

Evaluating Distributed Computation Offloading

Scalability for Multiple Robots

Fatima Ayoub

Department of Electronic Engineering

Maynooth University

Maynooth, Ireland

fatima.ayoub.2020@mumail.ie

Rudi Villing

Department of Electronic Engineering

Maynooth University

Maynooth, Ireland

rudi.villing@mu.ie

Abstract—Perception in robotics using modern deep

learning approaches is often computationally expensive. Cloud

robotics and edge robotics provide possible solutions to this. In

particular, computation offloading permits compute-

constrained robots to offload compute tasks from the robot itself

to more capable servers (the remote brain). However, the

scalability of computation offloading for robots sharing a WiFi

network has typically not been considered. In this work, we

investigated the scalability of offloading to the cloud and edge

for deployments of multiple robots in real-world settings and

network conditions. We interpret typical network performance

metrics such as latency, throughput, and packet loss in terms of

their effect on robot computations to help to understand this

question. To characterize the problem further, we introduce

three different static offloading profiles based on the sensing

capabilities of currently available robot platforms and examined

these in a number of experiments on both simulated and

physical wireless networks. Our results show that WiFi network

capacity is much less than advertised when subjected to

offloading data traffic and indicates limitations on the number

of robots that can concurrently use computation offloading in a

given space and the amount of data that they can transfer. This

has significant implications for the dense deployment of robots

that depend on computation offloading to meet their required

service level.

Keywords—Robotics, Cloud robotics, Computational

offloading, Wireless network performance.

I. INTRODUCTION

Today, autonomous robots can use external computational
resources to enhance their performance and capabilities.
Robots mostly utilize cloud resources to perform
computationally expensive tasks. Autonomous mobile robots
must balance computing capability with power consumption
(which affects battery autonomy time) and cost. For this
reason, there is often less onboard storage space and less
capable computational resources on a robot than on a desktop
or laptop computing system. Many commercially available
robots do not have an onboard graphics processing unit
(GPU), or the GPU has limited resources. To overcome the
restrictions that this more constrained computing environment

creates, a robot may offload some of its computational tasks
to a remote system (the remote brain) at the edge or in the
cloud, where resources can be considered essentially limitless
[1]. This cloud enabled robotics approach [2] is attractive for
a number of reasons, among them that it can enable lower cost
and less computationally powerful robots to perform complex
tasks such as care assistance and socially aware guiding or
delivery.

Depending on the application, computation offloading
may require substantial amounts of data to be transferred to
the remote system. The largest data is usually vision data used
for navigation, perception, manipulation control, and
recognition among other tasks. Unlike video for human
consumption, robot vision data is usually not suitable for high
compression due to latency constraints, tolerance of frame
loss, and potential sensitivity to artefacts that humans
overlook.

In static offloading, the decision regarding what
computations to offload is taken at design time, whereas in
dynamic offloading, the decision is taken at run time
depending on factors such as power consumption, network
usage and status, among others [3]–[5]. Since the dynamic
decision could be that offloading should not be done at a given
time, dynamic offloading makes sense only if the computation
to be offloaded is optional or if the robot can execute the
computation itself (but prefers not to). If the computations are
required for the robot’s purpose and it cannot execute them
itself, then static offloading is required. Since larger
deployments of robots in settings such as healthcare will likely
include lower cost and less computationally capable robots
among others, static offloading is the strategy that we analyse
in this work.

Many environments today that could benefit from
autonomous mobile robots, including healthcare
environments, typically have very few such robots. This is a
consequence of both the cost and challenging nature of
robotics in dynamic settings among other factors.
Computation offloading provides the ability to both reduce
cost and increase the robot’s capabilities through sophisticated
(remote) processing and this allows robots to be deployed
more widely and applied to a greater range of tasks. In This publication has emanated from research conducted with the

financial support of Science Foundation Ireland (SFI) under Grant Number

18/CRT/6222.

healthcare and care home settings for example robots can help
by participating in social interactions, delivering medicine,
recording patient parameters, responding to nurse calls, and
cleaning among other tasks, reducing the workload of the
nurses and staff [6].

As autonomous mobile robots become more ubiquitous
then, it is appropriate to investigate how well the currently
installed communications infrastructure might support
increasing numbers of robots and specifically those using
computation offloading. Safe and reliable operation is an
important consideration for all robot deployments, and when
using computation offloading, the ability of the network to
guarantee the required communication quality of service is an
essential element of that. Moreover, when robots are both
mobile and autonomous, it is entirely possible for multiple
robots to enter a single space (for example a hospital ward or
a care home common area) either because their task requires
them to visit that space or they are simply passing through
enroute to another destination. This means that the peak
density of robots in a given area may be larger than the
average.

To our knowledge the scalability of dense deployments of
robots offloading to remote servers has not been subjected to
study. Since the traffic pattern of offloading robots (dominated
by upload) is different to typical traffic patterns considered in
network design and since WiFi networks can degrade
substantially when congested, we investigate (a) how many
offloading robots a given wireless access point (AP) can
sustain and (b) if static offloading is a viable strategy for
distributed computation going forward. Furthermore, this
study focuses on the ability of existing installed networks to
handle the offloading traffic, since redesigning and
reinstalling the local network just to handle additionl robots is
often not justifiable or viable in the settings we consider.

As a target environment, we consider care settings such as
hospitals and care homes. In these settings mobile
autonomous service robots and human interactive robots are
expected to play a greater role and current examples of such
robots include the PAL Robotics TIAGo [7], Ari [8], and
Kompai robotics Kompai [9]. Such robots rely heavily on
processing data from both vision and audio sensors for tasks
including person detection and recognition, socially aware
guiding and navigation, and effortless, responsive, human
interactions including taking routine measurements (such as
temperature). All these tasks could potentially benefit from
computation offloading.

To examine this question in detail, this paper makes three
main contributions. We propose three different static
offloading profiles grounded in the capabilities of available
robots and consideration of typical tasks they might undertake.
We design and execute experiments to evaluate how these
offloading profiles are handled for configurations of 1 to 13
robots, in simulation and in two different physical networks.
Finally, we interpret the results and their implications for
larger deployments of robots using static offloading.

The remainder of this paper is organized as follows.
Section Ⅱ, briefly surveys related work on cloud robotics and
offloading. We detail our offloading traffic profiles and the

metrics we use in Section Ⅲ. Section Ⅳ describes the
experiments in detail, Section Ⅴ the results and their
interpretation for robot offloading, and thereafter, our
conclusions.

II. RELATED WORK

Distributed computation offloading is a key element of
cloud enabled robotics. Cloud enabled robotics differs from
many other cloud-based applications due to the large amount
of data associated with robot sensing and perception and the
real-time nature of the system (usually requiring all data
communication and processing to be completed in a few tens
of milliseconds). A general review of cloud robotics can be
found in [10] including information about applications and
challenges. There are two main techniques for offloading
computation from the robot to the cloud, static and dynamic
offloading. Static offloading refers to the pre-determination of
which tasks will be executed on the robot and which tasks will
be executed on the cloud before the robot starts performing the
tasks. In contrast, dynamic offloading involves making the
offloading decision at runtime based on the current robot and
cloud resource utilization.

 The use of static offloading in robotics systems enables
better task planning and scheduling by making offloading
decisions in advance. This approach can lead to more
predictable task execution, thereby achieving low latency.
Consequently, static offloading is frequently employed to
achieve optimal performance in robotics systems. Authors in
[5] considered a distributed computation offloading
architecture for cloud robotics to improve the computational
capacity and flexibility of robotic system. Overall, the
performance of cloud robotics is improved with this
technique: using offloading the robot can execute up to 30
frames per second while without offloading robot can only
process up to 19 frames per second for an object tracking
algorithm. To ensure smooth and efficient offloading, the
architecture requires low latency communication between the
edge, fog, and cloud layers which depends on the ability of the
network to maintain this low latency.

 Another study presents a promising approach for
cooperative computation offloading for robot swarms in cloud
robotics [4]. The method has potential applications in search
and rescue, environmental monitoring, and industrial
automation. The proposed QoS-aware framework can aid in
the efficient and dependable offloading of computations in
such systems. The main requirement of the proposed method
is low-latency and dependable communication between robots
and the cloud, which can be challenging in dynamic and
unpredictable network conditions, particularly for mobile
robots that move around the environment. The use of cloud
computing to empower robots comes with a fundamental
tradeoff between safety and performance. Many robotics
applications require real-time computation, and any lag can
result in failures with potential safety consequences.

Computation offloading has been extensively investigated
in the context of Internet of Things (IoT) devices and mobile
devices (e.g. [11], [12]). As the IoT domain tends to work with
smaller data sizes, research related to smartphones and mobile

devices is more relevant here, particularly when applications
related to face detection or other vision tasks are considered.

From an architectural perspective, computations can be
offloaded to the cloud [13], [14], to a mix of local and internet
cloud resource [15], to a cloudlet at the network edge (e.g.
using a socially aware offloading algorithm [16]), or to peer
devices [17]. There is also the question of whether to offload
complete computation tasks or to subdivide the task so that
parts may be offloaded [13].

Most research has focused on dynamic offloading
methods, where the decision about which computations to
offload is made at run time. Factors to consider when making
such decisions include energy consumption (e.g. [13], [14],
[18]), dynamic connectivity properties (e.g. [17], [18]), and
maintaining or improving the quality of service (QoS) of the
application offloading computation [18]–[20]. Typically,
dynamic offloading has been formulated as an optimization
problem [17], [19] but it can also be approached using
evolutionary algorithms (e.g. [19]), or economic and game
theoretic approaches [16], [22]. The latter are particularly
relevant when robots or mobile devices must compete for
limited offloading resources (whether the limit is due to
computation resources or network connectivity limitations).
Recently deep reinforcement learning approaches have been
applied to learn the offloading decision-making process [23],
[24].

Dynamic computation offloading relies on the key
assumption that there are some criteria under which offloading
should not be done. If not offloaded, the relevant computations
must be optional, or they must be handled by the robot itself
and the tasks requiring them may need to tolerate long delays
due to slower computation. Dynamic offloading also adds
complexity to the software architecture since computational
capabilities must be replicated on the robot and in the cloud.

The static offloading strategy is presented much less
frequently (e.g. [5]), but it has the benefit of simpler designs
than dynamic offloading. Moreover, it is suitable for lower
cost robots which do not have the computational capability to
perform state of the art perception tasks. It does place higher
demands on the network, but in exchange it provides a
consistent and predictable QoS (important in care settings),
unlike systems using dynamic offloading which must either be
able to perform local computations as fast as offloaded
computations, or must suffer degraded QoS when
computations are performed locally. By definition, the QoS of
robots using dynamic offloading must be lower than those
using static offloading given the same onboard computing
capability since sometimes they will decide not to offload. On
the other hand, while offloading is taking place, the two
strategies have identical network requirements and for all
these reasons we examine the ability of WiFi networks to
handle the static offloading strategy in this paper.

III. EVALUATION PROFILES AND METRICS

A. Real-time Robot Characteristics

Robots generally operate within the framework of a high-
level sense-think-act loop. This loop has periodic deadlines by
which it must process sensor input, make decisions, and

actuate its motors for the robot to behave safely, responsively,
and correctly. It is well known that delays in control systems
lead to degraded performance which may include slower
response times, lack of stability, or oscillations in the response
and this can affect the perception and trust in such robot
systems. A frame rate of between 15 and 30 frames per second
(fps) is the generally accepted requirement for safe and
responsive performance for locomotion at humanlike speeds
(e.g. [25]), for certain manipulation tasks, tasks requiring fast
reaction times, or human robot interaction that depends on
detecting brief eye movements or micro-expressions.

Latency must also be considered. In a robot system, there
is usually a delay of up to one frame time in both sensing and
actuation. Therefore it is important to minimize any additional
latency introduced by offloading. For this work, we consider
that the additional offloading latency should be less than 66.6
ms, that is a 1-frame delay at 15 fps.

In general, the TCP protocol is not suitable for real-time
data transmission over wireless channels, since any lost
packets must be retransmitted, and this can introduce
substantial latency. For this reason, some form of UDP is
typically used as the underlying transport between robots and
the cloud [26]. As UDP is inherently unreliable, packet loss
may render entire frames unusable. Application layer forward
error or erasure correction (FEC) may mitigate this in some
situations, but it introduces complexity and does not appear to
have been used in the cloud robotics literature. For this
reason, our experiments do not use FEC.

B. Offloading traffic profiles

This study assumes static offloading of the most
computationally intensive tasks which are almost always
associated with vision (and to a lesser extent audio) data.
Other typical sensors in an autonomous robot, such as a 2D
laser scanner, sonar, inertial management unit, and wheel
rotation and joint sensors, do not produce significant amounts
of data in comparison [26]. Therefore, we focus on the data
produced by vision-based sensors (RGB and RGB-D cameras)
and audio sensing (microphones). As an offloading robot
generates highly asymmetric data flows, where the upload
data (from robot to remote server) is about 150 times the
download data [26], we ignore the download data in this work.

To reduce the vision data size, we assume that each camera
frame is compressed using JPEG compression with an average
compression ratio of 20:1. With JPEG, each frame is
compressed independently, and it has relatively low
computation requirements making it suitable for
implementation on a compute constrained robot. For
convenience, we assume identical compression for depth
images. Under these conditions, vision data is generated with
an approximately constant bit rate, Rvision, that can be
calculated as

 𝑅𝑣𝑖𝑠𝑖𝑜𝑛 = 𝑤 × ℎ × 𝑛𝑏𝑝𝑝 × 𝑟𝑓𝑟𝑎𝑚𝑒 × 𝑐 ()

where w and h are the image width and height in pixels, nbpp
is the number of bits per pixel, rframe, is the frame rate (in
frames per second), and c is the compression factor (the
inverse of the compression ratio).

We assume that audio data is primarily focused on human
interactive tasks and sampled at 16000 samples/second. As
audio compression introduces additional latency, we do not
use compressed audio data and we do not use voice/silence
detection. Hence, the constant audio data bit rate is

 𝑅𝑎𝑢𝑑𝑖𝑜 = 𝑓𝑠 × 𝑛𝑏𝑝𝑠 × 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ()

where fs is the audio sampling frequency, nbps is the number of
bits per sample (assumed to be 16), and nchannels is the number
of audio channels.

 For the purpose of evaluation, we proposed three different
robot profiles, small, medium, and large, differentiated by the
amount of vision and audio data to be communicated and
based on the sensing capabilities of existing robots. The high
profile is based on the vision and audio capabilities of a higher
end robot such as the PAL Ari which includes multiple
cameras and a microphone array for better audio detection and
localisation in noisy environments. The medium and low
profiles are representative of robots with more constrained
hardware.TABLE I. details the specifications of all three
profiles. The bit rates for vision and audio data are calculated
according to (1) and (2).

TABLE I. OFFLOADING PROFILE SPECIFICATIONS

Small

Profile

Medium

Profile
High Profile

Visiona

RGB
camera:

320×240

@ 15 fps

RGB-D
camera:

640×480

@ 15 fps

RGB camera:

1280×720 @ 30
fps

RGB-D camera:

640×480 @ 30 fps

Audiob 1 channel 2 channel 4 channel

Vision bit

rate (Mbps)
1.382 7.373 47.923

Audio bit

rate (Mbps)
0.256 0.512 1.024

Total bit rate

(Mbps)
1.638 7.885 48.947

a. Fps is frames/second, RGB is 24 bits/pixel, RGB-D is 24+8 bits/pixel

b. Each audio channel is 16000 samples/second

 Throughput measures rate at which the data required for
computation can be offloaded from the robot to the server. If
the average throughput per robot is less than the total bit rate

C. Metrics

In this study we measure three metrics, for the upload flow
only: throughput, packet loss, and latency. All metrics are
measured at the remote server and therefore incorporate the
contributions of the robot, the server, and the network between
them. Throughput measures rate at which the data required for
computation can be offloaded from the robot to the server. If
the average throughput per robot is less than the total bit rate
listed TABLE I. , then the robot will not be able to maintain
the frame rate specified.

Packet loss presents an insidious problem for offloading
data that includes vision data in particular because data will
span multiple packets (e.g. 45 packets for a single frame of
medium profile data given 1472 bytes of data per packet). In
the absence of FEC, the loss of just one packet may render a
camera image unusable. Therefore, packet loss rates as low as
10%, 2.2%, or 0.7% could corrupt all frames in the low,
medium, and high profile data streams if packet loss were to
occur at regular intervals. Packet loss is often somewhat
bursty, however, so this represents worst case behaviour.

Communication latency is an important component of
overall latency when offloading computation. Excessive
latency will cause any real-time tasks that depend on
offloading to degrade or fail. It should be as small as possible
and not larger than 66.66 ms (as explained in subsection A
above). In our experiments, which do not use external
networks, we expect the network latency to be dominated by
latency associated with the WiFi network to which the robots
connect.

IV. EXPERIMENTS

To evaluate the scalability of computation offloading for
dense robot deployments, we executed two experiments: one
in a simulated environment and one in a physical environment.
In both experiments all three offloading profiles from.
TABLE I. were tested, and the number of offloading robots
was varied from 1 to 13 to monitor the effects of increased
WiFi traffic. Each offloading profile was evaluated as a
separate condition and in each such condition, all robots used
the same offloading profile. Each experimental condition was
tested for 30 seconds and raw data were logged throughout for
later analysis.

In both the simulation and physical environments all
robots communicated with a single wireless AP using
802.11ac (the WiFi version used by our enterprise WiFi
network and our robot stations). We used a maximum
transmission unit size of 1500 bytes resulting in a payload data
size of 1472 bytes for both experiments.

A. Simulation environment

The simulation experiment was conducted using ns-3 [27].
Multiple robot stations were connected to an 802.11ac WiFi
network (using Minstrel-HT for rate control) via a single
wireless AP. The AP was bridged to a CSMA network
(approximating an ethernet LAN) and the remote server was
also connected to this. All robot stations generated data at the
constant bit rate according to the offloading profile. Data was
communicated using UDP to the server which consumed data
as fast as it arrived.

Fig. 1 shows the placement of robot stations in the physical
environment (section B). The placement in the simulation
environment was similar except that there were no simulated
walls or rooms and station positions were quantised to the
nearest meter. The simulation experiment was conducted
before the physical experiment and was expected to represent
ideal conditions as there was no competing traffic in the WiFi
network and no interference from adjacent WiFi channels and
no in-band interference.

Fig 1. The physical environment used for experiments. Colour coding
indicates distance from the wireless AP. RPi_1 and RPi_13 are raspberry pi

4 devices while the rest of the devices are raspberry pi 3B+. Dotted lines

represent the glass walls and doors.

B. Physical environment

The physical environment corresponds to a working
research area in a university incorporating open plan research
desks, laboratory space, social space, and a corridor. This area
features concrete walls, glass walls, glass doors and wooden
doors, all of which might be found in care settings that are the
target environment we consider. The environment was set up
as shown in Fig. 1. The maximum distance from the wireless
AP to any station is approximately 8 meters and the minimum
distance is approximately 1 meter. Offloading robots were
emulated using Raspberry Pi 3B+ and Raspberry Pi 4 devices
[28] since both of these natively support 802.11ac and can
produce and send data at data rates corresponding to each of
the offloading profiles. All Raspberry Pi devices were
configured to use 5 GHz WiFi communications and used their
on-board antennae.

We also evaluated two different WiFi networks (private
and enterprise) and two different times of day (afternoon and
evening). The private WiFi network used a standalone Asus
RT-AC66U Gigabit Router supporting up to 1300 Mbps and
only carried traffic from the robot stations. The enterprise
WiFi network was configured to provide a private Service Set
Identifier (SSID) dedicated to the robot stations and was
accessed via an Aruba AP-315 supporting up to 1733 Mbps
and 4 spatial streams. Unlike the private network, the
enterprise network also carried normal university traffic and
for this reason all conditions of the enterprise network
measurements were repeated on three different days.

The afternoon condition in the enterprise network
arguably reflects the most relevant real-world scenario.
Although the robots used a dedicated SSID, robots and other
network users shared the same physical network infrastructure
such as access points. During the afternoon sessions, multiple
users accessed the network causing varying load and traffic
conditions. To counter this, we conducted three readings for
each experiment and reported the average measures as already
described.

The server device was a Dell G5 15 5590 laptop (i7-9750,
16 GB memory, Gigabit ethernet). For the enterprise network

condition, this was connected to the university’s ethernet
network while for the private network condition it was
connected directly to the ethernet port of the private wireless
AP. Prior to the start of each experimental run, the robot
station and offloading server clocks were synchronized using
the network time protocol (NTP) [29] with the offloading
server acting as the NTP server.

Offloading itself was implemented by python code
running on robot stations (Raspberry Pi devices) and the
server device (Dell G5). The offloading client produced data
in discrete offloading frames. Each offloading frame
comprised data equivalent to one frame of vision data (from
each of the cameras considered in the profile) and the
corresponding time window of audio data. Offloading frames
were produced 15 or 30 times per second according to the
offloading profile and data for a frame was then sent as
quickly as possible, fragmented as needed across multiple
UDP packets. Each packet contained a sequence number and
NTP synchronised timestamp, and these were used by the
offloading server to detect lost packets and estimate
communications latency. Parallel-SSH [30] was used to start
the robot offloading client scripts on each robot station
(Raspberry Pi) in parallel so that devices would send
offloading traffic concurrently.

The purpose of synchronizing with NTP and sending data
at the vision data frame rate is to closely model the
implementation of real-time processing in robots. In a real
robot implementation the challenge would be to offload
frames as soon as possible after the sensing data was available
and to receive the offloading server response as soon as
possible thereafter, particularly where the response feeds into
closed loop control algorithms for navigation, motion, and
actuation. A further complication would be the asynchronous
nature of responses with a high likelihood that two or more
offloading frames may have been sent from a robot before the
first response is received. In this study we avoided this
complication by focusing on the offloading frames only and
not dealing with responses (which have a minimal data size in
comparison).

V. RESULTS

The received signal strength at the robot stations varied
between -65 dBm and -30 dBm in the simulation environment
and between -61 dBm to -40 dBm in the physical
environment. Fig. 2 shows the average throughput per robot
station in both the simulation and physical environment
experiments.

 For the small profile, the throughput is never less than 94%
of the nominal throughput suggesting that robots could largely
operate at the required frame rate. The medium profile,
throughput was more variable but remained above 81% of
nominal with 9 robots or fewer. High profile, throughput
dropped to 66% of nominal once 3 robots were offloading and
continued to drop as the number of robots increased. In this
case, frame rates would likely not be acceptable for robot
applications requiring fast response or continuous control.
Although we expected that the physical networks would
consistently perform better in the evening (when there was
less traffic from people at work than during the afternoon),

Fig 2. Average throughput per robot station on an 802.11ac WiFi network in

different conditions. The desired line shows the expected throughput if no

packets are lost.

there are no consistently better outcomes between times of the
day or between the private and enterprise WiFi networks. It is
worth commenting that the peak aggregate throughput
achieved for multiple robots was much less than the advertised
maximum: 125 Mbps (9.6% of maximum) on the private
network and 158 Mbps (9.1% of maximum) on the enterprise
network. Though perhaps surprising, this is likely a side effect
of having robot stations at different distances from the AP
(rather than at the ideal distance) and it is exacerbated by
congestion effects as the aggregate offloading traffic
increases.

In addition to throughput, packet loss must be considered.
Moreover, in the absence of FEC, loss of a packet causes loss
of a frame. To gain further insight, Fig. 3 shows packet loss
suffered by robots that were at close, far, and intermediate
distances from the AP (focusing on the enterprise network
afternoon condition only as the most relevant case). Although
there are differences none of the distances is consistently
associated with the lowest or highest packet loss.
Nevertheless, with 5 robots or fewer, far robots experience the
highest packet loss.

 For robot applications it is more useful to look at frames
lost (as a result of packet loss), as shown in Fig. 4. Frame loss
increases as the attempted aggregate offloading data rate
increases, though not linearly. It is also clear that the worst
frame loss experienced by an individual robot can be
significantly worse than the average frame loss experienced
by the robots. In all profiles, some individual robots
experienced 100% frame loss in at least some experimental
trials. The data show that very significant frame loss of more

Fig 3. Average packet loss (percentage) per station for multiple robot stations

sending via a single 802.11ac access point under the experimental

conditions.

than 9 out of 15 fps can occur with average packet loss as low
as 2.5%.

 The final metric we considered was latency. In simulation,
the latency is less than 4 ms for the low profile, but exceeds
our threshold of 66.6 ms with 7 robots in the medium profile
and 5 robots in the high profile. In physical tests with real
network equipment the results were different. With the private
network, the average latency per robot was quite usable at less
than 12 ms for all configurations of the low profile, up to 11
robots on the medium profile, and just one robot in the high
profile. All other configurations, however, had average
latencies ranging from 158 to 245 ms which are likely too long
to be usable.

 The enterprise network exhibited more variable latencies.
In the low profile average latencies were 16 ms up to 11 robot
stations, but standard deviations of 80 to 277 ms for 7 robots
or more, indicated that some robots were already suffering
unusable latencies at this point. Results for the medium profile
were similar. Average latencies for the high profile were a
little longer (up to 44ms) and standard deviations exceeded

Fig 4. Frame loss rate per robot in relation to the attempted aggregate bit rate

from multiple robots (A) and the packet loss percentage per robot (B).

100 ms in configurations with 5 robots or more. In summary,
these results show that WiFi latency can become a problem
for at least some robots once there are between 5 and 11 robots
using a single AP, depending on the amount of offloading data
transmission being attempted.

 Our experimental findings pertain to static clients
connected to a single access point and was designed to be a
representative snapshot in time of the positioning of multiple
mobile robots. Using mobile robots would have introduced
more variability into the results. Sometimes the results may
potentially have been better, but in many situations they may
have been worse, for example in scenarios where all robots are
positioned far from the access point.

 In scenarios involving two or more access points,
performance improvement is possible by distributing clients
across access points. These scenarios can potentially enhance
the overall system performance in comparison to the single
access point setup reported here. However, we contend that
using mobile robots the single access point scenario is still the
most important bottleneck to understand. Unless specific
techniques are employed to limit the number of robots moving
into the physical area covered by any given access point, there
will always (and perhaps frequently) be situations where a
number of robots all use a single access point and this is reason
we chose to explore this scenario in our work.

VI. CONCLUSION

In this work we examined the scalability of computation
offloading (using the static offloading strategy strategy and
three different offloading traffic profiles) for deployments of
1 to 13 robots within range of a single wireless AP in a realistic
802.11ac WiFi environment. The purpose of this work is to
help designers of robot systems understand if computation
offloading is viable in realistic network environments and to
be aware of the difference between predications based on
simulation or controlled laboratory settings relative less
controlled real-world settings.

Our results show that WiFi network capacity is far less
than might be expected (based on advertised AP data rates)
and that issues of increased packet loss (and frame loss) and
packet latency occur quickly as the attempted aggregate bit
rate of offloading data increases. While the problem of frame
rate degradation due to frame loss might be mitigated with
FEC, this would further increase the attempted aggregate data
rate from multiple robots and worsen congestion related
issues.

In general, our results show that static computation
offloading is a viable strategy only in limited circumstances.
It is not viable with high profile robots, while its viability for
low and medium profile robots is limited by the robot
application’s tolerance for dropped frames and latency.
Although dynamic computation offloading appears to offer an
alternative to static offloading, it is not directly comparable.

In particular, if QoS is not to degrade when dynamic
computation offloading cannot take place, then the robot must
be able to perform the computations that it would have
offloaded onboard and with the same completion deadlines.
We conclude that WiFi capacity has significant implications

for the deployment of robots that depend on computation
offloading to achieve their required quality of service levels
and that further studies with computation offloading schemes
in real-world networks are warranted to understand what
service levels can be reliably achieved.

References

[1] A. Rahman, J. Jin, A. Cricenti, A. Rahman, and D. Yuan, “A cloud

robotics framework of optimal task offloading for smart city

applications,” in 2016 IEEE Global Communications Conference
(GLOBECOM), IEEE, 2016, pp. 1–7.

[2] J. Kuffner, “Cloud-enabled humanoid robots,” in Humanoid

Robots (Humanoids), 2010 10th IEEE-RAS International
Conference on, Nashville TN, United States, Dec., 2010.

[3] A. Rahman, J. Jin, A. L. Cricenti, A. Rahman, and A. Kulkarni,

“Communication-aware cloud robotic task offloading with on-
demand mobility for smart factory maintenance,” IEEE Trans

Industr Inform, vol. 15, no. 5, pp. 2500–2511, 2018.

[4] Z. Hong, H. Huang, S. Guo, W. Chen, and Z. Zheng, “QoS-aware

cooperative computation offloading for robot swarms in cloud

robotics,” IEEE Trans Veh Technol, vol. 68, no. 4, pp. 4027–4041,

2019.
[5] R. Chaari, O. Cheikhrouhou, A. Koubâa, H. Youssef, and H.

Hmam, “Towards a distributed computation offloading

architecture for cloud robotics,” in 2019 15th International
Wireless Communications & Mobile Computing Conference

(IWCMC), IEEE, 2019, pp. 434–441.

[6] K. Obayashi and S. Masuyama, “Pilot and feasibility study on
elderly support services using communicative robots and

monitoring sensors integrated with cloud robotics,” Clin Ther, vol.
42, no. 2, pp. 364–371, 2020.

[7] J. Pages, L. Marchionni, and F. Ferro, “Tiago: the modular robot

that adapts to different research needs,” in International workshop
on robot modularity, IROS, 2016.

[8] S. Cooper, A. Di Fava, C. Vivas, L. Marchionni, and F. Ferro,

“ARI: The social assistive robot and companion,” in 2020 29th
IEEE International Conference on Robot and Human Interactive

Communication (RO-MAN), IEEE, 2020, pp. 745–751.

[9] P. Caleb-Solly, S. Dogramadzi, C. A. G. J. Huijnen, and H. van
den Heuvel, “Exploiting ability for human adaptation to facilitate

improved human-robot interaction and acceptance,” The

Information Society, vol. 34, no. 3, pp. 153–165, 2018.
[10] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of

research on cloud robotics and automation,” IEEE Transactions on

automation science and engineering, vol. 12, no. 2, pp. 398–409,
2015.

[11] K. Akherfi, M. Gerndt, and H. Harroud, “Mobile cloud computing

for computation offloading: Issues and challenges,” Applied
computing and informatics, vol. 14, no. 1, pp. 1–16, 2018.

[12] P. Pandey, D. Pompili, and J. Yi, “Dynamic collaboration between

networked robots and clouds in resource-constrained
environments,” IEEE Transactions on Automation Science and

Engineering, vol. 12, no. 2, pp. 471–480, 2015.

[13] X. Ma, Y. Zhao, L. Zhang, H. Wang, and L. Peng, “When mobile
terminals meet the cloud: computation offloading as the bridge,”

IEEE Netw, vol. 27, no. 5, pp. 28–33, 2013.

[14] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud

for mobile code offloading,” in 2012 Proceedings IEEE Infocom,

IEEE, 2012, pp. 945–953.
[15] T. Zhao, S. Zhou, X. Guo, Y. Zhao, and Z. Niu, “A cooperative

scheduling scheme of local cloud and internet cloud for delay-

aware mobile cloud computing,” in 2015 IEEE Globecom
Workshops (GC Wkshps), IEEE, 2015, pp. 1–6.

[16] L. Tang and X. Chen, “An efficient social-aware computation

offloading algorithm in cloudlet system,” in 2016 IEEE Global
Communications Conference (GLOBECOM), IEEE, 2016, pp. 1–

6.

[17] C. You and K. Huang, “Mobile cooperative computing: Energy-
efficient peer-to-peer computation offloading,” arXiv preprint

arXiv, vol. 1704, 2017.

[18] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Computation
offloading for mobile cloud computing based on wide cross-layer

optimization,” in 2013 Future Network & Mobile Summit, IEEE,

2013, pp. 1–10.
[19] A. Rahman, J. Jin, A. Cricenti, A. Rahman, and M. Panda, “Motion

and connectivity aware offloading in cloud robotics via genetic

algorithm,” in GLOBECOM 2017-2017 IEEE Global
Communications Conference, IEEE, 2017, pp. 1–6.

[20] W. Chen, Y. Yaguchi, K. Naruse, Y. Watanobe, and K. Nakamura,

“QoS-aware robotic streaming workflow allocation in cloud
robotics systems,” IEEE Trans Serv Comput, vol. 14, no. 2, pp.

544–558, 2018.

[21] Y. Zhai, B. Ding, P. Zhang, and J. Luo, “Cloudroid swarm: A qos-
aware framework for multirobot cooperation offloading,” Wirel

Commun Mob Comput, vol. 2021, 2021.

[22] K. Xie et al., “Distributed multi-dimensional pricing for efficient
application offloading in mobile cloud computing,” IEEE Trans

Serv Comput, vol. 12, no. 6, pp. 925–940, 2016.

[23] S. Chinchali et al., “Network offloading policies for cloud
robotics: a learning-based approach,” Auton Robots, vol. 45, no. 7,

pp. 997–1012, 2021.

[24] M. Penmetcha and B.-C. Min, “A deep reinforcement learning-
based dynamic computational offloading method for cloud

robotics,” IEEE Access, vol. 9, pp. 60265–60279, 2021.
[25] Pal Robots, “ARI: The new generation of AI powered robots.”

http://pal-robotics.com/wp-content/uploads/2020/01/ARI-the-

new-generation-of-AI-powered-robots-1.pdf
[26] R. C. Mello, W. M. Scheidegger, M. C. Múnera, C. A. Cifuentes,

M. R. N. Ribeiro, and A. Frizera-Neto, “The PoundCloud

framework for ROS-based cloud robotics: Case studies on
autonomous navigation and human–robot interaction,” Rob Auton

Syst, vol. 150, p. 103981, 2022.

[27] NS-3 Consortium, “ns-3 documentation.” https:www.nsnam.org
[28] “Raspberry Pi 4 .”

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

(accessed Aug. 11, 2022).

[29] D. L. Mills, “Network time protocol (NTP),” 1985.

[30] “Parallel-SSH.” https://parallel-ssh.org/ (accessed Oct. 24, 2022).

