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Abstract 

Singing signals are one of the input data that computer systems need to analyse, and 

singing is part of all the cultures in the world. However, although there have been several 

studies on audio signal processing during the last three decades, it is still an active research 

area because most of the available algorithms in the literature require improvement due to 

the complexity of audio/music signals. More efforts are needed for analysing sounds/music in 

a real-time environment since the algorithms should work only on the past data, while in an 

offline system, all the required data are available. In addition, the complexity of the data will 

be increased if the audio signals come from singing due to the unique features of singing 

signals (such as vocal system, vibration, pitch drift, and tuning approach) that make the signals 

different and more complicated than those from an instrument.  

This thesis is mainly focused on analysing singing signals and better understanding how 

trained- professional singers sing the pitch frequency and duration of the notes according to 

their position in a piece of music and the singing technique applied. To do this, it is discovered 

that by incorporating singing features, such as gender and BPM, a real-time pitch detection 

algorithm can be found to estimate fundamental frequencies with fewer errors. In addition, 

two novel algorithms were proposed, one for smoothing pitch contours and another for 

estimating onset, offset, and the transition between notes. These two algorithms showed 

better results as compared to several other state-of-the-art algorithms. Moreover, a new 

vocal dataset that included several annotations for 2688 singing files was published. Finally, 

this thesis presents two models for calculating pitches and the duration of notes according to 

their positions in a piece of music. In conclusion, optimizing results for pitch-oriented Music 

Information Retrieval (MIR) algorithms necessitates adapting/selecting them based on the 

unique characteristics of the signals. Achieving a universal algorithm that performs 

exceptionally well on all data types remains a formidable challenge given the current state of 

technology. 

 



 

 

 

 

 

 

 

 

Chapter 1                                                 
Introduction 

  

This chapter provides the objectives of this PhD study, a brief literature 

review, and the structure of the thesis. Some texts of this chapter come from one 

of our publications listed in the following. 

• Faghih, Behnam & Timoney, Joseph, “Considerations for the Next Generation 
of Singing Tutor Systems”. AES 146th International Convention, Dublin, 
Ireland. 
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1.1 Motivation 

Since approximately 25 years ago, during my music classes where I learned to play the 

Santour, an Iranian instrument, I became fascinated by the variations in musical 

performances. Despite two musicians playing the same piece at the same tempo, their 

interpretations differed significantly. Initially, I pondered the influence of note loudness on 

these variations.  

However, it became evident that loudness was not the sole factor modified by musicians 

during their performances. I discovered that they also altered the duration of notes without 

affecting the music's rhythm or meter. Additionally, I speculated that musicians, particularly 

in singing and with instruments capable of altering pitch frequency, might also manipulate 

notes’ pitches. Moreover, I believed these changes were influenced by the position of the 

notes within a musical composition and the musicians' emotional state during the 

performance. This curiosity consumed me for many years as I sought to understand how 

trained professionals adjust pitch frequency, duration, and loudness in relation to note 

position, music genre, technique, instruments, and emotion. Naturally, I recognized that one 

study alone could not comprehensively answer this complex question.  

To illustrate the problem, consider that a singer wants to sing the music score provided 

in Figure 1-1.  

 
Figure 1-1. Musical scores, as an example of notes, that should be sung by a singer 

The MIDI pitch code representation of the notes in Figure 1-1 is provided in Table 1-1. 

Table 1-1. The corresponding MIDI pitch code of the notes in Figure 1-1. 

Note MIDI pitch code 

C4 60 

E4 64 

G4 67 
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In addition, since the BPM of the music in Figure 1-1 is 60, the duration of the eighth and 

quarter notes are 0.5 and 1 second, respectively. Thus, the black lines in Figure 1-2 depict a 

visual representation of the notes.  

 
Figure 1-2. A diagram of a representation of the notes in Figure 1-1. The black lines are the theoretical MIDI 

pitch code and duration of the notes, while the red lines are a hypothetical performance of a singer. 

As seen in Figure 1-2, the singer's performance, the red lines, may not fully align with 

the corresponding ground truth values, the black lines. Thus, the question is which of the notes 

sung by the singer in Figure 1-2 have a correct pitch and duration as compared to trained-

professional singers. In addition, C4, as an example, in Figure 1-1, is repeated three times: at 

the beginning, middle, and end of the music. That brings another question: whether or not 

the position of a note in a piece of music affects how trained-professional singers perform the 

note’s pitch and duration. 

Consequently, during my master's thesis at Shiraz University, I focused on identifying 

the acceptable ranges of note durations as perceived by expert musicians. Building upon this 

research, my doctoral thesis aimed to delve deeper into how musicians manipulate note pitch 

and duration based on their position within a musical piece. This endeavour brought me closer 

to unravelling the answer I had sought for so long.  

To accomplish this, I chose to analyse singing signals, as singers can modify pitch 

frequencies, note durations, and loudness, unlike certain instruments like the piano, where 
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the player lacks control over pitch frequency during a performance. In addition, singing is 

universal, as every culture has activities associated with music and song.  

1.2 An overview of the studies on music tools 

This section aims to provide a comprehensive overview of the tools and studies related 

to music technology, offering a broader perspective on this field of study. 

Because of the widespread use of music in daily human life worldwide, researchers and 

industries are working on developing different software/tools related to music. The purposes 

of these tools are varied. The most common ones can be tools for listening to music, such as 

Spotify 1, YouTube Music 2, Apple Music 3, SoundCloud 4, and Amazon Music 5. Some other ones 

for writing music notations include Finale 6, Sibelius 7, MuseScore 8, and ABC notation tools9. 

Regarding more advanced musical signal processing, the following list of applications, but not 

limited to them, can be considered.  

• Source separation (Défossez et al., 2019; Stöter et al., 2019; Hennequin et al., 

2020) 

• Audio to music notation convertor (Krige and Niesler, 2006; Ryynänen, 2006, 

2008; Molina et al., 2014; Dressler, 2016; McLeod et al., 2017; Pesek, Leonardis 

and Marolt, 2017; Benetos et al., 2019; Liu and Benetos, 2021) 

• Noise removal (Berger, Coifman and Goldberg, 1994; Shetty and R, 2014; 

Abouzid et al., 2019) 

• Beat tracking (Goto, 2001; McKinney et al., 2007; Al-Hussaini et al., 2018; Chuang 

and Su, 2020) 

• Music tempo estimation (Schreiber and Müller, 2018a, 2018b; Schreiber, Urbano 

and Müller, 2020) 

 
1 https://www.spotify.com/  
2 https://music.youtube.com/  
3 https://music.apple.com/  
4 https://soundcloud.com/  
5 https://music.amazon.com/  
6 https://www.finalemusic.com/  
7 https://www.avid.com/sibelius  
8 https://musescore.org/  
9 https://abcnotation.com/software  

https://www.spotify.com/
https://music.youtube.com/
https://music.apple.com/
https://soundcloud.com/
https://music.amazon.com/
https://www.finalemusic.com/
https://www.avid.com/sibelius
https://musescore.org/
https://abcnotation.com/software
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• Key detection (Weis, Schreiber and Muller, 2020) 

• Query by humming like Shazam 1 and Shortcut for Google Sound Search 2 

• Music genre classification (Karatana and Yildiz, 2017; Pelchat and Gelowitz, 2020; 

Yu et al., 2020) 

• Musical instrument classification (Bhalke, Rao and Bormane, 2016; Racharla et 

al., 2020) 

• Score following (Cont, 2010; Nakamura, Nakamura and Sagayama, 2013, 2016; 

Dorfer, Arzt and Widmer, 2017) 

• Optical Music Recognition (OMR) like SmartScore 3 and Scan-Score 4 

• Music recommender systems (Schedl, 2017; Schedl, Knees and Gouyon, 2017; 

Baracskay et al., 2022) 

• Automatic music generators like SoundRaw 5 and AmperMusic 6 

• Virtual Reality Instruments (Boem and Iwata, 2018; Zhang and Bryan-Kinns, 

2022) 

• Music education (Creech, 2020; Bharti, Singh and Malik, 2022) 

Some of the studies are mainly on singing processing or analysis. The research and tools 

on singing are in varied areas, as listed in the following, but not limited. 

• Pitch correction tools like Auto-Tune Pro 7, Waves Tune Real-Time 8, Melodyne9, 

and Logic Pro 10 

• Separating vocal from a piece of music (Rafii and Pardo, 2012, 2013; Cano et al., 

2019) 

• Singing education (Howard et al., 2004; Nakano, Goto and Hiraga, 2006, 2007; 

Hoppe, Sadakata and Desain, 2006; Lal, 2006; Mayor, Bonada and Loscos, 2006; 

Mayor, Oscar., Bonada, Jordi., Loscos, 2009; Cano, Dittmar and Grollmisch, 2011; 

 
1 https://www.shazam.com/  
2 https://play.google.com/store/apps/details?id=com.rocketsauce83.musicsearch&gl=IE  
3 https://www.musitek.com/  
4 https://scan-score.com/  
5 https://soundraw.io/  
6 https://www.ampermusic.com/  
7 https://www.antarestech.com/product/auto-tune-pro/  
8 https://www.waves.com/plugins/waves-tune-real-time#presenting-waves-tune-real-time  
9 https://www.celemony.com/en/melodyne/what-is-melodyne  
10 https://www.apple.com/uk/logic-pro/  

https://www.shazam.com/
https://play.google.com/store/apps/details?id=com.rocketsauce83.musicsearch&gl=IE
https://www.musitek.com/
https://scan-score.com/
https://soundraw.io/
https://www.ampermusic.com/
https://www.antarestech.com/product/auto-tune-pro/
https://www.waves.com/plugins/waves-tune-real-time#presenting-waves-tune-real-time
https://www.celemony.com/en/melodyne/what-is-melodyne
https://www.apple.com/uk/logic-pro/
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Molina, 2012; Abeßer et al., 2013; Molina et al., 2013; Lin et al., 2014; Schramm, 

Nunes and Jung, 2015, 2016; Henry, 2015; Yu et al., 2016; Tardón et al., 2018; 

Gupta, Li and Wang, 2018; Luo et al., 2018), Sing & See 1 

• Singer recognition (Tong Zhang, 2003; Wei-Ho Tsai and Hsin-Min Wang, 2006; Li 

and Li, 2018) 

• Entertainment such as (Lal, 2006), Singstar 2, and Ultrastar 3 

1.3 Key common steps in musical signal processing 

There are some typical steps in most musical signal processing applications that this 

study will follow the same approach, as depicted in Figure 1-3.  

 
Figure 1-3. The fundamental steps of musical signal processing 

1.3.1 Input signal 

First, the input signals can directly come from a microphone (real-time) or a recorded 

file (offline). The input signal is usually raw data that need to be processed, similar to Figure 

1-4.  

 
1 http://www.singandsee.com 
2 https://www.singstar.com 
3 http://ultrastardx.sourceforge.net/ 

http://www.singandsee.com/
https://www.singstar.com/
http://ultrastardx.sourceforge.net/
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Figure 1-4 Raw audio input signals in time domain representation 

1.3.2 Pre-processing 

The input signals usually include some unnecessary data, such as noise or too high or 

low amplitude, that need to be altered in the second step, denoted as pre-processing in Figure 

1-3. This thesis mainly analyses singing signals; thus, the source of the signals that will be 

processed in each step in Figure 1-3 will come from singing.  

1.3.3 Spectrogram extraction 

The sound spectrogram will be computed in the third step, usually by the Short-Time 

Fourier Transform, as shown in Figure 1-5(a). According to the applications, some layer(s) of 

the spectrogram will be used. One of the most crucial spectrogram layers of pitch frequencies 

is the fundamental frequency (F0), which is usually considered the layer to refer to the pitch 

frequency of the sound.  

The F0 is the lowest frequency component of a periodic waveform. In music, the 

fundamental frequency represents the perceived lowest pitch of a note, corresponding to the 

lowest partial, as shown in Figure 1-5(b). The usage of the words “pitch” and “F0” is needed 

to be clarified. The word “pitch” usually refers to how the human brain perceives sounds, 

while the F0 refers to the lowest layer, the primary layer, of a sound that is directly related to 

human pitch perception. Thus, although F0 and pitch are not exactly the same, in this thesis, 

the difference between them was not counted, and these two words are considered 
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equivalent. The function of a pitch detection algorithm is to identify the frequency of F0 when 

it exists in the signal and otherwise flag that it is not present.  
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Figure 1-5 Different harmonies of the input signal, from Figure 1-4, represented in a pitch-frequency domain 
(spectrogram ). (a) includes all harmonies in the input signal, (b) is the lowest harmony called fundamental 

frequency (F0). 

1.3.4 Post-processing 

There can be some errors in the estimated F0s because there are many harmonics 

besides the fundamental frequency in musical sounds like the human voice, as shown in Figure 

1-5(a), whose energies may be greater than the fundamental frequency. In these cases, pitch 

detection algorithms are known to have difficulties and instead return an incorrect frequency 

value as F0. This problem is more common in real-time algorithms that detect a pitch contour. 

Therefore, the extracted layers usually need some post-processing, as shown in Figure 

1-6(a), such as pitch contour smoothing, as shown in Figure 1-6(b). 
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Figure 1-6 An example of post-processing in estimated F0s.(a) shows the output of a pitch estimator algorithm 
that included several errors. (b) shows the result of a pitch contour smoother on altering the errors in (a) 

1.3.5 Features Extraction 

The fifth step is extracting the required features, such as musical notes, as shown in 

Figure 1-7.  
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Figure 1-7 Extracted notes from a pitch contour. The vertical lines show onsets, offsets, and transitions between 
notes. 
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1.3.6 Processing extracted features 

The last step is processing/analysing the extracted musical features from the previous 

step. The analysis that this thesis will do is with respect to the behaviour of trained-

professional singers in changing notes’ pitches and frequencies according to their positions in 

a piece of music. For example, if the music score is similar to Figure 1-8, then the pitch 

frequencies and duration of the notes, in theory, are shown in Table 1-2. Nevertheless, 

humans cannot play the notes exactly in these pitch frequencies and duration but in ranges of 

pitch frequencies and durations. But the question is what are the ranges within which the 

trained-professional singers would sing the notes? Another question is whether trained-

professional singers have different behaviours in singing the same note when its position in a 

piece of music changes. For example, the note C4 in Figure 1-8 appears several times; thus, 

will a trained-professional singer change the pitch and duration of C4 according to its position 

in the music; if so, how? This thesis tries to answer these questions. 

  
Figure 1-8 An example of a music score 

Table 1-2 The theoretically pitch frequency and duration of each note in the example in Figure 1-8 

Note Pitch frequency (in 
Hertz) Duration (in second) 

C4 261.63 0.5 

E4 329.63 0.5 

C4 261.63 0.5 

E4 329.63 0.5 

G4 392.00 0.5 

G4 392.00 1 

C4 261.63 0.5 

 

Therefore, for analysing the singing signals to answer my question regarding how singers 

would alter the pitch frequencies and duration of notes according to their positions in a piece 

of music, I needed to do all these steps to extract the notes’ information to analyse them. At 

the beginning of my study, I found several algorithms for each step; thus, I had a plan to spend 
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most of my study analysing singers’ behaviours in changing pitches, frequencies, and loudness. 

However, after implementing some of the available algorithms, I realized that they were not 

error-free, and I could not trust their results. Thus, I tried to design my own algorithms to 

improve the results.  

1.4 Thesis objectives 

This dissertation includes five principal objectives listed in the following.  

1.4.1 Investigating real-time singing pitch detector algorithms 

A principal operation for analysing musical sounds is usually detecting the pitches in the 

audio waveform because most subsequent analyses are based on identifying the correct notes 

and their pitches. Therefore, the purpose of this objective is to evaluate several real-time pitch 

detector algorithms to find the best ones according to the features of the singing signals, such 

as the singer’s gender and the speed of the performance. Chapter 3 concludes with two 

reliable offline pitch detector algorithms to be used in other chapters. Then, Chapter 4 

compares the accuracy of several real-time pitch detector algorithms to achieve this objective. 

1.4.2 Real-time smoothing pitch contours generated from singing signals 

I realized that the pitch detector algorithms produce some errors when estimating the 

F0 of singing signals, especially in real-time environments. Thus, these errors needed to be 

altered. In addition, I realized that the currently available contour smoothing algorithms have 

some difficulties in smoothing all the errors. Therefore, this objective aims to introduce a 

novel real-time algorithm to smooth pitch contours generated by pitch detection algorithms 

from singing signals. This objective will be achieved in Chapter 5. 

1.4.3 Real-time onset, offset, and transition extraction from singing signals 

Similarly, because of the limitations in the state-of-the-art algorithms in onset detection 

in real-time singing, this goal is to design a new real-time algorithm for extracting notes from 

a pitch contour. Chapter 6 discusses this objective in detail. 
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1.4.4 Generating an annotated singing dataset to analyse professional singers’ 

performances 

A fully annotated dataset including several singers and a variety of songs was needed to 

analyse singers' behaviours in changing pitch frequencies and duration. Thus, this objective 

aims to create a more precise dataset that is fully annotated to facilitate analysis of the singing 

notes. The considered annotations are pitch contour, onset, offset, the transition between 

notes, notes’ fundamental frequencies and duration, pitch interval to the previous and 

following notes, ground truth note name and duration, etc.  

1.4.5 Calculating notes’ pitch frequencies and duration according to singing 

technique and their positions in a piece of music 

Finally, after preparing all the required information from the previous objectives, this 

objective examines how trained-professional singers change notes’ pitch frequencies and 

duration according to the position of the note in a piece of music. That is, performing musical 

notes correctly does not mean that all the performers play the notes at the exact same pitch 

and duration, but they normally perform the notes within acceptable psychoacoustic ranges, 

which may vary according to the position of the note in a piece of music. Nevertheless, these 

ranges are not determined yet, and this objective investigates creating some models to 

calculate these ranges. This objective will be discussed in Chapter 8. 

1.5 Chapters summary 

This thesis includes nine chapters. The first chapter, this chapter, provides an 

introduction to the aims of this study. Chapter 2 reviews related work and discusses several 

potential applications of the thesis objectives. Next, Chapter 3 compares four offline and real-

time pitch detection algorithms and finds two reliable offline ones. Then, Chapter 4 

investigates several real-time F0 detector algorithms to find the most accurate ones according 

to the features of the signing signals. Although the assessment from Chapter 4 results in a list 

of the best real-time F0 estimator algorithms, the estimated F0 contours still include 

significant errors. Thus, Chapter 5 proposes a new method for smoothing pitch contours 

generated from singing signals in real-time and offline environments to reduce errors. 
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Chapters 4 and 5 are related to each other in the way that Chapter 4 evaluates the 

performance of the smoother algorithm presented in Chapter 5 to show how it can improve 

the accuracy of the real-time pitch detection algorithms under different conditions, and 

Chapter 5 assesses the smoother algorithm according to the pitch detector algorithms 

presented in Chapter 4 but with a different approach. After correcting the F0 contours, 

Chapter 6 introduces a new algorithm to estimate the onset, offset, and transition points from 

the altered pitch contour to identify and extract the notes played by the singer in a real-time 

environment. After extracting the notes, Chapter 7 introduces a new annotated dataset called 

the Annotated-VocalSet. Subsequently, Chapter 8 analyses this new Annotated-VocalSet to 

determine the effect that a note’s position in a piece of music has on its pitch frequency and 

duration. Finally, the thesis will be closed with a conclusion and a number of 

recommendations for future work in Chapter 9.



 

 

 

 

 

 

 

 

Chapter 2                                                             
Background and Applications 

  

This chapter aims to review the literature and provide a list of applications of 

the objectives of this thesis. Some texts of this chapter come from two of our 

international conference publications listed in the following. 

• Faghih, Behnam & Timoney, Joseph, “Considerations for the Next Generation of 
Singing Tutor Systems”. AES 146th International Convention, Dublin, Ireland 

• Timoney, Joseph & Faghih, Behnam & Gibney, Anthony & Korady, Benjamin 
& Young, Gareth, “Singing Blocks: Considerations for a Virtual Reality Game to 
create chords and Progressions”. International Conferences on Computer 
Simulation of Musical Creativity (CSMC2018), Dublin, Ireland. 



15 
 

This chapter provides an overview of the related works to each of the objectives of this 

thesis. In addition, several applications of the objectives will be reviewed in this chapter. 

Before looking at the literature, some features of the singing signals that make them different 

from signals produced by musical instruments are discussed to emphasize separate studies on 

singing signals. 

2.1 Features affecting the singing waveform 

Although the results of the studies on musical instruments can be helpful in 

processing/analysing singing signals, separate studies are needed on singing by considering 

the ramifications of the particular singing features. Thus, this section discusses features of 

singing that can affect the analysis of the user’s performance. These features are tunning 

pitch, vibrato, pitch drift, transitions between notes, and the vocal system. These features are 

strongly associated with singing and are not phenomena that occur in the playing of many 

musical instruments. Therefore, it shows why the signal processing algorithms that work well 

on instruments may not have the same accuracy and efficiency with singing signals. The 

features are discussed in the following. 

2.1.1 Musical instruments are usually tuned 

Most of the instruments can be tuned before playing. For example, a piano will be tuned 

before a performance, and if the instrument does not have bad quality, the instrument will 

remain in tune during the performance. In addition, a tuner, a tool for tuning musical 

instruments, can be used to tune the strings of a stringed instrument to exact frequencies. 

On the other hand, we cannot tune a human voice before singing. Therefore, it cannot be 

guaranteed that a person sings in tune or with exact pitch frequencies.  

2.1.2 Vibration 

“Vibrato corresponds to an almost sinusoidal undulation of F0 and thus can be called 

frequency vibrato. It can be described in terms of two parameters: (1) the rate, that is, the 

number of undulations occurring per second, and (2) the extent, that is, the depth of the 

modulation expressed in cents (one cent is a hundredth of a semitone)” (Sundberg, 2013). 
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Although it is possible to have a vibration in some instruments like the violin family, 

humans naturally use vibration when singing a song. Vibration makes the spectrogram 

appear more complicated. 

Based on Prame’s research (Prame, 1997), the vibrato rate lies typically between 5.5 and 

6.5 Hz but tends to speed up somewhat toward the end of a long sustained tone. The extent 

of vibrato depends strongly on the singer and the repertoire but typically lies in the range of 

±30 cents and ±120 cents, the mean across tones and singers being about ±70 cents. In the 

Sundberg study (Sundberg, 2013), the vibrato rate was 6.5 undulations per second, and the 

extent was ±30 cents. 

Besouw et al. (Besouw, Brereton and Howard, 2008) presented three-tone ascending 

and descending arpeggios to musicians. The tuning of the middle tone, which either had or 

lacked vibrato, was varied, and the listeners were asked to decide which notes were in tune 

or untune. The results showed that the range of acceptable intonation of the middle tone was, 

on average, about 10 cents wider when it had vibrato than when it lacked vibrato. In addition, 

they found that if two voices sing perfectly “straight” (i.e., without vibrato), the demands on 

accuracy concerning the F0 are higher than if they sing with vibrato (Sundberg, 2013). 

Another study conducted by D’Alessandro and Castellengo (D’Alessandro and 

Castellengo, 1991) measured the perceived pitch when tones are shorter than the duration of 

a vibrato cycle. They found that when presented alone, the rising half of a vibrato cycle was 

perceived as being 15 cents higher than the mean F0, while the falling half was perceived as 

11 cents below the mean. They concluded that the ending of such short pitch glides is more 

significant to pitch perception than the beginning. 

Therefore, vibrations significantly affect the perceptual pitch frequencies of the notes, 

and their effect depends on the note’s properties, such as duration. 

2.1.3 Pitch drift 

Pitch drift or intonation drift means changes in tuning throughout a timescale of seconds 

or more while playing a piece of music (Seaton, Pim and Sharp, 2013). According to some 

studies (Alldahl, 2006; Ryynänen and Klapuri, 2006), pitch drift mainly occurs in the downward 

direction, i.e., downward intonation drift. In another study done by Müller et al. (Müller, 
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Grosche and Wiering, 2010), it is observed that pitch drift is common in unaccompanied solo 

folk singing. Similarly, Mauch et al. (Mauch, Frieler and Dixon, 2014) also found evidence of 

pitch drift in solo singing. They (Mauch, Frieler and Dixon, 2014) also realized that the pitch 

drift extent is often tiny (<0.2 semitones over 50 notes) and not correlated to pitch accuracy, 

interval accuracy, or musical background. Unlike the other studies, Mauch et al. (Mauch, 

Frieler and Dixon, 2014) observed that the most significant drifts are upward. 

Therefore, singers shift their voice pitch while singing a piece of music, but it rarely 

happens when playing an instrument.  

2.1.4 Transition between notes 

In singing, when there is no rest between two consecutive notes, there is a smooth 

movement from the first note to the second note (Mayor, Bonada and Loscos, 2006). In other 

words, in some cases, the singer produces a series of frequencies between two consecutive 

notes to move smoothly from the first to the second, which is defined as the Portamento 

technique in music. On the other hand, playing the Portamento technique to ones’ playing is 

impossible with some instruments, like the Piano, and they jump, in terms of frequency, from 

one note to the next. 

Estimating the start and end of a note with a soft onset is more complicated than for 

one with a hard or sharp onset. A soft onset has a long attack duration or vague envelope 

shape that becomes a challenge to any peak-picking procedure. Figure 2-1  shows how a soft 

onset has a long and smooth movement between two consecutive notes, while the movement 

in a sharp onset is much quicker and is thus more easily distinguishable. The underlying reason 

for these issues is that the singing voice is classified as a pitched non-percussive (PNP) 

instrument, and PNP instruments still present a challenge for onset detection (Collins, 2005a). 
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Figure 2-1 illustrations of soft onset as compared to a sharp onset 

2.1.5 Vocal system 

A singer must breathe in order to sing. Therefore, there is a natural constraint to the 

duration of notes in legato singing. In addition, there are some limitations to the pitch range 

and the length of the interval between notes. For example, it is easy for a beginner on the 

Piano to play A2 and then play A7 immediately afterwards, but this is impossible for a singer.  

According to the above observations, there are some unique characteristics to singing 

signals as compared to signals from musical instruments, and thus, this demands separate 

studies for singing signals.  

2.2 Literature review 

This section provides a review of related works. Since this thesis includes several 

objectives, a review of the relevant work for each objective is separately discussed in the 

following. 
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2.2.1 Investigating real-time singing pitch detector algorithms objective 

The estimation of the fundamental frequency (F0) of a waveform is known in the 

literature as the problem of pitch detection. This has been a long-standing task in signal 

processing, and many different algorithms have been proposed over the years. Up until about 

20 years ago, the problem of monophonic pitch detection only was considered, but since then, 

the much more difficult task of polyphonic pitch detection has been tackled. Although some 

sample-by-sample detection methods have been proposed, most algorithms first separate the 

audio signal in short frames, generally of the order of 15-35 ms in length, within which it is 

assumed that the frequency information is stationary. The pitch is then computed for each 

frame. The analysis is done either in the time domain, using an algorithm that relies on 

computing the autocorrelation function or a variant, or in the frequency domain, using an 

algorithm that applies a type of Fourier transform. The initial algorithm outputs are assumed 

to be raw estimates that require post-processing. It is this later stage that can really 

differentiate the effectiveness of an approach. 

The idea behind using the autocorrelation function for a time-domain algorithm is that 

when applying this function to a waveform, it should produce a representation that shows 

significant peaks at positions related to the period of the waveform, with the largest peak 

occurring first. A well-known variant is the Average Magnitude Different function, which was 

introduced as a computationally efficient alternative to the autocorrelation function. In more 

recent times, the Yin algorithm (de Cheveigné and Kawahara, 2002) has become very popular 

and uses a related cumulative mean normalized difference function. To enhance the accuracy 

of the estimate around the detected peak in the computed time-domain function, some form 

of interpolation is required, for example, parabolic interpolation.  

For frequency-based methods, the frame is transformed into the frequency domain, 

often using the Fourier transform. An early algorithm implemented a further transformation 

of the Fourier spectrum into what was termed the ‘Cepstrum’1 (Noll, 1967), essentially 

dividing the spectrum into a fast-varying (because of pitch harmonics) and slowly-varying 

 
1 The cepstrum, in Fourier analysis, is obtained by performing the inverse Fourier transform (IFT) on the logarithm of 

the estimated signal spectrum. This method serves as a valuable tool for examining periodic structures within frequency spectra. 
Specifically, the power cepstrum finds applications in the analysis of human speech. The name "cepstrum" originates from 
reversing the first four letters of ‘spectrum’. 
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components (because of the spectral envelope). Isolating the fast-varying component 

facilitated a pitch estimate. Another technique was the Harmonic Product Spectrum 

(Schroeder, 1968). This attempts to emphasize the harmonic peak of the fundamental 

component in the spectrum by a succession of decimations of the original spectral 

representation and then adding them together. More recent algorithms use a template 

approach where the spectral representation is compared with a template of the known 

fundamental frequency. The one with the best match signifies the pitch. 

Both these techniques benefit from a tracking stage that follows. All algorithms can 

produce incorrect pitch estimates, particularly if the second harmonic or a subharmonic is too 

strong, leading to the problem of octave-doubling or octave-halving, or if the harmonicity of 

the signal is weak, leading to erroneous values. Thus, the pitch estimates need to be tracked 

and refined to remove any unexpected jumps from a ‘smooth’ contour. Tracking can be done 

in a forward manner, that is, as the estimates are produced and then it is determined how 

well they fit with previous values. It can also be done in a backward manner, using an 

algorithm such as dynamic programming, where estimates are obtained from the start to the 

end of the signal, and then the best possible contour is traced out from the end to the 

beginning. A good example of this is the pitch detector in the Pratt software package (Boersma 

and van Heuven, 2001). Another recent approach is PYIN (Mauch and Dixon, 2014), which has 

included a Hidden Markov Model (HMM) with the Yin algorithm (de Cheveigné and Kawahara, 

2002). The HMM uses the Viterbi algorithm, which is a dynamic programming technique. 

As an recent study on offline pitch detection is undertaken by de Obaldía and Zölzer (de 

Obaldía and Zölzer, 2019). They proposed an algorithm for improving the determination of 

correct pitch candidates by applying the autocorrelation function and simple heuristics. They 

evaluated their algorithm with a dataset of musical instruments files and a dataset of vocals. 

They found that the performance of their proposed algorithm was better than that of Yin (de 

Cheveigné and Kawahara, 2002), RAPT (Talkin, 1995) and PEFAC (Gonzalez and Brookes, 2014) 

algorithms. However, their proposed algorithm could not correctly estimate F0 in all cases. 

For example, errors occurred both in detecting the moments where transitions happened and 

for accurate voiced segment determination. In total, they obtained a correct pitch estimation 

around 90% of the time for the vocal sounds in the dataset they used. 
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Moreover, there are several studies, such as Drugman et al. (Drugman et al., 2018) and 

Khadem-hosseini et al. (Khadem-hosseini et al., 2020), on offline pitch detection by machine 

learning algorithms, which in essence apply forms of statistical methods to all the spectrogram 

channels of detected frequencies and are enhanced with training sets to estimate F0. 

As expected, offline detection techniques are superior in accuracy as it is possible to 

detect the whole contour and then iteratively refine the result until it matches some criterion 

of optimality. On the other hand, real-time detection is more difficult as only previous pitch 

values are available for verifying the current value. 

Recently, some sample-by-sample methods for pitch detection have appeared. This 

obviates the need for explicit tracking following the estimation as it is built into the algorithm. 

These use techniques from other areas of signal processing, that are the Phase-locked loop 

(PLL) (Zolzer, Sankarababu and Moller, 2012), a communications tool, and the Extended 

Kalman filter (Das, Smith and Chafe, 2017), which are more familiar in statistical signal 

detection. These take as input the audio signal and provide a value for the pitch at every 

sample. The initial PLL method was augmented to have a set of PLLs to track the pitch and 

select the most likely pitch value (Zolzer, Sankarababu and Moller, 2012). The Extended 

Kalman Filter can produce good results, according to (Das, Smith and Chafe, 2017), but care is 

required when setting the parameters of the signal model. Another recent work is the 

Harmonic locking Loop (Bittner, Wang and Bello, 2017), which extends the tracking idea to all 

harmonics to produce an improved estimate. The difficulty again is that parameter values 

need to be set. It is noteworthy that PLL and Kalman Filter have been evaluated mainly with 

instruments, that is, PLL with the cello (Zolzer, Sankarababu and Moller, 2012) and the Guitar 

(Böhler and Zölzer, 2016), and Kalman Filter with the Guitar (Das, Smith and Chafe, 2017). 

One of the recent studies on pitch detection of the human voice in real-time is by Makov 

et al. (Makov et al., 2019), and was based on the spectral approach. They compared their 

proposed algorithm with a ground truth assessed offline using the algorithm built into the 

Praat software (Boersma and van Heuven, 2001) and determined that their algorithm 

estimated F0 correctly, with less than a 1% difference on average with Praat. However, since 

the details of their evaluation, such as their dataset, are not provided, it is impossible to figure 

out precisely under which conditions their algorithm will work as claimed.  
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Once the pitch contour is found, the next stage is to convert this into a melodic 

representation. In the case of singing, it has to be recognized that singers use many 

techniques, such as portamento and vibrato, in their style, so a true description needs to 

retain these qualities (Besouw, Brereton and Howard, 2008; Anand et al., 2012; Sundberg, 

2013).   

To sum up, as was mentioned, several offline pitch detector algorithms work well on 

both singing and instrumental signals, such as PYIN (Mauch and Dixon, 2014) and the Boersma 

algorithm (Boersma, 1993) implemented in the Praat tool (Boersma and van Heuven, 2001).  

However, a reliable real-time pitch detection algorithm for singing that works accurately in 

different circumstances has not been found. Most algorithms show reasonable results with 

speech, such as (Makov et al., 2019) and a comparison between them is provided by Jouvet 

and Laprie (Jouvet and Laprie, 2017). In addition, several studies worked on offline pitch 

detection algorithms for singing signals, and a comparison across a selection of these 

algorithms was discussed in Gawlik and Wszołek’s study (Gawlik and Wszołek, 2018). 

However, the real-time experiences in detecting F0 from singing signals have some limitations. 

That is, their accuracy is not high enough, as described in studies such as Das et al. (Das, Smith 

and Chafe, 2017, 2020) and reported by (Faghih and Timoney, 2019a). 

Therefore, it is necessary to introduce a new algorithm or evaluate the current 

algorithms to find the best one for singing signals with respect to their different features,  such 

as note duration, range of pitch frequencies, and the interval between notes. Thus, Chapter 3 

compares some offline and real-time pitch detection algorithms on singing signals and 

identifies a trustworthy offline algorithm to be used for generating ground truth data that will 

be helpful for later assessments. Subsequently, Chapter 4 evaluates several real-time pitch 

detection algorithms based on the different singing features to determine the best real-time 

F0 detection algorithms for singing signals. 

2.2.2 Real-time smoothing pitch contours generated from singing signals objective 

It has been observed that none of the investigated real-time pitch detector algorithms 

could work perfectly on singing signals, and all of them return some errors in their output. 

Thus, the estimated pitch contours must be smoothed to minimise the errors/outliers.  
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These errors are often due to doubling or halving estimates of the true pitch value, and 

are therefore impulsive in appearance rather than random (Zhao, O’Shaughnessy and Nguyen, 

2007; So, Jia and Cai, 2012; Faghih and Timoney, 2019a, 2022a; Ferro and Tamburini, 2019). 

Furthermore, incorrect pitch estimation often happens in real-time pitch detection, especially 

when the sound source is a human voice (Faghih and Timoney, 2022a). Therefore, a contour-

smoother algorithm is necessary to filter the incorrectly estimated F0 before further analysis. 

Generally, contour smoothers can be divided into two categories: 1—contour 

smoothing to show the data trend; and 2—contour smoothing to remove errors, noise, and 

outlier points. 

There are several algorithms for showing a contour trend, such as polynomial (Luers and 

Wenning, 1971), spline (Craven and Wahba, 1978; Hutchinson and de Hoog, 1985), Gaussian 

(Deng and Cahill, 1994), Locally Weighted Scatterplot Smoothing (LOWESS) (Cleveland, 1979, 

1981), and seasonal decomposition (Wen et al., 2020). One of the applications of trend 

detection using pitch contours is to find out how two melodies are similar to each other (Lin, 

Wu and Kao, 2008; Wu, 2013; Chatterjee et al., 2018; Sampaio, 2018). Other contour 

smoothers, such as moving average (Smith, 1999) and Median filter, function by attenuating 

or removing outliers in the contour (Faghih and Timoney, 2022a). None of these contour-

smoother algorithms was explicitly designed for smoothing pitch contours; they can be used 

for any contour from any data series. They have been applied to smoothing pitch contours, 

such as in the study by Kasi and Zahorian (Kasi and Zahorian, 2002) that used the Median filter. 

However, there are certain adjusted versions of these algorithms for smoothing estimated 

pitches; for example, Okada et al. (Okada, Ishikawa and Ikegaya, 2016)  and Jlassi et al. (Jlassi, 

Bouzid and Ellouze, 2016) introduced pitch contour algorithms based on the Median filter. In 

the following, some of these adjusted algorithms are discussed. 

Zhao et al. (Zhao, O’Shaughnessy and Nguyen, 2007) introduced a pitch smoothing 

method for the Mandarin language based on autocorrelation and cepstral F0 detection 

approaches. They first used two pitch estimation techniques to determine two separate pitch 

contours, and then both were smoothed. Finally, combining the two smoothed pitch contours 

created a final smoothed contour. Generally, their approach was very similar to the idea of 

this study, moving through a pitch contour to identify noisy estimates by comparing each point 
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to its previous and succeeding points, and finally editing out the noise. However, their 

approach involved altering some correct parts of the data, which impacted peaks that were 

not incorrect. Moreover, in their evaluation, they only checked the error reduction capability of 

their algorithm for removing octave-doubling and sharp rises in estimated F0s. It would have 

been preferable to compare their smoothed contours with a ground truth to realize how well 

their algorithm could adjust the estimated contour to make it similar to that of the ground truth. 

Liu et al. (Liu et al., 2013) introduced a pitch-contour-smoother algorithm for Mandarin 

tone recognition. They used several thresholds for finding half, double, and triple errors by 

comparing each point with its previous point. Then, an incorrect frequency was doubled, 

halved, or divided by three, according to the type of error detected. They indicated that 

experiments should be carried out to determine the threshold values, but did not provide any 

guidelines for selecting or adjusting these. In addition, the threshold values they used were 

not revealed. Therefore, how one could change the thresholds to optimize the result is 

unclear. In addition, they tested their algorithm only on isolated Mandarin syllables, although 

realistically, they should also have tried their approach on continuously spoken language. 

Moreover, they did not compare the accuracy of their algorithm with other contour-smoother 

algorithms to show how well their method performed in relation to others. 

The smoothing approach presented by Jlassi et al. (Jlassi, Bouzid and Ellouze, 2016) was 

designed for spoken English. Their smoothing system was based on the moving average filter. 

However, they only calculated the average of the two immediately previous F0 points for 

those points that showed more than a 30 Hz difference from their previous and following 

points. They compared their algorithm with the Median filter and Exponentially Weighted 

Moving Average (EWMA), and found improved accuracy using their approach. However, the 

dataset (Plante, Meyer and Ainsworth, 1995) used in their study was small, i.e., 15 people 

reading a short phonetically balanced text; that is, “The North Wind Story”. Thus, their dataset 

included only 15 short files. Their results would have been much more convincing if they had 

evaluated their algorithm with a more extensive dataset generated by various pitch-detector 

algorithms. Moreover, several metrics could have been employed to measure how well they 

smoothed the errors. Furthermore, their algorithm considered a difference of more than 30 Hz 

from both the immediately previous and following points as an error; therefore, it was unable 
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to identify and smooth any errors existing over more than one point on the contour. Therefore, 

a dataset including pitch contours generated by different pitch detection algorithms to produce 

a variety of errors in a good balanced of human singing pitch frequencies range is needed to 

evaluate the smoother algorithms. 

Ferro and Tamburini (Ferro and Tamburini, 2019) introduced another pitch-smoother 

technique for spoken English, based on Deep Neural Networks (DNN) and implemented 

explicitly as a Recurrent Neural Network (RNN). However, they did not compare the 

improvement offered by their approach and that of any other method. In addition, a 

comparison of their datasets and the mixture of datasets suggests that their DNN architecture 

may not work well with a new dataset. 

As exemplified above, many pitch detection algorithms have been designed for and 

tested on speech. However, although both speech and singing are produced with the same 

human vocal system, because of the differences between speaking and singing, separate 

studies are required for the pitch analysis of singing (Gawlik and Wszołek, 2018). In addition, 

in real-time environments, the smoother algorithm should alter the contour within a 

reasonable delay, mainly based on previous data, because there is no future data. The 

reasonable delay can be varied according to the application of the pitch contour being used. 

For example, a shorter delay is needed in real-time to reproduce what the user is singing 

compared to a learning system that wants to show the user errors after singing each note. 

The smoother algorithm should be based on the features and applications of the 

contour, similar to the approach taken by Ferro and Tamburini (Ferro and Tamburini, 2019)  

and the studies by So et al. (So, Jia and Cai, 2012) on smoothing contours generated from 

speech. In other words, expected error types in the pitch contours for the specific data type 

should be identified. Then, an investigation for a targeted contour-smoother algorithm to 

solve these errors should be made. In addition, the applications of the smoothed contour 

should also be considered. For example, when a highly accurate estimate of the F0 value at 

each point is required, the smoother algorithm should not change any data except those 

points identified as having been incorrectly estimated. Moreover, the smoother algorithm 

should not have a significant delay in real-time environments. Therefore, several 
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considerations have been ascertained that a real-time smoother algorithm should consider 

for singing signals as follows. 

2.2.2.1 Considerations for smoothing pitch contour of singing signals 

This section lists the considerations that need to be adhered to when designing a real-

time smoother algorithm for signing signals. 

1) Only the incorrectly estimated pitches need to be changed. Therefore, it is 

necessary to decide which jumps in a contour are incorrect. 

2) Some of the estimated pitches around the incorrectly detected F0 should be 

selected to alter their values. This represents the window length for the 

calculation. Therefore, the decision on the number of estimated pitches before 

and/or after the erroneously estimated pitches requires to define a window 

length. Thus, a buffer delay is required in real-time scenarios to ensure that 

sufficient successive pitch frequencies are available when correcting the current 

pitch frequency. 

3) There is a minimum duration for which a human can sing. 

4) There is a minimum duration for which a human can rest between singing two 

notes. 

5) There is a maximum frequency that a human can sing. 

6) There is a maximum interval during which humans can move from one note to 

another when singing. 

7) To sing a large pitch interval in a very short time is impossible. 

 

Table 2-1 shows a list of the contour smoother algorithms demonstrating which of the 

considerations mentioned above they cover. As the table shows, none of the algorithms have 

addressed all the considerations. 



27 
 

Table 2-1. A list of the contour smoother algorithms with indicating the code(s) of their considerations 
according to the list in section 2.2.2.1 

Algorithm The Considerations 

Gaussian (sigma = 1) 2 

Savitzky–Golay filter 2 

Exponential 2 

 Window-based (window_type = ‘rectangular) 2 

Window-based (window_type = ‘hanning’) 2 

Window-based (window_type = ‘hamming’) 2 

Window-based (window_type = ‘bartlett’) 2 

Window-based (window_type = ‘blackman’) 2 

Direct Spectral 2 

Polynomial 2 

Spline (type = ‘linear_spline’) 2 

Spline (type = ‘cubic_spline’) 2 

Spline (type = ‘natural_cubic_spline’) 2 

Gaussian (sigma = 0.2, n_knots = 10) 2 

Binner 2 

LOWESS 2 

Decompose (type = ‘Window-based’, method = ‘additive’) 2 

Decompose (type = ‘lowess’, method = ‘additive’) 2 

Decompose (type = ‘natural_cubic_spline’, method = ‘additive’) 2 

Decompose (type = ‘natural_cubic_spline’, method = ‘multiplicative’) 2 

Decompose (type = ‘lowess’, method = ‘multiplicative’) 2 

Decompose (type = ‘natural_cubic_spline’, method = ‘multiplicative’) 2 

Kalman (component = ‘level’) 2 

Kalman (component = ‘level_trend’) 2 

Kalman (component = ‘level_season’) 2 

Kalman (component = ‘level_trend_season’) 2 

Kalman (component = ‘level_longseason’) 2 

Kalman (component = ‘level_trend_longseason’) 2 

Kalman (component = ‘level_season_longseason’) 2 

Kalman (component = ‘level_trend_season_longseason’) 2 

Moving Average (simple = True) 2 

Moving Average (simple = False) 2 

Median Filter 2 

Okada Filter 1, 2 

Jlassi Filter 1, 2, 7 
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In summary, most of the contour smoother algorithms available in the literature were 

not explicitly designed for musical signals, but they have been used in a number of studies for 

smoothing pitch contours, such as the study by Kasi and Zahorian (Kasi and Zahorian, 2002) 

that uses the Median filter. Furthermore, some of them have only been tested on smoothing 

the pitch contour for speech signals, such as the Jlassi et al. (Jlassi, Bouzid and Ellouze, 2016) 

study designed for smoothing pitch contour for spoken English. However, employing them to 

smooth the F0 contours derived from singing signals may not be appropriate due to the 

different features associated with singing, as discussed in section 2.1. Therefore, it is necessary 

to design a novel algorithm for smoothing the F0 contours from singing signals in real-time 

and offline environments, as done in Chapter 5. 

2.2.3 Real-time onset, offset, and transition extraction from singing signals 

objective 

One of the fundamental processes of analysing audio signals is finding the start and 

endpoint of the notes, which are called the onset and the offset, respectively. Onset and offset 

are not exact points/times universally agreed as the starting and ending of a note but exist 

within an acceptable range  (Hoon Heo, Dooyong Sung and Kyogu Lee, 2013; Choi et al., 2020; 

Rosenzweig, Scherbaum, et al., 2020; Bittner et al., 2021). 

Several applications need the results of onset/offset detection, such as tempo and pitch 

estimation, beat tracking, score following, automatic music transcription, and analysis of 

recorded music. Real-time music applications demand almost instantaneous results, i.e., real-

time onset detection for systems such as the interactive music systems explained in Müller-

Rakow (Müller-Rakow and Flechtner, 2017) and Malloch (Malloch et al., 2019), or for music 

transcriptions as discussed by Kroher and Díaz-Báñez (Kroher and Díaz-Báñez, 2019). 

Therefore, minimising the time delay between the onset or offset and their detection in real-

time environments is vital. 

Over the years, many research contributions have been made for onset detection, but 

most work offline. If the onset detection function has been appropriately created, then onset 

events will give rise to well-localized recognizable features, e.g., a peak, in the detection 

function (Bello et al., 2005). Several common approaches for detecting onsets, such as spectral 

difference, phase deviation, wavelet regularity modulus, negative log-likelihood, and high-
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frequency content, are well explained in the Bello et al. (Bello et al., 2005) study and then 

compared by Collins (Collins, 2005b). Moreover, Dixon (Dixon, 2006) has proposed multiple 

future enhancements for some of these methods. 

In addition, Lacoste and Eck (Lacoste and Eck, 2006) propose an offline music onset 

detection algorithm using single and combined versions of Artificial Neural Networks (ANN) 

trained with different hyperparameters, and Eyben et al. (Eyben et al., 2010) employ a 

Recurrent Neural Network (RNN) based on Mel spectrograms. Furthermore, after pre-

processing with a time-variant filter, a method using Hidden Markov Models (HMMs) was 

proposed by Degara et al. (Degara et al., 2011) for offline onset detection. Schlüter and Böck 

(Schluter and Bock, 2014) refined the model proposed by Eyben et al. (Eyben et al., 2010) and 

trained Convolutional Neural Networks (CNNs) with mini-batch gradient descent (this splits 

the training dataset into small batches) to reduce model error, and the input to their model 

was two log Mel-spectrograms. Their approach outperformed other traditional methods and 

required less additional processing. However, the peak-picking approaches used for CNN and 

RNN-based methods rely on future information (not probabilistic) to detect an event; thus, 

they cannot work for real-time music onset detection. 

Some of the studies are focused on detecting onsets from singing signals. For instance, 

the singing onset detection method of Toh et al. (Toh, Zhang and Wang, 2008) is based on 

audio features such as Mel Frequency Cepstral Coefficients, Linear Predictive Cepstrum 

Coefficients, pitch stability zero-crossing rate, and signal periodicity. First, the extracted audio 

features are classified into onset and non-onset frames using Gaussian Mixture Models 

(GMM). After GMM scoring, the feature evaluation is preceded by a dual detection function 

(feature level and decision level fusion) for higher accuracy in selecting the most optimal 

features. This method resulted in an 86.5% precision, 83.9% recall, and an F-measure of 85.2%. 

The recall shows the proportion of the cases correctly predicted positive. Use of positive 

precision implies the fraction of predicted positive cases determined to be real positive. In 

binary classification, the F-measure calculates a test’s accuracy. It is calculated from the 

precision and recall of the test. The F-measure is the harmonic mean of the precision and the 

recall. The value of an F-measure is between 0 and 1. The highest value specifies perfect 

precision and recall, while the lowest shows whether the precision or the recall is zero 
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(Powers, 2020). However, despite the high F-measure score, it was still possible that their 

result could contain bias because of the dataset they used. The training and test set came from 

a tiny dataset comprising 18 singing recordings from four singers with 1127 onsets. This 

amount of files may not generate a variety of conditions to sufficiently challenge an onset 

detector algorithm in different situations, e. g., different sequences of pitch intervals and 

singing techniques. 

In the study conducted by Gong and Serra (Gong and Serra, 2018), a deep learning model 

was trained for musical onset detection in solo singing, and the authors discussed how their 

algorithm could lead to improve live onset detection models. They used two datasets, one of 

which contains more than 25,000 onsets, mostly complex mixtures or solo instrumental 

excerpts, and only three excerpts are of a solo singing voice, and the other dataset is a subset 

of a solo Jingju singing voice that contains 100 recordings. They employed seven deep 

learning-based architectures.  

In the Gong and Serra (Gong and Serra, 2018) study, it was preferred to use the score-

informed method if the musical score information was available. Score-informed approaches 

evaluate the data with the assistance of musical scores. Based on the results, score-informed 

HMM outperformed peak picking for all of the architectures used in this experiment (Gong 

and Serra, 2018). The reported F-measure for the combination of the peak picking method 

and a no-dense neural network architecture was 73.88%, with a p-value of 0.002. For the 

score-informed HMM method, a nine-layer CNN architecture worked best, giving an F-

measure of 80.90% and a p-value of 0.001. Learning strategies for inter-dataset knowledge 

transfer were also studied, but due to the features of different musical patterns, the authors 

claimed that when the musical patterns from the two datasets used to train their model were 

different, the onset prediction was not accurate. 

Despite these studies, the onset detection of a musical note remains a challenge, 

primarily for the singing voice. Chang and Lee (Chang and Lee, 2014) explain several reasons, 

including articulation inconsistency, singer-dependent tonal quality, and gradual variation in 

onset envelopes over time. In other words, the time-varying spectral envelope and the 

inconsistency of vocal tracks may produce fake maxima (i.e., peaks) in an onset detection 

function that can lower the precision rate for onset detection. Therefore, detecting onsets 
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from the singing voice is still an active area of study because of waveform unpredictability and 

the occurrence of many noisy segments. Moreover, most methods are only suitable for 

recorded singing and are designed to work offline. 

According to the previously published results, most existing approaches do not work 

well for soft onsets, including singing music. A soft onset has a long attack duration or vague 

envelope shape that becomes a challenge to the peak-picking procedure. The underlying 

reason for these issues is that the singing voice is classified as a pitched non-percussive (PNP) 

instrument, and PNP instruments still present a challenge for onset detection (Collins, 2005b). 

The nature of the singing voice adds further complexity due to its natural inconsistency with 

respect to pitch and time dynamics. Unlike some instruments, whose timbre is usually 

consistent throughout a note, the singing voice inherently can produce more variations of 

formant structures (for articulation); sometimes, it may even vary within the duration of a 

single note (Lindblom and Sundberg, 2007). While most onset detection algorithms are based 

on detecting spectral changes, they can fail to differentiate such variations in a singing voice 

because of singing features such as vibration and soft onset. 

Relevant challenges for onset detection in solo singing voices were identified in a report 

from the Music Information Retrieval Evaluation eXchange 2012 (MIREX 2012). According to 

this report, the best-performing detection method gives an F-measure of only 55.9% (Hoon 

Heo, Dooyong Sung and Kyogu Lee, 2013), which becomes even lower for solo sustained 

strings with an average F-measure of 52.8%. In addition, training datasets for dynamically 

changing patterns in a singing voice is still a challenge (Gong and Serra, 2018; Schindler, Lidy 

and Böck, 2020). 

One of the missing parts of most of the onset detection algorithms is consideration of 

the actual singing style features. In the Mayor et al. (Mayor, Bonada and Loscos, 2006) study, 

it is shown that one of the crucial features that should be taken into account in onset detection 

is the transition from one note to another note where there is no intervening silence, i.e., the 

legato singing (Mayor, Bonada and Loscos, 2006). The transition means that a singer will take 

a while to reach the target note. If the time for the transiting is not incorporated, the onset 

detector cannot find the correct times for onset and offset events. These transitions are 

categorized as a soft onset. 
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Therefore, as discussed in section 2.1, singing signals have some unique features that 

significantly impact the approaches to detecting onsets. Thus, it was found to be necessary to 

design a new onset detector algorithm according to the singing features. Thus, Chapter 6 

explains the details of a novel real-time onset detection algorithm for singing sounds.  

2.2.4 Generating an annotated singing dataset objective 

Datasets are fundamental for analysing and understanding relationships and causes. 

Gathering an adequate store of data is the primary step before considering the development 

of signal processing or machine learning analytical tools for audio. Despite there being a 

shortage of singing datasets, recently, several singing datasets, such as (Cuesta et al., 2018; 

Choi et al., 2020; Rosenzweig, Cuesta, et al., 2020; Rosenzweig, Scherbaum, et al., 2020; 

Bittner et al., 2021), have been published. However, many more datasets are needed 

representing different categories, such as techniques, genres, countries, traditions, and 

languages. 

One recently released dataset that covers a wide range of singing techniques and 

expressions is VocalSet (Wilkins et al., 2018). This dataset is already described and used in the 

previous chapters.  

Although the VocalSet offers a variety of audio files of singing, the notes sung by the 

singers were not annotated. Therefore, the original VocalSet is a suitable resource for 

evaluating machine learning algorithms for problems such as singer classification, vowel 

classification, singing technique classification, and melody classification. Nevertheless, to use 

the VocalSet for other purposes, such as pitch detection, pitch contour smoothing, 

onset/offset estimation, note extraction, lyric estimation, and automatic transcription, it 

would be necessary to annotate it. Therefore, this study aims to annotate the original VocalSet 

to render it appropriate for the possible additional studies mentioned above. The annotations 

added to the VocalSet include the fundamental frequencies (F0), amplitude, onset, offset, 

transition, MIDI pitch, average/median F0 of each note, each note’s duration, and the lyric. 
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Table 2-2. A comparison of existing singing datasets. 

Dataset Solo/
Mix 

No. of 
Files 

Total 
Duration 

(min) 
Annotations Scripts Number of 

Singer Professional/Amateur 

MIR1K (Chao-Ling 
Hsu and Jang, 2010) Both 1000 133 

F0, unvoiced 
sounds and 

vocal/non-vocal 
segments, lyrics 

No 
8 female 

(f), 11 male 
(m) 

Amateur 

TONAS (Mora et 
al., 2010; Gómez and 
Bonada, 2013; Team, 

2013) 
Solo 72 20.6 F0, onset, note 

F0 No >40 Professional 

SVNote1 (Hoon 
Heo, Dooyong Sung 
and Kyogu Lee, 2013; 
Chang and Lee, 2014) 

Solo 30 16.6 Onset, offset, 
MIDI pitch No 7 m, 3 f NI * 

Evaluation 
Framework 

(Molina et al., 2014) 
Solo 38 19.2 MIDI pitch No 8 Child, 8 

m, 5 f Both 

iKala (Chan et al., 
2015) Solo 252 126 F0, lyrics  No 6 Professional 

MedleyDB (Bittner 
et al., 2014, 2016) Both 28 255 F0, meta data No NI NI 

MASTmelody 
(Bozkurt, Baysal and 

Yüret, 2017) 
Both 1018 90 F0 Yes NI Pupils 

Dzhambazov 
(Dzhambazov et al., 

2017) 
Solo 13 7 F0, amplitude, 

note MIDI pitch No NI NI 

Choral Singing 
(Cuesta et al., 2018) Choir 48 115.5 MIDI file No 16 Semi-professional 

VocalSet (Wilkins 
et al., 2018) Solo 3560 606 NA + Yes 11 m, 9 f Professional 

CSD (Choi et al., 
2020) Solo 200 291.7 

Onset, offset, 
lyric, MIDI 
pitch, MIDI 

No 1 f Professional 

Dagstuhl ChoirSet 
(Rosenzweig, Cuesta, 

et al., 2020) 
Choir 81 55.5 MIDI, F0, beats No NI Amateur 

Erkomaishvili 
(Rosenzweig, 

Scherbaum, et al., 
2020) 

Solo 101 424.5 
F0, 

segmentation, 
onset, lyric 

Yes 1 m Professional 

Vocadito (Bittner et 
al., 2021) Solo 40 13.62 F0, lyric, note No 29 Varying levels of 

training 

DALI (Meseguer-
Brocal, Cohen-Hadria 

and Peeters, 2018) 
Mix 5358 NI Note, lyrics NA NI Amateur 

Annotated-
VocalSet Solo 2688 406.7 

F0, onset, offset, 
note, lyric, 
MIDI pitch 

Yes 11 m, 9 f Professional 

* NI = Not indicated, + NA = Not applicable. 
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2.2.4.1 A Review of Published Vocal Datasets 

Several singing datasets have been published and made available to researchers. Table 

2-2 lists these singing datasets with their properties, such as the number of files, total 

duration, and annotations. As shown in Table 2-2, the Annotated-VocalSet dataset, which I 

have generated and will be discussed in detail in Chapter 7, includes a broader range of 

annotations and singers than the listed datasets. However, some other datasets include 

properties, such as the singer’s amateur status or whether they are currently studying, which 

the Annotated-VocalSet does not have. 

2.2.4.2 A Review on Annotating Methods 

This subsection reviews the other researchers’ approaches to annotating vocal datasets. 

Generally, they use three main annotation approaches: manual, automated, and semi-

automated, as described in the following. 

2.2.4.3 Manual Annotation 

Some datasets, such as MIR-1K (Chao-Ling Hsu and Jang, 2010), iKala (Chan et al., 2015), 

Dzhambazov (Dzhambazov et al., 2017), and Erkomaishvili (except for the F0 annotation) 

(Rosenzweig, Scherbaum, et al., 2020), were annotated manually. To reduce human errors in 

creating annotations, some researchers, such as TONAS (Team, 2013), after generating 

annotations by the first person, asked some experts to double-check the initial annotations. 

In addition, other researchers, such as the providers of the SVNote1 dataset (Hoon Heo, 

Dooyong Sung and Kyogu Lee, 2013; Chang and Lee, 2014), asked more than one person to 

generate manual annotations. The Erkomaishvili dataset (Rosenzweig, Scherbaum, et al., 

2020) used Sonic Visualiser (Cannam, Landone and Sandler, 2010) to include the onset 

annotations manually. In addition, they added the musical scores along with the lyrics by hand 

with the aid of the software tools named Finale (‘Finale’, no date) and Sibelius (‘Sibelius’, no 

date). 

2.2.4.4 Automatic Annotation 

The fundamental frequencies in the MedleyDB dataset (Bittner et al., 2014, 2016) were 

annotated with the PYIN algorithm (Mauch and Dixon, 2014). 

To annotate the Choral Singing dataset (Cuesta et al., 2018), they used the spectral 

autocorrelation (SAC) method proposed by Villavicencio et al. (Villavicencio et al., 2015) to 
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estimate F0, and they mentioned that the result of the SAC method contained some errors. 

Therefore, to calculate the mean of the notes’ pitch frequencies, they considered a threshold 

on the F0 values obtained for each note before computing the average. The threshold was set 

to 60 cents to reduce the effect of outliers. Moreover, they used a Python library, pretty_midi 

(Raffel and Ellis, 2014), to extract the note onsets and offsets from the synchronised MIDI files 

and segmented the F0 array. 

The DALI dataset (Meseguer-Brocal, Cohen-Hadria and Peeters, 2018) was generated 

using the teacher-student machine learning paradigm. They synchronised the audio files from 

karaoke games with lyrics and notes by applying machine-learning techniques to assist them. 

2.2.4.5 Semi-Automatic Annotation 

The fundamental frequencies in the Erkomaishvili dataset (Rosenzweig, Scherbaum, et 

al., 2020) were automatically computed within the user-specified regions using an F0 

estimation algorithm similar to Melodia (Salamon and Gomez, 2012). Then, the annotator 

could guide the estimation process. Moreover, the tool’s audiovisual feedback mechanisms 

helped the annotator validate and correct the computed F0-trajectories. 

For annotating F0 in the MASTmelody dataset (Bozkurt, Baysal and Yüret, 2017), a 

software tool, Melodia (Salamon and Gomez, 2012), was used. Then, since the pitch contours 

were not error-free, they manually altered the pitch contours. 

To manually annotate beats in the Dagstuhl ChoirSet dataset (Rosenzweig, Cuesta, et 

al., 2020), the Sonic Visualiser tool (Cannam, Landone and Sandler, 2010) was employed. An 

expert annotator corrected the annotations that a non-professional musician had created. To 

synchronise notes with MIDI files, they employed the DTW approach presented by (Muller, 

Kurth and Röder, 2004; Ewert, Muller and Grosche, 2009), using the beat annotations as 

anchor points for the alignment. Therefore, they had each note’s onset, offset, and MIDI pitch 

after the synchronisation. Regarding F0 annotation, they applied the PYIN (Mauch and Dixon, 

2014) and CREPE (Kim et al., 2018) to estimate them. In addition, they also used a tool, Tony 

(Mauch et al., 2015), to edit pitch contours manually. 

Similarly, the F0s in the Vocadito dataset (Bittner et al., 2021) were estimated by Tony 

(Mauch et al., 2015), which is based on the PYIN (Mauch and Dixon, 2014) algorithm, and then 

an expert edited the estimated pitch contours. They used a similar approach for extracting 
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notes; Tony was used first to estimate the onset and offset of the notes. Then, two experts 

corrected any errors identified in these extracted notes. Finally, for the lyrics, they manually 

added the words that the singers sang without considering the timing of the words. 

As can be seen from the related work in annotations, the current automatic tools are 

not error-free, and humans need to review their results and alter any incorrect annotations. 

Thus, we used the same approach; first, a tool automatically annotated the dataset, and then 

manual intervention was used to alter any incorrect annotations. 

2.2.5 Calculating notes’ pitch frequencies and duration according to singing 

technique and their positions in a piece of music objective 

Based on the psychoacoustic studies (Bjørklund, 1961; Seashore, 1967; Sundberg, Prame 

and Iwarsson, 1995; Dalla Bella et al., 2007; Stables, Athwal and Bullock, 2011; Sundberg, 

2011, 2013; Sundberg, Lã and Himonides, 2013; Mauch, Frieler and Dixon, 2014) the 

perception of intonation and duration of a note are affected by how the brain processes 

sound. It could be the case that a subtle drift in the previous or the following notes can 

influence the acceptable ranges within which the note is judged to be correct by the listener.  

Sundberg et al. (Sundberg, Prame and Iwarsson, 1995) studied what mean F0s were 

accepted as being “in tune” and “out of tune”. The results showed that most of the tones 

deemed to be in tune had an average F0 that varied within a narrow band of about ±7 cents, 

whereas most tones judged as being out of tune were outside this frequency band. Moreover, 

Sundberg et al. (Sundberg, Prame and Iwarsson, 1995) found that singers exhibited the same 

patterns of changing intonation when performing the same notes but used slightly different 

frequencies when they repeated these notes in other bars, that is, pitch drift. 

According to the Seashore (Seashore, 1967) study, long notes were sung with an average 

F0 that coincides with the theoretically correct value. Moreover, many long tones changed 

their average frequency in various ways during the performance of the tone. Bjørklund 

(Bjørklund, 1961) found that such deviations were typical for professional singers as opposed 

to nonprofessional singers. With regard to short tones, the relationship between F0 and the 

theoretical pitch seems to be considerably more complicated (Sundberg, 2013).  
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Sundberg & La (Sundberg and La, 2011) analysed the tuning of premier baritone singers 

and found examples of significant deviations from equal-tempered tuning (ETT), sometimes 

exceeding 50 cents. In particular, the highest note in phrases with an agitated emotional 

character was often sharpened. The intonation of such tones was flattened to equal-tempered 

tuning, and a listening test was run in which musician listeners were asked to rate the 

expressiveness in a pair-wise comparison between the original version and the version with 

manipulated tuning. There was a significant preference for the original versions. This result 

indicates that intonation can be used as an expressive device in singing.  

Based on the above explanation, researchers have found that the amount of 

allowable/imperceptible frequency deviation in each sung note depends on its position in a 

piece of music. However, because of some limitations in previous studies, the exact acceptable 

ranges of note’s pitch and duration in a piece of music are not fully understood. Therefore, 

after describing a newly created annotated singing dataset in Chapter 7, the dataset will be 

examined in Chapter 8 to discover the genuine relationship regarding the acceptability 

between the perceived F0 and duration of a note against its theoretical frequency and 

duration. As a result, Chapter 8 provides a novel algorithm to calculate the acceptable range 

of pitch frequencies and duration of each note based on its position in a piece of music. 

Theoretically, each western music note has an exact pitch frequency and duration. 

However, playing a note without pitch frequency and duration instability is practically 

impossible. This issue is more challenging when the human voice sings musical notes. Because, 

unlike musical instruments, it is impossible to tune the notes that the human voice is going to 

produce before the performance. In other words, although a singer does the tuning, it is down 

to the singer's skills to identify the correct tuning and then hold a steady tuning over the 

duration of the note to be sung. In addition, using the same physiological system for breathing 

and singing simultaneously, and how the humans’ brain perceives sounds bring more 

limitations and complexity for a singer to play notes. In singing, subglottal pressure must be 

tailored to both pitch and loudness. Since a change in subglottal pressure results in a change 

in fundamental frequency, singers should accurately reach the target subglottal pressures 

(Sundberg, 1992). Another issue that adds more complexity to in-tune singing is how the 

human brain perceives sound. Several psychoacoustic studies, such as (Bjørklund, 1961; 
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Seashore, 1967; Sundberg, Prame and Iwarsson, 1995; Dalla Bella et al., 2007; Stables, Athwal 

and Bullock, 2011; Sundberg, 2011, 2013; Sundberg, Lã and Himonides, 2013; Mauch, Frieler 

and Dixon, 2014), showed that the perception of performed F0 and the duration of a note is 

impacted by the brain's sound processing mechanism (Faghih and Timoney, 2019b). 

Therefore, it is understood that singers should sing a note in an acceptable range of F0s and 

duration. 

Although several studies, as listed below, have been conducted to define the 

perceptually acceptable performed F0s and duration ranges, they still have not precisely 

identified the ranges according to a note’s position in a piece of music. Thus, this study’s 

objective is to define these ranges more accurately by considering the effect of some variables 

altogether. 

According to Seashore (Seashore, 1967), the musical ear is generous and operates in the 

interpretive mode when it listens to singing. However, there are certainly limits to this 

generosity. Also, what appears to be generosity may be sensitivity to small, deliberate, and 

meaningful deviations from what theoretically is "correct". For example, the human hearing 

system can probably not track swift changes in pitches (Sundberg, 1972). For example, 

Moore’s study (Moore, 2013) indicated that the human ear could not distinguish between two 

transients less than 10 ms apart.  

There is another challenge in defining singing in tune. As discussed in Sundberg’s study 

(Sundberg, 2013), the challenge is that the pitch frequency bands corresponding to tones 

perceived as being in tune did not always agree with the notes of Equal-Tempered Tuning 

(ETT). Each octave is divided into equal interval steps in the ETT system. In the 12-ETT system, 

each octave is divided into 12 steps, and each one is called a semitone.  

Moreover, Sundberg (Sundberg, 2013) reported that for some tones, the mean 

performed F0 accepted as being in tune was shown to vary wildly among expert listeners. 

These tones seemed to be harmonically (simultaneously) or melodically (sequentially) 

marked. Most singers seemed to adhere to certain principles in their deviations from the ETT. 

One was to sing high tones sharp, adding an F0 correction that increased with pitch. The other 

was to sharpen and flatten, respectively, the tones that were situated on the dominant (right) 
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and subdominant (left) side of the circle of fifths, where the root of the prevailing chord was 

the “12 o’clock” reference.  

Sundberg et al. (Sundberg, Prame and Iwarsson, 1995) studied what mean performed 

F0s were accepted as being “in tune” or “out of tune” in 10 commercial recordings of a song 

that were presented to expert listeners. The results showed considerable variability in the 

judgments. Analysis of the tones accepted as being in tune by all experts or deemed out of 

tune by most listeners revealed that most of the tones deemed to be in tune had an average 

performed F0 that varied within a narrow band of about ±7 cents. In addition, most tones 

judged as being out of tune were outside this frequency band. Moreover, they found that 

singers exhibited the same patterns of changing intonation when performing the same notes. 

Nevertheless, they mentioned that singers used slightly different frequencies when they 

repeated these notes in other bars. They finally concluded that the deviation from the ETT is 

not the sole correlate of out-of-tune perception. However, because of insufficient samples, 

they could not definitively conclude under which circumstance of a particular note occurring 

in a piece of music a singer would sing that note in a lower or higher pitch. Furthermore, their 

study also exhibited some other limitations: firstly, all of their notes are in only one octave, 

between D4 and D5. Secondly, the positions of the notes were not considered in their 

evaluation. With these limitations, their result of ±7 cents cannot be considered as a precise 

range in all cases. It is quite possible, for example, that the behaviour for higher or lower 

pitches is different. This could also apply to notes with a shorter or longer duration.  

As a counterexample to the ±7 cents finding by Sundberg et al. (Sundberg, Prame and 

Iwarsson, 1995), Sundberg and La (Sundberg and La, 2011) analysed the tuning of premier 

baritone singers. They found examples of quite large deviations from ETT, sometimes 

exceeding 50 cents. In particular, the highest note in phrases with an agitated emotional 

character was often sharpened. The intonation of such tones was flattened artificially by using 

a signal processing algorithm to make it comply with ETT. Then, a listening test was run in 

which musician listeners were asked to rate the expressiveness in a pair-wise comparison 

between the original version and the version with manipulated tuning. There was a significant 

preference for the original versions. This result indicates that intonation can be used as an 

expressive device in singing.  
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Another study that showed that the pitch frequency of an individual note may change 

according to the note position is Sundberg et al. research (Sundberg, Lã and Himonides, 2013). 

They observed that a professional singer might sharpen tones sung in ETT, sometimes even 

more than 50 cents. They found that most listeners failed to realise the intonation differences 

as a pitch effect. They concluded that such sharpening might contribute to expressiveness but 

that listeners did not appear to perceive pitch as a guide by which they could rate 

expressiveness. In addition, the expert listeners perceived the original versions as more 

expressive than those in which the intonation exactly followed equally tempered tuning. 

According to the Seashore study (Seashore, 1967), long notes were sung such that the 

average of the performed F0 coincides with the theoretically correct value. However, the long 

tones are often slightly flat (approximately 90 cents on average) at the beginning and then 

gradually corrected during the initial 200 milliseconds of the tone. Moreover, many of the long 

tones changed their average frequency in various ways during the tone. Bjørklund (Bjørklund, 

1961)  found that such deviations were typical for professional singers as opposed to 

nonprofessional singers. As an example to compare professional singers to untrained singers, 

Sundberg (Sundberg, 1979) examined the maximal speed of voice pitch changes in 

professional and untrained singers of both genders. He found differences between these four 

groups (male-professional, female-professional, male-untrained, and female-untrained). It 

was observed that professional singers change pitch more quickly than untrained subjects on 

average. The same reflection is made regarding female subjects as compared with male ones. 

In addition, it has been discovered that untrained singers perform pitch drops significantly 

faster than pitch elevations. 

Sundberg (Sundberg, 2013) found that the relationship between the performed F0 and 

the theoretical pitch in short tones seems to be considerably more complicated. He observed 

that each short note takes one vibrato period, and most of the vibrato periods seem to encircle 

the target frequency approximately.  

Bottalico et al. (Bottalico, Graetzer and Hunter, 2017) discussed that pitch inaccuracy in 

singers is affected by the level of training, the tempo, articulation, semi-phrase direction 

(ascending or descending), tessitura (low, medium, or high), and the level of the external 

auditory feedback. According to their study, the mean pitch inaccuracy was between 13 and 
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58 cents. The worst case was detected for the nonprofessional singers in staccato, fast 

arpeggio in the high tessitura, and in normal external auditory feedback conditions; and the 

best case for the professionals was in legato and slow arpeggio in the high tessitura. 

Another singing feature that affects pitch frequencies is the singer’s physical gestures. 

For example, in the study by Brunkan and Bowers (Brunkan and Bowers, 2021), most solo 

singers tended toward more in-tune singing while employing the pointing gesture, whereas 

most participants became progressively more out of tune with the low in a circular gesture, 

arms moving outward and upward in front of and to the side of the torso at hip height and 

above. Similarly, in the study by Manternach (Manternach, 2016), it was discussed that the 

conductor’s movements also affect the amplitude and fundamental pitch frequencies of the 

songs sung by singers. 

Based on the above explanation, researchers have found that the amount of pitch 

deviation by singers in each sung note depends on their position in a piece of music, the 

singer’s gesture, expressiveness, audience feedback, and the conductor's movement. 

However, since these studies have some limitations, the exact explanation of singers’ 

behaviours in performing pitch and duration of a note in a piece of music are not identified. 

Therefore, Chapter 8 investigates a dataset of recorded vocals to discover some particular 

aspects of the relationship between the performed F0 and duration against its written note 

and relative duration in a music score. In other words, this chapter introduces two novel 

models to simulate trained-professional singers’ behaviours in singing notes’ pitches and 

duration according to the position of the note in a piece of music and the singing technique 

applied. Because of the limitations on available annotated singing datasets, some of the note’s 

features that might affect trained-professional singers to change the pitch and duration of a 

note were investigated in this study. Therefore, the note’s features considered for this 

research are the note’s MIDI pitch code and duration in a music score, the pitch intervals to 

the following and previous notes, the existence of a rest before or after a note, the signing 

techniques, and whether the note is a repeat.   



42 
 

2.3 Applications 

There are some common steps in most of the singing applications, as mentioned in 

section 1.3. These steps are estimating pitch contour, pre-processing, extracting and 

calculating notes’ pitches and duration, alignment, and analysing the estimated notes. The 

objectives of this thesis can improve the state-of-the-art algorithms/tools in each of these 

steps. First, chapters 3 and 4 will evaluate several pitch detection algorithms to find the more 

accurate ones according to the features of the signing signals. Then, Chapter 5 will introduce 

a new contour smoother algorithm as a pre-processing. In addition, a novel algorithm for 

estimating onsets will be introduced in Chapter 6. Finally, two models for estimating the 

expected ranges of a note’s pitch and duration in trained-professional singers will be proposed 

in Chapter 8. These findings can be applied to different applications. 

This section provides a list of possible applications of the results of this PhD study. These 

applications include alignment, singing assessment, automatic tuning of singing, singing 

imitation synthesis, and automatic singing transcription.  

The following section, 2.3.1, mainly lays out the techniques used in the applications 

discussed after that. 

2.3.1 Aligning sung notes with ground truth 

Several applications, such as score following and singing assessments, require 

alignment. For example, to assess a singing performance, the user's notes should usually be 

aligned with the ground truth before the assessment. The ground truth can be a musical score, 

a sound recording, or a mixture of both with/without accompaniment. It should be mentioned 

that in the alignment, both the duration and pitch of a note should be considered 

simultaneously. 

Some well-known alignment algorithms, such as DTW and HMM, will be explained in the 

following.  
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2.3.1.1 DTW (Dynamic Time Warping) 

Dynamic time warping (DTW) is a well-known technique to find an optimal alignment 

between two given (time-dependent) sequences under certain restrictions. Then, the 

sequences are warped nonlinearly to match each other (Müller, 2007). 

An (N, M)-warping path is a sequence 𝑝𝑝 = (𝑝𝑝1,… , 𝑝𝑝𝐿𝐿) with 𝑝𝑝𝑙𝑙 = (𝑛𝑛𝑙𝑙 ,𝑚𝑚𝑙𝑙) ∈ [1:𝑁𝑁] ∗

[1:𝑀𝑀]  for 𝐿𝐿 ∈ [1:𝐿𝐿] satisfying the following three conditions (Müller, 2007). 

1- Boundary condition: 𝑝𝑝1 = (1,1) 𝑎𝑎𝑛𝑛𝑎𝑎  𝑝𝑝𝐿𝐿 = (𝑁𝑁,𝑀𝑀) 

2- Monotonicity condition: 𝑛𝑛1  ≤ 𝑛𝑛2  ≤ ⋯  ≤ 𝑛𝑛𝐿𝐿   𝑎𝑎𝑛𝑛𝑎𝑎   𝑚𝑚1  ≤ 𝑚𝑚2  ≤ ⋯  ≤ 𝑚𝑚𝐿𝐿  

3- Step size condition: 𝑝𝑝𝐿𝐿+1 −  𝑝𝑝𝐿𝐿  ∈ {(1,0),(0,1), (1,1)}𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿 ∈ [1:𝐿𝐿 − 1] 

In addition, every index from the first sequence must be matched with one or more 

indices from the other sequence and vice versa. Figure 2-2 depicts these conditions in DTW. 

This figure illustrates the paths of index pairs for some sequence X of length N =9 and some 

sequence Y of length M =7. In Figure 2-2(a), all the above conditions are satisfied, while in 

panels b, c, and d,  the boundary, monotony, and step size conditions are unsatisfied, 

respectively. 

 
Figure 2-2 Illustration of paths of index pairs for some sequence X of length N =9 and some sequence Y of 

length M =7. (a) Admissible warping path satisfying the conditions (1), (2), and (3). (b) the boundary condition 
is violated. (c) the monotony condition is unsatisfied, (d) the step size condition is disregarded (Müller, 2007) 

The optimal match is denoted by the one that satisfies all the restrictions and rules. In 

addition, the optimal match should have a minimal cost, where the cost is computed as the 

sum cumulative of absolute differences, for each matched pair of indices, between their 

values (Müller, 2007). 

There are two ways that DTW can be employed for singing alignment.  
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a) Converting the musical notation (such as a MIDI file) to a sequence of frequencies and 

then comparing the user voice with the frequencies from the MIDI file using DTW. 

However, an attempt, as an example, to implement this procedure did not lead to a 

good result based on the experience of Molina et al.  (Molina et al., 2013). 

b) Converting the user voice to MIDI values and then comparing it with the original MIDI 

file. 

Nevertheless, in real singing situations, the user may sing some extra notes or make 

articulations that are not in the score. Additionally, they may miss some notes. In these 

circumstances, it will be impossible for DTW to assess the similarity accurately. 

Another problem identified with using DTW in this context is that although it may be 

possible to create an alignment between the frequency contour of the sung notes with the 

ground truth, it cannot inherently know the thresholds at which each sung note pitch and 

duration should be considered as correct. For example, DTW can tell us that the difference 

frequency between two notes is 50 hertz, but it cannot determine that the user performed 

the sung pitch in a perceptually correct manner. This is the same situation for the sung note 

duration. In practice, systems based on DTW (Dong et al., 2010; Molina et al., 2013; Schramm, 

Nunes and Jung, 2015; Gupta, Li and Wang, 2017; Luo et al., 2018) have been recognised not 

to be useful for singing assessment purposes, because the feedback of these systems is just a 

number that indicates the minimum distance between user performance and the target 

melody. However, as it is discussed in Chapter 8, there is a range of allowable pitch and 

duration for each note according to its position in a piece of music.  

Molina et al. (Molina et al., 2013) used the following cost formula of the DTW as given 

in equation (2-1) in order to have a better result: 

 𝑀𝑀𝑖𝑖𝑖𝑖 = min{(𝑓𝑓0 𝑇𝑇(𝑖𝑖)− 𝑓𝑓0𝑈𝑈 (𝑗𝑗))2 ,𝛼𝛼} (2-1) 

where 𝑓𝑓0 𝑇𝑇(𝑖𝑖) is the fundamental frequency (𝑓𝑓0) value of the target melody in the frame 

𝑖𝑖, 𝑓𝑓0𝑈𝑈 (𝑗𝑗) represents the 𝑓𝑓0  value of the user’s performance in the frame 𝑗𝑗,𝑀𝑀𝑖𝑖𝑖𝑖 is the cost value, 

and 𝛼𝛼 is a constant user-defined threshold.  

When the squared 𝑓𝑓0  of the difference becomes larger than 𝛼𝛼, it is assumed that a 

spurious case has been found and its contribution to the cost matrix is limited. In Molina et al. 

study (Molina et al., 2013), a discussion is made on limiting the DTW path between 10 and 80 



45 
 

degrees for intonation, but unfortunately, the exact value of α is not provided, nor is a formula 

by which it can be calculated. 

In the system by Schramm et al. (Schramm, Nunes and Jung, 2015), after obtaining 

musical scores from the user performance by employing an automatic melodic transcription 

algorithm, an alignment algorithm is used to assess the similarity between the ground truth 

and the user performance. They presented a different alignment algorithm which is very 

similar to DTW. However, their algorithm does not propagate the cumulative error since it 

does not need to obey the boundary conditions of the DTW. When they tried to find a method 

to match segments from the user performance with the ground truth, they discovered that 

the sequence of the notes performed by the user could be determined to be similar to the 

sequence of notes in the ground truth, but it will not consider any possibility of missing or 

extra notes that could exist in the user’s sequence. Therefore, a combination of correct and 

incorrect notes in close proximity in the user sequence could be adjusted by the warping 

algorithm to a smaller size set/sequence in the ground truth that contains the correct notes 

only. Thus, the combined duration in the sung version would be shrunk by warping (and very 

likely with some level of distortion created) to fit the ground truth. Figure 2-3 provides an 

example of this grouping and alignment process in which six segments in the lower part of the 

figure, with a grey fill, are mapped into three notes, the upper part of the figure outlined in 

green (Schramm, Nunes and Jung, 2015). As can be seen in Figure 2-3, this alignment algorithm 

cannot identify the extra notes correctly because the algorithm simply combines them to 

make a fit with the one note in the ground truth.  

 
Figure 2-3 Grouping process of several segments (grey) into one music note (blue) (Schramm, Nunes and Jung, 2015) 



46 
 

Luo et al. (Luo et al., 2018) used Canonical Time Warping (CTW), which is very similar to 

DTW. They tried to find an alignment between the user performance and a professional 

version of that piece of music. Therefore, the result of this algorithm is the same as DTW, but 

it is only a number that indicates the distance between two sounds. This kind of output cannot 

be useful for users who want to understand and correct their singing errors. 

In the Dong et al. (Dong et al., 2010) study, they researched a method to align the singing 

voice with a MIDI file by using DTW. Instead of converting the user performance to MIDI, they 

convert the MIDI values to a frequency which is not a better choice because it still does not 

imitate human singing behaviour in changing pitches and duration. They used the following 

formula, (2-2), to convert the MIDI to frequencies.  

 𝑓𝑓 = �2
𝑝𝑝−69
12 � ∗ 440 (2-2) 

Where f is the frequency in Hertz, and p is the midi-note value. 

Although this formula generates a series of frequencies from the notes of the MIDI file, 

it should be recognised that the MIDI representation of the notes is very different to the 

intricacies of those notes created by a human voice. For example, human singing not only 

comprises steady notes but also pitch transitions and modulations that are not captured by 

digitally generated MIDI notes (Gupta, Li and Wang, 2017). In addition, as they only looked to 

find a method to align a correct singing performance to its corresponding MIDI file, they did 

not consider the possibility of mistakes in the actual performance and how to handle them 

with their algorithm. 

Some other situations in a singing assessment are also challenging for DTW. For 

example, if the original note is a whole note, but the user sings eight notes in succession. From 

a musical perspective, this would be a terrible performance, but DTW may determine it to be 

not very bad. Indeed, while the duration and pitches should be considered together, DTW 

compares them separately. This can be illustrated in the following example: 

Consider two series of notes as [440, 493.88, 523.25] (A4, B4, C5) and [440, 493.88, 

493.88, 523.25] (A4, B4, B4, C5) that are input to the DTW algorithm. The DTW-determined 

minimum distance between the two series will be 0, implying that both series are the same. 
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However, in music notation, they are different. That is, the first series is , and the 

second one is .  

Another problem with using a DTW-based alignment algorithm is that the minimum 

distance is unreliable. For example, if the target series is [261.63, 329.63, 392.00, 523.25] 

(pitch frequencies of C4, E4, G4, and C5, respectively) and a user omits to sing the second or 

the third note, the minimum distance is 8.91, but if the missing note is the last note, then the 

minimum distance will be 18.75. Thus, in the case of this type of mistake, the DTW result is 

changed significantly. However, this numerical result is not a reason to conclude that the 

version's performance with the minimum distance of 8.91 is better than 18.75. 

Moreover, as will be discussed in Chapter 8, acceptable ranges for the note’s pitch and 

duration need to be considered. Therefore, the sung notes’ duration and pitches in DTW 

should be compared with the acceptable ranges instead of the ground truth values. In this 

case, the differences for the notes inside the acceptable boundaries should be assumed to be 

zero. 

2.3.1.2 HMM (Hidden Markov Model) 

A Hidden Markov Model is a machine learning approach that works as a state machine 

to model stochastic signal sources. Regarding singing transcription, the training data consists 

of the frame-level features extracted from recorded singings, and the training is usually 

performed unsupervised with the Baum-Welch algorithm (Ryynänen, 2006). 

A HMM is constructed for each reference signal, in which the transition probabilities 

describe note insertions and deletions, repeats, and skips, while pitch errors are described by 

output probabilities. Then, the aligned signal is counted as an output sequence from the 

HMM, and the most probable sequence of latent states is assessed with the Viterbi algorithm 

for alignment (Nakamura, Yoshii and Katayose, 2017). 

Nevertheless, HMMs cannot fully support the objectives of some applications, such as 

singing assessment, because of its limitations that are discussed in the following.  

Based on the Nakamura et al. (Nakamura, Yoshii and Katayose, 2017) study on 

polyphonic piano performances, it has been discovered that deviations in performances due 

to asynchronies between hands/voices require special treatments. Such asynchronies result 
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in the reordering of notes with different score times, which is the leading cause of alignment 

errors for HMMs (and also DTWs) that are not specially designed to handle them (Nakamura, 

Yoshii and Katayose, 2017).  To illustrate, consider the case where a ground truth note is A4 

with a frequency of 440 Hz, but the user performs it at 425 Hz, which is somewhere between 

the notes of A4 and Ab4 (410.3 Hz). However, there is no note between A4 and Ab4 in western 

music notation. Therefore, the algorithm will try to guess the intended note as either A4 with 

a frequency of 440 Hz or Ab4 with a frequency of 410.3 Hz, and then associate this with the 

ground truth note. The missing part of these studies is that each note should have an 

acceptable pitch and duration range, which will be covered in Chapter 8. 

2.3.1.3 Viterbi algorithm 

One of the applications of the Viterbi algorithms is to make the HMM evaluation faster 

by reducing the number of paths. In Ryynänen’s study  (Ryynänen, 2006), the Viterbi algorithm 

and the HMM technique were integrated.  The resulting method was that when the HMM 

parameters have been learned, the state sequence that maximises the observed data's 

posterior probability will be estimated using the Viterbi algorithm. An alternative state-

sequence estimation scheme is the token-passing algorithm, which is designed to find the 

most probable path through a network of connected HMMs (Ryynänen, 2006). In another 

study by Mayor et al. (Mayor, Bonada and Loscos, 2006), a Viterbi Matrix was employed to 

find the most probable path from all possible paths. Another application of the Viterbi 

algorithms is finding the minimum path, which indicates the distance between the user 

performance and the target melody, such as in the work done by Lal (Lal, 2006).  

Thus, the findings in Chapter 8 can help Viterbi algorithms to have a better alignment 

estimation by considering the acceptable range of pitch frequencies and duration. 

2.3.2 Score following 

One of the applications of this thesis’s objectives is in score-following, which is a real-

time alignment of the audio signals from musical performances to a given score (Nakamura, 

Nakamura and Sagayama, 2016). Several studies have been done on the score following, such 

as (Cont, 2010; Nakamura, Nakamura and Sagayama, 2013, 2016; Dorfer, Arzt and Widmer, 

2017). The general approach uses a HMM to align the user performance with the music score.  
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According to Nakamura et al. (Nakamura, Nakamura and Sagayama, 2016), one of the 

issues that should be considered during the alignment is the user’s errors since the audio 

signals associated with music performances can vary widely even if the same score is used.  

Nakamura et al. (Nakamura, Nakamura and Sagayama, 2016) provided four typical sources of 

variety in a monophonic audio performance which are the following. 

(a) Acoustic variations: Spectral features of audio performances depend on musical 

instruments and are not stationary. In addition, audio performances usually include noise 

caused by the surrounding environment and musical instruments (e.g. resonance, background 

noise, breath noise, and other acoustics). 

(b) Temporal fluctuations: The tempo of the performance, onset times, and durations 

of performed notes deviate from those indicated in scores due to the performer’s skills, 

physical limitations of musical instruments, and musical expressions. For example, 

performances during practice are often rendered at a slow tempo to avoid errors. Moreover, 

a technique in music termed Rubato, associated with the interpretation of the piece, gives the 

player rhythmic freedom to change the speed. 

(c) Performance errors/variation: Performers may make errors due to a lack of 

performance skills or misreading the score. Errors are categorized into pitch errors 

(substitution errors), dropping notes (deletion errors), and adding extra notes (insertion 

errors). Besides, performers may pause between notes, for example, to turn a page of the 

score and check the next note. Furthermore, for expression, this is the activity of interpreting 

a score that every musician must do and distinguishes each musician's approach to a piece of 

music. 

(d) Repeats/skips: Performers may repeat and/or skip phrases during practice. 

Furthermore, the performers generally add or delete a repeated section. 

Most of the studies on score following algorithms have not resolved these errors entirely 

(Orio, Lemouton and Schwarz, 2003; Schwarz, Orio and Schnell, 2004; Pardo and Birmingham, 

2005; Nakamura et al., 2014). However, one of the well-developed systems that considered 

these errors is the study by Nakamura et al. (Nakamura, Nakamura and Sagayama, 2016). They 

used two HMMs, one to find the probability of the sequence of notes and the other for figuring 

out the name of the note of the current signal. Still, there are some limitations to their 
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approach. As they mentioned, “the accuracy of score following generally depends on the 

parameters of the emission probabilities”. In addition, “the parameters can be learned from 

every musical instrument if necessary data is available, and we can form a detailed model for 

a specific instrument” (Nakamura, Nakamura and Sagayama, 2016). They evaluated their 

system for clarinet, and the substitution errors were restricted to three types typical in clarinet 

performances: errors in semitone, whole-tone and perfect 12th. The first two errors are often 

caused by fingering and misreading the score, and the last error is caused by overblowing on 

a clarinet. Their proposed system could be evaluated with a human voice, and the errors that 

often happen during singing should be considered instead. In addition, they compared their 

algorithm with another tool known as Antescofo (Cont, 2010) and showed that their algorithm 

could find errors better than Antescofo, but still, their algorithm could not identify all the 

errors.  

The objectives of this thesis can help with better note estimation and also alignment for 

the score following application. The central requirement of the score following algorithms is 

estimating the sung notes. As discussed in 2.3.4, the state-of-the-art note estimator 

algorithms have some errors in estimating notes, especially from singing signals. Thus, after 

selecting a more accurate algorithm to estimate pitch contour according to Chapters 3 and 4, 

and then smoothing it based on the proposed pitch contour smoother algorithm in Chapter 5, 

the notes can be estimated more accurately by the onset detection algorithm discussed in 

Chapter 6. Finally, the alignment algorithms can benefit from the models proposed in Chapter 

8, as discussed already in Section 2.3.1. 

2.3.3 Singing Assessment Systems 

Enhancing the singing assessment systems is other application of this thesis's goals. 

Generally, we can divide the current singing assessment systems into two categories: (1) 

Entertainment and (2) Educational.  

2.3.3.1 Entertainment  

In the commercial marketplace, there are several applications for judging singing. Their 

general idea is the same: comparing the user's performance with the target melody and then 

giving a score to the user based on the similarity between the user's performance and the 

target melody. For example, Lal (Lal, 2006) presented an entertainment application which 
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compares user performance with the target melody and finally gives the user a score between 

0 to 10 to indicate how much the user performance was similar to the target melody. Another 

example is Singstar 1, a game app based on the PSx console. In this app, when a piece of music 

is played, its user/users should sing its lyric. Users can see which notes they sang that had the 

correct pitch, duration, and onset displayed on the screen. Finally, the user with the highest 

score is the winner. A screenshot of Singstar can be seen in Figure 2-4. At the bottom of Figure 

2-4, the blue part, the performance of one of the users, can be seen and at the top, the red 

part, the performance of another user. On the right side of Figure 2-4, the score of each user 

is presented. 

 
Figure 2-4 A screenshot from Singstar application [www.gamestop.ie] 

Ultrastar 2 can be considered as another example, which is very similar to Singstar. It 

should be mentioned that none of these tools compares user performance with musical 

scores, but they compare it with the original singer's version, which is a sound recording and 

not transcribed. In addition, their purpose is not to teach singing but to be a fun activity for its 

users. 

 
1 Available online at https://www.singstar.com. Accessed on 01/11/2022. 
2 Available online at http://ultrastardx.sourceforge.net/. Accessed on 01/11/2022. 

https://www.singstar.com/
http://ultrastardx.sourceforge.net/
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2.3.3.2 Education 

Lin et al. (Lin et al., 2014) introduced a system that evaluates user singing performance 

with a musical score and gives the users three scores to assess pitch, rhythm, and total score. 

However, the primary drawback of their system is its use of DTW for evaluation, as critiqued 

in 8.2.1.1. 

WinSingad (Howard et al., 2004) is a software to display the pitch contour, spectral ratio, 

and spectrogram to the user in real-time. Therefore, since the user receives immediate 

feedback, they can try to fix any problems that arise. In this system, the user’s role is to analyse 

their performance based on the pitch contour shown on the screen and then identify and fix 

their problems. In other words, WinSingad does not offer any performance insights or clever 

evaluation algorithm; it simply depicts the F0 of the singing performed by the user. To 

estimate F0, they used the algorithm introduced by Gruenz and Schott (Gruenz and Schott, 

1949), and then with several post-processing stages, they tried to correct any incorrectly 

estimated pitches. Unfortunately, they did not provide an evaluation of their pitch contour 

estimator's accuracy, and their codes or detailed algorithm were not outside evaluation. Thus, 

the generated pitch contour's accuracy with their software is unclear. 

Another software is Sing & See 1 , which displays the user's pitches in real-time, as seen 

in Figure 2-5. This software also provides the spectrogram. Unfortunately, this software does 

not evaluate user performance to determine users’ errors, but users must find their problems 

by examining the pitch contour drawn on the screen. MiruSinger (Nakano, Goto and Hiraga, 

2007) is similar to WinSingad and Sing&See, again looking to display the pitches performed by 

the user without analysing and comparing user performance with the ground truth.  

 
1 Available online at http://www.singandsee.com. Accessed on 01/11/2022. 

http://www.singandsee.com/
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Figure 2-5 A screenshot of Sing&See software 

One of the other related works is (Molina et al., 2013). This looks to find a different 

approach to singing voice assessment. Instead of using the musical score as the target melody, 

they asked a professional singer to sing their target melody in order to have a set of human 

ground-truth signals against which they could assess users’ performances. They used the 

mean of the intonations and rhythm (onsets) to discover the similarity between the user 

performance with the target melody. This appears to be the reason that their system was 

found to give better results in comparing a user's performance with the target melody. 

However, there are some weaknesses in their proposed system too. The main weakness is 

that their system is based on a variant of DTW (by considering F0) and note-level similarity.  

Generally, in automatic singing assessment, it is essential to discover each of the user’s 

errors and highlight them individually to the user so that they can figure out the cause of each 

one. In other words, the notes should be extracted and then compared to the ground truth, 

and finally, each note's accuracy should be determined according to the note's position in the 

melody. 

Mayor et al. (Mayor, Bonada and Loscos, 2006; Mayor, Oscar., Bonada, Jordi., Loscos, 

2009) introduced an algorithm for the tutoring of singing. Their main goal was to accurately 

segment the user performance based on untrained HMMs with probabilistic models built out 



54 
 

of a set of heuristic rules. In addition, they used Viterbi to find out the best path of the input 

sequence according to the reference MIDI score. An overview of their system can be seen in 

Figure 2-6. 

 
Figure 2-6 Overview of the analysis and note segmentation/expression transcription process proposed by Mayor 

et al.  (Mayor, Bonada and Loscos, 2006) 

However, there are some issues with their system:  

1- They used a tolerance of 30ms for the segmentation and considered boundaries within 

this margin correct. However, they did not include the source of the evidence from 

which they selected this value of 30ms. The boundaries for the notes of different 

duration should most likely be quite variable, as discussed in section 2.2.5. 

2- Their method is first based on the transcription of the user performance, which is then 

compared with the reference MIDI score. The difficulties with this approach are 

highlighted in section 2.3.1. 

3- Although they mentioned that their segmentation was correct to a value of 95% over 

1000 notes, they did not make their test cases available, so it is impossible to find out 

under which conditions their systems can work to an accuracy of 95%. 

4- In addition, regarding timing/tempo, they indicated that the “begin time and duration 

should be close to the MIDI note onset and duration, respectively. Each note must have 

a minimum duration. The beginning and the end of the note must have a pitch. The 

average pitch of the note should match or be close to the reference pitch (after octave 
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correction), and the same should happen with intervals between two notes” (Mayor, 

Bonada and Loscos, 2006). However, these are vague sentences because they did not 

indicate how much numerically they should be close to the MIDI values.  

2.3.3.3 Sight singing 

Sight singing is one of the fundamental lesson activities for all music students, no matter 

their musical discipline. In sight singing, pupils learn how to sing a written musical score by 

interpreting notes' pitches, duration, and loudness in real-time. To acquire the skills to be a 

good singer frequently involves a teacher and requires much time for practice on one’s own. 

The most important things to learn from the beginning are to stay ‘in-tune’ and ‘in-time’, that 

is, to have accurate intonation, a strong sense of rhythm, and accurate articulation (Henry, 

2011). Typically, the teacher will help a student develop these capabilities using exercises and 

offering them musical pieces at increasing difficulty levels. It is then up to the student to 

practice these prior to the next lesson.  However, they often find mastery of the essential skills 

to be one of the most difficult challenges (Henry, 2011). 

Usually, sight-singing classes are held as one or two sessions per week. Therefore, a 

student should receive regular feedback. Nevertheless, if a student is practising his/ her lesson 

incorrectly and does not absorb the feedback, they may get used to singing incorrectly, which 

may take longer then to fix later on. Furthermore, stumbling over difficulties with no 

encouragement can demoralise some to the point that they can feel that they will never 

overcome certain musical obstacles. Therefore, having a tool that could give them immediate 

and detailed feedback would be extremely useful and assist them in making more rapid and 

confident progress (Henry, 2015; Schramm, Nunes and Jung, 2015). 

In the last few years, several researchers have proposed software systems to assist the 

learner in their practise that can give them feedback and, thus, accelerate their progress for 

more serious students of music (Nakano, Goto and Hiraga, 2006, 2007; Hoppe, Sadakata and 

Desain, 2006; Lal, 2006; Mayor, Bonada and Loscos, 2006; Mayor, Oscar., Bonada, Jordi., 

Loscos, 2009; Cano, Dittmar and Grollmisch, 2011; Molina, 2012; Abeßer et al., 2013; Lin et 

al., 2014; Schramm, Nunes and Jung, 2015, 2016; Henry, 2015; Yu et al., 2016; Tardón et al., 

2018; Gupta, Li and Wang, 2018; Luo et al., 2018). The basics of these systems are pretty 

straightforward: The user’s singing is digitized by the computer that, first of all, detects the 
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pitch of the notes they produce, and analyses the pitch contour to remove any algorithmic 

errors. Following this, an alignment is made with a ground truth, often in the form of a 

symbolic representation (such as MIDI) of the song melody using known techniques that 

include Dynamic Time Warping (DTW) (Dixon and Effects, 2005; Dong et al., 2010; Devaney et 

al., 2011; Abeßer et al., 2013; Molina et al., 2013; Lin et al., 2014; Schramm, Nunes and Jung, 

2016; Valero-Mas, Salamon and Gómez, 2015; Schramm, Nunes and Jung, 2015; Yu et al., 

2016; Gupta, Li and Wang, 2017, 2018; Tardón et al., 2018; Luo et al., 2018), Hidden Markov 

Models (HMM) (Mayor, Oscar., Bonada, Jordi., Loscos, 2009; Devaney et al., 2011; Nakamura, 

Yoshii and Katayose, 2017), and the Viterbi algorithm. This process creates scores that 

measure the goodness of the match between the sounds produced by the users and ground 

truth for pitch intonation and rhythm accuracy. 

One of the well-developed systems for teaching sight-singing is the study by Schramm 

et al. (Schramm, Nunes and Jung, 2015, 2016). They analysed user hand gestures by using a 

camera-based system as a timing measure instead of a computer-generated metronome. In 

this case, their system can evaluate users’ performance based on their tempo. In addition, 

since, on occasion, in some music pieces, it can be necessary to change tempo and/or time 

signature, their system can handle these situations easily. Moreover, their system is one of 

the rare systems that can analyse a user’s performance on a note-by-note basis; most of the 

other systems give an overall score only as feedback to their users. Their evaluations on the 

pitch, onset, and offset are based on a dataset generated by themselves and labelled by a 

committee of sight singing experts. They analysed the experts’ labels (correct/incorrect pitch, 

onset, and offset) by employing Gamma probability to determine the accuracy of a user’s 

performance. The reason for using Gamma probability is that since the experts’ votes were 

not precisely the same, they required a way to compute the probability of the correctness of 

a note based on the aggregate experts’ opinions. Figure 2-7 depicts their Gamma probability 

distributions for correct and incorrect answers based on the experts’ annotations where the 

pitch is shown by 𝛥𝛥𝑓𝑓 in midi scale, onset by 𝛥𝛥𝛥𝛥 in seconds, and offset 𝛥𝛥𝛥𝛥 in seconds. The 

authors of the paper mentioned their other work (Schramm, Jung and Miranda, 2015), where 

the Gamma probability could work successfully, and how the characteristics of their data were 

similar. 
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Figure 2-7 Gamma probability density functions estimated from two distinct training datasets. (a) annotated by 
30 expert listeners. (b) annotated by five expert listeners. The parameters pitch, onset, and offset are labelled as 

correct or incorrect based on the annotation (votes) given by the experts (Schramm, Nunes and Jung, 2016).  

However, there are some difficulties with their study. In particular, there is an essential 

question regarding the practicalities of the hardware equipment because it has a computer 

vision element. There is some doubt about the percentage of pupils who want to learn sight 

singing who would feel comfortable standing in front of a camera and moving their hand for 

a long time to practice their sight-singing. Also, while this kind of system may be interesting 

at the beginning, over time, it is not clear that which percentage of students who started using 

these systems for learning would like to continue their learning with this system, particularly 

because mastering sight singing requires several months or years of commitment. 

Another issue in their study is that their method for finding the acceptable range of 

values for pitch, onset, and offset is unreliable, as they mentioned they did not have sufficient 

samples. In addition, their dataset was based on the five short pieces within which most of 

the notes were only in one octave, from A3 to A4. Finally, the samples in their dataset came 

from a small pool of just two music professors and three undergraduate students. Therefore, 

it could be difficult to have a high level of confidence in the strength of their evaluations. This 

is because the number of samples was inadequate, and only two of five performers most likely 

had expertise in sight singing, and we do not know about the expertise of the other three 
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persons. Therefore, although the reported results appear to be reasonable(Lin et al., 2014; 

Henry, 2015; Schramm, Nunes and Jung, 2015, 2016), some issues require attention. The most 

important of these issues is how to align the sung notes with the ground truth, as discussed in 

section 2.3.1.  

This thesis’ aims can provide significant progress on automatic sight singing systems by 

explaining how to capture and edit pitch contours in Chapters 3-5, extract notes in Chapter 6, 

and distinguish the correctly sung note from the incorrect ones according to the findings in 

Chapter 8. 

2.3.4 Automatic tuning of singing 

Tuning singing refers to changing pitch notes to be in tune. The current approaches for 

auto tunning are based on comparing the sung notes with the nearest pitch frequency in an 

equal-tempered scale (Salazar et al., 2015; Technologies, 2022), professional singers (Luo et 

al., 2018), or the instrumental accompaniment track (Wager et al., 2020). However, several 

concerns exist about the naturality of the sound generated by these software tools. 

Therefore, the finding of this study can introduce a new approach that compares the 

note with the features of the previous and the following notes. Thus, the shifting note can be 

more natural and does not require professional song versions or instrumental accompaniment 

tracks. 

2.3.5 Singing imitation synthesis 

Signing imitation synthesis refers to generating sound by hardware or software that 

mimics a human performance to that the sounds are similar to human singing.  

Goto et al. (Goto et al., 2012) analysed only the characteristics of notes, such as pitch 

and amplitude, but not the position of the note in a piece of music to imitate singing.  

Similarly, in the study by Zhou et al. (Zhou et al., 2020), a Generative Adversarial 

Network was trained by extracting different Mandarin syllables. Then, their machine 

generated sound for XML-Music files according to the trained machine. They asked ten people 

to vote on the naturality of the generated sounds with their system, and used the Mean 

Opinion Score (MOS) to calculate the average rating of the people's opinion. The MOS was 
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3.12 (out of 5).  Their results can be improved by considering the effect of the position of the 

notes in a piece of music on their pitches, duration, and loudnesses. 

In the other study by Jeerapradit et al. (Jeerapradit, Suchato and Punyabukkana, 2018), 

they considered several features of notes such as F0, volume, and interval to the previous and 

following notes as well as the duration of them. However, their system can be improved by 

considering more features such as singing technique or the existence of a rest before or after 

notes. 

Moreover, singing synthesizers, such as Synthesizer V 1 and Vocaloid 2, generate very 

accurate pitches according to the equal temperament system, but as discussed in section 

2.2.5, singers change the notes' pitches according to the positions of the notes in a piece of 

music. Thus, these synthesizers can benefit from the findings of Chapter 8 to produce more 

natural sounds. As an illustration, Figure 2-8 provides a screenshot from the Vocaloid. The 

inputs of this software are musical scores and lyrics, and then the software will sing the lyrics 

based on the notes. As shown in Figure 2-8, this tool plays the sounds with absolute pitches, 

which is unnatural. Although articulations can be introduced, it is a complicated process and 

difficult as the user has to try out each one until they find something that sounds good; this 

could be very time-consuming as it needs to be done for every note. Thus, notes’ pitches and 

duration must be changed according to their positions in the piece of music and the applied 

singing technique, as discussed in section 2.2.5. 

 
1 https://dreamtonics.com/en/synthesizerv/ 
2 https://www.vocaloid.com/ 
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Figure 2-8 A screen shot of Vocaloid software 

2.3.6 Automatic singing transcription 

Automatic singing transcription refers to a computer tool that automatically converts 

the sung notes to musical scores. Several commercial tools are available to convert sounds to 

sheet music, such as Soundslice 1, Klangio 2, Melody Scanner 3, ScourCloud 4, and Sing2Notes5. 

As reported by researchers such as (Nishikimi et al., 2019, 2021), one of the challenges in 

automatic singing transcription is estimating the corresponding note in music score for each 

sung note. The findings in Chapter 8 can lead to a better estimation approach for guessing the 

pitches and the duration of the notes. In addition, the findings in Chapters 3 to 6 can result in 

better approaches for estimating onsets as well as calculating pitches. 

2.4 Conclusion 

In conclusion, the state-of-the-art algorithms/tools have some difficulties correctly 

estimating pitch contour from singing signals in a real-time environment. Thus, Chapters 3 and 

4 guide the selection of a proper pitch detection algorithm according to the features of the 

input signals. Then, they can benefit from the smoother pitch contour algorithm introduced 

 
1 https://www.soundslice.com/transcribe/ 
2 https://klangio.com/ 
3 https://melodyscanner.com/ 
4 https://scorecloud.com/ 
5 https://sing2notes.com/ 
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in Chapter 5. In addition, there are some problems with extracting notes from signing signals 

such that the onset detection algorithm proposed in Chapter 6 would be suitable to improve 

this task. Moreover, in general, having more data can lead to more accurate conclusions. Thus, 

the annotated VocalSet dataset generated in Chapter 7 can help this objective. Finally, to 

analyse and synthesise singing signals, it is necessary to quantify singers’ behaviour with 

respect to changing notes’ pitches and duration according to their positions in a piece of 

music. The algorithms provided in Chapter 8 can help us to understand better how trained-

professional singers perform the pitch and duration of a note according to its position in a 

piece of music and the variety of singing techniques that they could apply.



 

 

 

 

 

 

 

 

Chapter 3                                                              
Pitch detection from                                         

singing signals 

  

This chapter aims to provide an overview on some offline and real-time state-

of-the-art pitch detection algorithms and evaluate their accuracies in singing signals. 

This chapter provides a guidance of selecting pitch detection algorithm for singing 

signals. The contents of this chapter are already published in the following paper.  

• Faghih, Behnam & Timoney, Joseph, “An investigation into several pitch 
detection algorithms for singing phrases analysis”, The 30th Irish Signals and 
Systems Conference (ISSC 2019), Maynooth, Ireland. 
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This chapter's principal aim is to evaluate some state-of-the-art pitch detection 

algorithms to find the most accurate one for singing signals. The following section will 

introduce the dataset to be analysed and explain the difficulties associated with the pitch 

detection of these files. It will also detail the software framework for the analysis. Lastly, it will 

describe and justify the evaluation criteria. Section 3.2 will explain the pitch detection 

algorithms and their implementations, including the importance of the parameters associated 

with some of them. Then, section 3.3 will provide the results and explain each algorithm's 

performance. The final section, 3.4, will conclude this chapter. 

3.1 Methodology 

3.1.1 Dataset 

We used the VocalSet dataset (Wilkins et al., 2018), a singing voice dataset consisting of 

more than 10 hours of monophonic recorded audio of professional singers demonstrating 

both standard and extended vocal techniques on all five vowels. VocalSet contains recordings 

from 20 different singers (11 males and nine females) with a range of voice types. VocalSet 

has not only the full set of vowels but also a diverse set of voices on many different vocal 

techniques, singing in contexts of scales, arpeggios, long tones, and excerpts. For this study, 

the C scale and arpeggios performance of 10 males and nine females in both fast-forte and 

slow-forte were selected; in other words, the musical material is the same and is of a loud 

volume (forte), but in one case, it is sung at a quick tempo (fast) which in the second case the 

tempo is much slower (slow). Therefore, the total number of files used was 76. 

Table 3-1 illustrates the distribution of the notes in the selected files with the total 

number of their reputations. As can be seen in the table, the paled notes are between C3, 

130.815 Hz, and D5, 587.33 Hz. In addition, the minimum number of repetitions of the notes 

belongs to D5, with 18 repetitions, and the maximum is 132 for C4.  
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Table 3-1 The distribution and total number of repetitions of the notes played by the singers in selected files.  

Note Pitch frequency (Hertz) Number of repetitions 

C3 130.815 80 

D3 146.83 40 

E3 164.815 80 

F3 174.615 40 

G3 196 80 

A3 220 40 

B3 246.94 40 

C4 261.625 132 

D4 293.66 56 

E4 329.63 72 

F4 349.23 36 

G4 392 72 

A4 440 36 

B4 493.88 36 

C5 523.25 54 

D5 587.33 18 

 

The reason for categorising the files according to gender is, as reported by other studies 

such as (Drugman and Alwan, 2011; Gonzalez and Brookes, 2014; Jouvet and Laprie, 2017; de 

Obaldía and Zölzer, 2019), the performances of pitch detector algorithms are different in male 

and female voices. Thus, there is a similar approach by the researchers that categorized their 

datasets to males’ and females’ voices to show the performances of the algorithms in each 

gender. The reason for this difference is not reported, but it is not simply changing the window 

size for calculating low- and high-pitch frequencies. One possible reason can be that the F0s' 

harmonies generated by men’s and women’s voices may differ. However, finding the reason 

for the difference in pitch estimators' performances in males’ and females’ voices is beyond 

this thesis's objective.  
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3.1.2 Tools 

With the natural singing files, there is no accompanying file containing the exact musical 

pitches that are being sung and the times at which they are sung. To be able to assess the 

accuracy of the pitch detection algorithms, therefore, such an extension to the dataset must 

be made. It was considered that one possible way to achieve this is to use another signal 

decomposition tool that will facilitate the isolation of the fundamental component only from 

which an accurate pitch track can be obtained. This tool must be operated manually, and the 

fundamental frequencies must be identified visually. The Spear tool (Klingbeil, 2005) was 

discovered as being suitable for generating this ground truth. The Spear tool performs a 

frame-by-frame sinusoidal analysis (Serra and Smith, 1990), identifies all the important peaks 

in each frame, and connects together peaks that exhibit a trajectory. Additionally, the Spear 

tool provides both a visualization of all the important frequency components in an audio file, 

and a means by which they can be edited and removed. Thus, all unwanted components 

except the fundamental can be deleted, and a ground truth can be achieved. In Figure 3-1, 

two screenshots of the visualization of Spear are given. In the above part of this figure, the 

highlighted line, the red line, is the base pitch, and any other lines in black and grey are the 

harmonics. The strength of a component is indicated by the colour, varying from grey to black, 

illustrating weak to strong. By manually finding the fundamental frequencies, all other 

components can be deleted, and a frequency-varying sinusoid with respect to the 

fundamental frequency can be resynthesized. The isolated fundamental is shown in the lower 

panel in Figure 3-1. On all occasions, selecting the base pitch among the components was 

found to be straightforward.  
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Figure 3-1 Example of the interface for Spear with the fundamental frequencies highlighted in red. In general, 
strong components are black, and weak ones are grey. 

3.2 Pitch detection algorithms 

Four well-known pitch detection algorithms (PYIN, Praat, PLL-Based, and Kalman filter) 

were selected for this study. Different tools were employed to implement these algorithms.  

The Tony tool (Mauch et al., 2015) was used to analyse as it contains an implementation 

of the PYIN algorithm (Mauch and Dixon, 2014). One of the valuable features of this tool is 

that once the pitches have been detected, all the estimated frequencies can be saved into a 

text file. The PYIN algorithm is based on the YIN algorithm, and its approach is to consider 

multiple candidates for the pitch based on a probabilistic interpretation of the earlier YIN (de 

Cheveigné and Kawahara, 2002)  pitch detection algorithm. A HMM is used to produce the 
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final pitch track from the estimates (Mauch and Dixon, 2014). Regarding the Yin algorithm, 

upper and lower F0 search bounds are essential parameters for most methods. In contrast to 

other methods, YIN needs no upper limit (it tends, however, to fail for F0s beyond one-quarter 

of the sampling rate) (de Cheveigné and Kawahara, 2002). A wide range increases the 

likelihood of ‘‘finding’’ an incorrect estimate, so relatively low error rates despite a wide 

search range indicate robustness (de Cheveigné and Kawahara, 2002). 

The Praat tool (Boersma and van Heuven, 2001) is employed to analyse the dataset 

based on the Boersma algorithm (Boersma, 1993). This uses an autocorrelation approach 

followed by dynamic programming to find the best path among a set of pitch candidates. The 

author of this paper (Boersma, 1993)  was looking to tackle some issues regarding the 

sampling and windowing approaches to pitch detection. The main issue is accurately 

determining the position and height of the maximum peak in the autocorrelation function 

and, thus, the correct pitch (Boersma, 1993). In PRAAT, all the estimated frequencies can be 

saved into a text file. 

Matlab is used to implement the Extended Complex Kalman Filter (ECKF) (Das, Smith 

and Chafe, 2017) and the PLL-Based pitch detection (Zolzer, Sankarababu and Moller, 2012) 

algorithms.  

The ECKF algorithm operates on a sample-by-sample basis. This algorithm is based on 

the Kalman filter, a well-known approach to tracking parameters in noise. However, in the 

case of the ECKF, there is a nonlinear relationship between the changing state (pitch value) 

and the observation (the output waveform). Furthermore, the iterative nature of the 

algorithm means that at the beginning of a sound, it has difficulty estimating the pitch, but 

after a while, the parameter values adapt to give better estimates.  

Similar to ECKF, the PLL-based pitch detection provides a sample-by-sample 

instantaneous pitch estimation. Its basic operation is to lock its internal oscillator to the input 

signal in such a way to minimize the error in phase between the two (Zolzer, Sankarababu and 

Moller, 2012). PLLs are a common tool in communication applications, and only recently have 

found applications for audio pitch detection.  
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One of the difficulties in implementing the PLL and Kalman algorithms is finding the best 

values for their parameters. In this study, in order to find the best value for their parameters, 

after selecting a wave file from the dataset, testing loops with small step sizes were used to 

create values for the parameters across their possible ranges. Many files were generated to 

assess the different values for parameters. Then, by plotting the data, the values for the 

parameters can work well with the selected sound file can be ascertained. Consequently, 

those parameters were then applied to the whole dataset, and the estimated pitch 

frequencies were saved. 

The author of this dissertation created a Singing Data Analyser tool, written in C#, and 

was used to manage the testing of these pitch detection algorithms. The inputs of this 

software tool are the text files generated by the Tony, Praat, or Matlab software. After 

preparing the format of the input text files, this tool facilitated the plotting of the results.  

3.3 Results 

Praat and PYIN worked well with all dataset items, as highlighted in Table 3-2 and Table 

3-3, without any incorrect pitch estimation. In these tables, oct means the octave-doubling 

problem, and inc means any other incorrect estimation other than octave-doubling. On the 

other hand, the performances of the PLL and Kalman were not promising. Because out of the 

76 files, only the pitch contours from 16 and 48 files were found correctly by the PLL and 

Kalman algorithms, respectively. In addition, it can be observed that the Kalman algorithm 

worked better for female voices than male voices, with 70 correct estimations for females 

compared to 54 for male performances. In order to find the reason for this issue, one of the 

men’s voices was selected to find the best algorithmic parameters for that file. After that, 

these new algorithmic parameters were applied to the files of men’s voices only, but then this 

implementation resulted in more inaccurate pitch values in comparison to previously. 

Therefore, the sensitivity of the ECKF algorithm was clear. 

Moreover, in both PLL and Kalman implementations, more problems were observed 

than just octave doubling: it was often trebling or more due to an octave overestimation or 

higher harmonic tracking. Examples of octave doubling are shown in Figure 3-2 (a) and other 

problems in Figure 3-2 (b). However, the detected contours for the PYIN and Praat algorithms 
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are overlaid with the ground truth contour and are thus hidden by it because they are the 

same except in a few instances that can be seen in Figure 3-2 (b) for the PYIN around time 

3.75 sec and 5.5 sec that they are not fully aligned with the ground truth. 

Table 3-2  the number of incorrect instances of f0 determination in the pitch detection algorithms for the 
fast-forte data 

 Female Male 

 Scale Arpeggios Scale Arpeggios 

 octa incb oct inc oct inc oct inc 

PYIN 0 0 0 0 0 0 0 0 

PLL 0 4 0 5 4 6 2 8 

Kalman 2 0 2 1 4 3 5 2 

Praat 0 0 0 0 0 0 0 0 
a. oct = Octave-doubling 

b. inc = incorrect 

Table 3-3 The number of incorrect instances of f0 determination in the pitch detection algorithms for the slow-
forte data 

 Female Male 

 Scale Arpeggios Scale Arpeggios 

 octa incb oct inc oct inc oct inc 

PYIN 0 0 0 0 0 0 0 0 

PLL 3 3 2 4 3 6 4 6 

Kalman 0 0 0 1 2 1 2 3 

Praat 0 0 0 0 0 0 0 0 
a. oct = Octave-doubling 

b. inc = incorrect 

 

 



70 
 

(a) 

Pi
tc

h 
fre

qu
en

cy
 (H

er
tz

) 

 
  Time (seconds) 

(b) 

Pi
tc

h 
fre

qu
en

cy
 (H

er
tz

) 

 
  Time (seconds) 

Figure 3-2 Example outputs of the various pitch detection algorithms 

 

Figure 3-3 This picture depicts the PLL algorithm problem at the beginning of sounds 
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Another observation was that since the Kalman filter and the PLL are real-time 

algorithms that detect the pitch on a sample-by-sample basis, they will settle before they start 

to track correctly, as shown in Figure 3-3 that at the beginning of estimation, they could not 

calculate the F0s correctly. However, the PYIN and Praat algorithms have some pre-processing 

to get everything into line, forcing errant values to confirm their detected contour. 

Another comparison was conducted to ascertain the standard deviation of the 

differences between each algorithm and the ground truth. It was conducted by subtracting on 

a sample-by-sample basis the estimated pitch of each algorithm from its corresponding pitch 

in the ground truth for all the 76 recorded files. Finally, the average of each algorithm's 

standard deviations was calculated and presented in Table 3-4. This measurement can provide 

an overview of the frequencies detected compared to ground truth. If the value is zero, the 

algorithm estimated the pitches without any variance, and if the result is closer to 0, it is better 

than when it is far from zero. This table shows that the best performance was recorded for 

PYIN, followed by Praat and Kalman, and the worst was for the PLL algorithm.  

Table 3-4  Diff between the standard deviation of each algorithm with ground truth 

 PYIN Praat Kalman PLL 

Diff Std with ground truth’s Std (in 
Hertz)  54.13 64.15 83.99 99.89 

3.4 Conclusion 

This chapter has analysed the performance of four pitch detection algorithms. The PLL 

and ECKF operate on a sample-by-sample basis, so they seem suitable for real-time 

implementations. From the experimental results, it was observed that PYIN had the best 

performance, followed by Praat. However, these two algorithms are offline; thus, they are 

unsuitable for the real-time singing analysing objectives of this thesis, albeit they will be used 

to generate ground truth data in Chapters 5, 6 and 7. On the other hand,  the performance of 

the ECKF and PLL algorithms was not good and, in many cases, exhibited inaccuracies that 

were manifested as the pitch appearing in the incorrect octave and displaying spurious large 

deviations. One problem recognized with the ECKF and PLL algorithms is that they are very 

sensitive to the set of algorithm parameters and highly dependent on the input data. This 

means that for different input data, it is necessary to find the most appropriate values before 
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applying the algorithm. This is a disincentive to applying these algorithms, which means a 

significant pre-processing step is required.   

The results from a previous study by (Gupta, Li and Wang, 2017) support our result that 

the PRAAT (Boersma and van Heuven, 2001) pitch estimator gives the best voicing boundaries 

even without post-processing, while the source-filter model-based STRAIGHT (Kawahara, Estill 

and Fujimura, 2001) pitch estimator is the most robust algorithm in noisy conditions. Finally, 

the modified autocorrelation-based estimator YIN (de Cheveigné and Kawahara, 2002) 

achieves the best pitch detection accuracy, but it requires many post-processing steps 

depending on the properties of the music type being analysed, as described in (Dixon and 

Effects, 2005).  

 It is found that the PLL and ECKF algorithms should be modified to find the best 

implementation arrangement to work well with human voices. In addition, an effective 

method should be found that could adjust the algorithm parameters dynamically in scenarios 

where input signals have properties that vary rapidly. 

The generated ground truth dataset and the found reliable offline pitch detection 

algorithms, PYIN and Praat, can be used as ground truth to compare the real-time algorithms’ 

accuracy. Therefore, the next chapter will evaluate several real-time pitch detection 

algorithms. 



 
Chapter 4         

An investigation into several 

real-time pitch detection    

algorithms in singing signals 

The two main objectives of this chapter are: firstly, comparing several real-

time pitch detection algorithms with different parameters to find the best ones for 

detecting the pitch from live monophonic singing. Secondly, finding a method to 

distinguish the set of correctly detected pitches. The contents of this chapter are 

already published in the following preprint paper.  

• Faghih, Behnam & Timoney, Joseph, “Real-Time monophonic singing pitch 
detection”. http://dx.doi.org/10.13140/RG.2.2.22054.19526

http://dx.doi.org/10.13140/RG.2.2.22054.19526
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This chapter evaluates the efficiency and correctness of several real-time pitch detection 

algorithms applied to the singing voice based on different. Moreover, several approaches are 

investigated to assess the estimated pitches' accuracy. Therefore, after explaining the 

research methodology in section 4.1, the results and discussion are presented in section 4.2. 

A section with a conclusion will follow this. 

4.1 Materials and Methods 

4.1.1 Pitch detection algorithms 

As it is mentioned in Chapter 3, the newer real-time pitch detection algorithms could 

not find the F0s from signing signals appropriately. Thus, this chapter selected some well-

known/ common in used real-time algorithms, but older algorithms, to evaluate their 

performance in signing signals.  

Therefore, the seven real-time pitch detection algorithms investigated are Yin (de 

Cheveigné and Kawahara, 2002), spectral YIN or YIN Fast Fourier transform (YinFFT), YinFast, 

Fast comb spectral model (FComb), Multi comb spectral filtering (MComb), Schmitt trigger, 

and spectral auto-correlation function (Specacf). The Aubio 1 library (Aubio, no date), one of 

the well-known libraries in music information retrieval in Python, was used for implementing 

these algorithms. A short description of each algorithm is presented in the following, and the 

full details of their workings are given by Brossier (Brossier, 2006). 

Yin: as mentioned in Chapter 3, Yin is a time-domain function called the cumulative 

mean normalised difference function (CMDF). It is related to an earlier pitch detection 

technique called the Average Magnitude Difference Function (AMDF), proposed as a 

computationally efficient alternative to the autocorrelation function. The estimated pitch 

comes from finding the peak in this CMDF. It normally employs some form of interpolation, 

parabolic interpolation, for example, to improve the accuracy of the estimated pitch (Faghih 

and Timoney, 2019a). 

YinFFT: it is a spectral domain implementation of Yin by employing the Fast Fourier 

Transform (FFT). In this implementation of the Yin algorithm, the dependency on the threshold 

 
1 https://aubio.org/manual/latest/cli.html#aubiopitch 

https://aubio.org/manual/latest/cli.html#aubiopitch
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parameter is removed by selecting the best period candidate by finding the minimum in the 

difference function (Brossier, 2006). 

YinFast: it is an optimised implementation of the YIN algorithm to improve its time 

complexity from 𝑂𝑂(𝑛𝑛2) to 𝑂𝑂(𝑛𝑛 log(𝑛𝑛)). It uses two Fourier transforms in the different 

functions of the Yin algorithm to reduce the cost of calculating the whole spectrum (Brossier, 

2006). 

FComb: it is a spectral pitch detection approach that finds the N peaks with the most 

significant energy within each spectral frame and stores them in an array. Then, it will compare 

the peaks to each other by starting with the most energetic one. If the other F0s is a 

subharmonic of the highest selected peak, and its energy is higher than half of the selected 

peak, it is designated as the F0 (Lang, 2003; Brossier, 2006). 

MComb: it is a spectral frame approach that includes some pre-processing on the input 

signal to enhance mid-range frequencies and reduce the high and low parts of the spectrum. 

Then, after detecting the spectral peaks, they are passed to a harmonic comb. The assumption 

for monophonic signals is that one of these most substantial peaks corresponds to the pitch 

of the present note (Lepain, 1999; Bello Correa, 2003; Brossier, 2006). 

Schmitt trigger: it is one of the time-domain approaches based on using thresholds 

applied to the waveform of the selected frame to find its periodicity and then estimate the 

pitch (Simpson, 1987; Lang, 2003; Brossier, 2006). 

Specacf: the autocorrelation function compares the time-domain data of the frame with 

delayed versions of itself on a sample-by-sample basis. The autocorrelation function will show 

peaks in proportion to the periodicity of the frame. Detecting these peaks and then weighting 

the spectral components based on their spectral location leads to estimates for F0 (Klapuri, 

2000; Brossier, 2006). 

4.1.2 Generating a Dataset 

The database of this study is the same as the dataset of the previous chapter, discussed 

in section 3.1.1. Therefore, the ground truth generated in the previous chapter was used. 

In order to compare the efficiency of the pitch detection algorithms, several parameters 

and processes were employed on the selected files from VocalSet, and thus, an extended 
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dataset was generated. To achieve this goal, the selected files were played through an 

ordinary speaker and recorded by an ordinary microphone. Based on the experience of Jouvet 

and Laprie (Jouvet and Laprie, 2017) that a close-talk microphone provides clean data, the 

microphone was located very close to the speakers, at a distance of less than 10cm.  

Moreover, 44100 samples per second were considered for the recording files' sampling 

rate. Then, each algorithm was applied twice on each file with different window sizes, 1024 

and 2048 samples, and the hop size was half the window size. The reason for selecting these 

window sizes is to have enough samples for the range of the human singing pitch frequencies 

used in this study. As reported by Paliwal and Wojcicki (Paliwal and Wojcicki, 2008), windows 

with a duration of around 15-35 ms are a good choice for pitch detection in human voices. 

Therefore, the window sizes 1024 and 2048 were selected to have the duration of around 12 

ms and 23 ms, respectively. Similarly, Gawlik & Wszołek (Gawlik and Wszołek, 2018) used a 

window with a duration of 22 ms for singing pitch detection.  

Therefore, each file was played 14 times, and the seven different algorithms (as 

explained in Section 4.1.1) were applied twice, but with different window sizes. The detected 

pitches were saved in different text files. Each algorithm incorrectly identified some pitch 

values. This occurred when the incorrect spectral peak was identified as the F0 and produced 

a result that gave an obvious disturbance to the smoothness of the pitch contour. To fix these 

incorrect pitches, a Smart-Median post-processing algorithm (Faghih and Timoney, 2022b), 

which will be shortly explained in section 4.1.3.1 and fully in Chapter 5, was applied. 

As a result, a dataset containing 2128 files was created. These files were categorised by 

the algorithm (seven algorithms), Gender (male and female), interval (scale and arpeggios), 

with and without post-processing, window sizes (1024 and 2048), and speed of performance 

(slow and fast). These categories and the total number of files in each category are shown in 

Table 4-1. Thus, there are 304 files in the generated dataset for each algorithm. This dataset 

is available online in a GitHub repository1.  

 
1 https://github.com/BehnamFaghihMusicTech/Singing-Pitch-Detection, accessed on 11 July 2022 

https://github.com/BehnamFaghihMusicTech/Singing-Pitch-Detection
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Table 4-1. Categories and number of files in the generated dataset for each pitch detection algorithm. The 
columns titled “with” mean post-processing, and the columns titled “without” mean without post-processing. 

 Female Male 

 Scale Arpeggios Scale Arpeggios 

 Without  With  Without  With  Without  With  Without  With  

Window size 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 

Slow 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 

Fast 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 

4.1.3 Post-processing 

After recording the estimated pitches by each algorithm, two post-processes, Smart-

Median (Faghih and Timoney, 2022b) and shifting, were applied to the recorded files. The 

steps of these post-processes are depicted in Figure 4-1. 

4.1.3.1 Smart-Median 

Smart-Median is a novel pitch contour smoother algorithm defined especially for pitch 

contours created by real-time pitch detectors on singing signals. This algorithm adjusts the 

standard median and is tuned to the features of singing pitch contours. The Smart-Median will 

be discussed in detail in Chapter 5. 

Section 4.2.3 explains how the Smart-Median algorithm improves the accuracy of the 

pitch contours by a factor of 5.  

4.1.3.2 Shifting 

The detected pitches should be compared with the ground truth to evaluate each 

algorithm's performance. However, before that, finding the best alignment between the 

detected pitches and the ground truth is necessary. This has been determined by shifting the 

recorded file backwards or forwards to ascertain the minimum distance between it and its 

corresponding ground truth (Jouvet and Laprie, 2017). Figure 4-1(d1) and Figure 4-1(d2), as 

compared to Figure 4-1(c1) and Figure 4-1(c2), illustrate how shifting makes the best 

alignment between the estimated and ground-truth pitch contours. 
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(a) 

Correcting invalid pitches with the Smart-Median  Without Smart-Median 

 
(b1) 

 

 
(b2) 

        Having the same silence duration at the beginning 

 
(c1) 

 

 
(c2) 

After alignment (shifting) 

 
(d1) 

 

 
(d2) 

Difference between the two series 

 
(e1) 

 

 
(e2) 

Figure 4-1. Illustrating post processes on detected pitches. (a) is the detected frequencies, (b1) is the detected 
pitches after replacing invalid frequencies with Smart-Median, (b2) is exactly frequencies in (a) without 

correcting the invalid pitches. (c1) and (c2) are setting the silence duration at the beginning of the estimated 
frequencies as long as the ground truth. Frequencies are shifted in (d1) and (d2) to find the best alignment with 

the ground truth. (e1) and (e2) show the difference between ground truth and estimated frequencies. 
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It should be mentioned that having different silence durations at the beginning of each 

recorded file was unavoidable due to the time of pressing the start recording button. Thus, 

before shifting, it is set to be precisely the exact duration of silence by adding/removing some 

zero values at the beginning of each recorded file. Consequently, there is a match at the 

beginning of the recorded files and corresponding ground truth files. Figure 4-1(c1) and Figure 

4-1(c2) illustrate that when the estimated pitches in Figure 4-1(b1) and Figure 4-1(b2) have 

the same silence at the beginning, we have a better alignment with the ground truth. In 

addition, it is possible to figure out the delay of each algorithm to estimate the pitches 

correctly by finding the duration took that the estimated pitch contour aligned well with the 

ground truth. 

4.1.4 The difference between estimated pitch contour and ground truth 

To better understand the performance of each pitch detection algorithm, the difference 

between the estimated pitches and the ground truth is prepared. This is shown in Figure 

4-1(e1) and Figure 4-1(e2). Therefore, after shifting the estimated pitches to find the best 

alignment, the differences between all the values were calculated by subtracting each 

estimated F0 value from its corresponding ground truth’s F0 value, and the result was saved 

in a text file. Finally, these files are combined with the dataset. 

4.1.5 Labelling estimated pitch contours 

After generating the dataset as explained above, all the files were plotted (similar to 

Figure 4-1(d1)) to label whether the estimated pitch contours were correct. All the files were 

categorised into three groups: 1- correct (when the plotted contours of the estimated pitches 

are perfectly aligned on the corresponding ground truth contours, Figure 4-2(a)), 2- incorrect 

(such that the estimated pitch contour is not correct and that no matter what extra post-

processing is applied they will not become correct, as illustrated in Figure 4-2 (b)), 3- almost 

correct means that this needs more post-processing to improve the result (i.e. on comparing 

the pitch contour of the estimated pitches with the pitch contour of the ground truth, it is 

recognised that a small number of pitches are misestimated, and it is expected that with some 

judicious post-processing, they could be corrected, as exemplified in Figure 4-2(c)). 
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(a) correct (b) incorrect (c) needs more process 

Figure 4-2. The three categories for estimated pitch contours based on their correctness. (a) almost all the 
pitches are correct. (b) most of the pitches are incorrect, and (c) a few of the estimated pitches are incorrect, but 

it is expected that the incorrect pitches can be fixed with more post-processing. 

As illustrated in Table 4-2, none of the algorithms can estimate the pitch contour 

properly without the Smart-Median post-processing. The best performance without post-

processing was recorded for MComb, followed by YinFast, YinFFT, and Yin. While Schmitt, 

FComb, and Specacf could not correctly determine pitch contour without post-processing. A 

possible reason that Schmitt and Specacf algorithms could not estimate F0s correctly is that 

they are working on the time domain and sample-by-sample approach, which is challenging 

according to singing signals that are very fluctuation compared to signals from most 

instruments. 

Table 4-2. Number of correct and incorrect estimated pitch contours for each algorithm without post-processing 

 Correct Need more process Incorrect 

Yin 4 133 15 

YinFast 19 124 9 

YinFFT 19 100 33 

FComb  0 3 149 

MComb  32 42 78 

Schmitt 0 0 152 

Specacf 0 0 152 

Nevertheless, according to Table 4-3, after the post-processing, Yin, YinFFT, and YinFast 

could correctly produce more than 58% of pitch contours. Although YinFFT recorded the 

highest number of correct pitch contours, it seems possible to improve Yin and YinFast 

performances by designing some new post-processing algorithms. 

As can be observed from Table 4-2 and Table 4-3, the Smart-Median post-processing 

improved the performance of the algorithms by more than five times overall; that is, there 

were 74 correct pitch contours without the post-processing as compared to 382 correct pitch 

contours after the post-processing. 
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Table 4-3. Number of correct and incorrect estimated pitch contours for each algorithm after post-processing 

 Correct Need more process Incorrect 

Yin 89 60 3 

YinFast 101 50 1 

YinFFT 107 26 19 

FComb  20 44 88 

MComb  65 21 66 

Schmitt 0 0 152 

Specacf 0 1 151 

4.2 Results and Discussions 

There are some common evaluation strategies used when comparing pitch detection 

algorithms. Researchers such as (Cheng et al., 1976; Rabiner et al., 1976; Drugman and Alwan, 

2011; Jouvet and Laprie, 2017; Drugman et al., 2018; de Obaldía and Zölzer, 2019) usually 

compare pitch detection algorithms based on four methods. First, the Voicing Decision Error 

(VDE) (Nakatani et al., 2008) is the proportion of frames for which an error in the voicing 

decision is made. Second, the Gross Pitch Error (GPE) (Nakatani et al., 2008) is the proportion 

of frames that are considered to be voiced by both the ground truth and the pitch estimator 

where the relative error of F0 is higher than a certain threshold. Third, Fine Pitch Error (FPE) 

(Wei Chu and Alwan, 2009) is defined as the standard deviation of the distribution of the 

relative error of F0 for which this error is below a threshold (usually 20%). Fourth, the F0 Frame 

Error (FFE) is the proportion of frames where an error is made. FFE alone can provide an 

overall performance of a pitch detection algorithm (Wei Chu and Alwan, 2009; Drugman and 

Alwan, 2011). 

In this study, besides FFE, several other comparisons have been made on the data 

obtained from the pitch contours estimated by various algorithms to contrast the algorithms’ 

performance, thus ascertaining their efficiencies in different situations. The bases for the 

comparisons for this study were as follows: 

• Correctness: how many pitch contours estimated by each algorithm are entirely 

correct? 
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• Delay: what is the time delay from the commencement of the analysis to when the 

estimate of F0 is accurate? 

• Post-processing effect: what is the percentage of the number of correctly detected 

pitches by each algorithm before and after post-processing? 

• Overall: how accurate is the estimated F0? 

4.2.1 Correctness 

In this section, the performances of each algorithm based on their correctness are 

evaluated. These evaluations are categorised into three groups of data: 1- both fast and slow, 

2- fast, and 3- slow performances. 

4.2.1.1 The correctness of both fast and slow performance 

Table 4-3 shows, without considering any particular category, the order of performance 

of all algorithms from the best to the worst after post-processing. Out of 152 pitch contours 

in total for each algorithm, the percentage of contours for each that were identified as correct 

were, in order of best first, YinFFT = 70.39%, YinFast = 66.45%, Yin = 58.55%, MComb = 42.76%, 

FComb = 11.84%, Schmitt = 0%, and Specacf = 0%. 

From Brossier (Brossier, 2006), their experience of analysing recorded Opera 

performances of two men and two women, the ordering of the algorithms in terms of their 

accuracy was YinFFT 56%, MComb 52%, FComb 49%, Yin 37% and Schmitt 23%, which supports 

our result. The main difference between the Brossier result and ours is the position of the Yin 

algorithm in the ranking. It should be mentioned that before post-processing, we had the 

same experience that the performance of the MComb was better than Yin, but after the post-

processing, the order switched. 

In addition to this, in our experience, the accuracy of the algorithms is different for males 

and females. This is illustrated in Table 4-4. For females, the best algorithm to the worst one 

after the post-processing are YinFFT = 100%, YinFast = 93.06%, Yin = 72.22%, MComb = 

65.28%, FComb = 25%, Schmitt = 0%, and Specacf = 0%. On the other hand, the order for males 

after post-processing is Yin = 46.25%, YinFFT = 43.75%, YinFast = 42.5%, MComb = 22.5%, 

FComb = 2.5%, Schmitt = 0%, and Specacf = 0%. Therefore, the best approach for females is 

YinFFT, but for males, it is Yin. Generally, it is observed that pitch detector algorithms could 
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work better on females’ voices than males’ voices. The possible reasons for this different 

performance of the algorithms can come from the difference between men’s voices and 

women’s voices spectrogram. That is, the harmonies layers and their amplitude in 

spectrograms are different (Jitendra and Radhika, 2021). 

Table 4-4. Total correctness of each algorithm categorised by gender, music type, post-processing, and window 
size in both fast and slow performance 

 Female Male 

 Scale Arpeggios Scale Arpeggios 

 Without  With  Without  With  Without  With  Without  With  

Window size 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 

Yin 1 0 17 10 1 1 16 9 0 0 12 9 1 0 9 7 

YinFast 7 1 16 18 5 2 16 17 2 0 11 8 2 0 11 4 

YinFFT 8 4 18 18 4 3 18 18 0 0 4 13 0 0 4 14 

schmitt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FComb  0 0 2 6 0 0 3 7 0 0 0 1 0 0 0 1 

MComb  2 9 10 10 2 9 14 13 0 5 3 5 1 4 3 7 

Specacf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

It can be concluded from these results that the algorithms perform better on Female 

voices than Male ones, with 25.4% as opposed to 11.25% correct contours, respectively. 

Although we used two different window sizes, considering our results alongside those of the 

de Obaldía and Zölzer study (de Obaldía and Zölzer, 2019), it seems that for detecting the low 

pitch frequencies exhibited by men’s voices, a window size of 4096 samples in 44100Hz 

sample rate should be a better choice. However, although de Obaldía and Zölzer (de Obaldía 

and Zölzer, 2019) used window sizes of 2048 and 4096, they also experienced better results 

on female voices over male voices. However, a long window size may not be suitable for real-

time applications since it reduces the resolution of the estimated pitches. For example, the 

window size of 4096 in 44100Hz sampling rate, making an extra delay of 46 ms compared to 

a window size of 2048. In addition, it can cause more inaccuracy on detecting onset and offset 

of notes, which is discussed in Chapter 6, because onset of a note will be considered one of 

the estimated pitches. 

Regarding window size, a significant performance difference was not found between the 

two window sizes for our analysis in that there are 35.15% and 36.65% correct pitch contours 
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for 1024 and 2048 window sizes, respectively, after post-processing. Similarly, there was no 

performance difference between the Scale and Arpeggios test signals because 35.9% correct 

pitch contours were observed for both. 

To recap, a significant different in the window sizes was not found, but the algorithm 

with the maximum number of correct pitch contours for females was YinFFT, while for males, 

it was YinFast. Furthermore, for both genders, post-processing is necessary. Finally, post-

processing has improved the accuracy of algorithms by more than a factor of 5.  

4.2.1.2 The correctness of fast performance 

For the fast performance, as can be observed from Table 4-5, the best performance after 

post-processing was recorded by YinFast with 76.32% accurate pitch contour estimations, 

followed by YinFFT = 68.42%, Yin = 63.16%, and MComb = 61.84%. On the other hand, the 

worst algorithms were FComb, Schmitt, and Specacf, with 11.84%, 0%, and 0%, respectively. 

Table 4-5. Total correctness of each algorithm categorised by gender, music type, post-processing, and window 
size in only fast performance 

 Female Male 

 Scale Arpeggios Scale Arpeggios 

 Without  With  Without  With  Without  With  Without  With  

Window size 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 

Yin 0 0 9 3 1 1 8 1 0 0 6 9 0 0 5 7 

YinFast 7 0 9 9 5 1 8 9 2 0 9 4 2 0 8 2 

YinFFT 6 4 9 9 2 1 9 9 0 0 2 6 0 0 2 6 

schmitt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FComb  0 0 0 4 0 0 0 3 0 0 0 1 0 0 0 1 

MComb  2 9 9 9 2 9 9 8 0 5 2 4 0 4 2 4 

Specacf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

In addition, the algorithms do not have the same accuracy for both male and female 

voices. The order from the best to the worst algorithm for females’ voices is YinFFT = 50%, 

YinFast = 48.61%, MComb = 48.61%, Yin = 29.17%, FComb = 9.72%, Schmitt = 0%, and Specacf 

= 0%. On the other hand, the order for males is Yin = 33.75%, YinFast = 28.75%, YinFFT = 20%, 

MComb = 15%, FComb = 2.5%, Schmitt = 0%, and Specacf = 0%. Thus, the best ones after post-

processing for female voices were YinFFT, with YinFast, and MComb coming very close, but 

for male voices, it was Yin. 
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Post-processing generally improved algorithms' accuracy by a factor of more than 3. 

Again, the algorithms work much better on female than male voices, i.e., 53.17% correct 

compared to 28.57%, respectively. A significant difference between the two window sizes of 

1024 and 2048 is not observed. Similarly, a significant difference is not observed between the 

results for Scale and Arpeggios test data. 

To recap, the best accuracy for female voices was obtained by the YinFFT algorithm with 

a window size of 1024, but for male voices, it was simply Yin with a window size of 2048. 

Moreover, for both genders, post-processing was necessary. 

4.2.1.3 The correctness of slow performance 

Regarding the slower performances, the best accuracy after post-processing was shown 

by YinFFT with 72.37% accurate pitch contours, followed by YinFast = 56.58% and Yin = 

53.95%. On the other hand, the worst algorithms are MComb, FComb, Schmitt, and Specacf, 

with the number of correct pitch contours being 23.68%, 15.79%, 0%, and 0%, as shown in 

Table 4-6. 

Table 4-6. Total correctness of each algorithm categorised by gender, music type, post-processing, and window 
size in only slow performance 

 Female Male 

 Scale Arpeggios Scale Arpeggios 

 Without  With  Without  With  Without  With  Without  With  

Window 
size 

1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 

Yin 1 0 8 7 0 0 8 8 0 0 6 0 1 0 4 0 

YinFast 0 0 7 9 0 1 8 8 0 0 2 4 0 0 3 2 

YinFFT 2 0 9 9 2 2 9 9 0 0 2 7 0 0 2 8 

schmitt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FComb  0 0 2 2 0 0 3 4 0 0 0 0 0 0 1 0 

MComb  0 0 1 1 0 0 5 5 0 0 1 1 1 0 1 3 

Specacf 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

The accuracy of the algorithms is the same for both male and female voices. For both 

genders, the best one is YinFFT, and the best algorithm to the worst one is YinFFT, YinFast, Yin, 

MComb, FComb, Schmitt, and Specacf. Post-processing improved the accuracy of the 

algorithms by approximately 17 times.  
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As previously observed, the algorithms work better on female than male voices, with 

48.41% correct pitch contours compared to 16.79% correct ones after post-processing, 

respectively. A significant difference between the two window sizes, 1024 and 2048, is not 

observed, albeit the bigger window size worked a bit better on male’s voices. Similarly, a 

significant difference is not observed between the performances of Scales and Arpeggios. 

In summary, for both genders, the best accuracy is obtained with the YinFFT, but for 

female voices, a window size of 1024 worked better, while for male voices, it was a window 

size of 2048. In addition to this, post-processing is necessary to improve the performance of 

both genders’ voices. 

4.2.2 Delay 

It will take a short time for most algorithms to start estimating the pitches correctly. 

Since the algorithms use different methods for estimating F0, this time is quite variable. This 

subsection evaluates the time each algorithm took to estimate the pitch contour correctly. 

We describe this as a delay. 

In order to find the delay, only pitch contours deemed to be correct after the post-

processing were selected, and the exact amount of silence was set at the beginning of each 

file to have the exact duration of the silence at the beginning of the corresponding ground 

truth file as can be observed looking from Figure 4-1(b1, b2) to Figure 4-1(c1, c2). Three 

categories were considered for evaluating the delay: 1- both slow and fast performances, 2- 

fast performances, and 3- slow performances. 

4.2.2.1 Delay in both fast and slow performances 

Table 4-7 shows the average duration of the delays recorded by each algorithm. A 

shorter delay is believed to be better than a longer one since it can estimate accurate pitches 

more instantaneously. It can be observed from Table 4-7 that the best performance recorded 

by MComb is with a 25 ms delay, followed by FComb with a delay of 34ms, YinFFT exhibits a 

delay of 45ms, Yin has one of 58ms, and YinFast was the slowest with a delay of 60ms. 

Alongside this, the average duration of the delays for the algorithms differs for the male 

and female voices. The best performance was given by FComb for female voices, but for Male 

voices, it was by MComb.  
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Post-processing, on average, increases the offset due to a delay from 94 ms to 245 ms. 

The reason is that the post-processes are ameliorating the incorrectly detected pitches at the 

beginning of the sounds. 

Overall, the algorithms worked better with female voices than male voices, leading to a 

96 ms delay compared to 243 ms, respectively.  

Table 4-7. The average delay in each algorithm categorised by gender, music type, post-processing, and window 
size in both fast and slow performance (in milliseconds) 

 Female Male 

 Scale Arpeggios Scale Arpeggios 

 Without  With  Without  With  Without  With  Without  With  

Window 
size 

1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 

Yin 65 4 38 21 27 0 35 37   174 80 95  107 78 

YinFast 22  39 19 34 8 48 20 89  147 93 126  101 38 

YinFFT 32 15 24 14 43 14 40 16  16 129 120  34 61 67 

Schmitt                 

FComb    13 14    0    73   43 59 

MComb  17 7 25 11 30 4 25 9  32 40 40  42 38 26 

Specacf                 

According to Table 4-7, the delay recorded for the 2048 window size is almost half of 

that for the 1024 window size, on average; i.e., it was given by the values of 126 ms and 213 

ms, respectively.  

However, a significant difference is not observed between the Scale and Arpeggios test 

signals' delay values, 177 ms and 163 ms on average, respectively. 

To recap, for both male and female voices, the best accuracy concerning delay was 

obtained for MComb with a window size of 2048. Moreover, as can be seen in Table 4-8 and 

Table 4-9, the same conclusion can be reached regarding the fast and slow performances. 

Thus, the speed of performance does not significantly influence the delay. 
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Table 4-8. The average delay in each algorithm categorised by gender, music type, post-processing, and window 
size in only fast performance (in milliseconds) 

 Female Male 

 Scale Arpeggios Scale Arpeggios 

 Without  With  Without  With  Without  With  Without  With  

Window 
size 

1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 

Yin   52 16 27 0 33 23   145 104   114 90 

YinFast 22 6 32 6 34 2 27 -4 89  116 52 143  100 17 

YinFFT 28 5 31 13 33 1 32 12   81 83   133 68 

Schmitt                 

FComb     14    3    73    59 

MComb  17 7 25 10 30 4 22 6  32 61 41  42 41 40 

Specacf                 

Table 4-9. The average delay in each algorithm categorised by gender, music type, post-processing, and window 
size in only slow performance (in milliseconds) 

 Female Male 

 Scale Arpeggios Scale Arpeggios 

 Without  With  Without  With  Without  With  Without  With  

Window 
size 

1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 1024 2048 

Yin 65  40 27   36 61   192 61 95  102  

YinFast   45 22  14 66 23   178 114 91  109 51 

YinFFT 34 15 17 15 44 10 48 21  16 130 144  34 62 58 

Schmitt                 

FComb    13     1       43  

MComb     15   34 12   52 39   35 6 

Specacf                 

4.2.3 Evaluating the accuracy of the estimated F0 

Another analysis conducted was to create a reliable technique that determines whether 

or not an estimated F0 is correct. As can be observed from Figure 4-1(d1, e1), pitch detector 

algorithms do not estimate pitches precisely with the same value but within an acceptable 

range. For example, the estimated pitch contour is not perfectly aligned with the ground truth 

in Figure 4-3. 
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(a1) window size 1024 - before trimming (a2) window size 2048 – before trimming 

  
(b1) window size 1024 – after trimming 

 
(b2) window size 2048 – after trimming 

Figure 4-3. Trimming estimated pitch contour. (a1) and (a2) are post-processed estimated pitch contours with 
window sizes 1024 and 2048, respectively. (b1) and (b2) represent (a1) and (a2) by removing 15% of duration 

from the beginning and also 15% from the end of the pitch contours. 

Only the pitch contours estimated correctly, with the FFE less than 1%, were considered 

to find the acceptable range. However, it should be mentioned that almost all correctly 

estimated contours can still have some problems at the beginning and end of the sounds. 

Therefore, the sound waveforms were truncated by 15% at either end to remove the 

incorrectly estimated pitches, as shown in the lower panels of Figure 4-3. 

The range of frequencies after this trimming was approximately between 100 and 600 

Hz. This range covers approximately from G2 to D5, from a baritone to a mezzo-soprano, 

which is almost the most common range of human pitch frequency. For example, children 

aged between 1 and 15 years old have a frequency range between the notes G3, 196 Hz, and 

E5, 659.25 Hz (Welch, 1979), and a normative adult male voice profile is approximately 

between 85 Hz and 580 Hz, and for a female voice is from 150 Hz to 750 Hz (Heylen et al., 

2002).  

As one of the observations of this study, after finding the best alignment, none of the 

pitch detection algorithms used in this study estimated any pitches with the exact frequency 

as the ground truth. In other words, there is not any point in Figure 4-3 where the estimated 

pitch and the ground truth have precisely the same value. Therefore, an acceptable range of 
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frequency values should be determined to assess the correctness of an estimated pitch. From 

other studies (Drugman and Alwan, 2011; Jouvet and Laprie, 2017; de Obaldía and Zölzer, 

2019), three different methods can be employed to discover an acceptable range of 

frequencies based on ground truth: 1- fixed distance around ground truth F0, 2- the standard 

deviation of differences, and 3- percentage. 

4.2.3.1 Fixed distance around ground truth F0 

One of the methods used for finding an acceptable range of frequencies is to consider 

an upper and lower bound that is effectively both greater and less than the corresponding F0 

in the ground truth, as shown in (4-1). 

𝑆𝑆𝑖𝑖 = �
𝑡𝑡𝑓𝑓𝑡𝑡𝛥𝛥 , 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖 − 𝑖𝑖𝑛𝑛𝑡𝑡𝛥𝛥𝑓𝑓𝑖𝑖𝑎𝑎𝑖𝑖 ≤ 𝐸𝐸𝐺𝐺0𝑖𝑖 ≤ 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖 + 𝑖𝑖𝑛𝑛𝑡𝑡𝛥𝛥𝑓𝑓𝑖𝑖𝑎𝑎𝑖𝑖
𝑓𝑓𝑎𝑎𝑖𝑖𝛥𝛥𝛥𝛥 , 𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥  (4-1) 

where 𝑖𝑖𝑛𝑛𝑡𝑡𝛥𝛥𝑓𝑓𝑖𝑖𝑎𝑎𝑖𝑖 denotes a range around the Ground Truth F0 (GTF0), and 𝐸𝐸𝐺𝐺0𝑖𝑖  is the 

estimated F0 in the index 𝑖𝑖. The distance metric that satisfies 95% of the estimated pitches is 

considered to be an acceptable distance. That is, the requirement is that 95% of the estimated 

pitches should fall within a certain interval distance from the ground truth pitch frequency. 

Table 4-10 shows the acceptable distance for each algorithm. It is observed that YinFFT and 

YinFast have the minimum distances, FComb has the maximum, and the other algorithms are 

close to each other. 

Table 4-10. The acceptable fixed distance from F0 in the ground truth 

Algorithm Distance (Hertz) 

Yin 35 

YinFast 28 

YinFFT 21 

Schmitt NA 

FComb  53 

MComb  36 

Specacf NA 

 
However, Table 4-10 only shows the distance where 95% of the estimated pitches are in 

that range, but it does not present the distribution of data, and because of this, the second 

method, in the following section, is included. 
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4.2.3.2 The standard deviation of differences  

This method calculates the differences between points in the ground truth and the 

estimated pitches, then computes the standard deviation of the differences, as in (4-2) and 

(4-3).  

𝑎𝑎𝑖𝑖𝑓𝑓𝑓𝑓𝛥𝛥𝑓𝑓𝛥𝛥𝑛𝑛𝑑𝑑𝛥𝛥𝑖𝑖 = 𝐸𝐸𝐺𝐺0𝑖𝑖 − 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖  (4-2) 

𝑆𝑆𝐺𝐺𝑆𝑆 =  𝑆𝑆𝑡𝑡𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑆𝑆𝛥𝛥𝑖𝑖𝑖𝑖𝑎𝑎𝑡𝑡𝑖𝑖𝑓𝑓𝑛𝑛 (𝑎𝑎𝑖𝑖𝑓𝑓𝑓𝑓𝛥𝛥𝑓𝑓𝛥𝛥𝑛𝑛𝑑𝑑𝛥𝛥) (4-3) 

where 𝑎𝑎𝑖𝑖𝑓𝑓𝑓𝑓𝛥𝛥𝑓𝑓𝛥𝛥𝑛𝑛𝑑𝑑𝛥𝛥 is a vector to record all the differences, 𝐸𝐸𝐺𝐺0 is a vector that contains 

all the estimated pitches, 𝐺𝐺𝐺𝐺𝐺𝐺0 is a vector that includes all ground truth pitches, and 𝑖𝑖 is the 

index. 𝑆𝑆𝑡𝑡𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑆𝑆𝛥𝛥𝑖𝑖𝑖𝑖𝑎𝑎𝑡𝑡𝑖𝑖𝑓𝑓𝑛𝑛 is a function to calculate the standard deviation based on its 

input. 

After finding the standard deviation for each estimated pitch contour, the pitch contours 

labelled as correct, where the estimated pitches were in the vicinity of 𝐺𝐺𝐺𝐺𝐺𝐺0 and were within 

𝐶𝐶 times the standard deviation on either side of it, are determined using the expression given 

in (4-4). 

𝑆𝑆𝑖𝑖 = � 𝑡𝑡𝑓𝑓𝑡𝑡𝛥𝛥 , 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖 − (𝐶𝐶 ∗ 𝑆𝑆𝐺𝐺𝑆𝑆) ≤ 𝐸𝐸𝐺𝐺0𝑖𝑖 ≤ 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖 + (𝐶𝐶 ∗ 𝑆𝑆𝐺𝐺𝑆𝑆)
𝑓𝑓𝑎𝑎𝑖𝑖𝛥𝛥𝛥𝛥 , 𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥  (4-4) 

where 𝑆𝑆 is a vector that stores whether or not the estimated pitches are correct, and 𝐶𝐶 

is a multiplier coefficient.  

Several coefficients, from 0.1 to 2.5 with the step of 0.1 (that is, 0.1, 0.2, 0.3, …, 2.4, 2.5), 

were employed to find the best one for each algorithm. The minimum coefficient value that 

satisfies 95 per cent of estimated pitches was considered the best one, see Table 4-11. In Table 

4-11, the acceptable interval from the estimated F0 to the ground truth’s F0 was calculated 

by multiplying the standard deviation by the coefficient value. Then, the estimated F0 was 

considered as correct if it was in the range of the corresponding pitch frequency of ground 

truth plus and minus the acceptable range.  
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Table 4-11. The average standard deviation of differences between estimated pitches and ground truth with the 
coefficient of the acceptable distance 

Algorithm Average of STD (Hertz) Coefficient Acceptable range 

Yin 12.88 2.1 ±27.05 

YinFast 13.3 2.1 ±27.93 

YinFFT 10.27 2.1 ±21.57 

Schmitt NA NA NA 

FComb  21.17 2.5 ±52.93 

MComb  13.88 2.3 ±31.92 

Specacf NA NA NA 

It was observed that YinFFT had the narrowest acceptable distance, which means that it 

has less variance than other algorithms, as shown in Table 4-11. Since Schmitt or Specacf did 

not estimate any entirely correct pitch contours, the standard deviation for these algorithms 

could not be calculated. 

4.2.3.3 Percentage 

The other method applied to find an acceptable frequency range is by calculating the 

range based on a percentage of the pitch frequency of the ground truth, as in (4-5).  

� 𝑡𝑡𝑓𝑓𝑡𝑡𝛥𝛥 , 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖 − (𝑓𝑓 ∗ 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖) ≤ 𝐸𝐸𝐺𝐺0𝑖𝑖 ≤ 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖 + (𝑓𝑓 ∗ 𝐺𝐺𝐺𝐺𝐺𝐺0𝑖𝑖)
𝑓𝑓𝑎𝑎𝑖𝑖𝛥𝛥𝛥𝛥 , 𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥  (4-5) 

where 𝑓𝑓 is a coefficient between 0 and 1 to calculate the acceptable percentage value. 

In this method, we were looking for a percentage around the ground truth’s pitches that 

satisfies at least 95% of the estimated pitches, Table 4-12. 

Table 4-12. Per cent of ground truth F0 for finding the acceptable estimated pitch 

Algorithm Percentage 

Yin 8% 

YinFast 7% 

YinFFT 6% 

Schmitt NA 

FComb  13% 

MComb  9% 

Specacf NA 
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As shown in Table 4-12, pitches estimated by YinFFT are at the lowest distance from the 

ground truth based on the percentage measure, while FComb has the furthest distance.  

4.2.3.4 A discussion of the three methods 

The three methods for finding the acceptable range will be evaluated in this part. To 

compare the calculated ranges by each of the three methods, if the difference of the ranges 

is equal to or bigger than a semitone, as the smallest pitch difference in Western music, is 

considered a perceptible difference; otherwise, the difference is not significant. 

As can be seen in Table 4-10 and Table 4-11, overall, there is no significant difference 

between the fixed distance around ground truth F0 and Standard Deviation methods. The 

most noticeable difference is observed with the Yin algorithm, with a range of ±35 𝐻𝐻𝛥𝛥𝑓𝑓𝑡𝑡𝐻𝐻 as 

compared to one of ±27.05 𝐻𝐻𝛥𝛥𝑓𝑓𝑡𝑡𝐻𝐻 for the distance and standard deviation techniques, 

respectively. Since most musical pitches differ by much more than 8Hz, this cannot be a 

perceptible difference. Therefore, these two approaches can be considered to be similar. 

Figure 4-4 to Figure 4-8 show the acceptable range of each algorithm for the three 

methods using an example. It is assumed that the method that exhibits a narrower range 

around the ground truth would be deemed as being the best approach. 

 
Figure 4-4. The acceptable range for the Yin algorithm in the three methods: Distance, Standard Deviation, and 

Percentage. Each colour shows the acceptable range by each algorithm. 
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Figure 4-5. The acceptable range for the YinFast algorithm in the three methods: Distance, Standard Deviation, 

and Percentage. Each colour shows the acceptable range by each algorithm. 

 
 

 
Figure 4-6. The acceptable range for the YinFFT algorithm in the three methods: Distance, Standard Deviation, 

and Percentage. Each colour shows the acceptable range by each algorithm. 
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Figure 4-7. The acceptable range for the FComb algorithm in the three methods: Distance, Standard Deviation, 

and Percentage. Each colour shows the acceptable range by each algorithm. 

 
Figure 4-8. The acceptable range for the MComb algorithm in the three methods: Distance, Standard Deviation, 

and Percentage. Each colour shows the acceptable range by each algorithm. 

Since the Distance and Standard Deviation methods are not based on intonation, they 

cover the same range of frequencies for higher and lower pitches. However, the range of the 

Percentage method will become narrow or wide when the frequencies are low or high. 
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Therefore, as can be observed from Figure 4-4 to Figure 4-8, it seems that it is better to use 

the Percentage method for frequencies that are less than a pitch frequency of 350 Hz, and the 

Distance or Standard Deviation method for frequencies that are greater than 350 Hz. 

It is worth noting that although if the pitch frequencies become higher, the acceptable 

range with the Percent method will become very wide, the humans’ voice pitch range is 

narrow and only in some exceptional cases a very wide range will be calculated by the Percent 

method. 

Besides, from Table 4-10 to Table 4-12 and Figure 4-4 to Figure 4-8, it can be concluded 

that the acceptable range will not become wider or narrower with the Distance and Standard 

Deviation methods by changing the pitch frequency. 

De Obaldía and Zölzer (de Obaldía and Zölzer, 2019) selected error margins of 8%, 20%, 

and 10 Hz with respect to the ground truth, and they achieved their best results for the 20% 

error, which may support our results that the fixed distance should be more than 10 Hz. 

Similarly, some other studies (Drugman and Alwan, 2011; Jouvet and Laprie, 2017) considered 

that any more than a 20% difference from the ground truth could be deemed to be an 

incorrectly estimated pitch. 

4.3 Conclusions 

In this chapter, after preparing a dataset of estimated pitches from seven real-time pitch 

detection algorithms, the functionality of each algorithm was evaluated based on 1- the 

number of pitches estimated correctly by categorising them based on gender, window size, 

the speed of the music, and post-processing, 2- the delay of each algorithm to estimate pitches 

correctly, and 3- the approaches to evaluate the accuracy of the estimated F0. 

Finally, three methods for finding an acceptable range were evaluated. Generally, this 

chapter provides guidance for selecting a real-time pitch detection algorithm for singing 

signals according to the features of the sung. Based on all the evaluations, the following 

conclusions could be made: 
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The overall best real-time algorithm from the seven tested algorithms for female voices 

was YinFFT, with a window size of 1024. In addition, the speed of performance is not an issue. 

Moreover, the delay before starting to determine the correct pitches is 25 ms. 

The best real-time algorithm from the seven tested algorithms for male voices was Yin 

when the notes are playing fast, and in slow performance, the best one was YinFFT. The 

algorithms produced a more accurate pitch contour with a window size of 2048 compared to 

a window size of 1024. The delay before finding the correct pitches for the Yin algorithm is 

107 ms, and for YinFFT is 71 ms. 

The length of the intervals between notes does not impact the pitch accuracy of the 

delay. 

The best method from the three presented methods to find the acceptable range for all 

the algorithms is the percentage, although, for FComb and MComb, significant differences 

between the three methods were not observed. 

As discussed above, the pitch detector algorithms cannot estimate the pitches without 

errors, and the estimated pitch contours require some alternations. Thus, the next chapter 

will discuss the Smart-Median, mentioned already in this chapter, in detail.  



 

 

 

 

 

 

 

 

Chapter 5                                                              
Pitch contour smoother 

  

This chapter introduces a novel algorithm for smoothing estimated pitch 

contour from singing signals. In addition, the algorithm will be compared with 15 

different contour smoother algorithms. This chapter entirely come from one of our 

journal publications listed in the following. 

• Faghih, Behnam & Timoney Joseph, Smart-Median: A New Real-Time Algorithm for 

Smoothing Singing Pitch Contours. Applied Sciences. 2022; 12(14):7026. 

https://doi.org/10.3390/app12147026 

https://doi.org/10.3390/app12147026
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As seen in the previous chapters, chapters 3 and 4, the pitch detector could not estimate 

the pitch contours of singing signals in real-time without any error. Thus, the estimated pitch 

contours need to be smooth to alter the incorrectly estimated F0s. Therefore, this chapter 

introduces a new contour-smoother algorithm based on the features and applications of pitch 

contours derived only from singing. For this purpose, after explaining several typical contour-

smoother algorithms, the methodology applied will be described. Then, the proposed 

algorithm is explained in Section 5.3, followed by the results and discussion. Finally, a 

conclusion is provided in Section 5.6. 

5.1 Current Contour Smoother Algorithms 

Several contour-smoother algorithms are commonly used to smooth pitch contours. 

This section provides a list of these algorithms. To refer to the smoother algorithms within this 

chapter, a code has been assigned to each algorithm listed in Table 5-1. In addition, this table 

indicates which of the considerations listed in section 2.2.2.1 are deemed by the algorithms. 

As the table shows, only the Smart-Median algorithm, described in section 5.3, counts all the 

considerations. 

Table 5-1. Code of each of the contour smoother algorithms with indicating the code(s) of their considerations 
according to the list in section 2.2.2.1 

Code Algorithm The Considerations 

00 Smart-Median All 

01 Gaussian (sigma = 1) 2 

02 Savitzky–Golay filter 2 

03 Exponential 2 

04  Window-based (window_type = ‘rectangular) 2 

05 Window-based (window_type = ‘hanning’) 2 

06 Window-based (window_type = ‘hamming’) 2 

07 Window-based (window_type = ‘bartlett’) 2 

08 Window-based (window_type = ‘blackman’) 2 

09 Direct Spectral 2 

10 Polynomial 2 

11 Spline (type = ‘linear_spline’) 2 

12 Spline (type = ‘cubic_spline’) 2 

13 Spline (type = ‘natural_cubic_spline’) 2 

14 Gaussian (sigma = 0.2, n_knots = 10) 2 
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15 Binner 2 

16 LOWESS 2 

17 Decompose (type = ‘Window-based’, method = ‘additive’) 2 

18 Decompose (type = ‘lowess’, method = ‘additive’) 2 

19 Decompose (type = ‘natural_cubic_spline’, method = ‘additive’) 2 

20 Decompose (type = ‘natural_cubic_spline’, method = ‘multiplicative’) 2 

21 Decompose (type = ‘lowess’, method = ‘multiplicative’) 2 

22 Decompose (type = ‘natural_cubic_spline’, method = ‘multiplicative’) 2 

23 Kalman (component = ‘level’) 2 

24 Kalman (component = ‘level_trend’) 2 

25 Kalman (component = ‘level_season’) 2 

26 Kalman (component = ‘level_trend_season’) 2 

27 Kalman (component = ‘level_longseason’) 2 

28 Kalman (component = ‘level_trend_longseason’) 2 

29 Kalman (component = ‘level_season_longseason’) 2 

30 Kalman (component = ‘level_trend_season_longseason’) 2 

31 Moving Average (simple = True) 2 

32 Moving Average (simple = False) 2 

33 Median Filter 2 

34 Okada Filter 1, 2 

35 Jlassi Filter 1, 2, 7 

 

Figure 5-1 illustrates the effect of the smoother algorithms on a single estimated pitch 

contour. A female singer sang an arpeggio in the C major scale, and the FComb algorithm 

estimated the pitches. The smoothed contours are plotted in eight different panels. Each 

panel includes ground truth (GT), the original estimated (ST) contours, and the smoothed 

contours generated by some of the smoother algorithms. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 5-1. The effect of each contour-smoother algorithm on a pitch contour from a female singer producing 
arpeggios in the C major scale. The pitch estimator algorithm was FComb. GT = Ground Truth (PYIN), ST = 

Estimated pitch contour. The smoothed contours are plotted in parts (a–h) for more straightforward observation. 
Each panel (a–f) plots three smoothed contours, while panels (g,h) have four contours each. Descriptions of the 

algorithms’ codes are provided in Table 5-1. 
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In addition, the Python libraries employed to implement these smoothers are listed in 

Table 5-2. 

Table 5-2. Python libraries used for smoothing pitch contours. 

Python Library Smoother Algorithm 

TSmoothie1  
Exponential, Window-based (Convolution), Direct Spectral, Polynomial, 

Spline, Gaussian (code 14), Lowess, Decompose, Kalman 

Scipy (Virtanen et al., 2020) Savitzky–Golay filter, Gaussian (code 01), Median 

Pandas (Reback et al., 2020) Moving average 

 

Each of the algorithms is described below. 

5.1.1 Gaussian Filter 

Generally, in signal processing, filtering removes or modifies unwanted error and noise 

signals from a series of data. Therefore, Gaussian filters smooth out fluctuations in data by 

convolution with a Gaussian function (Deng and Cahill, 1994). The one-dimensional Gaussian 

filter is expressed as (5-1): 

𝑆𝑆𝑚𝑚𝑖𝑖  =  
1

√2𝜋𝜋𝜋𝜋
 exp (−

(𝐸𝐸𝛥𝛥𝑖𝑖)2

2𝜋𝜋2
) (5-1) 

where 𝐸𝐸𝛥𝛥𝑖𝑖  is the original signal at position 𝑖𝑖, and 𝑆𝑆𝑚𝑚𝑖𝑖 is the smoothed signal at position 

𝑖𝑖. In addition, 𝜋𝜋2 indicates the variance of the Gaussian filter. The smoothing degree depends 

on the variance value size (Deng and Cahill, 1994). Although the Gaussian filter smooths out 

the noise, as shown in Figure 5-1(a), some correctly estimated F0 may also change, i.e., 

become distorted (Deng and Cahill, 1994). 

5.1.2 Savitzky–Golay Filter 

This particular type of low-pass filter was introduced into analytical chemistry but soon 

found many applications in other fields (Savitzky and Golay, 1964). It can be considered a 

weighted moving average (Dai et al., 2017), and is defined as follows (5-2): 

 
1 https://pypi.org/project/tsmoothie/, accessed on 1 February 2022 

https://pypi.org/project/tsmoothie/
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𝑆𝑆𝑚𝑚𝑖𝑖 = � ℎ𝑘𝑘  𝐸𝐸𝛥𝛥𝑖𝑖−𝑘𝑘

𝑀𝑀

𝑘𝑘=−𝑀𝑀

 (5-2) 

where 𝐸𝐸𝛥𝛥𝑖𝑖  is the original signal at position 𝑖𝑖, and 𝑆𝑆𝑚𝑚𝑖𝑖 is the smoothed signal at position 

𝑖𝑖. 𝑀𝑀 is window length and ℎ𝑘𝑘  are the filter coefficients that indicate the boundaries of the 

data. Specifically, this filter defines 𝑆𝑆𝑚𝑚0 (i.e., the output at time 𝑖𝑖 = 0) to be the value of the 

coefficient of a polynomial of order 𝐾𝐾 that best fits the time series data 𝑆𝑆𝑚𝑚𝑖𝑖 over the interval 

|𝑖𝑖| ≤ 𝑀𝑀 (Dai et al., 2017). The drawback of the Savitzky–Golay (SG) filter, according to Schmid 

et al. (Schmid, Rath and Diebold, 2022), is that the data near the edges is prone to artefacts. 

Figure 5-1(a) illustrates its effect on a contour that this filter reduces the sharpness of the 

errors, but they still exist. 

5.1.3 Exponential Filter 

This approach is based on weighting the current values by the previously observed data, 

assuming that the most recent observations are more important than the older ones. The 

smoothed series starts with the second point in the contour. It is calculated by (Rej, 2003), 

(5-3): 

𝑆𝑆𝑚𝑚𝑖𝑖 = 𝛼𝛼𝐸𝐸𝛥𝛥𝑖𝑖−1 + (1− 𝛼𝛼) 𝑆𝑆𝑚𝑚𝑖𝑖−1        0 < 𝛼𝛼 ≤ 1      i ≥ 3. (5-3) 

where 𝛼𝛼 is called the smoothing constant. This filter demonstrated a similar alternation 

as Savitzky–Golay filter on the pitch contour shown in Figure 5-1(a). 

5.1.4 Window-Based Finite Impulse Response Filter 

In this approach, a window works as a mask to filter the data series. Different window 

shapes can be considered for filtering data. Each window point is usually between 0 and 1. 

Therefore, this method uses weighted windows. If 𝐸𝐸𝛥𝛥𝑖𝑖  is considered a signal at index 𝑖𝑖, and a 

window at index 𝑖𝑖 as 𝑒𝑒𝑖𝑖, the smoothed signal 𝑆𝑆𝑚𝑚𝑖𝑖  is calculated as follows (5-4): 

𝑆𝑆𝑚𝑚𝑖𝑖 = 𝑒𝑒𝑖𝑖  𝐸𝐸𝛥𝛥𝑖𝑖 (5-4) 

The window types used in this study are described below. 

5.1.4.1 Rectangular Window 

This means that the window’s values are all equal to one; Figure 5-1(b). 
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5.1.4.2 Hanning Window 

The Hanning window is defined as follows according to Branu (Braun, 2001)(5-5): 

𝑊𝑊𝐻𝐻(𝑖𝑖)  =  �0.5 �1− cos (2𝜋𝜋
𝑖𝑖
𝑁𝑁)�

0      𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥
    0≤ 𝑖𝑖 = 𝑁𝑁 − 1 (5-5) 

where 𝑁𝑁 is the length of the window; Figure 5-1(b). 

5.1.4.3 Hamming Window 

The Hamming window is defined as follows according to Branu (Braun, 2001) (5-6): 

𝑒𝑒𝐻𝐻𝑀𝑀(𝑖𝑖)  =  �0.54 + 0.46 cos �2𝜋𝜋
𝑖𝑖
𝑁𝑁
�    0≤ 𝑛𝑛 ≤ 𝑁𝑁− 1

0                          𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥
     (5-6) 

where 𝑁𝑁 is the length of the window; Figure 5-1(b). 

5.1.4.4 Bartlett Window 

The Bartlett window is defined (Braun, 2001) using (5-7), Figure 5-1(b): 

𝑒𝑒𝑏𝑏(𝑖𝑖) = �1       0≤ 𝑖𝑖 ≤ 𝑁𝑁 − 1
0             𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥      (5-7) 

5.1.4.5 Blackman Window 

The Blackman window is defined (Podder et al., 2014) by (5-8): 

𝑒𝑒𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏𝑘𝑘(𝑖𝑖) = 𝑎𝑎0 + 𝑎𝑎1 + 𝑎𝑎2 cos
4𝜋𝜋𝑖𝑖
𝑁𝑁 − 1

         𝑓𝑓𝑓𝑓𝑓𝑓  −
𝑁𝑁− 1

2
≤ 𝑖𝑖 ≤

𝑁𝑁 − 1
2

 (5-8) 

where 𝑁𝑁 is the window length, and 𝑎𝑎0, 𝑎𝑎1 and 𝑎𝑎2 are constants (5-9): 

𝑎𝑎0 =
1− 𝛼𝛼

2
, 𝑎𝑎1 =

1
2

, 𝑎𝑎2 = 𝛼𝛼/2 (5-9) 

The 𝛼𝛼 is static and equals 0.16; Figure 5-1(c). 

5.1.5 Direct Spectral Filter 

In this approach, a time series is smoothed by employing a Fourier Transformation. The 

essential frequencies remain, and others are removed. It operates similarly to multiplying the 

frequency domain by a rectangular window. In other words, it is a circular convolution 

generated by transforming the window in the time domain; Figure 5-1(c). 
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5.1.6 Polynomial 

This approach uses weighted linear regression on an ad-hoc expansion basis to smooth 

the time series. It is a generalization of the Finite Impulse Response (FIR) filter that can better 

preserve the desired signal’s higher frequency content without removing as much noise as the 

moving average (Orfanidis, 2018). The first derivative of the polynomial evaluated at the 

midpoint of the N-interval is generated by multiplying the position data 𝐸𝐸𝛥𝛥𝑖𝑖  by coefficients 

and adding these multiplications, as shown in (5-10) (Luers and Wenning, 1971): 

𝑆𝑆𝑚𝑚(𝑁𝑁+1)/2 = �𝑊𝑊𝑖𝑖𝐸𝐸𝛥𝛥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

     (𝑁𝑁 = number of data points(odd)) (5-10) 

where 𝑊𝑊𝑖𝑖  are the weights (coefficients) of the polynomial fit of degree 𝑝𝑝. The weights 

depend on the degree 𝑝𝑝, and the number of points, N, used in the fit; Figure 5-1(c) is an 

example. As can be seen from the plot, this approach shows the data trend. 

5.1.7 Spline 

This approach employs Spline functions to eliminate the noise from the data. It works 

by estimating the optimum amount of smoothing required for the data. Three types of spline 

smoothing were used in this study: ‘linear’ (Figure 5-1(c)), ‘cubic’ (Figure 5-1(d)), and ‘natural 

cubic’ (Figure 5-1(d)). The details of this approach are provided in (Craven and Wahba, 1978; 

Hutchinson and de Hoog, 1985). 

5.1.8 Binner 

This approach applies linear regression on an ad-hoc expansion basis within a time 

series. The features created by this method are obtained by binning the input space into 

intervals. An indicator feature is designed for each bin, indicating into which bin a given 

observation falls. The input space consists of a single continuous increasing sequence in the 

time series domain (Jones, 1995); an illustration is shown in Figure 5-1(d). As can be seen in 

the plot, the altered pitch contour is not aligned well with the ground truth. 
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5.1.9 Locally Weighted Scatterplot Smoothing (LOWESS) Smoother 

This is a non-parametric regression method. LOWESS attempts to fit a linear model to 

each data point based on local data points; Figure 5-1(e). This makes the procedure more 

versatile than simply including a high-order polynomial (Cleveland, 1979, 1981). 

5.1.10 Seasonal Decomposition 

One of the considerations in analysing time series data is dealing with seasonality. A 

seasonal decomposition deconstructs a time series into several components: a trend, a 

repeating seasonal time series, and the remainder. One of the benefits of seasonal 

decomposition is its capacity to locate anomalies and errors in data (Wen et al., 2020). 

Seasonal decomposition can estimate the notes and transitory in a pitch contour, but the 

vibrations sung in each note are removed. Therefore, it can show the movements between 

changes and notes in a pitch contour, as shown in Figure 5-1(e, f). 

Two component assessments that would be interpreted as seasonal by the algorithm 

are: ‘additive’ and ‘multiplicative’. In the additive method, the variables are assumed to be 

mutually independent and calculated by summation of the variables. The multiplicative 

approach considers that components are dependent on each other and is calculated by the 

multiplication of the variables (Dagum, 2010). 

Seasonal decomposition can be employed using different smoothing techniques. The 

smoothing techniques used in this study are Window-based, ‘LOWESS’, and 

‘natural_cubic_spline’. 

5.1.11 Kalman Filter 

The Kalman filter is a set of mathematical equations that provides an efficient recursive 

means to estimate the state of a process in a way that minimises the norm of the squared 

error. The Kalman filter uses a form of feedback control, assessing the process state and then 

obtaining feedback in the form of (noisy) measurements. The equations for the Kalman filter 

have two parts: time update equations and measurement update equations. The time update 

equations operate as predictor equations, while the measurement update equations are 

corrector equations. Thus, the overall estimation algorithm is close to a predictor-corrector 
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algorithm, i.e., correcting to improve the predicted value. In the standard Kalman filter, it is 

assumed that the noise is Gaussian, which may or may not reflect the reality of the system 

that is being modelled (Welch, 2021). Thus, the more accurate the model used in the Kalman 

algorithm, the better the performance. 

The Kalman smoother can be represented in the state space form. Therefore, a matrix 

representation of all the components is required. Four structure presentations in the contours 

are considered: ‘level’, ‘trend’, ‘seasonality’ and ‘long seasonality’, and a combination of these 

structures can be considered. Examples of the effects of different variations of the Kalman 

filter are shown in Figure 5-1(f,g). Generally, as seen from the plots, although the Kalman filter 

reduced the sharpness of the existing errors, it also created some new small errors.  

5.1.12 Moving Average 

This simple filter aims to reduce random noise in a data series (Smith, 1999) by following 

the formula (5-11): 

𝑆𝑆𝑚𝑚𝑖𝑖  =  
1
𝑛𝑛

 �𝐸𝐸𝛥𝛥𝑖𝑖+𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

 (5-11) 

where 𝐸𝐸𝛥𝛥 is the original pitch contour, 𝑆𝑆𝑚𝑚 is the smoothed pitch contour, and 𝑛𝑛 is the 

number of points analysed at any given time and is referred to as the window length of the 

filter. The larger the value of n, the greater the level of smoothing. An example can be seen in 

Figure 5-1(h) that the moving average not only could smooth the contour but also distorted 

some of the correctly estimated pitches. 

5.1.13 Median Filter 

The Median filter approach is similar to the moving average. Still, instead of calculating 

the average of a window of length n, the Median of the window is considered (5-12). Unlike 

the moving average filter, which is a linear system, this filter is nonlinear, rendering a more 

complicated analysis: 

𝑆𝑆𝑚𝑚𝑖𝑖  =  𝑀𝑀𝛥𝛥𝑎𝑎𝑖𝑖𝑎𝑎𝑛𝑛 (𝐸𝐸𝛥𝛥𝑖𝑖 ,𝐸𝐸𝛥𝛥𝑖𝑖+1 ,𝐸𝐸𝛥𝛥𝑖𝑖+2, … ,𝐸𝐸𝛥𝛥𝑖𝑖+𝑛𝑛−2,𝐸𝐸𝛥𝛥𝑖𝑖+𝑛𝑛−1) (5-12) 
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where 𝐸𝐸𝛥𝛥 is the original pitch contour, 𝑆𝑆𝑚𝑚 is the smoothed pitch contour, and 𝑛𝑛 is the 

number of points to calculate the Median at each instant. Figure 5-1(h) illustrates the effect 

of this method on a pitch contour that could smooth it very well. 

5.1.14 Okada Filter 

This filter is a combination of moving average and Median filters. This filter aims to 

remove the outliers from a contour while closely retaining its shape, and not incurring any 

softening of the contour definition at transitions typically observed with smoothing. Each of 

the estimated points 𝐸𝐸𝛥𝛥𝑖𝑖  in a contour is compared with its immediate previous and successive 

points, 𝐸𝐸𝛥𝛥𝑖𝑖−1  and 𝐸𝐸𝛥𝛥𝑖𝑖+1 , respectively. If 𝐸𝐸𝛥𝛥𝑖𝑖  is the median of 𝐸𝐸𝛥𝛥𝑖𝑖−1 ,𝐸𝐸𝛥𝛥𝑖𝑖 , and 𝐸𝐸𝛥𝛥𝑖𝑖+1, then it 

does not need to be changed; otherwise 𝐸𝐸𝛥𝛥𝑖𝑖  will be replaced by the average of 𝐸𝐸𝑆𝑆𝑖𝑖−1  and 

𝐸𝐸𝛥𝛥𝑖𝑖+1, as shown in (5-13). In this case, the first and the last point will not be changed (Okada, 

Ishikawa and Ikegaya, 2016). 

𝑆𝑆𝑚𝑚𝑖𝑖 = 𝐸𝐸𝛥𝛥𝑖𝑖 +
𝐸𝐸𝛥𝛥𝑖𝑖−1 + 𝐸𝐸𝛥𝛥𝑖𝑖+1 − 2𝐸𝐸𝛥𝛥𝑖𝑖

2(1 + 𝛥𝛥−𝛼𝛼(𝐸𝐸𝑠𝑠𝑖𝑖−𝐸𝐸𝑠𝑠𝑖𝑖−1)(𝐸𝐸𝑠𝑠𝑖𝑖−𝐸𝐸𝑠𝑠𝑖𝑖+1 ))
 (5-13) 

When α, weight, is sufficiently large, it can perform two operations: (1) if 

(𝐸𝐸𝛥𝛥𝑖𝑖 − 𝐸𝐸𝛥𝛥𝑖𝑖−1)(𝐸𝐸𝛥𝛥𝑖𝑖 − 𝐸𝐸𝛥𝛥𝑖𝑖+1 ) ≤  0, 𝐸𝐸𝛥𝛥𝑖𝑖  is assigned to 𝑆𝑆𝑚𝑚𝑖𝑖; and (2) if (𝐸𝐸𝛥𝛥𝑖𝑖 − 𝐸𝐸𝛥𝛥𝑖𝑖−1)(𝐸𝐸𝛥𝛥𝑖𝑖 −

𝐸𝐸𝛥𝛥𝑖𝑖+1 ) >  0, 𝑆𝑆𝑚𝑚𝑖𝑖 is assigned by (𝐸𝐸𝛥𝛥𝑖𝑖−1 + 𝐸𝐸𝛥𝛥𝑖𝑖+1)/2. 

Figure 5-1(h) exemplifies the impact of this algorithm and can be regarded as an example 

of effective smoothing based on the contour. 

5.1.15 Jlassi Filter 

This technique was presented by Jlassi et al. (Jlassi, Bouzid and Ellouze, 2016). This 

approach has two main steps; first, finding the incorrect points in the pitch contour by 

considering those that exhibit a difference of more than a set threshold from both their 

previous and successive points. Second, replacing the incorrect point with the average of the 

last two points (5-14): 

𝑆𝑆𝑚𝑚𝑖𝑖  =  �
𝐸𝐸𝛥𝛥𝑖𝑖−2  +𝐸𝐸𝛥𝛥𝑖𝑖−1

2       |𝐸𝐸𝛥𝛥𝑖𝑖 − 𝐸𝐸𝛥𝛥𝑖𝑖−1| > 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎   𝑎𝑎𝑛𝑛𝑎𝑎  |𝐸𝐸𝛥𝛥𝑖𝑖 − 𝐸𝐸𝛥𝛥𝑖𝑖+1| > 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎
𝐸𝐸𝛥𝛥𝑖𝑖                                                        𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥

     (5-14) 
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The value for 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎 is assumed to be 30, as mentioned in the original paper. Figure 

5-1(h) illustrates the effect of the algorithm. 

5.2 Materials and Methods 

5.2.1 Dataset 

The VocalSet dataset (Wilkins et al., 2018), as described in section 3.1.1,  was used to 

evaluate the algorithms’ accuracy. This dataset includes more than ten hours of recordings of 

20 (11 males and nine females) professional singers. VocalSet includes a complete set of 

vowels and a diverse set of voices that exhibit many different vocal techniques, singing in 

contexts of scales, arpeggios, long tones, and melodic excerpts. For this study, a portion of 

VocalSet was selected; the scales and arpeggios were sung across the vowels in loud slow and 

fast performances. The total number of files used from VocalSet was 511. 

5.2.2 Ground Truth 

In order to evaluate the accuracy of each of the smoother algorithms, ground truth pitch 

contours were required to compare the smoothed pitch contours. In other words, in this 

study, the best smoothing algorithm was considered the one that produced contours most 

similar to the ground truth. According to studies by Faghih and Timoney (Faghih and Timoney, 

2019a, 2022a) and discussed in Chapter 3 and Chapter 4, a reliable offline pitch detector 

algorithm called PYIN (Mauch and Dixon, 2014) was used. The implementation of PYIN by a 

Python library called Librosa (McFee et al., 2022) was used for this study. The pitch contours 

estimated by PYIN were saved in several CSV files with two columns, time in seconds and F0. 

These were all plotted to ensure the accuracy of the pitch contours estimated by PYIN. Those 

that included irrational jumps were considered incorrect and deleted. Therefore, after 

removing those contours, the number of ground truth files remaining was 447. It should be 

noted that removing these files did not make an unreal/easier dataset for the smoother 

algorithms because, as discussed in the following section, several pitch detection algorithms 

were used to generate different errors. Thus, this removal only secures the study with reliable 

ground truth files. 
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5.2.3 Pitch Detection Algorithms to Generate Pitch Contours 

To evaluate the proposed smoother algorithm, we used a similar approach as (Ferro and 

Tamburini, 2019), employing several pitch contours with different random error 

(unsmoothed) points. As Faghih and Timoney’s (Faghih and Timoney, 2022a) study discussed, 

also in Chapter 4, six real-time pitch detection algorithms with different estimated contours 

were employed to obtain the required contours. The pitch detector algorithms were Yin (de 

Cheveigné and Kawahara, 2002), spectral YIN or YIN Fast Fourier transform (YinFFT), Fast comb 

spectral model (FComb), Multi-comb spectral filtering (Mcomb), Schmitt trigger, and the 

spectral auto-correlation function (Specacf). The implementation for these algorithms came 

from a Python library, Aubio (https://aubio.org/manual/latest/cli.html#aubiopitch, accessed 

on 10 June 2021) (Aubio, no date), a well-known library for music information retrieval. Since 

this chapter focuses on smoothing pitch contours, descriptions of these algorithms are not 

provided in this chapter but in Chapter 4. The reason for selecting these real-time pitch 

estimators was that, based on Chapter 4, none of them can estimate F0s without error in 

singing signals. In addition, the accuracy of these algorithms varies, which helped us evaluate 

the contour-smoother algorithms in different situations. 

In addition, to compare the accuracy of the algorithms in conditions where the pitch 

contours included no or only a few errors, an offline pitch-detector algorithm provided in the 

Praat tool (Boersma and van Heuven, 2001) based on the Boersma algorithm [29] was used. 

According to Chapter 3, the Praat and PYIN accuracies tend to be similar. 

The settings used for pitch detection for women’s voices were 44,100 for sample rate, 

1024 for window size, and 512 for hop size. The related settings for men’s voices were 44,100 

Hz, 2048, and 1024 for sample rate, window size, and hop size, respectively. Therefore, the 

distance between two consecutive points in a pitch contour for women’s voices was 11.61 

milliseconds, and for men’s voices was 23.22 milliseconds. 

As shown in Figure 5-2, the contours generated by the different pitch detectors exhibited 

various errors. Therefore, the total number of contours used to evaluate the smoother 

algorithms was 2682 (corresponding to the six pitch detectors run on each of the 447 wav files). 
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(a) 

 
(b) 

Figure 5-2. Pitch contours for a female singer of arpeggios in the C scale. (a) pitch contour estimated by PYIN 
(ground truth), Praat, Yin, and YinFFT algorithms. (b) pitch contour estimated by PYIN (ground truth), Fcomb, 

Schmitt, Mcomb, and Specacf. 

All the provided files, such as the dataset and codes, are available in a GitHub 

repository1. 

5.2.4 Evaluation Method 

Several evaluation metrics were used to compare the accuracy of the smoothing 

algorithms. The metrics used for the evaluations were R-squared (R2), Root-Mean-Square 

 
1 https://github.com/BehnamFaghihMusicTech/Smart-Median, accessed on 11 July 2022  

https://github.com/BehnamFaghihMusicTech/Smart-Median
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Error (RMSE), Mean-Absolute-Error (MAE), and F0 Frame Error (FFE). A well-known Python 

library called Sklearn (Buitinck et al., 2013) was used for the metrics, except for the FFE metric 

that this thesis’s author created. These metrics are explained in the following subsections. 

5.2.4.1 R-Squared (R2) 

The formula for this metric is as follows (5-15) (Colin Cameron and Windmeijer, 1997): 

𝑅𝑅2  = 1−  
∑ (𝐺𝐺𝐺𝐺𝑖𝑖 − 𝑆𝑆𝑀𝑀𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ �𝐺𝐺𝐺𝐺𝑖𝑖 − 𝑚𝑚𝛥𝛥𝑎𝑎𝑛𝑛(𝐺𝐺𝐺𝐺)�2𝑁𝑁
𝑖𝑖=1

= 1 − 
Regression Sum of Squares (𝑅𝑅𝑆𝑆𝑆𝑆)

Total  Sum of Squares (𝐺𝐺𝑆𝑆𝑆𝑆)
 (5-15) 

where 𝑁𝑁 is the total number of frames, 𝐺𝐺𝐺𝐺 is the ground truth contour, 𝑆𝑆𝑀𝑀 is the 

smoothed contour, and the 𝑚𝑚𝛥𝛥𝑎𝑎𝑛𝑛(𝐺𝐺𝐺𝐺) =  1
𝑁𝑁

 ∑ 𝐺𝐺𝐺𝐺𝑖𝑖𝑁𝑁
𝑖𝑖=1 . 

In the best case, when all the points in the ground truth contour and the estimated 

contour are similar, 𝑅𝑅2 is equal to 1; otherwise, 𝑅𝑅2 is less than 1. A value closer to 1 means 

more similarity between the two contours. 

5.2.4.2 Root-Mean-Square Error (RMSE) 

This metric is calculated according to the following formula (5-16): 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 =  �
∑ (𝐺𝐺𝐺𝐺𝑖𝑖 − 𝑆𝑆𝑀𝑀𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
2

 (5-16) 

In the best case, when the two contours have precisely the same values, the RMSE is 0; 

otherwise, it is more significant than 0. Closer values to 0 mean more similarity between two 

contours. 

5.2.4.3 Mean-Absolute-Error (MAE) 

Equation (5-17) shows how to calculate this metric: 

𝑀𝑀𝑀𝑀𝐸𝐸 =
∑ |𝐺𝐺𝐺𝐺𝑖𝑖 − 𝑆𝑆𝑀𝑀𝑖𝑖|𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (5-17) 

MAE is similar to RMSE, but because of the squared difference, RMSE  considers a more 

significant penalty for points at a greater distance from corresponding points in the ground 

truth contour. 
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5.2.4.4 F0 Frame Error (FFE) 

FFE is the proportion of frames within which an error is made. Therefore, FFE alone can 

provide an overall performance measure of the accuracy of the pitch detection algorithm 

(Drugman and Alwan, 2011). This metric calculates the percentage of points in the estimated 

pitch contour that are within a 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎 distance of corresponding points in the ground 

truth pitch contour (5-18): 

𝐺𝐺𝐺𝐺𝐸𝐸  =  

∑ �1        �
𝑆𝑆𝑀𝑀𝑖𝑖
𝐺𝐺𝑡𝑡𝑖𝑖

� ≤ 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎

0                         𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥

𝑁𝑁
𝑖𝑖=0

𝑁𝑁
× 100 

(5-18) 

where 𝑁𝑁 is the total number of frames/points. 

For the 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎, in studies such as (Ferro and Tamburini, 2019), a constant value, 

e.g., 16 Hz, was used as an acceptable variation from the ground truth. However, as discussed 

in Chapter 4, a fixed distance from the ground truth may not be a good approach because the 

perceptual effect of 16 Hz is different when the estimated pitch is 100 Hz compared to 1000 

Hz. However, it is also common to use a percentage, usually 20%, as the threshold (Jlassi, 

Bouzid and Ellouze, 2016), and the same approach is used in this study. 

Higher values of this metric indicate a higher similarity between the smoothed and 

ground truth pitch contours.  

The Sklearn library (Barupal and Fiehn, 2011) in Python has implemented the above 

evaluation metrics, except the FFE metric. This library was used for calculating the metrics.  

It should be mentioned that there are other algorithms for finding the similarities between 

pitch contours, such as those of Sampaio (Sampaio, 2018), Wu (Wu, 2013), and Lin et al. (Lin, 

Wu and Kao, 2008). However, these aim to determine a perceptual similarity between two 

pitch contours. In other words, those researchers sought to determine one melody’s similarity 

to another. However, the metrics could be used in this study that comparing two contours 

point by point instead of looking for the similarity between the trends of the two contours. 

Therefore, those algorithms were not suitable for this study. 
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5.3 Smart-Median: A Real-Time Pitch Contour Smoother Algorithm 

The approach applied in this study to adjust the incorrectly determined pitch values was 

based on the Median method and has been named Smart-Median. The Smart-Median method 

is based on the belief that each contour should be smoothed based on its data features and 

intended applications. In other words, a general contour smoother may not be suitable for all 

applications. The considerations for designing the Smart-Median are given in section 2.2.2.1. 

5.3.1 Smart-Median Algorithm 

The flowchart shown in Figure 5-3 illustrates how incorrectly estimated pitches can be 

distinguished. In addition, it indicates which estimated pitches should be selected to calculate 

the median for the wrongly detected pitches. 

 

Figure 5-3. The central part of the Smart-Median algorithm for smoothing a pitch contour. 

There are several variables and functions in the flowchart, explained as follows: 

1) 𝐺𝐺𝑖𝑖  refers to the frequency at index 𝑖𝑖. 
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2) AFD (Acceptable Frequency Difference) indicates the maximum pitch frequency 

interval acceptable for jumping between two consecutive detected pitches. In 

two studies on speech contour-smoother algorithms (Zhao, O’Shaughnessy and 

Nguyen, 2007; Jlassi, Bouzid and Ellouze, 2016), 30 Hz was selected as the AFD 

according to the researchers’ experiences. Because the frequency range that 

humans use for singing is wider than for speaking, a larger AFD is needed for 

singing. According to the dataset used, the largest interval between two 

consequently notes sung by men was from C4 to F4, at frequencies of 

approximately 261 Hz and 349 Hz, respectively, so the maximum interval was 88 

Hz for men. The largest interval between notes sung by women was C5 to F5, at 

frequencies of approximately 523 Hz and 698 Hz, respectively. Therefore, the 

biggest interval for women was 175 Hz. According to our observations of pitch 

contours, the human voice cannot physically produce such a big jump within a 

30 ms timestep; i.e., for moving from C4 to F4 or from C5 to F5, more than 30 ms 

is needed. Therefore, it was found that an AFD with a value of 75 Hz was an 

acceptable choice for pitch contours comprised mostly of frequencies less than 

300 Hz (male voices). For those with frequencies that are mostly greater than 

300 Hz (female singers), 110 Hz was a good choice for AFD. To obtain these 

selections for AFD,  the researcher manually annotated ten files and then 

calculated their AFD. Finally, the maximum AFD for the lower frequencies, men’s 

voice, and higher frequencies, women’s voice, were considered to be used to 

detect the events of the files. 

3) noZero: this is the minimum number of consecutive zero pitch frequencies that 

should be considered as a correctly estimated silence or rest. In this study, 50 

milliseconds was regarded as the minimum duration for silence to be accepted 

as correct (Kroher and Gomez, 2016); otherwise, the silence requires adjustment 

to the local median value. 

4) The 𝑍𝑍𝛥𝛥𝑓𝑓𝑓𝑓𝐶𝐶𝑓𝑓𝑡𝑡𝑛𝑛𝑡𝑡𝛥𝛥𝑓𝑓(𝑖𝑖) method calculates how many frequencies (pitches) of zero 

value exist after index 𝑖𝑖. The reason for checking the number of zero values 

(silence) is to ascertain whether or not the pitch detector algorithm has 

estimated a region of silence correctly or in error. 
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5) 𝑀𝑀𝛥𝛥𝑎𝑎𝑖𝑖𝑎𝑎𝑛𝑛(𝑖𝑖, j): calculates the median based on pitch frequencies from index 𝑖𝑖 to 

index 𝑗𝑗. 

6) PD (Prior Distance): this indicates how many estimated pitches before the 

current pitch frequency should be considered for the median. In this study, the 

PD was calculated to cover three estimated pitch frequencies, approximately 

over a duration of 35 and 70 milliseconds for men’s and women’s voices, 

respectively. Nevertheless, the algorithm does not need to wait until this 

duration becomes available, e.g., at a time of 20 milliseconds, covering 20 

milliseconds with PD is sufficient. 

7) FD (Following Distance): indicates how many estimated F0s after the current F0 

should be considered for the median. In this study, the number three was 

assigned to FD, meaning that calculating the median of the current wrongly 

estimated pitch required 35 milliseconds for women’s voices and 70 milliseconds 

for men’s voices. Therefore, a buffer delay is required in real-time environments 

until three extra estimated F0s are available. 

8) MaxF0: indicates the maximum acceptable frequency. In this study, for male 

voices, a value of 600 Hz (near to tenor) and for female voices, a maximum of 

1050 Hz (soprano) were considered for MaxF0. Rarely, male and female voices 

may exceed these boundaries. However, if the singer’s voice range is higher than 

these boundaries, a higher value can be considered for MaxF0. 

The first condition in Figure 5-3 aims to calculate whether the frequency at index 𝑖𝑖 is 

valid. There are three conditions for considering invalid estimates of pitch frequency. First, the 

previously estimated pitch should not be zero because, after a silence, there should naturally 

be a significant difference between the current pitch frequency and the rest. Second, the 

absolute difference between the currently estimated pitch and the previous one should be 

greater than the AFD. Finally, the number of consecutive zeros from the current index should 

be less than noZero. This condition checks whether the estimated F0 in the current index is 

zero, but the pitch detector error could not estimate the F0 correctly. 

According to the above conditions, if the current estimated F0 is marked as incorrect 

estimation, it branches to the right to “Yes”. The algorithm then continues by reducing the 

value of FD until the second condition is no longer true. In other words, the window for 
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calculating the median shrinks until the difference between the calculated median and the 

previous point is less than the AFD. Finally, the correct median is held in the 𝑀𝑀𝛥𝛥𝑎𝑎 variable. 

This should be less than the MaxF0 if it is considered a valid replacement value; otherwise, a 

zero will be substituted instead. 

Since several incorrect estimated pitches have been observed after silences, the third 

condition in Figure 5-3 checks whether the estimated F0 immediately follows a silence. In this 

case, the difference between the current estimated F0 and the next estimated F0 is 

considered. If neither the first nor the third conditions are correct, the estimated F0 is 

assumed to be accurate and does not need to be changed. 

The algorithm’s source code is available from the GitHub repository mentioned above 

for more detail. 

5.4 Results 

This section provides the results of the comparisons between the Smart-Median 

algorithm and the other 35 contour smoothers mentioned in Section 5.1. Three groups of data 

were obtained for evaluation. These groups were 1—the ground truth pitch contour (GT), 2—

the original estimated pitches (ES), and 3—the smoothed contour (SM). The metrics explained 

in Section 5.2.4 were employed to compare these data groups. The data series were compared 

two by two, i.e., GT with ES, GT with SM, and ES with SM. 

Table A-1 to Table A-4 in the Appendix show the accuracy of each of the pitch detector 

algorithms, and the accuracy of the contour-smoother algorithms applied to the estimated 

pitch contours to bring them closer to the ground truth pitch contour. The GT–ES columns 

show the initial difference between the ground truth and the original estimated pitch contour. 

Next, the differences between the ground truth and the smoothed contours are shown in the 

GT–MS columns. Finally, the ES- SM columns compare the initially estimated pitch contour 

and the smoothed pitch contour. The metrics comparing GT and SM are more important than 

those comparing GT–ES and ES–SM, because the values of GT–SM illustrate the resulting 

improvement supplied by each algorithm. For example, in the Specacf column in Table A-4, 

the first row (smoother algorithm with code 00) shows that according to the FFE metric GT–

ES = 40, GT–SM = 48, and ES–SM = 61. That is, 40 per cent of the pitches estimated by the 
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Specacf algorithm were correct. Then, the smoother algorithm improved this to 48 per cent 

of the acceptable data. Finally, 61 per cent of the values in the estimated pitch and smoothed 

contour remained in the same range; i.e., the smoother algorithm significantly changed just 

39 per cent of the values. 

According to Table A-1 to Table A-4 in the Appendix, the Smart-Median was the best 

algorithm for all pitch contours estimated by Specacf, FComb, Mcomb, Yin, or YinFFT. 

However, the best accuracy for the pitch contours calculated by Praat was recorded by the 

contour smoother code 33 (standard median). However, there was no agreement between 

the metrics employed to select the best smoother pitch contours generated by Schmitt or 

PYIN. 

Table 5-3 aggregates all the data in Table A-1 to Table A-4 in the Appendix. It can be 

observed in Table 5-3 that all the metrics agree that the Smart-Median worked better than 

the other smoother algorithms. 

Only the GT–SM column was considered to have found significant differences between 

the accuracy of the algorithms. All the algorithms in the range of the column average 

plus/minus standard deviation were considered to exhibit a similar accuracy. The algorithms 

with values outside this range were considered to be in the best or worst category, as shown 

in Table 5-4. Certain agreements and disagreements existed between the metrics employed 

to find the best and worst algorithms. For example, the smoother code 07 was in the worst 

category based on the metrics MAE and RMSE but in the best category based on the FFE 

metric. These agreements and disagreements are discussed in Section 5.4. 

An ANOVA test was used to check the accuracy of the smoother algorithms. For all the 

metrics, the p-value calculated for each smoother algorithm was 0. That means that the 

accuracy of all the smoother algorithms depended on errors that occurred in the pitch 

contours, i.e., the smoother algorithms did not work with the same accuracy when each pitch 

contour was affected by different sources of error. 
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Table 5-3. Comparing the mean of pitch estimators and contour-smoother algorithms by ground truth based on 
the four metrics. GT = Ground Truth, ES = Estimated pitch contour, SM = Smoothed contour. 

Algorithm 
MAE R2 RMSE FFE 

GT-ES GT-SM ES-SM GT-ES GT-SM ES-SM GT-ES GT-SM ES-SM GT-ES GT-SM ES-SM 

00 165 59 136 −175 −1 0.4 451 91 426 71 75 84 

01 165 160 76 −175 −73 0.9 451 313 240 71 64 81 

02 165 161 82 −175 −81 0.8 451 327 278 71 66 85 

03 165 160 81 −175 −82 0.8 451 327 264 71 67 85 

04 165 161 82 −175 −81 0.8 451 327 278 71 66 85 

05 165 160 85 −175 −68 0.8 451 304 265 71 65 82 

06 165 161 69 −175 −79 0.9 451 324 224 71 66 84 

07 165 161 62 −175 −87 0.9 451 338 209 71 66 87 

08 165 160 76 −175 −74 0.9 451 315 242 71 65 83 

09 165 191 127 −175 −77 0.8 451 321 296 71 51 64 

10 165 181 179 −175 −32 0.5 451 228 397 71 45 51 

11 165 172 153 −175 −39 0.7 451 240 367 71 50 59 

12 165 175 153 −175 −43 0.7 451 248 361 71 50 59 

13 165 172 158 −175 −34 0.6 451 228 377 71 48 57 

14 165 178 162 −175 −40 0.6 451 239 368 71 49 57 

15 165 168 152 −175 −39 0.6 451 241 379 71 55 65 

16 165 161 130 −175 −42 0.7 451 243 345 71 56 67 

17 165 161 82 −175 −81 0.8 451 327 278 71 66 85 

18 165 163 160 −175 −26 0.6 451 210 384 71 48 56 

19 165 172 158 −175 −34 0.6 451 228 377 71 48 57 

20 165 172 158 −175 −34 0.6 451 228 377 71 48 57 

21 168 164 147 −184 −32 0.6 448 220 366 70 50 60 

22 165 172 158 −175 −34 0.6 451 228 377 71 48 57 

23 165 159 101 −175 −47 0.8 451 262 282 71 53 67 

24 165 164 82 −175 −72 0.9 451 312 246 71 55 71 

25 165 176 120 −175 −55 0.8 451 283 262 71 51 63 

26 165 183 88 −175 −91 0.9 451 344 192 71 53 70 

27 165 168 104 −175 −56 0.8 451 285 268 71 53 68 

28 165 170 92 −175 −71 0.9 451 311 252 71 54 69 

29 165 175 95 −175 −73 0.9 451 316 214 71 53 68 

30 165 182 89 −175 −88 0.9 451 340 197 71 53 69 

31 168 163 111 −199 −76 0.7 456 303 329 70 65 80 

32 165 159 70 −175 −78 0.9 451 321 212 71 61 78 

33 165 132 52 −175 −46 0.8 451 238 307 71 72 94 

34 165 146 76 −175 −62 0.8 451 284 311 71 65 81 

35 165 131 59 −175 −61 0.7 451 228 342 71 72 95 
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Table 5-4. Dividing the contour smoother algorithms into three categories (best, normal, and worst) based on 
the standard deviation. 

 Best 
Code (Value) Normal Worst 

Code (Value) 

MAE 
00 (58.71) 
33 (131.85) 
35 (131.3) 

Avg = 162.56 Std = 21.25 

09 (190.95) Min = 141.31 Max = 183.81 

All the other algorithms* 

R2 

00 (−0.72) 
10 (−31.59) 
13 (−34.07) 
18 (−26.9) 
19 (−34.7) 
20 (−34.07) 
21 (−32.46) 
22 (−34.07) 

Avg = −58.01 Std = 21.98 02 (−80.79) 
03 (−82.22) 
04 (−80.81) 
07 (−87.46) 
17 (−80.81) 
26 (−90.75) 
30 (−87.66) 

Min = −79.99 Max = −36.03 

All the other algorithms* 

RMSE 
00 (90.67) 
18 (209.56) 
21 (220.12) 

Avg = 275.62 Std = 53.1 07 (338.41) 
26 (343.63) 
30 (339.93) 

Min = 222.52 Max = 328.72 

All the other algorithms* 

FFE 

00 (74.73) 
02 (66.21) 
03 (66.87) 
04 (66.22) 
07 (66.48) 
17 (66.22) 
33 (71.87) 
35 (71.99) 

Avg = 57.59 Std = 8.35 10 (44.83) 
13 (48.24) 
14 (48.6) 

18 (48.47) 
19 (48.24) 
20 (48.24) 
22 (48.24) 

Min = 49.24 Max = 65.94 

All the other algorithms* 

*it means that all the other algorithms not mentioned in the Best or Worst columns were in the average range. 

5.5 Discussion 

This section discusses several aspects of the results obtained in Section 5.4. Because this 

study focuses on the Smart-Median method, the only considerations provided here are those 

relating to comparisons of Smart-Median accuracy with that of other smoother algorithms. 

5.5.1 Comparing the Results of Each Metric 

A higher R-squared (R2) value does not always mean a better fitting (Lewis-Beck and 

Skalaban, 1990). For example, Table 5-5 shows the R-squared scores of three series of 

predicted data. These predictions are the estimated pitch frequencies for five sung notes: G2, 

G2, A2, G2, and G2. According to the R-squared scores in Table 5-5, the order of the best 

prediction to the worst was 4, 3, 2, and then 1. However, Predict 3 estimated two wrong notes, 

such that each was one tone above the corresponding ground truth notes (A2 instead of G2), 

while Predicts 1 and 2 each had only one incorrect note (B2 instead of A2). Therefore, 
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musically, the third was the worst, but based on R-squared, it was the second-best. In addition, 

musically, Predict 1 and Predict 2 were similar, and the 0.2 Hz pitch frequency difference could 

easily have resulted from a different method of F0 tracking, but their R-squared scores were 

different. In conclusion, we cannot compare two series of smoothed pitches based only on R-

squared. 

Table 5-5. Comparison of metrics in different series of predicted data. 

 1st 2nd 3rd 4th 5th R2 Score RMSE MAE FFE 

Ground Truth 98 (G2) 98 (G2) 110 (A2) 98 (G2) 98 (G2) NA NA NA NA 

Predict 1 98.2 (G2) 98.2 (G2) 123.2 (B2) 98.2 (G2) 98.2 (G2) −0.61 5.91 2.8 0.8 

Predict 2 98 (G2) 98 (G2) 123 (B2) 98 (G2) 98 (G2) −0.56 5.81 2.6 0.8 

Predict 3 98 (G2) 110 (A2) 110 (A2) 110 (A2) 98 (G2) −0.33 7.59 4.8 0.6 

Predict 4 98.2 (G2) 98.2 (G2) 110.2 (A2) 98.2 (G2) 98.2 (G2) 0.999 0.2 0.2 1 

According to the RMSE and MAE columns in Table 5-5, the best to worst series were 4, 

2, 1, and then 3. This order is better than that based on R-squared. However, musically, we 

need to consider the similarity of Predict 1 and Predict 2; based on the FFE column in Table 

5-5, Predicts 1 and 2 both had the same value. As shown in Table 5-5, Predict 4 was the best 

according to all the metrics, and musically, it was also the best. Moreover, although Predicts 

1 and 2 were musically similar (FFE metric), Predict 2 was more accurate than Predict 1 (R2, 

RMSE, and MAE metrics). 

To conclude, a single metric alone cannot provide a clear and accurate evaluation to 

compare pitch contours, but a firm conclusion can be reached by using all of them. 

5.5.2 Comparing Moving Average, Median, Okada, Jlassi, and Smart-Median 

The main weakness of the Median, Okada (Okada, Ishikawa and Ikegaya, 2016), and 

Jlassi (Jlassi, Bouzid and Ellouze, 2016) filters is that they only adjust noises with a duration of 

one point in the contour. In other words, if more than one consecutive wrongly estimated 

pitch values occurs within a contour, these algorithms cannot smooth the errors. The 

following example illustrates the operation of the moving average, Median, Okada, Jlassi, and 

Smart-Median approaches on a data series. 

Table 5-6 shows five estimated F0s as the input, the first row, and how each of the 

Moving average, Median, Okada, Jlassi, and Smart-Median will modify the data. It was 
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expected that all these five numbers be close together. Thus, there are two incorrectly 

estimated F0s with the value 2000 Hz. As shown in Table 5-6, the moving average and Median 

methods changed some of the correctly estimated values, i.e., the 102 value, which was the 

second piece of input data. On the other hand, Okada’s and Jlassi’s approaches did not change 

any of the values because they looked for significant differences with immediately preceding 

and following points. However, the Smart-Median is mainly concerned with finding an 

acceptable jump by comparing the current and previous points. Because of this different 

approach to the identification of errors, when the pitch contour was already almost smooth 

(contours estimated by Praat and PYIN) there was no significant difference between the 

accuracy of these approaches (as seen by comparing rows 00, 33, 34, and 35 in Praat and PYIN 

columns in Table A-1 to Table A-4 in Appendix). However, while the pitch contours estimated 

by the other pitch detection algorithms exhibited several errors, Smart-Median showed 

meaningfully better results than all other methods (observable in Specacf, Schmitt, Fcomb, 

Mcomb, Yin, and YinFFT columns in Table A-1 to Table A-4 in Appendix ). 

Table 5-6. An example to illustrate the weakness of the moving average, Median, Okada, and Jlassi algorithms 
as compared to the Smart-Median. 

Input 100 Hz 102 Hz 2000 Hz 2000 Hz 100 Hz 

Moving average (window size = 3) 734 Hz 1367 Hz 1367 Hz 1050 Hz 100 Hz 

Median (window size = 3) 102 Hz 2000 Hz 2000 Hz 1050 Hz 100 Hz 

Okada 100 Hz 102 Hz 2000 Hz 2000 Hz 100 Hz 

Jlassi 100 Hz 102 Hz 2000 Hz 2000 Hz 100 Hz 

Smart-Median 100 Hz 102 Hz 102 Hz 102 Hz 100 Hz 

Generally, according to Table 5-3, the accuracy of the Smart-Median based on the four 

metrics was much better than all the other algorithms. 

5.5.3 Accuracy of the Contour Smoother Algorithms 

All the contour smoother algorithms provided strong results according to the R2 and 

RMSE metrics (by comparing the GT–ES columns with GT–SM columns in Table 5-3). However, 

only the Smart-Median (00), Median (33), and Jlassi (35) approaches could change the pitch 

contour significantly to ensure that more of the estimated F0 values were constrained to line 

within the range of 20% of the ground truth pitch contour (Table A-1 to Table A-4 in Appendix 
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and Table 5-3 to Table 5-4). Therefore, although all the algorithms smoothed contour errors, 

many also altered the value of the corrected estimated pitches. 

5.6 Conclusions 

This chapter has introduced a new pitch-contour-smoother targeted towards the singing 

voice in real-time environments. The proposed algorithm is based on the median filter and 

considers the features of fundamental frequencies in singing. The algorithm’s accuracy was 

compared with 35 other smoother techniques, and four metrics evaluated their results: R-

Squared, Root-Mean-Square Error, Mean Absolute Error, and F0 Frame Error. The proposed 

Smart-Median algorithm achieved better results across all the metrics in comparison to the 

other smoother algorithms. According to this study, a buffer delay of 35 to 70 milliseconds is 

required for the algorithm to smooth the contour appropriately. For the low frequencies, 

men’s voice, a longer buffer delay is needed than for higher frequencies, women’s voice. 

Most of the general smoother algorithms did not show an acceptable accuracy. A 

general observation is that in the ideal case, a smoother algorithm should be defined based 

on the essential features of the data in the contour and how that data is to be used after 

smoothing. 

The parameters’ values were selected according to the singing features and can also be 

used in other smoother algorithms, like the moving average, to improve their accuracy. The 

gender of the singer cannot directly affect the Smart-Median accuracy, albeit, as discussed in 

Chapter 3 and Chapter 4, it affects the pitch detectors' accuracy. After smoothing estimated 

pitch contours, the sung notes can be extracted with the novel algorithm discussed in the 

following chapter.



 

 

 

 

 

 

 

 

Chapter 6                                                             
Onset and Offset detection 

  

This chapter introduces a new method for detecting onsets, offsets, and 

transitions of the notes in real-time solo singing performances. The text of this 

chapter come from the following journal paper. 

• Faghih B, Chakraborty S, Yaseen A, Timoney J. A New Method for Detecting Onset and Offset 

for Singing in Real-Time and Offline Environments. Applied Sciences. 2022; 12(15):7391. 
https://doi.org/10.3390/app12157391 

https://doi.org/10.3390/app12157391
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This chapter aims to introduce a new onset detection algorithm incorporating more 

knowledge about the singing features for a more accurate onset estimation. 

To achieve the goal, the following section explains the methodology. After that, in 

Section 6.2, the new algorithm will be discussed in detail. Then, the evaluation results for the 

proposed algorithm will be presented and discussed in Section 6.3. Finally, the last section 

concludes the chapter. 

6.1 Materials and Methods 

This section explains the details of the approach taken to develop our algorithm. It first 

describes the datasets used, then explains the algorithm thoroughly, followed by the structure 

of the evaluation procedure. 

6.1.1 Datasets 

Two onset-annotated vocal datasets, Erkomaishvili (Rosenzweig, Scherbaum, et al., 

2020) and SVNote1 (Hoon Heo, Dooyong Sung and Kyogu Lee, 2013; Chang and Lee, 2014), 

are used for this study. The following paragraphs provide a summary description of these 

different musical datasets. 

6.1.1.1 Erkomaishvili Dataset 

This dataset includes 100 monophonic audio files of traditional Georgian vocal music 

performed by a professional singer, Artem Erkomaishvili. Each audio file contains the 

fundamental frequencies, segment annotation, onset annotations, and sheet music in XML. 

Moreover, it contains more than seven hours of music with 40,135 onset annotations. The 

annotations were estimated manually except for the fundamental frequencies, whose 

calculation was semi-automated. Moreover, in this dataset, the points for onset and offset in 

successive notes were deemed to coincide, i.e., the offset of the previous note is the onset of 

the new note. Since the files were recorded in 1966, the audio files have poor quality. In 

addition, the recordings are of natural melodic singing rather than only some scales or 

arpeggios. Therefore, it is a challenging dataset for automatic annotation algorithms. 



126 
 

6.1.1.2 Note-Level Singing Voice Dataset (SVNote1) 

This dataset included 30 audio files sung by seven men and three women. Each of the 

singers recorded three popular pieces of music (1-“soft kitty, warm kitty, little ball of fur”, 2-

“school bell”, and 3-“Twinkle, twinkle little star”). These are, in total, around 16 min of music 

with 1440 onset annotations. In addition, three people annotated each audio file's onsets 

separately, meaning three sets of annotations were provided for each audio file. The three 

annotators’ average is considered the ground truth for this study. 

These datasets were selected to have a variety of singing techniques, intervals between 

notes, duration of the notes, and transition from one to another. For example, the 

Erkomaishvili dataset included many soft onsets, long notes, and vibrato as compared to the 

SVNote1 dataset. Thus, both datasets can provide various spectrograms of singing to evaluate 

onset detection algorithms in determining the onset of notes. 

6.1.2 State of-the-Art Onset Detection Algorithms 

To evaluate our proposed algorithm’s efficiency and accuracy, eight different onset 

detection algorithms were selected against which to compare the accuracy of the proposed 

algorithm. The implemented versions of the algorithms in Python were used. The algorithms 

were taken from implementations across four different Python libraries, namely Librosa 

(McFee et al., 2015, 2020), Madmom (Böck et al., 2016), Aubio (Brossier et al., 2019), and 

Essentia (Bogdanov et al., 2013a). The explanations of the algorithms are provided in the 

following by categorizing them based on the Python libraries. 

6.1.2.1 Librosa 

Librosa is a well-known library for sound analysis and feature extraction (McFee et al., 

2015). It has three different methods to estimate onsets. The first method (referred to as 

“LibRaw” in this chapter) locates the note onsets based on peaks in the onset strength 

envelope. The onset strength envelope is calculated by finding the spectral flux, which is the 

difference in power spectrum between two consecutive frames, applying a threshold, and 

returning a one-dimensional array representing the change in spectral energy for each frame. 

Then, based on the onset strength, it peaks where the energy is a minimum based on the 

heuristic described by Boeck et al. (Sebastian, Krebs and Schedl, 2012). The other two methods 
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rely on backtracking from the nearest preceding minimum energy point (Jehan, 2005). The 

second method (called “LibBt”) works by backtracking using the onset strength profile, while 

the third method (named “LibBtRMS”) depends on backtracking with the Root Mean Square 

(RMS) or amplitude value. All these three methods are offline; they have not been designed 

to work in real-time. 

6.1.2.2 Madmom 

This Python library provides two real-time onset detection methods (Böck et al., 2012, 

2016). The first approach (called “MadmomCNN” in this article) uses a Convolutional Neural 

Network model that is a real-time version of the model proposed by Schlüter & Böck (Schlüter 

and Böck, 2013) trained on 26,000 annotated onsets. The model was trained to predict 

percussive and harmonic onsets with a frame rate of 100 per second. Next, the spectral onset 

processor method detects the onsets from a logarithmically scaled audio signal representation 

based on the spectral magnitude and phase, which is referred to using the name 

“MadmomSF” in this chapter. 

6.1.2.3 Aubio 

This real-time library uses a window size of 2048 frequency samples to detect onsets 

(Brossier, 2005). In addition, Aubio sets a threshold value to mark quiet regions. Finally, it 

constructs a function based on successive spectral frames with a window size of 2048 and a 

hop size of 1024, meaning that the frame duration was approximately 23 ms for a 44,100 Hz 

sample rate. The dynamic thresholding and peak selections return the onset frames. 

6.1.2.4 Essentia 

This offline onset tracking method was used with its default values for the window and 

hop sizes, 1024 and 512, respectively, for a Hann window (Bogdanov et al., 2013a). Therefore, 

the duration of each frame was roughly 11.61 ms. There are two approaches to this library. 

The first method, Essentia Onset HFC (EssHFC), uses a high-frequency content detection 

function (Masri and Bateman, 1996). The high frequency is calculated by multiplying the 

magnitude of each frame position (frequency) with the summation of the magnitudes of the 

spectral frame. The discrete spectrum of 𝑁𝑁 unique points is formulated in Equation (6-1). 

𝐻𝐻𝐺𝐺𝐶𝐶 =  ∑ 𝑖𝑖|𝑋𝑋(𝑖𝑖)|𝑁𝑁−1
𝑖𝑖=0 , (6-1) 
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The second method, Essentia Onset Complex (EssCplx), uses a complex domain spectral 

difference function to identify significant changes in magnitude and phase (Bello et al., 2004). 

This algorithm tries to identify significant energy changes on note onsets or the deviation of 

phase values within the phase spectrum caused due to pitch changes. 

Finally, it should be mentioned that all these algorithms/libraries calculate only onsets 

and do not compute offsets or identify transitions. 

6.1.3 The Methods for Evaluation 

The accuracy of the proposed algorithm is evaluated by running the algorithms 

presented in Section 6.1.2 and the proposed algorithm on the datasets mentioned in Section 

6.1.1. Then, the F-measure scores were calculated by the mir_eval Python library (Raffel et al., 

2014), and the results were ordered so that they could be compared with each other. As 

mentioned above, the onset points are not exact times but a range of acceptable times. 

Therefore, to calculate F-measure scores, each of the estimated onsets’ points should be 

compared with a range of points around the ground truth points. Thus, six different window 

sizes (10, 50, 100, 150, 200, and 250 ms) were considered to calculate the F-measure scores. 

Furthermore, the F-measure scores’ average, variance, and ANOVA were calculated to 

understand the results better. 

6.2 The Proposed Algorithm 

This algorithm is based on our observations following investigations that involved many 

singing pitch contours. From many of the plotted pitch contours, it was noticed that there is a 

noticeable trajectory change in the fundamental frequency when moving from one note to 

another. Therefore, the proposed algorithm is focused on evaluating the changes in a pitch 

contour to identify those meaningful changes that will signify onsets, offsets, and transitions. 

The pitch contour is selected because it is a robust indicator of onset compared to other 

features. For example, Rabiner and Sambur (Rabiner and Sambur, 1975) looked to find 

significant changes in the sound energy contour to find the start and the end of an isolated 

utterance. Their approach is based on short-time energy and zero-crossing rate. However, 

although in the case of a silence existing between notes, as considered by Rabiner and Sambur 
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(Rabiner and Sambur, 1975), a noticeable change in amplitude contour is easy to see, it is 

difficult to rely on the amplitude contour as a feature when analyzing legato singing, as 

unpredictable variations can occur in the movement from one note to the next. In contrast, 

the fundamental frequency track is either erratic before the onset and then quickly becomes 

stable or moves smoothly from one value to the next in the case of legato singing, even when 

the consecutive notes are at the same pitch frequency. Thus, the proposed algorithm can be 

explained as seven main steps to find the onsets, offsets, and transitions, as shown in Figure 

6-1. The steps are explained in the subsequent paragraphs. 

 
Figure 6-1 The main steps to find onsets in the proposed algorithm. 

6.2.1 Estimating F0s 

Since the algorithm is based on the fundamental frequencies, the F0s must be estimated 

correctly. However, as mentioned in the previous Chapters, the current real-time pitch 

detection algorithms are unreliable when applied to singing phrases. Therefore, according to 

Chapter 3, a more reliable offline algorithm, PYIN (Mauch and Dixon, 2014), was employed to 

avoid a compounding effect in this analysis if any real-time pitch detector algorithm would be 

used. Thus, it was possible to evaluate the accuracy of the onset algorithm without any 

adverse effects caused by the pitch detection algorithms. A Python library, Librosa (McFee et 

al., 2020), was used for PYIN. 

The main difference between the real-time and offline algorithms is the amount of data 

they need for the calculation. Therefore, real-time algorithms are only based on the previous 

data points and/or a few later data points, meaning that only a short buffer delay is required. 

On the other hand, offline algorithms require a long buffer delay to have sufficient data when 
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performing their calculations. Using the PYIN algorithm does not mean the proposed 

algorithm needs a long buffer delay to obtain a large amount of data, but the algorithm can 

work with a very short buffer delay, as explained below. 

6.2.2 Stretching Pitch Contour 

Since humans’ vocal pitch range is wide, generally from 77 to 900 Hz (Heylen et al., 

2002), calculating significant changes occurring on pitch contour has some difficulty. For 

example, the slope of the line when moving from note 𝐸𝐸2 ≈ 82 Hz to the note 𝐺𝐺2 ≈ 87 Hz 

is much less than when it moves from note 𝐸𝐸5 ≈ 659 Hz to note 𝐺𝐺5 ≈ 698 Hz. Therefore, to 

counteract any adverse effect of this wide pitch frequency range on the slopes, the F0s are 

stretched to be on the almost same pitch frequency range. 

Figure 6-2 plots two estimated pitch contours (panels a and b) and the stretched version 

of them (panels c and d, respectively). As depicted in Figure 6-2, although (a) and (b) are in 

different pitch frequency ranges, after stretching, the slopes between notes in both (c) and 

(d) are almost similar. 

The following formulas, Equations (6-2) and (6-3), are used to implement the stretch. 

𝑚𝑚𝑎𝑎𝑚𝑚 = �𝐺𝐺0𝑖𝑖 ,      𝐺𝐺0𝑖𝑖 > 𝑚𝑚𝑎𝑎𝑚𝑚
𝑚𝑚𝑎𝑎𝑚𝑚,    𝑓𝑓𝑡𝑡ℎ𝛥𝛥𝑓𝑓𝑒𝑒𝑖𝑖𝛥𝛥𝛥𝛥 , (6-2) 

𝐺𝐺0𝑖𝑖 = 𝐹𝐹0𝑖𝑖 ∗𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑠𝑠ℎ𝑜𝑜𝑙𝑙𝑜𝑜
𝑚𝑚𝑏𝑏𝑚𝑚

, (6-3) 

where the variable 𝑚𝑚𝑎𝑎𝑚𝑚 holds the maximum F0 estimated until index 𝑖𝑖 − 1, and the 

constant value 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎 holds the maximum possible F0. Since the maximum pitch 

frequencies of the singers in both datasets mentioned above are less than 1000 Hz, for this 

study, 1000 Hz is considered as the 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎. In Equation (6-2), if the current F0, 𝐺𝐺0𝑖𝑖, is 

more than the 𝑚𝑚𝑎𝑎𝑚𝑚 variable, Equation (6-3) should be run for all the F0s from index 0 to index 

𝑖𝑖 − 1. 
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(a) (b) 

 

 

 

 
(c) (d) 

Figure 6-2 The effect of stretching on pitch contour’s slopes. (c, d) are the stretched pitch contours of (a, b), 
respectively. 

6.2.3 Calculating the Stretched Pitch Contour Slopes 

To find the significant changes in F0s, the slopes between points in the pitch contour are 

needed. Figure 6-3 illustrates the process of calculating the slopes: in the top panel, (a), the 

estimated pitch contour is plotted; the graph in the middle panel, (b), shows a stretched pitch 

contour of the contour in panel (a) as discussed in Section 6.2.2, while that the bottom panel, 

(c), depicts the slopes between the F0s of the stretched pitch contour. It is computed by 

differentiating the contour. The vertical red lines in Figure 6-3 show the possible offset points, 

and the vertical green lines are the possible onset points. 
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(a) 

 

(b) 

 

(c) 

 
Figure 6-3 Analyzing the pitch contour. (a) The original pitch contour of three notes, the first two notes are the 
same, and the third one is lower than the previous notes, (b) the stretched estimated values for the fundamental 
frequencies in (a), and (c) the slope of the pitch contour computed using differentiation. The red lines show the 

possible points for offsets, and the green lines are possible onsets. 
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6.2.4 Calculating the Summation of Slopes in the following Line 

Transitions can be observed in singing as the singer moves from one note to another. 

An example of this is outlined between the two pairs of orange-coloured lines in Figure 6-4. 

 
Figure 6-4 Points’ statuses on a pitch contour. There are three notes: F4, F4, and E4, in order, sung by a 

professional female singer. The average pitch frequencies of the notes are 359, 362, and 323 Hertz, respectively. 

 

In this step, the summation of the following points’ slopes is calculated to find the 

transitions at each point. In other words, as far as the direction of the line (upward, downward, 

or straight) in the stretched pitch contour remains the same, the slopes between every two 

consecutive points would be added to each other. The algorithm is depicted in Figure 6-5, 

where 𝑖𝑖 is the current point in this figure. 
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Figure 6-5 Calculating the summation of the following slopes of the differentiated contour. 

The algorithm commences by computing the cumulative sum of the consecutive points 

in the slope representation. In other words, their amplitudes, the values on the y-axis in Figure 

6-3(c), are summed. According to the evaluation of several manually annotated onsets, 

offsets, and transitions, it is observed that there is a sharp upward or downward movement 

between two consecutive notes in a pitch contour. Therefore, a heuristic function 

implemented using decision logic is applied to assess how much change happens after each 

new point. In addition, it is found how many consecutive points have the same sign as the 

current point’s slope: that is, how many of the successive values are heading in the same 

direction. The function that denotes this in Figure 6-5 is named 

NumberOfSameSlopeDirection(Pointi).  
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Therefore, the algorithm, at this point, detects when the slope changes sign. 

6.2.5 Calculating the Mean of the Local Slopes 

In this step, the mean of the local slopes needs to be calculated. This mean is always 

accounted for by considering some of the previous points until the current point, as shown in 

Equation (6-4). 

𝑀𝑀𝛥𝛥𝑎𝑎𝑛𝑛(𝑃𝑃𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖) =  ∑ 𝑆𝑆𝑙𝑙𝑜𝑜𝑝𝑝𝑟𝑟 (𝑃𝑃𝑜𝑜𝑖𝑖𝑛𝑛𝑃𝑃𝑥𝑥)𝑥𝑥=𝑖𝑖
𝑥𝑥=𝑖𝑖−𝑛𝑛

𝑛𝑛
, (6-4) 

where 𝑛𝑛 is the size of the window. The value of 𝑛𝑛 is important to produce a mean that 

can show the mean of the fluctuations in a note. If 𝑛𝑛 is too big, it may include some old-time 

fluctuations that will result in an incorrect local mean. In contrast, if 𝑛𝑛 is too small, there would 

not be enough fluctuations to calculate the correct local mean. The 𝑛𝑛 should be selected based 

on the singing technique, notes’ duration, and intervals. In this study, the selected values of 𝑛𝑛 

were chosen to be 230 ms for the Erkomaishvili dataset and 46 ms for the SVNote1 dataset. 

These selections for 𝑛𝑛 were made according to a trial-and-error method of adjusting the 𝑛𝑛 

value to have the best result for one of the files of each dataset.  

As shown in Figure 6-6, although the median duration of the notes in both datasets is 

almost similar, roughly 0.42 s, the duration of most of the notes in the Erkomaishvili dataset 

is longer than the median. In contrast, the duration of the notes in the SVNote1 dataset is 

distributed approximately uniformly below and above the average. Therefore, the variance of 

notes’ duration in the Erkomaishvili dataset is greater than in the SVNote1 dataset. In addition, 

the variance of the intervals between notes in the Erkomaishvili dataset is smaller than in the 

SVNote1 dataset. Thus, two different 𝑛𝑛 values for each dataset were selected. 

 
Figure 6-6 Box and whisker of the estimated notes’ duration in the SVNote1 and the Erkomaishvili datasets. 
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6.2.6 Calculating the Standard Deviation of the Local Slopes 

To define a significant trajectory change in the fundamental frequencies, the sample 

standard deviation of the local slopes is calculated as shown in Equation (6-5). 

𝑆𝑆𝐺𝐺𝑆𝑆(𝑃𝑃𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖) =  �
∑ (𝑆𝑆𝑙𝑙𝑜𝑜𝑝𝑝𝑟𝑟(𝑃𝑃𝑜𝑜𝑖𝑖𝑛𝑛𝑃𝑃𝑥𝑥)− 𝑀𝑀𝑟𝑟𝑏𝑏𝑛𝑛(𝑃𝑃𝑜𝑜𝑖𝑖𝑛𝑛𝑃𝑃𝑖𝑖))2𝑥𝑥=𝑖𝑖
𝑥𝑥=𝑖𝑖−𝑛𝑛

𝑛𝑛−1
, (6-5) 

The same window size (𝑛𝑛 value) as for calculating the mean was used for estimating the 

standard deviation. 

6.2.7 Comparing the Current Slope with the Mean and Standard Deviation 

In this step, all the required information is prepared to determine if a significant change 

has occurred in the fundamental frequency trajectory. 

Each of the points in the pitch contour can have only one of the following statuses: 

a) Onset: this means the point is an onset. 

b) Offset: this means the point is an offset. 

c) StartTransition: this means a transition will follow, and this point is the start of 

the transition. 

d) EndTransition: this means it is the end of the transition. 

e) None: this means this point is neither an event’s start nor the end. 

These statuses are illustrated in the diagram in Figure 6-4. The red and green lines show 

offset and onset events, respectively, while the orange lines denote a transition from a note 

to the following note, i.e., the points between an offset and its subsequent onset. 

Figure 6-7 illustrates the algorithm for finding each point’s status. This algorithm works 

based on the values calculated by the algorithm illustrated in Figure 6-5. This algorithm is run 

iteratively on each of the estimated pitch values. 

First, a 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎 for the local pitch contour’s slope must be calculated. This is 

completed by adding the mean of the local slopes at 𝑃𝑃𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖  to the product of the standard 

deviation of the local slopes at P𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖  and 𝑡𝑡 coefficients. The 𝑡𝑡 is a user-specified value that 

indicates which range of frequencies, based on their variation from the mean, should be 

considered as belonging to the same note. The value t does not define a fixed variation from 

the mean but is derived based on the singer’s techniques. For instance, when the singer uses 
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vibrato, the variation is higher than singing in an unmodulated tone. Thus, since the 

Erkomaishvili dataset has more variations in its tones than the SVNote1 dataset, thresholds of 

5 and 2 were selected, respectively, by employing a trial-and-error method. 

Second, if the slope at 𝑃𝑃𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖  is bigger than the 𝐺𝐺ℎ𝑓𝑓𝛥𝛥𝛥𝛥ℎ𝑓𝑓𝑖𝑖𝑎𝑎, it means that a trajectory 

change has happened. This significant change should be an 𝑂𝑂𝑛𝑛𝛥𝛥𝛥𝛥𝑡𝑡, 𝑂𝑂𝑓𝑓𝑓𝑓𝛥𝛥𝛥𝛥𝑡𝑡, or 

𝑆𝑆𝑡𝑡𝑎𝑎𝑓𝑓𝑡𝑡𝐺𝐺𝑓𝑓𝑎𝑎𝑛𝑛𝛥𝛥𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑛𝑛. If it is the first trajectory change after a silence (see Branch B in Figure 6-7), 

it is a movement to reach an 𝑂𝑂𝑛𝑛𝛥𝛥𝛥𝛥𝑡𝑡; otherwise (see Branch A in Figure 6-7), the current point 

is an 𝑂𝑂𝑓𝑓𝑓𝑓𝛥𝛥𝛥𝛥𝑡𝑡. Based on each of these situations, Onset, Offset, StartTransition, and 

EndTransition statuses will be marked. The start and end of transitions are consecutively after 

and before an Offset and an Onset, respectively. In other words, the start and end of 

transitions are one point apart from the Offset and Onset points. 

When the algorithm finds a significant trajectory change at 𝑝𝑝𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖, all the events 

between 𝑃𝑃𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖  and 𝑃𝑃𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖+𝑖𝑖  will be labelled; thus, the following point that needs to be 

checked is 𝑖𝑖 + 𝑗𝑗 + 1. Therefore, there is a jump with a size of 𝑗𝑗 + 1 at the end of the algorithm 

to set the 𝑖𝑖 value for the next iteration. 

In the beginning, the 𝐺𝐺𝑖𝑖𝑓𝑓𝛥𝛥𝑡𝑡𝐺𝐺𝑖𝑖𝑚𝑚𝛥𝛥 variable is set to 𝐺𝐺𝑓𝑓𝑡𝑡𝛥𝛥, and also when a rest is reached 

(when 𝐺𝐺0𝑖𝑖  equals zero), a 𝐺𝐺𝑓𝑓𝑡𝑡𝛥𝛥 value will be assigned to this variable. 

A full implementation of the algorithm has been released to provide all the details in a 

GitHub repository1.  

 

 
1 https://github.com/BehnamFaghihMusicTech/Onset-Detection, accessed on 15 July 2022 

https://github.com/BehnamFaghihMusicTech/Onset-Detection
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Figure 6-7 The algorithm for finding a significant change to find onset, offset, and transition. 

6.3 Results and Discussion 

This section provides the results and the details of the procedure for evaluating the 

proposed algorithm. It should be mentioned that the accuracy of the real-time proposed 

algorithm is compared against a set of real-time and offline algorithms. The delay buffer of 

the proposed algorithms depends on the window size to calculate the mean of the local slopes, 
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as mentioned in Section 6.2.5. Delays buffers of 230 and 46 ms are used for the Erkomaishvili 

and SVNote1 datasets, respectively. 

Since the other onset detection algorithms mentioned in Section 6.1.2 only estimate 

onsets but not offsets and transitions, only onsets need to be extracted to evaluate and 

compare the proposed algorithm with them. Therefore, two types of onset times were 

considered: (1) First, only those points in the pitch contour are labelled as an onset. The green 

line illustrates these in Figure 6-8, and (2) the middle point between the start time of the 

transition and onset, illustrated by the pink lines in Figure 6-8, is considered the new onset 

point. The reason for considering the second type is to align with the approach used for ground 

truth datasets because they do not consider that transitions can exist between notes. 

Therefore, they would probably select a point between the red and green lines in Figure 6-8 

as the onset. Therefore, considering the middle point should result in just a minor deviation 

from the ground truths. 

  
(a) (b) 

Figure 6-8 An example illustrates the position of the onset point in the Erkomaishvili dataset (ground truth) 
compared to the onset, offset, and transition points indicated by the proposed algorithm. Panel (a) shows the 

pitch frequencies, and panel (b) depicts the slope contour according to panel (a). 

Generally, as shown in Figure 6-8, a range of plotted points between the offset and the 

start of the following note could be selected as an onset. Therefore, the algorithms were 

compared with different window sizes of 10, 50, 100, 150, 200, and 250 ms for calculating the 

F-measure. Table 6-1 and Table 6-2 display F-measures computed across all the algorithms in 

the six window sizes. A larger window size for F-measure shows more similarity since an 

enormous difference between the ground truth and the estimated onset would be acceptable 

in this case. However, as seen in Table 6-1 and Table 6-2, after applying the window size of 

150 ms, the speed of improvement in F-measure values decreases. In addition, a window size 
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of more than 250 ms cannot be meaningful since it accepts more than a 250 ms difference 

between the ground truth and the estimated onset, which is too long. These tables provide 

the similarity between the ground truth’s onsets times and the estimated onsets times by each 

algorithm. As mentioned above, two onset point selections are considered regarding the 

proposed algorithm. The rows titled “Pro Algorithm 1” in Table 6-1 and Table 6-2 consider the 

green line in Figure 6-8 as the onset, while the rows titled “Pro Algorithm 2” select the middle 

point, which is the pink line in Figure 6-8. 

All the algorithms show better results on the SVNote1 dataset than on the Erkomaishvili 

dataset. One of the possible reasons for the better result could be the better audio quality of 

the SVNote1 dataset. In addition, there is a speaking introduction at the beginning of each 

audio file that is not included in their annotations. Nevertheless, since all the algorithms are 

working on the same audio files, they all have the same faulty sound, which will not affect the 

comparison. 

As the result of the comparison, our proposed algorithm finds more correct onsets 

compared to the other algorithms when the window size is equal to or greater than 150 ms, 

as shown in the rows for Pro Algorithm 1 in Table 6-1 and Table 6-2. The bold numbers in these 

two tables highlight the performance of the best algorithm. 

Selecting the average of the onset and the start of the transition as the onset leads to 

an increase in the accuracy of the proposed algorithm by 3.4% on average for the Erkomaishvili 

dataset. However, the opposite is the case for the SVNote1 dataset, in which the accuracy of 

the onset identification decreased by 3.8%. The reason for these opposing results is that the 

annotator of the Erkomaishvili dataset considered onsets to lie more closely to the middle, as 

depicted in Figure 6-8. 

However, the SVNote1 dataset’s annotators mostly considered onsets after the 

proposed algorithm’s onset point, as shown in Figure 6-4. Both approaches can be interpreted 

as correct since the onset point is not universally agreed in a pitch contour, as mentioned 

above, but it is deemed to be valid over a range of points. 

To check the meaningfulness of the averages of the F-measure values of each onset 

detection algorithm, the p-values for ANOVA were calculated for all the F-measure values 

calculated for every single file. The ANOVA’s p-values for both Table 6-1 and Table 6-2 were 
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less than 0.0001, which means a significant difference exists between the accuracy of all 

evaluated algorithms. 

Table 6-1 The average of the F-measures of all the algorithms on the Erkomaishvili dataset based on six window 
sizes, from 10 to 250 ms. 

Algorithm    Window size 10 50 100 150 200 250 

Aubio * 0.072 0.295 0.415 0.480 0.523 0.553 

EssCplx 0.076 0.304 0.444 0.508 0.541 0.557 

EssHFC 0.065 0.297 0.452 0.533 0.58 0.611 

LibBt 0.064 0.288 0.448 0.521 0.560 0.585 

LibBtRMS 0.046 0.247 0.416 0.502 0.551 0.58 

LibRaw 0.056 0.295 0.455 0.525 0.563 0.586 

MadmomCNN * 0.086 0.308 0.42 0.479 0.516 0.543 

MadmomSF * 0.088 0.287 0.392 0.450 0.488 0.515 

Pro Algorithm 1 * 0.036 0.198 0.416 0.55 0.631 0.681 

Pro Algorithm 2 * 0.059 0.274 0.464 0.579 0.649 0.691 
* The algorithms marked with a star are real-time algorithms. 

Table 6-2 The average of the F-measures of all the algorithms on the SVNote1 dataset based on six window 
sizes, from 10 to 250 ms. 

Algorithm   Window size 10 50 100 150 200 250 

Aubio * 0.118 0.509 0.655 0.694 0.696 0.696 

EssCplx 0.064 0.313 0.492 0.550 0.562 0.563 

EssHFC 0.095 0.561 0.739 0.787 0.798 0.798 

LibBt 0.045 0.371 0.611 0.737 0.779 0.786 

LibBtRMS 0 0.111 0.498 0.697 0.761 0.783 

LibRaw 0.257 0.672 0.763 0.784 0.785 0.785 

MadmomCNN * 0.042 0.496 0.665 0.667 0.667 0.667 

MadmomSF * 0.020 0.662 0.779 0.781 0.781 0.782 

Pro Algorithm 1 * 0.089 0.469 0.704 0.827 0.893 0.923 

Pro Algorithm 2 * 0.108 0.432 0.646 0.764 0.845 0.881 
* The algorithms marked with a star are real-time algorithms. 

As another result, the average and the standard deviation of the duration of the 

transitions are shown in Table 6-3. This table also provides the minimum (average minus 

standard deviation) and the maximum (average plus standard deviation) typical duration for 

the transitions. Therefore, the average transitions’ duration in the datasets is almost the same. 

Overall, based on the results, the minimum and maximum duration of the transitions were 

approximately 16 and 98 ms, respectively. Therefore, since the proposed algorithm is based 

on the trajectory changes in a pitch contour and the transitions show these significant 
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changes, the minimum buffer delay required to find the onset, offset, and transition is 16 ms 

and the maximum of 98 ms. However, most events should be found correctly, with the 

average transition duration being around 57 ms. This delay would be acceptable for most real-

time music information retrieval applications. For example, Henkel and Widner’s real-time 

score-following system (Henkel and Widmer, 2021) requires a delay of around 56 ms. 

Generally, by examining more datasets, these numbers can be generalized and make them 

fixed for the algorithm instead of adjusting them according to the features of the input signals. 

Table 6-3 The average, standard deviation, minimum, and maximum typical duration of transitions in both the 
datasets and overall. 

 Average STD Min Max 

Erkomaishvili 57.44 40.77 16.67 98.21 

SVNote1 56.25 44.68 11.57 100.93 

Overall 57.4 40.91 16.49 98.31 

Since the proposed algorithm is based on the changes in a pitch contour, when the 

intervals between notes are bigger and there are fewer soft onsets, the algorithm can estimate 

onsets more accurately. 

6.4 Conclusions 

This chapter has proposed a new algorithm for detecting onsets, offsets, and transitions 

between notes in singing. The algorithm can work in both offline and real-time environments. 

In the case of real-time, a 57-millisecond delay is needed to have adequate information for 

calculating the events. The proposed algorithm showed an improvement in accuracy when 

compared with eight well-known algorithms in two different datasets. When the window size 

for calculating the F-measure was considered between 100 ms and 250 ms, the proposed 

algorithm calculated the onsets better than other algorithms in the Erkomaishvili dataset. 

However, its accuracy was not the best for the window sizes 50 ms and 10 ms compared to 

the other algorithms.  The comparison on the SVNote1 dataset was almost similar, but when 

the algorithm was the best one when the window size was 150 ms or more.    

The onset detection algorithm introduced in this chapter will be employed in the 

following chapter to generate an annotated monophonic singing dataset. 

  



 

 

 

 

 

 

 

 

Chapter 7                                                         
Generating an annotated 

singing dataset 

 

  

This chapter introduces a new annotated singing dataset. Not only an 

explanation of the files in the dataset is provided, but also a review on the available 

dataset and the methodology of annotating audio files are discussed. This 

chapter’s contents are according to the following journal paper. 

• Faghih, Behnam & Timoney, Joseph, “Annotated VocalSet: A Singing Voice 

Dataset”. Applied Sciences. 12(18):9257.  

https://doi.org/10.3390/app12189257  

https://doi.org/10.3390/app12189257
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This chapter’s goal is to generate a singing annotated dataset to provide information to 

be able to analyse the behaviour of trained-professional singers in their performances. Thus, 

the following section explains the approaches used to calculate the annotations, and a 

description of the Annotated-VocalSet is provided in section 7.2. After that, Section 7.4 

introduces and compares four methods of selecting the onset, offset, and transition positions. 

Finally, this chapter will be closed with a conclusion in Section 7.5. 

7.1 Steps to Generate the Dataset 

Generally, four steps were followed to add the annotations: 1- estimation of F0, 2-

detection of onsets, offsets, and transitions, 3- extraction of notes’ features, and 4- adding the 

scores to the extracted notes. These steps are explained in the following. 

7.1.1 Estimating Fundamental Frequencies 

A state-of-the-art pitch detector algorithm, PYIN (Mauch and Dixon, 2014), was 

employed to estimate the fundamental frequencies of each file. The implementation of the 

PYIN in Librosa (McFee et al., 2022) was used as it is one of the well-known Python libraries. 

According to Chapter 3, the PYIN algorithm is a reliable pitch estimator for singing signals. 

However, it still returns incorrect estimates for some F0s. Therefore, the Smart-Median pitch 

smoother algorithm, introduced in Chapter 5, was employed to smooth the pitch contours 

estimated by PYIN.  

However, after plotting all the pitch contours, the authors reviewed all pitch trajectories 

and realized that some of the pitch contours were incorrect. We looked at the plotted data to 

find the incorrectly generated pitch contour. Where the plotted shape was not as expected, 

more investigations were done to find the reasons. There were two main reasons for 

incorrectly shaped pitch contours:  

1- Wrongly estimated F0; for example, octave-doubling, as discussed in Chapter 3 and 

Chapter 4. 

2- Singers’ mistakes; for example, in some cases, such as in the files 

f7_scales_c_fast_forte_i, m6_scales_c_fast_piano_a, and 
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m11_scales_f_fast_forte_e.csv, the singers sang one note less than given in the 

musical scores, or they sang some extra notes, such as in the file m1_caro_straight. 

Therefore, we removed these incorrect files from the Annotated-VocalSet to have a 

reliable set of pitch contours. In total, 24.5 per cent of files were discarded from the original 

dataset. 

7.1.2 Detecting Onsets, Offsets, and Transitions 

After preparing the pitch contours, a semi-automatic approach was used to annotate 

pitch contours with onset, offset, and transitions. First, the algorithm introduced in the 

previous chapter was used to estimate the onset, offset, and transition between two 

consecutive notes. 

After labelling the events, all the detected events were graphed to double-check the 

accuracy of the annotations. Some errors observed among the estimated events were then 

corrected with a software tool developed by this thesis’s author; Figure 7-1 depicts the tool. 

The software uses different colours for each event. If the user finds an incorrect event, they 

should edit the CSV file containing the values that will be explained in Section 7.2.1. Therefore, 

its users can change the CSV files and immediately see the results on the screen to ensure the 

events are labelled correctly. This tool was developed using the language C# and is available 

at https://doi.org/10.5281/zenodo.7061507, accessed on 14 September 2022. It should be 

mentioned that this tool works on CSV files in the “raw” folders. 

https://doi.org/10.5281/zenodo.7061507
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Figure 7-1. The software tool used to check and correct F0, onset, offset, and transition annotations by 

indicating them with different colours. 

To adjust the estimated annotations, firstly, files were divided among five non-expert 

musicians (but they were trained on how to interpret a pitch contour to find events) to correct 

the estimated events. Finally, an expert musician with over 12 years of music training reviewed 

all the events and adjusted any incorrect ones. 

Figure 7-2(a) depicts the onset, offset, and transition from a part of a pitch contour. The 

red line shows the offset, the green line is the onset, the blue line shows the start of the 

transition, and the purple line shows the end of the transition. 

Since several software libraries and associated studies do not include transitions but 

only onsets and/or offsets, as discussed in Chapter 6, we have proposed two approaches, 

considering and not considering the existence of a transition, for annotating onsets, offsets, 

and transitions. 
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(a) (b) 

  
(c) (d) 

Figure 7-2. Points’ statuses on a pitch contour. Two notes, E4 and F4, are sung by a professional female singer. 
(a) Showing offset, the start of a transition, the end of a transition, and onset events in order. (b) The transition 
was not considered, and the onset started immediately after the offset point according to (a). (c) Similarly, the 
transition was not considered, but the offset was annotated to lie immediately before the onset point in (a). (d) 
Likewise, the transition was not considered, but the middle points between the onset and offset points in (a) are 

annotated as offset and onset. 

7.1.3 Extracting Notes Features 

After annotating the pitch contours with the onset, offset, and transitions, as explained 

above, the following formulas were used to calculate each note’s features. 

1) Start time: is the onset time. 

2) End time: the time of the offset. 

3) Duration: calculated by subtracting the “Start time” from the “End time”. 

4) Type: can be a rest, sound, or transition according to Equation (7-1). 

𝐺𝐺𝑇𝑇𝑝𝑝𝛥𝛥 =

⎩
⎪
⎨

⎪
⎧
𝑅𝑅𝛥𝛥𝛥𝛥𝑡𝑡          𝑖𝑖𝑓𝑓 𝑡𝑡ℎ𝛥𝛥 𝛥𝛥𝛥𝛥𝑡𝑡𝑖𝑖𝑚𝑚𝑎𝑎𝑡𝑡𝛥𝛥𝑎𝑎 𝑝𝑝𝑖𝑖𝑡𝑡𝑑𝑑ℎ𝛥𝛥𝛥𝛥 𝑏𝑏𝛥𝛥𝑡𝑡𝑒𝑒𝛥𝛥𝛥𝛥𝑛𝑛 

        𝛥𝛥𝑡𝑡𝑎𝑎𝑓𝑓𝑡𝑡 𝑎𝑎𝑛𝑛𝑎𝑎 𝛥𝛥𝑛𝑛𝑎𝑎 𝑡𝑡𝑖𝑖𝑚𝑚𝛥𝛥𝛥𝛥 𝑎𝑎𝑓𝑓𝛥𝛥 0
𝑆𝑆𝑓𝑓𝑡𝑡𝑛𝑛𝑎𝑎     𝑖𝑖𝑓𝑓 𝑡𝑡ℎ𝛥𝛥 𝛥𝛥𝛥𝛥𝑡𝑡𝑖𝑖𝑚𝑚𝑎𝑎𝑡𝑡𝛥𝛥𝑎𝑎 𝑝𝑝𝑖𝑖𝑡𝑡𝑑𝑑ℎ𝛥𝛥𝛥𝛥 𝑏𝑏𝛥𝛥𝑡𝑡𝑒𝑒𝛥𝛥𝛥𝛥𝑛𝑛 

                 𝛥𝛥𝑡𝑡𝑎𝑎𝑓𝑓𝑡𝑡 𝑎𝑎𝑛𝑛𝑎𝑎 𝛥𝛥𝑛𝑛𝑎𝑎 𝑡𝑡𝑖𝑖𝑚𝑚𝛥𝛥𝛥𝛥 𝑎𝑎𝑓𝑓𝛥𝛥 𝑛𝑛𝑓𝑓𝑡𝑡 0
𝐺𝐺𝑓𝑓𝑎𝑎𝑛𝑛𝛥𝛥𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑛𝑛          𝑖𝑖𝑓𝑓 𝑡𝑡ℎ𝛥𝛥 𝛥𝛥𝑡𝑡𝑎𝑎𝑓𝑓𝑡𝑡 𝑎𝑎𝑛𝑛𝑎𝑎 𝛥𝛥𝑛𝑛𝑎𝑎 𝑡𝑡𝑖𝑖𝑚𝑚𝛥𝛥𝛥𝛥 
                            𝑎𝑎𝑓𝑓𝛥𝛥 𝑓𝑓𝛥𝛥𝑖𝑖𝑎𝑎𝑡𝑡𝛥𝛥𝑎𝑎 𝑡𝑡𝑓𝑓 𝑎𝑎 𝑡𝑡𝑓𝑓𝑎𝑎𝑛𝑛𝛥𝛥𝑖𝑖𝑡𝑡𝑖𝑖𝑓𝑓𝑛𝑛

 (7-1) 

5) Average F0: contains the average of the F0s of the note. 

6) Median F0: includes the median of the estimated F0s for the current note. 

7) Min F0: contains the minimum estimated F0 in the current note. 
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8) Max F0: shows the maximum estimated F0 in the current note. 

9) The standard deviation of F0s (STD): this column shows the standard deviation of the 

estimated F0s of the current note. 

10) Average F0s in the range of STD (AverageStd): This column includes the average of the 

only estimated F0s that satisfy the following condition, Equation (7-2): 

(𝑀𝑀𝑖𝑖𝛥𝛥𝑓𝑓𝑎𝑎𝐴𝐴𝛥𝛥 𝐺𝐺0)− (2 ∗ 𝑆𝑆𝐺𝐺𝑆𝑆) ≤ 𝐺𝐺0𝑖𝑖 ≤ (𝑀𝑀𝑖𝑖𝛥𝛥𝑓𝑓𝑎𝑎𝐴𝐴𝛥𝛥 𝐺𝐺0) + (2 ∗ 𝑆𝑆𝐺𝐺𝑆𝑆) (7-2) 

This metric calculates the average by omitting the pitches that were determined to be 

outliers. Since, in some cases, especially when the note’s duration was very short, none 

of the estimated pitches were within one standard deviation distance, and thus two 

standard deviation distances were considered instead. 

11) Estimated MIDI code: includes the MIDI codes associated with the calculated 

AverageStd, as shown in Equation (7-3). 

12 ∗  𝑖𝑖𝑓𝑓𝐴𝐴2((𝑀𝑀𝑖𝑖𝛥𝛥𝑓𝑓𝑎𝑎𝐴𝐴𝛥𝛥𝑆𝑆𝑡𝑡𝑎𝑎)/ 440) +  69 (7-3) 

12) Repetition No: it is common that in a piece of music, some of the notes appear several 

times. This annotation indicates the repetition of the note in the song. 

7.1.4 Combining Extracted Notes with Ground Truth Scores 

After extracting the notes, they needed to be associated with the scores. The scores and 

lyrics of each file are available in the VocalSet dataset (Wilkins et al., 2018). Therefore, the 

estimated notes and the scores were automatically aligned by a software program created by 

this thesis’s author in C# programming language. For each musical score, an array that held 

the notes’ information, such as name and duration, was created in the code. Then the two 

lists, estimated notes and scores, were aligned. To achieve this, the code iteratively walks 

through the lists, and when the notes are matched, that is, notes on each list were either a 

rest or an articulated sound, they were associated. Finally, the following columns were added 

to the files in the “extended” directories. 

13) Ground truth Note name: their format is a capital letter + [#/b] + octave number—for 

example, C4, D#5, or Bb4. 

14) Ground Truth Frequency: It includes the frequency of the note based on A4 = 440 Hz. 

15) Ground Truth MIDI code: the MIDI note number according to the ground truth note 

name. 
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16) Lyric: if the file comes from an arpeggio, scale, or long-tone, this column includes the 

sung vowel. Otherwise, the syllable corresponding to the note according to the scripts 

provided in VocalSet [6] is used in this column. 

17) Ground Truth Note duration name: it includes the name of the note’s duration. Its 

value is one from this list: Whole_note, Half_note, Dotted_Quarter_note, 

Quarter_note, Dotted_Eighth_note, Eighth_note, Eighth_note_triplet, 

Sixteenth_note, or Grace_note. 

18) Ground Truth note duration: the BPMs of two series of songs were indicated in 

VocalSet. The BPM of the songs marked as ‘fast’ is 330, and those marked ‘slow’ is 60. 

Therefore, the ground truth notes’ duration of these two categories only were 

annotated in this study. 

19) Interval to the previous note: this shows the number of semitones between the current 

note and the immediate previous note. 

20) Interval to the following note: this shows the number of semitones between the 

current note and the note immediately following it. 

7.1.5 Checking Annotation Correctness 

After creating the annotations, several evaluations were used, as listed below, to check 

their correctness. 

1) All the pitch contours and the events were plotted, similar to Figure 7-1, to manually 

double-check them. First, a non-expert but trained person checked and corrected the 

files. Then, another person with the same expertise double-checked them. Finally, an 

expert reviewed the annotations. As seen in Figure 7-1, it is possible to distinguish the 

played notes from a pitch contour. Therefore, when an event was not estimated 

correctly, the annotator could find and alter it. 

2) A piece of software code was developed to check if the sequences of the onset, offset, 

and transition were correct. For example, an onset should be followed by an offset. In 

addition, the start and end of a transition should be between an offset and its 

consecutive onset. The list of the incorrect files was saved in a text file. Then, an expert 

corrected the erroneous files. These processes were repeated until the software code 

found no more errors. 
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3) In the process of combining the extracted notes with the scores as discussed in Section 

7.1.4, if the number of extracted notes was not equal to the number of notes in the 

ground truth, the automatic tool listed the incorrect files to be investigated by the 

user. These steps were repeated until no error was reported by the tool. 

4) Finally, with a piece of code, the information in all the files, including the header in the 

“extended 4” directory, were combined to have all the information in one CSV file. This 

file is available in the Annotated-VocalSet root directory and is named “all-files.csv”. 

Then rows were sorted based on the column named Shifted_F0—Nominal_F0. The 

values in this column were expected to be between −1 and 1. Therefore, all the records 

that did not belong to this range were investigated manually to fix the inaccurate ones. 

Then, after this test, most of the notes were within the expected range, and the author 

became convinced that the out-of-range values were not errors due to the erroneous 

actions of the author but were due to errors in the notes produced by the singers. 

After these checks, the correctness of the annotations satisfied the author. 

7.2 Dataset Description 

The directories’ hierarchy of the Annotated-VocalSet is depicted in Figure 7-3. The notes 

in the files in the “raw 1” and “extended 1” directories were calculated by considering a 

transition between notes, as depicted in Figure 7-2(a). On the other hand, the notes in the 

other directories were estimated without considering a transition between notes. Therefore, 

for the estimated notes in the “raw 2” and “extended 2” directories, the onsets started 

immediately after the offsets, as shown in Figure 7-2(b). Moreover, the files belonging to the 

“raw 3” and “extended 3” directories were calculated by considering the points before onsets 

as offsets, as illustrated in Figure 7-2(c). In addition, the files in the “raw 4” and “extended 4” 

directories included the notes where their onset and offsets were estimated as the middle 

points between the offset and onset when a transition was considered between notes. As an 

illustration, the onset and offset points in Figure 7-2(d) are at the middle of the onset and 

offset points in Figure 7-2(a). 
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Figure 7-3. The directories’ hierarchy of the Annotated-VocalSet. 

7.2.1 Raw Directories 

The “raw” directories shown in Figure 7-3 included each audio file’s CSV and JPEG 

(plotted) files. 

The CSV file columns in order are Time (in second), F0 (in Hertz), Amplitude (between 0 

and 1), onset (true or empty), offset (true or empty), and Transition (true or empty). The 

Transition column indicates whether or not the detected onset/offset is related to a transition 

from one note to another note. In other words, if the transition column is true and the 

onset/offset is true, it means that this onset/offset shows the start/end of a transition. 

The plot folders include the graphs of the pitch contours with the onset, offset, and 

transition events. 

7.2.2 Extended Directories 

The files in these directories are created based on the “raw” files. The extended 

directories include two subdirectories: with file header and without file header. The difference 

between these two subdirectories is that the folder named “with file header” contains files 

having a header, as described in the following. 
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The heading part is positioned at the top of the CSV files and has 15 lines, and the 

description of each line is as follows: 

1) Filename; 

2) Gender; 

3) Singer name (f1, f2, etc.); 

4) The technique (breathy, fast forte, fast piano, etc.); 

5) Type of music (Scale, Arpeggios, etc.); 

6) Vowel (a, e, I, o, u); 

7) BPM; 

8) File duration in milliseconds. 

Lines 9 to 15 are reserved to allow the possibility of their use at some time in the future. 

In this case, the software developed for processing the current version of the dataset will not 

need to be changed to work with future versions. 

After the heading (or at the top of the files in the without file header directories), the 

list of the columns in order are Sequence, Start time, End time, Duration, Type, Average F0, 

Median F0, Min F0, Max F0, Standard deviation F0, Average F0 in range of STD, Estimated MIDI 

code, Ground truth Note name, Ground Truth Frequency, Ground Truth MIDI code, Lyric, 

Ground Truth Note duration name, Ground Truth note duration, Interval to the previous note, 

and Interval to the following note. All the columns have been explained in Sections 7.2.1 and 

7.2.2. 

The original VocalSet dataset already provides the information in the heading section, 

but this study adds these details of the singing notes. 

7.3 Summary of the generated data 

This section provides statistical overviews of the generated annotations to make it clear 

for the reader to understand the dataset. 

Figure 7-4 depicts the total number of annotated notes in each music type sung by men 

and women. The figure shows that the number of notes sung by males and females is almost 

the same. In addition, the notes mainly come from singing Scales and Arpeggio music type. On 
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the other hand, each of the musical excerpts (Caro, Dona, Row Row) has the lowest number 

of notes. 

 
Figure 7-4 The total number of notes in each music type sung by males and females 

Figure 7-5 provides a box and whisker plot of the pitch frequencies sung by the singers. 

As can be seen from the plot, the main distribution of the pitch frequencies is roughly between 

50 Hz and 700 Hz, and the majority of notes are in the range of 200 Hz and 400 Hz.  

 
Figure 7-5 A box and whisker plot of the pitch frequencies sung by the singers. 
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Similarly, the range of the duration of the notes is plotted in Figure 7-6. As shown in the 

figure, the duration of most of the notes is less than two seconds, albeit some longer sounds 

also exist in the dataset.  

 
Figure 7-6 A box and whisker plot of the duration of the notes sung by the singers. 

As depicted in Figure 7-7, the pitch intervals between notes in the database are limited 

to one octave, 12 semitones, with a significant majority in two semitones pitch intervals.  

(a) 
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(b) 

 
Figure 7-7 The total number of notes categorized by their pitch intervals to the previous note (a) and the 

following note (b). 

Table 7-1 shows the percentage of notes’ repetitions in a piece of music, as discussed in 

section 7.1.3. The table shows that most of the notes are in one or two repetitions.  

Table 7-1 The percentages of the repetition of the notes in a piece of music out of total of 299117 notes 

Repetition Percentage of Repetition 

1 52.78% 

2 40.70% 

3 2.30% 

4 1.55% 

5 1.43% 

6 0.87% 

7 0.37% 

7.4 Comparing the Four Methods of Selecting the Positions of Onset, Offset, 

and Transition 

Since this study provides four approaches for selecting the onset, offset, and transition 

discussed in Section 7.1, a comparison among them is provided to understand the differences 
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between them better. To compare them, the theoretical pitch frequencies of notes in the MIDI 

pitch code are considered to be the ground truth. In addition, each note’s Average, 

AverageStd, and Median F0 values were converted to MIDI pitch codes. Therefore, each 

approach that can produce fewer differences from the ground truth is considered a better 

approach. Finally, all possible pair permutations of approaches were compared. Table 7-2 to 

Table 7-4 show the p-value for the t-test employed on each pair group to determine if the 

difference among the means of the distances between the estimated MIDI code and the 

theoretical MIDI code is meaningful. For example, the first row in Table 7-2 shows that there 

is no noticeable difference (p-value > 0.05) between the first approach (the files in the 

“extended 1” directory) and the second approach (the files in the “extended 2” directory). 

As shown in Table 7-2 and Table 7-3, in some cases, there are statistically significant 

differences in the variation of the estimated pitch frequencies of notes when computed using 

the Average as compared to the AverageStd. However, the Median approach does not show 

a significant difference, as illustrated in Table 7-4. Nevertheless, according to Table 7-5 to 

Table 7-7, since the maximum difference between the average difference of F0s calculated by 

each approach is less than 0.2 MIDI pitch code, these differences across their averages are not 

meaningful in a musical sense. For example, based on Table 7-2, the p-value for comparing 

“extended 1” and “extended 3” is <0.01, which means that a significant difference between 

“extended 1” and “extended 4” exists statistically. Nevertheless, Table 7-5 shows that the 

range of the observed differences for “extended 1” is 0.9227 ± 3.075 MIDI pitch code and 

that the range for “extended 3” is 1.0386 ± 3.19  MIDI pitch code. This is a 0.1159 MIDI pitch 

code difference between the means of “extended 1” and “extended 3” (i.e., 1.0386–0.9227); 

this number of 0.1159 could not be considered to be a significant difference in pitch value, 

particularly when the range for “extended 1” is from −2.1523 to 3.9977 MIDI pitch code and 

for “extended 3” is between – 2.1514 and 4.2286. Therefore, for estimating the fundamental 

pitch frequency of notes, there is no significant difference between selecting each point, as 

discussed in Section 7.1, to be the onset and offset. Similarly, by comparing Table 7-5 to Table 

7-7, it can be concluded that there is not a considerable difference between the methods of 

calculating F0 (Average, AverageStd, and Median). 
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On the other hand, points selected as onsets and offsets can affect the duration of the 

notes. 

Table 7-2. p-values of the t-test applied to the difference between average frequency and nominal frequency. 

Series 1 Series 2 p-Value 

extended 1 extended 2 0.084 

extended 1 extended 3 <0.01 

extended 1 extended 4 0.259 

extended 2 extended 3 <0.01 

extended 2 extended 4 0.567 

extended 3 extended 4 <0.01 

Table 7-3. p-values of t-test applied to the difference between AverageStd and nominal frequency. 

Series 1 Series 2 p-Value 

extended 1 extended 2  0.287 

extended 1 extended 3  <0.01 

extended 1 extended 4  0.784 

extended 2 extended 3  <0.01 

extended 2 extended 4  0.429 

extended 3 extended 4  <0.01 

Table 7-4. p-values of t-test on the difference between median frequency and nominal frequency. 

Series 1 Series 2 p-Value 

extended 1 extended 2 0.844 

extended 1 extended 3 0.197 

extended 1 extended 4 0.659 

extended 2 extended 3 0.278 

extended 2 extended 4 0.809 

extended 3 extended 4 0.399 

Table 7-5. The average and standard deviation of the difference between average frequency and nominal 
frequency. 

Series Average Standard Deviation 

extended 1 0.9227 3.075 

extended 2 0.9627 3.113 

extended 3 1.0386 3.19 

extended 4 0.9492 3.194 



158 
 

Table 7-6. The average and standard deviation of the difference between AverageStd and nominal frequency. 

Series Average Standard Deviation 

extended 1 1.0317 2.518 

extended 2 1.0539 2.52 

extended 3 1.1094 2.511 

extended 4 1.0374 2.516 

Table 7-7. The average and standard deviation of the difference between median frequency and nominal 
frequency. 

Series Average Standard Deviation 

extended 1 0.8892 2.745 

extended 2 0.8933 2.787 

extended 3 0.9159 2.784 

extended 4 0.8984 2.786 

7.5 Conclusions 

This chapter introduced an extended set of annotations for the solo singing files in the 

VocalSet dataset (Wilkins et al., 2018). The provided annotations include F0, onset, offset, 

transition, note F0, note duration, Midi pitch, and lyric. In addition, four approaches for 

considering the onset and offset points in a pitch contour were compared, showing that the 

selected points for onset and offset cannot significantly affect the note’s estimated F0. 

Moreover, calculating a note’s F0 by average or median methods does not considerably affect 

the note’s estimated F0. The annotated dataset is available online at 

https://doi.org/10.5281/zenodo.7061507, accessed on 14 September 2022. 

After generating the dataset in this chapter, the next chapter aims to analyse it to figure 

out how to calculate a note’s pitch frequency and duration according to its position in a piece 

of music.

https://doi.org/10.5281/zenodo.7061507


 

 

 

 

 

 

 

 

Chapter 8                                                          
Models to estimate the pitch                        

frequency and duration ranges                               

for an acceptable note in singing  

 

  

Performing musical notes correctly does not mean that all the performers 

will play the notes at the exact same pitch and duration. However, it does imply 

that they are performing the notes within acceptable psychoacoustic ranges. 

Therefore, this chapter aims to propose models for calculating these acceptable 

psychoacoustic ranges according to the position of the notes in a piece of music. 
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This chapter aims to investigate a dataset of recorded vocals to discover some particular 

aspects of the relationship between the performed F0 and duration against its written note 

and relative duration in a music score. In other words, this chapter introduces two novel 

models to simulate trained-professional singers’ behaviours in singing notes’ pitches and 

duration according to the position of the note in a piece of music and the singing technique 

applied. The annotated dataset introduced in the previous chapter is used for this study. Since 

the singers of the dataset were trained-professional singers, the mean of their singing 

behaviours is considered acceptable pitch frequency and duration. 

The following section, 8.1, explains this study's steps in detail. Then, section 8.2 provides 

results, and a discussion follows that in section 8.3. Finally, this chapter is closed with a 

conclusion. 

8.1 Materials and Methods 

8.1.1 Dataset 

The Annotated-VocalSet, generated in the previous chapter, was used to evaluate 

singers' patterns. All the singers had vocal training leading to a bachelor's or graduate degree 

in vocal performance. In addition, this dataset annotated nearly 7 hours of singing files 

comprising scales, arpeggios, long tones, and musical excerpts. Moreover, the singers used 

different techniques such as belt, vibrato, lip trill, straight, and breathy. Furthermore, they 

used all the vowels to sing arpeggios, scales, and long tones. Additionally, they sang three 

popular pieces: 1- Row, Row, Row Your Boat, 2- Caro Mio Ben, and 3- Dona Nobis Pacem. 

Figure 8-1 shows the music scores of the pieces available in Annotated-VocalSet.  

As discussed in the previous chapter, the Annotated-VocalSet dataset provides four 

approaches for determining onset, offset, and transition between two consecutive notes. 
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(a) 

 

(b) 

 

€ 

 

(d) 

 

(e) 

 

(f) 

 

Figure 8-1 Music scores of the audio files in the Annotated-VocalSet dataset: (a) is arpeggios in C and F, (b) is 
C and F Scales, (c) is some long tones, (d) is the score “f "row row row your b”at", (e) is the score “f "Dona 

No”is", and (f) is the score “f "Caro mio”en". 

 

As reported in the previous chapter, the estimated fundamental frequencies of notes 

are similar in all four approaches of selecting onset, offset, and transition. However, regarding 

the performed duration of notes, the selected points can affect the performed duration of the 

notes. This study selected the data from the dataset calculated by the fourth approach, which 

selects the middle points for onset and offset because considering transitions is not a common 

approach in datasets and onset detection. In addition, considering the transitions between 

notes could result in ignoring some part of the duration that the singers had intended to sing 

within the notes. Therefore, selecting the middle points can provide the best compromise with 

the singers' intentions. 
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In the VocalSet dataset, the singers in some performances only were asked to sing at 

some specific BPM, i. e., 60 and 330. Otherwise, in the remaining cases, the singers were free 

to sing in any BPM, which was not explicitly recorded in the dataset. Therefore, a ground truth 

is needed for comparisons to evaluate the effect of the BPM on the performed F0s and 

duration. Therefore, the two groups of files within which their BPM was indicated were 

employed in this study. The total number of notes played in each BPM is shown in Table 8-1 

and categorised into slow and fast performances. 

Table 8-1. The slow and fast categories with their BPM and the number of notes sung in each speed 

Speed BPM Count  

Slow 60 8619 

Fast 330 9590 

Grand Total  18209 

8.1.2 Variables 

According to the available annotations in the dataset, the variables evaluated to 

ascertain their effects or impact on the performed F0 and duration of notes are classified into 

eight groups. Table 8-2 and Table 8-3  provide a statistical overview of the data extracted from 

the dataset according to each variable. Table 8-2 details the types of variables: integer, 

fraction, or Boolean. These variables are explained in the following. 

1. Interval to the following note: indicating the number of semitones between the 

current note and the following note. If the following note is a rest or there is no 

note after the current note, the value of this variable is null. 

2. Interval to the previous note: shows the number of semitones between the 

current and previous note. If the previous note is a rest or does not exist, the 

value of this variable is null. 

3. Rest before: it is a Boolean variable. If it is true, it means there is a rest before the 

current note or the current note is the first note of the music. 

4. Rest after: this Boolean variable is true when a rest exists after the current note 

or the current note is the last note of the music. Otherwise, it is false. 

5. Ground truth duration: indicating the theoretical duration of the notes in the 

music score. 
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6. Ground truth MIDI pitch code: shows the MIDI pitch code of the notes in the music 

score. The reason that the MIDI pitch code is used is that the MIDI pitch code 

maps the logarithmic pitch perception into a linear scale (Ishi, Hirose and 

Minematsu, 2003). 

7. Repeated note: this variable has been considered to address pitch drift. If it is 

false, it indicates that this is the first time the note is played in the piece of music; 

otherwise, it is the second or more repetition of the note in the entire melody, or 

the note is a rest. 

8. Singing techniques: another variable used in this study is the singing technique, 

which, according to the dataset, includes ten techniques, as shown in Table 8-3. 

Table 8-2. A statistical summary of the notes categorised by intervals, rest, duration, and MIDI code variables 

Variable Type Mean Median Standard 
deviation Minimum Maximum Count 

Interval to the following note Integer 0.25 0 3.16 -12 12 26550 

Interval to the previous note Integer -0.25 0 3.17 -12 12 26513 

Rest after Boolean NA NA NA NA NA 6407 

Rest before Boolean NA NA NA NA NA 6590 

Ground truth duration (second) Fractional 0.41 0.18 0.35 0.09 1 15493 

Ground truth MIDI pitch code Fractional  61.17 60 7.72 48 79 29267 

Repeated note Boolean NA NA NA NA NA 15592 

 

Several other variables could also be considered in an investigation of the parameters 

that affect the performed duration and F0. For example, some musical contexts could also 

have an impact, such as whether a note is at a beat vs non-beat position in the bar and its 

particular location when there is a change in the direction of the melody. However, including 

this information would require much effort to update the metadata of the dataset, which 

would be time-consuming and might also be impossible to do accurately since all the details 

were not available for this dataset. 
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Table 8-3. The list of the singing techniques and count of all the notes sung in each technique 

Technique Count 

Belt Harsh 2661 

Breathy 2446 

Fast* Articulated 9590 

Full Voice 537 

Lip Trill 2040 

Messa Di Voce 627 

Molto Vibrato 4364 

Slow* Legato 6962 

Straight Tone 5350 

Trill- Trillo 1128 

Grand Total 35705 
*Fast and Slow refer to the speed of singing the notes. The BPM of fast files were 330, and for the slow ones, it was 60. 

8.1.3 Methods of evaluations  

To assess the effect of various independent variables, outlined in the previous section, 

on the deviations in trained-professional singers' performance from the notes’ duration and 

pitch as written in the original score and exactly equivalent to the MIDI pitch code description, 

Bayesian Hierarchical Linear Regression (BHLR) was used. The Bayesian model was used 

because it allowed us to account for the dependency of the individual-specific observations 

and infer both individual-level and population-level parameters. Furthermore, using the 

Bayesian approach, we were able to measure the uncertainty in our inferences using 

probability distributions (Gelman et al., 1995; Dobson and Barnett, 2018).  

Considering that our data are grouped by individual singers (each singer has sung various 

notes), we let the parameters in the linear regression to be random (varying according to the 

singers) and defined a hierarchical structure on the parameters to estimate the population 

effects. We denote 𝑇𝑇𝑖𝑖 as the 𝑖𝑖𝑃𝑃ℎ  measurement of the differences between the estimated 

value, the F0 or duration sung by the singers, and the ground truth value. Two different 

distributions for the observational model were tried. First, a Gaussian distribution was tried; 

however, the model was underfit due to the residuals' distribution having heavy tails. Then, 

the Logistic distribution was tried that had a better fit for our data. An explanation of the 
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model validation procedure is provided in section 8.1.5. Here, the model's description with 

Logistic distribution is given in the following, as the former was not selected for further 

analysis.  

It is denoted  𝑗𝑗 =  1, . . , 𝐽𝐽 as individuals to distinguish the individual specific parameters. 

We write the model as follows (8-1): 

𝑇𝑇𝑖𝑖 ∼ 𝐿𝐿𝑓𝑓𝐴𝐴𝑖𝑖𝛥𝛥𝑡𝑡𝑖𝑖𝑑𝑑�𝜇𝜇𝑖𝑖 ,  𝛥𝛥𝑖𝑖� (8-1) 

 
where 𝜇𝜇 is the mean value for 𝑇𝑇 and calculated by equation (8-2); and 𝛥𝛥 is the scale 

parameter indicating a variance of 𝜋𝜋2  = 𝑠𝑠2𝜋𝜋2

3
 for the residuals. 

𝜇𝜇𝑖𝑖 = 𝑡𝑡𝛥𝛥𝑑𝑑ℎ(𝑖𝑖 ,𝑘𝑘)[𝑖𝑖] + �𝛽𝛽(𝑙𝑙,𝑖𝑖)[𝑖𝑖] × 𝑋𝑋𝑙𝑙,𝑖𝑖

𝑁𝑁

𝑙𝑙=1

 (8-2) 

In equations (8-2), 𝑡𝑡𝛥𝛥𝑑𝑑ℎ(𝑖𝑖,𝑘𝑘) is the singing technique effect for singer 𝑗𝑗 and technique 𝑘𝑘, 

from the techniques listed in Table 8-3. In addition, 𝛽𝛽(𝑙𝑙,𝑖𝑖)  is the individual specific effect of 

variable 𝑖𝑖 , from the variables listed in Table 8-2. 𝑋𝑋 is the design matrix, elements of which are 

indexed by 𝑖𝑖 and 𝑖𝑖 for its rows and columns respectively. 

According to equation (8-2), two models were created: one for calculating the F0 

deviation from the ground truth, i.e. represented by the MIDI pitch code that is the expected 

F0 deviation from the theoretical pitch that a trained-professional singer will sing; and the 

other is calculating the difference from the ground truth duration that is expected a trained-

professional singer to sing. The variables considered for both models are the same as given in 

Table 8-2 and Table 8-3, except for the duration model, where the "Repeated note” variable 

was not employed since this variable was used only for considering pitch drift. 

The JAGS software (Plummer, 2003) and R (R Core Team, no date) were used to fit the 

model. In addition, three Markov chain Monte Carlo chains were employed (typical simulation 

values were used, that is, 2000 iterations per chain with 1000 as burn-in, and a thinning value 

of 1). Finally, the R-hat diagnostic (Gelman et al., 1992; Brooks and Gelman, 1998) was applied 

to assess the convergence. All R-hat values linked to the model parameters were close to 1, 

so the model was believed to be sampling from the posterior distribution. 
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Furthermore, we used the following prior distributions, equations (8-4) and (8-5), for 

the random effects:  

𝑡𝑡𝛥𝛥𝑑𝑑ℎ(𝑖𝑖,𝑘𝑘) ∼ 𝑁𝑁�𝜇𝜇𝑃𝑃𝑟𝑟𝑏𝑏ℎ𝑘𝑘
, 𝜋𝜋𝑃𝑃𝑟𝑟𝑏𝑏ℎ𝑘𝑘

2  � (8-3) 

𝛽𝛽𝑙𝑙,𝑖𝑖 ∼ 𝑁𝑁(𝜇𝜇𝑙𝑙 ,𝜋𝜋𝑙𝑙2) (8-4) 
 

Where 𝑗𝑗 is the index of the singer, 𝑘𝑘 is the index of the singing technique, 𝑖𝑖 points to the 

variables, and 𝑁𝑁 refers to normal distribution. 

The hyperprior distributions used to fit the model are as follows, equations (8-5)-(8-9):  

𝜇𝜇𝑃𝑃𝑟𝑟𝑏𝑏ℎ𝑘𝑘 ∼ 𝑁𝑁(0,1) (8-5) 

𝜇𝜇𝑙𝑙 ∼ 𝑁𝑁(0,1) (8-6) 

𝜋𝜋𝑘𝑘2 ∼ 𝑁𝑁(0,1)+ (8-7) 

𝜋𝜋𝑙𝑙2 ∼ 𝑁𝑁(0,1)+ (8-8) 

𝛥𝛥  ∼ 𝑁𝑁(0,1)+ (8-9) 

Considering the range of the dependent variables specified in Table 8-2 and Table 8-3, 

the above prior distributions have negligible effects on the posterior distribution of the 

parameters and thus can be considered uninformative. In other words, we let the data speak 

for themselves, and the results are not sensitive to these priors. As stated in Section 8.1.2, 

MIDI pitch codes are used to represent the pitches, and to reiterate, the reason was that 

humans' perception of pitch is not linear but logarithmic. That is, the human brain considers 

the 100 Hertz difference between 50 Hertz and 150 Hertz is perceptually much more 

significant than the same 100Hz difference between 1000 Hertz and 1100 Hertz. However, 

using the MIDI pitch code representation, the perceptual difference between say the 40 and 

50 MIDI pitch codes is as same as that difference heard between say the 70 and 80 MIDI pitch 

codes. 

To compare fundamental frequencies, the difference between the performed MIDI pitch 

code, 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, and the ground truth MIDI pitch code, 𝐺𝐺𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , code was calculated as shown in 

(8-10). 

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐺𝐺𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (8-10) 

To compare the duration of the performed notes with their corresponding ground truth 

duration, the theoretical duration of notes in the music score is considered to be the ground 
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truth, and the difference between the performed duration, 𝑃𝑃𝑜𝑜𝑑𝑑𝑟𝑟𝑏𝑏𝑃𝑃𝑖𝑖𝑜𝑜𝑛𝑛 , and the ground truth, 

𝐺𝐺𝐺𝐺𝑜𝑜𝑑𝑑𝑟𝑟𝑏𝑏𝑃𝑃𝑖𝑖𝑜𝑜𝑛𝑛 , calculated as (8-11). 

  𝑆𝑆𝑜𝑜𝑑𝑑𝑟𝑟𝑏𝑏𝑃𝑃𝑖𝑖𝑜𝑜𝑛𝑛 = 𝑃𝑃𝑜𝑜𝑑𝑑𝑟𝑟𝑏𝑏𝑃𝑃𝑖𝑖𝑜𝑜𝑛𝑛  – 𝐺𝐺𝐺𝐺𝑜𝑜𝑑𝑑𝑟𝑟𝑏𝑏𝑃𝑃𝑖𝑖𝑜𝑜𝑛𝑛 (8-11) 

8.1.4 Estimating the range of a note’s duration and F0 sung by trained-professional 

singers 

Since all the singers of the VocalSet dataset were trained-professional and in the 

Annotated-VocalSet, any incorrect files were removed, we considered the range of the F0 and 

duration sung by these singers across all the recordings as a trustable resource. Thus, 

according to the resource, we can define a range of deviations of note’s duration and F0 from 

their ground truth in trained-professional singers' performances. To do this, it is possible to 

use the models and sample from the posterior predictive distribution for a given note. 

Posterior predictive distribution is the distribution of the predicted values given the model 

parameters and the data. Nevertheless, since this approach is computationally demanding, 

we use an alternative empirical approach that is faster and easier to calculate and gives 

reasonable ranges. For this purpose, for each data point in our dataset, first, we calculate the 

length of the 80% prediction credible interval, that is, the 90% quantile minus the 10% quantile 

of the posterior predictive distribution. This decision is made based on experiments on our 

data showing that the 80% interval is neither too conservative nor too wide an acceptable 

range. As the second step, we take the average of all the intervals’ lengths over the entire 

dataset as the average empirical prediction length (𝛥𝛥𝑃𝑃𝐿𝐿). This is similar to the length of 

prediction confidence interval in the Frequentist statistical approaches.  

Finally, we define the acceptable deviation from the ground truth to be 𝑚𝑚𝑡𝑡 −  𝛥𝛥𝑃𝑃𝐿𝐿/2 

to 𝑚𝑚𝑡𝑡 +  𝛥𝛥𝑃𝑃𝐿𝐿/2, where 𝑚𝑚𝑡𝑡 is simply the mean deviation calculated using the equation (8-2). 

In other words, for a given note, we first calculate its mean deviation and then consider half 

𝛥𝛥𝑃𝑃𝐿𝐿 below and half 𝛥𝛥𝑃𝑃𝐿𝐿 above that as the anticipated range of deviation in trained-

professional singers' performance. Table 8-4 shows the 𝛥𝛥𝑃𝑃𝐿𝐿 figures for 80% intervals for the 

deviations in MIDI pitch code and duration. 

To calculate the range of a note’s F0 and duration, we simply add the theoretical value 

of the note to the predicted deviation range of that note. 
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Table 8-4. The average empirical prediction length (𝛥𝛥𝑃𝑃𝐿𝐿) to calculate the ranges of deviations in F0 and the 
duration of the notes sung by all the singers. 

 𝟖𝟖𝟖𝟖% 𝒆𝒆𝒆𝒆𝒆𝒆 

F0 0.8977 

Duration 0.5698 

 

8.1.5 Model validation 

To examine our model’s validity and confirm its ability to mimic the true data generating 

process, we follow Gelman et al.’s (Gelman et al., 1995, p. 143) suggested approach and 

conduct a posterior predictive check analysis. We generate 1000 samples from the posterior 

distribution of the model. We then compare the distribution of the predicted values with the 

observed values. The results are shown in Figure 8-2. The posterior predictive distributions 

are very similar to the distributions of the observations for both models of MIDI pitch code 

and duration deviations. Furthermore, we calculate the percentage of the occasions that true 

observations fall within the 95% credible interval of the posterior predictive distribution. This 

gives an insight into the performance of the model in uncertainty quantification. We found 

that for deviations of MIDI pitch code and duration models, the percentage was 95% and 96%, 

respectively, which indicates good uncertainty calibration. 

 

 

 

 
(a) (b) 

Figure 8-2 Comparison of the density of the distribution of the predicted values and the distribution of the 
observations. (a) Shows the comparison for the deviation in the MIDI pitch code model, and (b) shows the 

comparison for the deviation in the duration model. 
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8.2 Results 

In the following, the effect of each variable, mentioned in 8.1.2, on the deviation of 

performed duration and F0 from the ground truth in trained-professional singers' 

performance is presented . Thus, the posterior distribution of the parameters denoted in 

equations (8-5)-(8-6), which are the parameters of interest associated with the effects of the 

independent variables in the population will be reported.  

8.2.1 Estimating the effect of the variables on deviation from ground truth F0 

The effect of the variables on deviation from the ground truth MIDI pitch code reported 

in Table 8-5 and Table 8-6. The Mean column in Table 8-5 indicates the average change in the 

deviation from the ground truth MIDI pitch code when the variable is increased by one unit. 

Increasing by one unit means that, for example, when one second is added to the duration of 

the note for the “Duration” variable, or the number of the semitones between the current 

note and the following note increased by one for the “Interval to the following note” variable. 

In addition, Table 8-6 provides the expected effect of each singing technique. These tables 

also include the 95% credible interval for each effect. These credible intervals express that the 

true parameter falls within the interval with a probability of 95%. That is, 95% of the 

probability of the true effect is between the values in the columns titled 2.5% and 97.5% in 

Table 8-5 and Table 8-6. For example, according to Table 8-5, the 95% probability of the effect 

of the Ground truth duration variable is between −0.0474 and 0.0413. In other words, the 

95% credible interval shows the range of uncertainty about the effect. 

Furthermore, Figure 8-3 depicts the posterior distribution of the values shown in Table 

8-5 and Table 8-6. According to this figure, we can see that different effects have different 

distributions indicating a varying level of uncertainty among them. For example, “Ground 

truth MIDI pitch code” and Interval to the effects of the previous and following notes have 

very narrow distributions, showing that the model is more certain about their effects than 

other effects with wider distributions. 
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Table 8-5. The mean and the 95% credible interval of the effect of the independent variables on deviation from 
the ground truth MIDI pitch code. 

Variable Mean 2.5% 97.5% 

Ground truth duration -0.0022 -0.0474 0.0413 

Ground truth MIDI pitch code 0.0061 -0.0012 0.0134 

Interval to the following note 0.0196 0.0132 0.0258 

Interval to the previous note 0.0046 -0.0005 0.0099 

Post rest 0.0499 0.0032 0.0933 

Pre rest 0.1356 0.0504 0.2224 

Repeated note -0.1158 -0.1679 -0.0632 

Table 8-6. The mean and the 95% credible interval of the effect of the singing techniques on deviation from the 
ground truth MIDI pitch code 

Technique Mean 2.5% 97.5% 

Belt Harsh 0.0925 -0.0762 0.2656 

Breathy 0.0732 -0.1034 0.2436 

Fast Articulated -0.0167 -0.1915 0.1535 

Full Voice -0.0903 -0.2311 0.0533 

Lip Trill 0.2137 0.0641 0.3605 

Messa DiVoce -0.0609 -0.2802 0.1705 

Molto Vibrato -0.1482 -0.3833 0.0770 

Slow Legato 0.0387 -0.1719 0.2406 

Straight Tone -0.0625 -0.1950 0.0643 

Trill 0.2128 0.0110 0.4217 
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(a) (b) 

Figure 8-3. The posterior distribution of the effects of the independent variables on deviation from the ground 
truth MIDI pitch code. (a) shows the impact of the numerical and Boolean variables, and (b) depicts the effect of 

the singing techniques. 

8.2.2 Estimating the effect of the variables on the deviation from the ground truth 

duration 

The theoretical duration of notes in the music score as the ground truth was needed to 

estimate the range of a note’s duration in trained-professional singers’ performances. 

However, in the VocalSet dataset, the BPM of all the files were not indicated. Thus, only the 

files with ground truth BPM were selected, and as a result, only some of the singing techniques 

were sung with a specific speed, as shown in Table 8-8. The mean value and its 95% credible 

interval of the effect of the independent variables and singing techniques on deviation from 

ground truth duration, equation (8-2), are presented in Table 8-7 and Table 8-8; the posterior 

distribution of mentioned parameters is provided in Figure 8-4. 

The same approach as estimating a note’s MIDI code, Section 8.2.1, should be used to 

calculate duration.  
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Table 8-7. The mean and the 95% credible interval of the effect of the independent variables on deviation from 
the ground truth duration. 

Variable Mean 2.5% 97.5% 

Ground truth duration -0.2054 -0.3913 -0.0174 

Ground truth MIDI pitch code 0.0005 -0.0009 0.0020 

Interval to the following note -0.0005 -0.0032 0.0024 

Interval to the previous note 0.0015 -0.0004 0.0034 

Post rest 0.4112 0.2945 0.5242 

Pre rest 0.0961 0.0682 0.1265 

Table 8-8. The mean and the 95% credible interval of the effect of the singing techniques on deviation from the 
theoretical duration. 

Variable Mean 2.5% 97.5% 

Fast Articulated 0.0031 -0.0782 0.0830 

Molto Vibrato 0.2155 0.0727 0.3614 

Slow Legato 0.1442 0.0544 0.2340 

Straight Tone 0.1266 0.0170 0.2497 

 

  
(a) (b) 

Figure 8-4. The posterior distribution of the effects of the independent variables on deviation from the ground 
truth duration. (a) shows the impact of the numerical and Boolean variables, and (b) depicts the effect of singing 

techniques. 
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8.3 Discussion 

8.3.1 An illustration to show how to calculate the expected MIDI pitch code and 

duration of notes 

This section provides an example to clarify how to calculate the expected notes’ 

MIDI pitch code and duration in trained-professional singers' performances according to the 

results of this study. This example illustrates how to use the numbers in Table 8-5 to Table 

8-8. If the musical scores are the notes shown in Figure 8-5, according to equations (8-2), and 

using the coefficients in Table 8-5 and Table 8-6, the expected MIDI pitch code and duration of 

the notes can be estimated. To calculate the expected values, first, the coefficients in 

equation (8-2) should be assigned by the values in the column title Mean in Table 8-5 and Table 

8-6 to achieve the expected variation from ground truth MIDI pitch code or duration. Then 

the calculated expected variation should be added to the ground truth value to obtain the 

expected MIDI pitch code or duration of the note.  

 Table 8-9 shows the values of each variable, the 𝑋𝑋  variable in equation (8-2), 

according to the score in Figure 8-5. When the following or previous notes are a rest, the interval 

to the following and previous notes should be considered to be 0. Nevertheless, two other 

variables, post- and pre-rest, calculate the effect of these situations. 

Figure 8-5. Musical scores as an example for estimating the pitch and duration of the notes 

Table 8-9. The values of each of the variables for the notes in the score in the example provided in Figure 8-5. 

Note Ground truth 
MIDI pitch code 

Ground 
truth 

Duration 
(in second) 

Interval to the following 
note (in semitone) 

Interval to the 
previous note 

Post 
rest Pre rest Repeated

note 

C4 60 0.5 4 NA False True False 

E4 64 0.5 -4 -4 False False False 

C4 60 0.5 4 4 False False True 

E4 64 0.5 3 -4 False False True 

G4 67 0.5 0 -3 False False False 

G4 67 1 -7 0 False False True 

C4 60 0.5 NA 7 True False True 
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Equation (8-2) needs to be used to calculate the expected pitch and duration. The effect 

of the singing techniques, 𝑡𝑡𝛥𝛥𝑑𝑑ℎ, is provided in Table 8-6 and Table 8-8, the effect of each 

variable, 𝛽𝛽, shows in Table 8-5 and Table 8-7, and the value of the variables can be seen in 

Table 8-9. Thus, by assigning these values in equation (8-2), the expected deviations of each 

of the notes from their ground truth MIDI pitch code and duration can be calculated. Finally, 

the deviation should be added to the ground truth value. Therefore, Table 8-10 shows the 

expected MIDI pitch code for each note by employing the mean values of the effects and the 

Straight Tone as the singing technique.  

In addition, the minimum and the maximum expected MIDI pitch code and duration of 

each note are calculated employing empirical prediction length (𝛥𝛥𝑃𝑃𝐿𝐿), as discussed in section  

8.1.4. In this example, to calculate the expected ranges, the (𝛥𝛥𝑃𝑃𝐿𝐿/2) should be deducted and 

added to the expected values in Table 8-10. That is, the value 0.8977/2 =  0.4488 based on 

Table 8-4 should be deducted and added to all values in the column titled “Expected MIDI 

pitch code” in Table 8-10 to calculate the minimum and maximum of anticipated MIDI pitch 

codes range. Similarly, the value 0.5698/2 = 0.2849, according to Table 8-4, should be 

deducted and added to the values in the column titled “Expected duration” in Table 8-10.  

Table 8-10. The expected MIDI pitch code and duration of the notes and their anticipated ranges according to 
Figure 8-5 and Table 8-9. The Straight Tone was considered the singing technique. 

Note 
Ground 

truth MIDI 
pitch code 

Ground 
truth 

Duration 
(in second) 

Expected 
MIDI pitch 

code 

Minimum 
accepted 

MIDI pitch 
code 

Maximum 
accepted 

MIDI pitch 
code 

Expected 
duration 

(in second) 

Minimum 
accepted 
duration 

(in second) 

Maximum 
accepted 
duration 

(in 
second) 

C4 60 0.5 60.5134 60.0646 60.9623 0.651 0.366 0.936 

E4 64 0.5 64.2269 63.7781 64.6758 0.555 0.270 0.840 

C4 60 0.5 60.2805 59.8316 60.7293 0.561 0.276 0.846 

E4 64 0.5 64.2482 63.7993 64.6971 0.551 0.267 0.836 

G4 67 0.5 67.3280 66.8792 67.7769 0.556 0.271 0.841 

G4 67 1 67.0878 66.6390 67.5367 0.961 0.676 1.246 

C4 60 0.5 60.2659 59.8170 60.7147 0.979 0.694 1.264 

 
Figure 8-6 visualises the values in Table 8-10. The black-solid lines show the ground truth 

MIDI pitch code and duration, and the red-dashed lines show the expected MIDI pitch code 

and the expected range of MIDI pitch code for each note. The middle panel in Figure 8-6 shows 



175 
 

the expected duration of the notes, while the top and bottom panels show the maximum and 

minimum anticipated duration of notes, respectively.  

 

The 
range of 
MIDI 
pitch 

code and 
the 

maximu
m 

duration 

The 
range of 
MIDI 
pitch 

code and 
the 

average 
duration 

The 
range of 
MIDI 
pitch 

code and 
the 

minimum 
duration 

Figure 8-6. A visual representation of the expected MIDI pitch code and duration of the notes and their 
anticipated ranges, according to Table 8-10. The black-solid lines show the ground truth MIDI pitch code and 

duration, and the red-dashed lines are the expected MIDI pitch code and the boxes around them show the 
anticipated range of each note. The top panel shows the maximum anticipated duration of the notes, the middle 
panel shows the expected duration of the notes, and the bottom panel show the minimum anticipated duration. 

This example illustrates how the position of the notes in a piece of music can affect their 

expected pitch and duration. For example, C4 is repeated three times in Figure 8-5, but their 

expected MIDI pitch code are different, 60.573, 60.325, and 60.308, respectively. Similarly, 

the estimated duration of each appearance of the C4 is different, in sequence, 0.672 sec, 0.575 

sec, and 0.985 sec. Likewise, Table 8-10 shows that the expected MIDI pitch code and duration 

of the notes E4 and G4 are different in each appearance because of their positions in the 

musical score. In addition, the eighth notes have different expected duration. 
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8.3.2 The effect of rest before or after a note on the deviation of its performed F0 

and duration from the ground truth 

Table 8-5 and Figure 8-3 show that the existence of a rest before a note has a greater 

impact on the deviation from the theoretical note’s pitch than when the rest comes after a 

note, resulting in a change to the  MIDI pitch code value of the order of 0.1356 MIDI pitch 

code (or 13.56 cents) as compared to 0.0499 MIDI pitch code (or 4.99 cents).  

An opposite observation was noticed for the effect of a rest on the deviation from the 

theoretical duration. As shown in Table 8-7 and Figure 8-4, a rest after a note has a more 

significant effect on the deviation than the rest before a note, that is, 0.4112 s and 0.0961 s, 

respectively.  

8.3.3 The effect of the ground truth MIDI pitch code on the deviations of its 

performed F0 and duration from ground truth 

According to Table 8-5 and Figure 8-3, although the effect of the MIDI pitch code on the 

deviation from ground truth pitch is a small value of 0.0061 MIDI pitch code (or 0.61 cents), 

since the pitch range of the notes to be sung is wide, generally from 77 Hz (almost D#2 or 39 

MIDI pitch code) to 900 Hz (approximately A5 or 81 MIDI pitch code) (Heylen et al., 2002), this 

difference in the higher note could be significant. For example, the pitch difference in MIDI 

pitch code 40 (note E2) is 40 ∗  0.0061 =  0.244 MIDI pitch code (or 24.4 cents), but for MIDI 

pitch code 80 (note G#5) 80 ∗  0.0061 =  0.488 MIDI pitch code (or 48.8 cents). Sundberg 

(Sundberg, 2013) had a similar finding that singers tend to sharp the higher pitch frequencies.   

A similar observation can be seen in the effect of the ground truth notes’ pitches on 

their performed duration. It is expected that by increasing one MIDI pitch code (one 

semitone), a singer sings the note 0.0005 seconds longer. 

8.3.4 The effect of the ground truth note’s duration on the deviations of its 

performed F0 and duration from the ground truth 

As shown in Table 8-5, the ground truth duration of a note has a minimal impact on the 

deviation from the theoretical note’s pitch, and the posterior distribution of its effect is 

centred on zero, as shown in Figure 8-3.  
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On the other hand, according to Table 8-7, the effect of the ground truth duration on 

the deviation from the ground truth duration is significantly negative, meaning that a unit 

increase (one second) in the theoretical duration of a note, is associated with a -205.45 

milliseconds deviation from the ground truth on average when the singers sing the note.  

8.3.5 The effect of the pitch interval to the previous and following notes on the 

deviations of performed F0 and duration from the ground truth  

The interval to the following note has a significant positive effect on the deviation from 

the theoretical pitch of 0.0196 MIDI pitch code (or 1.96 cents), as shown in Table 8-5. Similarly, 

the interval to the previous note also has a positive effect on pitch but less than the interval 

to the following note, that is, 0.0046 MIDI pitch code (0.46 cent). 

However, the effect of the pitch intervals on the deviation from the theoretical duration 

is negligible, and its posterior distribution is centred almost on zero, according to Figure 8-4. 

In addition, usually, the pitch intervals in singing are small. However, if there is a big interval 

with 24 semitones apart (two octaves), multiply the 24 by the expected interval effect to the 

following note, -0.0005 s, and the previous note, 0.0015 s, would be -12 milliseconds and 36 

milliseconds, respectively. 

8.3.6 The effect of the singing techniques on the deviation of the performed F0 and 

duration from the ground truth 

For interpreting the effect of singing techniques, it should be noted that they are the 

intercepts of the linear equation (8-2). The numeric variables were centred at zero by 

removing their average before fitting the model, and hence these intercepts should be 

interpreted as the deviation from the ground truth when the other numeric independent 

predictors are at their average values, and the Boolean predictors are zero (meaning no pre-

rest and post-rest). According to Figure 8-3 and Table 8-6, the Lip Trill technique has a 

significant positive deviation from the ground truth pitch, followed by the Trill technique, 

which has a lower probability of being greater than zero compared to the Lip Trill. On the other 

hand, the Molto Vibrato, Full Voice, and Straight Tone techniques have a considerable 

probability for their expected deviation from the ground truth pitch to be negative, although 

their 95% credible intervals contain zero. The other techniques have large probabilities on 
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either side of zero, and their effects can be assumed neither significantly positive nor 

significantly negative. 

Regarding the effect of singing techniques on the deviation from the ground truth 

duration, according to Table 8-8 and Figure 8-4, the Molto Vibrato followed by Slow Legato 

and Straight Tone have significant positive effects. In contrast, the Fast Articulated technique 

has its posterior distribution centred on zero and thus cannot be assumed to be significantly 

different from zero.  

According to the study by (Sundberg, 1994), the rate of the vibration in singing can vary 

the average of the fundamental frequencies. They found that the average pitch of a vibrato 

tone remains constant only if the vibrato rate is more than 4 Hz. In addition, they observed 

that the human pitch perception for vibrato and vibrato-free tones were the same. 

Besouw et al. (Besouw, Brereton and Howard, 2008) presented three-tone ascending 

and descending arpeggios to musicians. The tuning of the middle tone, which either had or 

lacked vibrato, was varied, and the listeners were asked to decide which notes were in tune 

or untune. The results showed that the range of acceptable intonation of the middle tone was, 

on average, about 10 cents wider when it had vibrato than when it lacked vibrato. In addition, 

they found that if two voices sing perfectly “straight” (i.e., without vibrato), the demands on 

accuracy concerning the F0 are higher than if they sing with vibrato (Sundberg, 2013). Our 

model shows almost the same findings as these studies. According to Table 8-6, when singers 

sing the notes in the Straight Tone, the MIDI pitch code variation is -0.0625 MIDI pitch code (-

6.25 cents), while the corresponding value for the Molto Vibrato technique is -0.1482 MIDI 

pitch code (-14.82 cents). Thus, singing in the Straight Tone is 8.6 cents more accurate than 

singing in the Molto Vibrato technique, which is close to the findings of the other studies. 

8.3.7 The effect of the note’s repetition on the performed F0 deviation from the 

ground truth pitch (pitch drift) 

Pitch drift or intonation drift means changes in tuning over the course of a timescale of 

seconds or more during the playing of a piece of music (Seaton, Pim and Sharp, 2013). 

According to (Alldahl, 2006; Ryynänen and Klapuri, 2006), pitch drift mainly occurs in the 

downward direction, i.e., downward intonation drift. In another study done by Müller et al. 
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(Müller, Grosche and Wiering, 2010), it is observed that pitch drift is common in 

unaccompanied solo folk singing. Similarly, Mauch et al. (Mauch, Frieler and Dixon, 2014) also 

found evidence of pitch drift in solo singing. They (Mauch, Frieler and Dixon, 2014) also 

realised that the pitch drift extent is often small (less than 20 cents over 50 notes) and not 

correlated to pitch accuracy, interval accuracy, or musical background. Unlike the other 

studies, Mauch et al. (Mauch, Frieler and Dixon, 2014) observed that the most significant drifts 

are upward. 

This chapter’s finding is similar to most other studies that found that the pitch drift is 

downward. As shown in Table 8-5, the effect of a note's second or later appearing in the 

singers' performances is an average of -0.1158 MIDI pitch code (or -11.58 cents) deviation 

from the ground truth pitch with the 95% credible interval of -0.1679 to -0.0632, which makes 

the effect significantly negative. That is, the singer sang the note at a lower pitch than was 

used on the first occasion of singing these notes.  

8.4 Conclusions 

This chapter provides two models, one for calculating the expected F0 and another for 

estimating the expected duration of a note in a piece of music according to the note’s 

conditions in trained-professional singers' performances. These models simulate trained-

professional singers' behaviour in changing the pitches and duration of the notes according to 

their positions in a piece of music and the singing technique applied. The note’s conditions 

considered in this study were the existence of a rest before or after the note, the pitch interval 

to the following or previous notes, the theoretical note’s duration and MIDI pitch code in the 

music score, the singing techniques, and the repetition of the note. All these variables impact 

the expected pitch and duration, although their level of impact will depend on the 

interpretation the singer wants to impart to the music, both deliberately and subconsciously. 

For example, having a rest before a note impacts the expected pitch frequency more than 

when the rest is after the note. On the contrary, having a rest after a note has a higher impact 

on the note's duration than when the rest is before the note. 



 

 

 

 

 

 

 

Chapter 9                                                         
Conclusion and Future work 

 

  

This chapter makes a conclusion on the all the previous chapters. In addition, 

some suggestions for future work will be provided.  
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This thesis comprises several sub-studies on processing singing signals, especially in real-

time environments. The studies are mainly related to estimating fundamental frequencies, 

smoothing F0 contour, estimating the onset, offset, and transitions between notes, generating 

an annotated singing dataset, and examining trained-professional singers’ behaviour in 

singing notes’ pitch frequencies and duration according to the position of the note in a piece 

of the music and the singing technique applied.  

This thesis includes five principal objectives listed in section 1.4 that Chapters 3 - 8 

provide answers for each of them. In the following, conclusions and future work for each of 

the objectives of this study are provided. 

9.1 Conclusion and future work of investigating real-time singing pitch 

detector algorithms study 

Two separate studies have been done in this thesis to find a reliable real-time pitch 

detection algorithm for singing signals from the existing pitch detection algorithms. The details 

of these two studies are provided in Chapters 3 and 4. 

Chapter 3 compared two offline algorithms, PYIN and PRAAT, with two real-time ones, 

PLL and ECKF. I have experienced that these real-time algorithms did not generate a 

reasonable pitch estimation. On the other hand, the PYIN and PRAAT algorithms worked well, 

but they are offline.  

Although Chapter 3’s study could not find a reliable real-time pitch detector algorithm 

for singing signals, two reliable offline pitch detection algorithms, PYIN and PRAAT, were 

found that have been used in the other studies of this thesis.  

Therefore, a comprehensive evaluation of seven real-time pitch detector algorithms was 

conducted in another study, explained in Chapter 4. Three measurements were considered to 

compare the functionality of the algorithms. The measurements were: 1- the number of 

pitches estimated correctly by categorising them based on gender, window size, the speed of 

the music, and post-processing, 2- the delay of each algorithm to estimate pitches correctly, 

and 3- the approaches to evaluate the accuracy of the estimated F0. Moreover, three methods 

for finding an acceptable range were assessed.  
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According to the results in Chapter 4, the overall best real-time algorithm from the seven 

tested algorithms for female voices was YinFFT, with a window size of 1024 when the sampling 

rate was 44100.  

In addition, the speed of performance is not an issue. Moreover, the delay before 

starting to determine the correct pitches was found to be 25ms. Furthermore, the best real-

time algorithm from the seven tested algorithms for male voices was Yin when the notes are 

playing fast, and in slow performance, the best one was YinFFT. The algorithms produced a 

more accurate pitch contour with a window size of 2048 compared to a window size of 1024 

when the sampling rate was 44100. The delay before finding the correct pitches for the Yin 

algorithm was 107ms, and for YinFFT was 71ms. Additionally, the length of the intervals 

between notes does not impact the pitch accuracy of the delay.  

Finally, the best method from the three presented methods to find the acceptable range 

for all the algorithms is the percentage, although, for FComb and MComb, significant 

differences between the three methods were not observed. 

Therefore, these studies provided guidance for selecting a pitch detection algorithm 

according to the features of the singing signals. 

However, the accuracy of the pitch detection algorithms was not as I expected. Before 

conducting the studies, I believed one might work better than another, but I did not expect 

the pitch contours generated by all the algorithms to be unreliable and untrustworthy. 

Regarding future work, there are areas of immediate future work and other issues that 

require a more long-term strategy.  

The studies in Chapter 3 and Chapter 4 could be more comprehensive. For example, 

more pitch detection algorithms/libraries, such as Librosa (McFee et al., 2015), Madmom 

(Böck et al., 2016), Essentia (Bogdanov et al., 2013b), and TorchAudio (Yang et al., 2021) in 

Python, could be evaluated. In addition, a wider range of window and hope sizes could be 

evaluated.  

Another missing part of my study was to check if an adaptive window size (Nisar, Khan 

and Tariq, 2016) can improve robustness. In addition, different approaches to adaptive 
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window sizing should be evaluated in real-time environments to determine their 

performances in singing signals. 

All the evaluations in this study were applied to human voices, albeit in a musical 

context. It would be valuable to see if the same experimental parameters applied to this study 

would produce comparable results when applied to the pitch determination of musical 

instruments. 

9.2 Conclusion and future work of real-time smoothing pitch contours 

generated from singing signals study 

Chapter 5 introduced a new pitch-contour-smoother targeted toward the singing voice 

in real-time environments. The proposed algorithm is based on the median filter and considers 

the features of fundamental frequencies in singing. The algorithm’s accuracy was compared 

with 35 other smoother techniques, and four metrics evaluated their results: R-Squared, Root-

Mean-Square Error, Mean Absolute Error, and F0 Frame Error. The proposed Smart-Median 

algorithm achieved better results across all the metrics in relation to the other smoother 

algorithms. According to this study, a buffer delay of 35 to 70 milliseconds was required for 

the algorithm to smooth the contour appropriately. 

Most general smoother algorithms were not found to be suitable for smoothing the 

pitch contour of singing signals. A general observation is that in the ideal case, a smoother 

algorithm should be defined based on the essential features of the data in the contour and 

how that data is to be used after smoothing. 

When I searched for a proper pitch smoother algorithm and implemented some of them, 

I was surprised to see why their results were unreliable and that still several errors existed 

after the algorithms smoothed the singing pitch contours. After designing my algorithm, I 

found that it is not an easy task because of the variety of possible errors in estimated pitch 

contours. Thus, although my algorithm could significantly improve the pitch contours in 

comparison to the other algorithms, the task of smoothing pitch contours requires further 

research to achieve the goal of error-free contours. 
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For future work, one short-term task is based on recognizing that the parameters of the 

Smart-Median can be set according to the specific properties of the sound input, such as those 

of particular musical instruments or their families, to improve accuracy in a targeted way.  

Another task considers that the Smart-Median can determine an incorrect F0 based on 

its interval from the previous F0; this approach can be improved by considering a maximum 

randomness duration. For example, if there is a considerable frequency interval between the 

previous F0 and the current one, or if several immediately subsequent F0s are near the current 

F0, we may not consider the large jump to be noise but rather a new musical articulation. This 

requires the introduction of an extra decision-making stage into the algorithm.  

In the longer term, further testing can be carried out on vocal material from various 

genres and techniques. This would require the creation of new, specialist corpora, requiring 

considerable manual effort in both the gathering and labelling. This can be supported by 

machine learning. Such a dataset would also benefit the research field at large. 

9.3 Conclusion and future work of real-time onset, offset, and transition 

extraction from singing signals study 

Estimating onset, offset, and transition between notes in singing was another main 

objective of this thesis. Unfortunately, Application of the existing onset detection algorithms 

could not reach an appropriate result. Thus, in Chapter 6, a novel algorithm has been 

introduced for detecting the beginnings, endings, and transitions between notes in singing 

performances. The algorithm is designed to operate effectively in both offline and real-time 

scenarios. A 57-millisecond delay is necessary for real-time applications to ensure sufficient 

information for accurate event calculation. It was shown to exhibit enhanced accuracy by 

comparing the proposed algorithm against eight established algorithms using two distinct 

datasets.  

Nevertheless, estimating onsets was not as easy as I had expected. First, I considered 

evaluating the changes in the amplitude contours because I believed that when a singer starts 

singing a new note, there should be a clear change in the amplitude contour. However, when 

I plotted the amplitude contours, their shapes were much more complicated than those of the 

pitch contours. Thus, I started working on pitch contours as a means by which that onsets 
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could be estimated. After a while, I realized that in real singing, especially when some singing 

technique like vibrato is used, it is difficult to figure out where vibration changes the pitch 

frequency and where a new note appears. Therefore, onset detection requires more research 

to be able to detect onsets without error. 

The accuracy of the proposed algorithm may be improved by considering more 

spectrogram channels, i.e., including other related frequency components from the 

spectrogram and not only the fundamental frequencies. In this way, a more comprehensive 

formula weighted together with the measurements for each channel could be fused to 

improve the overall measure. Therefore, a new series of numbers will be generated to find 

the onsets, offsets, and transitions from the trajectory changes in the new contour. In this 

approach, the adverse effect of the incorrect F0 estimation may be reduced, especially in a 

real-time environment. 

Moreover, the accuracy of the proposed algorithm can be improved by incorporating a 

function tracking significant changes in the magnitudes of each spectral channel that are also 

associated with the onset. 

Another possible approach instead of using the stretching pitch explained in Section 

6.2.2 is to scale down all F0s to one specific octave and then use a log frequency axis. This 

approach may help in regularizing the slopes and making them comparable. 

In addition, the algorithm is based on two parameters, window size (as explained in 

Section 6.2.5) and the proportion of the standard deviation to calculate the thresholds, as 

discussed in Section 6.2.7. By evaluating the algorithm on other larger datasets such as 

VocalSet (Wilkins et al., 2018), these parameters could be fixed to be a constant value that is 

generally applicable to all singers or could be determined by a formula and therefore be made 

adaptive to the nature of the style of input singing. 

Furthermore, the algorithm’s efficiency and accuracy could be evaluated on notes 

performed by musical instruments to see if it is also applicable in that domain. 

Lastly, making the algorithm more computationally efficient requires a smaller buffer 

size to work faster in real-time environments. 
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9.4 Conclusion and future work of generating an annotated singing dataset 

Chapter 7 introduced an extended set of annotations for the solo singing files in the 

VocalSet dataset (Wilkins et al., 2018). The provided annotations include F0, onset, offset, 

transition, note F0, note duration, Midi pitch, and lyric. In addition, four approaches for 

considering the onset and offset points in a pitch contour were compared, showing that the 

selected points for onset and offset cannot significantly affect the note’s estimated F0. 

Moreover, calculating a note’s F0 by average or median methods does not considerably affect 

the note’s estimated F0. The annotated dataset is available online at 

https://doi.org/10.5281/zenodo.7061507, accessed on 14 September 2022. 

It should be noted that annotating a dataset is a very time-consuming task. Although my 

software tool and onset detection algorithm helped me to prepare the annotations and 

estimate more than 80% of the onset, offset, and transitions correctly, manually checking and 

adjusting the events took me around six months. This difficulty should be the main reason that 

the number of comprehensive annotated available datasets is deficient. To the best of my 

knowledge, this annotated dataset is the largest and most comprehensive annotated singing 

dataset available. 

However, as shown in Table 2-1, several singing datasets are available that can be 

expanded by adding more annotations. The same approach as has been done in this study, 

and has been explained in section 7.1, can be applied to annotate any other available singing 

or instrumental datasets. In this case, a significant amount of new data will be provided to 

researchers to evaluate musical performances. 

9.5 Conclusion and future work of calculating notes’ pitch frequencies and 

duration according to singing technique and their positions in a piece of 

music study 

This thesis's last and most important aim was to understand the behaviour of trained-

professional singers in changing notes’ pitches and duration according to the notes’ positions 

in a piece of music and the singing technique applied. Thus, Chapter 8 modelled these 

behaviours based on the parameters surrounding the pitch and duration of the notes.  

https://doi.org/10.5281/zenodo.7061507
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To achieve the goal, the variations of ten variables on 2688 solo singing recorded files, 

obtained from Chapter 7, were investigated to find the relationships between a note’s F0 and 

duration with these variables. The variables considered in this study are the interval to the 

following and previous notes, the existence of a rest before or after the note, duration, the 

MIDI pitch code, and the particular singing technique applied. The Bayesian hierarchical model 

was used to find the effect of the variables on pitch and duration. The investigation confirms 

that the pitch and duration of notes are based on all these parameters in trained-professional 

singers’ performances. In addition, Chapter 8 proposed two formulas to calculate the pitch 

frequencies and duration of the notes according to the variables. 

To the best of my knowledge, it is the first time that singers’ behaviours in changing 

notes’ pitches and duration according to several parameters have been modelled. In other 

words, these models can simulate how trained-professional singers perform a piece of music. 

However, these models have some limitations that need to be overcome. Suggestions for 

improving the models are provided in the following. 

Regarding future work that could be carried out in the short term, the finding of this 

study can be implemented by some singing synthesisers, e. g. (Goto et al., 2012; Jeerapradit, 

Suchato and Punyabukkana, 2018), to compare how subjective human evaluation actually 

behaves when listening to the theoretical pitch and duration against those calculated with the 

models presented in Chapter 8.  

In addition, the models can be extended by augmenting them with more variables. For 

example, longer sequences of notes can be considered instead of only the immediate prior 

and following notes. Moreover, the loudness of the notes can be added to the model to 

ascertain if it has a noticeable effect. Another possible inclusion is the variation of the starting 

point of the singer starting singing of a note with respect to a metronome beat or 

accompanying note, as discussed by Sundberg and Bauer-Huppmann (Sundberg and Bauer-

Huppmann, 2007). In addition, there are several other parameters related to the musical 

context, such as chord note vs non-chord note, a note’s position along the circle of fifths, key 

or underlying harmony, beat vs non-beat note’s position in the bar, syncopation, chord 

change, change of the direction of the melody, and phrase and sub-phrase structure, could be 

included to ascertain the significance of their effect on the performed duration and F0. This 
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would require a lot of annotation work on the current dataset, with caveats as to what it could 

and could not provide, and then, for some variables, it would demand a completely new 

dataset with the appropriate annotations. This certainly would be a time-consuming task in 

its preparation.  

Another longer-term study would be to run the model on larger datasets with more 

singers and music excerpts to obtain more accurate results. 

In conclusion, there is still a significant gap in our understanding of music performances 

and how humans perceive a piece of music. To develop advanced AI tools for music, much 

extra research is required to formulate all the possible parameters that can affect music 

performers in changing pitch, duration, amplitude, and timber of the tone, as well as how a 

listener perceives the music according to the parameters. 
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Table A-1. Comparing pitch estimators and contour smoothers algorithms by ground truth based on the mean 
absolute error (MAE) metric. GT = Ground Truth, ES = Estimated pitch contour, SM = Smoothed contour. 

Algori
thm 

Specacf Schmitt FComb MComb Yin YinFFT Praat PYIN (GT) 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

00 256 123 208 68 61 26 123 42 108 46 32 28 588 114 543 61 26 39 14 14 0.7 0 1.2 1.2 

01 256 233 112 68 63 20 123 122 56 46 47 15 588 581 291 61 60 35 14 14 0.2 0 3 3 

02 256 236 128 68 64 21 123 122 59 46 47 15 588 584 316 61 60 37 14 14 0.2 0 2.7 2.7 

03 256 234 118 68 62 26 123 122 62 46 47 20 588 583 302 61 58 40 14 13 1.2 0 5.5 5.5 

04 256 236 128 68 64 21 123 122 59 46 47 15 588 584 316 61 60 37 14 14 0.2 0 2.7 2.7 

05 256 232 124 68 63 23 123 122 63 46 48 17 588 582 325 61 60 40 14 14 0.3 0 3.4 3.4 

06 256 235 104 68 64 18 123 122 51 46 47 13 588 582 266 61 60 32 14 14 0.2 0 2.5 2.5 

07 256 237 96 68 64 16 123 122 44 46 47 11 588 584 237 61 60 28 14 14 0.1 0 2 2 

08 256 233 113 68 64 20 123 122 56 46 47 15 588 582 291 61 60 35 14 14 0.2 0 2.9 2.9 

09 256 244 147 68 69 30 123 137 83 46 54 24 588 743 545 61 77 59 14 14 0.5 0 5.6 5.6 

10 256 226 208 68 77 72 123 138 146 46 72 64 588 628 624 61 87 100 14 43 38.2 0 44.3 44.3 

11 256 227 184 68 68 55 123 131 122 46 59 46 588 626 567 61 74 81 14 21 13.4 0 23.6 23.6 

12 256 227 181 68 68 52 123 131 120 46 58 44 588 648 579 61 74 79 14 21 13.1 0 21.5 21.5 

13 256 227 190 68 71 59 123 133 128 46 63 52 588 613 580 61 77 87 14 21 13.9 0 28.7 28.7 

14 256 226 186 68 68 56 123 132 127 46 60 48 588 660 619 61 77 84 14 22 14.3 0 24.2 24.2 

15 256 227 189 68 72 61 123 132 126 46 64 53 588 580 535 61 76 84 14 25 17.5 0 31.2 31.2 

16 256 223 168 68 64 44 123 123 104 46 53 37 588 580 478 61 66 67 14 18 10 0 16.9 16.9 

17 256 236 128 68 64 21 123 122 59 46 47 15 588 584 316 61 60 37 14 14 0.2 0 2.7 2.7 

18 256 214 195 68 69 64 123 126 132 46 62 55 588 571 569 61 74 88 14 23 15.8 0 31.1 31.1 

19 256 227 190 68 71 59 123 133 128 46 63 52 588 613 580 61 77 87 14 21 13.9 0 28.7 28.7 

20 256 227 190 68 71 59 123 133 128 46 63 52 588 613 580 61 77 87 14 21 13.9 0 28.7 28.7 

21 264 227 189 68 66 56 128 129 125 47 58 47 591 577 519 62 72 83 14 21 13.7 0 24.5 24.5 

22 256 227 190 68 71 59 123 133 128 46 63 52 588 613 580 61 77 87 14 21 13.9 0 28.7 28.7 

23 256 225 136 68 62 32 123 121 78 46 50 26 588 576 381 61 62 52 14 14 0.8 0 7.3 7.3 

24 256 234 116 68 64 22 123 124 60 46 48 17 588 599 322 61 62 39 14 14 0.2 0 3.2 3.2 

25 256 231 137 68 65 38 123 129 87 46 54 32 588 665 483 61 73 61 14 14 1.7 0 11.9 11.9 

26 256 245 102 68 66 20 123 132 57 46 50 16 588 703 380 61 72 41 14 14 0.3 0 3.6 3.6 

27 256 229 133 68 64 30 123 125 76 46 51 25 588 623 410 61 67 51 14 14 1.5 0 9 9 

28 256 235 122 68 65 23 123 126 65 46 49 18 588 634 373 61 66 43 14 14 0.3 0 4.5 4.5 

29 256 236 114 68 65 27 123 128 67 46 52 23 588 656 386 61 71 47 14 14 1.5 0 9 9 

30 256 244 105 68 66 21 123 131 59 46 50 17 588 694 380 61 72 41 14 14 0.4 0 4.4 4.4 

31 261 235 153 69 62 39 126 125 88 47 51 30 600 592 411 62 61 57 14 13 2 0 9.4 9.4 

32 256 232 97 68 61 23 123 121 54 46 47 18 588 580 258 61 58 35 14 13 1.3 0 5.7 5.7 

33 256 228 96 68 63 11 123 108 33 46 45 6 588 417 201 61 48 20 14 14 0 0 0.3 0.3 

34 256 226 122 68 62 20 123 113 54 46 46 13 588 510 292 61 54 35 14 14 0.1 0 1.9 1.9 

35 256 234 102 68 64 9 123 107 36 46 44 5 588 410 240 61 46 19 14 14 0 0 0 0 
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Table A-2. Comparing pitch estimators and contour-smoother algorithms by ground truth based on the R-
squared (R2) metric. GT = Ground Truth, ES = Estimated pitch contour, SM = Smoothed contour. 

Algorithm 

Specacf Schmitt FComb MComb Yin YinFFT Praat PYIN (GT) 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-    
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

00 −28 −3 0 −0.5 −0.3 0.7 −22 −1 0.3 −1 0.2 0.7 −1153 −3 −0.4 −22 1 0.7 0.8 0.84 1 1 0.97 0.97 

01 −28 −20 0.8 −0.5 −0.2 1 −22 −17 0.8 −1 −0.9 1 −1153 −462 0.7 −22 −10 0.9 0.8 0.81 1 1 0.99 0.99 

02 −28 −20 0.7 −0.5 −0.3 0.9 −22 −17 0.8 −1 −0.9 0.9 −1153 −516 0.6 −22 −11 0.9 0.8 0.81 1 1 0.99 0.99 

03 −28 −20 0.7 −0.5 −0.3 0.9 −22 −17 0.8 −1 −0.9 0.9 −1153 −526 0.6 −22 −11 0.9 0.8 0.81 1 1 0.98 0.98 

04 −28 −20 0.7 −0.5 −0.3 0.9 −22 −17 0.8 −1 −0.9 0.9 −1153 −517 0.6 −22 −11 0.9 0.8 0.81 1 1 0.99 0.99 

05 −28 −19 0.7 −0.5 −0.2 0.9 −22 −16 0.8 −1 −0.8 0.9 −1153 −428 0.6 −22 −10 0.9 0.8 0.81 1 1 0.99 0.99 

06 −28 −20 0.8 −0.5 −0.3 1 −22 −17 0.9 −1 −0.9 1 −1153 −501 0.7 −22 −11 0.9 0.8 0.81 1 1 0.99 0.99 

07 −28 −21 0.8 −0.5 −0.3 1 −22 −18 0.9 −1 −1 1 −1153 −561 0.8 −22 −12 0.9 0.8 0.81 1 1 1 1 

08 −28 −20 0.7 −0.5 −0.3 1 −22 −17 0.8 −1 −0.9 1 −1153 −469 0.7 −22 −11 0.9 0.8 0.81 1 1 0.99 0.99 

09 −28 −20 0.6 −0.5 −0.3 0.9 −22 −17 0.8 −1 −0.9 0.9 −1153 −490 0.5 −22 −11 0.8 0.8 0.81 1 1 0.99 0.99 

10 −28 −15 0.4 −0.5 0 0.6 −22 −10 0.5 −1 −0.4 0.7 −1153 −191 0.2 −22 −5 0.6 0.8 0.6 0.7 1 0.79 0.79 

11 −28 −17 0.5 −0.5 0 0.8 −22 −13 0.6 −1 −0.5 0.8 −1153 −239 0.3 −22 −6 0.7 0.8 0.8 1 1 0.93 0.93 

12 −28 −17 0.5 −0.5 0 0.8 −22 −13 0.6 −1 −0.5 0.8 −1153 −267 0.4 −22 −7 0.7 0.8 0.8 1 1 0.94 0.94 

13 −28 −16 0.4 −0.5 0 0.7 −22 −12 0.6 −1 −0.5 0.8 −1153 −204 0.3 −22 −6 0.7 0.8 0.8 1 1 0.9 0.9 

14 −28 −16 0.4 −0.5 0 0.8 −22 −12 0.6 −1 −0.5 0.8 −1153 −245 0.3 −22 −6 0.7 0.8 0.79 1 1 0.93 0.93 

15 −28 −16 0.4 −0.5 0 0.7 −22 −12 0.5 −1 −0.5 0.7 −1153 −238 0.3 −22 −6 0.6 0.8 0.77 0.9 1 0.85 0.85 

16 −28 −17 0.5 −0.5 0 0.8 −22 −13 0.6 −1 −0.5 0.8 −1153 −259 0.4 −22 −6 0.7 0.8 0.81 1 1 0.95 0.95 

17 −28 −20 0.7 −0.5 −0.3 0.9 −22 −17 0.8 −1 −0.9 0.9 −1153 −517 0.6 −22 −11 0.9 0.8 0.81 1 1 0.99 0.99 

18 −28 −15 0.4 −0.5 0.2 0.7 −22 −10 0.5 −1 −0.3 0.7 −1153 −155 0.3 −22 −4 0.6 0.8 0.8 0.9 1 0.89 0.89 

19 −28 −16 0.4 −0.5 0 0.7 −22 −12 0.6 −1 −0.5 0.8 −1153 −204 0.3 −22 −6 0.7 0.8 0.8 1 1 0.9 0.9 

20 −28 −16 0.4 −0.5 0 0.7 −22 −12 0.6 −1 −0.5 0.8 −1153 −204 0.3 −22 −6 0.7 0.8 0.8 1 1 0.9 0.9 

21 −30 −17 0.4 −0.6 0.1 0.7 −24 −12 0.5 −1 −0.4 0.8 −1208 −194 0.3 −23 −5 0.7 0.8 0.8 1 1 0.92 0.92 

22 −28 −16 0.4 −0.5 0 0.7 −22 −12 0.6 −1 −0.5 0.8 −1153 −204 0.3 −22 −6 0.7 0.8 0.8 1 1 0.9 0.9 

23 −28 −18 0.7 −0.5 −0.1 0.9 −22 −14 0.8 −1 −0.6 0.9 −1153 −288 0.6 −22 −7 0.8 0.8 0.81 1 1 0.98 0.98 

24 −28 −20 0.7 −0.5 −0.3 0.9 −22 −17 0.8 −1 −0.9 1 −1153 −457 0.7 −22 −10 0.9 0.8 0.81 1 1 0.99 0.99 

25 −28 −18 0.7 −0.5 0 0.9 −22 −14 0.8 −1 −0.6 0.9 −1153 −349 0.7 −22 −8 0.8 0.8 0.81 1 1 0.98 0.98 

26 −28 −21 0.8 −0.5 −0.3 1 −22 −17 0.9 −1 −0.9 1 −1153 −584 0.8 −22 −13 0.9 0.8 0.81 1 1 1 1 

27 −28 −18 0.7 −0.5 −0.1 0.9 −22 −14 0.8 −1 −0.6 0.9 −1153 −353 0.6 −22 −9 0.9 0.8 0.81 1 1 0.98 0.98 

28 −28 −19 0.7 −0.5 −0.2 0.9 −22 −16 0.8 −1 −0.8 0.9 −1153 −449 0.7 −22 −10 0.9 0.8 0.81 1 1 0.99 0.99 

29 −28 −19 0.8 −0.5 −0.1 0.9 −22 −15 0.9 −1 −0.7 0.9 −1153 −468 0.8 −22 −11 0.9 0.8 0.81 1 1 0.99 0.99 

30 −28 −21 0.8 −0.5 −0.3 1 −22 −17 0.9 −1 −0.9 1 −1153 −563 0.8 −22 −13 0.9 0.8 0.81 1 1 0.99 0.99 

31 −31 −22 0.6 −0.7 −0.3 0.8 −25 −18 0.7 −2 −1 0.8 −1308 −478 0.5 −25 −11 0.8 0.8 0.81 1 1 0.96 0.96 

32 −28 −20 0.8 −0.5 −0.2 0.9 −22 −17 0.9 −1 −0.8 0.9 −1153 −501 0.8 −22 −11 0.9 0.8 0.81 1 1 0.99 0.99 

33 −28 −23 0.6 −0.5 −0.4 1 −22 −19 0.8 −1 −1.1 1 −1153 −266 0.4 −22 −12 0.8 0.8 0.81 1 1 1 1 

34 −28 −20 0.6 −0.5 −0.3 0.9 −22 −17 0.7 −1 −0.9 0.9 −1153 −389 0.5 −22 −9 0.8 0.8 0.81 1 1 0.99 0.99 

35 −28 −22 0.5 −0.5 −0.4 0.9 −22 −20 0.7 −1 −1.1 0.9 −1153 −376 0.4 −22 −11 0.8 0.8 0.81 1 1 1 1 
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Table A-3. Comparing pitch estimators and contour-smoother algorithms by ground truth based on the Root-
Mean-Square Error (RMSE) metric. GT = Ground Truth, ES = Estimated pitch contour, SM = Smoothed 

contour. 

Algorithm 

Specacf Schmitt FComb MComb Yin YinFFT Praat PYIN (GT) 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-  
ES 

GT-  
SM 

ES-  
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

00 394 161 370 111 96 73 258 79 240 96 66 62 2086 153 2077 194 58 159 21 21 3.1 0 4.5 4.5 

01 394 307 188 111 97 36 258 206 112 96 84 32 2086 1342 1210 194 137 102 21 21 1.1 0 9.5 9.5 

02 394 315 220 111 99 40 258 211 127 96 86 36 2086 1417 1405 194 143 117 21 21 1.1 0 10.2 10.2 

03 394 315 201 111 96 48 258 210 131 96 84 43 2086 1427 1306 194 141 115 21 20 2.4 0 14.8 14.8 

04 394 315 220 111 99 40 258 211 127 96 86 36 2086 1417 1405 194 143 117 21 21 1.1 0 10.2 10.2 

05 394 302 207 111 96 40 258 202 124 96 84 36 2086 1291 1332 194 134 113 21 21 1.2 0 10.7 10.7 

06 394 312 176 111 99 33 258 210 104 96 85 30 2086 1396 1130 194 142 95 21 21 1 0 8.6 8.6 

07 394 321 165 111 101 30 258 216 95 96 87 27 2086 1475 1054 194 148 88 21 21 0.9 0 7.7 7.7 

08 394 308 190 111 98 36 258 206 113 96 85 32 2086 1351 1221 194 138 103 21 21 1.1 0 9.5 9.5 

09 394 311 228 111 101 47 258 211 141 96 87 42 2086 1373 1484 194 141 127 21 21 1.3 0 12.4 12.4 

10 394 256 300 111 96 97 258 167 218 96 91 90 2086 818 1839 194 117 185 21 53 46.8 0 60.6 60.6 

11 394 265 277 111 88 77 258 172 192 96 80 70 2086 936 1768 194 110 165 21 27 17.5 0 34.8 34.8 

12 394 266 274 111 88 75 258 173 190 96 79 67 2086 990 1741 194 113 161 21 27 17.1 0 31.5 31.5 

13 394 263 281 111 90 81 258 172 198 96 82 74 2086 851 1816 194 109 171 21 27 17.9 0 40.6 40.6 

14 394 260 280 111 87 79 258 167 196 96 79 70 2086 940 1770 194 110 165 21 28 18.6 0 34.3 34.3 

15 394 266 285 111 95 87 258 176 202 96 88 81 2086 906 1800 194 119 175 21 33 23.8 0 49.1 49.1 

16 394 266 263 111 87 67 258 172 176 96 77 60 2086 964 1685 194 110 152 21 24 13.4 0 28 28 

17 394 315 220 111 99 40 258 211 127 96 86 36 2086 1417 1405 194 143 117 21 21 1.1 0 10.2 10.2 

18 394 243 288 111 86 86 258 155 205 96 80 79 2086 772 1836 194 102 175 21 29 20.5 0 44.2 44.2 

19 394 263 281 111 90 81 258 172 198 96 82 74 2086 851 1816 194 109 171 21 27 17.9 0 40.6 40.6 

20 394 263 281 111 90 81 258 172 198 96 82 74 2086 851 1816 194 109 171 21 27 17.9 0 40.6 40.6 

21 403 259 283 110 84 78 265 164 200 96 78 72 2038 823 1739 199 105 172 21 27 17.8 0 36.7 36.7 

22 394 263 281 111 90 81 258 172 198 96 82 74 2086 851 1816 194 109 171 21 27 17.9 0 40.6 40.6 

23 394 279 216 111 89 49 258 183 138 96 78 44 2086 1071 1404 194 117 123 21 21 1.9 0 14.6 14.6 

24 394 306 192 111 98 38 258 206 116 96 85 34 2086 1331 1235 194 137 105 21 21 1.2 0 9.9 9.9 

25 394 284 203 111 88 53 258 183 137 96 78 48 2086 1199 1278 194 126 116 21 21 2.9 0 18.5 18.5 

26 394 322 153 111 100 31 258 215 94 96 87 27 2086 1511 954 194 150 81 21 21 1 0 8 8 

27 394 287 207 111 92 45 258 190 129 96 81 41 2086 1197 1334 194 127 116 21 21 2.7 0 15.5 15.5 

28 394 304 197 111 97 39 258 204 119 96 84 35 2086 1332 1268 194 137 107 21 21 1.2 0 10.5 10.5 

29 394 303 169 111 93 39 258 198 108 96 82 36 2086 1376 1052 194 140 93 21 21 2.5 0 14.3 14.3 

30 394 319 158 111 99 32 258 212 96 96 86 28 2086 1495 978 194 149 84 21 21 1.1 0 8.7 8.7 

31 397 303 247 112 93 65 261 200 168 97 82 59 2109 1294 1613 196 130 147 21 19 3.9 0 22 22 

32 394 311 162 111 93 40 258 205 106 96 81 36 2086 1400 1044 194 138 93 21 20 2.5 0 13.4 13.4 

33 394 319 250 111 103 33 258 219 127 96 90 26 2086 790 1591 194 124 123 21 21 0.6 0 1.5 1.5 

34 394 305 249 111 97 46 258 206 144 96 86 39 2086 1143 1566 194 132 131 21 21 0.9 0 9.1 9.1 

35 394 317 277 111 105 43 258 220 142 96 90 28 2086 729 1779 194 117 123 21 21 0.6 0 0 0 
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Table A-4. Comparing pitch estimators and contour-smoother algorithms by ground truth based on the F0 
Frame Error (FFE) metric. GT = Ground Truth, ES = Estimated pitch contour, SM = Smoothed contour. 

Algorithm 

Specacf Schmitt FComb MComb Yin YinFFT Praat PYIN (GT) 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

GT-
ES 

GT-
SM 

ES-
SM 

00 40 48 61 67 69 89 77 82 84 84 87 92 45 52 63 88 90 97 95 95.1 99.8 100 99.8 99.8 

01 40 33 60 67 64 86 77 63 72 84 77 86 45 36 77 88 81 85 95 95.1 100 100 95.7 95.7 

02 40 35 61 67 66 90 77 66 77 84 79 91 45 39 83 88 84 91 95 95.1 100 100 98.3 98.3 

03 40 36 64 67 67 87 77 67 78 84 80 91 45 40 83 88 84 91 95 95.1 100 100 98.3 98.3 

04 40 35 61 67 66 90 77 66 77 84 79 91 45 39 83 88 84 91 95 95.1 100 100 98.3 98.3 

05 40 34 61 67 65 88 77 64 74 84 78 88 45 37 79 88 82 88 95 95.1 100 100 97.4 97.4 

06 40 35 65 67 65 89 77 65 76 84 79 89 45 38 81 88 82 88 95 95.1 100 100 97.4 97.4 

07 40 36 69 67 66 92 77 66 80 84 79 92 45 39 85 88 84 91 95 95.1 100 100 98.3 98.3 

08 40 34 63 67 65 89 77 65 75 84 78 89 45 38 80 88 82 88 95 95.1 100 100 97.4 97.4 

09 40 20 41 67 52 70 77 47 54 84 65 73 45 15 43 88 64 68 95 95.1 100 100 84.6 84.6 

10 40 21 32 67 46 51 77 41 42 84 54 58 45 13 33 88 55 57 95 83.3 86.9 100 72 72 

11 40 21 36 67 49 58 77 44 46 84 60 65 45 17 44 88 61 63 95 95.2 99.6 100 80.1 80.1 

12 40 21 36 67 49 59 77 44 47 84 61 66 45 17 42 88 62 64 95 95.2 99.6 100 81.3 81.3 

13 40 21 35 67 47 56 77 42 44 84 57 62 45 16 41 88 58 60 95 95.2 99.6 100 76.8 76.8 

14 40 20 35 67 48 58 77 43 45 84 60 65 45 13 35 88 60 62 95 95.2 99.5 100 80.6 80.6 

15 40 27 42 67 55 64 77 51 54 84 65 70 45 26 56 88 68 70 95 94.5 98.8 100 83.2 83.2 

16 40 27 44 67 56 68 77 52 55 84 67 73 45 26 58 88 70 72 95 95.2 99.7 100 86 86 

17 40 35 61 67 66 90 77 66 77 84 79 91 45 39 83 88 84 91 95 95.1 100 100 98.3 98.3 

18 40 22 34 67 47 54 77 43 44 84 56 61 45 17 41 88 58 60 95 95.3 99.4 100 75.6 75.6 

19 40 21 35 67 47 56 77 42 44 84 57 62 45 16 41 88 58 60 95 95.2 99.6 100 76.8 76.8 

20 40 21 35 67 47 56 77 42 44 84 57 62 45 16 41 88 58 60 95 95.2 99.6 100 76.8 76.8 

21 38 21 36 66 50 58 76 45 47 83 60 65 43 18 47 88 62 64 95 95.3 99.6 100 79.8 79.8 

22 40 21 35 67 47 56 77 42 44 84 57 62 45 16 41 88 58 60 95 95.2 99.6 100 76.8 76.8 

23 40 22 45 67 52 70 77 50 56 84 64 72 45 22 59 88 67 71 95 95.1 100 100 85.1 85.1 

24 40 23 49 67 53 74 77 53 61 84 67 75 45 25 64 88 70 74 95 95.1 100 100 86.7 86.7 

25 40 21 43 67 51 67 77 47 53 84 63 70 45 16 43 88 63 66 95 95.1 99.9 100 83.3 83.3 

26 40 21 51 67 53 76 77 51 61 84 66 76 45 19 54 88 66 70 95 95.1 100 100 84.8 84.8 

27 40 22 45 67 52 71 77 50 57 84 65 74 45 21 56 88 67 71 95 95.1 99.9 100 84.7 84.7 

28 40 22 47 67 53 73 77 51 59 84 66 74 45 22 59 88 68 72 95 95.1 100 100 84.6 84.6 

29 40 21 49 67 52 74 77 50 59 84 66 74 45 19 52 88 66 70 95 95.1 99.9 100 84.8 84.8 

30 40 21 50 67 53 75 77 50 60 84 66 76 45 19 53 88 66 71 95 95.1 100 100 84.9 84.9 

31 39 34 57 66 66 80 76 64 72 83 78 87 44 37 76 88 82 87 95 95.2 99.9 100 97.2 97.2 

32 40 30 60 67 60 80 77 61 70 84 74 82 45 32 72 88 77 82 95 95.1 100 100 92.8 92.8 

33 40 42 80 67 69 95 77 79 94 84 84 98 45 45 95 88 89 99 95 95.1 100 100 100 100 

34 40 34 61 67 63 81 77 68 76 84 77 85 45 36 78 88 81 85 95 95.1 100 100 94.7 94.7 

35 40 42 82 67 69 96 77 80 94 84 84 98 45 45 95 88 89 99 95 95.1 100 100 100 100 
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