions of the notes

belongs to D5, with 18 repetitions, and the maximum is 132 for C4.

64

Table 3-1 The distribution and total number of repetitions of the notes played by the singers in selected files.

Note Pitch frequency (Hertz) Number of repetitions

C3 130.815 80

D3 146.83 40

E3 164.815 80

F3 174.615 40

G3 196 80

A3 220 40

B3 246.94 40

C4 261.625 132

D4 293.66 56

E4 329.63 72

F4 349.23 36

G4 392 72

A4 440 36

B4 493.88 36

C5 523.25 54

D5 587.33 18

The reason for categorising the files according to gender is, as reported by other studies

such as (Drugman and Alwan, 2011; Gonzalez and Brookes, 2014; Jouvet and Laprie, 2017; de

Obaldía and Zölzer, 2019), the performances of pitch detector algorithms are different in male

and female voices. Thus, there is a similar approach by the researchers that categorized their

datasets to males’ and females’ voices to show the performances of the algorithms in each

gender. The reason for this difference is not reported, but it is not simply changing the window

size for calculating low- and high-pitch frequencies. One possible reason can be that the F0s'

harmonies generated by men’s and women’s voices may differ. However, finding the reason

for the difference in pitch estimators' performances in males’ and females’ voices is beyond

this thesis's objective.

65

3.1.2 Tools

With the natural singing files, there is no accompanying file containing the exact musical

pitches that are being sung and the times at which they are sung. To be able to assess the

accuracy of the pitch detection algorithms, therefore, such an extension to the dataset must

be made. It was considered that one possible way to achieve this is to use another signal

decomposition tool that will facilitate the isolation of the fundamental component only from

which an accurate pitch track can be obtained. This tool must be operated manually, and the

fundamental frequencies must be identified visually. The Spear tool (Klingbeil, 2005) was

discovered as being suitable for generating this ground truth. The Spear tool performs a

frame-by-frame sinusoidal analysis (Serra and Smith, 1990), identifies all the important peaks

in each frame, and connects together peaks that exhibit a trajectory. Additionally, the Spear

tool provides both a visualization of all the important frequency components in an audio file,

and a means by which they can be edited and removed. Thus, all unwanted components

except the fundamental can be deleted, and a ground truth can be achieved. In Figure 3-1,

two screenshots of the visualization of Spear are given. In the above part of this figure, the

highlighted line, the red line, is the base pitch, and any other lines in black and grey are the

harmonics. The strength of a component is indicated by the colour, varying from grey to black,

illustrating weak to strong. By manually finding the fundamental frequencies, all other

components can be deleted, and a frequency-varying sinusoid with respect to the

fundamental frequency can be resynthesized. The isolated fundamental is shown in the lower

panel in Figure 3-1. On all occasions, selecting the base pitch among the components was

found to be straightforward.

66

Pi

tc
h

fre
qu

en
cy

 (H
er

tz
)

 Time (second)

Figure 3-1 Example of the interface for Spear with the fundamental frequencies highlighted in red. In general,
strong components are black, and weak ones are grey.

3.2 Pitch detection algorithms

Four well-known pitch detection algorithms (PYIN, Praat, PLL-Based, and Kalman filter)

were selected for this study. Different tools were employed to implement these algorithms.

The Tony tool (Mauch et al., 2015) was used to analyse as it contains an implementation

of the PYIN algorithm (Mauch and Dixon, 2014). One of the valuable features of this tool is

that once the pitches have been detected, all the estimated frequencies can be saved into a

text file. The PYIN algorithm is based on the YIN algorithm, and its approach is to consider

multiple candidates for the pitch based on a probabilistic interpretation of the earlier YIN (de

Cheveigné and Kawahara, 2002) pitch detection algorithm. A HMM is used to produce the

67

final pitch track from the estimates (Mauch and Dixon, 2014). Regarding the Yin algorithm,

upper and lower F0 search bounds are essential parameters for most methods. In contrast to

other methods, YIN needs no upper limit (it tends, however, to fail for F0s beyond one-quarter

of the sampling rate) (de Cheveigné and Kawahara, 2002). A wide range increases the

likelihood of ‘‘finding’’ an incorrect estimate, so relatively low error rates despite a wide

search range indicate robustness (de Cheveigné and Kawahara, 2002).

The Praat tool (Boersma and van Heuven, 2001) is employed to analyse the dataset

based on the Boersma algorithm (Boersma, 1993). This uses an autocorrelation approach

followed by dynamic programming to find the best path among a set of pitch candidates. The

author of this paper (Boersma, 1993) was looking to tackle some issues regarding the

sampling and windowing approaches to pitch detection. The main issue is accurately

determining the position and height of the maximum peak in the autocorrelation function

and, thus, the correct pitch (Boersma, 1993). In PRAAT, all the estimated frequencies can be

saved into a text file.

Matlab is used to implement the Extended Complex Kalman Filter (ECKF) (Das, Smith

and Chafe, 2017) and the PLL-Based pitch detection (Zolzer, Sankarababu and Moller, 2012)

algorithms.

The ECKF algorithm operates on a sample-by-sample basis. This algorithm is based on

the Kalman filter, a well-known approach to tracking parameters in noise. However, in the

case of the ECKF, there is a nonlinear relationship between the changing state (pitch value)

and the observation (the output waveform). Furthermore, the iterative nature of the

algorithm means that at the beginning of a sound, it has difficulty estimating the pitch, but

after a while, the parameter values adapt to give better estimates.

Similar to ECKF, the PLL-based pitch detection provides a sample-by-sample

instantaneous pitch estimation. Its basic operation is to lock its internal oscillator to the input

signal in such a way to minimize the error in phase between the two (Zolzer, Sankarababu and

Moller, 2012). PLLs are a common tool in communication applications, and only recently have

found applications for audio pitch detection.

68

One of the difficulties in implementing the PLL and Kalman algorithms is finding the best

values for their parameters. In this study, in order to find the best value for their parameters,

after selecting a wave file from the dataset, testing loops with small step sizes were used to

create values for the parameters across their possible ranges. Many files were generated to

assess the different values for parameters. Then, by plotting the data, the values for the

parameters can work well with the selected sound file can be ascertained. Consequently,

those parameters were then applied to the whole dataset, and the estimated pitch

frequencies were saved.

The author of this dissertation created a Singing Data Analyser tool, written in C#, and

was used to manage the testing of these pitch detection algorithms. The inputs of this

software tool are the text files generated by the Tony, Praat, or Matlab software. After

preparing the format of the input text files, this tool facilitated the plotting of the results.

3.3 Results

Praat and PYIN worked well with all dataset items, as highlighted in Table 3-2 and Table

3-3, without any incorrect pitch estimation. In these tables, oct means the octave-doubling

problem, and inc means any other incorrect estimation other than octave-doubling. On the

other hand, the performances of the PLL and Kalman were not promising. Because out of the

76 files, only the pitch contours from 16 and 48 files were found correctly by the PLL and

Kalman algorithms, respectively. In addition, it can be observed that the Kalman algorithm

worked better for female voices than male voices, with 70 correct estimations for females

compared to 54 for male performances. In order to find the reason for this issue, one of the

men’s voices was selected to find the best algorithmic parameters for that file. After that,

these new algorithmic parameters were applied to the files of men’s voices only, but then this

implementation resulted in more inaccurate pitch values in comparison to previously.

Therefore, the sensitivity of the ECKF algorithm was clear.

Moreover, in both PLL and Kalman implementations, more problems were observed

than just octave doubling: it was often trebling or more due to an octave overestimation or

higher harmonic tracking. Examples of octave doubling are shown in Figure 3-2 (a) and other

problems in Figure 3-2 (b). However, the detected contours for the PYIN and Praat algorithms

69

are overlaid with the ground truth contour and are thus hidden by it because they are the

same except in a few instances that can be seen in Figure 3-2 (b) for the PYIN around time

3.75 sec and 5.5 sec that they are not fully aligned with the ground truth.

Table 3-2 the number of incorrect instances of f0 determination in the pitch detection algorithms for the
fast-forte data

 Female Male

 Scale Arpeggios Scale Arpeggios

 octa incb oct inc oct inc oct inc

PYIN 0 0 0 0 0 0 0 0

PLL 0 4 0 5 4 6 2 8

Kalman 2 0 2 1 4 3 5 2

Praat 0 0 0 0 0 0 0 0
a. oct = Octave-doubling

b. inc = incorrect

Table 3-3 The number of incorrect instances of f0 determination in the pitch detection algorithms for the slow-
forte data

 Female Male

 Scale Arpeggios Scale Arpeggios

 octa incb oct inc oct inc oct inc

PYIN 0 0 0 0 0 0 0 0

PLL 3 3 2 4 3 6 4 6

Kalman 0 0 0 1 2 1 2 3

Praat 0 0 0 0 0 0 0 0
a. oct = Octave-doubling

b. inc = incorrect

70

(a)

Pi
tc

h
fre

qu
en

cy
 (H

er
tz

)

 Time (seconds)

(b)

Pi
tc

h
fre

qu
en

cy
 (H

er
tz

)

 Time (seconds)

Figure 3-2 Example outputs of the various pitch detection algorithms

Figure 3-3 This picture depicts the PLL algorithm problem at the beginning of sounds

Pi
tc

h
fre

qu
en

cy
 (H

er
tz

)

 Time (seconds)

71

Another observation was that since the Kalman filter and the PLL are real-time

algorithms that detect the pitch on a sample-by-sample basis, they will settle before they start

to track correctly, as shown in Figure 3-3 that at the beginning of estimation, they could not

calculate the F0s correctly. However, the PYIN and Praat algorithms have some pre-processing

to get everything into line, forcing errant values to confirm their detected contour.

Another comparison was conducted to ascertain the standard deviation of the

differences between each algorithm and the ground truth. It was conducted by subtracting on

a sample-by-sample basis the estimated pitch of each algorithm from its corresponding pitch

in the ground truth for all the 76 recorded files. Finally, the average of each algorithm's

standard deviations was calculated and presented in Table 3-4. This measurement can provide

an overview of the frequencies detected compared to ground truth. If the value is zero, the

algorithm estimated the pitches without any variance, and if the result is closer to 0, it is better

than when it is far from zero. This table shows that the best performance was recorded for

PYIN, followed by Praat and Kalman, and the worst was for the PLL algorithm.

Table 3-4 Diff between the standard deviation of each algorithm with ground truth

 PYIN Praat Kalman PLL

Diff Std with ground truth’s Std (in
Hertz) 54.13 64.15 83.99 99.89

3.4 Conclusion

This chapter has analysed the performance of four pitch detection algorithms. The PLL

and ECKF operate on a sample-by-sample basis, so they seem suitable for real-time

implementations. From the experimental results, it was observed that PYIN had the best

performance, followed by Praat. However, these two algorithms are offline; thus, they are

unsuitable for the real-time singing analysing objectives of this thesis, albeit they will be used

to generate ground truth data in Chapters 5, 6 and 7. On the other hand, the performance of

the ECKF and PLL algorithms was not good and, in many cases, exhibited inaccuracies that

were manifested as the pitch appearing in the incorrect octave and displaying spurious large

deviations. One problem recognized with the ECKF and PLL algorithms is that they are very

sensitive to the set of algorithm parameters and highly dependent on the input data. This

means that for different input data, it is necessary to find the most appropriate values before

72

applying the algorithm. This is a disincentive to applying these algorithms, which means a

significant pre-processing step is required.

The results from a previous study by (Gupta, Li and Wang, 2017) support our result that

the PRAAT (Boersma and van Heuven, 2001) pitch estimator gives the best voicing boundaries

even without post-processing, while the source-filter model-based STRAIGHT (Kawahara, Estill

and Fujimura, 2001) pitch estimator is the most robust algorithm in noisy conditions. Finally,

the modified autocorrelation-based estimator YIN (de Cheveigné and Kawahara, 2002)

achieves the best pitch detection accuracy, but it requires many post-processing steps

depending on the properties of the music type being analysed, as described in (Dixon and

Effects, 2005).

 It is found that the PLL and ECKF algorithms should be modified to find the best

implementation arrangement to work well with human voices. In addition, an effective

method should be found that could adjust the algorithm parameters dynamically in scenarios

where input signals have properties that vary rapidly.

The generated ground truth dataset and the found reliable offline pitch detection

algorithms, PYIN and Praat, can be used as ground truth to compare the real-time algorithms’

accuracy. Therefore, the next chapter will evaluate several real-time pitch detection

algorithms.

Chapter 4

An investigation into several

real-time pitch detection

algorithms in singing signals

The two main objectives of this chapter are: firstly, comparing several real-

time pitch detection algorithms with different parameters to find the best ones for

detecting the pitch from live monophonic singing. Secondly, finding a method to

distinguish the set of correctly detected pitches. The contents of this chapter are

already published in the following preprint paper.

• Faghih, Behnam & Timoney, Joseph, “Real-Time monophonic singing pitch
detection”. http://dx.doi.org/10.13140/RG.2.2.22054.19526

http://dx.doi.org/10.13140/RG.2.2.22054.19526

74

This chapter evaluates the efficiency and correctness of several real-time pitch detection

algorithms applied to the singing voice based on different. Moreover, several approaches are

investigated to assess the estimated pitches' accuracy. Therefore, after explaining the

research methodology in section 4.1, the results and discussion are presented in section 4.2.

A section with a conclusion will follow this.

4.1 Materials and Methods

4.1.1 Pitch detection algorithms

As it is mentioned in Chapter 3, the newer real-time pitch detection algorithms could

not find the F0s from signing signals appropriately. Thus, this chapter selected some well-

known/ common in used real-time algorithms, but older algorithms, to evaluate their

performance in signing signals.

Therefore, the seven real-time pitch detection algorithms investigated are Yin (de

Cheveigné and Kawahara, 2002), spectral YIN or YIN Fast Fourier transform (YinFFT), YinFast,

Fast comb spectral model (FComb), Multi comb spectral filtering (MComb), Schmitt trigger,

and spectral auto-correlation function (Specacf). The Aubio 1 library (Aubio, no date), one of

the well-known libraries in music information retrieval in Python, was used for implementing

these algorithms. A short description of each algorithm is presented in the following, and the

full details of their workings are given by Brossier (Brossier, 2006).

Yin: as mentioned in Chapter 3, Yin is a time-domain function called the cumulative

mean normalised difference function (CMDF). It is related to an earlier pitch detection

technique called the Average Magnitude Difference Function (AMDF), proposed as a

computationally efficient alternative to the autocorrelation function. The estimated pitch

comes from finding the peak in this CMDF. It normally employs some form of interpolation,

parabolic interpolation, for example, to improve the accuracy of the estimated pitch (Faghih

and Timoney, 2019a).

YinFFT: it is a spectral domain implementation of Yin by employing the Fast Fourier

Transform (FFT). In this implementation of the Yin algorithm, the dependency on the threshold

1 https://aubio.org/manual/latest/cli.html#aubiopitch

https://aubio.org/manual/latest/cli.html#aubiopitch

75

parameter is removed by selecting the best period candidate by finding the minimum in the

difference function (Brossier, 2006).

YinFast: it is an optimised implementation of the YIN algorithm to improve its time

complexity from 𝑂𝑂(𝑛𝑛2) to 𝑂𝑂(𝑛𝑛 log(𝑛𝑛)). It uses two Fourier transforms in the different

functions of the Yin algorithm to reduce the cost of calculating the whole spectrum (Brossier,

2006).

FComb: it is a spectral pitch detection approach that finds the N peaks with the most

significant energy within each spectral frame and stores them in an array. Then, it will compare

the peaks to each other by starting with the most energetic one. If the other F0s is a

subharmonic of the highest selected peak, and its energy is higher than half of the selected

peak, it is designated as the F0 (Lang, 2003; Brossier, 2006).

MComb: it is a spectral frame approach that includes some pre-processing on the input

signal to enhance mid-range frequencies and reduce the high and low parts of the spectrum.

Then, after detecting the spectral peaks, they are passed to a harmonic comb. The assumption

for monophonic signals is that one of these most substantial peaks corresponds to the pitch

of the present note (Lepain, 1999; Bello Correa, 2003; Brossier, 2006).

Schmitt trigger: it is one of the time-domain approaches based on using thresholds

applied to the waveform of the selected frame to find its periodicity and then estimate the

pitch (Simpson, 1987; Lang, 2003; Brossier, 2006).

Specacf: the autocorrelation function compares the time-domain data of the frame with

delayed versions of itself on a sample-by-sample basis. The autocorrelation function will show

peaks in proportion to the periodicity of the frame. Detecting these peaks and then weighting

the spectral components based on their spectral location leads to estimates for F0 (Klapuri,

2000; Brossier, 2006).

4.1.2 Generating a Dataset

The database of this study is the same as the dataset of the previous chapter, discussed

in section 3.1.1. Therefore, the ground truth generated in the previous chapter was used.

In order to compare the efficiency of the pitch detection algorithms, several parameters

and processes were employed on the selected files from VocalSet, and thus, an extended

76

dataset was generated. To achieve this goal, the selected files were played through an

ordinary speaker and recorded by an ordinary microphone. Based on the experience of Jouvet

and Laprie (Jouvet and Laprie, 2017) that a close-talk microphone provides clean data, the

microphone was located very close to the speakers, at a distance of less than 10cm.

Moreover, 44100 samples per second were considered for the recording files' sampling

rate. Then, each algorithm was applied twice on each file with different window sizes, 1024

and 2048 samples, and the hop size was half the window size. The reason for selecting these

window sizes is to have enough samples for the range of the human singing pitch frequencies

used in this study. As reported by Paliwal and Wojcicki (Paliwal and Wojcicki, 2008), windows

with a duration of around 15-35 ms are a good choice for pitch detection in human voices.

Therefore, the window sizes 1024 and 2048 were selected to have the duration of around 12

ms and 23 ms, respectively. Similarly, Gawlik & Wszołek (Gawlik and Wszołek, 2018) used a

window with a duration of 22 ms for singing pitch detection.

Therefore, each file was played 14 times, and the seven different algorithms (as

explained in Section 4.1.1) were applied twice, but with different window sizes. The detected

pitches were saved in different text files. Each algorithm incorrectly identified some pitch

values. This occurred when the incorrect spectral peak was identified as the F0 and produced

a result that gave an obvious disturbance to the smoothness of the pitch contour. To fix these

incorrect pitches, a Smart-Median post-processing algorithm (Faghih and Timoney, 2022b),

which will be shortly explained in section 4.1.3.1 and fully in Chapter 5, was applied.

As a result, a dataset containing 2128 files was created. These files were categorised by

the algorithm (seven algorithms), Gender (male and female), interval (scale and arpeggios),

with and without post-processing, window sizes (1024 and 2048), and speed of performance

(slow and fast). These categories and the total number of files in each category are shown in

Table 4-1. Thus, there are 304 files in the generated dataset for each algorithm. This dataset

is available online in a GitHub repository1.

1 https://github.com/BehnamFaghihMusicTech/Singing-Pitch-Detection, accessed on 11 July 2022

https://github.com/BehnamFaghihMusicTech/Singing-Pitch-Detection

77

Table 4-1. Categories and number of files in the generated dataset for each pitch detection algorithm. The
columns titled “with” mean post-processing, and the columns titled “without” mean without post-processing.

 Female Male

 Scale Arpeggios Scale Arpeggios

 Without With Without With Without With Without With

Window size 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048

Slow 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10

Fast 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10

4.1.3 Post-processing

After recording the estimated pitches by each algorithm, two post-processes, Smart-

Median (Faghih and Timoney, 2022b) and shifting, were applied to the recorded files. The

steps of these post-processes are depicted in Figure 4-1.

4.1.3.1 Smart-Median

Smart-Median is a novel pitch contour smoother algorithm defined especially for pitch

contours created by real-time pitch detectors on singing signals. This algorithm adjusts the

standard median and is tuned to the features of singing pitch contours. The Smart-Median will

be discussed in detail in Chapter 5.

Section 4.2.3 explains how the Smart-Median algorithm improves the accuracy of the

pitch contours by a factor of 5.

4.1.3.2 Shifting

The detected pitches should be compared with the ground truth to evaluate each

algorithm's performance. However, before that, finding the best alignment between the

detected pitches and the ground truth is necessary. This has been determined by shifting the

recorded file backwards or forwards to ascertain the minimum distance between it and its

corresponding ground truth (Jouvet and Laprie, 2017). Figure 4-1(d1) and Figure 4-1(d2), as

compared to Figure 4-1(c1) and Figure 4-1(c2), illustrate how shifting makes the best

alignment between the estimated and ground-truth pitch contours.

78

(a)

Correcting invalid pitches with the Smart-Median Without Smart-Median

(b1)

(b2)

 Having the same silence duration at the beginning

(c1)

(c2)

After alignment (shifting)

(d1)

(d2)

Difference between the two series

(e1)

(e2)

Figure 4-1. Illustrating post processes on detected pitches. (a) is the detected frequencies, (b1) is the detected
pitches after replacing invalid frequencies with Smart-Median, (b2) is exactly frequencies in (a) without

correcting the invalid pitches. (c1) and (c2) are setting the silence duration at the beginning of the estimated
frequencies as long as the ground truth. Frequencies are shifted in (d1) and (d2) to find the best alignment with

the ground truth. (e1) and (e2) show the difference between ground truth and estimated frequencies.

79

It should be mentioned that having different silence durations at the beginning of each

recorded file was unavoidable due to the time of pressing the start recording button. Thus,

before shifting, it is set to be precisely the exact duration of silence by adding/removing some

zero values at the beginning of each recorded file. Consequently, there is a match at the

beginning of the recorded files and corresponding ground truth files. Figure 4-1(c1) and Figure

4-1(c2) illustrate that when the estimated pitches in Figure 4-1(b1) and Figure 4-1(b2) have

the same silence at the beginning, we have a better alignment with the ground truth. In

addition, it is possible to figure out the delay of each algorithm to estimate the pitches

correctly by finding the duration took that the estimated pitch contour aligned well with the

ground truth.

4.1.4 The difference between estimated pitch contour and ground truth

To better understand the performance of each pitch detection algorithm, the difference

between the estimated pitches and the ground truth is prepared. This is shown in Figure

4-1(e1) and Figure 4-1(e2). Therefore, after shifting the estimated pitches to find the best

alignment, the differences between all the values were calculated by subtracting each

estimated F0 value from its corresponding ground truth’s F0 value, and the result was saved

in a text file. Finally, these files are combined with the dataset.

4.1.5 Labelling estimated pitch contours

After generating the dataset as explained above, all the files were plotted (similar to

Figure 4-1(d1)) to label whether the estimated pitch contours were correct. All the files were

categorised into three groups: 1- correct (when the plotted contours of the estimated pitches

are perfectly aligned on the corresponding ground truth contours, Figure 4-2(a)), 2- incorrect

(such that the estimated pitch contour is not correct and that no matter what extra post-

processing is applied they will not become correct, as illustrated in Figure 4-2 (b)), 3- almost

correct means that this needs more post-processing to improve the result (i.e. on comparing

the pitch contour of the estimated pitches with the pitch contour of the ground truth, it is

recognised that a small number of pitches are misestimated, and it is expected that with some

judicious post-processing, they could be corrected, as exemplified in Figure 4-2(c)).

80

(a) correct (b) incorrect (c) needs more process

Figure 4-2. The three categories for estimated pitch contours based on their correctness. (a) almost all the
pitches are correct. (b) most of the pitches are incorrect, and (c) a few of the estimated pitches are incorrect, but

it is expected that the incorrect pitches can be fixed with more post-processing.

As illustrated in Table 4-2, none of the algorithms can estimate the pitch contour

properly without the Smart-Median post-processing. The best performance without post-

processing was recorded for MComb, followed by YinFast, YinFFT, and Yin. While Schmitt,

FComb, and Specacf could not correctly determine pitch contour without post-processing. A

possible reason that Schmitt and Specacf algorithms could not estimate F0s correctly is that

they are working on the time domain and sample-by-sample approach, which is challenging

according to singing signals that are very fluctuation compared to signals from most

instruments.

Table 4-2. Number of correct and incorrect estimated pitch contours for each algorithm without post-processing

 Correct Need more process Incorrect

Yin 4 133 15

YinFast 19 124 9

YinFFT 19 100 33

FComb 0 3 149

MComb 32 42 78

Schmitt 0 0 152

Specacf 0 0 152

Nevertheless, according to Table 4-3, after the post-processing, Yin, YinFFT, and YinFast

could correctly produce more than 58% of pitch contours. Although YinFFT recorded the

highest number of correct pitch contours, it seems possible to improve Yin and YinFast

performances by designing some new post-processing algorithms.

As can be observed from Table 4-2 and Table 4-3, the Smart-Median post-processing

improved the performance of the algorithms by more than five times overall; that is, there

were 74 correct pitch contours without the post-processing as compared to 382 correct pitch

contours after the post-processing.

81

Table 4-3. Number of correct and incorrect estimated pitch contours for each algorithm after post-processing

 Correct Need more process Incorrect

Yin 89 60 3

YinFast 101 50 1

YinFFT 107 26 19

FComb 20 44 88

MComb 65 21 66

Schmitt 0 0 152

Specacf 0 1 151

4.2 Results and Discussions

There are some common evaluation strategies used when comparing pitch detection

algorithms. Researchers such as (Cheng et al., 1976; Rabiner et al., 1976; Drugman and Alwan,

2011; Jouvet and Laprie, 2017; Drugman et al., 2018; de Obaldía and Zölzer, 2019) usually

compare pitch detection algorithms based on four methods. First, the Voicing Decision Error

(VDE) (Nakatani et al., 2008) is the proportion of frames for which an error in the voicing

decision is made. Second, the Gross Pitch Error (GPE) (Nakatani et al., 2008) is the proportion

of frames that are considered to be voiced by both the ground truth and the pitch estimator

where the relative error of F0 is higher than a certain threshold. Third, Fine Pitch Error (FPE)

(Wei Chu and Alwan, 2009) is defined as the standard deviation of the distribution of the

relative error of F0 for which this error is below a threshold (usually 20%). Fourth, the F0 Frame

Error (FFE) is the proportion of frames where an error is made. FFE alone can provide an

overall performance of a pitch detection algorithm (Wei Chu and Alwan, 2009; Drugman and

Alwan, 2011).

In this study, besides FFE, several other comparisons have been made on the data

obtained from the pitch contours estimated by various algorithms to contrast the algorithms’

performance, thus ascertaining their efficiencies in different situations. The bases for the

comparisons for this study were as follows:

• Correctness: how many pitch contours estimated by each algorithm are entirely

correct?

82

• Delay: what is the time delay from the commencement of the analysis to when the

estimate of F0 is accurate?

• Post-processing effect: what is the percentage of the number of correctly detected

pitches by each algorithm before and after post-processing?

• Overall: how accurate is the estimated F0?

4.2.1 Correctness

In this section, the performances of each algorithm based on their correctness are

evaluated. These evaluations are categorised into three groups of data: 1- both fast and slow,

2- fast, and 3- slow performances.

4.2.1.1 The correctness of both fast and slow performance

Table 4-3 shows, without considering any particular category, the order of performance

of all algorithms from the best to the worst after post-processing. Out of 152 pitch contours

in total for each algorithm, the percentage of contours for each that were identified as correct

were, in order of best first, YinFFT = 70.39%, YinFast = 66.45%, Yin = 58.55%, MComb = 42.76%,

FComb = 11.84%, Schmitt = 0%, and Specacf = 0%.

From Brossier (Brossier, 2006), their experience of analysing recorded Opera

performances of two men and two women, the ordering of the algorithms in terms of their

accuracy was YinFFT 56%, MComb 52%, FComb 49%, Yin 37% and Schmitt 23%, which supports

our result. The main difference between the Brossier result and ours is the position of the Yin

algorithm in the ranking. It should be mentioned that before post-processing, we had the

same experience that the performance of the MComb was better than Yin, but after the post-

processing, the order switched.

In addition to this, in our experience, the accuracy of the algorithms is different for males

and females. This is illustrated in Table 4-4. For females, the best algorithm to the worst one

after the post-processing are YinFFT = 100%, YinFast = 93.06%, Yin = 72.22%, MComb =

65.28%, FComb = 25%, Schmitt = 0%, and Specacf = 0%. On the other hand, the order for males

after post-processing is Yin = 46.25%, YinFFT = 43.75%, YinFast = 42.5%, MComb = 22.5%,

FComb = 2.5%, Schmitt = 0%, and Specacf = 0%. Therefore, the best approach for females is

YinFFT, but for males, it is Yin. Generally, it is observed that pitch detector algorithms could

83

work better on females’ voices than males’ voices. The possible reasons for this different

performance of the algorithms can come from the difference between men’s voices and

women’s voices spectrogram. That is, the harmonies layers and their amplitude in

spectrograms are different (Jitendra and Radhika, 2021).

Table 4-4. Total correctness of each algorithm categorised by gender, music type, post-processing, and window
size in both fast and slow performance

 Female Male

 Scale Arpeggios Scale Arpeggios

 Without With Without With Without With Without With

Window size 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048

Yin 1 0 17 10 1 1 16 9 0 0 12 9 1 0 9 7

YinFast 7 1 16 18 5 2 16 17 2 0 11 8 2 0 11 4

YinFFT 8 4 18 18 4 3 18 18 0 0 4 13 0 0 4 14

schmitt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FComb 0 0 2 6 0 0 3 7 0 0 0 1 0 0 0 1

MComb 2 9 10 10 2 9 14 13 0 5 3 5 1 4 3 7

Specacf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

It can be concluded from these results that the algorithms perform better on Female

voices than Male ones, with 25.4% as opposed to 11.25% correct contours, respectively.

Although we used two different window sizes, considering our results alongside those of the

de Obaldía and Zölzer study (de Obaldía and Zölzer, 2019), it seems that for detecting the low

pitch frequencies exhibited by men’s voices, a window size of 4096 samples in 44100Hz

sample rate should be a better choice. However, although de Obaldía and Zölzer (de Obaldía

and Zölzer, 2019) used window sizes of 2048 and 4096, they also experienced better results

on female voices over male voices. However, a long window size may not be suitable for real-

time applications since it reduces the resolution of the estimated pitches. For example, the

window size of 4096 in 44100Hz sampling rate, making an extra delay of 46 ms compared to

a window size of 2048. In addition, it can cause more inaccuracy on detecting onset and offset

of notes, which is discussed in Chapter 6, because onset of a note will be considered one of

the estimated pitches.

Regarding window size, a significant performance difference was not found between the

two window sizes for our analysis in that there are 35.15% and 36.65% correct pitch contours

84

for 1024 and 2048 window sizes, respectively, after post-processing. Similarly, there was no

performance difference between the Scale and Arpeggios test signals because 35.9% correct

pitch contours were observed for both.

To recap, a significant different in the window sizes was not found, but the algorithm

with the maximum number of correct pitch contours for females was YinFFT, while for males,

it was YinFast. Furthermore, for both genders, post-processing is necessary. Finally, post-

processing has improved the accuracy of algorithms by more than a factor of 5.

4.2.1.2 The correctness of fast performance

For the fast performance, as can be observed from Table 4-5, the best performance after

post-processing was recorded by YinFast with 76.32% accurate pitch contour estimations,

followed by YinFFT = 68.42%, Yin = 63.16%, and MComb = 61.84%. On the other hand, the

worst algorithms were FComb, Schmitt, and Specacf, with 11.84%, 0%, and 0%, respectively.

Table 4-5. Total correctness of each algorithm categorised by gender, music type, post-processing, and window
size in only fast performance

 Female Male

 Scale Arpeggios Scale Arpeggios

 Without With Without With Without With Without With

Window size 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048

Yin 0 0 9 3 1 1 8 1 0 0 6 9 0 0 5 7

YinFast 7 0 9 9 5 1 8 9 2 0 9 4 2 0 8 2

YinFFT 6 4 9 9 2 1 9 9 0 0 2 6 0 0 2 6

schmitt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FComb 0 0 0 4 0 0 0 3 0 0 0 1 0 0 0 1

MComb 2 9 9 9 2 9 9 8 0 5 2 4 0 4 2 4

Specacf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In addition, the algorithms do not have the same accuracy for both male and female

voices. The order from the best to the worst algorithm for females’ voices is YinFFT = 50%,

YinFast = 48.61%, MComb = 48.61%, Yin = 29.17%, FComb = 9.72%, Schmitt = 0%, and Specacf

= 0%. On the other hand, the order for males is Yin = 33.75%, YinFast = 28.75%, YinFFT = 20%,

MComb = 15%, FComb = 2.5%, Schmitt = 0%, and Specacf = 0%. Thus, the best ones after post-

processing for female voices were YinFFT, with YinFast, and MComb coming very close, but

for male voices, it was Yin.

85

Post-processing generally improved algorithms' accuracy by a factor of more than 3.

Again, the algorithms work much better on female than male voices, i.e., 53.17% correct

compared to 28.57%, respectively. A significant difference between the two window sizes of

1024 and 2048 is not observed. Similarly, a significant difference is not observed between the

results for Scale and Arpeggios test data.

To recap, the best accuracy for female voices was obtained by the YinFFT algorithm with

a window size of 1024, but for male voices, it was simply Yin with a window size of 2048.

Moreover, for both genders, post-processing was necessary.

4.2.1.3 The correctness of slow performance

Regarding the slower performances, the best accuracy after post-processing was shown

by YinFFT with 72.37% accurate pitch contours, followed by YinFast = 56.58% and Yin =

53.95%. On the other hand, the worst algorithms are MComb, FComb, Schmitt, and Specacf,

with the number of correct pitch contours being 23.68%, 15.79%, 0%, and 0%, as shown in

Table 4-6.

Table 4-6. Total correctness of each algorithm categorised by gender, music type, post-processing, and window
size in only slow performance

 Female Male

 Scale Arpeggios Scale Arpeggios

 Without With Without With Without With Without With

Window
size

1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048

Yin 1 0 8 7 0 0 8 8 0 0 6 0 1 0 4 0

YinFast 0 0 7 9 0 1 8 8 0 0 2 4 0 0 3 2

YinFFT 2 0 9 9 2 2 9 9 0 0 2 7 0 0 2 8

schmitt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FComb 0 0 2 2 0 0 3 4 0 0 0 0 0 0 1 0

MComb 0 0 1 1 0 0 5 5 0 0 1 1 1 0 1 3

Specacf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The accuracy of the algorithms is the same for both male and female voices. For both

genders, the best one is YinFFT, and the best algorithm to the worst one is YinFFT, YinFast, Yin,

MComb, FComb, Schmitt, and Specacf. Post-processing improved the accuracy of the

algorithms by approximately 17 times.

86

As previously observed, the algorithms work better on female than male voices, with

48.41% correct pitch contours compared to 16.79% correct ones after post-processing,

respectively. A significant difference between the two window sizes, 1024 and 2048, is not

observed, albeit the bigger window size worked a bit better on male’s voices. Similarly, a

significant difference is not observed between the performances of Scales and Arpeggios.

In summary, for both genders, the best accuracy is obtained with the YinFFT, but for

female voices, a window size of 1024 worked better, while for male voices, it was a window

size of 2048. In addition to this, post-processing is necessary to improve the performance of

both genders’ voices.

4.2.2 Delay

It will take a short time for most algorithms to start estimating the pitches correctly.

Since the algorithms use different methods for estimating F0, this time is quite variable. This

subsection evaluates the time each algorithm took to estimate the pitch contour correctly.

We describe this as a delay.

In order to find the delay, only pitch contours deemed to be correct after the post-

processing were selected, and the exact amount of silence was set at the beginning of each

file to have the exact duration of the silence at the beginning of the corresponding ground

truth file as can be observed looking from Figure 4-1(b1, b2) to Figure 4-1(c1, c2). Three

categories were considered for evaluating the delay: 1- both slow and fast performances, 2-

fast performances, and 3- slow performances.

4.2.2.1 Delay in both fast and slow performances

Table 4-7 shows the average duration of the delays recorded by each algorithm. A

shorter delay is believed to be better than a longer one since it can estimate accurate pitches

more instantaneously. It can be observed from Table 4-7 that the best performance recorded

by MComb is with a 25 ms delay, followed by FComb with a delay of 34ms, YinFFT exhibits a

delay of 45ms, Yin has one of 58ms, and YinFast was the slowest with a delay of 60ms.

Alongside this, the average duration of the delays for the algorithms differs for the male

and female voices. The best performance was given by FComb for female voices, but for Male

voices, it was by MComb.

87

Post-processing, on average, increases the offset due to a delay from 94 ms to 245 ms.

The reason is that the post-processes are ameliorating the incorrectly detected pitches at the

beginning of the sounds.

Overall, the algorithms worked better with female voices than male voices, leading to a

96 ms delay compared to 243 ms, respectively.

Table 4-7. The average delay in each algorithm categorised by gender, music type, post-processing, and window
size in both fast and slow performance (in milliseconds)

 Female Male

 Scale Arpeggios Scale Arpeggios

 Without With Without With Without With Without With

Window
size

1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048

Yin 65 4 38 21 27 0 35 37 174 80 95 107 78

YinFast 22 39 19 34 8 48 20 89 147 93 126 101 38

YinFFT 32 15 24 14 43 14 40 16 16 129 120 34 61 67

Schmitt

FComb 13 14 0 73 43 59

MComb 17 7 25 11 30 4 25 9 32 40 40 42 38 26

Specacf

According to Table 4-7, the delay recorded for the 2048 window size is almost half of

that for the 1024 window size, on average; i.e., it was given by the values of 126 ms and 213

ms, respectively.

However, a significant difference is not observed between the Scale and Arpeggios test

signals' delay values, 177 ms and 163 ms on average, respectively.

To recap, for both male and female voices, the best accuracy concerning delay was

obtained for MComb with a window size of 2048. Moreover, as can be seen in Table 4-8 and

Table 4-9, the same conclusion can be reached regarding the fast and slow performances.

Thus, the speed of performance does not significantly influence the delay.

88

Table 4-8. The average delay in each algorithm categorised by gender, music type, post-processing, and window
size in only fast performance (in milliseconds)

 Female Male

 Scale Arpeggios Scale Arpeggios

 Without With Without With Without With Without With

Window
size

1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048

Yin 52 16 27 0 33 23 145 104 114 90

YinFast 22 6 32 6 34 2 27 -4 89 116 52 143 100 17

YinFFT 28 5 31 13 33 1 32 12 81 83 133 68

Schmitt

FComb 14 3 73 59

MComb 17 7 25 10 30 4 22 6 32 61 41 42 41 40

Specacf

Table 4-9. The average delay in each algorithm categorised by gender, music type, post-processing, and window
size in only slow performance (in milliseconds)

 Female Male

 Scale Arpeggios Scale Arpeggios

 Without With Without With Without With Without With

Window
size

1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048

Yin 65 40 27 36 61 192 61 95 102

YinFast 45 22 14 66 23 178 114 91 109 51

YinFFT 34 15 17 15 44 10 48 21 16 130 144 34 62 58

Schmitt

FComb 13 1 43

MComb 15 34 12 52 39 35 6

Specacf

4.2.3 Evaluating the accuracy of the estimated F0

Another analysis conducted was to create a reliable technique that determines whether

or not an estimated F0 is correct. As can be observed from Figure 4-1(d1, e1), pitch detector

algorithms do not estimate pitches precisely with the same value but within an acceptable

range. For example, the estimated pitch contour is not perfectly aligned with the ground truth

in Figure 4-3.

89

(a1) window size 1024 - before trimming (a2) window size 2048 – before trimming

(b1) window size 1024 – after trimming

(b2) window size 2048 – after trimming

Figure 4-3. Trimming estimated pitch contour. (a1) and (a2) are post-processed estimated pitch contours with
window sizes 1024 and 2048, respectively. (b1) and (b2) represent (a1) and (a2) by removing 15% of duration

from the beginning and also 15% from the end of the pitch contours.

Only the pitch contours estimated correctly, with the FFE less than 1%, were considered

to find the acceptable range. However, it should be mentioned that almost all correctly

estimated contours can still have some problems at the beginning and end of the sounds.

Therefore, the sound waveforms were truncated by 15% at either end to remove the

incorrectly estimated pitches, as shown in the lower panels of Figure 4-3.

The range of frequencies after this trimming was approximately between 100 and 600

Hz. This range covers approximately from G2 to D5, from a baritone to a mezzo-soprano,

which is almost the most common range of human pitch frequency. For example, children

aged between 1 and 15 years old have a frequency range between the notes G3, 196 Hz, and

E5, 659.25 Hz (Welch, 1979), and a normative adult male voice profile is approximately

between 85 Hz and 580 Hz, and for a female voice is from 150 Hz to 750 Hz (Heylen et al.,

2002).

As one of the observations of this study, after finding the best alignment, none of the

pitch detection algorithms used in this study estimated any pitches with the exact frequency

as the ground truth. In other words, there is not any point in Figure 4-3 where the estimated

pitch and the ground truth have precisely the same value. Therefore, an acceptable range of

90

frequency values should be determined to assess the correctness of an estimated pitch. From

other studies (Drugman and Alwan, 2011; Jouvet and Laprie, 2017; de Obaldía and Zölzer,

2019), three different methods can be employed to discover an acceptable range of

frequencies based on ground truth: 1- fixed distance around ground truth F0, 2- the standard

deviation of differences, and 3- percentage.

4.2.3.1 Fixed distance around ground truth F0

One of the methods used for finding an acceptable range of frequencies is to consider

an upper and lower bound that is effectively both greater and less than the corresponding F0

in the ground truth, as shown in (4-1).

𝑆𝑆𝑖𝑖 = �
𝑡𝑡𝑓𝑓𝑡𝑡𝛥𝛥 , 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖 − 𝑖𝑖𝑛𝑛𝑡𝑡𝛥𝛥𝑓𝑓𝑖𝑖𝑎𝑎𝑖𝑖 ≤ 𝐸𝐸𝐺𝐺0𝑖𝑖 ≤ 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖 + 𝑖𝑖𝑛𝑛𝑡𝑡𝛥𝛥𝑓𝑓𝑖𝑖𝑎𝑎𝑖𝑖
𝑓𝑓𝑎𝑎𝑖𝑖𝛥𝛥𝛥𝛥 , 𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥 (4-1)

where 𝑖𝑖𝑛𝑛𝑡𝑡𝛥𝛥𝑓𝑓𝑖𝑖𝑎𝑎𝑖𝑖 denotes a range around the Ground Truth F0 (GTF0), and 𝐸𝐸𝐺𝐺0𝑖𝑖 is the

estimated F0 in the index 𝑖𝑖. The distance metric that satisfies 95% of the estimated pitches is

considered to be an acceptable distance. That is, the requirement is that 95% of the estimated

pitches should fall within a certain interval distance from the ground truth pitch frequency.

Table 4-10 shows the acceptable distance for each algorithm. It is observed that YinFFT and

YinFast have the minimum distances, FComb has the maximum, and the other algorithms are

close to each other.

Table 4-10. The acceptable fixed distance from F0 in the ground truth

Algorithm Distance (Hertz)

Yin 35

YinFast 28

YinFFT 21

Schmitt NA

FComb 53

MComb 36

Specacf NA

However, Table 4-10 only shows the distance where 95% of the estimated pitches are in

that range, but it does not present the distribution of data, and because of this, the second

method, in the following section, is included.

91

4.2.3.2 The standard deviation of differences

This method calculates the differences between points in the ground truth and the

estimated pitches, then computes the standard deviation of the differences, as in (4-2) and

(4-3).

𝑎𝑎𝑖𝑖𝑓𝑓𝑓𝑓𝛥𝛥𝑓𝑓𝛥𝛥𝑛𝑛𝑑𝑑𝛥𝛥𝑖𝑖 = 𝐸𝐸𝐺𝐺0𝑖𝑖 − 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖 (4-2)

𝑆𝑆𝐺𝐺𝑆𝑆 = 𝑆𝑆𝑡𝑡𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑆𝑆𝛥𝛥𝑖𝑖𝑖𝑖𝑎𝑎𝑡𝑡𝑖𝑖𝑓𝑓𝑛𝑛 (𝑎𝑎𝑖𝑖𝑓𝑓𝑓𝑓𝛥𝛥𝑓𝑓𝛥𝛥𝑛𝑛𝑑𝑑𝛥𝛥) (4-3)

where 𝑎𝑎𝑖𝑖𝑓𝑓𝑓𝑓𝛥𝛥𝑓𝑓𝛥𝛥𝑛𝑛𝑑𝑑𝛥𝛥 is a vector to record all the differences, 𝐸𝐸𝐺𝐺0 is a vector that contains

all the estimated pitches, 𝐺𝐺𝐺𝐺𝐺𝐺0 is a vector that includes all ground truth pitches, and 𝑖𝑖 is the

index. 𝑆𝑆𝑡𝑡𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑆𝑆𝛥𝛥𝑖𝑖𝑖𝑖𝑎𝑎𝑡𝑡𝑖𝑖𝑓𝑓𝑛𝑛 is a function to calculate the standard deviation based on its

input.

After finding the standard deviation for each estimated pitch contour, the pitch contours

labelled as correct, where the estimated pitches were in the vicinity of 𝐺𝐺𝐺𝐺𝐺𝐺0 and were within

𝐶𝐶 times the standard deviation on either side of it, are determined using the expression given

in (4-4).

𝑆𝑆𝑖𝑖 = � 𝑡𝑡𝑓𝑓𝑡𝑡𝛥𝛥 , 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖 − (𝐶𝐶 ∗ 𝑆𝑆𝐺𝐺𝑆𝑆) ≤ 𝐸𝐸𝐺𝐺0𝑖𝑖 ≤ 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖 + (𝐶𝐶 ∗ 𝑆𝑆𝐺𝐺𝑆𝑆)
𝑓𝑓𝑎𝑎𝑖𝑖𝛥𝛥𝛥𝛥 , 𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥 (4-4)

where 𝑆𝑆 is a vector that stores whether or not the estimated pitches are correct, and 𝐶𝐶

is a multiplier coefficient.

Several coefficients, from 0.1 to 2.5 with the step of 0.1 (that is, 0.1, 0.2, 0.3, …, 2.4, 2.5),

were employed to find the best one for each algorithm. The minimum coefficient value that

satisfies 95 per cent of estimated pitches was considered the best one, see Table 4-11. In Table

4-11, the acceptable interval from the estimated F0 to the ground truth’s F0 was calculated

by multiplying the standard deviation by the coefficient value. Then, the estimated F0 was

considered as correct if it was in the range of the corresponding pitch frequency of ground

truth plus and minus the acceptable range.

92

Table 4-11. The average standard deviation of differences between estimated pitches and ground truth with the
coefficient of the acceptable distance

Algorithm Average of STD (Hertz) Coefficient Acceptable range

Yin 12.88 2.1 ±27.05

YinFast 13.3 2.1 ±27.93

YinFFT 10.27 2.1 ±21.57

Schmitt NA NA NA

FComb 21.17 2.5 ±52.93

MComb 13.88 2.3 ±31.92

Specacf NA NA NA

It was observed that YinFFT had the narrowest acceptable distance, which means that it

has less variance than other algorithms, as shown in Table 4-11. Since Schmitt or Specacf did

not estimate any entirely correct pitch contours, the standard deviation for these algorithms

could not be calculated.

4.2.3.3 Percentage

The other method applied to find an acceptable frequency range is by calculating the

range based on a percentage of the pitch frequency of the ground truth, as in (4-5).

� 𝑡𝑡𝑓𝑓𝑡𝑡𝛥𝛥 , 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖 − (𝑓𝑓 ∗ 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖) ≤ 𝐸𝐸𝐺𝐺0𝑖𝑖 ≤ 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖 + (𝑓𝑓 ∗ 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖)
𝑓𝑓𝑎𝑎𝑖𝑖𝛥𝛥𝛥𝛥 , 𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥 (4-5)

where 𝑓𝑓 is a coefficient between 0 and 1 to calculate the acceptable percentage value.

In this method, we were looking for a percentage around the ground truth’s pitches that

satisfies at least 95% of the estimated pitches, Table 4-12.

Table 4-12. Per cent of ground truth F0 for finding the acceptable estimated pitch

Algorithm Percentage

Yin 8%

YinFast 7%

YinFFT 6%

Schmitt NA

FComb 13%

MComb 9%

Specacf NA

93

As shown in Table 4-12, pitches estimated by YinFFT are at the lowest distance from the

ground truth based on the percentage measure, while FComb has the furthest distance.

4.2.3.4 A discussion of the three methods

The three methods for finding the acceptable range will be evaluated in this part. To

compare the calculated ranges by each of the three methods, if the difference of the ranges

is equal to or bigger than a semitone, as the smallest pitch difference in Western music, is

considered a perceptible difference; otherwise, the difference is not significant.

As can be seen in Table 4-10 and Table 4-11, overall, there is no significant difference

between the fixed distance around ground truth F0 and Standard Deviation methods. The

most noticeable difference is observed with the Yin algorithm, with a range of ±35 𝐻𝐻𝛥𝛥𝑓𝑓𝑡𝑡𝐻𝐻 as

compared to one of ±27.05 𝐻𝐻𝛥𝛥𝑓𝑓𝑡𝑡𝐻𝐻 for the distance and standard deviation techniques,

respectively. Since most musical pitches differ by much more than 8Hz, this cannot be a

perceptible difference. Therefore, these two approaches can be considered to be similar.

Figure 4-4 to Figure 4-8 show the acceptable range of each algorithm for the three

methods using an example. It is assumed that the method that exhibits a narrower range

around the ground truth would be deemed as being the best approach.

Figure 4-4. The acceptable range for the Yin algorithm in the three methods: Distance, Standard Deviation, and

Percentage. Each colour shows the acceptable range by each algorithm.

94

Figure 4-5. The acceptable range for the YinFast algorithm in the three methods: Distance, Standard Deviation,

and Percentage. Each colour shows the acceptable range by each algorithm.

Figure 4-6. The acceptable range for the YinFFT algorithm in the three methods: Distance, Standard Deviation,

and Percentage. Each colour shows the acceptable range by each algorithm.

95

Figure 4-7. The acceptable range for the FComb algorithm in the three methods: Distance, Standard Deviation,

and Percentage. Each colour shows the acceptable range by each algorithm.

Figure 4-8. The acceptable range for the MComb algorithm in the three methods: Distance, Standard Deviation,

and Percentage. Each colour shows the acceptable range by each algorithm.

Since the Distance and Standard Deviation methods are not based on intonation, they

cover the same range of frequencies for higher and lower pitches. However, the range of the

Percentage method will become narrow or wide when the frequencies are low or high.

96

Therefore, as can be observed from Figure 4-4 to Figure 4-8, it seems that it is better to use

the Percentage method for frequencies that are less than a pitch frequency of 350 Hz, and the

Distance or Standard Deviation method for frequencies that are greater than 350 Hz.

It is worth noting that although if the pitch frequencies become higher, the acceptable

range with the Percent method will become very wide, the humans’ voice pitch range is

narrow and only in some exceptional cases a very wide range will be calculated by the Percent

method.

Besides, from Table 4-10 to Table 4-12 and Figure 4-4 to Figure 4-8, it can be concluded

that the acceptable range will not become wider or narrower with the Distance and Standard

Deviation methods by changing the pitch frequency.

De Obaldía and Zölzer (de Obaldía and Zölzer, 2019) selected error margins of 8%, 20%,

and 10 Hz with respect to the ground truth, and they achieved their best results for the 20%

error, which may support our results that the fixed distance should be more than 10 Hz.

Similarly, some other studies (Drugman and Alwan, 2011; Jouvet and Laprie, 2017) considered

that any more than a 20% difference from the ground truth could be deemed to be an

incorrectly estimated pitch.

4.3 Conclusions

In this chapter, after preparing a dataset of estimated pitches from seven real-time pitch

detection algorithms, the functionality of each algorithm was evaluated based on 1- the

number of pitches estimated correctly by categorising them based on gender, window size,

the speed of the music, and post-processing, 2- the delay of each algorithm to estimate pitches

correctly, and 3- the approaches to evaluate the accuracy of the estimated F0.

Finally, three methods for finding an acceptable range were evaluated. Generally, this

chapter provides guidance for selecting a real-time pitch detection algorithm for singing

signals according to the features of the sung. Based on all the evaluations, the following

conclusions could be made:

97

The overall best real-time algorithm from the seven tested algorithms for female voices

was YinFFT, with a window size of 1024. In addition, the speed of performance is not an issue.

Moreover, the delay before starting to determine the correct pitches is 25 ms.

The best real-time algorithm from the seven tested algorithms for male voices was Yin

when the notes are playing fast, and in slow performance, the best one was YinFFT. The

algorithms produced a more accurate pitch contour with a window size of 2048 compared to

a window size of 1024. The delay before finding the correct pitches for the Yin algorithm is

107 ms, and for YinFFT is 71 ms.

The length of the intervals between notes does not impact the pitch accuracy of the

delay.

The best method from the three presented methods to find the acceptable range for all

the algorithms is the percentage, although, for FComb and MComb, significant differences

between the three methods were not observed.

As discussed above, the pitch detector algorithms cannot estimate the pitches without

errors, and the estimated pitch contours require some alternations. Thus, the next chapter

will discuss the Smart-Median, mentioned already in this chapter, in detail.

Chapter 5
Pitch contour smoother

This chapter introduces a novel algorithm for smoothing estimated pitch

contour from singing signals. In addition, the algorithm will be compared with 15

different contour smoother algorithms. This chapter entirely come from one of our

journal publications listed in the following.

• Faghih, Behnam & Timoney Joseph, Smart-Median: A New Real-Time Algorithm for

Smoothing Singing Pitch Contours. Applied Sciences. 2022; 12(14):7026.

https://doi.org/10.3390/app12147026

https://doi.org/10.3390/app12147026

99

As seen in the previous chapters, chapters 3 and 4, the pitch detector could not estimate

the pitch contours of singing signals in real-time without any error. Thus, the estimated pitch

contours need to be smooth to alter the incorrectly estimated F0s. Therefore, this chapter

introduces a new contour-smoother algorithm based on the features and applications of pitch

contours derived only from singing. For this purpose, after explaining several typical contour-

smoother algorithms, the methodology applied will be described. Then, the proposed

algorithm is explained in Section 5.3, followed by the results and discussion. Finally, a

conclusion is provided in Section 5.6.

5.1 Current Contour Smoother Algorithms

Several contour-smoother algorithms are commonly used to smooth pitch contours.

This section provides a list of these algorithms. To refer to the smoother algorithms within this

chapter, a code has been assigned to each algorithm listed in Table 5-1. In addition, this table

indicates which of the considerations listed in section 2.2.2.1 are deemed by the algorithms.

As the table shows, only the Smart-Median algorithm, described in section 5.3, counts all the

considerations.

Table 5-1. Code of each of the contour smoother algorithms with indicating the code(s) of their considerations
according to the list in section 2.2.2.1

Code Algorithm The Considerations

00 Smart-Median All

01 Gaussian (sigma = 1) 2

02 Savitzky–Golay filter 2

03 Exponential 2

04 Window-based (window_type = ‘rectangular) 2

05 Window-based (window_type = ‘hanning’) 2

06 Window-based (window_type = ‘hamming’) 2

07 Window-based (window_type = ‘bartlett’) 2

08 Window-based (window_type = ‘blackman’) 2

09 Direct Spectral 2

10 Polynomial 2

11 Spline (type = ‘linear_spline’) 2

12 Spline (type = ‘cubic_spline’) 2

13 Spline (type = ‘natural_cubic_spline’) 2

14 Gaussian (sigma = 0.2, n_knots = 10) 2

100

15 Binner 2

16 LOWESS 2

17 Decompose (type = ‘Window-based’, method = ‘additive’) 2

18 Decompose (type = ‘lowess’, method = ‘additive’) 2

19 Decompose (type = ‘natural_cubic_spline’, method = ‘additive’) 2

20 Decompose (type = ‘natural_cubic_spline’, method = ‘multiplicative’) 2

21 Decompose (type = ‘lowess’, method = ‘multiplicative’) 2

22 Decompose (type = ‘natural_cubic_spline’, method = ‘multiplicative’) 2

23 Kalman (component = ‘level’) 2

24 Kalman (component = ‘level_trend’) 2

25 Kalman (component = ‘level_season’) 2

26 Kalman (component = ‘level_trend_season’) 2

27 Kalman (component = ‘level_longseason’) 2

28 Kalman (component = ‘level_trend_longseason’) 2

29 Kalman (component = ‘level_season_longseason’) 2

30 Kalman (component = ‘level_trend_season_longseason’) 2

31 Moving Average (simple = True) 2

32 Moving Average (simple = False) 2

33 Median Filter 2

34 Okada Filter 1, 2

35 Jlassi Filter 1, 2, 7

Figure 5-1 illustrates the effect of the smoother algorithms on a single estimated pitch

contour. A female singer sang an arpeggio in the C major scale, and the FComb algorithm

estimated the pitches. The smoothed contours are plotted in eight different panels. Each

panel includes ground truth (GT), the original estimated (ST) contours, and the smoothed

contours generated by some of the smoother algorithms.

101

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5-1. The effect of each contour-smoother algorithm on a pitch contour from a female singer producing
arpeggios in the C major scale. The pitch estimator algorithm was FComb. GT = Ground Truth (PYIN), ST =

Estimated pitch contour. The smoothed contours are plotted in parts (a–h) for more straightforward observation.
Each panel (a–f) plots three smoothed contours, while panels (g,h) have four contours each. Descriptions of the

algorithms’ codes are provided in Table 5-1.

102

In addition, the Python libraries employed to implement these smoothers are listed in

Table 5-2.

Table 5-2. Python libraries used for smoothing pitch contours.

Python Library Smoother Algorithm

TSmoothie1
Exponential, Window-based (Convolution), Direct Spectral, Polynomial,

Spline, Gaussian (code 14), Lowess, Decompose, Kalman

Scipy (Virtanen et al., 2020) Savitzky–Golay filter, Gaussian (code 01), Median

Pandas (Reback et al., 2020) Moving average

Each of the algorithms is described below.

5.1.1 Gaussian Filter

Generally, in signal processing, filtering removes or modifies unwanted error and noise

signals from a series of data. Therefore, Gaussian filters smooth out fluctuations in data by

convolution with a Gaussian function (Deng and Cahill, 1994). The one-dimensional Gaussian

filter is expressed as (5-1):

𝑆𝑆𝑚𝑚𝑖𝑖 =
1

√2𝜋𝜋𝜋𝜋
 exp (−

(𝐸𝐸𝛥𝛥𝑖𝑖)2

2𝜋𝜋2
) (5-1)

where 𝐸𝐸𝛥𝛥𝑖𝑖 is the original signal at position 𝑖𝑖, and 𝑆𝑆𝑚𝑚𝑖𝑖 is the smoothed signal at position

𝑖𝑖. In addition, 𝜋𝜋2 indicates the variance of the Gaussian filter. The smoothing degree depends

on the variance value size (Deng and Cahill, 1994). Although the Gaussian filter smooths out

the noise, as shown in Figure 5-1(a), some correctly estimated F0 may also change, i.e.,

become distorted (Deng and Cahill, 1994).

5.1.2 Savitzky–Golay Filter

This particular type of low-pass filter was introduced into analytical chemistry but soon

found many applications in other fields (Savitzky and Golay, 1964). It can be considered a

weighted moving average (Dai et al., 2017), and is defined as follows (5-2):

1 https://pypi.org/project/tsmoothie/, accessed on 1 February 2022

https://pypi.org/project/tsmoothie/

103

𝑆𝑆𝑚𝑚𝑖𝑖 = � ℎ𝑘𝑘 𝐸𝐸𝛥𝛥𝑖𝑖−𝑘𝑘

𝑀𝑀

𝑘𝑘=−𝑀𝑀

 (5-2)

where 𝐸𝐸𝛥𝛥𝑖𝑖 is the original signal at position 𝑖𝑖, and 𝑆𝑆𝑚𝑚𝑖𝑖 is the smoothed signal at position

𝑖𝑖. 𝑀𝑀 is window length and ℎ𝑘𝑘 are the filter coefficients that indicate the boundaries of the

data. Specifically, this filter defines 𝑆𝑆𝑚𝑚0 (i.e., the output at time 𝑖𝑖 = 0) to be the value of the

coefficient of a polynomial of order 𝐾𝐾 that best fits the time series data 𝑆𝑆𝑚𝑚𝑖𝑖 over the interval

|𝑖𝑖| ≤ 𝑀𝑀 (Dai et al., 2017). The drawback of the Savitzky–Golay (SG) filter, according to Schmid

et al. (Schmid, Rath and Diebold, 2022), is that the data near the edges is prone to artefacts.

Figure 5-1(a) illustrates its effect on a contour that this filter reduces the sharpness of the

errors, but they still exist.

5.1.3 Exponential Filter

This approach is based on weighting the current values by the previously observed data,

assuming that the most recent observations are more important than the older ones. The

smoothed series starts with the second point in the contour. It is calculated by (Rej, 2003),

(5-3):

𝑆𝑆𝑚𝑚𝑖𝑖 = 𝛼𝛼𝐸𝐸𝛥𝛥𝑖𝑖−1 + (1− 𝛼𝛼) 𝑆𝑆𝑚𝑚𝑖𝑖−1 0 < 𝛼𝛼 ≤ 1 i ≥ 3. (5-3)

where 𝛼𝛼 is called the smoothing constant. This filter demonstrated a similar alternation

as Savitzky–Golay filter on the pitch contour shown in Figure 5-1(a).

5.1.4 Window-Based Finite Impulse Response Filter

In this approach, a window works as a mask to filter the data series. Different window

shapes can be considered for filtering data. Each window point is usually between 0 and 1.

Therefore, this method uses weighted windows. If 𝐸𝐸𝛥𝛥𝑖𝑖 is considered a signal at index 𝑖𝑖, and a

window at index 𝑖𝑖 as 𝑒𝑒𝑖𝑖, the smoothed signal 𝑆𝑆𝑚𝑚𝑖𝑖 is calculated as follows (5-4):

𝑆𝑆𝑚𝑚𝑖𝑖 = 𝑒𝑒𝑖𝑖 𝐸𝐸𝛥𝛥𝑖𝑖 (5-4)

The window types used in this study are described below.

5.1.4.1 Rectangular Window

This means that the window’s values are all equal to one; Figure 5-1(b).

104

5.1.4.2 Hanning Window

The Hanning window is defined as follows according to Branu (Braun, 2001)(5-5):

𝑊𝑊𝐻𝐻(𝑖𝑖) = �0.5 �1− cos (2𝜋𝜋
𝑖𝑖
𝑁𝑁)�

0 𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥
 0≤ 𝑖𝑖 = 𝑁𝑁 − 1 (5-5)

where 𝑁𝑁 is the length of the window; Figure 5-1(b).

5.1.4.3 Hamming Window

The Hamming window is defined as follows according to Branu (Braun, 2001) (5-6):

𝑒𝑒𝐻𝐻𝑀𝑀(𝑖𝑖) = �0.54 + 0.46 cos �2𝜋𝜋
𝑖𝑖
𝑁𝑁
� 0≤ 𝑛𝑛 ≤ 𝑁𝑁− 1

0 𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥
 (5-6)

where 𝑁𝑁 is the length of the window; Figure 5-1(b).

5.1.4.4 Bartlett Window

The Bartlett window is defined (Braun, 2001) using (5-7), Figure 5-1(b):

𝑒𝑒𝑏𝑏(𝑖𝑖) = �1 0≤ 𝑖𝑖 ≤ 𝑁𝑁 − 1
0 𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥 (5-7)

5.1.4.5 Blackman Window

The Blackman window is defined (Podder et al., 2014) by (5-8):

𝑒𝑒𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏𝑘𝑘(𝑖𝑖) = 𝑎𝑎0 + 𝑎𝑎1 + 𝑎𝑎2 cos
4𝜋𝜋𝑖𝑖
𝑁𝑁 − 1

 𝑓𝑓𝑓𝑓𝑓𝑓 −
𝑁𝑁− 1

2
≤ 𝑖𝑖 ≤

𝑁𝑁 − 1
2

 (5-8)

where 𝑁𝑁 is the window length, and 𝑎𝑎0, 𝑎𝑎1 and 𝑎𝑎2 are constants (5-9):

𝑎𝑎0 =
1− 𝛼𝛼

2
, 𝑎𝑎1 =

1
2

, 𝑎𝑎2 = 𝛼𝛼/2 (5-9)

The 𝛼𝛼 is static and equals 0.16; Figure 5-1(c).

5.1.5 Direct Spectral Filter

In this approach, a time series is smoothed by employing a Fourier Transformation. The

essential frequencies remain, and others are removed. It operates similarly to multiplying the

frequency domain by a rectangular window. In other words, it is a circular convolution

generated by transforming the window in the time domain; Figure 5-1(c).

105

5.1.6 Polynomial

This approach uses weighted linear regression on an ad-hoc expansion basis to smooth

the time series. It is a generalization of the Finite Impulse Response (FIR) filter that can better

preserve the desired signal’s higher frequency content without removing as much noise as the

moving average (Orfanidis, 2018). The first derivative of the polynomial evaluated at the

midpoint of the N-interval is generated by multiplying the position data 𝐸𝐸𝛥𝛥𝑖𝑖 by coefficients

and adding these multiplications, as shown in (5-10) (Luers and Wenning, 1971):

𝑆𝑆𝑚𝑚(𝑁𝑁+1)/2 = �𝑊𝑊𝑖𝑖𝐸𝐸𝛥𝛥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (𝑁𝑁 = number of data points(odd)) (5-10)

where 𝑊𝑊𝑖𝑖 are the weights (coefficients) of the polynomial fit of degree 𝑝𝑝. The weights

depend on the degree 𝑝𝑝, and the number of points, N, used in the fit; Figure 5-1(c) is an

example. As can be seen from the plot, this approach shows the data trend.

5.1.7 Spline

This approach employs Spline functions to eliminate the noise from the data. It works

by estimating the optimum amount of smoothing required for the data. Three types of spline

smoothing were used in this study: ‘linear’ (Figure 5-1(c)), ‘cubic’ (Figure 5-1(d)), and ‘natural

cubic’ (Figure 5-1(d)). The details of this approach are provided in (Craven and Wahba, 1978;

Hutchinson and de Hoog, 1985).

5.1.8 Binner

This approach applies linear regression on an ad-hoc expansion basis within a time

series. The features created by this method are obtained by binning the input space into

intervals. An indicator feature is designed for each bin, indicating into which bin a given

observation falls. The input space consists of a single continuous increasing sequence in the

time series domain (Jones, 1995); an illustration is shown in Figure 5-1(d). As can be seen in

the plot, the altered pitch contour is not aligned well with the ground truth.

106

5.1.9 Locally Weighted Scatterplot Smoothing (LOWESS) Smoother

This is a non-parametric regression method. LOWESS attempts to fit a linear model to

each data point based on local data points; Figure 5-1(e). This makes the procedure more

versatile than simply including a high-order polynomial (Cleveland, 1979, 1981).

5.1.10 Seasonal Decomposition

One of the considerations in analysing time series data is dealing with seasonality. A

seasonal decomposition deconstructs a time series into several components: a trend, a

repeating seasonal time series, and the remainder. One of the benefits of seasonal

decomposition is its capacity to locate anomalies and errors in data (Wen et al., 2020).

Seasonal decomposition can estimate the notes and transitory in a pitch contour, but the

vibrations sung in each note are removed. Therefore, it can show the movements between

changes and notes in a pitch contour, as shown in Figure 5-1(e, f).

Two component assessments that would be interpreted as seasonal by the algorithm

are: ‘additive’ and ‘multiplicative’. In the additive method, the variables are assumed to be

mutually independent and calculated by summation of the variables. The multiplicative

approach considers that components are dependent on each other and is calculated by the

multiplication of the variables (Dagum, 2010).

Seasonal decomposition can be employed using different smoothing techniques. The

smoothing techniques used in this study are Window-based, ‘LOWESS’, and

‘natural_cubic_spline’.

5.1.11 Kalman Filter

The Kalman filter is a set of mathematical equations that provides an efficient recursive

means to estimate the state of a process in a way that minimises the norm of the squared

error. The Kalman filter uses a form of feedback control, assessing the process state and then

obtaining feedback in the form of (noisy) measurements. The equations for the Kalman filter

have two parts: time update equations and measurement update equations. The time update

equations operate as predictor equations, while the measurement update equations are

corrector equations. Thus, the overall estimation algorithm is close to a predictor-corrector

107

algorithm, i.e., correcting to improve the predicted value. In the standard Kalman filter, it is

assumed that the noise is Gaussian, which may or may not reflect the reality of the system

that is being modelled (Welch, 2021). Thus, the more accurate the model used in the Kalman

algorithm, the better the performance.

The Kalman smoother can be represented in the state space form. Therefore, a matrix

representation of all the components is required. Four structure presentations in the contours

are considered: ‘level’, ‘trend’, ‘seasonality’ and ‘long seasonality’, and a combination of these

structures can be considered. Examples of the effects of different variations of the Kalman

filter are shown in Figure 5-1(f,g). Generally, as seen from the plots, although the Kalman filter

reduced the sharpness of the existing errors, it also created some new small errors.

5.1.12 Moving Average

This simple filter aims to reduce random noise in a data series (Smith, 1999) by following

the formula (5-11):

𝑆𝑆𝑚𝑚𝑖𝑖 =
1
𝑛𝑛

 �𝐸𝐸𝛥𝛥𝑖𝑖+𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

 (5-11)

where 𝐸𝐸𝛥𝛥 is the original pitch contour, 𝑆𝑆𝑚𝑚 is the smoothed pitch contour, and 𝑛𝑛 is the

number of points analysed at any given time and is referred to as the window length of the

filter. The larger the value of n, the greater the level of smoothing. An example can be seen in

Figure 5-1(h) that the moving average not only could smooth the contour but also distorted

some of the correctly estimated pitches.

5.1.13 Median Filter

The Median filter approach is similar to the moving average. Still, instead of calculating

the average of a window of length n, the Median of the window is considered (5-12). Unlike

the moving average filter, which is a linear system, this filter is nonlinear, rendering a more

complicated analysis:

𝑆𝑆𝑚𝑚𝑖𝑖 = 𝑀𝑀𝛥𝛥𝑎𝑎𝑖𝑖𝑎𝑎𝑛𝑛 (𝐸𝐸𝛥𝛥𝑖𝑖 ,𝐸𝐸𝛥𝛥𝑖𝑖+1 ,𝐸𝐸𝛥𝛥𝑖𝑖+2, … ,𝐸𝐸𝛥𝛥𝑖𝑖+𝑛𝑛−2,𝐸𝐸𝛥𝛥𝑖𝑖+𝑛𝑛−1) (5-12)

108

where 𝐸𝐸𝛥𝛥 is the original pitch contour, 𝑆𝑆𝑚𝑚 is the smoothed pitch contour, and 𝑛𝑛 is the

number of points to calculate the Median at each instant. Figure 5-1(h) illustrates the effect

of this method on a pitch contour that could smooth it very well.

5.1.14 Okada Filter

This filter is a combination of moving average and Median filters. This filter aims to

remove the outliers from a contour while closely retaining its shape, and not incurring any

softening of the contour definition at transitions typically observed with smoothing. Each of

the estimated points 𝐸𝐸𝛥𝛥𝑖𝑖 in a contour is compared with its immediate previous and successive

points, 𝐸𝐸𝛥𝛥𝑖𝑖−1 and 𝐸𝐸𝛥𝛥𝑖𝑖+1 , respectively. If 𝐸𝐸𝛥𝛥𝑖𝑖 is the median of 𝐸𝐸𝛥𝛥𝑖𝑖−1 ,𝐸𝐸𝛥𝛥𝑖𝑖 , and 𝐸𝐸𝛥𝛥𝑖𝑖+1, then it

does not need to be changed; otherwise 𝐸𝐸𝛥𝛥𝑖𝑖 will be replaced by the average of 𝐸𝐸𝑆𝑆𝑖𝑖−1 and

𝐸𝐸𝛥𝛥𝑖𝑖+1, as shown in (5-13). In this case, the first and the last point will not be changed (Okada,

Ishikawa and Ikegaya, 2016).

𝑆𝑆𝑚𝑚𝑖𝑖 = 𝐸𝐸𝛥𝛥𝑖𝑖 +
𝐸𝐸𝛥𝛥𝑖𝑖−1 + 𝐸𝐸𝛥𝛥𝑖𝑖+1 − 2𝐸𝐸𝛥𝛥𝑖𝑖

2(1 + 𝛥𝛥−𝛼𝛼(𝐸𝐸𝑠𝑠𝑖𝑖−𝐸𝐸𝑠𝑠𝑖𝑖−1)(𝐸𝐸𝑠𝑠𝑖𝑖−𝐸𝐸𝑠𝑠𝑖𝑖+1))
 (5-13)

When α, weight, is sufficiently large, it can perform two operations: (1) if

(𝐸𝐸𝛥𝛥𝑖𝑖 − 𝐸𝐸𝛥𝛥𝑖𝑖−1)(𝐸𝐸𝛥𝛥𝑖𝑖 − 𝐸𝐸𝛥𝛥𝑖𝑖+1) ≤ 0, 𝐸𝐸𝛥𝛥𝑖𝑖 is assigned to 𝑆𝑆𝑚𝑚𝑖𝑖; and (2) if (𝐸𝐸𝛥𝛥𝑖𝑖 − 𝐸𝐸𝛥𝛥𝑖𝑖−1)(𝐸𝐸𝛥𝛥𝑖𝑖 −

𝐸𝐸𝛥𝛥𝑖𝑖+1) > 0, 𝑆𝑆𝑚𝑚𝑖𝑖 is assigned by (𝐸𝐸𝛥𝛥𝑖𝑖−1 + 𝐸𝐸𝛥𝛥𝑖𝑖+1)/2.

Figure 5-1(h) exemplifies the impact of this algorithm and can be regarded as an example

of effective smoothing based on the contour.

5.1.15 Jlassi Filter

This technique was presented by Jlassi et al. (Jlassi, Bouzid and Ellouze, 2016). This

approach has two main steps; first, finding the incorrect points in the pitch contour by

considering those that exhibit a difference of more than a set threshold from both their

previous and successive points. Second, replacing the incorrect point with the average of the

last two points (5-14):

𝑆𝑆𝑚𝑚𝑖𝑖 = �
𝐸𝐸𝛥𝛥𝑖𝑖−2 +𝐸𝐸𝛥𝛥𝑖𝑖−1

2 |𝐸𝐸𝛥𝛥𝑖𝑖 − 𝐸𝐸𝛥𝛥𝑖𝑖−1| > 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎 𝑎𝑎𝑛𝑛𝑎𝑎 |𝐸𝐸𝛥𝛥𝑖𝑖 − 𝐸𝐸𝛥𝛥𝑖𝑖+1| > 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎
𝐸𝐸𝛥𝛥𝑖𝑖 𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥

 (5-14)

109

The value for 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎 is assumed to be 30, as mentioned in the original paper. Figure

5-1(h) illustrates the effect of the algorithm.

5.2 Materials and Methods

5.2.1 Dataset

The VocalSet dataset (Wilkins et al., 2018), as described in section 3.1.1, was used to

evaluate the algorithms’ accuracy. This dataset includes more than ten hours of recordings of

20 (11 males and nine females) professional singers. VocalSet includes a complete set of

vowels and a diverse set of voices that exhibit many different vocal techniques, singing in

contexts of scales, arpeggios, long tones, and melodic excerpts. For this study, a portion of

VocalSet was selected; the scales and arpeggios were sung across the vowels in loud slow and

fast performances. The total number of files used from VocalSet was 511.

5.2.2 Ground Truth

In order to evaluate the accuracy of each of the smoother algorithms, ground truth pitch

contours were required to compare the smoothed pitch contours. In other words, in this

study, the best smoothing algorithm was considered the one that produced contours most

similar to the ground truth. According to studies by Faghih and Timoney (Faghih and Timoney,

2019a, 2022a) and discussed in Chapter 3 and Chapter 4, a reliable offline pitch detector

algorithm called PYIN (Mauch and Dixon, 2014) was used. The implementation of PYIN by a

Python library called Librosa (McFee et al., 2022) was used for this study. The pitch contours

estimated by PYIN were saved in several CSV files with two columns, time in seconds and F0.

These were all plotted to ensure the accuracy of the pitch contours estimated by PYIN. Those

that included irrational jumps were considered incorrect and deleted. Therefore, after

removing those contours, the number of ground truth files remaining was 447. It should be

noted that removing these files did not make an unreal/easier dataset for the smoother

algorithms because, as discussed in the following section, several pitch detection algorithms

were used to generate different errors. Thus, this removal only secures the study with reliable

ground truth files.

110

5.2.3 Pitch Detection Algorithms to Generate Pitch Contours

To evaluate the proposed smoother algorithm, we used a similar approach as (Ferro and

Tamburini, 2019), employing several pitch contours with different random error

(unsmoothed) points. As Faghih and Timoney’s (Faghih and Timoney, 2022a) study discussed,

also in Chapter 4, six real-time pitch detection algorithms with different estimated contours

were employed to obtain the required contours. The pitch detector algorithms were Yin (de

Cheveigné and Kawahara, 2002), spectral YIN or YIN Fast Fourier transform (YinFFT), Fast comb

spectral model (FComb), Multi-comb spectral filtering (Mcomb), Schmitt trigger, and the

spectral auto-correlation function (Specacf). The implementation for these algorithms came

from a Python library, Aubio (https://aubio.org/manual/latest/cli.html#aubiopitch, accessed

on 10 June 2021) (Aubio, no date), a well-known library for music information retrieval. Since

this chapter focuses on smoothing pitch contours, descriptions of these algorithms are not

provided in this chapter but in Chapter 4. The reason for selecting these real-time pitch

estimators was that, based on Chapter 4, none of them can estimate F0s without error in

singing signals. In addition, the accuracy of these algorithms varies, which helped us evaluate

the contour-smoother algorithms in different situations.

In addition, to compare the accuracy of the algorithms in conditions where the pitch

contours included no or only a few errors, an offline pitch-detector algorithm provided in the

Praat tool (Boersma and van Heuven, 2001) based on the Boersma algorithm [29] was used.

According to Chapter 3, the Praat and PYIN accuracies tend to be similar.

The settings used for pitch detection for women’s voices were 44,100 for sample rate,

1024 for window size, and 512 for hop size. The related settings for men’s voices were 44,100

Hz, 2048, and 1024 for sample rate, window size, and hop size, respectively. Therefore, the

distance between two consecutive points in a pitch contour for women’s voices was 11.61

milliseconds, and for men’s voices was 23.22 milliseconds.

As shown in Figure 5-2, the contours generated by the different pitch detectors exhibited

various errors. Therefore, the total number of contours used to evaluate the smoother

algorithms was 2682 (corresponding to the six pitch detectors run on each of the 447 wav files).

111

(a)

(b)

Figure 5-2. Pitch contours for a female singer of arpeggios in the C scale. (a) pitch contour estimated by PYIN
(ground truth), Praat, Yin, and YinFFT algorithms. (b) pitch contour estimated by PYIN (ground truth), Fcomb,

Schmitt, Mcomb, and Specacf.

All the provided files, such as the dataset and codes, are available in a GitHub

repository1.

5.2.4 Evaluation Method

Several evaluation metrics were used to compare the accuracy of the smoothing

algorithms. The metrics used for the evaluations were R-squared (R2), Root-Mean-Square

1 https://github.com/BehnamFaghihMusicTech/Smart-Median, accessed on 11 July 2022

https://github.com/BehnamFaghihMusicTech/Smart-Median

112

Error (RMSE), Mean-Absolute-Error (MAE), and F0 Frame Error (FFE). A well-known Python

library called Sklearn (Buitinck et al., 2013) was used for the metrics, except for the FFE metric

that this thesis’s author created. These metrics are explained in the following subsections.

5.2.4.1 R-Squared (R2)

The formula for this metric is as follows (5-15) (Colin Cameron and Windmeijer, 1997):

𝑅𝑅2  = 1−  
∑ (𝐺𝐺𝐺𝐺𝑖𝑖 − 𝑆𝑆𝑀𝑀𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ �𝐺𝐺𝐺𝐺𝑖𝑖 − 𝑚𝑚𝛥𝛥𝑎𝑎𝑛𝑛(𝐺𝐺𝐺𝐺)�2𝑁𝑁
𝑖𝑖=1

= 1 −
Regression Sum of Squares (𝑅𝑅𝑆𝑆𝑆𝑆)

Total Sum of Squares (𝐺𝐺𝑆𝑆𝑆𝑆)
 (5-15)

where 𝑁𝑁 is the total number of frames, 𝐺𝐺𝐺𝐺 is the ground truth contour, 𝑆𝑆𝑀𝑀 is the

smoothed contour, and the 𝑚𝑚𝛥𝛥𝑎𝑎𝑛𝑛(𝐺𝐺𝐺𝐺) = 1
𝑁𝑁

 ∑ 𝐺𝐺𝐺𝐺𝑖𝑖𝑁𝑁
𝑖𝑖=1 .

In the best case, when all the points in the ground truth contour and the estimated

contour are similar, 𝑅𝑅2 is equal to 1; otherwise, 𝑅𝑅2 is less than 1. A value closer to 1 means

more similarity between the two contours.

5.2.4.2 Root-Mean-Square Error (RMSE)

This metric is calculated according to the following formula (5-16):

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = �
∑ (𝐺𝐺𝐺𝐺𝑖𝑖 − 𝑆𝑆𝑀𝑀𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
2

 (5-16)

In the best case, when the two contours have precisely the same values, the RMSE is 0;

otherwise, it is more significant than 0. Closer values to 0 mean more similarity between two

contours.

5.2.4.3 Mean-Absolute-Error (MAE)

Equation (5-17) shows how to calculate this metric:

𝑀𝑀𝑀𝑀𝐸𝐸 =
∑ |𝐺𝐺𝐺𝐺𝑖𝑖 − 𝑆𝑆𝑀𝑀𝑖𝑖|𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (5-17)

MAE is similar to RMSE, but because of the squared difference, RMSE considers a more

significant penalty for points at a greater distance from corresponding points in the ground

truth contour.

113

5.2.4.4 F0 Frame Error (FFE)

FFE is the proportion of frames within which an error is made. Therefore, FFE alone can

provide an overall performance measure of the accuracy of the pitch detection algorithm

(Drugman and Alwan, 2011). This metric calculates the percentage of points in the estimated

pitch contour that are within a 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎 distance of corresponding points in the ground

truth pitch contour (5-18):

𝐺𝐺𝐺𝐺𝐸𝐸 =

∑ �1 �
𝑆𝑆𝑀𝑀𝑖𝑖
𝐺𝐺𝑡𝑡𝑖𝑖

� ≤ 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎

0 𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥

𝑁𝑁
𝑖𝑖=0

𝑁𝑁
× 100

(5-18)

where 𝑁𝑁 is the total number of frames/points.

For the 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎, in studies such as (Ferro and Tamburini, 2019), a constant value,

e.g., 16 Hz, was used as an acceptable variation from the ground truth. However, as discussed

in Chapter 4, a fixed distance from the ground truth may not be a good approach because the

perceptual effect of 16 Hz is different when the estimated pitch is 100 Hz compared to 1000

Hz. However, it is also common to use a percentage, usually 20%, as the threshold (Jlassi,

Bouzid and Ellouze, 2016), and the same approach is used in this study.

Higher values of this metric indicate a higher similarity between the smoothed and

ground truth pitch contours.

The Sklearn library (Barupal and Fiehn, 2011) in Python has implemented the above

evaluation metrics, except the FFE metric. This library was used for calculating the metrics.

It should be mentioned that there are other algorithms for finding the similarities between

pitch contours, such as those of Sampaio (Sampaio, 2018), Wu (Wu, 2013), and Lin et al. (Lin,

Wu and Kao, 2008). However, these aim to determine a perceptual similarity between two

pitch contours. In other words, those researchers sought to determine one melody’s similarity

to another. However, the metrics could be used in this study that comparing two contours

point by point instead of looking for the similarity between the trends of the two contours.

Therefore, those algorithms were not suitable for this study.

114

5.3 Smart-Median: A Real-Time Pitch Contour Smoother Algorithm

The approach applied in this study to adjust the incorrectly determined pitch values was

based on the Median method and has been named Smart-Median. The Smart-Median method

is based on the belief that each contour should be smoothed based on its data features and

intended applications. In other words, a general contour smoother may not be suitable for all

applications. The considerations for designing the Smart-Median are given in section 2.2.2.1.

5.3.1 Smart-Median Algorithm

The flowchart shown in Figure 5-3 illustrates how incorrectly estimated pitches can be

distinguished. In addition, it indicates which estimated pitches should be selected to calculate

the median for the wrongly detected pitches.

Figure 5-3. The central part of the Smart-Median algorithm for smoothing a pitch contour.

There are several variables and functions in the flowchart, explained as follows:

1) 𝐺𝐺𝑖𝑖 refers to the frequency at index 𝑖𝑖.

115

2) AFD (Acceptable Frequency Difference) indicates the maximum pitch frequency

interval acceptable for jumping between two consecutive detected pitches. In

two studies on speech contour-smoother algorithms (Zhao, O’Shaughnessy and

Nguyen, 2007; Jlassi, Bouzid and Ellouze, 2016), 30 Hz was selected as the AFD

according to the researchers’ experiences. Because the frequency range that

humans use for singing is wider than for speaking, a larger AFD is needed for

singing. According to the dataset used, the largest interval between two

consequently notes sung by men was from C4 to F4, at frequencies of

approximately 261 Hz and 349 Hz, respectively, so the maximum interval was 88

Hz for men. The largest interval between notes sung by women was C5 to F5, at

frequencies of approximately 523 Hz and 698 Hz, respectively. Therefore, the

biggest interval for women was 175 Hz. According to our observations of pitch

contours, the human voice cannot physically produce such a big jump within a

30 ms timestep; i.e., for moving from C4 to F4 or from C5 to F5, more than 30 ms

is needed. Therefore, it was found that an AFD with a value of 75 Hz was an

acceptable choice for pitch contours comprised mostly of frequencies less than

300 Hz (male voices). For those with frequencies that are mostly greater than

300 Hz (female singers), 110 Hz was a good choice for AFD. To obtain these

selections for AFD, the researcher manually annotated ten files and then

calculated their AFD. Finally, the maximum AFD for the lower frequencies, men’s

voice, and higher frequencies, women’s voice, were considered to be used to

detect the events of the files.

3) noZero: this is the minimum number of consecutive zero pitch frequencies that

should be considered as a correctly estimated silence or rest. In this study, 50

milliseconds was regarded as the minimum duration for silence to be accepted

as correct (Kroher and Gomez, 2016); otherwise, the silence requires adjustment

to the local median value.

4) The 𝑍𝑍𝛥𝛥𝑓𝑓𝑓𝑓𝐶𝐶𝑓𝑓𝑡𝑡𝑛𝑛𝑡𝑡𝛥𝛥𝑓𝑓(𝑖𝑖) method calculates how many frequencies (pitches) of zero

value exist after index 𝑖𝑖. The reason for checking the number of zero values

(silence) is to ascertain whether or not the pitch detector algorithm has

estimated a region of silence correctly or in error.

116

5) 𝑀𝑀𝛥𝛥𝑎𝑎𝑖𝑖𝑎𝑎𝑛𝑛(𝑖𝑖, j): calculates the median based on pitch frequencies from index 𝑖𝑖 to

index 𝑗𝑗.

6) PD (Prior Distance): this indicates how many estimated pitches before the

current pitch frequency should be considered for the median. In this study, the

PD was calculated to cover three estimated pitch frequencies, approximately

over a duration of 35 and 70 milliseconds for men’s and women’s voices,

respectively. Nevertheless, the algorithm does not need to wait until this

duration becomes available, e.g., at a time of 20 milliseconds, covering 20

milliseconds with PD is sufficient.

7) FD (Following Distance): indicates how many estimated F0s after the current F0

should be considered for the median. In this study, the number three was

assigned to FD, meaning that calculating the median of the current wrongly

estimated pitch required 35 milliseconds for women’s voices and 70 milliseconds

for men’s voices. Therefore, a buffer delay is required in real-time environments

until three extra estimated F0s are available.

8) MaxF0: indicates the maximum acceptable frequency. In this study, for male

voices, a value of 600 Hz (near to tenor) and for female voices, a maximum of

1050 Hz (soprano) were considered for MaxF0. Rarely, male and female voices

may exceed these boundaries. However, if the singer’s voice range is higher than

these boundaries, a higher value can be considered for MaxF0.

The first condition in Figure 5-3 aims to calculate whether the frequency at index 𝑖𝑖 is

valid. There are three conditions for considering invalid estimates of pitch frequency. First, the

previously estimated pitch should not be zero because, after a silence, there should naturally

be a significant difference between the current pitch frequency and the rest. Second, the

absolute difference between the currently estimated pitch and the previous one should be

greater than the AFD. Finally, the number of consecutive zeros from the current index should

be less than noZero. This condition checks whether the estimated F0 in the current index is

zero, but the pitch detector error could not estimate the F0 correctly.

According to the above conditions, if the current estimated F0 is marked as incorrect

estimation, it branches to the right to “Yes”. The algorithm then continues by reducing the

value of FD until the second condition is no longer true. In other words, the window for

117

calculating the median shrinks until the difference between the calculated median and the

previous point is less than the AFD. Finally, the correct median is held in the 𝑀𝑀𝛥𝛥𝑎𝑎 variable.

This should be less than the MaxF0 if it is considered a valid replacement value; otherwise, a

zero will be substituted instead.

Since several incorrect estimated pitches have been observed after silences, the third

condition in Figure 5-3 checks whether the estimated F0 immediately follows a silence. In this

case, the difference between the current estimated F0 and the next estimated F0 is

considered. If neither the first nor the third conditions are correct, the estimated F0 is

assumed to be accurate and does not need to be changed.

The algorithm’s source code is available from the GitHub repository mentioned above

for more detail.

5.4 Results

This section provides the results of the comparisons between the Smart-Median

algorithm and the other 35 contour smoothers mentioned in Section 5.1. Three groups of data

were obtained for evaluation. These groups were 1—the ground truth pitch contour (GT), 2—

the original estimated pitches (ES), and 3—the smoothed contour (SM). The metrics explained

in Section 5.2.4 were employed to compare these data groups. The data series were compared

two by two, i.e., GT with ES, GT with SM, and ES with SM.

Table A-1 to Table A-4 in the Appendix show the accuracy of each of the pitch detector

algorithms, and the accuracy of the contour-smoother algorithms applied to the estimated

pitch contours to bring them closer to the ground truth pitch contour. The GT–ES columns

show the initial difference between the ground truth and the original estimated pitch contour.

Next, the differences between the ground truth and the smoothed contours are shown in the

GT–MS columns. Finally, the ES- SM columns compare the initially estimated pitch contour

and the smoothed pitch contour. The metrics comparing GT and SM are more important than

those comparing GT–ES and ES–SM, because the values of GT–SM illustrate the resulting

improvement supplied by each algorithm. For example, in the Specacf column in Table A-4,

the first row (smoother algorithm with code 00) shows that according to the FFE metric GT–

ES = 40, GT–SM = 48, and ES–SM = 61. That is, 40 per cent of the pitches estimated by the

118

Specacf algorithm were correct. Then, the smoother algorithm improved this to 48 per cent

of the acceptable data. Finally, 61 per cent of the values in the estimated pitch and smoothed

contour remained in the same range; i.e., the smoother algorithm significantly changed just

39 per cent of the values.

According to Table A-1 to Table A-4 in the Appendix, the Smart-Median was the best

algorithm for all pitch contours estimated by Specacf, FComb, Mcomb, Yin, or YinFFT.

However, the best accuracy for the pitch contours calculated by Praat was recorded by the

contour smoother code 33 (standard median). However, there was no agreement between

the metrics employed to select the best smoother pitch contours generated by Schmitt or

PYIN.

Table 5-3 aggregates all the data in Table A-1 to Table A-4 in the Appendix. It can be

observed in Table 5-3 that all the metrics agree that the Smart-Median worked better than

the other smoother algorithms.

Only the GT–SM column was considered to have found significant differences between

the accuracy of the algorithms. All the algorithms in the range of the column average

plus/minus standard deviation were considered to exhibit a similar accuracy. The algorithms

with values outside this range were considered to be in the best or worst category, as shown

in Table 5-4. Certain agreements and disagreements existed between the metrics employed

to find the best and worst algorithms. For example, the smoother code 07 was in the worst

category based on the metrics MAE and RMSE but in the best category based on the FFE

metric. These agreements and disagreements are discussed in Section 5.4.

An ANOVA test was used to check the accuracy of the smoother algorithms. For all the

metrics, the p-value calculated for each smoother algorithm was 0. That means that the

accuracy of all the smoother algorithms depended on errors that occurred in the pitch

contours, i.e., the smoother algorithms did not work with the same accuracy when each pitch

contour was affected by different sources of error.

119

Table 5-3. Comparing the mean of pitch estimators and contour-smoother algorithms by ground truth based on
the four metrics. GT = Ground Truth, ES = Estimated pitch contour, SM = Smoothed contour.

Algorithm
MAE R2 RMSE FFE

GT-ES GT-SM ES-SM GT-ES GT-SM ES-SM GT-ES GT-SM ES-SM GT-ES GT-SM ES-SM

00 165 59 136 −175 −1 0.4 451 91 426 71 75 84

01 165 160 76 −175 −73 0.9 451 313 240 71 64 81

02 165 161 82 −175 −81 0.8 451 327 278 71 66 85

03 165 160 81 −175 −82 0.8 451 327 264 71 67 85

04 165 161 82 −175 −81 0.8 451 327 278 71 66 85

05 165 160 85 −175 −68 0.8 451 304 265 71 65 82

06 165 161 69 −175 −79 0.9 451 324 224 71 66 84

07 165 161 62 −175 −87 0.9 451 338 209 71 66 87

08 165 160 76 −175 −74 0.9 451 315 242 71 65 83

09 165 191 127 −175 −77 0.8 451 321 296 71 51 64

10 165 181 179 −175 −32 0.5 451 228 397 71 45 51

11 165 172 153 −175 −39 0.7 451 240 367 71 50 59

12 165 175 153 −175 −43 0.7 451 248 361 71 50 59

13 165 172 158 −175 −34 0.6 451 228 377 71 48 57

14 165 178 162 −175 −40 0.6 451 239 368 71 49 57

15 165 168 152 −175 −39 0.6 451 241 379 71 55 65

16 165 161 130 −175 −42 0.7 451 243 345 71 56 67

17 165 161 82 −175 −81 0.8 451 327 278 71 66 85

18 165 163 160 −175 −26 0.6 451 210 384 71 48 56

19 165 172 158 −175 −34 0.6 451 228 377 71 48 57

20 165 172 158 −175 −34 0.6 451 228 377 71 48 57

21 168 164 147 −184 −32 0.6 448 220 366 70 50 60

22 165 172 158 −175 −34 0.6 451 228 377 71 48 57

23 165 159 101 −175 −47 0.8 451 262 282 71 53 67

24 165 164 82 −175 −72 0.9 451 312 246 71 55 71

25 165 176 120 −175 −55 0.8 451 283 262 71 51 63

26 165 183 88 −175 −91 0.9 451 344 192 71 53 70

27 165 168 104 −175 −56 0.8 451 285 268 71 53 68

28 165 170 92 −175 −71 0.9 451 311 252 71 54 69

29 165 175 95 −175 −73 0.9 451 316 214 71 53 68

30 165 182 89 −175 −88 0.9 451 340 197 71 53 69

31 168 163 111 −199 −76 0.7 456 303 329 70 65 80

32 165 159 70 −175 −78 0.9 451 321 212 71 61 78

33 165 132 52 −175 −46 0.8 451 238 307 71 72 94

34 165 146 76 −175 −62 0.8 451 284 311 71 65 81

35 165 131 59 −175 −61 0.7 451 228 342 71 72 95

120

Table 5-4. Dividing the contour smoother algorithms into three categories (best, normal, and worst) based on
the standard deviation.

 Best
Code (Value) Normal Worst

Code (Value)

MAE
00 (58.71)
33 (131.85)
35 (131.3)

Avg = 162.56 Std = 21.25

09 (190.95) Min = 141.31 Max = 183.81

All the other algorithms*

R2

00 (−0.72)
10 (−31.59)
13 (−34.07)
18 (−26.9)
19 (−34.7)
20 (−34.07)
21 (−32.46)
22 (−34.07)

Avg = −58.01 Std = 21.98 02 (−80.79)
03 (−82.22)
04 (−80.81)
07 (−87.46)
17 (−80.81)
26 (−90.75)
30 (−87.66)

Min = −79.99 Max = −36.03

All the other algorithms*

RMSE
00 (90.67)
18 (209.56)
21 (220.12)

Avg = 275.62 Std = 53.1 07 (338.41)
26 (343.63)
30 (339.93)

Min = 222.52 Max = 328.72

All the other algorithms*

FFE

00 (74.73)
02 (66.21)
03 (66.87)
04 (66.22)
07 (66.48)
17 (66.22)
33 (71.87)
35 (71.99)

Avg = 57.59 Std = 8.35 10 (44.83)
13 (48.24)
14 (48.6)

18 (48.47)
19 (48.24)
20 (48.24)
22 (48.24)

Min = 49.24 Max = 65.94

All the other algorithms*

*it means that all the other algorithms not mentioned in the Best or Worst columns were in the average range.

5.5 Discussion

This section discusses several aspects of the results obtained in Section 5.4. Because this

study focuses on the Smart-Median method, the only considerations provided here are those

relating to comparisons of Smart-Median accuracy with that of other smoother algorithms.

5.5.1 Comparing the Results of Each Metric

A higher R-squared (R2) value does not always mean a better fitting (Lewis-Beck and

Skalaban, 1990). For example, Table 5-5 shows the R-squared scores of three series of

predicted data. These predictions are the estimated pitch frequencies for five sung notes: G2,

G2, A2, G2, and G2. According to the R-squared scores in Table 5-5, the order of the best

prediction to the worst was 4, 3, 2, and then 1. However, Predict 3 estimated two wrong notes,

such that each was one tone above the corresponding ground truth notes (A2 instead of G2),

while Predicts 1 and 2 each had only one incorrect note (B2 instead of A2). Therefore,

121

musically, the third was the worst, but based on R-squared, it was the second-best. In addition,

musically, Predict 1 and Predict 2 were similar, and the 0.2 Hz pitch frequency difference could

easily have resulted from a different method of F0 tracking, but their R-squared scores were

different. In conclusion, we cannot compare two series of smoothed pitches based only on R-

squared.

Table 5-5. Comparison of metrics in different series of predicted data.

 1st 2nd 3rd 4th 5th R2 Score RMSE MAE FFE

Ground Truth 98 (G2) 98 (G2) 110 (A2) 98 (G2) 98 (G2) NA NA NA NA

Predict 1 98.2 (G2) 98.2 (G2) 123.2 (B2) 98.2 (G2) 98.2 (G2) −0.61 5.91 2.8 0.8

Predict 2 98 (G2) 98 (G2) 123 (B2) 98 (G2) 98 (G2) −0.56 5.81 2.6 0.8

Predict 3 98 (G2) 110 (A2) 110 (A2) 110 (A2) 98 (G2) −0.33 7.59 4.8 0.6

Predict 4 98.2 (G2) 98.2 (G2) 110.2 (A2) 98.2 (G2) 98.2 (G2) 0.999 0.2 0.2 1

According to the RMSE and MAE columns in Table 5-5, the best to worst series were 4,

2, 1, and then 3. This order is better than that based on R-squared. However, musically, we

need to consider the similarity of Predict 1 and Predict 2; based on the FFE column in Table

5-5, Predicts 1 and 2 both had the same value. As shown in Table 5-5, Predict 4 was the best

according to all the metrics, and musically, it was also the best. Moreover, although Predicts

1 and 2 were musically similar (FFE metric), Predict 2 was more accurate than Predict 1 (R2,

RMSE, and MAE metrics).

To conclude, a single metric alone cannot provide a clear and accurate evaluation to

compare pitch contours, but a firm conclusion can be reached by using all of them.

5.5.2 Comparing Moving Average, Median, Okada, Jlassi, and Smart-Median

The main weakness of the Median, Okada (Okada, Ishikawa and Ikegaya, 2016), and

Jlassi (Jlassi, Bouzid and Ellouze, 2016) filters is that they only adjust noises with a duration of

one point in the contour. In other words, if more than one consecutive wrongly estimated

pitch values occurs within a contour, these algorithms cannot smooth the errors. The

following example illustrates the operation of the moving average, Median, Okada, Jlassi, and

Smart-Median approaches on a data series.

Table 5-6 shows five estimated F0s as the input, the first row, and how each of the

Moving average, Median, Okada, Jlassi, and Smart-Median will modify the data. It was

122

expected that all these five numbers be close together. Thus, there are two incorrectly

estimated F0s with the value 2000 Hz. As shown in Table 5-6, the moving average and Median

methods changed some of the correctly estimated values, i.e., the 102 value, which was the

second piece of input data. On the other hand, Okada’s and Jlassi’s approaches did not change

any of the values because they looked for significant differences with immediately preceding

and following points. However, the Smart-Median is mainly concerned with finding an

acceptable jump by comparing the current and previous points. Because of this different

approach to the identification of errors, when the pitch contour was already almost smooth

(contours estimated by Praat and PYIN) there was no significant difference between the

accuracy of these approaches (as seen by comparing rows 00, 33, 34, and 35 in Praat and PYIN

columns in Table A-1 to Table A-4 in Appendix). However, while the pitch contours estimated

by the other pitch detection algorithms exhibited several errors, Smart-Median showed

meaningfully better results than all other methods (observable in Specacf, Schmitt, Fcomb,

Mcomb, Yin, and YinFFT columns in Table A-1 to Table A-4 in Appendix).

Table 5-6. An example to illustrate the weakness of the moving average, Median, Okada, and Jlassi algorithms
as compared to the Smart-Median.

Input 100 Hz 102 Hz 2000 Hz 2000 Hz 100 Hz

Moving average (window size = 3) 734 Hz 1367 Hz 1367 Hz 1050 Hz 100 Hz

Median (window size = 3) 102 Hz 2000 Hz 2000 Hz 1050 Hz 100 Hz

Okada 100 Hz 102 Hz 2000 Hz 2000 Hz 100 Hz

Jlassi 100 Hz 102 Hz 2000 Hz 2000 Hz 100 Hz

Smart-Median 100 Hz 102 Hz 102 Hz 102 Hz 100 Hz

Generally, according to Table 5-3, the accuracy of the Smart-Median based on the four

metrics was much better than all the other algorithms.

5.5.3 Accuracy of the Contour Smoother Algorithms

All the contour smoother algorithms provided strong results according to the R2 and

RMSE metrics (by comparing the GT–ES columns with GT–SM columns in Table 5-3). However,

only the Smart-Median (00), Median (33), and Jlassi (35) approaches could change the pitch

contour significantly to ensure that more of the estimated F0 values were constrained to line

within the range of 20% of the ground truth pitch contour (Table A-1 to Table A-4 in Appendix

123

and Table 5-3 to Table 5-4). Therefore, although all the algorithms smoothed contour errors,

many also altered the value of the corrected estimated pitches.

5.6 Conclusions

This chapter has introduced a new pitch-contour-smoother targeted towards the singing

voice in real-time environments. The proposed algorithm is based on the median filter and

considers the features of fundamental frequencies in singing. The algorithm’s accuracy was

compared with 35 other smoother techniques, and four metrics evaluated their results: R-

Squared, Root-Mean-Square Error, Mean Absolute Error, and F0 Frame Error. The proposed

Smart-Median algorithm achieved better results across all the metrics in comparison to the

other smoother algorithms. According to this study, a buffer delay of 35 to 70 milliseconds is

required for the algorithm to smooth the contour appropriately. For the low frequencies,

men’s voice, a longer buffer delay is needed than for higher frequencies, women’s voice.

Most of the general smoother algorithms did not show an acceptable accuracy. A

general observation is that in the ideal case, a smoother algorithm should be defined based

on the essential features of the data in the contour and how that data is to be used after

smoothing.

The parameters’ values were selected according to the singing features and can also be

used in other smoother algorithms, like the moving average, to improve their accuracy. The

gender of the singer cannot directly affect the Smart-Median accuracy, albeit, as discussed in

Chapter 3 and Chapter 4, it affects the pitch detectors' accuracy. After smoothing estimated

pitch contours, the sung notes can be extracted with the novel algorithm discussed in the

following chapter.

Chapter 6
Onset and Offset detection

This chapter introduces a new method for detecting onsets, offsets, and

transitions of the notes in real-time solo singing performances. The text of this

chapter come from the following journal paper.

• Faghih B, Chakraborty S, Yaseen A, Timoney J. A New Method for Detecting Onset and Offset

for Singing in Real-Time and Offline Environments. Applied Sciences. 2022; 12(15):7391.
https://doi.org/10.3390/app12157391

https://doi.org/10.3390/app12157391

125

This chapter aims to introduce a new onset detection algorithm incorporating more

knowledge about the singing features for a more accurate onset estimation.

To achieve the goal, the following section explains the methodology. After that, in

Section 6.2, the new algorithm will be discussed in detail. Then, the evaluation results for the

proposed algorithm will be presented and discussed in Section 6.3. Finally, the last section

concludes the chapter.

6.1 Materials and Methods

This section explains the details of the approach taken to develop our algorithm. It first

describes the datasets used, then explains the algorithm thoroughly, followed by the structure

of the evaluation procedure.

6.1.1 Datasets

Two onset-annotated vocal datasets, Erkomaishvili (Rosenzweig, Scherbaum, et al.,

2020) and SVNote1 (Hoon Heo, Dooyong Sung and Kyogu Lee, 2013; Chang and Lee, 2014),

are used for this study. The following paragraphs provide a summary description of these

different musical datasets.

6.1.1.1 Erkomaishvili Dataset

This dataset includes 100 monophonic audio files of traditional Georgian vocal music

performed by a professional singer, Artem Erkomaishvili. Each audio file contains the

fundamental frequencies, segment annotation, onset annotations, and sheet music in XML.

Moreover, it contains more than seven hours of music with 40,135 onset annotations. The

annotations were estimated manually except for the fundamental frequencies, whose

calculation was semi-automated. Moreover, in this dataset, the points for onset and offset in

successive notes were deemed to coincide, i.e., the offset of the previous note is the onset of

the new note. Since the files were recorded in 1966, the audio files have poor quality. In

addition, the recordings are of natural melodic singing rather than only some scales or

arpeggios. Therefore, it is a challenging dataset for automatic annotation algorithms.

126

6.1.1.2 Note-Level Singing Voice Dataset (SVNote1)

This dataset included 30 audio files sung by seven men and three women. Each of the

singers recorded three popular pieces of music (1-“soft kitty, warm kitty, little ball of fur”, 2-

“school bell”, and 3-“Twinkle, twinkle little star”). These are, in total, around 16 min of music

with 1440 onset annotations. In addition, three people annotated each audio file's onsets

separately, meaning three sets of annotations were provided for each audio file. The three

annotators’ average is considered the ground truth for this study.

These datasets were selected to have a variety of singing techniques, intervals between

notes, duration of the notes, and transition from one to another. For example, the

Erkomaishvili dataset included many soft onsets, long notes, and vibrato as compared to the

SVNote1 dataset. Thus, both datasets can provide various spectrograms of singing to evaluate

onset detection algorithms in determining the onset of notes.

6.1.2 State of-the-Art Onset Detection Algorithms

To evaluate our proposed algorithm’s efficiency and accuracy, eight different onset

detection algorithms were selected against which to compare the accuracy of the proposed

algorithm. The implemented versions of the algorithms in Python were used. The algorithms

were taken from implementations across four different Python libraries, namely Librosa

(McFee et al., 2015, 2020), Madmom (Böck et al., 2016), Aubio (Brossier et al., 2019), and

Essentia (Bogdanov et al., 2013a). The explanations of the algorithms are provided in the

following by categorizing them based on the Python libraries.

6.1.2.1 Librosa

Librosa is a well-known library for sound analysis and feature extraction (McFee et al.,

2015). It has three different methods to estimate onsets. The first method (referred to as

“LibRaw” in this chapter) locates the note onsets based on peaks in the onset strength

envelope. The onset strength envelope is calculated by finding the spectral flux, which is the

difference in power spectrum between two consecutive frames, applying a threshold, and

returning a one-dimensional array representing the change in spectral energy for each frame.

Then, based on the onset strength, it peaks where the energy is a minimum based on the

heuristic described by Boeck et al. (Sebastian, Krebs and Schedl, 2012). The other two methods

127

rely on backtracking from the nearest preceding minimum energy point (Jehan, 2005). The

second method (called “LibBt”) works by backtracking using the onset strength profile, while

the third method (named “LibBtRMS”) depends on backtracking with the Root Mean Square

(RMS) or amplitude value. All these three methods are offline; they have not been designed

to work in real-time.

6.1.2.2 Madmom

This Python library provides two real-time onset detection methods (Böck et al., 2012,

2016). The first approach (called “MadmomCNN” in this article) uses a Convolutional Neural

Network model that is a real-time version of the model proposed by Schlüter & Böck (Schlüter

and Böck, 2013) trained on 26,000 annotated onsets. The model was trained to predict

percussive and harmonic onsets with a frame rate of 100 per second. Next, the spectral onset

processor method detects the onsets from a logarithmically scaled audio signal representation

based on the spectral magnitude and phase, which is referred to using the name

“MadmomSF” in this chapter.

6.1.2.3 Aubio

This real-time library uses a window size of 2048 frequency samples to detect onsets

(Brossier, 2005). In addition, Aubio sets a threshold value to mark quiet regions. Finally, it

constructs a function based on successive spectral frames with a window size of 2048 and a

hop size of 1024, meaning that the frame duration was approximately 23 ms for a 44,100 Hz

sample rate. The dynamic thresholding and peak selections return the onset frames.

6.1.2.4 Essentia

This offline onset tracking method was used with its default values for the window and

hop sizes, 1024 and 512, respectively, for a Hann window (Bogdanov et al., 2013a). Therefore,

the duration of each frame was roughly 11.61 ms. There are two approaches to this library.

The first method, Essentia Onset HFC (EssHFC), uses a high-frequency content detection

function (Masri and Bateman, 1996). The high frequency is calculated by multiplying the

magnitude of each frame position (frequency) with the summation of the magnitudes of the

spectral frame. The discrete spectrum of 𝑁𝑁 unique points is formulated in Equation (6-1).

𝐻𝐻𝐺𝐺𝐶𝐶 = ∑ 𝑖𝑖|𝑋𝑋(𝑖𝑖)|𝑁𝑁−1
𝑖𝑖=0 , (6-1)

128

The second method, Essentia Onset Complex (EssCplx), uses a complex domain spectral

difference function to identify significant changes in magnitude and phase (Bello et al., 2004).

This algorithm tries to identify significant energy changes on note onsets or the deviation of

phase values within the phase spectrum caused due to pitch changes.

Finally, it should be mentioned that all these algorithms/libraries calculate only onsets

and do not compute offsets or identify transitions.

6.1.3 The Methods for Evaluation

The accuracy of the proposed algorithm is evaluated by running the algorithms

presented in Section 6.1.2 and the proposed algorithm on the datasets mentioned in Section

6.1.1. Then, the F-measure scores were calculated by the mir_eval Python library (Raffel et al.,

2014), and the results were ordered so that they could be compared with each other. As

mentioned above, the onset points are not exact times but a range of acceptable times.

Therefore, to calculate F-measure scores, each of the estimated onsets’ points should be

compared with a range of points around the ground truth points. Thus, six different window

sizes (10, 50, 100, 150, 200, and 250 ms) were considered to calculate the F-measure scores.

Furthermore, the F-measure scores’ average, variance, and ANOVA were calculated to

understand the results better.

6.2 The Proposed Algorithm

This algorithm is based on our observations following investigations that involved many

singing pitch contours. From many of the plotted pitch contours, it was noticed that there is a

noticeable trajectory change in the fundamental frequency when moving from one note to

another. Therefore, the proposed algorithm is focused on evaluating the changes in a pitch

contour to identify those meaningful changes that will signify onsets, offsets, and transitions.

The pitch contour is selected because it is a robust indicator of onset compared to other

features. For example, Rabiner and Sambur (Rabiner and Sambur, 1975) looked to find

significant changes in the sound energy contour to find the start and the end of an isolated

utterance. Their approach is based on short-time energy and zero-crossing rate. However,

although in the case of a silence existing between notes, as considered by Rabiner and Sambur

129

(Rabiner and Sambur, 1975), a noticeable change in amplitude contour is easy to see, it is

difficult to rely on the amplitude contour as a feature when analyzing legato singing, as

unpredictable variations can occur in the movement from one note to the next. In contrast,

the fundamental frequency track is either erratic before the onset and then quickly becomes

stable or moves smoothly from one value to the next in the case of legato singing, even when

the consecutive notes are at the same pitch frequency. Thus, the proposed algorithm can be

explained as seven main steps to find the onsets, offsets, and transitions, as shown in Figure

6-1. The steps are explained in the subsequent paragraphs.

Figure 6-1 The main steps to find onsets in the proposed algorithm.

6.2.1 Estimating F0s

Since the algorithm is based on the fundamental frequencies, the F0s must be estimated

correctly. However, as mentioned in the previous Chapters, the current real-time pitch

detection algorithms are unreliable when applied to singing phrases. Therefore, according to

Chapter 3, a more reliable offline algorithm, PYIN (Mauch and Dixon, 2014), was employed to

avoid a compounding effect in this analysis if any real-time pitch detector algorithm would be

used. Thus, it was possible to evaluate the accuracy of the onset algorithm without any

adverse effects caused by the pitch detection algorithms. A Python library, Librosa (McFee et

al., 2020), was used for PYIN.

The main difference between the real-time and offline algorithms is the amount of data

they need for the calculation. Therefore, real-time algorithms are only based on the previous

data points and/or a few later data points, meaning that only a short buffer delay is required.

On the other hand, offline algorithms require a long buffer delay to have sufficient data when

130

performing their calculations. Using the PYIN algorithm does not mean the proposed

algorithm needs a long buffer delay to obtain a large amount of data, but the algorithm can

work with a very short buffer delay, as explained below.

6.2.2 Stretching Pitch Contour

Since humans’ vocal pitch range is wide, generally from 77 to 900 Hz (Heylen et al.,

2002), calculating significant changes occurring on pitch contour has some difficulty. For

example, the slope of the line when moving from note 𝐸𝐸2 ≈ 82 Hz to the note 𝐺𝐺2 ≈ 87 Hz

is much less than when it moves from note 𝐸𝐸5 ≈ 659 Hz to note 𝐺𝐺5 ≈ 698 Hz. Therefore, to

counteract any adverse effect of this wide pitch frequency range on the slopes, the F0s are

stretched to be on the almost same pitch frequency range.

Figure 6-2 plots two estimated pitch contours (panels a and b) and the stretched version

of them (panels c and d, respectively). As depicted in Figure 6-2, although (a) and (b) are in

different pitch frequency ranges, after stretching, the slopes between notes in both (c) and

(d) are almost similar.

The following formulas, Equations (6-2) and (6-3), are used to implement the stretch.

𝑚𝑚𝑎𝑎𝑚𝑚 = �𝐺𝐺0𝑖𝑖 , 𝐺𝐺0𝑖𝑖 > 𝑚𝑚𝑎𝑎𝑚𝑚
𝑚𝑚𝑎𝑎𝑚𝑚, 𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥 , (6-2)

𝐺𝐺0𝑖𝑖 = 𝐹𝐹0𝑖𝑖 ∗𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑠𝑠ℎ𝑜𝑜𝑙𝑙𝑜𝑜
𝑚𝑚𝑏𝑏𝑚𝑚

, (6-3)

where the variable 𝑚𝑚𝑎𝑎𝑚𝑚 holds the maximum F0 estimated until index 𝑖𝑖 − 1, and the

constant value 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎 holds the maximum possible F0. Since the maximum pitch

frequencies of the singers in both datasets mentioned above are less than 1000 Hz, for this

study, 1000 Hz is considered as the 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎. In Equation (6-2), if the current F0, 𝐺𝐺0𝑖𝑖, is

more than the 𝑚𝑚𝑎𝑎𝑚𝑚 variable, Equation (6-3) should be run for all the F0s from index 0 to index

𝑖𝑖 − 1.

131

(a) (b)

(c) (d)

Figure 6-2 The effect of stretching on pitch contour’s slopes. (c, d) are the stretched pitch contours of (a, b),
respectively.

6.2.3 Calculating the Stretched Pitch Contour Slopes

To find the significant changes in F0s, the slopes between points in the pitch contour are

needed. Figure 6-3 illustrates the process of calculating the slopes: in the top panel, (a), the

estimated pitch contour is plotted; the graph in the middle panel, (b), shows a stretched pitch

contour of the contour in panel (a) as discussed in Section 6.2.2, while that the bottom panel,

(c), depicts the slopes between the F0s of the stretched pitch contour. It is computed by

differentiating the contour. The vertical red lines in Figure 6-3 show the possible offset points,

and the vertical green lines are the possible onset points.

132

(a)

(b)

(c)

Figure 6-3 Analyzing the pitch contour. (a) The original pitch contour of three notes, the first two notes are the
same, and the third one is lower than the previous notes, (b) the stretched estimated values for the fundamental
frequencies in (a), and (c) the slope of the pitch contour computed using differentiation. The red lines show the

possible points for offsets, and the green lines are possible onsets.

133

6.2.4 Calculating the Summation of Slopes in the following Line

Transitions can be observed in singing as the singer moves from one note to another.

An example of this is outlined between the two pairs of orange-coloured lines in Figure 6-4.

Figure 6-4 Points’ statuses on a pitch contour. There are three notes: F4, F4, and E4, in order, sung by a

professional female singer. The average pitch frequencies of the notes are 359, 362, and 323 Hertz, respectively.

In this step, the summation of the following points’ slopes is calculated to find the

transitions at each point. In other words, as far as the direction of the line (upward, downward,

or straight) in the stretched pitch contour remains the same, the slopes between every two

consecutive points would be added to each other. The algorithm is depicted in Figure 6-5,

where 𝑖𝑖 is the current point in this figure.

134

Figure 6-5 Calculating the summation of the following slopes of the differentiated contour.

The algorithm commences by computing the cumulative sum of the consecutive points

in the slope representation. In other words, their amplitudes, the values on the y-axis in Figure

6-3(c), are summed. According to the evaluation of several manually annotated onsets,

offsets, and transitions, it is observed that there is a sharp upward or downward movement

between two consecutive notes in a pitch contour. Therefore, a heuristic function

implemented using decision logic is applied to assess how much change happens after each

new point. In addition, it is found how many consecutive points have the same sign as the

current point’s slope: that is, how many of the successive values are heading in the same

direction. The function that denotes this in Figure 6-5 is named

NumberOfSameSlopeDirection(Pointi).

135

Therefore, the algorithm, at this point, detects when the slope changes sign.

6.2.5 Calculating the Mean of the Local Slopes

In this step, the mean of the local slopes needs to be calculated. This mean is always

accounted for by considering some of the previous points until the current point, as shown in

Equation (6-4).

𝑀𝑀𝛥𝛥𝑎𝑎𝑛𝑛(𝑃𝑃𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖) = ∑ 𝑆𝑆𝑙𝑙𝑜𝑜𝑝𝑝𝑟𝑟 (𝑃𝑃𝑜𝑜𝑖𝑖𝑛𝑛𝑃𝑃𝑥𝑥)𝑥𝑥=𝑖𝑖
𝑥𝑥=𝑖𝑖−𝑛𝑛

𝑛𝑛
, (6-4)

where 𝑛𝑛 is the size of the window. The value of 𝑛𝑛 is important to produce a mean that

can show the mean of the fluctuations in a note. If 𝑛𝑛 is too big, it may include some old-time

fluctuations that will result in an incorrect local mean. In contrast, if 𝑛𝑛 is too small, there would

not be enough fluctuations to calculate the correct local mean. The 𝑛𝑛 should be selected based

on the singing technique, notes’ duration, and intervals. In this study, the selected values of 𝑛𝑛

were chosen to be 230 ms for the Erkomaishvili dataset and 46 ms for the SVNote1 dataset.

These selections for 𝑛𝑛 were made according to a trial-and-error method of adjusting the 𝑛𝑛

value to have the best result for one of the files of each dataset.

As shown in Figure 6-6, although the median duration of the notes in both datasets is

almost similar, roughly 0.42 s, the duration of most of the notes in the Erkomaishvili dataset

is longer than the median. In contrast, the duration of the notes in the SVNote1 dataset is

distributed approximately uniformly below and above the average. Therefore, the variance of

notes’ duration in the Erkomaishvili dataset is greater than in the SVNote1 dataset. In addition,

the variance of the intervals between notes in the Erkomaishvili dataset is smaller than in the

SVNote1 dataset. Thus, two different 𝑛𝑛 values for each dataset were selected.

Figure 6-6 Box and whisker of the estimated notes’ duration in the SVNote1 and the Erkomaishvili datasets.

136

6.2.6 Calculating the Standard Deviation of the Local Slopes

To define a significant trajectory change in the fundamental frequencies, the sample

standard deviation of the local slopes is calculated as shown in Equation (6-5).

𝑆𝑆𝐺𝐺𝑆𝑆(𝑃𝑃𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖) = �
∑ (𝑆𝑆𝑙𝑙𝑜𝑜𝑝𝑝𝑟𝑟(𝑃𝑃𝑜𝑜𝑖𝑖𝑛𝑛𝑃𝑃𝑥𝑥)− 𝑀𝑀𝑟𝑟𝑏𝑏𝑛𝑛(𝑃𝑃𝑜𝑜𝑖𝑖𝑛𝑛𝑃𝑃𝑖𝑖))2𝑥𝑥=𝑖𝑖
𝑥𝑥=𝑖𝑖−𝑛𝑛

𝑛𝑛−1
, (6-5)

The same window size (𝑛𝑛 value) as for calculating the mean was used for estimating the

standard deviation.

6.2.7 Comparing the Current Slope with the Mean and Standard Deviation

In this step, all the required information is prepared to determine if a significant change

has occurred in the fundamental frequency trajectory.

Each of the points in the pitch contour can have only one of the following statuses:

a) Onset: this means the point is an onset.

b) Offset: this means the point is an offset.

c) StartTransition: this means a transition will follow, and this point is the start of

the transition.

d) EndTransition: this means it is the end of the transition.

e) None: this means this point is neither an event’s start nor the end.

These statuses are illustrated in the diagram in Figure 6-4. The red and green lines show

offset and onset events, respectively, while the orange lines denote a transition from a note

to the following note, i.e., the points between an offset and its subsequent onset.

Figure 6-7 illustrates the algorithm for finding each point’s status. This algorithm works

based on the values calculated by the algorithm illustrated in Figure 6-5. This algorithm is run

iteratively on each of the estimated pitch values.

First, a 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎 for the local pitch contour’s slope must be calculated. This is

completed by adding the mean of the local slopes at 𝑃𝑃𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖 to the product of the standard

deviation of the local slopes at P𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖 and 𝑡𝑡 coefficients. The 𝑡𝑡 is a user-specified value that

indicates which range of frequencies, based on their variation from the mean, should be

considered as belonging to the same note. The value t does not define a fixed variation from

the mean but is derived based on the singer’s techniques. For instance, when the singer uses

137

vibrato, the variation is higher than singing in an unmodulated tone. Thus, since the

Erkomaishvili dataset has more variations in its tones than the SVNote1 dataset, thresholds of

5 and 2 were selected, respectively, by employing a trial-and-error method.

Second, if the slope at 𝑃𝑃𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖 is bigger than the 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎, it means that a trajectory

change has happened. This significant change should be an 𝑂𝑂𝑛𝑛𝛥𝛥𝛥𝛥𝑡𝑡, 𝑂𝑂𝑓𝑓𝑓𝑓𝛥𝛥𝛥𝛥𝑡𝑡, or

𝑆𝑆𝑡𝑡𝑎𝑎𝑓𝑓𝑡𝑡𝐺𝐺𝑓𝑓𝑎𝑎𝑛𝑛𝛥𝛥𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑛𝑛. If it is the first trajectory change after a silence (see Branch B in Figure 6-7),

it is a movement to reach an 𝑂𝑂𝑛𝑛𝛥𝛥𝛥𝛥𝑡𝑡; otherwise (see Branch A in Figure 6-7), the current point

is an 𝑂𝑂𝑓𝑓𝑓𝑓𝛥𝛥𝛥𝛥𝑡𝑡. Based on each of these situations, Onset, Offset, StartTransition, and

EndTransition statuses will be marked. The start and end of transitions are consecutively after

and before an Offset and an Onset, respectively. In other words, the start and end of

transitions are one point apart from the Offset and Onset points.

When the algorithm finds a significant trajectory change at 𝑝𝑝𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖, all the events

between 𝑃𝑃𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖 and 𝑃𝑃𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖+𝑖𝑖 will be labelled; thus, the following point that needs to be

checked is 𝑖𝑖 + 𝑗𝑗 + 1. Therefore, there is a jump with a size of 𝑗𝑗 + 1 at the end of the algorithm

to set the 𝑖𝑖 value for the next iteration.

In the beginning, the 𝐺𝐺𝑖𝑖𝑓𝑓𝛥𝛥𝑡𝑡𝐺𝐺𝑖𝑖𝑚𝑚𝛥𝛥 variable is set to 𝐺𝐺𝑓𝑓𝑡𝑡𝛥𝛥, and also when a rest is reached

(when 𝐺𝐺0𝑖𝑖 equals zero), a 𝐺𝐺𝑓𝑓𝑡𝑡𝛥𝛥 value will be assigned to this variable.

A full implementation of the algorithm has been released to provide all the details in a

GitHub repository1.

1 https://github.com/BehnamFaghihMusicTech/Onset-Detection, accessed on 15 July 2022

https://github.com/BehnamFaghihMusicTech/Onset-Detection

138

Figure 6-7 The algorithm for finding a significant change to find onset, offset, and transition.

6.3 Results and Discussion

This section provides the results and the details of the procedure for evaluating the

proposed algorithm. It should be mentioned that the accuracy of the real-time proposed

algorithm is compared against a set of real-time and offline algorithms. The delay buffer of

the proposed algorithms depends on the window size to calculate the mean of the local slopes,

139

as mentioned in Section 6.2.5. Delays buffers of 230 and 46 ms are used for the Erkomaishvili

and SVNote1 datasets, respectively.

Since the other onset detection algorithms mentioned in Section 6.1.2 only estimate

onsets but not offsets and transitions, only onsets need to be extracted to evaluate and

compare the proposed algorithm with them. Therefore, two types of onset times were

considered: (1) First, only those points in the pitch contour are labelled as an onset. The green

line illustrates these in Figure 6-8, and (2) the middle point between the start time of the

transition and onset, illustrated by the pink lines in Figure 6-8, is considered the new onset

point. The reason for considering the second type is to align with the approach used for ground

truth datasets because they do not consider that transitions can exist between notes.

Therefore, they would probably select a point between the red and green lines in Figure 6-8

as the onset. Therefore, considering the middle point should result in just a minor deviation

from the ground truths.

(a) (b)

Figure 6-8 An example illustrates the position of the onset point in the Erkomaishvili dataset (ground truth)
compared to the onset, offset, and transition points indicated by the proposed algorithm. Panel (a) shows the

pitch frequencies, and panel (b) depicts the slope contour according to panel (a).

Generally, as shown in Figure 6-8, a range of plotted points between the offset and the

start of the following note could be selected as an onset. Therefore, the algorithms were

compared with different window sizes of 10, 50, 100, 150, 200, and 250 ms for calculating the

F-measure. Table 6-1 and Table 6-2 display F-measures computed across all the algorithms in

the six window sizes. A larger window size for F-measure shows more similarity since an

enormous difference between the ground truth and the estimated onset would be acceptable

in this case. However, as seen in Table 6-1 and Table 6-2, after applying the window size of

150 ms, the speed of improvement in F-measure values decreases. In addition, a window size

140

of more than 250 ms cannot be meaningful since it accepts more than a 250 ms difference

between the ground truth and the estimated onset, which is too long. These tables provide

the similarity between the ground truth’s onsets times and the estimated onsets times by each

algorithm. As mentioned above, two onset point selections are considered regarding the

proposed algorithm. The rows titled “Pro Algorithm 1” in Table 6-1 and Table 6-2 consider the

green line in Figure 6-8 as the onset, while the rows titled “Pro Algorithm 2” select the middle

point, which is the pink line in Figure 6-8.

All the algorithms show better results on the SVNote1 dataset than on the Erkomaishvili

dataset. One of the possible reasons for the better result could be the better audio quality of

the SVNote1 dataset. In addition, there is a speaking introduction at the beginning of each

audio file that is not included in their annotations. Nevertheless, since all the algorithms are

working on the same audio files, they all have the same faulty sound, which will not affect the

comparison.

As the result of the comparison, our proposed algorithm finds more correct onsets

compared to the other algorithms when the window size is equal to or greater than 150 ms,

as shown in the rows for Pro Algorithm 1 in Table 6-1 and Table 6-2. The bold numbers in these

two tables highlight the performance of the best algorithm.

Selecting the average of the onset and the start of the transition as the onset leads to

an increase in the accuracy of the proposed algorithm by 3.4% on average for the Erkomaishvili

dataset. However, the opposite is the case for the SVNote1 dataset, in which the accuracy of

the onset identification decreased by 3.8%. The reason for these opposing results is that the

annotator of the Erkomaishvili dataset considered onsets to lie more closely to the middle, as

depicted in Figure 6-8.

However, the SVNote1 dataset’s annotators mostly considered onsets after the

proposed algorithm’s onset point, as shown in Figure 6-4. Both approaches can be interpreted

as correct since the onset point is not universally agreed in a pitch contour, as mentioned

above, but it is deemed to be valid over a range of points.

To check the meaningfulness of the averages of the F-measure values of each onset

detection algorithm, the p-values for ANOVA were calculated for all the F-measure values

calculated for every single file. The ANOVA’s p-values for both Table 6-1 and Table 6-2 were

141

less than 0.0001, which means a significant difference exists between the accuracy of all

evaluated algorithms.

Table 6-1 The average of the F-measures of all the algorithms on the Erkomaishvili dataset based on six window
sizes, from 10 to 250 ms.

Algorithm Window size 10 50 100 150 200 250

Aubio * 0.072 0.295 0.415 0.480 0.523 0.553

EssCplx 0.076 0.304 0.444 0.508 0.541 0.557

EssHFC 0.065 0.297 0.452 0.533 0.58 0.611

LibBt 0.064 0.288 0.448 0.521 0.560 0.585

LibBtRMS 0.046 0.247 0.416 0.502 0.551 0.58

LibRaw 0.056 0.295 0.455 0.525 0.563 0.586

MadmomCNN * 0.086 0.308 0.42 0.479 0.516 0.543

MadmomSF * 0.088 0.287 0.392 0.450 0.488 0.515

Pro Algorithm 1 * 0.036 0.198 0.416 0.55 0.631 0.681

Pro Algorithm 2 * 0.059 0.274 0.464 0.579 0.649 0.691
* The algorithms marked with a star are real-time algorithms.

Table 6-2 The average of the F-measures of all the algorithms on the SVNote1 dataset based on six window
sizes, from 10 to 250 ms.

Algorithm Window size 10 50 100 150 200 250

Aubio * 0.118 0.509 0.655 0.694 0.696 0.696

EssCplx 0.064 0.313 0.492 0.550 0.562 0.563

EssHFC 0.095 0.561 0.739 0.787 0.798 0.798

LibBt 0.045 0.371 0.611 0.737 0.779 0.786

LibBtRMS 0 0.111 0.498 0.697 0.761 0.783

LibRaw 0.257 0.672 0.763 0.784 0.785 0.785

MadmomCNN * 0.042 0.496 0.665 0.667 0.667 0.667

MadmomSF * 0.020 0.662 0.779 0.781 0.781 0.782

Pro Algorithm 1 * 0.089 0.469 0.704 0.827 0.893 0.923

Pro Algorithm 2 * 0.108 0.432 0.646 0.764 0.845 0.881
* The algorithms marked with a star are real-time algorithms.

As another result, the average and the standard deviation of the duration of the

transitions are shown in Table 6-3. This table also provides the minimum (average minus

standard deviation) and the maximum (average plus standard deviation) typical duration for

the transitions. Therefore, the average transitions’ duration in the datasets is almost the same.

Overall, based on the results, the minimum and maximum duration of the transitions were

approximately 16 and 98 ms, respectively. Therefore, since the proposed algorithm is based

on the trajectory changes in a pitch contour and the transitions show these significant

142

changes, the minimum buffer delay required to find the onset, offset, and transition is 16 ms

and the maximum of 98 ms. However, most events should be found correctly, with the

average transition duration being around 57 ms. This delay would be acceptable for most real-

time music information retrieval applications. For example, Henkel and Widner’s real-time

score-following system (Henkel and Widmer, 2021) requires a delay of around 56 ms.

Generally, by examining more datasets, these numbers can be generalized and make them

fixed for the algorithm instead of adjusting them according to the features of the input signals.

Table 6-3 The average, standard deviation, minimum, and maximum typical duration of transitions in both the
datasets and overall.

 Average STD Min Max

Erkomaishvili 57.44 40.77 16.67 98.21

SVNote1 56.25 44.68 11.57 100.93

Overall 57.4 40.91 16.49 98.31

Since the proposed algorithm is based on the changes in a pitch contour, when the

intervals between notes are bigger and there are fewer soft onsets, the algorithm can estimate

onsets more accurately.

6.4 Conclusions

This chapter has proposed a new algorithm for detecting onsets, offsets, and transitions

between notes in singing. The algorithm can work in both offline and real-time environments.

In the case of real-time, a 57-millisecond delay is needed to have adequate information for

calculating the events. The proposed algorithm showed an improvement in accuracy when

compared with eight well-known algorithms in two different datasets. When the window size

for calculating the F-measure was considered between 100 ms and 250 ms, the proposed

algorithm calculated the onsets better than other algorithms in the Erkomaishvili dataset.

However, its accuracy was not the best for the window sizes 50 ms and 10 ms compared to

the other algorithms. The comparison on the SVNote1 dataset was almost similar, but when

the algorithm was the best one when the window size was 150 ms or more.

The onset detection algorithm introduced in this chapter will be employed in the

following chapter to generate an annotated monophonic singing dataset.

Chapter 7
Generating an annotated

singing dataset

This chapter introduces a new annotated singing dataset. Not only an

explanation of the files in the dataset is provided, but also a review on the available

dataset and the methodology of annotating audio files are discussed. This

chapter’s contents are according to the following journal paper.

• Faghih, Behnam & Timoney, Joseph, “Annotated VocalSet: A Singing Voice

Dataset”. Applied Sciences. 12(18):9257.

https://doi.org/10.3390/app12189257

https://doi.org/10.3390/app12189257

144

This chapter’s goal is to generate a singing annotated dataset to provide information to

be able to analyse the behaviour of trained-professional singers in their performances. Thus,

the following section explains the approaches used to calculate the annotations, and a

description of the Annotated-VocalSet is provided in section 7.2. After that, Section 7.4

introduces and compares four methods of selecting the onset, offset, and transition positions.

Finally, this chapter will be closed with a conclusion in Section 7.5.

7.1 Steps to Generate the Dataset

Generally, four steps were followed to add the annotations: 1- estimation of F0, 2-

detection of onsets, offsets, and transitions, 3- extraction of notes’ features, and 4- adding the

scores to the extracted notes. These steps are explained in the following.

7.1.1 Estimating Fundamental Frequencies

A state-of-the-art pitch detector algorithm, PYIN (Mauch and Dixon, 2014), was

employed to estimate the fundamental frequencies of each file. The implementation of the

PYIN in Librosa (McFee et al., 2022) was used as it is one of the well-known Python libraries.

According to Chapter 3, the PYIN algorithm is a reliable pitch estimator for singing signals.

However, it still returns incorrect estimates for some F0s. Therefore, the Smart-Median pitch

smoother algorithm, introduced in Chapter 5, was employed to smooth the pitch contours

estimated by PYIN.

However, after plotting all the pitch contours, the authors reviewed all pitch trajectories

and realized that some of the pitch contours were incorrect. We looked at the plotted data to

find the incorrectly generated pitch contour. Where the plotted shape was not as expected,

more investigations were done to find the reasons. There were two main reasons for

incorrectly shaped pitch contours:

1- Wrongly estimated F0; for example, octave-doubling, as discussed in Chapter 3 and

Chapter 4.

2- Singers’ mistakes; for example, in some cases, such as in the files

f7_scales_c_fast_forte_i, m6_scales_c_fast_piano_a, and

145

m11_scales_f_fast_forte_e.csv, the singers sang one note less than given in the

musical scores, or they sang some extra notes, such as in the file m1_caro_straight.

Therefore, we removed these incorrect files from the Annotated-VocalSet to have a

reliable set of pitch contours. In total, 24.5 per cent of files were discarded from the original

dataset.

7.1.2 Detecting Onsets, Offsets, and Transitions

After preparing the pitch contours, a semi-automatic approach was used to annotate

pitch contours with onset, offset, and transitions. First, the algorithm introduced in the

previous chapter was used to estimate the onset, offset, and transition between two

consecutive notes.

After labelling the events, all the detected events were graphed to double-check the

accuracy of the annotations. Some errors observed among the estimated events were then

corrected with a software tool developed by this thesis’s author; Figure 7-1 depicts the tool.

The software uses different colours for each event. If the user finds an incorrect event, they

should edit the CSV file containing the values that will be explained in Section 7.2.1. Therefore,

its users can change the CSV files and immediately see the results on the screen to ensure the

events are labelled correctly. This tool was developed using the language C# and is available

at https://doi.org/10.5281/zenodo.7061507, accessed on 14 September 2022. It should be

mentioned that this tool works on CSV files in the “raw” folders.

https://doi.org/10.5281/zenodo.7061507

146

Figure 7-1. The software tool used to check and correct F0, onset, offset, and transition annotations by

indicating them with different colours.

To adjust the estimated annotations, firstly, files were divided among five non-expert

musicians (but they were trained on how to interpret a pitch contour to find events) to correct

the estimated events. Finally, an expert musician with over 12 years of music training reviewed

all the events and adjusted any incorrect ones.

Figure 7-2(a) depicts the onset, offset, and transition from a part of a pitch contour. The

red line shows the offset, the green line is the onset, the blue line shows the start of the

transition, and the purple line shows the end of the transition.

Since several software libraries and associated studies do not include transitions but

only onsets and/or offsets, as discussed in Chapter 6, we have proposed two approaches,

considering and not considering the existence of a transition, for annotating onsets, offsets,

and transitions.

147

(a) (b)

(c) (d)

Figure 7-2. Points’ statuses on a pitch contour. Two notes, E4 and F4, are sung by a professional female singer.
(a) Showing offset, the start of a transition, the end of a transition, and onset events in order. (b) The transition
was not considered, and the onset started immediately after the offset point according to (a). (c) Similarly, the
transition was not considered, but the offset was annotated to lie immediately before the onset point in (a). (d)
Likewise, the transition was not considered, but the middle points between the onset and offset points in (a) are

annotated as offset and onset.

7.1.3 Extracting Notes Features

After annotating the pitch contours with the onset, offset, and transitions, as explained

above, the following formulas were used to calculate each note’s features.

1) Start time: is the onset time.

2) End time: the time of the offset.

3) Duration: calculated by subtracting the “Start time” from the “End time”.

4) Type: can be a rest, sound, or transition according to Equation (7-1).

𝐺𝐺𝑇𝑇𝑝𝑝𝛥𝛥 =

⎩
⎪
⎨

⎪
⎧
𝑅𝑅𝛥𝛥𝛥𝛥𝑡𝑡 𝑖𝑖𝑓𝑓 𝑡𝑡ℎ𝛥𝛥 𝛥𝛥𝛥𝛥𝑡𝑡𝑖𝑖𝑚𝑚𝑎𝑎𝑡𝑡𝛥𝛥𝑎𝑎 𝑝𝑝𝑖𝑖𝑡𝑡𝑑𝑑ℎ𝛥𝛥𝛥𝛥 𝑏𝑏𝛥𝛥𝑡𝑡𝑒𝑒𝛥𝛥𝛥𝛥𝑛𝑛

 𝛥𝛥𝑡𝑡𝑎𝑎𝑓𝑓𝑡𝑡 𝑎𝑎𝑛𝑛𝑎𝑎 𝛥𝛥𝑛𝑛𝑎𝑎 𝑡𝑡𝑖𝑖𝑚𝑚𝛥𝛥𝛥𝛥 𝑎𝑎𝑓𝑓𝛥𝛥 0
𝑆𝑆𝑓𝑓𝑡𝑡𝑛𝑛𝑎𝑎 𝑖𝑖𝑓𝑓 𝑡𝑡ℎ𝛥𝛥 𝛥𝛥𝛥𝛥𝑡𝑡𝑖𝑖𝑚𝑚𝑎𝑎𝑡𝑡𝛥𝛥𝑎𝑎 𝑝𝑝𝑖𝑖𝑡𝑡𝑑𝑑ℎ𝛥𝛥𝛥𝛥 𝑏𝑏𝛥𝛥𝑡𝑡𝑒𝑒𝛥𝛥𝛥𝛥𝑛𝑛

 𝛥𝛥𝑡𝑡𝑎𝑎𝑓𝑓𝑡𝑡 𝑎𝑎𝑛𝑛𝑎𝑎 𝛥𝛥𝑛𝑛𝑎𝑎 𝑡𝑡𝑖𝑖𝑚𝑚𝛥𝛥𝛥𝛥 𝑎𝑎𝑓𝑓𝛥𝛥 𝑛𝑛𝑓𝑓𝑡𝑡 0
𝐺𝐺𝑓𝑓𝑎𝑎𝑛𝑛𝛥𝛥𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑛𝑛 𝑖𝑖𝑓𝑓 𝑡𝑡ℎ𝛥𝛥 𝛥𝛥𝑡𝑡𝑎𝑎𝑓𝑓𝑡𝑡 𝑎𝑎𝑛𝑛𝑎𝑎 𝛥𝛥𝑛𝑛𝑎𝑎 𝑡𝑡𝑖𝑖𝑚𝑚𝛥𝛥𝛥𝛥
 𝑎𝑎𝑓𝑓𝛥𝛥 𝑓𝑓𝛥𝛥𝑖𝑖𝑎𝑎𝑡𝑡𝛥𝛥𝑎𝑎 𝑡𝑡𝑓𝑓 𝑎𝑎 𝑡𝑡𝑓𝑓𝑎𝑎𝑛𝑛𝛥𝛥𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑛𝑛

 (7-1)

5) Average F0: contains the average of the F0s of the note.

6) Median F0: includes the median of the estimated F0s for the current note.

7) Min F0: contains the minimum estimated F0 in the current note.

148

8) Max F0: shows the maximum estimated F0 in the current note.

9) The standard deviation of F0s (STD): this column shows the standard deviation of the

estimated F0s of the current note.

10) Average F0s in the range of STD (AverageStd): This column includes the average of the

only estimated F0s that satisfy the following condition, Equation (7-2):

(𝑀𝑀𝑖𝑖𝛥𝛥𝑓𝑓𝑎𝑎𝐴𝐴𝛥𝛥 𝐺𝐺0)− (2 ∗ 𝑆𝑆𝐺𝐺𝑆𝑆) ≤ 𝐺𝐺0𝑖𝑖 ≤ (𝑀𝑀𝑖𝑖𝛥𝛥𝑓𝑓𝑎𝑎𝐴𝐴𝛥𝛥 𝐺𝐺0) + (2 ∗ 𝑆𝑆𝐺𝐺𝑆𝑆) (7-2)

This metric calculates the average by omitting the pitches that were determined to be

outliers. Since, in some cases, especially when the note’s duration was very short, none

of the estimated pitches were within one standard deviation distance, and thus two

standard deviation distances were considered instead.

11) Estimated MIDI code: includes the MIDI codes associated with the calculated

AverageStd, as shown in Equation (7-3).

12 ∗ 𝑖𝑖𝑓𝑓𝐴𝐴2((𝑀𝑀𝑖𝑖𝛥𝛥𝑓𝑓𝑎𝑎𝐴𝐴𝛥𝛥𝑆𝑆𝑡𝑡𝑎𝑎)/ 440) + 69 (7-3)

12) Repetition No: it is common that in a piece of music, some of the notes appear several

times. This annotation indicates the repetition of the note in the song.

7.1.4 Combining Extracted Notes with Ground Truth Scores

After extracting the notes, they needed to be associated with the scores. The scores and

lyrics of each file are available in the VocalSet dataset (Wilkins et al., 2018). Therefore, the

estimated notes and the scores were automatically aligned by a software program created by

this thesis’s author in C# programming language. For each musical score, an array that held

the notes’ information, such as name and duration, was created in the code. Then the two

lists, estimated notes and scores, were aligned. To achieve this, the code iteratively walks

through the lists, and when the notes are matched, that is, notes on each list were either a

rest or an articulated sound, they were associated. Finally, the following columns were added

to the files in the “extended” directories.

13) Ground truth Note name: their format is a capital letter + [#/b] + octave number—for

example, C4, D#5, or Bb4.

14) Ground Truth Frequency: It includes the frequency of the note based on A4 = 440 Hz.

15) Ground Truth MIDI code: the MIDI note number according to the ground truth note

name.

149

16) Lyric: if the file comes from an arpeggio, scale, or long-tone, this column includes the

sung vowel. Otherwise, the syllable corresponding to the note according to the scripts

provided in VocalSet [6] is used in this column.

17) Ground Truth Note duration name: it includes the name of the note’s duration. Its

value is one from this list: Whole_note, Half_note, Dotted_Quarter_note,

Quarter_note, Dotted_Eighth_note, Eighth_note, Eighth_note_triplet,

Sixteenth_note, or Grace_note.

18) Ground Truth note duration: the BPMs of two series of songs were indicated in

VocalSet. The BPM of the songs marked as ‘fast’ is 330, and those marked ‘slow’ is 60.

Therefore, the ground truth notes’ duration of these two categories only were

annotated in this study.

19) Interval to the previous note: this shows the number of semitones between the current

note and the immediate previous note.

20) Interval to the following note: this shows the number of semitones between the

current note and the note immediately following it.

7.1.5 Checking Annotation Correctness

After creating the annotations, several evaluations were used, as listed below, to check

their correctness.

1) All the pitch contours and the events were plotted, similar to Figure 7-1, to manually

double-check them. First, a non-expert but trained person checked and corrected the

files. Then, another person with the same expertise double-checked them. Finally, an

expert reviewed the annotations. As seen in Figure 7-1, it is possible to distinguish the

played notes from a pitch contour. Therefore, when an event was not estimated

correctly, the annotator could find and alter it.

2) A piece of software code was developed to check if the sequences of the onset, offset,

and transition were correct. For example, an onset should be followed by an offset. In

addition, the start and end of a transition should be between an offset and its

consecutive onset. The list of the incorrect files was saved in a text file. Then, an expert

corrected the erroneous files. These processes were repeated until the software code

found no more errors.

150

3) In the process of combining the extracted notes with the scores as discussed in Section

7.1.4, if the number of extracted notes was not equal to the number of notes in the

ground truth, the automatic tool listed the incorrect files to be investigated by the

user. These steps were repeated until no error was reported by the tool.

4) Finally, with a piece of code, the information in all the files, including the header in the

“extended 4” directory, were combined to have all the information in one CSV file. This

file is available in the Annotated-VocalSet root directory and is named “all-files.csv”.

Then rows were sorted based on the column named Shifted_F0—Nominal_F0. The

values in this column were expected to be between −1 and 1. Therefore, all the records

that did not belong to this range were investigated manually to fix the inaccurate ones.

Then, after this test, most of the notes were within the expected range, and the author

became convinced that the out-of-range values were not errors due to the erroneous

actions of the author but were due to errors in the notes produced by the singers.

After these checks, the correctness of the annotations satisfied the author.

7.2 Dataset Description

The directories’ hierarchy of the Annotated-VocalSet is depicted in Figure 7-3. The notes

in the files in the “raw 1” and “extended 1” directories were calculated by considering a

transition between notes, as depicted in Figure 7-2(a). On the other hand, the notes in the

other directories were estimated without considering a transition between notes. Therefore,

for the estimated notes in the “raw 2” and “extended 2” directories, the onsets started

immediately after the offsets, as shown in Figure 7-2(b). Moreover, the files belonging to the

“raw 3” and “extended 3” directories were calculated by considering the points before onsets

as offsets, as illustrated in Figure 7-2(c). In addition, the files in the “raw 4” and “extended 4”

directories included the notes where their onset and offsets were estimated as the middle

points between the offset and onset when a transition was considered between notes. As an

illustration, the onset and offset points in Figure 7-2(d) are at the middle of the onset and

offset points in Figure 7-2(a).

151

Figure 7-3. The directories’ hierarchy of the Annotated-VocalSet.

7.2.1 Raw Directories

The “raw” directories shown in Figure 7-3 included each audio file’s CSV and JPEG

(plotted) files.

The CSV file columns in order are Time (in second), F0 (in Hertz), Amplitude (between 0

and 1), onset (true or empty), offset (true or empty), and Transition (true or empty). The

Transition column indicates whether or not the detected onset/offset is related to a transition

from one note to another note. In other words, if the transition column is true and the

onset/offset is true, it means that this onset/offset shows the start/end of a transition.

The plot folders include the graphs of the pitch contours with the onset, offset, and

transition events.

7.2.2 Extended Directories

The files in these directories are created based on the “raw” files. The extended

directories include two subdirectories: with file header and without file header. The difference

between these two subdirectories is that the folder named “with file header” contains files

having a header, as described in the following.

An
no

ta
te

d
Vo

ca
lS

et

raw 1
csv

plots

raw 2
csv

plots

raw 3
csv

plots

raw 4
csv

plots

extended 1
with fi le header

without file header

extended 2
with fi le header

without file header

extended 3
with fi le header

without file header

extended 4
with fi le header

without file header

152

The heading part is positioned at the top of the CSV files and has 15 lines, and the

description of each line is as follows:

1) Filename;

2) Gender;

3) Singer name (f1, f2, etc.);

4) The technique (breathy, fast forte, fast piano, etc.);

5) Type of music (Scale, Arpeggios, etc.);

6) Vowel (a, e, I, o, u);

7) BPM;

8) File duration in milliseconds.

Lines 9 to 15 are reserved to allow the possibility of their use at some time in the future.

In this case, the software developed for processing the current version of the dataset will not

need to be changed to work with future versions.

After the heading (or at the top of the files in the without file header directories), the

list of the columns in order are Sequence, Start time, End time, Duration, Type, Average F0,

Median F0, Min F0, Max F0, Standard deviation F0, Average F0 in range of STD, Estimated MIDI

code, Ground truth Note name, Ground Truth Frequency, Ground Truth MIDI code, Lyric,

Ground Truth Note duration name, Ground Truth note duration, Interval to the previous note,

and Interval to the following note. All the columns have been explained in Sections 7.2.1 and

7.2.2.

The original VocalSet dataset already provides the information in the heading section,

but this study adds these details of the singing notes.

7.3 Summary of the generated data

This section provides statistical overviews of the generated annotations to make it clear

for the reader to understand the dataset.

Figure 7-4 depicts the total number of annotated notes in each music type sung by men

and women. The figure shows that the number of notes sung by males and females is almost

the same. In addition, the notes mainly come from singing Scales and Arpeggio music type. On

153

the other hand, each of the musical excerpts (Caro, Dona, Row Row) has the lowest number

of notes.

Figure 7-4 The total number of notes in each music type sung by males and females

Figure 7-5 provides a box and whisker plot of the pitch frequencies sung by the singers.

As can be seen from the plot, the main distribution of the pitch frequencies is roughly between

50 Hz and 700 Hz, and the majority of notes are in the range of 200 Hz and 400 Hz.

Figure 7-5 A box and whisker plot of the pitch frequencies sung by the singers.

0 1 2 3 4 5 6 7 8 9 10 11

Arpeggio

Long tones

Musical Excerpt-Caro

Musical Excerpt-Dona

Musical Excerpt-Row Row

Scale

The total number of annotated notes (in thousands)

M
us

ic
 T

yp
e

Female Male

154

Similarly, the range of the duration of the notes is plotted in Figure 7-6. As shown in the

figure, the duration of most of the notes is less than two seconds, albeit some longer sounds

also exist in the dataset.

Figure 7-6 A box and whisker plot of the duration of the notes sung by the singers.

As depicted in Figure 7-7, the pitch intervals between notes in the database are limited

to one octave, 12 semitones, with a significant majority in two semitones pitch intervals.

(a)

155

(b)

Figure 7-7 The total number of notes categorized by their pitch intervals to the previous note (a) and the

following note (b).

Table 7-1 shows the percentage of notes’ repetitions in a piece of music, as discussed in

section 7.1.3. The table shows that most of the notes are in one or two repetitions.

Table 7-1 The percentages of the repetition of the notes in a piece of music out of total of 299117 notes

Repetition Percentage of Repetition

1 52.78%

2 40.70%

3 2.30%

4 1.55%

5 1.43%

6 0.87%

7 0.37%

7.4 Comparing the Four Methods of Selecting the Positions of Onset, Offset,

and Transition

Since this study provides four approaches for selecting the onset, offset, and transition

discussed in Section 7.1, a comparison among them is provided to understand the differences

156

between them better. To compare them, the theoretical pitch frequencies of notes in the MIDI

pitch code are considered to be the ground truth. In addition, each note’s Average,

AverageStd, and Median F0 values were converted to MIDI pitch codes. Therefore, each

approach that can produce fewer differences from the ground truth is considered a better

approach. Finally, all possible pair permutations of approaches were compared. Table 7-2 to

Table 7-4 show the p-value for the t-test employed on each pair group to determine if the

difference among the means of the distances between the estimated MIDI code and the

theoretical MIDI code is meaningful. For example, the first row in Table 7-2 shows that there

is no noticeable difference (p-value > 0.05) between the first approach (the files in the

“extended 1” directory) and the second approach (the files in the “extended 2” directory).

As shown in Table 7-2 and Table 7-3, in some cases, there are statistically significant

differences in the variation of the estimated pitch frequencies of notes when computed using

the Average as compared to the AverageStd. However, the Median approach does not show

a significant difference, as illustrated in Table 7-4. Nevertheless, according to Table 7-5 to

Table 7-7, since the maximum difference between the average difference of F0s calculated by

each approach is less than 0.2 MIDI pitch code, these differences across their averages are not

meaningful in a musical sense. For example, based on Table 7-2, the p-value for comparing

“extended 1” and “extended 3” is <0.01, which means that a significant difference between

“extended 1” and “extended 4” exists statistically. Nevertheless, Table 7-5 shows that the

range of the observed differences for “extended 1” is 0.9227 ± 3.075 MIDI pitch code and

that the range for “extended 3” is 1.0386 ± 3.19 MIDI pitch code. This is a 0.1159 MIDI pitch

code difference between the means of “extended 1” and “extended 3” (i.e., 1.0386–0.9227);

this number of 0.1159 could not be considered to be a significant difference in pitch value,

particularly when the range for “extended 1” is from −2.1523 to 3.9977 MIDI pitch code and

for “extended 3” is between – 2.1514 and 4.2286. Therefore, for estimating the fundamental

pitch frequency of notes, there is no significant difference between selecting each point, as

discussed in Section 7.1, to be the onset and offset. Similarly, by comparing Table 7-5 to Table

7-7, it can be concluded that there is not a considerable difference between the methods of

calculating F0 (Average, AverageStd, and Median).

157

On the other hand, points selected as onsets and offsets can affect the duration of the

notes.

Table 7-2. p-values of the t-test applied to the difference between average frequency and nominal frequency.

Series 1 Series 2 p-Value

extended 1 extended 2 0.084

extended 1 extended 3 <0.01

extended 1 extended 4 0.259

extended 2 extended 3 <0.01

extended 2 extended 4 0.567

extended 3 extended 4 <0.01

Table 7-3. p-values of t-test applied to the difference between AverageStd and nominal frequency.

Series 1 Series 2 p-Value

extended 1 extended 2 0.287

extended 1 extended 3 <0.01

extended 1 extended 4 0.784

extended 2 extended 3 <0.01

extended 2 extended 4 0.429

extended 3 extended 4 <0.01

Table 7-4. p-values of t-test on the difference between median frequency and nominal frequency.

Series 1 Series 2 p-Value

extended 1 extended 2 0.844

extended 1 extended 3 0.197

extended 1 extended 4 0.659

extended 2 extended 3 0.278

extended 2 extended 4 0.809

extended 3 extended 4 0.399

Table 7-5. The average and standard deviation of the difference between average frequency and nominal
frequency.

Series Average Standard Deviation

extended 1 0.9227 3.075

extended 2 0.9627 3.113

extended 3 1.0386 3.19

extended 4 0.9492 3.194

158

Table 7-6. The average and standard deviation of the difference between AverageStd and nominal frequency.

Series Average Standard Deviation

extended 1 1.0317 2.518

extended 2 1.0539 2.52

extended 3 1.1094 2.511

extended 4 1.0374 2.516

Table 7-7. The average and standard deviation of the difference between median frequency and nominal
frequency.

Series Average Standard Deviation

extended 1 0.8892 2.745

extended 2 0.8933 2.787

extended 3 0.9159 2.784

extended 4 0.8984 2.786

7.5 Conclusions

This chapter introduced an extended set of annotations for the solo singing files in the

VocalSet dataset (Wilkins et al., 2018). The provided annotations include F0, onset, offset,

transition, note F0, note duration, Midi pitch, and lyric. In addition, four approaches for

considering the onset and offset points in a pitch contour were compared, showing that the

selected points for onset and offset cannot significantly affect the note’s estimated F0.

Moreover, calculating a note’s F0 by average or median methods does not considerably affect

the note’s estimated F0. The annotated dataset is available online at

https://doi.org/10.5281/zenodo.7061507, accessed on 14 September 2022.

After generating the dataset in this chapter, the next chapter aims to analyse it to figure

out how to calculate a note’s pitch frequency and duration according to its position in a piece

of music.

https://doi.org/10.5281/zenodo.7061507

Chapter 8
Models to estimate the pitch

frequency and duration ranges

for an acceptable note in singing

Performing musical notes correctly does not mean that all the performers

will play the notes at the exact same pitch and duration. However, it does imply

that they are performing the notes within acceptable psychoacoustic ranges.

Therefore, this chapter aims to propose models for calculating these acceptable

psychoacoustic ranges according to the position of the notes in a piece of music.

160

This chapter aims to investigate a dataset of recorded vocals to discover some particular

aspects of the relationship between the performed F0 and duration against its written note

and relative duration in a music score. In other words, this chapter introduces two novel

models to simulate trained-professional singers’ behaviours in singing notes’ pitches and

duration according to the position of the note in a piece of music and the singing technique

applied. The annotated dataset introduced in the previous chapter is used for this study. Since

the singers of the dataset were trained-professional singers, the mean of their singing

behaviours is considered acceptable pitch frequency and duration.

The following section, 8.1, explains this study's steps in detail. Then, section 8.2 provides

results, and a discussion follows that in section 8.3. Finally, this chapter is closed with a

conclusion.

8.1 Materials and Methods

8.1.1 Dataset

The Annotated-VocalSet, generated in the previous chapter, was used to evaluate

singers' patterns. All the singers had vocal training leading to a bachelor's or graduate degree

in vocal performance. In addition, this dataset annotated nearly 7 hours of singing files

comprising scales, arpeggios, long tones, and musical excerpts. Moreover, the singers used

different techniques such as belt, vibrato, lip trill, straight, and breathy. Furthermore, they

used all the vowels to sing arpeggios, scales, and long tones. Additionally, they sang three

popular pieces: 1- Row, Row, Row Your Boat, 2- Caro Mio Ben, and 3- Dona Nobis Pacem.

Figure 8-1 shows the music scores of the pieces available in Annotated-VocalSet.

As discussed in the previous chapter, the Annotated-VocalSet dataset provides four

approaches for determining onset, offset, and transition between two consecutive notes.

161

(a)

(b)

€

(d)

(e)

(f)

Figure 8-1 Music scores of the audio files in the Annotated-VocalSet dataset: (a) is arpeggios in C and F, (b) is
C and F Scales, (c) is some long tones, (d) is the score “f "row row row your b”at", (e) is the score “f "Dona

No”is", and (f) is the score “f "Caro mio”en".

As reported in the previous chapter, the estimated fundamental frequencies of notes

are similar in all four approaches of selecting onset, offset, and transition. However, regarding

the performed duration of notes, the selected points can affect the performed duration of the

notes. This study selected the data from the dataset calculated by the fourth approach, which

selects the middle points for onset and offset because considering transitions is not a common

approach in datasets and onset detection. In addition, considering the transitions between

notes could result in ignoring some part of the duration that the singers had intended to sing

within the notes. Therefore, selecting the middle points can provide the best compromise with

the singers' intentions.

162

In the VocalSet dataset, the singers in some performances only were asked to sing at

some specific BPM, i. e., 60 and 330. Otherwise, in the remaining cases, the singers were free

to sing in any BPM, which was not explicitly recorded in the dataset. Therefore, a ground truth

is needed for comparisons to evaluate the effect of the BPM on the performed F0s and

duration. Therefore, the two groups of files within which their BPM was indicated were

employed in this study. The total number of notes played in each BPM is shown in Table 8-1

and categorised into slow and fast performances.

Table 8-1. The slow and fast categories with their BPM and the number of notes sung in each speed

Speed BPM Count

Slow 60 8619

Fast 330 9590

Grand Total 18209

8.1.2 Variables

According to the available annotations in the dataset, the variables evaluated to

ascertain their effects or impact on the performed F0 and duration of notes are classified into

eight groups. Table 8-2 and Table 8-3 provide a statistical overview of the data extracted from

the dataset according to each variable. Table 8-2 details the types of variables: integer,

fraction, or Boolean. These variables are explained in the following.

1. Interval to the following note: indicating the number of semitones between the

current note and the following note. If the following note is a rest or there is no

note after the current note, the value of this variable is null.

2. Interval to the previous note: shows the number of semitones between the

current and previous note. If the previous note is a rest or does not exist, the

value of this variable is null.

3. Rest before: it is a Boolean variable. If it is true, it means there is a rest before the

current note or the current note is the first note of the music.

4. Rest after: this Boolean variable is true when a rest exists after the current note

or the current note is the last note of the music. Otherwise, it is false.

5. Ground truth duration: indicating the theoretical duration of the notes in the

music score.

163

6. Ground truth MIDI pitch code: shows the MIDI pitch code of the notes in the music

score. The reason that the MIDI pitch code is used is that the MIDI pitch code

maps the logarithmic pitch perception into a linear scale (Ishi, Hirose and

Minematsu, 2003).

7. Repeated note: this variable has been considered to address pitch drift. If it is

false, it indicates that this is the first time the note is played in the piece of music;

otherwise, it is the second or more repetition of the note in the entire melody, or

the note is a rest.

8. Singing techniques: another variable used in this study is the singing technique,

which, according to the dataset, includes ten techniques, as shown in Table 8-3.

Table 8-2. A statistical summary of the notes categorised by intervals, rest, duration, and MIDI code variables

Variable Type Mean Median Standard
deviation Minimum Maximum Count

Interval to the following note Integer 0.25 0 3.16 -12 12 26550

Interval to the previous note Integer -0.25 0 3.17 -12 12 26513

Rest after Boolean NA NA NA NA NA 6407

Rest before Boolean NA NA NA NA NA 6590

Ground truth duration (second) Fractional 0.41 0.18 0.35 0.09 1 15493

Ground truth MIDI pitch code Fractional 61.17 60 7.72 48 79 29267

Repeated note Boolean NA NA NA NA NA 15592

Several other variables could also be considered in an investigation of the parameters

that affect the performed duration and F0. For example, some musical contexts could also

have an impact, such as whether a note is at a beat vs non-beat position in the bar and its

particular location when there is a change in the direction of the melody. However, including

this information would require much effort to update the metadata of the dataset, which

would be time-consuming and might also be impossible to do accurately since all the details

were not available for this dataset.

164

Table 8-3. The list of the singing techniques and count of all the notes sung in each technique

Technique Count

Belt Harsh 2661

Breathy 2446

Fast* Articulated 9590

Full Voice 537

Lip Trill 2040

Messa Di Voce 627

Molto Vibrato 4364

Slow* Legato 6962

Straight Tone 5350

Trill- Trillo 1128

Grand Total 35705
*Fast and Slow refer to the speed of singing the notes. The BPM of fast files were 330, and for the slow ones, it was 60.

8.1.3 Methods of evaluations

To assess the effect of various independent variables, outlined in the previous section,

on the deviations in trained-professional singers' performance from the notes’ duration and

pitch as written in the original score and exactly equivalent to the MIDI pitch code description,

Bayesian Hierarchical Linear Regression (BHLR) was used. The Bayesian model was used

because it allowed us to account for the dependency of the individual-specific observations

and infer both individual-level and population-level parameters. Furthermore, using the

Bayesian approach, we were able to measure the uncertainty in our inferences using

probability distributions (Gelman et al., 1995; Dobson and Barnett, 2018).

Considering that our data are grouped by individual singers (each singer has sung various

notes), we let the parameters in the linear regression to be random (varying according to the

singers) and defined a hierarchical structure on the parameters to estimate the population

effects. We denote 𝑇𝑇𝑖𝑖 as the 𝑖𝑖𝑃𝑃ℎ measurement of the differences between the estimated

value, the F0 or duration sung by the singers, and the ground truth value. Two different

distributions for the observational model were tried. First, a Gaussian distribution was tried;

however, the model was underfit due to the residuals' distribution having heavy tails. Then,

the Logistic distribution was tried that had a better fit for our data. An explanation of the

165

model validation procedure is provided in section 8.1.5. Here, the model's description with

Logistic distribution is given in the following, as the former was not selected for further

analysis.

It is denoted 𝑗𝑗 = 1, . . , 𝐽𝐽 as individuals to distinguish the individual specific parameters.

We write the model as follows (8-1):

𝑇𝑇𝑖𝑖 ∼ 𝐿𝐿𝑓𝑓𝐴𝐴𝑖𝑖𝛥𝛥𝑡𝑡𝑖𝑖𝑑𝑑�𝜇𝜇𝑖𝑖 ,  𝛥𝛥𝑖𝑖� (8-1)

where 𝜇𝜇 is the mean value for 𝑇𝑇 and calculated by equation (8-2); and 𝛥𝛥 is the scale

parameter indicating a variance of 𝜋𝜋2  = 𝑠𝑠2𝜋𝜋2

3
 for the residuals.

𝜇𝜇𝑖𝑖 = 𝑡𝑡𝛥𝛥𝑑𝑑ℎ(𝑖𝑖 ,𝑘𝑘)[𝑖𝑖] + �𝛽𝛽(𝑙𝑙,𝑖𝑖)[𝑖𝑖] × 𝑋𝑋𝑙𝑙,𝑖𝑖

𝑁𝑁

𝑙𝑙=1

 (8-2)

In equations (8-2), 𝑡𝑡𝛥𝛥𝑑𝑑ℎ(𝑖𝑖,𝑘𝑘) is the singing technique effect for singer 𝑗𝑗 and technique 𝑘𝑘,

from the techniques listed in Table 8-3. In addition, 𝛽𝛽(𝑙𝑙,𝑖𝑖) is the individual specific effect of

variable 𝑖𝑖 , from the variables listed in Table 8-2. 𝑋𝑋 is the design matrix, elements of which are

indexed by 𝑖𝑖 and 𝑖𝑖 for its rows and columns respectively.

According to equation (8-2), two models were created: one for calculating the F0

deviation from the ground truth, i.e. represented by the MIDI pitch code that is the expected

F0 deviation from the theoretical pitch that a trained-professional singer will sing; and the

other is calculating the difference from the ground truth duration that is expected a trained-

professional singer to sing. The variables considered for both models are the same as given in

Table 8-2 and Table 8-3, except for the duration model, where the "Repeated note” variable

was not employed since this variable was used only for considering pitch drift.

The JAGS software (Plummer, 2003) and R (R Core Team, no date) were used to fit the

model. In addition, three Markov chain Monte Carlo chains were employed (typical simulation

values were used, that is, 2000 iterations per chain with 1000 as burn-in, and a thinning value

of 1). Finally, the R-hat diagnostic (Gelman et al., 1992; Brooks and Gelman, 1998) was applied

to assess the convergence. All R-hat values linked to the model parameters were close to 1,

so the model was believed to be sampling from the posterior distribution.

166

Furthermore, we used the following prior distributions, equations (8-4) and (8-5), for

the random effects:

𝑡𝑡𝛥𝛥𝑑𝑑ℎ(𝑖𝑖,𝑘𝑘) ∼ 𝑁𝑁�𝜇𝜇𝑃𝑃𝑟𝑟𝑏𝑏ℎ𝑘𝑘
, 𝜋𝜋𝑃𝑃𝑟𝑟𝑏𝑏ℎ𝑘𝑘

2  � (8-3)

𝛽𝛽𝑙𝑙,𝑖𝑖 ∼ 𝑁𝑁(𝜇𝜇𝑙𝑙 ,𝜋𝜋𝑙𝑙2) (8-4)

Where 𝑗𝑗 is the index of the singer, 𝑘𝑘 is the index of the singing technique, 𝑖𝑖 points to the

variables, and 𝑁𝑁 refers to normal distribution.

The hyperprior distributions used to fit the model are as follows, equations (8-5)-(8-9):

𝜇𝜇𝑃𝑃𝑟𝑟𝑏𝑏ℎ𝑘𝑘 ∼ 𝑁𝑁(0,1) (8-5)

𝜇𝜇𝑙𝑙 ∼ 𝑁𝑁(0,1) (8-6)

𝜋𝜋𝑘𝑘2 ∼ 𝑁𝑁(0,1)+ (8-7)

𝜋𝜋𝑙𝑙2 ∼ 𝑁𝑁(0,1)+ (8-8)

𝛥𝛥  ∼ 𝑁𝑁(0,1)+ (8-9)

Considering the range of the dependent variables specified in Table 8-2 and Table 8-3,

the above prior distributions have negligible effects on the posterior distribution of the

parameters and thus can be considered uninformative. In other words, we let the data speak

for themselves, and the results are not sensitive to these priors. As stated in Section 8.1.2,

MIDI pitch codes are used to represent the pitches, and to reiterate, the reason was that

humans' perception of pitch is not linear but logarithmic. That is, the human brain considers

the 100 Hertz difference between 50 Hertz and 150 Hertz is perceptually much more

significant than the same 100Hz difference between 1000 Hertz and 1100 Hertz. However,

using the MIDI pitch code representation, the perceptual difference between say the 40 and

50 MIDI pitch codes is as same as that difference heard between say the 70 and 80 MIDI pitch

codes.

To compare fundamental frequencies, the difference between the performed MIDI pitch

code, 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, and the ground truth MIDI pitch code, 𝐺𝐺𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , code was calculated as shown in

(8-10).

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐺𝐺𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (8-10)

To compare the duration of the performed notes with their corresponding ground truth

duration, the theoretical duration of notes in the music score is considered to be the ground

167

truth, and the difference between the performed duration, 𝑃𝑃𝑜𝑜𝑑𝑑𝑟𝑟𝑏𝑏𝑃𝑃𝑖𝑖𝑜𝑜𝑛𝑛 , and the ground truth,

𝐺𝐺𝐺𝐺𝑜𝑜𝑑𝑑𝑟𝑟𝑏𝑏𝑃𝑃𝑖𝑖𝑜𝑜𝑛𝑛 , calculated as (8-11).

 𝑆𝑆𝑜𝑜𝑑𝑑𝑟𝑟𝑏𝑏𝑃𝑃𝑖𝑖𝑜𝑜𝑛𝑛 = 𝑃𝑃𝑜𝑜𝑑𝑑𝑟𝑟𝑏𝑏𝑃𝑃𝑖𝑖𝑜𝑜𝑛𝑛 – 𝐺𝐺𝐺𝐺𝑜𝑜𝑑𝑑𝑟𝑟𝑏𝑏𝑃𝑃𝑖𝑖𝑜𝑜𝑛𝑛 (8-11)

8.1.4 Estimating the range of a note’s duration and F0 sung by trained-professional

singers

Since all the singers of the VocalSet dataset were trained-professional and in the

Annotated-VocalSet, any incorrect files were removed, we considered the range of the F0 and

duration sung by these singers across all the recordings as a trustable resource. Thus,

according to the resource, we can define a range of deviations of note’s duration and F0 from

their ground truth in trained-professional singers' performances. To do this, it is possible to

use the models and sample from the posterior predictive distribution for a given note.

Posterior predictive distribution is the distribution of the predicted values given the model

parameters and the data. Nevertheless, since this approach is computationally demanding,

we use an alternative empirical approach that is faster and easier to calculate and gives

reasonable ranges. For this purpose, for each data point in our dataset, first, we calculate the

length of the 80% prediction credible interval, that is, the 90% quantile minus the 10% quantile

of the posterior predictive distribution. This decision is made based on experiments on our

data showing that the 80% interval is neither too conservative nor too wide an acceptable

range. As the second step, we take the average of all the intervals’ lengths over the entire

dataset as the average empirical prediction length (𝛥𝛥𝑃𝑃𝐿𝐿). This is similar to the length of

prediction confidence interval in the Frequentist statistical approaches.

Finally, we define the acceptable deviation from the ground truth to be 𝑚𝑚𝑡𝑡 − 𝛥𝛥𝑃𝑃𝐿𝐿/2

to 𝑚𝑚𝑡𝑡 + 𝛥𝛥𝑃𝑃𝐿𝐿/2, where 𝑚𝑚𝑡𝑡 is simply the mean deviation calculated using the equation (8-2).

In other words, for a given note, we first calculate its mean deviation and then consider half

𝛥𝛥𝑃𝑃𝐿𝐿 below and half 𝛥𝛥𝑃𝑃𝐿𝐿 above that as the anticipated range of deviation in trained-

professional singers' performance. Table 8-4 shows the 𝛥𝛥𝑃𝑃𝐿𝐿 figures for 80% intervals for the

deviations in MIDI pitch code and duration.

To calculate the range of a note’s F0 and duration, we simply add the theoretical value

of the note to the predicted deviation range of that note.

168

Table 8-4. The average empirical prediction length (𝛥𝛥𝑃𝑃𝐿𝐿) to calculate the ranges of deviations in F0 and the
duration of the notes sung by all the singers.

 𝟖𝟖𝟖𝟖% 𝒆𝒆𝒆𝒆𝒆𝒆

F0 0.8977

Duration 0.5698

8.1.5 Model validation

To examine our model’s validity and confirm its ability to mimic the true data generating

process, we follow Gelman et al.’s (Gelman et al., 1995, p. 143) suggested approach and

conduct a posterior predictive check analysis. We generate 1000 samples from the posterior

distribution of the model. We then compare the distribution of the predicted values with the

observed values. The results are shown in Figure 8-2. The posterior predictive distributions

are very similar to the distributions of the observations for both models of MIDI pitch code

and duration deviations. Furthermore, we calculate the percentage of the occasions that true

observations fall within the 95% credible interval of the posterior predictive distribution. This

gives an insight into the performance of the model in uncertainty quantification. We found

that for deviations of MIDI pitch code and duration models, the percentage was 95% and 96%,

respectively, which indicates good uncertainty calibration.

(a) (b)

Figure 8-2 Comparison of the density of the distribution of the predicted values and the distribution of the
observations. (a) Shows the comparison for the deviation in the MIDI pitch code model, and (b) shows the

comparison for the deviation in the duration model.

169

8.2 Results

In the following, the effect of each variable, mentioned in 8.1.2, on the deviation of

performed duration and F0 from the ground truth in trained-professional singers'

performance is presented . Thus, the posterior distribution of the parameters denoted in

equations (8-5)-(8-6), which are the parameters of interest associated with the effects of the

independent variables in the population will be reported.

8.2.1 Estimating the effect of the variables on deviation from ground truth F0

The effect of the variables on deviation from the ground truth MIDI pitch code reported

in Table 8-5 and Table 8-6. The Mean column in Table 8-5 indicates the average change in the

deviation from the ground truth MIDI pitch code when the variable is increased by one unit.

Increasing by one unit means that, for example, when one second is added to the duration of

the note for the “Duration” variable, or the number of the semitones between the current

note and the following note increased by one for the “Interval to the following note” variable.

In addition, Table 8-6 provides the expected effect of each singing technique. These tables

also include the 95% credible interval for each effect. These credible intervals express that the

true parameter falls within the interval with a probability of 95%. That is, 95% of the

probability of the true effect is between the values in the columns titled 2.5% and 97.5% in

Table 8-5 and Table 8-6. For example, according to Table 8-5, the 95% probability of the effect

of the Ground truth duration variable is between −0.0474 and 0.0413. In other words, the

95% credible interval shows the range of uncertainty about the effect.

Furthermore, Figure 8-3 depicts the posterior distribution of the values shown in Table

8-5 and Table 8-6. According to this figure, we can see that different effects have different

distributions indicating a varying level of uncertainty among them. For example, “Ground

truth MIDI pitch code” and Interval to the effects of the previous and following notes have

very narrow distributions, showing that the model is more certain about their effects than

other effects with wider distributions.

170

Table 8-5. The mean and the 95% credible interval of the effect of the independent variables on deviation from
the ground truth MIDI pitch code.

Variable Mean 2.5% 97.5%

Ground truth duration -0.0022 -0.0474 0.0413

Ground truth MIDI pitch code 0.0061 -0.0012 0.0134

Interval to the following note 0.0196 0.0132 0.0258

Interval to the previous note 0.0046 -0.0005 0.0099

Post rest 0.0499 0.0032 0.0933

Pre rest 0.1356 0.0504 0.2224

Repeated note -0.1158 -0.1679 -0.0632

Table 8-6. The mean and the 95% credible interval of the effect of the singing techniques on deviation from the
ground truth MIDI pitch code

Technique Mean 2.5% 97.5%

Belt Harsh 0.0925 -0.0762 0.2656

Breathy 0.0732 -0.1034 0.2436

Fast Articulated -0.0167 -0.1915 0.1535

Full Voice -0.0903 -0.2311 0.0533

Lip Trill 0.2137 0.0641 0.3605

Messa DiVoce -0.0609 -0.2802 0.1705

Molto Vibrato -0.1482 -0.3833 0.0770

Slow Legato 0.0387 -0.1719 0.2406

Straight Tone -0.0625 -0.1950 0.0643

Trill 0.2128 0.0110 0.4217

171

(a) (b)

Figure 8-3. The posterior distribution of the effects of the independent variables on deviation from the ground
truth MIDI pitch code. (a) shows the impact of the numerical and Boolean variables, and (b) depicts the effect of

the singing techniques.

8.2.2 Estimating the effect of the variables on the deviation from the ground truth

duration

The theoretical duration of notes in the music score as the ground truth was needed to

estimate the range of a note’s duration in trained-professional singers’ performances.

However, in the VocalSet dataset, the BPM of all the files were not indicated. Thus, only the

files with ground truth BPM were selected, and as a result, only some of the singing techniques

were sung with a specific speed, as shown in Table 8-8. The mean value and its 95% credible

interval of the effect of the independent variables and singing techniques on deviation from

ground truth duration, equation (8-2), are presented in Table 8-7 and Table 8-8; the posterior

distribution of mentioned parameters is provided in Figure 8-4.

The same approach as estimating a note’s MIDI code, Section 8.2.1, should be used to

calculate duration.

172

Table 8-7. The mean and the 95% credible interval of the effect of the independent variables on deviation from
the ground truth duration.

Variable Mean 2.5% 97.5%

Ground truth duration -0.2054 -0.3913 -0.0174

Ground truth MIDI pitch code 0.0005 -0.0009 0.0020

Interval to the following note -0.0005 -0.0032 0.0024

Interval to the previous note 0.0015 -0.0004 0.0034

Post rest 0.4112 0.2945 0.5242

Pre rest 0.0961 0.0682 0.1265

Table 8-8. The mean and the 95% credible interval of the effect of the singing techniques on deviation from the
theoretical duration.

Variable Mean 2.5% 97.5%

Fast Articulated 0.0031 -0.0782 0.0830

Molto Vibrato 0.2155 0.0727 0.3614

Slow Legato 0.1442 0.0544 0.2340

Straight Tone 0.1266 0.0170 0.2497

(a) (b)

Figure 8-4. The posterior distribution of the effects of the independent variables on deviation from the ground
truth duration. (a) shows the impact of the numerical and Boolean variables, and (b) depicts the effect of singing

techniques.

173

8.3 Discussion

8.3.1 An illustration to show how to calculate the expected MIDI pitch code and

duration of notes

This section provides an example to clarify how to calculate the expected notes’

MIDI pitch code and duration in trained-professional singers' performances according to the

results of this study. This example illustrates how to use the numbers in Table 8-5 to Table

8-8. If the musical scores are the notes shown in Figure 8-5, according to equations (8-2), and

using the coefficients in Table 8-5 and Table 8-6, the expected MIDI pitch code and duration of

the notes can be estimated. To calculate the expected values, first, the coefficients in

equation (8-2) should be assigned by the values in the column title Mean in Table 8-5 and Table

8-6 to achieve the expected variation from ground truth MIDI pitch code or duration. Then

the calculated expected variation should be added to the ground truth value to obtain the

expected MIDI pitch code or duration of the note.

 Table 8-9 shows the values of each variable, the 𝑋𝑋 variable in equation (8-2),

according to the score in Figure 8-5. When the following or previous notes are a rest, the interval

to the following and previous notes should be considered to be 0. Nevertheless, two other

variables, post- and pre-rest, calculate the effect of these situations.

Figure 8-5. Musical scores as an example for estimating the pitch and duration of the notes

Table 8-9. The values of each of the variables for the notes in the score in the example provided in Figure 8-5.

Note Ground truth
MIDI pitch code

Ground
truth

Duration
(in second)

Interval to the following
note (in semitone)

Interval to the
previous note

Post
rest Pre rest Repeated

note

C4 60 0.5 4 NA False True False

E4 64 0.5 -4 -4 False False False

C4 60 0.5 4 4 False False True

E4 64 0.5 3 -4 False False True

G4 67 0.5 0 -3 False False False

G4 67 1 -7 0 False False True

C4 60 0.5 NA 7 True False True

174

Equation (8-2) needs to be used to calculate the expected pitch and duration. The effect

of the singing techniques, 𝑡𝑡𝛥𝛥𝑑𝑑ℎ, is provided in Table 8-6 and Table 8-8, the effect of each

variable, 𝛽𝛽, shows in Table 8-5 and Table 8-7, and the value of the variables can be seen in

Table 8-9. Thus, by assigning these values in equation (8-2), the expected deviations of each

of the notes from their ground truth MIDI pitch code and duration can be calculated. Finally,

the deviation should be added to the ground truth value. Therefore, Table 8-10 shows the

expected MIDI pitch code for each note by employing the mean values of the effects and the

Straight Tone as the singing technique.

In addition, the minimum and the maximum expected MIDI pitch code and duration of

each note are calculated employing empirical prediction length (𝛥𝛥𝑃𝑃𝐿𝐿), as discussed in section

8.1.4. In this example, to calculate the expected ranges, the (𝛥𝛥𝑃𝑃𝐿𝐿/2) should be deducted and

added to the expected values in Table 8-10. That is, the value 0.8977/2 = 0.4488 based on

Table 8-4 should be deducted and added to all values in the column titled “Expected MIDI

pitch code” in Table 8-10 to calculate the minimum and maximum of anticipated MIDI pitch

codes range. Similarly, the value 0.5698/2 = 0.2849, according to Table 8-4, should be

deducted and added to the values in the column titled “Expected duration” in Table 8-10.

Table 8-10. The expected MIDI pitch code and duration of the notes and their anticipated ranges according to
Figure 8-5 and Table 8-9. The Straight Tone was considered the singing technique.

Note
Ground

truth MIDI
pitch code

Ground
truth

Duration
(in second)

Expected
MIDI pitch

code

Minimum
accepted

MIDI pitch
code

Maximum
accepted

MIDI pitch
code

Expected
duration

(in second)

Minimum
accepted
duration

(in second)

Maximum
accepted
duration

(in
second)

C4 60 0.5 60.5134 60.0646 60.9623 0.651 0.366 0.936

E4 64 0.5 64.2269 63.7781 64.6758 0.555 0.270 0.840

C4 60 0.5 60.2805 59.8316 60.7293 0.561 0.276 0.846

E4 64 0.5 64.2482 63.7993 64.6971 0.551 0.267 0.836

G4 67 0.5 67.3280 66.8792 67.7769 0.556 0.271 0.841

G4 67 1 67.0878 66.6390 67.5367 0.961 0.676 1.246

C4 60 0.5 60.2659 59.8170 60.7147 0.979 0.694 1.264

Figure 8-6 visualises the values in Table 8-10. The black-solid lines show the ground truth

MIDI pitch code and duration, and the red-dashed lines show the expected MIDI pitch code

and the expected range of MIDI pitch code for each note. The middle panel in Figure 8-6 shows

175

the expected duration of the notes, while the top and bottom panels show the maximum and

minimum anticipated duration of notes, respectively.

The
range of
MIDI
pitch

code and
the

maximu
m

duration

The
range of
MIDI
pitch

code and
the

average
duration

The
range of
MIDI
pitch

code and
the

minimum
duration

Figure 8-6. A visual representation of the expected MIDI pitch code and duration of the notes and their
anticipated ranges, according to Table 8-10. The black-solid lines show the ground truth MIDI pitch code and

duration, and the red-dashed lines are the expected MIDI pitch code and the boxes around them show the
anticipated range of each note. The top panel shows the maximum anticipated duration of the notes, the middle
panel shows the expected duration of the notes, and the bottom panel show the minimum anticipated duration.

This example illustrates how the position of the notes in a piece of music can affect their

expected pitch and duration. For example, C4 is repeated three times in Figure 8-5, but their

expected MIDI pitch code are different, 60.573, 60.325, and 60.308, respectively. Similarly,

the estimated duration of each appearance of the C4 is different, in sequence, 0.672 sec, 0.575

sec, and 0.985 sec. Likewise, Table 8-10 shows that the expected MIDI pitch code and duration

of the notes E4 and G4 are different in each appearance because of their positions in the

musical score. In addition, the eighth notes have different expected duration.

176

8.3.2 The effect of rest before or after a note on the deviation of its performed F0

and duration from the ground truth

Table 8-5 and Figure 8-3 show that the existence of a rest before a note has a greater

impact on the deviation from the theoretical note’s pitch than when the rest comes after a

note, resulting in a change to the MIDI pitch code value of the order of 0.1356 MIDI pitch

code (or 13.56 cents) as compared to 0.0499 MIDI pitch code (or 4.99 cents).

An opposite observation was noticed for the effect of a rest on the deviation from the

theoretical duration. As shown in Table 8-7 and Figure 8-4, a rest after a note has a more

significant effect on the deviation than the rest before a note, that is, 0.4112 s and 0.0961 s,

respectively.

8.3.3 The effect of the ground truth MIDI pitch code on the deviations of its

performed F0 and duration from ground truth

According to Table 8-5 and Figure 8-3, although the effect of the MIDI pitch code on the

deviation from ground truth pitch is a small value of 0.0061 MIDI pitch code (or 0.61 cents),

since the pitch range of the notes to be sung is wide, generally from 77 Hz (almost D#2 or 39

MIDI pitch code) to 900 Hz (approximately A5 or 81 MIDI pitch code) (Heylen et al., 2002), this

difference in the higher note could be significant. For example, the pitch difference in MIDI

pitch code 40 (note E2) is 40 ∗ 0.0061 = 0.244 MIDI pitch code (or 24.4 cents), but for MIDI

pitch code 80 (note G#5) 80 ∗ 0.0061 = 0.488 MIDI pitch code (or 48.8 cents). Sundberg

(Sundberg, 2013) had a similar finding that singers tend to sharp the higher pitch frequencies.

A similar observation can be seen in the effect of the ground truth notes’ pitches on

their performed duration. It is expected that by increasing one MIDI pitch code (one

semitone), a singer sings the note 0.0005 seconds longer.

8.3.4 The effect of the ground truth note’s duration on the deviations of its

performed F0 and duration from the ground truth

As shown in Table 8-5, the ground truth duration of a note has a minimal impact on the

deviation from the theoretical note’s pitch, and the posterior distribution of its effect is

centred on zero, as shown in Figure 8-3.

177

On the other hand, according to Table 8-7, the effect of the ground truth duration on

the deviation from the ground truth duration is significantly negative, meaning that a unit

increase (one second) in the theoretical duration of a note, is associated with a -205.45

milliseconds deviation from the ground truth on average when the singers sing the note.

8.3.5 The effect of the pitch interval to the previous and following notes on the

deviations of performed F0 and duration from the ground truth

The interval to the following note has a significant positive effect on the deviation from

the theoretical pitch of 0.0196 MIDI pitch code (or 1.96 cents), as shown in Table 8-5. Similarly,

the interval to the previous note also has a positive effect on pitch but less than the interval

to the following note, that is, 0.0046 MIDI pitch code (0.46 cent).

However, the effect of the pitch intervals on the deviation from the theoretical duration

is negligible, and its posterior distribution is centred almost on zero, according to Figure 8-4.

In addition, usually, the pitch intervals in singing are small. However, if there is a big interval

with 24 semitones apart (two octaves), multiply the 24 by the expected interval effect to the

following note, -0.0005 s, and the previous note, 0.0015 s, would be -12 milliseconds and 36

milliseconds, respectively.

8.3.6 The effect of the singing techniques on the deviation of the performed F0 and

duration from the ground truth

For interpreting the effect of singing techniques, it should be noted that they are the

intercepts of the linear equation (8-2). The numeric variables were centred at zero by

removing their average before fitting the model, and hence these intercepts should be

interpreted as the deviation from the ground truth when the other numeric independent

predictors are at their average values, and the Boolean predictors are zero (meaning no pre-

rest and post-rest). According to Figure 8-3 and Table 8-6, the Lip Trill technique has a

significant positive deviation from the ground truth pitch, followed by the Trill technique,

which has a lower probability of being greater than zero compared to the Lip Trill. On the other

hand, the Molto Vibrato, Full Voice, and Straight Tone techniques have a considerable

probability for their expected deviation from the ground truth pitch to be negative, although

their 95% credible intervals contain zero. The other techniques have large probabilities on

178

either side of zero, and their effects can be assumed neither significantly positive nor

significantly negative.

Regarding the effect of singing techniques on the deviation from the ground truth

duration, according to Table 8-8 and Figure 8-4, the Molto Vibrato followed by Slow Legato

and Straight Tone have significant positive effects. In contrast, the Fast Articulated technique

has its posterior distribution centred on zero and thus cannot be assumed to be significantly

different from zero.

According to the study by (Sundberg, 1994), the rate of the vibration in singing can vary

the average of the fundamental frequencies. They found that the average pitch of a vibrato

tone remains constant only if the vibrato rate is more than 4 Hz. In addition, they observed

that the human pitch perception for vibrato and vibrato-free tones were the same.

Besouw et al. (Besouw, Brereton and Howard, 2008) presented three-tone ascending

and descending arpeggios to musicians. The tuning of the middle tone, which either had or

lacked vibrato, was varied, and the listeners were asked to decide which notes were in tune

or untune. The results showed that the range of acceptable intonation of the middle tone was,

on average, about 10 cents wider when it had vibrato than when it lacked vibrato. In addition,

they found that if two voices sing perfectly “straight” (i.e., without vibrato), the demands on

accuracy concerning the F0 are higher than if they sing with vibrato (Sundberg, 2013). Our

model shows almost the same findings as these studies. According to Table 8-6, when singers

sing the notes in the Straight Tone, the MIDI pitch code variation is -0.0625 MIDI pitch code (-

6.25 cents), while the corresponding value for the Molto Vibrato technique is -0.1482 MIDI

pitch code (-14.82 cents). Thus, singing in the Straight Tone is 8.6 cents more accurate than

singing in the Molto Vibrato technique, which is close to the findings of the other studies.

8.3.7 The effect of the note’s repetition on the performed F0 deviation from the

ground truth pitch (pitch drift)

Pitch drift or intonation drift means changes in tuning over the course of a timescale of

seconds or more during the playing of a piece of music (Seaton, Pim and Sharp, 2013).

According to (Alldahl, 2006; Ryynänen and Klapuri, 2006), pitch drift mainly occurs in the

downward direction, i.e., downward intonation drift. In another study done by Müller et al.

179

(Müller, Grosche and Wiering, 2010), it is observed that pitch drift is common in

unaccompanied solo folk singing. Similarly, Mauch et al. (Mauch, Frieler and Dixon, 2014) also

found evidence of pitch drift in solo singing. They (Mauch, Frieler and Dixon, 2014) also

realised that the pitch drift extent is often small (less than 20 cents over 50 notes) and not

correlated to pitch accuracy, interval accuracy, or musical background. Unlike the other

studies, Mauch et al. (Mauch, Frieler and Dixon, 2014) observed that the most significant drifts

are upward.

This chapter’s finding is similar to most other studies that found that the pitch drift is

downward. As shown in Table 8-5, the effect of a note's second or later appearing in the

singers' performances is an average of -0.1158 MIDI pitch code (or -11.58 cents) deviation

from the ground truth pitch with the 95% credible interval of -0.1679 to -0.0632, which makes

the effect significantly negative. That is, the singer sang the note at a lower pitch than was

used on the first occasion of singing these notes.

8.4 Conclusions

This chapter provides two models, one for calculating the expected F0 and another for

estimating the expected duration of a note in a piece of music according to the note’s

conditions in trained-professional singers' performances. These models simulate trained-

professional singers' behaviour in changing the pitches and duration of the notes according to

their positions in a piece of music and the singing technique applied. The note’s conditions

considered in this study were the existence of a rest before or after the note, the pitch interval

to the following or previous notes, the theoretical note’s duration and MIDI pitch code in the

music score, the singing techniques, and the repetition of the note. All these variables impact

the expected pitch and duration, although their level of impact will depend on the

interpretation the singer wants to impart to the music, both deliberately and subconsciously.

For example, having a rest before a note impacts the expected pitch frequency more than

when the rest is after the note. On the contrary, having a rest after a note has a higher impact

on the note's duration than when the rest is before the note.

Chapter 9
Conclusion and Future work

This chapter makes a conclusion on the all the previous chapters. In addition,

some suggestions for future work will be provided.

181

This thesis comprises several sub-studies on processing singing signals, especially in real-

time environments. The studies are mainly related to estimating fundamental frequencies,

smoothing F0 contour, estimating the onset, offset, and transitions between notes, generating

an annotated singing dataset, and examining trained-professional singers’ behaviour in

singing notes’ pitch frequencies and duration according to the position of the note in a piece

of the music and the singing technique applied.

This thesis includes five principal objectives listed in section 1.4 that Chapters 3 - 8

provide answers for each of them. In the following, conclusions and future work for each of

the objectives of this study are provided.

9.1 Conclusion and future work of investigating real-time singing pitch

detector algorithms study

Two separate studies have been done in this thesis to find a reliable real-time pitch

detection algorithm for singing signals from the existing pitch detection algorithms. The details

of these two studies are provided in Chapters 3 and 4.

Chapter 3 compared two offline algorithms, PYIN and PRAAT, with two real-time ones,

PLL and ECKF. I have experienced that these real-time algorithms did not generate a

reasonable pitch estimation. On the other hand, the PYIN and PRAAT algorithms worked well,

but they are offline.

Although Chapter 3’s study could not find a reliable real-time pitch detector algorithm

for singing signals, two reliable offline pitch detection algorithms, PYIN and PRAAT, were

found that have been used in the other studies of this thesis.

Therefore, a comprehensive evaluation of seven real-time pitch detector algorithms was

conducted in another study, explained in Chapter 4. Three measurements were considered to

compare the functionality of the algorithms. The measurements were: 1- the number of

pitches estimated correctly by categorising them based on gender, window size, the speed of

the music, and post-processing, 2- the delay of each algorithm to estimate pitches correctly,

and 3- the approaches to evaluate the accuracy of the estimated F0. Moreover, three methods

for finding an acceptable range were assessed.

182

According to the results in Chapter 4, the overall best real-time algorithm from the seven

tested algorithms for female voices was YinFFT, with a window size of 1024 when the sampling

rate was 44100.

In addition, the speed of performance is not an issue. Moreover, the delay before

starting to determine the correct pitches was found to be 25ms. Furthermore, the best real-

time algorithm from the seven tested algorithms for male voices was Yin when the notes are

playing fast, and in slow performance, the best one was YinFFT. The algorithms produced a

more accurate pitch contour with a window size of 2048 compared to a window size of 1024

when the sampling rate was 44100. The delay before finding the correct pitches for the Yin

algorithm was 107ms, and for YinFFT was 71ms. Additionally, the length of the intervals

between notes does not impact the pitch accuracy of the delay.

Finally, the best method from the three presented methods to find the acceptable range

for all the algorithms is the percentage, although, for FComb and MComb, significant

differences between the three methods were not observed.

Therefore, these studies provided guidance for selecting a pitch detection algorithm

according to the features of the singing signals.

However, the accuracy of the pitch detection algorithms was not as I expected. Before

conducting the studies, I believed one might work better than another, but I did not expect

the pitch contours generated by all the algorithms to be unreliable and untrustworthy.

Regarding future work, there are areas of immediate future work and other issues that

require a more long-term strategy.

The studies in Chapter 3 and Chapter 4 could be more comprehensive. For example,

more pitch detection algorithms/libraries, such as Librosa (McFee et al., 2015), Madmom

(Böck et al., 2016), Essentia (Bogdanov et al., 2013b), and TorchAudio (Yang et al., 2021) in

Python, could be evaluated. In addition, a wider range of window and hope sizes could be

evaluated.

Another missing part of my study was to check if an adaptive window size (Nisar, Khan

and Tariq, 2016) can improve robustness. In addition, different approaches to adaptive

183

window sizing should be evaluated in real-time environments to determine their

performances in singing signals.

All the evaluations in this study were applied to human voices, albeit in a musical

context. It would be valuable to see if the same experimental parameters applied to this study

would produce comparable results when applied to the pitch determination of musical

instruments.

9.2 Conclusion and future work of real-time smoothing pitch contours

generated from singing signals study

Chapter 5 introduced a new pitch-contour-smoother targeted toward the singing voice

in real-time environments. The proposed algorithm is based on the median filter and considers

the features of fundamental frequencies in singing. The algorithm’s accuracy was compared

with 35 other smoother techniques, and four metrics evaluated their results: R-Squared, Root-

Mean-Square Error, Mean Absolute Error, and F0 Frame Error. The proposed Smart-Median

algorithm achieved better results across all the metrics in relation to the other smoother

algorithms. According to this study, a buffer delay of 35 to 70 milliseconds was required for

the algorithm to smooth the contour appropriately.

Most general smoother algorithms were not found to be suitable for smoothing the

pitch contour of singing signals. A general observation is that in the ideal case, a smoother

algorithm should be defined based on the essential features of the data in the contour and

how that data is to be used after smoothing.

When I searched for a proper pitch smoother algorithm and implemented some of them,

I was surprised to see why their results were unreliable and that still several errors existed

after the algorithms smoothed the singing pitch contours. After designing my algorithm, I

found that it is not an easy task because of the variety of possible errors in estimated pitch

contours. Thus, although my algorithm could significantly improve the pitch contours in

comparison to the other algorithms, the task of smoothing pitch contours requires further

research to achieve the goal of error-free contours.

184

For future work, one short-term task is based on recognizing that the parameters of the

Smart-Median can be set according to the specific properties of the sound input, such as those

of particular musical instruments or their families, to improve accuracy in a targeted way.

Another task considers that the Smart-Median can determine an incorrect F0 based on

its interval from the previous F0; this approach can be improved by considering a maximum

randomness duration. For example, if there is a considerable frequency interval between the

previous F0 and the current one, or if several immediately subsequent F0s are near the current

F0, we may not consider the large jump to be noise but rather a new musical articulation. This

requires the introduction of an extra decision-making stage into the algorithm.

In the longer term, further testing can be carried out on vocal material from various

genres and techniques. This would require the creation of new, specialist corpora, requiring

considerable manual effort in both the gathering and labelling. This can be supported by

machine learning. Such a dataset would also benefit the research field at large.

9.3 Conclusion and future work of real-time onset, offset, and transition

extraction from singing signals study

Estimating onset, offset, and transition between notes in singing was another main

objective of this thesis. Unfortunately, Application of the existing onset detection algorithms

could not reach an appropriate result. Thus, in Chapter 6, a novel algorithm has been

introduced for detecting the beginnings, endings, and transitions between notes in singing

performances. The algorithm is designed to operate effectively in both offline and real-time

scenarios. A 57-millisecond delay is necessary for real-time applications to ensure sufficient

information for accurate event calculation. It was shown to exhibit enhanced accuracy by

comparing the proposed algorithm against eight established algorithms using two distinct

datasets.

Nevertheless, estimating onsets was not as easy as I had expected. First, I considered

evaluating the changes in the amplitude contours because I believed that when a singer starts

singing a new note, there should be a clear change in the amplitude contour. However, when

I plotted the amplitude contours, their shapes were much more complicated than those of the

pitch contours. Thus, I started working on pitch contours as a means by which that onsets

185

could be estimated. After a while, I realized that in real singing, especially when some singing

technique like vibrato is used, it is difficult to figure out where vibration changes the pitch

frequency and where a new note appears. Therefore, onset detection requires more research

to be able to detect onsets without error.

The accuracy of the proposed algorithm may be improved by considering more

spectrogram channels, i.e., including other related frequency components from the

spectrogram and not only the fundamental frequencies. In this way, a more comprehensive

formula weighted together with the measurements for each channel could be fused to

improve the overall measure. Therefore, a new series of numbers will be generated to find

the onsets, offsets, and transitions from the trajectory changes in the new contour. In this

approach, the adverse effect of the incorrect F0 estimation may be reduced, especially in a

real-time environment.

Moreover, the accuracy of the proposed algorithm can be improved by incorporating a

function tracking significant changes in the magnitudes of each spectral channel that are also

associated with the onset.

Another possible approach instead of using the stretching pitch explained in Section

6.2.2 is to scale down all F0s to one specific octave and then use a log frequency axis. This

approach may help in regularizing the slopes and making them comparable.

In addition, the algorithm is based on two parameters, window size (as explained in

Section 6.2.5) and the proportion of the standard deviation to calculate the thresholds, as

discussed in Section 6.2.7. By evaluating the algorithm on other larger datasets such as

VocalSet (Wilkins et al., 2018), these parameters could be fixed to be a constant value that is

generally applicable to all singers or could be determined by a formula and therefore be made

adaptive to the nature of the style of input singing.

Furthermore, the algorithm’s efficiency and accuracy could be evaluated on notes

performed by musical instruments to see if it is also applicable in that domain.

Lastly, making the algorithm more computationally efficient requires a smaller buffer

size to work faster in real-time environments.

186

9.4 Conclusion and future work of generating an annotated singing dataset

Chapter 7 introduced an extended set of annotations for the solo singing files in the

VocalSet dataset (Wilkins et al., 2018). The provided annotations include F0, onset, offset,

transition, note F0, note duration, Midi pitch, and lyric. In addition, four approaches for

considering the onset and offset points in a pitch contour were compared, showing that the

selected points for onset and offset cannot significantly affect the note’s estimated F0.

Moreover, calculating a note’s F0 by average or median methods does not considerably affect

the note’s estimated F0. The annotated dataset is available online at

https://doi.org/10.5281/zenodo.7061507, accessed on 14 September 2022.

It should be noted that annotating a dataset is a very time-consuming task. Although my

software tool and onset detection algorithm helped me to prepare the annotations and

estimate more than 80% of the onset, offset, and transitions correctly, manually checking and

adjusting the events took me around six months. This difficulty should be the main reason that

the number of comprehensive annotated available datasets is deficient. To the best of my

knowledge, this annotated dataset is the largest and most comprehensive annotated singing

dataset available.

However, as shown in Table 2-1, several singing datasets are available that can be

expanded by adding more annotations. The same approach as has been done in this study,

and has been explained in section 7.1, can be applied to annotate any other available singing

or instrumental datasets. In this case, a significant amount of new data will be provided to

researchers to evaluate musical performances.

9.5 Conclusion and future work of calculating notes’ pitch frequencies and

duration according to singing technique and their positions in a piece of

music study

This thesis's last and most important aim was to understand the behaviour of trained-

professional singers in changing notes’ pitches and duration according to the notes’ positions

in a piece of music and the singing technique applied. Thus, Chapter 8 modelled these

behaviours based on the parameters surrounding the pitch and duration of the notes.

https://doi.org/10.5281/zenodo.7061507

187

To achieve the goal, the variations of ten variables on 2688 solo singing recorded files,

obtained from Chapter 7, were investigated to find the relationships between a note’s F0 and

duration with these variables. The variables considered in this study are the interval to the

following and previous notes, the existence of a rest before or after the note, duration, the

MIDI pitch code, and the particular singing technique applied. The Bayesian hierarchical model

was used to find the effect of the variables on pitch and duration. The investigation confirms

that the pitch and duration of notes are based on all these parameters in trained-professional

singers’ performances. In addition, Chapter 8 proposed two formulas to calculate the pitch

frequencies and duration of the notes according to the variables.

To the best of my knowledge, it is the first time that singers’ behaviours in changing

notes’ pitches and duration according to several parameters have been modelled. In other

words, these models can simulate how trained-professional singers perform a piece of music.

However, these models have some limitations that need to be overcome. Suggestions for

improving the models are provided in the following.

Regarding future work that could be carried out in the short term, the finding of this

study can be implemented by some singing synthesisers, e. g. (Goto et al., 2012; Jeerapradit,

Suchato and Punyabukkana, 2018), to compare how subjective human evaluation actually

behaves when listening to the theoretical pitch and duration against those calculated with the

models presented in Chapter 8.

In addition, the models can be extended by augmenting them with more variables. For

example, longer sequences of notes can be considered instead of only the immediate prior

and following notes. Moreover, the loudness of the notes can be added to the model to

ascertain if it has a noticeable effect. Another possible inclusion is the variation of the starting

point of the singer starting singing of a note with respect to a metronome beat or

accompanying note, as discussed by Sundberg and Bauer-Huppmann (Sundberg and Bauer-

Huppmann, 2007). In addition, there are several other parameters related to the musical

context, such as chord note vs non-chord note, a note’s position along the circle of fifths, key

or underlying harmony, beat vs non-beat note’s position in the bar, syncopation, chord

change, change of the direction of the melody, and phrase and sub-phrase structure, could be

included to ascertain the significance of their effect on the performed duration and F0. This

188

would require a lot of annotation work on the current dataset, with caveats as to what it could

and could not provide, and then, for some variables, it would demand a completely new

dataset with the appropriate annotations. This certainly would be a time-consuming task in

its preparation.

Another longer-term study would be to run the model on larger datasets with more

singers and music excerpts to obtain more accurate results.

In conclusion, there is still a significant gap in our understanding of music performances

and how humans perceive a piece of music. To develop advanced AI tools for music, much

extra research is required to formulate all the possible parameters that can affect music

performers in changing pitch, duration, amplitude, and timber of the tone, as well as how a

listener perceives the music according to the parameters.

Appendix

190

Table A-1. Comparing pitch estimators and contour smoothers algorithms by ground truth based on the mean
absolute error (MAE) metric. GT = Ground Truth, ES = Estimated pitch contour, SM = Smoothed contour.

Algori
thm

Specacf Schmitt FComb MComb Yin YinFFT Praat PYIN (GT)

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

00 256 123 208 68 61 26 123 42 108 46 32 28 588 114 543 61 26 39 14 14 0.7 0 1.2 1.2

01 256 233 112 68 63 20 123 122 56 46 47 15 588 581 291 61 60 35 14 14 0.2 0 3 3

02 256 236 128 68 64 21 123 122 59 46 47 15 588 584 316 61 60 37 14 14 0.2 0 2.7 2.7

03 256 234 118 68 62 26 123 122 62 46 47 20 588 583 302 61 58 40 14 13 1.2 0 5.5 5.5

04 256 236 128 68 64 21 123 122 59 46 47 15 588 584 316 61 60 37 14 14 0.2 0 2.7 2.7

05 256 232 124 68 63 23 123 122 63 46 48 17 588 582 325 61 60 40 14 14 0.3 0 3.4 3.4

06 256 235 104 68 64 18 123 122 51 46 47 13 588 582 266 61 60 32 14 14 0.2 0 2.5 2.5

07 256 237 96 68 64 16 123 122 44 46 47 11 588 584 237 61 60 28 14 14 0.1 0 2 2

08 256 233 113 68 64 20 123 122 56 46 47 15 588 582 291 61 60 35 14 14 0.2 0 2.9 2.9

09 256 244 147 68 69 30 123 137 83 46 54 24 588 743 545 61 77 59 14 14 0.5 0 5.6 5.6

10 256 226 208 68 77 72 123 138 146 46 72 64 588 628 624 61 87 100 14 43 38.2 0 44.3 44.3

11 256 227 184 68 68 55 123 131 122 46 59 46 588 626 567 61 74 81 14 21 13.4 0 23.6 23.6

12 256 227 181 68 68 52 123 131 120 46 58 44 588 648 579 61 74 79 14 21 13.1 0 21.5 21.5

13 256 227 190 68 71 59 123 133 128 46 63 52 588 613 580 61 77 87 14 21 13.9 0 28.7 28.7

14 256 226 186 68 68 56 123 132 127 46 60 48 588 660 619 61 77 84 14 22 14.3 0 24.2 24.2

15 256 227 189 68 72 61 123 132 126 46 64 53 588 580 535 61 76 84 14 25 17.5 0 31.2 31.2

16 256 223 168 68 64 44 123 123 104 46 53 37 588 580 478 61 66 67 14 18 10 0 16.9 16.9

17 256 236 128 68 64 21 123 122 59 46 47 15 588 584 316 61 60 37 14 14 0.2 0 2.7 2.7

18 256 214 195 68 69 64 123 126 132 46 62 55 588 571 569 61 74 88 14 23 15.8 0 31.1 31.1

19 256 227 190 68 71 59 123 133 128 46 63 52 588 613 580 61 77 87 14 21 13.9 0 28.7 28.7

20 256 227 190 68 71 59 123 133 128 46 63 52 588 613 580 61 77 87 14 21 13.9 0 28.7 28.7

21 264 227 189 68 66 56 128 129 125 47 58 47 591 577 519 62 72 83 14 21 13.7 0 24.5 24.5

22 256 227 190 68 71 59 123 133 128 46 63 52 588 613 580 61 77 87 14 21 13.9 0 28.7 28.7

23 256 225 136 68 62 32 123 121 78 46 50 26 588 576 381 61 62 52 14 14 0.8 0 7.3 7.3

24 256 234 116 68 64 22 123 124 60 46 48 17 588 599 322 61 62 39 14 14 0.2 0 3.2 3.2

25 256 231 137 68 65 38 123 129 87 46 54 32 588 665 483 61 73 61 14 14 1.7 0 11.9 11.9

26 256 245 102 68 66 20 123 132 57 46 50 16 588 703 380 61 72 41 14 14 0.3 0 3.6 3.6

27 256 229 133 68 64 30 123 125 76 46 51 25 588 623 410 61 67 51 14 14 1.5 0 9 9

28 256 235 122 68 65 23 123 126 65 46 49 18 588 634 373 61 66 43 14 14 0.3 0 4.5 4.5

29 256 236 114 68 65 27 123 128 67 46 52 23 588 656 386 61 71 47 14 14 1.5 0 9 9

30 256 244 105 68 66 21 123 131 59 46 50 17 588 694 380 61 72 41 14 14 0.4 0 4.4 4.4

31 261 235 153 69 62 39 126 125 88 47 51 30 600 592 411 62 61 57 14 13 2 0 9.4 9.4

32 256 232 97 68 61 23 123 121 54 46 47 18 588 580 258 61 58 35 14 13 1.3 0 5.7 5.7

33 256 228 96 68 63 11 123 108 33 46 45 6 588 417 201 61 48 20 14 14 0 0 0.3 0.3

34 256 226 122 68 62 20 123 113 54 46 46 13 588 510 292 61 54 35 14 14 0.1 0 1.9 1.9

35 256 234 102 68 64 9 123 107 36 46 44 5 588 410 240 61 46 19 14 14 0 0 0 0

191

Table A-2. Comparing pitch estimators and contour-smoother algorithms by ground truth based on the R-
squared (R2) metric. GT = Ground Truth, ES = Estimated pitch contour, SM = Smoothed contour.

Algorithm

Specacf Schmitt FComb MComb Yin YinFFT Praat PYIN (GT)

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

00 −28 −3 0 −0.5 −0.3 0.7 −22 −1 0.3 −1 0.2 0.7 −1153 −3 −0.4 −22 1 0.7 0.8 0.84 1 1 0.97 0.97

01 −28 −20 0.8 −0.5 −0.2 1 −22 −17 0.8 −1 −0.9 1 −1153 −462 0.7 −22 −10 0.9 0.8 0.81 1 1 0.99 0.99

02 −28 −20 0.7 −0.5 −0.3 0.9 −22 −17 0.8 −1 −0.9 0.9 −1153 −516 0.6 −22 −11 0.9 0.8 0.81 1 1 0.99 0.99

03 −28 −20 0.7 −0.5 −0.3 0.9 −22 −17 0.8 −1 −0.9 0.9 −1153 −526 0.6 −22 −11 0.9 0.8 0.81 1 1 0.98 0.98

04 −28 −20 0.7 −0.5 −0.3 0.9 −22 −17 0.8 −1 −0.9 0.9 −1153 −517 0.6 −22 −11 0.9 0.8 0.81 1 1 0.99 0.99

05 −28 −19 0.7 −0.5 −0.2 0.9 −22 −16 0.8 −1 −0.8 0.9 −1153 −428 0.6 −22 −10 0.9 0.8 0.81 1 1 0.99 0.99

06 −28 −20 0.8 −0.5 −0.3 1 −22 −17 0.9 −1 −0.9 1 −1153 −501 0.7 −22 −11 0.9 0.8 0.81 1 1 0.99 0.99

07 −28 −21 0.8 −0.5 −0.3 1 −22 −18 0.9 −1 −1 1 −1153 −561 0.8 −22 −12 0.9 0.8 0.81 1 1 1 1

08 −28 −20 0.7 −0.5 −0.3 1 −22 −17 0.8 −1 −0.9 1 −1153 −469 0.7 −22 −11 0.9 0.8 0.81 1 1 0.99 0.99

09 −28 −20 0.6 −0.5 −0.3 0.9 −22 −17 0.8 −1 −0.9 0.9 −1153 −490 0.5 −22 −11 0.8 0.8 0.81 1 1 0.99 0.99

10 −28 −15 0.4 −0.5 0 0.6 −22 −10 0.5 −1 −0.4 0.7 −1153 −191 0.2 −22 −5 0.6 0.8 0.6 0.7 1 0.79 0.79

11 −28 −17 0.5 −0.5 0 0.8 −22 −13 0.6 −1 −0.5 0.8 −1153 −239 0.3 −22 −6 0.7 0.8 0.8 1 1 0.93 0.93

12 −28 −17 0.5 −0.5 0 0.8 −22 −13 0.6 −1 −0.5 0.8 −1153 −267 0.4 −22 −7 0.7 0.8 0.8 1 1 0.94 0.94

13 −28 −16 0.4 −0.5 0 0.7 −22 −12 0.6 −1 −0.5 0.8 −1153 −204 0.3 −22 −6 0.7 0.8 0.8 1 1 0.9 0.9

14 −28 −16 0.4 −0.5 0 0.8 −22 −12 0.6 −1 −0.5 0.8 −1153 −245 0.3 −22 −6 0.7 0.8 0.79 1 1 0.93 0.93

15 −28 −16 0.4 −0.5 0 0.7 −22 −12 0.5 −1 −0.5 0.7 −1153 −238 0.3 −22 −6 0.6 0.8 0.77 0.9 1 0.85 0.85

16 −28 −17 0.5 −0.5 0 0.8 −22 −13 0.6 −1 −0.5 0.8 −1153 −259 0.4 −22 −6 0.7 0.8 0.81 1 1 0.95 0.95

17 −28 −20 0.7 −0.5 −0.3 0.9 −22 −17 0.8 −1 −0.9 0.9 −1153 −517 0.6 −22 −11 0.9 0.8 0.81 1 1 0.99 0.99

18 −28 −15 0.4 −0.5 0.2 0.7 −22 −10 0.5 −1 −0.3 0.7 −1153 −155 0.3 −22 −4 0.6 0.8 0.8 0.9 1 0.89 0.89

19 −28 −16 0.4 −0.5 0 0.7 −22 −12 0.6 −1 −0.5 0.8 −1153 −204 0.3 −22 −6 0.7 0.8 0.8 1 1 0.9 0.9

20 −28 −16 0.4 −0.5 0 0.7 −22 −12 0.6 −1 −0.5 0.8 −1153 −204 0.3 −22 −6 0.7 0.8 0.8 1 1 0.9 0.9

21 −30 −17 0.4 −0.6 0.1 0.7 −24 −12 0.5 −1 −0.4 0.8 −1208 −194 0.3 −23 −5 0.7 0.8 0.8 1 1 0.92 0.92

22 −28 −16 0.4 −0.5 0 0.7 −22 −12 0.6 −1 −0.5 0.8 −1153 −204 0.3 −22 −6 0.7 0.8 0.8 1 1 0.9 0.9

23 −28 −18 0.7 −0.5 −0.1 0.9 −22 −14 0.8 −1 −0.6 0.9 −1153 −288 0.6 −22 −7 0.8 0.8 0.81 1 1 0.98 0.98

24 −28 −20 0.7 −0.5 −0.3 0.9 −22 −17 0.8 −1 −0.9 1 −1153 −457 0.7 −22 −10 0.9 0.8 0.81 1 1 0.99 0.99

25 −28 −18 0.7 −0.5 0 0.9 −22 −14 0.8 −1 −0.6 0.9 −1153 −349 0.7 −22 −8 0.8 0.8 0.81 1 1 0.98 0.98

26 −28 −21 0.8 −0.5 −0.3 1 −22 −17 0.9 −1 −0.9 1 −1153 −584 0.8 −22 −13 0.9 0.8 0.81 1 1 1 1

27 −28 −18 0.7 −0.5 −0.1 0.9 −22 −14 0.8 −1 −0.6 0.9 −1153 −353 0.6 −22 −9 0.9 0.8 0.81 1 1 0.98 0.98

28 −28 −19 0.7 −0.5 −0.2 0.9 −22 −16 0.8 −1 −0.8 0.9 −1153 −449 0.7 −22 −10 0.9 0.8 0.81 1 1 0.99 0.99

29 −28 −19 0.8 −0.5 −0.1 0.9 −22 −15 0.9 −1 −0.7 0.9 −1153 −468 0.8 −22 −11 0.9 0.8 0.81 1 1 0.99 0.99

30 −28 −21 0.8 −0.5 −0.3 1 −22 −17 0.9 −1 −0.9 1 −1153 −563 0.8 −22 −13 0.9 0.8 0.81 1 1 0.99 0.99

31 −31 −22 0.6 −0.7 −0.3 0.8 −25 −18 0.7 −2 −1 0.8 −1308 −478 0.5 −25 −11 0.8 0.8 0.81 1 1 0.96 0.96

32 −28 −20 0.8 −0.5 −0.2 0.9 −22 −17 0.9 −1 −0.8 0.9 −1153 −501 0.8 −22 −11 0.9 0.8 0.81 1 1 0.99 0.99

33 −28 −23 0.6 −0.5 −0.4 1 −22 −19 0.8 −1 −1.1 1 −1153 −266 0.4 −22 −12 0.8 0.8 0.81 1 1 1 1

34 −28 −20 0.6 −0.5 −0.3 0.9 −22 −17 0.7 −1 −0.9 0.9 −1153 −389 0.5 −22 −9 0.8 0.8 0.81 1 1 0.99 0.99

35 −28 −22 0.5 −0.5 −0.4 0.9 −22 −20 0.7 −1 −1.1 0.9 −1153 −376 0.4 −22 −11 0.8 0.8 0.81 1 1 1 1

192

Table A-3. Comparing pitch estimators and contour-smoother algorithms by ground truth based on the Root-
Mean-Square Error (RMSE) metric. GT = Ground Truth, ES = Estimated pitch contour, SM = Smoothed

contour.

Algorithm

Specacf Schmitt FComb MComb Yin YinFFT Praat PYIN (GT)

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

00 394 161 370 111 96 73 258 79 240 96 66 62 2086 153 2077 194 58 159 21 21 3.1 0 4.5 4.5

01 394 307 188 111 97 36 258 206 112 96 84 32 2086 1342 1210 194 137 102 21 21 1.1 0 9.5 9.5

02 394 315 220 111 99 40 258 211 127 96 86 36 2086 1417 1405 194 143 117 21 21 1.1 0 10.2 10.2

03 394 315 201 111 96 48 258 210 131 96 84 43 2086 1427 1306 194 141 115 21 20 2.4 0 14.8 14.8

04 394 315 220 111 99 40 258 211 127 96 86 36 2086 1417 1405 194 143 117 21 21 1.1 0 10.2 10.2

05 394 302 207 111 96 40 258 202 124 96 84 36 2086 1291 1332 194 134 113 21 21 1.2 0 10.7 10.7

06 394 312 176 111 99 33 258 210 104 96 85 30 2086 1396 1130 194 142 95 21 21 1 0 8.6 8.6

07 394 321 165 111 101 30 258 216 95 96 87 27 2086 1475 1054 194 148 88 21 21 0.9 0 7.7 7.7

08 394 308 190 111 98 36 258 206 113 96 85 32 2086 1351 1221 194 138 103 21 21 1.1 0 9.5 9.5

09 394 311 228 111 101 47 258 211 141 96 87 42 2086 1373 1484 194 141 127 21 21 1.3 0 12.4 12.4

10 394 256 300 111 96 97 258 167 218 96 91 90 2086 818 1839 194 117 185 21 53 46.8 0 60.6 60.6

11 394 265 277 111 88 77 258 172 192 96 80 70 2086 936 1768 194 110 165 21 27 17.5 0 34.8 34.8

12 394 266 274 111 88 75 258 173 190 96 79 67 2086 990 1741 194 113 161 21 27 17.1 0 31.5 31.5

13 394 263 281 111 90 81 258 172 198 96 82 74 2086 851 1816 194 109 171 21 27 17.9 0 40.6 40.6

14 394 260 280 111 87 79 258 167 196 96 79 70 2086 940 1770 194 110 165 21 28 18.6 0 34.3 34.3

15 394 266 285 111 95 87 258 176 202 96 88 81 2086 906 1800 194 119 175 21 33 23.8 0 49.1 49.1

16 394 266 263 111 87 67 258 172 176 96 77 60 2086 964 1685 194 110 152 21 24 13.4 0 28 28

17 394 315 220 111 99 40 258 211 127 96 86 36 2086 1417 1405 194 143 117 21 21 1.1 0 10.2 10.2

18 394 243 288 111 86 86 258 155 205 96 80 79 2086 772 1836 194 102 175 21 29 20.5 0 44.2 44.2

19 394 263 281 111 90 81 258 172 198 96 82 74 2086 851 1816 194 109 171 21 27 17.9 0 40.6 40.6

20 394 263 281 111 90 81 258 172 198 96 82 74 2086 851 1816 194 109 171 21 27 17.9 0 40.6 40.6

21 403 259 283 110 84 78 265 164 200 96 78 72 2038 823 1739 199 105 172 21 27 17.8 0 36.7 36.7

22 394 263 281 111 90 81 258 172 198 96 82 74 2086 851 1816 194 109 171 21 27 17.9 0 40.6 40.6

23 394 279 216 111 89 49 258 183 138 96 78 44 2086 1071 1404 194 117 123 21 21 1.9 0 14.6 14.6

24 394 306 192 111 98 38 258 206 116 96 85 34 2086 1331 1235 194 137 105 21 21 1.2 0 9.9 9.9

25 394 284 203 111 88 53 258 183 137 96 78 48 2086 1199 1278 194 126 116 21 21 2.9 0 18.5 18.5

26 394 322 153 111 100 31 258 215 94 96 87 27 2086 1511 954 194 150 81 21 21 1 0 8 8

27 394 287 207 111 92 45 258 190 129 96 81 41 2086 1197 1334 194 127 116 21 21 2.7 0 15.5 15.5

28 394 304 197 111 97 39 258 204 119 96 84 35 2086 1332 1268 194 137 107 21 21 1.2 0 10.5 10.5

29 394 303 169 111 93 39 258 198 108 96 82 36 2086 1376 1052 194 140 93 21 21 2.5 0 14.3 14.3

30 394 319 158 111 99 32 258 212 96 96 86 28 2086 1495 978 194 149 84 21 21 1.1 0 8.7 8.7

31 397 303 247 112 93 65 261 200 168 97 82 59 2109 1294 1613 196 130 147 21 19 3.9 0 22 22

32 394 311 162 111 93 40 258 205 106 96 81 36 2086 1400 1044 194 138 93 21 20 2.5 0 13.4 13.4

33 394 319 250 111 103 33 258 219 127 96 90 26 2086 790 1591 194 124 123 21 21 0.6 0 1.5 1.5

34 394 305 249 111 97 46 258 206 144 96 86 39 2086 1143 1566 194 132 131 21 21 0.9 0 9.1 9.1

35 394 317 277 111 105 43 258 220 142 96 90 28 2086 729 1779 194 117 123 21 21 0.6 0 0 0

193

Table A-4. Comparing pitch estimators and contour-smoother algorithms by ground truth based on the F0
Frame Error (FFE) metric. GT = Ground Truth, ES = Estimated pitch contour, SM = Smoothed contour.

Algorithm

Specacf Schmitt FComb MComb Yin YinFFT Praat PYIN (GT)

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

GT-
ES

GT-
SM

ES-
SM

00 40 48 61 67 69 89 77 82 84 84 87 92 45 52 63 88 90 97 95 95.1 99.8 100 99.8 99.8

01 40 33 60 67 64 86 77 63 72 84 77 86 45 36 77 88 81 85 95 95.1 100 100 95.7 95.7

02 40 35 61 67 66 90 77 66 77 84 79 91 45 39 83 88 84 91 95 95.1 100 100 98.3 98.3

03 40 36 64 67 67 87 77 67 78 84 80 91 45 40 83 88 84 91 95 95.1 100 100 98.3 98.3

04 40 35 61 67 66 90 77 66 77 84 79 91 45 39 83 88 84 91 95 95.1 100 100 98.3 98.3

05 40 34 61 67 65 88 77 64 74 84 78 88 45 37 79 88 82 88 95 95.1 100 100 97.4 97.4

06 40 35 65 67 65 89 77 65 76 84 79 89 45 38 81 88 82 88 95 95.1 100 100 97.4 97.4

07 40 36 69 67 66 92 77 66 80 84 79 92 45 39 85 88 84 91 95 95.1 100 100 98.3 98.3

08 40 34 63 67 65 89 77 65 75 84 78 89 45 38 80 88 82 88 95 95.1 100 100 97.4 97.4

09 40 20 41 67 52 70 77 47 54 84 65 73 45 15 43 88 64 68 95 95.1 100 100 84.6 84.6

10 40 21 32 67 46 51 77 41 42 84 54 58 45 13 33 88 55 57 95 83.3 86.9 100 72 72

11 40 21 36 67 49 58 77 44 46 84 60 65 45 17 44 88 61 63 95 95.2 99.6 100 80.1 80.1

12 40 21 36 67 49 59 77 44 47 84 61 66 45 17 42 88 62 64 95 95.2 99.6 100 81.3 81.3

13 40 21 35 67 47 56 77 42 44 84 57 62 45 16 41 88 58 60 95 95.2 99.6 100 76.8 76.8

14 40 20 35 67 48 58 77 43 45 84 60 65 45 13 35 88 60 62 95 95.2 99.5 100 80.6 80.6

15 40 27 42 67 55 64 77 51 54 84 65 70 45 26 56 88 68 70 95 94.5 98.8 100 83.2 83.2

16 40 27 44 67 56 68 77 52 55 84 67 73 45 26 58 88 70 72 95 95.2 99.7 100 86 86

17 40 35 61 67 66 90 77 66 77 84 79 91 45 39 83 88 84 91 95 95.1 100 100 98.3 98.3

18 40 22 34 67 47 54 77 43 44 84 56 61 45 17 41 88 58 60 95 95.3 99.4 100 75.6 75.6

19 40 21 35 67 47 56 77 42 44 84 57 62 45 16 41 88 58 60 95 95.2 99.6 100 76.8 76.8

20 40 21 35 67 47 56 77 42 44 84 57 62 45 16 41 88 58 60 95 95.2 99.6 100 76.8 76.8

21 38 21 36 66 50 58 76 45 47 83 60 65 43 18 47 88 62 64 95 95.3 99.6 100 79.8 79.8

22 40 21 35 67 47 56 77 42 44 84 57 62 45 16 41 88 58 60 95 95.2 99.6 100 76.8 76.8

23 40 22 45 67 52 70 77 50 56 84 64 72 45 22 59 88 67 71 95 95.1 100 100 85.1 85.1

24 40 23 49 67 53 74 77 53 61 84 67 75 45 25 64 88 70 74 95 95.1 100 100 86.7 86.7

25 40 21 43 67 51 67 77 47 53 84 63 70 45 16 43 88 63 66 95 95.1 99.9 100 83.3 83.3

26 40 21 51 67 53 76 77 51 61 84 66 76 45 19 54 88 66 70 95 95.1 100 100 84.8 84.8

27 40 22 45 67 52 71 77 50 57 84 65 74 45 21 56 88 67 71 95 95.1 99.9 100 84.7 84.7

28 40 22 47 67 53 73 77 51 59 84 66 74 45 22 59 88 68 72 95 95.1 100 100 84.6 84.6

29 40 21 49 67 52 74 77 50 59 84 66 74 45 19 52 88 66 70 95 95.1 99.9 100 84.8 84.8

30 40 21 50 67 53 75 77 50 60 84 66 76 45 19 53 88 66 71 95 95.1 100 100 84.9 84.9

31 39 34 57 66 66 80 76 64 72 83 78 87 44 37 76 88 82 87 95 95.2 99.9 100 97.2 97.2

32 40 30 60 67 60 80 77 61 70 84 74 82 45 32 72 88 77 82 95 95.1 100 100 92.8 92.8

33 40 42 80 67 69 95 77 79 94 84 84 98 45 45 95 88 89 99 95 95.1 100 100 100 100

34 40 34 61 67 63 81 77 68 76 84 77 85 45 36 78 88 81 85 95 95.1 100 100 94.7 94.7

35 40 42 82 67 69 96 77 80 94 84 84 98 45 45 95 88 89 99 95 95.1 100 100 100 100

194

References

Abeßer, J. et al. (2013) ‘Automatic quality assessment of vocal and instrumental performances
of ninth-grade and tenth-grade pupils’, Proceedings of the {10th International
Symposium on Computer Music Multidisciplinary Research, CMMR} 2013. {Sound, Music
& Motion}, 15-18th {October} 2013, {Marseilles}, {France}, (January), pp. 975–988.

Abouzid, H. et al. (2019) ‘Signal speech reconstruction and noise removal using convolutional
denoising audioencoders with neural deep learning’, Analog Integrated Circuits and
Signal Processing. Springer US, 100(3), pp. 501–512. doi: 10.1007/s10470-019-01446-6.

Al-Hussaini, I. et al. (2018) ‘Predictive Real-Time Beat Tracking from Music for Embedded
Application’, in 2018 IEEE Conference on Multimedia Information Processing and
Retrieval (MIPR). IEEE, pp. 297–300. doi: 10.1109/MIPR.2018.00068.

Alldahl, P.-G. (2006) Choral Intonation, Gehrmans Musikforlag. Available at:
http://journals.sagepub.com/doi/10.2307/3383619.

Anand, S. et al. (2012) ‘Acoustic parameters critical for an appropriate vibrato’, Journal of
Voice. Elsevier Ltd, 26(6), pp. 820.e19-820.e25. doi: 10.1016/j.jvoice.2012.06.004.

Aubio (no date) Aubio. Available at: https://aubio.org/.

Baracskay, I. et al. (2022) ‘The Diversity of Music Recommender Systems’, in 27th International
Conference on Intelligent User Interfaces. New York, NY, USA: ACM, pp. 97–100. doi:
10.1145/3490100.3516474.

Barupal, D. K. and Fiehn, O. (2011) ‘Scikit-learn: Machine learning in Python’, The Journal of
machine Learning research, 2, pp. 2825–2830.

Bello Correa, J. P. (2003) Towards the automated analysis of simple polyphonic music: A
knowledge-based approach. Queen Mary University of London.

Bello, J. P. et al. (2004) ‘On the use of phase and energy for musical onset detection in the
complex domain’, IEEE Signal Processing Letters, 11(6), pp. 553–556. doi:
10.1109/LSP.2004.827951.

Bello, J. P. et al. (2005) ‘A tutorial on onset detection in music signals’, IEEE Transactions on
Speech and Audio Processing, 13(5), pp. 1035–1047. doi: 10.1109/TSA.2005.851998.

Benetos, E. et al. (2019) ‘Automatic Music Transcription: An Overview’, IEEE Signal Processing
Magazine. IEEE, 36(1), pp. 20–30. doi: 10.1109/MSP.2018.2869928.

Berger, J., Coifman, R. R. and Goldberg, M. J. (1994) ‘Removing noise from music using local
trigonometric bases and wavelet packets’, AES: Journal of the Audio Engineering Society,
42(10), pp. 808–818.

195

Besouw, R. M. Van, Brereton, J. S. and Howard, D. M. (2008) ‘Range of Tuning for Tones With
and Without Vibrato’, Music Perception: An Interdisciplinary Journal, 26(2), pp. 145–155.
doi: 10.1525/mp.2008.26.2.145.

Bhalke, D. G., Rao, C. B. R. and Bormane, D. S. (2016) ‘Automatic musical instrument
classification using fractional fourier transform based- MFCC features and counter
propagation neural network’, Journal of Intelligent Information Systems. Journal of
Intelligent Information Systems, 46(3), pp. 425–446. doi: 10.1007/s10844-015-0360-9.

Bharti, H., Singh, D. and Malik, M. (2022) ‘E-Learning platform for music instruments:
Advantages and challenges’, International journal of health sciences, 6(March), pp.
5890–5898. doi: 10.53730/ijhs.v6nS1.6211.

Bittner, R. et al. (2014) ‘MedleyDB: A multitrack dataset for annotation-intensive MIR
research’, in Proceedings of the 15th International Society for Music Information
Retrieval Conference, ISMIR 2014, pp. 155–160.

Bittner, R. M. et al. (2016) ‘Medleydb 2.0 : New Data and a System for Sustainable Data
Collection’, in International Conference on Music Information Retrieval (ISMIR-16), pp.
2–4.

Bittner, R. M. et al. (2021) ‘vocadito: A dataset of solo vocals with F0, note, and lyric
annotations’, in International Society for Music Information Retrieval. Available at:
http://arxiv.org/abs/2110.05580.

Bittner, R. M., Wang, A. and Bello, J. P. (2017) ‘Pitch contour tracking in music using Harmonic
Locked Loops’, in 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, pp. 191–195. doi: 10.1109/ICASSP.2017.7952144.

Bjørklund, A. (1961) ‘Analyses of Soprano Voices’, The Journal of the Acoustical Society of
America, 33(5), pp. 575–582. doi: 10.1121/1.1908728.

Böck, S. et al. (2012) ‘Online real-time onset detection with recurrent neural networks’, 15th
International Conference on Digital Audio Effects, DAFx 2012 Proceedings, pp. 15–18.

Böck, S. et al. (2016) ‘madmom: a new Python Audio and Music Signal Processing Library’, in
Proceedings of the 24th ACM International Conference on Multimedia. Amsterdam, The
Netherlands, pp. 1174–1178. doi: 10.1145/2964284.2973795.

Boem, A. and Iwata, H. (2018) ‘Encounter-Type Haptic Interfaces for Virtual Reality Musical
Instruments’, in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).
IEEE, pp. 1–2. doi: 10.1109/VR.2018.8446549.

Boersma, P. (1993) ‘Accurate Short-Term Analysis of the Fundamental Frequency and the
Harmonics-To-Noise Ratio of a Sampled Sound’, in Proceedings of the institute of
phonetic sciences. Amsterdam: University of Amsterdam, pp. 97–110. Available at:
http://www.cs.northwestern.edu/~pardo/courses/casa2009/casa_papers_2009/paper
s/pitch tracking - boersma.pdf.

196

Boersma, P. and van Heuven, V. (2001) ‘PRAAT, a system for doing phonetics by computer’,
Glot International, 5(9–10), pp. 341–347.

Bogdanov, D. et al. (2013a) ‘Essentia: An audio analysis library for music information retrieval’,
in Proceedings of the 14th International Society for Music Information Retrieval
Conference, ISMIR 2013, pp. 493–498.

Bogdanov, D. et al. (2013b) ‘Essentia: An audio analysis library for music information retrieval’,
Proceedings of the 14th International Society for Music Information Retrieval
Conference, ISMIR 2013, (November), pp. 493–498.

Böhler, J. and Zölzer, U. (2016) ‘Monophonic pitch detection by evaluation of individually
parameterized phase locked loops’, in Proceedings of the International Conference on
Digital Audio Effects, DAFx, pp. 247–253.

Bottalico, P., Graetzer, S. and Hunter, E. J. (2017) ‘Effect of Training and Level of External
Auditory Feedback on the Singing Voice: Pitch Inaccuracy’, Journal of Voice. Elsevier Inc.,
31(1), pp. 122.e9-122.e16. doi: 10.1016/j.jvoice.2016.01.012.

Bozkurt, B., Baysal, O. and Yüret, D. (2017) ‘A Dataset and Baseline System for Singing Voice
Assessment’, in nternational Symposium on Computer Music Multidisciplinary Research
(CMMR). Matosinhos, Portugal, pp. 430–438. Available at:
http://cmmr2017.inesctec.pt/wp-
content/uploads/2017/09/43_CMMR_2017_paper_31.pdf.

Braun, S. (2001) ‘WINDOWS’, in Encyclopedia of Vibration. Elsevier, pp. 1587–1595. doi:
10.1006/rwvb.2001.0052.

Brooks, S. P. and Gelman, A. (1998) ‘General Methods for Monitoring Convergence of Iterative
Simulations’, Journal of Computational and Graphical Statistics. Taylor & Francis, 7(4),
pp. 434–455. doi: 10.1080/10618600.1998.10474787.

Brossier, P. et al. (2019) ‘aubio/aubio: 0.4.9’. Zenodo,
https://doi.org/10.5281/zenodo.2578765. doi: 10.5281/zenodo.2578765.

Brossier, P. M. (2005) ‘Fast Onset Detection Using Aubio (Brossier), Mirex 2005’, p. 2005.

Brossier, P. M. (2006) Automatic Annotation of Musical Audio for Interactive Applications.
Queen Mary, University of London. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.169.4504&rep=rep1&type
=pdf.

Brunkan, M. C. and Bowers, J. (2021) ‘Singing with Gesture: Acoustic and Perceptual Measures
of Solo Singers’, Journal of Voice. Elsevier Inc., 35(2), pp. 325.e17-325.e22. doi:
10.1016/j.jvoice.2019.08.029.

Buitinck, L. et al. (2013) ‘API design for machine learning software: experiences from the scikit-
learn project’, pp. 1–15. Available at: http://arxiv.org/abs/1309.0238.

197

Cannam, C., Landone, C. and Sandler, M. (2010) ‘Sonic visualiser’, in Proceedings of the
international conference on Multimedia - MM ’10. New York, New York, USA: ACM Press,
p. 1467. doi: 10.1145/1873951.1874248.

Cano, E. et al. (2019) ‘Musical Source Separation: An Introduction’, IEEE Signal Processing
Magazine, 36(1), pp. 31–40. doi: 10.1109/MSP.2018.2874719.

Cano, E., Dittmar, C. and Grollmisch, S. (2011) ‘Songs2See : Learn to Play by Playing’, in AES
41st International Conference on Audio for games, pp. 2–7.

Chan, T.-S. et al. (2015) ‘Vocal activity informed singing voice separation with the iKala
dataset’, in 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, pp. 718–722. doi: 10.1109/ICASSP.2015.7178063.

Chang, S. and Lee, K. (2014) ‘A pairwise approach to simultaneous onset/offset detection for
singing voice using correntropy’, in 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, pp. 629–633. doi:
10.1109/ICASSP.2014.6853672.

Chao-Ling Hsu and Jang, J.-S. R. (2010) ‘On the Improvement of Singing Voice Separation for
Monaural Recordings Using the MIR-1K Dataset’, IEEE Transactions on Audio, Speech,
and Language Processing, 18(2), pp. 310–319. doi: 10.1109/TASL.2009.2026503.

Chatterjee, I. et al. (2018) Pitch Tracking and Pitch Smoothing Methods-Based Statistical
Approach to Explore Singers’ Melody of Voice on a Set of Songs of Tagore, Lecture Notes
in Electrical Engineering. Springer Singapore. doi: 10.1007/978-981-10-7901-6_56.

Cheng, M. et al. (1976) ‘Some comparisons among several pitch detection algorithms’, in
ICASSP ’76. IEEE International Conference on Acoustics, Speech, and Signal Processing.
Institute of Electrical and Electronics Engineers, pp. 332–335. doi:
10.1109/ICASSP.1976.1170114.

de Cheveigné, A. and Kawahara, H. (2002) ‘YIN, a fundamental frequency estimator for speech
and music’, The Journal of the Acoustical Society of America, 111(4), pp. 1917–1930. doi:
10.1121/1.1458024.

Choi, S. et al. (2020) ‘Children’s Song Dataset for Singing Voice Research Soonbeom’, in
International Society for Music Information Retrieval Conference (ISMIR).

Chuang, Y. C. and Su, L. (2020) ‘Beat and Downbeat Tracking of Symbolic Music Data Using
Deep Recurrent Neural Networks’, 2020 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference, APSIPA ASC 2020 - Proceedings, pp. 346–
352.

Cleveland, W. S. (1979) ‘Robust Locally Weighted Regression and Smoothing Scatterplots’,
Journal of the American Statistical Association, 74(368), pp. 829–836. doi:
10.1080/01621459.1979.10481038.

198

Cleveland, W. S. (1981) ‘LOWESS: A Program for Smoothing Scatterplots by Robust Locally
Weighted Regression’, The American Statistician, 35(1), p. 54. doi: 10.2307/2683591.

Colin Cameron, A. and Windmeijer, F. A. G. (1997) ‘An R-squared measure of goodness of fit
for some common nonlinear regression models’, Journal of Econometrics, 77(2), pp.
329–342. doi: 10.1016/S0304-4076(96)01818-0.

Collins, N. (2005a) ‘A comparison of sound onset detection algorithms with emphasis on
psychoacoustically motivated detection functions’, Audio Engineering Society - 118th
Convention Spring Preprints 2005. Audio Engineering Society, 1, pp. 34–45.

Collins, N. (2005b) ‘A comparison of sound onset detection algorithms with emphasis on
psychoacoustically motivated detection functions’, in Audio Engineering Society
Convention 118. Audio Engineering Society.

Cont, A. (2010) ‘A Coupled Duration-Focused Architecture for Real-Time Music-to-Score
Alignment’, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(6), pp.
974–987. doi: 10.1109/TPAMI.2009.106.

Craven, P. and Wahba, G. (1978) ‘Smoothing noisy data with spline functions’, Numerische
Mathematik, 31(4), pp. 377–403. doi: 10.1007/BF01404567.

Creech, A. (ed.) (2020) ‘Proceedings of the International Society for Music Education 34 th
World Conference on Music Education’, in.

Cuesta, H. et al. (2018) ‘Analysis of Intonation in Unison Choir Singing’, in 15th International
Conference on Music Perception and Cognition (ICMPC). doi:
https://doi.org/10.5281/zenodo.1286570.

D’Alessandro, C. and Castellengo, M. (1991) ‘Etude, par la synthese, de la perception du
vibrato vocal dans la transition de notes’, in International Voice Conference. Besancon,
pp. 551–564.

Dagum, E. B. (2010) ‘Time series modeling and decomposition’, Statistica, 70, pp. 433–457.
doi: 10.6092/issn.1973-2201/3597.

Dai, W. et al. (2017) ‘A nonlinear generalization of the Savitzky-Golay filter and the
quantitative analysis of saccades’, Journal of Vision, 17(9), p. 10. doi: 10.1167/17.9.10.

Dalla Bella, S. et al. (2007) ‘Singing proficiency in the general population’, The Journal of the
Acoustical Society of America, 121(2), pp. 1182–1189. doi: 10.1121/1.2427111.

Das, O., Smith, J. O. and Chafe, C. (2017) ‘Real-time pitch tracking in audio signals with the
extended complex kalman filter’, in International Conference on Digital Audio Effects
(DAFx-17). Edinburgh,, UK, pp. 118–124. Available at:
http://www.dafx17.eca.ed.ac.uk/papers/DAFx17_paper_21.pdf.

Das, O., Smith, J. O. and Chafe, C. (2020) ‘Improved Real-Time Monophonic Pitch Tracking with
the Extended Complex Kalman Filter’, Journal of the Audio Engineering Society, 68(1/2),

199

pp. 78–86. doi: 10.17743/jaes.2019.0053.

Défossez, A. et al. (2019) ‘Music Source Separation in the Waveform Domain’. Available at:
http://arxiv.org/abs/1911.13254.

Degara, N. et al. (2011) ‘Onset Event Decoding Exploiting the Rhythmic Structure of Polyphonic
Music’, IEEE Journal of Selected Topics in Signal Processing, 5(6), pp. 1228–1239. doi:
10.1109/JSTSP.2011.2146229.

Deng, G. and Cahill, L. W. (1994) ‘Adaptive Gaussian filter for noise reduction and edge
detection’, in IEEE Nuclear Science Symposium & Medical Imaging Conference. San
Francisco, CA, USA: IEEE, pp. 1615–1619. doi: 10.1109/nssmic.1993.373563.

Devaney, J. et al. (2011) ‘Automatically extracting performance data from recordings of
trained singers.’, Psychomusicology: Music, Mind and Brain, 21(1–2), pp. 108–136. doi:
10.1037/h0094008.

Dixon, S. (2006) ‘Onset detection revisited’, in Proceedings of the 9th International Conference
on Digital Audio Effects. Citeseer, pp. 133–137.

Dixon, S. and Effects, D. A. (2005) ‘LIVE TRACKING OF MUSICAL PERFORMANCES USING ON-
LINE TIME WARPING Simon Dixon Austrian Research Institute for Artificial Intelligence’,
DAFx, pp. 1–6.

Dobson, A. J. and Barnett, A. G. (2018) An Introduction to Generalized Linear Models, Fourth
Edition. Chapman and Hall/CRC. doi: 10.1201/9781315182780.

Dong, M. et al. (2010) ‘Aligning singing voice with MIDI melody using synthesized audio signal’,
in 7th International Symposium on Chinese Spoken Language Processing. Tainan: IEEE,
pp. 95–98. doi: 10.1109/ISCSLP.2010.5684843.

Dorfer, M., Arzt, A. and Widmer, G. (2017) ‘Learning Audio - Sheet Music Correspondences for
Score Identification and Offline Alignment’, (2). Available at:
http://arxiv.org/abs/1707.09887.

Dressler, K. (2016) ‘Automatic Transcription of the Melody from Polyphonic Music’, 24(5), pp.
901–913.

Drugman, T. et al. (2018) ‘Traditional Machine Learning for Pitch Detection’, IEEE Signal
Processing Letters. IEEE, 25(11), pp. 1745–1749. doi: 10.1109/LSP.2018.2874155.

Drugman, T. and Alwan, A. (2011) ‘Joint robust voicing detection and pitch estimation based
on residual harmonics’, Proceedings of the Annual Conference of the International
Speech Communication Association, INTERSPEECH, (January), pp. 1973–1976. doi:
10.1111/j.1096-3642.2009.00621.x.

Dzhambazov, G. et al. (2017) ‘Metrical-accent Aware Vocal Onset Detection in Polyphonic
Audio’, in Proceedings of the 18th International Society for Music Information Retrieval
Conference, ISMIR 2017, pp. 702–708. Available at: http://arxiv.org/abs/1707.06163.

200

Ewert, S., Muller, M. and Grosche, P. (2009) ‘High resolution audio synchronization using
chroma onset features’, in 2009 IEEE International Conference on Acoustics, Speech and
Signal Processing. IEEE, pp. 1869–1872. doi: 10.1109/ICASSP.2009.4959972.

Eyben, F. et al. (2010) ‘Universal onset detection with bidirectional long-short term memory
neural networks’, in Proc. 11th Intern. Soc. for Music Information Retrieval Conference,
ISMIR, Utrecht, The Netherlands, pp. 589–594.

Faghih, B. and Timoney, J. (2019a) ‘An investigation into several pitch detection algorithms for
singing phrases analysis’, in 2019 30th Irish Signals and Systems Conference (ISSC).
Maynooth, Ireland: IEEE, pp. 1–5. doi: 10.1109/ISSC.2019.8904943.

Faghih, B. and Timoney, J. (2019b) ‘Considerations for the Next Generation of Singing Tutor
Systems’, in Audio Engineering Society Convention 146. Dublin: Audio Engineering
Society. Available at: http://www.aes.org/e-lib/browse.cfm?elib=20364.

Faghih, B. and Timoney, J. (2022a) ‘Real-time monophonic singing pitch detection’, Preprint.
doi: 10.13140/RG.2.2.22054.19526.

Faghih, B. and Timoney, J. (2022b) ‘Smart-Median: A New Real-Time Algorithm for Smoothing
Singing Pitch Contours’, Applied Sciences, 12(14), p. 7026. doi: 10.3390/app12147026.

Ferro, M. and Tamburini, F. (2019) ‘Using Deep Neural Networks for Smoothing Pitch Profiles
in Connected Speech’, Italian Journal of Computational Linguistics, 5(2), pp. 33–48. doi:
10.4000/ijcol.476.

‘Finale’ (no date). Available at: https://www.klemm-music.de/makemusic/finale/.

Gawlik, M. and Wszołek, W. (2018) ‘Modern pitch detection methods in singing voices
analyzes’, in Euronoise 2018, pp. 247–254. Available at:
http://www.euronoise2018.eu/docs/papers/42_Euronoise2018.pdf.

Gelman, A. et al. (1992) ‘Inference from Iterative Simulation Using Multiple Sequences’,
Statistical Science, 7(4), pp. 457–472.

Gelman, A. et al. (1995) Bayesian Data Analysis. Chapman and Hall/CRC. doi:
10.1201/9780429258411.

Gómez, E. and Bonada, J. (2013) ‘Towards Computer-Assisted Flamenco Transcription: An
Experimental Comparison of Automatic Transcription Algorithms as Applied to A
Cappella Singing’, Computer Music Journal, 37(2), pp. 73–90. doi:
10.1162/COMJ_a_00180.

Gong, R. and Serra, X. (2018) ‘Towards an efficient deep learning model for musical onset
detection’. doi: arXiv:1806.06773v1.

Gonzalez, S. and Brookes, M. (2014) ‘PEFAC - A Pitch Estimation Algorithm Robust to High
Levels of Noise’, IEEE/ACM Transactions on Audio, Speech, and Language Processing.
IEEE, 22(2), pp. 518–530. doi: 10.1109/TASLP.2013.2295918.

201

Goto, M. (2001) ‘An Audio-based Real-time Beat Tracking System for Music With or Without
Drum-sounds’, Journal of New Music Research, 30(2), pp. 159–171. doi:
10.1076/jnmr.30.2.159.7114.

Goto, M. et al. (2012) ‘VocaListener and VocaWatcher: Imitating a human singer by using
signal processing’, in 2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, pp. 5393–5396. doi: 10.1109/ICASSP.2012.6289140.

Gruenz, O. O. and Schott, L. O. (1949) ‘Extraction and Portrayal of Pitch of Speech Sounds’,
The Journal of the Acoustical Society of America, 21(5), pp. 487–495. doi:
10.1121/1.1906538.

Gupta, C., Li, H. and Wang, Y. (2017) ‘Perceptual evaluation of singing quality’, in 2017 Asia-
Pacific Signal and Information Processing Association Annual Summit and Conference
(APSIPA ASC). IEEE, pp. 577–586. doi: 10.1109/APSIPA.2017.8282110.

Gupta, C., Li, H. and Wang, Y. (2018) ‘A technical framework for automatic perceptual
evaluation of singing quality’, APSIPA Transactions on Signal and Information Processing,
7. doi: 10.1017/ATSIP.2018.10.

Henkel, F. and Widmer, G. (2021) ‘Real-Time Music Following in Score Sheet Images via Multi-
Resolution Prediction’, Frontiers in Computer Science, 3(November), pp. 1–13. doi:
10.3389/fcomp.2021.718340.

Hennequin, R. et al. (2020) ‘Spleeter: a fast and efficient music source separation tool with
pre-trained models’, Journal of Open Source Software, 5(50), p. 2154. doi:
10.21105/joss.02154.

Henry, M. (2015) ‘Vocal Sight-Reading Assessment’, Update: Applications of Research in Music
Education, 33(2), pp. 58–64. doi: 10.1177/8755123314547908.

Henry, M. L. (2011) ‘The effect of pitch and rhythm difficulty on vocal sight-reading
performance’, Journal of Research in Music Education, 59(1), pp. 72–84. doi:
10.1177/0022429410397199.

Heylen, L. et al. (2002) ‘Normative voice range profiles of male and female professional voice
users’, Journal of Voice, 16(1), pp. 1–7. doi: 10.1016/S0892-1997(02)00065-6.

Hoon Heo, Dooyong Sung and Kyogu Lee (2013) ‘Note onset detection based on harmonic
cepstrum regularity’, in 2013 IEEE International Conference on Multimedia and Expo
(ICME). IEEE, pp. 1–6. doi: 10.1109/ICME.2013.6607461.

Hoppe, D., Sadakata, M. and Desain, P. (2006) ‘Development of real-time visual feedback
assistance in singing training: A review’, Journal of Computer Assisted Learning, 22(4),
pp. 308–316. doi: 10.1111/j.1365-2729.2006.00178.x.

Howard, D. M. et al. (2004) ‘WinSingad: A real-time display for the singing studio’, Logopedics
Phoniatrics Vocology, 29(3), pp. 135–144. doi: 10.1080/14015430410000728.

202

Hutchinson, M. F. and de Hoog, F. R. (1985) ‘Smoothing noisy data with spline functions’,
Numerische Mathematik, 47(1), pp. 99–106. doi: 10.1007/BF01389878.

Ishi, C. T., Hirose, K. and Minematsu, N. (2003) ‘Mora F0 representation for accent type
identification in continuous speech and considerations on its relation with perceived
pitch values’, Speech Communication, 41(2–3), pp. 441–453. doi: 10.1016/S0167-
6393(03)00014-1.

Jeerapradit, L., Suchato, A. and Punyabukkana, P. (2018) ‘HMM-based Thai Singing Voice
Synthesis System’, in 2018 22nd International Computer Science and Engineering
Conference (ICSEC). IEEE, pp. 1–4. doi: 10.1109/ICSEC.2018.8712801.

Jehan, T. (2005) Creating music by listening (Doctoral dissertation), Media Arts and Sciences.
Media Arts and Sciences Department, Massachusetts Institute of Technology.

Jitendra, M. S. N. V. and Radhika, Y. (2021) ‘Singer Gender Classification using Feature-based
and Spectrograms with Deep Convolutional Neural Network’, International Journal of
Advanced Computer Science and Applications, 12(2), pp. 135–144. doi:
10.14569/IJACSA.2021.0120218.

Jlassi, W., Bouzid, A. and Ellouze, N. (2016) ‘A new method for pitch smoothing’, in 2016 2nd
International Conference on Advanced Technologies for Signal and Image Processing
(ATSIP). IEEE, pp. 657–661. doi: 10.1109/ATSIP.2016.7523161.

Jones, W. M. P. (1995) Kernel Smoothing. London: Chapman & Hall.

Jouvet, D. and Laprie, Y. (2017) ‘Performance analysis of several pitch detection algorithms on
simulated and real noisy speech data’, in 2017 25th European Signal Processing
Conference (EUSIPCO). IEEE, pp. 1614–1618. doi: 10.23919/EUSIPCO.2017.8081482.

Karatana, A. and Yildiz, O. (2017) ‘Music genre classification with machine learning
techniques’, in 2017 25th Signal Processing and Communications Applications
Conference (SIU). IEEE, pp. 1–4. doi: 10.1109/SIU.2017.7960694.

Kasi, K. and Zahorian, S. A. (2002) ‘Yet Another Algorithm for Pitch Tracking’, in IEEE
International Conference on Acoustics Speech and Signal Processing. IEEE, pp. I-361-I–
364. doi: 10.1109/ICASSP.2002.5743729.

Kawahara, H., Estill, J. and Fujimura, O. (2001) ‘Aperiodicity extraction and control using mixed
mode excitation and group delay manipulation for a high quality speech analysis,
modification and synthesis system STRAIGHT’, International Workshop on Models and
Analysis of Vocal Emissions for Biomedical Applications (MAVEBA), (May 2014), pp. 59–
64.

Khadem-hosseini, M. et al. (2020) ‘Error Correction in Pitch Detection Using a Deep Learning
Based Classification’, IEEE/ACM Transactions on Audio, Speech, and Language
Processing. IEEE, 28(Ml), pp. 990–999. doi: 10.1109/TASLP.2020.2977472.

203

Kim, J. W. et al. (2018) ‘Crepe: A Convolutional Representation for Pitch Estimation’, ICASSP,
IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings.
IEEE, 2018-April, pp. 161–165. doi: 10.1109/ICASSP.2018.8461329.

Klapuri, A. (2000) ‘Qualitative and quantitative aspects in the design of periodicity estimation
algorithms’, in 2000 10th European Signal Processing Conference, pp. 1–4.

Klingbeil, M. (2005) ‘Software for Spectral Analysis, Editing, and Synthesis’, International
Computer Music Conference, (1).

Krige, W. A. and Niesler, T. R. (2006) ‘An HMM Based Singing Transcription System’, Pattern
Recognition Association of South Africa, (May).

Kroher, N. and Díaz-Báñez, J.-M. (2019) ‘Modelling melodic variation and extracting melodic
templates from flamenco singing performances’, Journal of Mathematics and Music,
13(2), pp. 150–170. doi: 10.1080/17459737.2019.1610194.

Kroher, N. and Gomez, E. (2016) ‘Automatic Transcription of Flamenco Singing From
Polyphonic Music Recordings’, IEEE/ACM Transactions on Audio, Speech, and Language
Processing. IEEE, 24(5), pp. 901–913. doi: 10.1109/TASLP.2016.2531284.

Lacoste, A. and Eck, D. (2006) ‘A supervised classification algorithm for note onset detection’,
EURASIP Journal on Advances in Signal Processing. Springer, 2007, pp. 1–13.

Lal, P. (2006) ‘A Comparison of Singing Evaluation Algorithms’, Computer, pp. 2298–2301.

Lang, M. (2003) TuneIt, a simple command-line instrument tuner for Linux. Available at:
https://github.com/mlang/tuneit (Accessed: 20 June 2023).

Lepain, P. (1999) ‘Polyphonic Pitch Extraction from Musical Signals’, Journal of New Music
Research. Routledge, 28(4), pp. 296–309. doi: 10.1076/0929-8215(199912)28:04;1-
O;FT296.

Lewis-Beck, M. S. and Skalaban, A. (1990) ‘The R -Squared: Some Straight Talk’, Political
Analysis, 2, pp. 153–171. doi: 10.1093/pan/2.1.153.

Li, Y. and Li, C. (2018) ‘Singer Recognition Based on Convolutional Deep Belief Networks’, IOP
Conference Series: Materials Science and Engineering, 435(1), p. 012005. doi:
10.1088/1757-899X/435/1/012005.

Lin, C. H. et al. (2014) ‘Automatic singing evaluating system based on acoustic features and
rhythm’, IEEE International Conference on Orange Technologies, ICOT 2014, pp. 165–
168. doi: 10.1109/ICOT.2014.6956625.

Lin, H., Wu, H.-H. and Kao, Y.-T. (2008) ‘Geometric measures of distance between two pitch
contour sequences’, Journal of Computers, 19(2), pp. 55–66.

Lindblom, B. and Sundberg, J. (2007) ‘The Human Voice in Speech and Singing’, in Springer
Handbook of Acoustics. New York, NY: Springer New York, pp. 669–712. doi:

204

10.1007/978-0-387-30425-0_16.

Liu, L. and Benetos, E. (2021) ‘From Audio to Music Notation’, in Miranda, E. R. (ed.) Handbook
of Artificial Intelligence for Music. Cham: Springer International Publishing, pp. 693–714.
doi: 10.1007/978-3-030-72116-9_24.

Liu, Q. et al. (2013) ‘A Pitch Smoothing Method for Mandarin Tone Recognition’, International
Journal of Signal Processing, Image Processing and Pattern Recognition, 6(4), pp. 245–
254.

Luers, J. K. and Wenning, R. H. (1971) ‘Polynomial Smoothing: Linear vs Cubic’, Technometrics,
13(3), p. 589. doi: 10.2307/1267170.

Luo, Y.-J. et al. (2018) ‘Singing Voice Correction Using Canonical Time Warping’, in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp.
156–160. doi: 10.1109/ICASSP.2018.8461280.

Makov, S. et al. (2019) ‘A spectral-based pitch detection method’, in AIP Conference
Proceedings, pp. 050005-1-050005–6. doi: 10.1063/1.5138432.

Malloch, J. et al. (2019) ‘A Design Workbench for Interactive Music Systems’, in Holland, S. et
al. (eds) New Directions in Music and Human- Computer Interaction. Springer, pp. 23–
40. doi: 10.1007/978-3-319-92069-6_2.

Manternach, J. N. (2016) ‘Effects of varied conductor prep movements on singer muscle
engagement and voicing behaviors’, Psychology of Music, 44(3), pp. 574–586. doi:
10.1177/0305735615580357.

Masri, P. and Bateman, A. (1996) ‘Improved modelling of attack transients in music analysis-
resynthesis’, Proceedings of the International Computer Music Conference, pp. 100–103.
Available at: http://hans.fugal.net/comps/papers/masri_1996.pdf.

Mauch, M. et al. (2015) ‘Computer-aided Melody Note Transcription Using the Tony Software :
Accuracy and Efficiency’, Proceedings of the First International Conference on
Technologies for Music Notation and Representation (TENOR 2015), p. 8. doi:
10.1121/1.4881915.

Mauch, M. and Dixon, S. (2014) ‘PYIN: A fundamental frequency estimator using probabilistic
threshold distributions’, ICASSP, IEEE International Conference on Acoustics, Speech and
Signal Processing - Proceedings. IEEE, (1), pp. 659–663. doi:
10.1109/ICASSP.2014.6853678.

Mauch, M., Frieler, K. and Dixon, S. (2014) ‘Intonation in unaccompanied singing: Accuracy,
drift, and a model of reference pitch memory’, The Journal of the Acoustical Society of
America, 136(1), pp. 401–411. doi: 10.1121/1.4881915.

Mayor, Oscar., Bonada, Jordi., Loscos, A. (2009) ‘Performance Analysis and Scoring of the
Singing Voice’, Proc 35th AES Intl Conf London UK, pp. 1–7. doi: 10.1007/s10958-005-

205

0306-9.

Mayor, O., Bonada, J. and Loscos, A. (2006) ‘The Singing Tutor: Expression Categorization and
Segmentation of the Singing Voice’, in AES 121st Convention. San Francisco.

McFee, B. et al. (2015) ‘librosa: Audio and Music Signal Analysis in Python’, Proceedings of the
14th Python in Science Conference, (Scipy), pp. 18–24. doi: 10.25080/majora-7b98e3ed-
003.

McFee, B. et al. (2020) ‘librosa/librosa: 0.8.0’. Zenodo. doi: 10.5281/zenodo.3955228.

McFee, B. et al. (2022) ‘librosa/librosa: 0.9.1’. doi: 10.5281/ZENODO.6097378.

McKinney, M. F. et al. (2007) ‘Evaluation of Audio Beat Tracking and Music Tempo Extraction
Algorithms’, Journal of New Music Research, 36(1), pp. 1–16. doi:
10.1080/09298210701653252.

McLeod, A. et al. (2017) ‘Automatic Transcription of Polyphonic Vocal Music’, Applied
Sciences, 7(12), p. 1285. doi: 10.3390/app7121285.

Meseguer-Brocal, G., Cohen-Hadria, A. and Peeters, G. (2018) ‘DALI: A large dataset of
synchronized audio, lyrics and notes, automatically created using teacher-student
machine learning paradigm’, in The 19th International Society for Music Information
Retrieval Conference, ISMIR 2018. Paris, France: International Society for Music
Information Retrieval, pp. 431–437. doi: 10.5281/zenodo.1492443.

Molina, E. (2012) ‘Automatic Scoring of Singing Voice Based on Melodic Similarity Measures’,
pp. 1–48. doi: 10.1016/j.econlet.2011.10.013.

Molina, E. et al. (2013) ‘Fundamental frequency alignment vs. note-based melodic similarity
for singing voice assessment’, ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, pp. 744–748. doi:
10.1109/ICASSP.2013.6637747.

Molina, E. et al. (2014) ‘Evaluation framework for automatic singing transcription’, in
Proceedings of the 15th International Society for Music Information Retrieval Conference
(ISMIR 2014), pp. 567–572.

Moore, B. C. J. (2013) An Introduction to the Psychology of Hearing. 6th edn. Brill. doi:
10.1121/1.4898050.

Mora, J. et al. (2010) ‘Characterization and melodic similarity of a cappella flamenco cantes’,
Proceedings of the 11th International Society for Music Information Retrieval
Conference, ISMIR 2010, pp. 351–356.

Müller-Rakow, A. and Flechtner, R. (2017) ‘Designing Interactive Music Systems with and for
People with Dementia’, The Design Journal, 20(sup1), pp. S2207–S2214. doi:
10.1080/14606925.2017.1352736.

206

Müller, M. (2007) Dynamic time warping, Information Retrieval for Music and Motion. Berlin,
Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-540-74048-3_4.

Müller, M., Grosche, P. and Wiering, F. (2010) ‘Automated analysis of performance variations
in folk song recordings’, in International conference on Multimedia information retrieval.
New York, New York, USA: ACM Press, pp. 247–256. doi: 10.1145/1743384.1743429.

Muller, M., Kurth, F. and Röder, T. (2004) ‘Towards an Efficient Algorithm for Automatic Score-
to-Audio Synchronization’, in Ismir. Barcelona, Spain. Available at:
http://ismir2004.ismir.net/proceedings/p067-page-365-paper136.pdf.

Nakamura, E. et al. (2014) ‘Outer-Product Hidden Markov Model and Polyphonic MIDI Score
Following’, Journal of New Music Research, 43(2), pp. 183–201. doi:
10.1080/09298215.2014.884145.

Nakamura, E., Yoshii, K. and Katayose, H. (2017) ‘Performance Error Detection and Post-
Processing for Fast and Accurate Symbolic Music Alignment’, in 18th International
Society for Music Information Retrieval Conference. Suzhou: ISMIR, pp. 347–353.

Nakamura, T., Nakamura, E. and Sagayama, S. (2013) ‘Acoustic Score Following To Musical
Performance With Errors and Arbitrary Repeats and Skips’, Proceedings of the Sound and
Music Computing Conference 2013, SMC 2013, pp. 299–304. Available at:
http://www.logos-verlag.de/cgi-bin/buch/isbn/3472.

Nakamura, T., Nakamura, E. and Sagayama, S. (2016) ‘Real-Time Audio-to-Score Alignment of
Music Performances Containing Errors and Arbitrary Repeats and Skips’, IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 24(2), pp. 329–339. doi:
10.1109/TASLP.2015.2507862.

Nakano, T., Goto, M. and Hiraga, Y. (2006) ‘An Automatic Singing Skill Evaluation Method for
Unknown Melodies Using Pitch Interval Accuracy and Vibrato Features’, in Ninth
International Conference on Spoken Language Processing. Pittsburgh, pp. 1706–1709.
Available at: https://www.isca-speech.org/archive/interspeech_2006/i06_1854.html.

Nakano, T., Goto, M. and Hiraga, Y. (2007) ‘MiruSinger: A singing skill visualization interface
using real-time feedback and music CD recordings as referential data’, Proceedings ISM
Workshops 2007 9th IEEE International Symposium on Multimedia - Workshops, pp. 75–
76. doi: 10.1109/ISMW.2007.4475948.

Nakatani, T. et al. (2008) ‘A method for fundamental frequency estimation and voicing
decision: Application to infant utterances recorded in real acoustical environments’,
Speech Communication, 50(3), pp. 203–214. doi: 10.1016/j.specom.2007.09.003.

Nisar, S., Khan, O. U. and Tariq, M. (2016) ‘An Efficient Adaptive Window Size Selection
Method for Improving Spectrogram Visualization’, Computational Intelligence and
Neuroscience, 2016, pp. 1–13. doi: 10.1155/2016/6172453.

Nishikimi, R. et al. (2019) ‘Automatic Singing Transcription Based on Encoder-decoder

207

Recurrent Neural Networks with a Weakly-supervised Attention Mechanism’, in ICASSP
2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, pp. 161–165. doi: 10.1109/ICASSP.2019.8683024.

Nishikimi, R. et al. (2021) ‘Audio-to-score singing transcription based on a CRNN-HSMM hybrid
model’, APSIPA Transactions on Signal and Information Processing, 10(1). doi:
10.1017/ATSIP.2021.4.

Noll, A. M. (1967) ‘Cepstrum Pitch Determination’, The Journal of the Acoustical Society of
America, 41(2), pp. 293–309. doi: 10.1121/1.1910339.

de Obaldía, C. and Zölzer, U. (2019) ‘Improving Monophonic Pitch Detection Using the ACF
and Simple Heuristics’, in Proceedings ofthe 22nd International Conference on Digital
Audio Effects (DAFx-19). Birmingham, pp. 1–7. Available at:
http://dmtlab.bcu.ac.uk/conf-sites/dafx-2019-html/papers/DAFx2019_paper_54.pdf.

Okada, M., Ishikawa, T. and Ikegaya, Y. (2016) ‘A Computationally Efficient Filter for Reducing
Shot Noise in Low S/N Data’, PLOS ONE. Edited by T. Abraham, 11(6), p. e0157595. doi:
10.1371/journal.pone.0157595.

Orfanidis, S. J. (2018) ‘Local Polynomial Filters’, in Applied Optimum Signal Processing, pp.
119–163. Available at: chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/http://eceweb1.rutgers.edu/~orfanidi
/aosp/aosp-ch03.pdf.

Orio, N., Lemouton, S. and Schwarz, D. (2003) ‘Score following: state of the art and new
developments’, in New interfaces for musical expression, pp. 36–41. Available at:
http://dl.acm.org/citation.cfm?id=1085724.

Paliwal, K. and Wojcicki, K. (2008) ‘Effect of Analysis Window Duration on Speech
Intelligibility’, IEEE Signal Processing Letters, 15, pp. 785–788. doi:
10.1109/LSP.2008.2005755.

Pardo, B. and Birmingham, W. (2005) ‘Modeling form for on-line following of musical
performances’, in The Twentieth National Conference on Artificial Intelligence and the
Seventeenth Innovative Applications of Artificial Intelligence Conference, pp. 1018–1023.
Available at: papers2://publication/uuid/B72E0187-AB89-47D4-B97D-BA9E91F8DB9E.

Pelchat, N. and Gelowitz, C. M. (2020) ‘Neural Network Music Genre Classification’, Canadian
Journal of Electrical and Computer Engineering, 43(3), pp. 170–173.

Pesek, M., Leonardis, A. and Marolt, M. (2017) ‘Robust real-time music transcription with a
compositional hierarchical model’, PLoS ONE, 12(1). doi:
10.1371/journal.pone.0169411.

Plante, F., Meyer, G. and Ainsworth, W. A. (1995) ‘A Pitch Extraction Reference Database’, in
Fourth European Conference on Speech Communication and Technology, EUROSPEECH.
Madrid.

208

Plummer, M. (2003) ‘JAGS : A Program for Analysis of Bayesian Graphical Models Using Gibbs
Sampling JAGS : Just Another Gibbs Sampler’, in 3rd international workshop on
distributed statistical computing. Vienna, Austria, pp. 1–10.

Podder, P. et al. (2014) ‘Comparative Performance Analysis of Hamming, Hanning and
Blackman Window’, International Journal of Computer Applications, 96(18), pp. 1–7. doi:
10.5120/16891-6927.

Powers, D. M. W. (2020) ‘Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation’, pp. 37–63. doi:
https://doi.org/10.48550/arXiv.2010.16061.

Prame, E. (1997) ‘Vibrato extent and intonation in professional Western lyric singing’, The
Journal of the Acoustical Society of America, 102(1), pp. 616–621. doi:
10.1121/1.419735.

R Core Team (no date) ‘R: A Language and Environment for Statistical Computing’. Vienna,
Austria. Available at: https://www.r-project.org.

Rabiner, L. et al. (1976) ‘A comparative performance study of several pitch detection
algorithms’, IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(5), pp.
399–418. doi: 10.1109/TASSP.1976.1162846.

Rabiner, L. R. and Sambur, M. R. (1975) ‘An Algorithm for Determining the Endpoints of
Isolated Utterances’, Bell System Technical Journal, 54(2), pp. 297–315. doi:
10.1002/j.1538-7305.1975.tb02840.x.

Racharla, K. et al. (2020) ‘Predominant Musical Instrument Classification based on Spectral
Features’, in 2020 7th International Conference on Signal Processing and Integrated
Networks (SPIN). IEEE, pp. 617–622. doi: 10.1109/SPIN48934.2020.9071125.

Raffel, C. et al. (2014) ‘mir_eval: A transparent implementation of common MIR metrics’, in
Proceedings of the 15th International Society for Music Information Retrieval
Conference, ISMIR 2014, pp. 367–372.

Raffel, C. and Ellis, D. P. W. (2014) ‘Intuitive analysis, creation and manipulation of MIDI data
with pretty_midi’, in 15th International Society for Music Information Retrieval
Conference. Taipei, Taiwan. Available at: http://craffel.github.io/pretty-midi/.

Rafii, Z. and Pardo, B. (2012) ‘Music/voice separation using the similarity matrix’, in 13th
International Society for Music Information Retrieval Conference, ISMIR 2012, pp. 583–
588.

Rafii, Z. and Pardo, B. (2013) ‘REpeating Pattern Extraction Technique (REPET): A Simple
Method for Music/Voice Separation’, IEEE Transactions on Audio, Speech, and Language
Processing. IEEE, 21(1), pp. 73–84. doi: 10.1109/TASL.2012.2213249.

Reback, J. et al. (2020) ‘pandas-dev/pandas: Pandas 1.0.3’. doi: 10.5281/ZENODO.3715232.

209

Rej, R. (2003) NIST/SEMATECH e-Handbook of Statistical Methods. American Association for
Clinical Chemistry. doi: https://doi.org/10.18434/M32189.

Rosenzweig, S., Cuesta, H., et al. (2020) ‘Dagstuhl ChoirSet: A Multitrack Dataset for MIR
Research on Choral Singing’, Transactions of the International Society for Music
Information Retrieval, 3(1), pp. 98–110. doi: 10.5334/tismir.48.

Rosenzweig, S., Scherbaum, F., et al. (2020) ‘Erkomaishvili Dataset: A Curated Corpus of
Traditional Georgian Vocal Music for Computational Musicology’, Transactions of the
International Society for Music Information Retrieval, 3(1), pp. 31–41. doi:
10.5334/tismir.44.

Ryynänen, M. (2006) ‘Singing transcription’, Signal Processing Methods for Music
Transcription. Edited by A. Klapuri and M. Davy. Boston, MA: Springer US, pp. 361–390.
doi: 10.1007/0-387-32845-9_12.

Ryynänen, M. P. (2008) Automatic Transcription of Pitch Content in Music and Selected
Applications, PhD Thesis. doi: 10.1017/CBO9781107415324.004.

Ryynänen, M. P. and Klapuri, A. (2006) ‘Transcription of the singing melody in polyphonic
music’, Proceedings of the International Conference on Music Information Retrieval
(ISMIR), pp. 222–227. doi: 10.1149/06001.1239ecst.

Salamon, J. and Gomez, E. (2012) ‘Melody Extraction From Polyphonic Music Signals Using
Pitch Contour Characteristics’, IEEE Transactions on Audio, Speech, and Language
Processing. IEEE, 20(6), pp. 1759–1770. doi: 10.1109/TASL.2012.2188515.

Salazar, S. et al. (2015) ‘Continuous score-coded pitch correction’. Google Patents.

Sampaio, M. da S. (2018) ‘Contour Similarity Algorithms’, MusMat - Brazilian Journal of Music
and Mathematics, 2(2), pp. 58–78. Available at: https://musmat.org/wp-
content/uploads/2018/12/08-contour-similarity-algorithm.pdf.

Savitzky, A. and Golay, M. J. E. (1964) ‘Smoothing and Differentiation of Data by Simplified
Least Squares Procedures.’, Analytical Chemistry, 36(8), pp. 1627–1639. doi:
10.1021/ac60214a047.

Schedl, M. (2017) ‘Investigating country-specific music preferences and music
recommendation algorithms with the LFM-1b dataset’, International Journal of
Multimedia Information Retrieval. Springer London, 6(1), pp. 71–84. doi:
10.1007/s13735-017-0118-y.

Schedl, M., Knees, P. and Gouyon, F. (2017) ‘New Paths in Music Recommender Systems
Research’, in Proceedings of the Eleventh ACM Conference on Recommender Systems.
New York, NY, USA: ACM, pp. 392–393. doi: 10.1145/3109859.3109934.

Schindler, A., Lidy, T. and Böck, S. (2020) ‘Deep Learning for MIR Tutorial’. doi:
https://doi.org/10.48550/arXiv.2001.05266.

210

Schluter, J. and Bock, S. (2014) ‘Improved musical onset detection with Convolutional Neural
Networks’, in 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, pp. 6979–6983. doi: 10.1109/ICASSP.2014.6854953.

Schlüter, J. and Böck, S. (2013) ‘Musical onset detection with convolutional neural networks’,
in 6th international workshop on machine learning and music (MML), Prague, Czech
Republic.

Schmid, M., Rath, D. and Diebold, U. (2022) ‘Why and How Savitzky–Golay Filters Should Be
Replaced’, ACS Measurement Science Au, 2(2), pp. 185–196. doi:
10.1021/acsmeasuresciau.1c00054.

Schramm, R., Jung, C. R. and Miranda, E. R. (2015) ‘Dynamic Time Warping for Music
Conducting Gestures Evaluation’, IEEE Transactions on Multimedia, 17(2), pp. 243–255.
doi: 10.1109/TMM.2014.2377553.

Schramm, R., Nunes, H. D. S. and Jung, C. R. (2015) ‘Automatic solfège assessment’,
Proceedings of the 16th International Society for Music Information Retrieval Conference
(ISMIR 2015), pp. 183–189.

Schramm, R., Nunes, H. D. S. and Jung, C. R. (2016) ‘Audiovisual Tool for Solfège Assessment’,
ACM Transactions on Multimedia Computing, Communications, and Applications, 13(1),
pp. 1–21. doi: 10.1145/3007194.

Schreiber, H. and Müller, M. (2018a) ‘A crowdsourced experiment for tempo estimation of
electronic dance music’, in Proceedings of the 19th International Society for Music
Information Retrieval Conference, ISMIR 2018, pp. 409–415.

Schreiber, H. and Müller, M. (2018b) ‘A single-step approach to musical tempo estimation
using a convolutional neural network’, Proceedings of the 19th International Society for
Music Information Retrieval Conference, ISMIR 2018, pp. 98–105.

Schreiber, H., Urbano, J. and Müller, M. (2020) ‘Music Tempo Estimation: Are We Done Yet?’,
in Transactions of the International Society for Music Information Retrieval, p. 111. doi:
10.5334/tismir.43.

Schroeder, M. R. (1968) ‘Period Histogram and Product Spectrum: New Methods for
Fundamental-Frequency Measurement’, The Journal of the Acoustical Society of
America, 43(4), pp. 829–834. doi: 10.1121/1.1910902.

Schwarz, D., Orio, N. and Schnell, N. (2004) ‘Robust Polyphonic Midi Score Following with
Hidden Markov Models’, International Computer Music Conference, pp. 1–4. Available
at: https://hal.archives-ouvertes.fr/hal-
01161328/%5Cnhttp://recherche.ircam.fr/anasyn/schwarz/publications/icmc2004/sco
fo-midi.pdf.

Seashore, C. E. (1967) Psychology of Music. New York: Dover. Available at:
http://store.doverpublications.com/0486218511.html.

211

Seaton, R., Pim, D. and Sharp, D. (2013) ‘Pitch Drift in A Cappella Choral Singing’, in Institute
of Acoustics Annual Spring Conference. Nottingham, pp. 358–364.

Sebastian, B., Krebs, F. and Schedl, M. (2012) ‘Evaluating the online capabilities of onset
detection methods’, in 13th International Society for Music Information Retrieval
Conference (ISMIR), pp. 49–54.

Serra, X. and Smith, J. (1990) ‘Spectral Modeling Synthesis: A Sound Analysis/Synthesis System
Based on a Deterministic Plus Stochastic Decomposition’, Computer Music Journal,
14(4), p. 12. doi: 10.2307/3680788.

Shetty, S. S. and R, R. S. (2014) ‘Audio Noise Removal – The State of the Art’, International
Journal of Computational Engineering Research (IJCER), 04(12), pp. 2250–3005.
Available at: www.ijceronline.com.

‘Sibelius’ (no date). Available at: https://www.avid.com/de/sibelius.

Simpson, R. E. (1987) Introductory Electronics for Scientists and Engineers. Allyn and Bacon
(Introductory Electronics for Scientists and Engineers). Available at:
https://books.google.ie/books?id=OjMfAQAAIAAJ.

Smith, S. W. (1999) ‘Moving Average Filters’, in The Scientist & Engineer’s Guide to Digital
Signal Processing. Second. California Technical Publishing, pp. 277–284. Available at:
https://www.analog.com/media/en/technical-documentation/dsp-
book/dsp_book_Ch15.pdf.

So, Y., Jia, J. and Cai, L. (2012) ‘Analysis and Improvement of Auto-correlation Pitch Extraction
Algorithm Based on Candidate Set’, in Lecture Notes in Electrical Engineering.
Berlin/Heidelberg, Germany: Springer, pp. 697–702. doi: 10.1007/978-3-642-25792-
6_106.

Stables, R., Athwal, C. and Bullock, J. (2011) ‘Towards a model for the humanisation of pitch
drift in singing voice synthesis’, in International Computer Music Conference, pp. 555–
558. doi: 10.1021/jp076092x.

Stöter, F.-R. et al. (2019) ‘Open-Unmix - A Reference Implementation for Music Source
Separation’, Journal of Open Source Software, 4(41), p. 1667. doi: 10.21105/joss.01667.

Sundberg, J. (1972) ‘Pitch of synthetic sung vowels’, STL-QPSR, 13(1), pp. 34–44.

Sundberg, J. (1979) ‘Maximum speed of pitch changes in singers and untrained subjects’,
Journal of Phonetics. Elsevier Masson SAS, 7(2), pp. 71–79. doi: 10.1016/S0095-
4470(19)31040-X.

Sundberg, J. (1992) ‘Breathing behavior during singing’, STL-QPSR, 33(1), pp. 49–64. Available
at: http://www.speech.kth.se/qpsr/.

Sundberg, J. (1994) ‘Acoustic and psychoacoustic aspects of vocal vibrato’, StL-QPSR, 35(2–3),
pp. 45–68.

212

Sundberg, J. (2011) ‘Some observations on operatic singer’s intonation’, Interdisciplinary
Studies in Musicology, 10, pp. 47–60.

Sundberg, J. (2013) ‘Perception of Singing’, in The Psychology of Music. Third Edit. Elsevier, pp.
69–105. doi: 10.1016/B978-0-12-381460-9.00003-1.

Sundberg, J. and Bauer-Huppmann, J. (2007) ‘When Does a Sung Tone Start?’, Journal of Voice,
21(3), pp. 285–293. doi: 10.1016/j.jvoice.2006.01.003.

Sundberg, J. and La, F. (2011) ‘Is Intonation Expressive?’, in 40th Annual Symposium on Care
of the Professional Voice. Philadelphia.

Sundberg, J., Lã, F. M. B. and Himonides, E. (2013) ‘Intonation and Expressivity: A Single Case
Study of Classical Western Singing’, Journal of Voice. Elsevier Ltd, 27(3), pp. 391.e1-
391.e8. doi: 10.1016/j.jvoice.2012.11.009.

Sundberg, J., Prame, E. and Iwarsson, J. (1995) ‘Replicability and accuracy of pitch patterns in
professional singers’, STL-QPSR, 36(2–3), pp. 51–62.

Talkin, D. (1995) ‘A Robust Algorithm for Pitch Tracking (RAPT)’, in Kleijn, W. B. and Paliwal, K.
K. (eds) Speech Coding and Synthesis,. Amsterdam, Netherlands: Elsevier, pp. 495–518.

Tardón, L. J. et al. (2018) ‘Music Learning: Automatic Music Composition and Singing Voice
Assessment’, in Springer Handbook of Systematic Musicology. Springer, Berlin,
Heidelberg, pp. 873–883. doi: 10.1007/978-3-662-55004-5_42.

Team, C. (COmputational analysis of Fla. music) (2013) ‘TONAS: a dataset of flamenco a
cappella sung melodies with corresponding manual transcriptions’. doi:
10.5281/ZENODO.1290722.

Technologies, A. A. (2022) ‘Auto-tune’. Available at:
https://www.antarestech.com/%0Amediafiles/documentation_records/10_%0AAuto-
Tune_Live_Manual.pdf.

Toh, C. C., Zhang, B. and Wang, Y. (2008) ‘Multiple-feature fusion based onset detection for
solo singing voice’, ISMIR 2008 - 9th International Conference on Music Information
Retrieval, (January 2008), pp. 515–520.

Tong Zhang (2003) ‘Automatic singer identification’, in 2003 International Conference on
Multimedia and Expo. ICME ’03. Proceedings (Cat. No.03TH8698). IEEE, pp. I–33. doi:
10.1109/ICME.2003.1220847.

Valero-Mas, J. J., Salamon, J. and Gómez, E. (2015) ‘Analyzing the influence of pitch
quantization and note segmentation on singing voice alignment in the context of audio-
based Query-by-Humming’, Proceedings of the 12th International Conference in Sound
and Music Computing, SMC 2015, pp. 371–378. Available at:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84988521905&partnerID=40&md5=16afa9d1e013a793825160c196042898.

213

Villavicencio, F. et al. (2015) Efficient Pitch Estimation on Natural Opera-Singing by a Spectral
Correlation based Strategy, IPSJ SIG Technical Report. doi: 10.13140/RG.2.1.2694.5362.

Virtanen, P. et al. (2020) ‘SciPy 1.0: fundamental algorithms for scientific computing in
Python’, Nature Methods, 17(3), pp. 261–272. doi: 10.1038/s41592-019-0686-2.

Wager, S. et al. (2020) ‘Deep Autotuner: A Pitch Correcting Network for Singing Performances’,
in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, pp. 246–250. doi: 10.1109/ICASSP40776.2020.9054308.

Wei-Ho Tsai and Hsin-Min Wang (2006) ‘Automatic singer recognition of popular music
recordings via estimation and modeling of solo vocal signals’, IEEE Transactions on
Audio, Speech and Language Processing, 14(1), pp. 330–341. doi:
10.1109/TSA.2005.854091.

Wei Chu and Alwan, A. (2009) ‘Reducing F0 Frame Error of F0 tracking algorithms under noisy
conditions with an unvoiced/voiced classification frontend’, in 2009 IEEE International
Conference on Acoustics, Speech and Signal Processing. IEEE, pp. 3969–3972. doi:
10.1109/ICASSP.2009.4960497.

Weis, C., Schreiber, H. and Muller, M. (2020) ‘Local Key Estimation in Music Recordings: A Case
Study Across Songs, Versions, and Annotators’, IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 28, pp. 2919–2932. doi:
10.1109/TASLP.2020.3030485.

Welch, G. F. (1979) ‘Vocal range and poor pitch singing’, Psychology of Music, 7(2), pp. 13–31.
doi: 10.1177/030573567972002.

Welch, G. F. (2021) ‘Kalman Filter’, in Computer Vision. Cham: Springer International
Publishing, pp. 1–3. doi: 10.1007/978-3-030-03243-2_716-1.

Wen, Q. et al. (2020) ‘Fast RobustSTL: Efficient and Robust Seasonal-Trend Decomposition for
Time Series with Complex Patterns’, in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. Virtual Event, CA, USA:
ACM, pp. 2203–2213. doi: 10.1145/3394486.3403271.

Wilkins, J. et al. (2018) ‘VocalSet: A Singing Voice Dataset’, ISMIR, pp. 468–472. doi:
https://doi.org/10.5281/zenodo.1193957.

Wu, Y. D. (2013) ‘A New Similarity Measurement of Pitch Contour for Analyzing 20th- and 21st-
Century Music: The Minimally Divergent Contour Network’, Indiana Theory Review,
31(1), pp. 5–51. Available at: http://www.jstor.org/stable/10.2979/inditheorevi.31.1-
2.0005.

Yang, Y.-Y. et al. (2021) ‘TorchAudio: Building Blocks for Audio and Speech Processing’, arXiv
preprint arXiv:2110.15018.

Yu, Y. et al. (2016) ‘Performance scoring of singing voice’, Proceedings of 2015 International

214

Conference on Asian Language Processing, IALP 2015, pp. 119–122. doi:
10.1109/IALP.2015.7451546.

Yu, Y. et al. (2020) ‘Deep attention based music genre classification’, Neurocomputing. Elsevier
B.V., 372, pp. 84–91. doi: 10.1016/j.neucom.2019.09.054.

Zhang, J. and Bryan-Kinns, N. (2022) ‘QiaoLe: Accessing Traditional Chinese Musical
Instruments in VR’, in 2022 IEEE Conference on Virtual Reality and 3D User Interfaces
Abstracts and Workshops (VRW). IEEE, pp. 357–362. doi:
10.1109/VRW55335.2022.00080.

Zhao, X., O’Shaughnessy, D. and Nguyen, M. Q. (2007) ‘A processing method for pitch
smoothing based on autocorrelation and cepstral F0 detection approaches’, Conference
Proceedings of the International Symposium on Signals, Systems and Electronics, pp. 59–
62. doi: 10.1109/ISSSE.2007.4294413.

Zhou, Y. et al. (2020) ‘Mandarin Singing Synthesis Based on Generative Adversarial Network’,
in 2020 IEEE 3rd International Conference on Information Communication and Signal
Processing (ICICSP). IEEE, pp. 139–142. doi: 10.1109/ICICSP50920.2020.9232118.

Zolzer, U., Sankarababu, S. V. and Moller, S. (2012) ‘PLL-based Pitch Detection and Tracking
for Audio Signals’, in 2012 Eighth International Conference on Intelligent Information
Hiding and Multimedia Signal Processing. IEEE, pp. 428–431. doi: 10.1109/IIH-
MSP.2012.110.

	List of Figures
	List of Tables
	Acknowledgements
	Abstract
	Chapter 1 Introduction
	1.1 Motivation
	1.2 An overview of the studies on music tools
	1.3 Key common steps in musical signal processing
	1.3.1 Input signal
	1.3.2 Pre-processing
	1.3.3 Spectrogram extraction
	1.3.4 Post-processing
	1.3.5 Features Extraction
	1.3.6 Processing extracted features

	1.4 Thesis objectives
	1.4.1 Investigating real-time singing pitch detector algorithms
	1.4.2 Real-time smoothing pitch contours generated from singing signals
	1.4.3 Real-time onset, offset, and transition extraction from singing signals
	1.4.4 Generating an annotated singing dataset to analyse professional singers’ performances
	1.4.5 Calculating notes’ pitch frequencies and duration according to singing technique and their positions in a piece of music

	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.5 Chapters summary

	Chapter 2 Background and Applications
	2.1 Features affecting the singing waveform
	2.1.1 Musical instruments are usually tuned
	2.1.2 Vibration
	2.1.3 Pitch drift
	2.1.4 Transition between notes
	2.1.5 Vocal system

	2.2 Literature review
	2.2.1 Investigating real-time singing pitch detector algorithms objective
	2.2.2 Real-time smoothing pitch contours generated from singing signals objective
	2.2.2.1 Considerations for smoothing pitch contour of singing signals

	2.2.3 Real-time onset, offset, and transition extraction from singing signals objective
	2.2.4 Generating an annotated singing dataset objective
	2.2.4.1 A Review of Published Vocal Datasets
	2.2.4.2 A Review on Annotating Methods
	2.2.4.3 Manual Annotation
	2.2.4.4 Automatic Annotation
	2.2.4.5 Semi-Automatic Annotation

	2.2.5 Calculating notes’ pitch frequencies and duration according to singing technique and their positions in a piece of music objective

	2.3 Applications
	2.3.1 Aligning sung notes with ground truth
	2.3.1.1 DTW (Dynamic Time Warping)
	2.3.1.2 HMM (Hidden Markov Model)
	2.3.1.3 Viterbi algorithm

	2.3.2 Score following
	2.3.3 Singing Assessment Systems
	2.3.3.1 Entertainment
	2.3.3.2 Education
	2.3.3.3 Sight singing

	2.3.4 Automatic tuning of singing
	2.3.5 Singing imitation synthesis
	2.3.6 Automatic singing transcription

	2.4 Conclusion

	Chapter 3 Pitch detection from singing signals
	3.1 Methodology
	3.1.1 Dataset
	3.1.2 Tools

	3.2 Pitch detection algorithms
	3.3 Results
	3.4 Conclusion

	Chapter 4 An investigation into several real-time pitch detection algorithms in singing signals
	4.1 Materials and Methods
	4.1.1 Pitch detection algorithms
	4.1.2 Generating a Dataset
	4.1.3 Post-processing
	4.1.3.1 Smart-Median
	4.1.3.2 Shifting

	4.1.4 The difference between estimated pitch contour and ground truth
	4.1.5 Labelling estimated pitch contours

	4.2 Results and Discussions
	4.2.1 Correctness
	4.2.1.1 The correctness of both fast and slow performance
	4.2.1.2 The correctness of fast performance
	4.2.1.3 The correctness of slow performance

	4.2.2 Delay
	4.2.2.1 Delay in both fast and slow performances

	4.2.3 Evaluating the accuracy of the estimated F0
	4.2.3.1 Fixed distance around ground truth F0
	4.2.3.2 The standard deviation of differences
	4.2.3.3 Percentage
	4.2.3.4 A discussion of the three methods

	4.3 Conclusions

	Chapter 5 Pitch contour smoother
	5.1 Current Contour Smoother Algorithms
	5.1.1 Gaussian Filter
	5.1.2 Savitzky–Golay Filter
	5.1.3 Exponential Filter
	5.1.4 Window-Based Finite Impulse Response Filter
	5.1.4.1 Rectangular Window
	5.1.4.2 Hanning Window
	5.1.4.3 Hamming Window
	5.1.4.4 Bartlett Window
	5.1.4.5 Blackman Window

	5.1.5 Direct Spectral Filter
	5.1.6 Polynomial
	5.1.7 Spline
	5.1.8 Binner
	5.1.9 Locally Weighted Scatterplot Smoothing (LOWESS) Smoother
	5.1.10 Seasonal Decomposition
	5.1.11 Kalman Filter
	5.1.12 Moving Average
	5.1.13 Median Filter
	5.1.14 Okada Filter
	5.1.15 Jlassi Filter

	1.1
	5.2 Materials and Methods
	5.2.1 Dataset
	5.2.2 Ground Truth
	5.2.3 Pitch Detection Algorithms to Generate Pitch Contours
	5.2.4 Evaluation Method
	5.2.4.1 R-Squared (R2)
	5.2.4.2 Root-Mean-Square Error (RMSE)
	5.2.4.3 Mean-Absolute-Error (MAE)
	5.2.4.4 F0 Frame Error (FFE)

	5.3 Smart-Median: A Real-Time Pitch Contour Smoother Algorithm
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	1.1.1
	5.3.1 Smart-Median Algorithm

	5.4 Results
	5.5 Discussion
	5.5.1 Comparing the Results of Each Metric
	5.5.2 Comparing Moving Average, Median, Okada, Jlassi, and Smart-Median
	5.5.3 Accuracy of the Contour Smoother Algorithms

	5.6 Conclusions

	Chapter 6 Onset and Offset detection
	6.1 Materials and Methods
	6.1.1 Datasets
	6.1.1.1 Erkomaishvili Dataset
	6.1.1.2 Note-Level Singing Voice Dataset (SVNote1)

	6.1.2 State of-the-Art Onset Detection Algorithms
	6.1.2.1 Librosa
	6.1.2.2 Madmom
	6.1.2.3 Aubio
	6.1.2.4 Essentia

	6.1.3 The Methods for Evaluation

	6.2 The Proposed Algorithm
	6.2.1 Estimating F0s
	6.2.2 Stretching Pitch Contour
	6.2.3 Calculating the Stretched Pitch Contour Slopes
	6.2.4 Calculating the Summation of Slopes in the following Line
	6.2.5 Calculating the Mean of the Local Slopes
	6.2.6 Calculating the Standard Deviation of the Local Slopes
	6.2.7 Comparing the Current Slope with the Mean and Standard Deviation

	6.3 Results and Discussion
	6.4 Conclusions

	Chapter 7 Generating an annotated singing dataset
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	7.1 Steps to Generate the Dataset
	7.1.1 Estimating Fundamental Frequencies
	7.1.2 Detecting Onsets, Offsets, and Transitions
	1.1.1
	7.1.3 Extracting Notes Features
	7.1.4 Combining Extracted Notes with Ground Truth Scores
	1.1.1
	7.1.5 Checking Annotation Correctness

	7.2 Dataset Description
	7.2.1 Raw Directories
	7.2.2 Extended Directories

	7.3 Summary of the generated data
	1.1
	7.4 Comparing the Four Methods of Selecting the Positions of Onset, Offset, and Transition
	7.5 Conclusions

	Chapter 8 Models to estimate the pitch frequency and duration ranges for an acceptable note in singing
	8.1 Materials and Methods
	8.1.1 Dataset
	8.1.2 Variables
	8.1.3 Methods of evaluations
	8.1.4 Estimating the range of a note’s duration and F0 sung by trained-professional singers
	8.1.5 Model validation

	8.2 Results
	8.2.1 Estimating the effect of the variables on deviation from ground truth F0
	8.2.2 Estimating the effect of the variables on the deviation from the ground truth duration

	1.1
	1.1
	1.1
	1.1
	1.1
	1.1
	8.3 Discussion
	8.3.1 An illustration to show how to calculate the expected MIDI pitch code and duration of notes
	1.1.1
	8.3.2 The effect of rest before or after a note on the deviation of its performed F0 and duration from the ground truth
	8.3.3 The effect of the ground truth MIDI pitch code on the deviations of its performed F0 and duration from ground truth
	8.3.4 The effect of the ground truth note’s duration on the deviations of its performed F0 and duration from the ground truth
	8.3.5 The effect of the pitch interval to the previous and following notes on the deviations of performed F0 and duration from the ground truth
	8.3.6 The effect of the singing techniques on the deviation of the performed F0 and duration from the ground truth
	8.3.7 The effect of the note’s repetition on the performed F0 deviation from the ground truth pitch (pitch drift)

	8.4 Conclusions

	Chapter 9 Conclusion and Future work
	1.1
	1.1
	9.1 Conclusion and future work of investigating real-time singing pitch detector algorithms study
	9.2 Conclusion and future work of real-time smoothing pitch contours generated from singing signals study
	9.3 Conclusion and future work of real-time onset, offset, and transition extraction from singing signals study
	9.4 Conclusion and future work of generating an annotated singing dataset
	1.1
	9.5 Conclusion and future work of calculating notes’ pitch frequencies and duration according to singing technique and their positions in a piece of music study

	Appendix
	References

