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Abstract—Perception in robotics using modern deep 

learning approaches is often computationally expensive. Cloud 

robotics and edge robotics provide possible solutions to this. In 

particular, computation offloading permits compute-

constrained robots to offload compute tasks from the robot itself 

to more capable servers (the remote brain). However, the 

scalability of computation offloading for robots sharing a WiFi 

network has typically not been considered. In this work, we 

investigated the scalability of offloading to the cloud and edge 

for deployments of multiple robots in real-world settings and 

network conditions. We interpret typical network performance 

metrics such as latency, throughput, and packet loss in terms of 

their effect on robot computations to help to understand this 

question. To characterize the problem further, we introduce 

three different static offloading profiles based on the sensing 

capabilities of currently available robot platforms and examined 

these in a number of experiments on both simulated and 

physical wireless networks. Our results show that WiFi network 

capacity is much less than advertised when subjected to 

offloading data traffic and indicates limitations on the number 

of robots that can concurrently use computation offloading in a 

given space and the amount of data that they can transfer. This 

has significant implications for the dense deployment of robots 

that depend on computation offloading to meet their required 

service level. 

Keywords—Robotics, Cloud robotics, Computational 

offloading, Wireless network performance. 

I. INTRODUCTION 

Today, autonomous robots can use external computational 
resources to enhance their performance and capabilities. 
Robots mostly utilize cloud resources to perform 
computationally expensive tasks. Autonomous mobile robots 
must balance computing capability with power consumption 
(which affects battery autonomy time) and cost. For this 
reason, there is often less onboard storage space and less 
capable computational resources on a robot than on a desktop 
or laptop computing system. Many commercially available 
robots do not have an onboard graphics processing unit 
(GPU), or the GPU has limited resources. To overcome the 
restrictions that this more constrained computing environment 

creates, a robot may offload some of its computational tasks 
to a remote system (the remote brain) at the edge or in the 
cloud, where resources can be considered essentially limitless 
[1].  This cloud enabled robotics approach [2] is attractive for 
a number of reasons, among them that it can enable lower cost 
and less computationally powerful robots to perform complex 
tasks such as care assistance and socially aware guiding or 
delivery. 

Depending on the application, computation offloading 
may require substantial amounts of data to be transferred to 
the remote system. The largest data is usually vision data used 
for navigation, perception, manipulation control, and 
recognition among other tasks.  Unlike video for human 
consumption, robot vision data is usually not suitable for high 
compression due to latency constraints, tolerance of frame 
loss, and potential sensitivity to artefacts that humans 
overlook. 

In static offloading, the decision regarding what 
computations to offload is taken at design time, whereas in 
dynamic offloading, the decision is taken at run time 
depending on factors such as power consumption, network 
usage and status, among others [3]–[5]. Since the dynamic 
decision could be that offloading should not be done at a given 
time, dynamic offloading makes sense only if the computation 
to be offloaded is optional or if the robot can execute the 
computation itself (but prefers not to). If the computations are 
required for the robot’s purpose and it cannot execute them 
itself, then static offloading is required. Since larger 
deployments of robots in settings such as healthcare will likely 
include lower cost and less computationally capable robots 
among others, static offloading is the strategy that we analyse 
in this work. 

Many environments today that could benefit from 
autonomous mobile robots, including healthcare 
environments, typically have very few such robots. This is a 
consequence of both the cost and challenging nature of 
robotics in dynamic settings among other factors. 
Computation offloading provides the ability to both reduce 
cost and increase the robot’s capabilities through sophisticated 
(remote) processing and this allows robots to be deployed 
more widely and applied to a greater range of tasks. In This publication has emanated from research conducted with the 
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healthcare and care home settings for example robots can help 
by participating in social interactions, delivering medicine, 
recording patient parameters, responding to nurse calls, and 
cleaning among other tasks, reducing the workload of the 
nurses and staff [6]. 

As autonomous mobile robots become more ubiquitous 
then, it is appropriate to investigate how well the currently 
installed communications infrastructure might support 
increasing numbers of robots and specifically those using 
computation offloading. Safe and reliable operation is an 
important consideration for all robot deployments, and when 
using computation offloading, the ability of the network to 
guarantee the required communication quality of service is an 
essential element of that. Moreover, when robots are both 
mobile and autonomous, it is entirely possible for multiple 
robots to enter a single space (for example a hospital ward or 
a care home common area) either because their task requires 
them to visit that space or they are simply passing through 
enroute to another destination. This means that the peak 
density of robots in a given area may be larger than the 
average. 

To our knowledge the scalability of dense deployments of 
robots offloading to remote servers has not been subjected to 
study. Since the traffic pattern of offloading robots (dominated 
by upload) is different to typical traffic patterns considered in 
network design and since WiFi networks can degrade 
substantially when congested, we investigate (a) how many 
offloading robots a given wireless access point (AP) can 
sustain and (b) if static offloading is a viable strategy for 
distributed computation going forward. Furthermore, this 
study focuses on the ability of existing installed networks to 
handle the offloading traffic, since redesigning and 
reinstalling the local network just to handle additionl robots is 
often not justifiable or viable in the settings we consider. 

As a target environment, we consider care settings such as 
hospitals and care homes. In these settings mobile 
autonomous service robots and human interactive robots are 
expected to play a greater role and current examples of such 
robots include the PAL Robotics TIAGo [7], Ari [8], and 
Kompai robotics Kompai [9]. Such robots rely heavily on 
processing data from both vision and audio sensors for tasks 
including person detection and recognition, socially aware 
guiding and navigation, and effortless, responsive, human 
interactions including taking routine measurements (such as 
temperature). All these tasks could potentially benefit from 
computation offloading. 

To examine this question in detail, this paper makes three 
main contributions. We propose three different static 
offloading profiles grounded in the capabilities of available 
robots and consideration of typical tasks they might undertake. 
We design and execute experiments to evaluate how these 
offloading profiles are handled for configurations of 1 to 13 
robots, in simulation and in two different physical networks. 
Finally, we interpret the results and their implications for 
larger deployments of robots using static offloading. 

The remainder of this paper is organized as follows. 
Section Ⅱ, briefly surveys related work on cloud robotics and 
offloading. We detail our offloading traffic profiles and the 

metrics we use in Section Ⅲ. Section Ⅳ describes the 
experiments in detail, Section Ⅴ the results and their 
interpretation for robot offloading, and thereafter, our 
conclusions. 

II. RELATED WORK 

Distributed computation offloading is a key element of 
cloud enabled robotics. Cloud enabled robotics differs from 
many other cloud-based applications due to the large amount 
of data associated with robot sensing and perception and the 
real-time nature of the system (usually requiring all data 
communication and processing to be completed in a few tens 
of milliseconds).  A general review of cloud robotics can be 
found in [10] including information about applications and 
challenges. There are two main techniques for offloading 
computation from the robot to the cloud, static and dynamic 
offloading. Static offloading refers to the pre-determination of 
which tasks will be executed on the robot and which tasks will 
be executed on the cloud before the robot starts performing the 
tasks. In contrast, dynamic offloading involves making the 
offloading decision at runtime based on the current robot and 
cloud resource utilization. 

 The use of static offloading in robotics systems enables 
better task planning and scheduling by making offloading 
decisions in advance. This approach can lead to more 
predictable task execution, thereby achieving low latency. 
Consequently, static offloading is frequently employed to 
achieve optimal performance in robotics systems. Authors in 
[5] considered a distributed computation offloading 
architecture for cloud robotics to improve the computational 
capacity and flexibility of robotic system. Overall, the 
performance of cloud robotics is improved with this 
technique: using offloading the robot can execute up to 30 
frames per second while without offloading robot can only 
process up to 19 frames per second for an object tracking 
algorithm. To ensure smooth and efficient offloading, the 
architecture requires low latency communication between the 
edge, fog, and cloud layers which depends on the ability of the 
network to maintain this low latency. 

 Another study presents a promising approach for 
cooperative computation offloading for robot swarms in cloud 
robotics [4]. The method has potential applications in search 
and rescue, environmental monitoring, and industrial 
automation. The proposed QoS-aware framework can aid in 
the efficient and dependable offloading of computations in 
such systems. The main requirement of the proposed method 
is low-latency and dependable communication between robots 
and the cloud, which can be challenging in dynamic and 
unpredictable network conditions, particularly for mobile 
robots that move around the environment. The use of cloud 
computing to empower robots comes with a fundamental 
tradeoff between safety and performance. Many robotics 
applications require real-time computation, and any lag can 
result in failures with potential safety consequences.  

Computation offloading has been extensively investigated 
in the context of Internet of Things (IoT) devices and mobile 
devices (e.g. [11], [12]). As the IoT domain tends to work with 
smaller data sizes, research related to smartphones and mobile 



devices is more relevant here, particularly when applications 
related to face detection or other vision tasks are considered. 

From an architectural perspective, computations can be 
offloaded to the cloud [13], [14], to a mix of local and internet 
cloud resource [15], to a cloudlet at the network edge (e.g. 
using a socially aware offloading algorithm [16]), or to peer 
devices [17]. There is also the question of whether to offload 
complete computation tasks or to subdivide the task so that 
parts may be offloaded [13]. 

Most research has focused on dynamic offloading 
methods, where the decision about which computations to 
offload is made at run time. Factors to consider when making 
such decisions include energy consumption (e.g. [13], [14], 
[18]), dynamic connectivity properties (e.g. [17], [18]), and 
maintaining or improving the quality of service (QoS) of the 
application offloading computation [18]–[20]. Typically, 
dynamic offloading has been formulated as an optimization 
problem [17], [19] but it can also be approached using 
evolutionary algorithms (e.g. [19]), or economic and game 
theoretic approaches [16], [22]. The latter are particularly 
relevant when robots or mobile devices must compete for 
limited offloading resources (whether the limit is due to 
computation resources or network connectivity limitations). 
Recently deep reinforcement learning approaches have been 
applied to learn the offloading decision-making process [23], 
[24]. 

Dynamic computation offloading relies on the key 
assumption that there are some criteria under which offloading 
should not be done. If not offloaded, the relevant computations 
must be optional, or they must be handled by the robot itself 
and the tasks requiring them may need to tolerate long delays 
due to slower computation. Dynamic offloading also adds 
complexity to the software architecture since computational 
capabilities must be replicated on the robot and in the cloud. 

The static offloading strategy is presented much less 
frequently (e.g. [5]), but it has the benefit of simpler designs 
than dynamic offloading. Moreover, it is suitable for lower 
cost robots which do not have the computational capability to 
perform state of the art perception tasks. It does place higher 
demands on the network, but in exchange it provides a 
consistent and predictable QoS (important in care settings), 
unlike systems using dynamic offloading which must either be 
able to perform local computations as fast as offloaded 
computations, or must suffer degraded QoS when 
computations are performed locally. By definition, the QoS of 
robots using dynamic offloading must be lower than those 
using static offloading given the same onboard computing 
capability since sometimes they will decide not to offload. On 
the other hand, while offloading is taking place, the two 
strategies have identical network requirements and for all 
these reasons we examine the ability of WiFi networks to 
handle the static offloading strategy in this paper. 

III. EVALUATION PROFILES AND METRICS 

A. Real-time Robot Characteristics 

Robots generally operate within the framework of a high-
level sense-think-act loop. This loop has periodic deadlines by 
which it must process sensor input, make decisions, and 

actuate its motors for the robot to behave safely, responsively, 
and correctly. It is well known that delays in control systems 
lead to degraded performance which may include slower 
response times, lack of stability, or oscillations in the response 
and this can affect the perception and trust in such robot 
systems. A frame rate of between 15 and 30 frames per second 
(fps) is the generally accepted requirement for safe and 
responsive performance for locomotion at humanlike speeds 
(e.g. [25]), for certain manipulation tasks, tasks requiring fast 
reaction times, or human robot interaction that depends on 
detecting brief eye movements or micro-expressions. 

Latency must also be considered. In a robot system, there 
is usually a delay of up to one frame time in both sensing and 
actuation. Therefore it is important to minimize any additional 
latency introduced by offloading. For this work, we consider 
that the additional offloading latency should be less than 66.6 
ms, that is a 1-frame delay at 15 fps. 

In general, the TCP protocol is not suitable for real-time 
data transmission over wireless channels, since any lost 
packets must be retransmitted, and this can introduce 
substantial latency. For this reason, some form of UDP is 
typically used as the underlying transport between robots and 
the cloud [26]. As UDP is inherently unreliable, packet loss 
may render entire frames unusable. Application layer forward 
error or erasure correction (FEC) may mitigate this in some 
situations, but it introduces complexity and does not appear to 
have been used in the cloud robotics literature.  For this 
reason, our experiments do not use FEC. 

B. Offloading traffic profiles 

This study assumes static offloading of the most 
computationally intensive tasks which are almost always 
associated with vision (and to a lesser extent audio) data. 
Other typical sensors in an autonomous robot, such as a 2D 
laser scanner, sonar, inertial management unit, and wheel 
rotation and joint sensors, do not produce significant amounts 
of data in comparison [26]. Therefore, we focus on the data 
produced by vision-based sensors (RGB and RGB-D cameras) 
and audio sensing (microphones). As an offloading robot 
generates highly asymmetric data flows, where the upload 
data (from robot to remote server) is about 150 times the 
download data [26], we ignore the download data in this work. 

To reduce the vision data size, we assume that each camera 
frame is compressed using JPEG compression with an average 
compression ratio of 20:1. With JPEG, each frame is 
compressed independently, and it has relatively low 
computation requirements making it suitable for 
implementation on a compute constrained robot. For 
convenience, we assume identical compression for depth 
images. Under these conditions, vision data is generated with 
an approximately constant bit rate, Rvision, that can be 
calculated as 

 𝑅𝑣𝑖𝑠𝑖𝑜𝑛 = 𝑤 × ℎ × 𝑛𝑏𝑝𝑝 × 𝑟𝑓𝑟𝑎𝑚𝑒 × 𝑐 () 

where w and h are the image width and height in pixels, nbpp 
is the number of bits per pixel, rframe, is the frame rate (in 
frames per second), and c is the compression factor (the 
inverse of the compression ratio).  



We assume that audio data is primarily focused on human 
interactive tasks and sampled at 16000 samples/second. As 
audio compression introduces additional latency, we do not 
use compressed audio data and we do not use voice/silence 
detection. Hence, the constant audio data bit rate is 

 𝑅𝑎𝑢𝑑𝑖𝑜 = 𝑓𝑠 × 𝑛𝑏𝑝𝑠 × 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 () 

where fs is the audio sampling frequency, nbps is the number of 
bits per sample (assumed to be 16), and nchannels is the number 
of audio channels. 

 For the purpose of evaluation, we proposed three different 
robot profiles, small, medium, and large, differentiated by the 
amount of vision and audio data to be communicated and 
based on the sensing capabilities of existing robots. The high 
profile is based on the vision and audio capabilities of a higher 
end robot such as the PAL Ari which includes multiple 
cameras and a microphone array for better audio detection and 
localisation in noisy environments. The medium and low 
profiles are representative of robots with more constrained 
hardware.TABLE I. details the specifications of all three 
profiles. The bit rates for vision and audio data are calculated 
according to (1) and (2). 

TABLE I.  OFFLOADING PROFILE SPECIFICATIONS 

 
Small 

Profile 

Medium 

Profile 
High Profile 

Visiona 

RGB 
camera:  

320×240  

@ 15 fps 

RGB-D 
camera:  

640×480  

@ 15 fps 

RGB camera:  

1280×720 @ 30 
fps 

 

RGB-D camera:  

640×480 @ 30 fps 

Audiob 1 channel 2 channel 4 channel 

Vision bit 

rate (Mbps) 
1.382 7.373 47.923 

Audio bit 

rate (Mbps) 
0.256 0.512 1.024 

Total bit rate 

(Mbps) 
1.638 7.885 48.947 

a. Fps is frames/second, RGB is 24 bits/pixel, RGB-D is 24+8 bits/pixel  

b. Each audio channel is 16000 samples/second 

 

 Throughput measures rate at which the data required for 
computation can be offloaded from the robot to the server. If 
the average throughput per robot is less than the total bit rate 

C. Metrics  

In this study we measure three metrics, for the upload flow 
only: throughput, packet loss, and latency. All metrics are 
measured at the remote server and therefore incorporate the 
contributions of the robot, the server, and the network between 
them. Throughput measures rate at which the data required for 
computation can be offloaded from the robot to the server. If 
the average throughput per robot is less than the total bit rate 
listed TABLE I. , then the robot will not be able to maintain 
the frame rate specified. 

Packet loss presents an insidious problem for offloading 
data that includes vision data in particular because data will 
span multiple packets (e.g. 45 packets for a single frame of 
medium profile data given 1472 bytes of data per packet). In 
the absence of FEC, the loss of just one packet may render a 
camera image unusable. Therefore, packet loss rates as low as 
10%, 2.2%, or 0.7% could corrupt all frames in the low, 
medium, and high profile data streams if packet loss were to 
occur at regular intervals. Packet loss is often somewhat 
bursty, however, so this represents worst case behaviour. 

Communication latency is an important component of 
overall latency when offloading computation. Excessive 
latency will cause any real-time tasks that depend on 
offloading to degrade or fail. It should be as small as possible 
and not larger than 66.66 ms (as explained in subsection A 
above). In our experiments, which do not use external 
networks, we expect the network latency to be dominated by 
latency associated with the WiFi network to which the robots 
connect. 

IV. EXPERIMENTS 

To evaluate the scalability of computation offloading for 
dense robot deployments, we executed two experiments: one 
in a simulated environment and one in a physical environment. 
In both experiments all three offloading profiles from. 
TABLE I. were tested, and the number of offloading robots 
was varied from 1 to 13 to monitor the effects of increased 
WiFi traffic. Each offloading profile was evaluated as a 
separate condition and in each such condition, all robots used 
the same offloading profile. Each experimental condition was 
tested for 30 seconds and raw data were logged throughout for 
later analysis. 

In both the simulation and physical environments all 
robots communicated with a single wireless AP using 
802.11ac (the WiFi version used by our enterprise WiFi 
network and our robot stations). We used a maximum 
transmission unit size of 1500 bytes resulting in a payload data 
size of 1472 bytes for both experiments. 

A. Simulation environment 

The simulation experiment was conducted using ns-3 [27]. 
Multiple robot stations were connected to an 802.11ac WiFi 
network (using Minstrel-HT for rate control) via a single 
wireless AP. The AP was bridged to a CSMA network 
(approximating an ethernet LAN) and the remote server was 
also connected to this. All robot stations generated data at the 
constant bit rate according to the offloading profile. Data was 
communicated using UDP to the server which consumed data 
as fast as it arrived. 

Fig. 1 shows the placement of robot stations in the physical 
environment (section B). The placement in the simulation 
environment was similar except that there were no simulated 
walls or rooms and station positions were quantised to the 
nearest meter. The simulation experiment was conducted 
before the physical experiment and was expected to represent 
ideal conditions as there was no competing traffic in the WiFi 
network and no interference from adjacent WiFi channels and 
no in-band interference. 



 
Fig 1. The physical environment used for experiments. Colour coding 
indicates distance from the wireless AP. RPi_1 and RPi_13 are raspberry pi 

4 devices while the rest of the devices are raspberry pi 3B+. Dotted lines 

represent the glass walls and doors. 

B. Physical environment 

The physical environment corresponds to a working 
research area in a university incorporating open plan research 
desks, laboratory space, social space, and a corridor. This area 
features concrete walls, glass walls, glass doors and wooden 
doors, all of which might be found in care settings that are the 
target environment we consider. The environment was set up 
as shown in Fig. 1. The maximum distance from the wireless 
AP to any station is approximately 8 meters and the minimum 
distance is approximately 1 meter.  Offloading robots were 
emulated using Raspberry Pi 3B+ and Raspberry Pi 4 devices 
[28] since both of these natively support 802.11ac and can 
produce and send data at data rates corresponding to each of 
the offloading profiles. All Raspberry Pi devices were 
configured to use 5 GHz WiFi communications and used their 
on-board antennae. 

We also evaluated two different WiFi networks (private 
and enterprise) and two different times of day (afternoon and 
evening). The private WiFi network used a standalone Asus 
RT-AC66U Gigabit Router supporting up to 1300 Mbps and 
only carried traffic from the robot stations. The enterprise 
WiFi network was configured to provide a private Service Set 
Identifier (SSID) dedicated to the robot stations and was 
accessed via an Aruba AP-315 supporting up to 1733 Mbps 
and 4 spatial streams. Unlike the private network, the 
enterprise network also carried normal university traffic and 
for this reason all conditions of the enterprise network 
measurements were repeated on three different days. 

The afternoon condition in the enterprise network 
arguably reflects the most relevant real-world scenario. 
Although the robots used a dedicated SSID, robots and other 
network users shared the same physical network infrastructure 
such as access points. During the afternoon sessions, multiple 
users accessed the network causing varying load and traffic 
conditions. To counter this, we conducted three readings for 
each experiment and reported the average measures as already 
described.  

The server device was a Dell G5 15 5590 laptop (i7-9750, 
16 GB memory, Gigabit ethernet). For the enterprise network 

condition, this was connected to the university’s ethernet 
network while for the private network condition it was 
connected directly to the ethernet port of the private wireless 
AP. Prior to the start of each experimental run, the robot 
station and offloading server clocks were synchronized using 
the network time protocol (NTP) [29] with the offloading 
server acting as the NTP server. 

Offloading itself was implemented by python code 
running on robot stations (Raspberry Pi devices) and the 
server device (Dell G5). The offloading client produced data 
in discrete offloading frames. Each offloading frame 
comprised data equivalent to one frame of vision data (from 
each of the cameras considered in the profile) and the 
corresponding time window of audio data. Offloading frames 
were produced 15 or 30 times per second according to the 
offloading profile and data for a frame was then sent as 
quickly as possible, fragmented as needed across multiple 
UDP packets. Each packet contained a sequence number and 
NTP synchronised timestamp, and these were used by the 
offloading server to detect lost packets and estimate 
communications latency. Parallel-SSH [30] was used to start 
the robot offloading client scripts on each robot station 
(Raspberry Pi) in parallel so that devices would send 
offloading traffic concurrently.  

The purpose of synchronizing with NTP and sending data 
at the vision data frame rate is to closely model the 
implementation of real-time processing in robots. In a real 
robot implementation the challenge would be to offload 
frames as soon as possible after the sensing data was available 
and to receive the offloading server response as soon as 
possible thereafter, particularly where the response feeds into 
closed loop control algorithms for navigation, motion, and 
actuation. A further complication would be the asynchronous 
nature of responses with a high likelihood that two or more 
offloading frames may have been sent from a robot before the 
first response is received. In this study we avoided this 
complication by focusing on the offloading frames only and 
not dealing with responses (which have a minimal data size in 
comparison). 

V. RESULTS 

The received signal strength at the robot stations varied 
between -65 dBm and -30 dBm in the simulation environment 
and between -61 dBm to -40 dBm in the physical 
environment. Fig. 2 shows the average throughput per robot 
station in both the simulation and physical environment 
experiments.  

 For the small profile, the throughput is never less than 94% 
of the nominal throughput suggesting that robots could largely 
operate at the required frame rate. The medium profile, 
throughput was more variable but remained above 81% of 
nominal with 9 robots or fewer. High profile, throughput 
dropped to 66% of nominal once 3 robots were offloading and 
continued to drop as the number of robots increased. In this 
case, frame rates would likely not be acceptable for robot 
applications requiring fast response or continuous control. 
Although we expected that the physical networks would 
consistently perform better in the evening (when there was 
less traffic from people at work than during the afternoon),  

   

 
 

                         

                     

        

                     

     

     

     

     

      

     

     

                
     

      

      



 
Fig 2. Average throughput per robot station on an 802.11ac WiFi network in 

different conditions. The desired line shows the expected throughput if no 

packets are lost. 

there are no consistently better outcomes between times of the 
day or between the private and enterprise WiFi networks. It is 
worth commenting that the peak aggregate throughput 
achieved for multiple robots was much less than the advertised 
maximum: 125 Mbps (9.6% of maximum) on the private 
network and 158 Mbps (9.1% of maximum) on the enterprise 
network. Though perhaps surprising, this is likely a side effect 
of having robot stations at different distances from the AP 
(rather than at the ideal distance) and it is exacerbated by 
congestion effects as the aggregate offloading traffic 
increases. 

In addition to throughput, packet loss must be considered. 
Moreover, in the absence of FEC, loss of a packet causes loss 
of a frame. To gain further insight, Fig. 3 shows packet loss 
suffered by robots that were at close, far, and intermediate 
distances from the AP (focusing on the enterprise network 
afternoon condition only as the most relevant case). Although 
there are differences none of the distances is consistently 
associated with the lowest or highest packet loss. 
Nevertheless, with 5 robots or fewer, far robots experience the 
highest packet loss. 

 For robot applications it is more useful to look at frames 
lost (as a result of packet loss), as shown in Fig. 4. Frame loss 
increases as the attempted aggregate offloading data rate 
increases, though not linearly. It is also clear that the worst 
frame loss experienced by an individual robot can be 
significantly worse than the average frame loss experienced 
by the robots. In all profiles, some individual robots 
experienced 100% frame loss in at least some experimental 
trials. The data show that very significant frame loss of more  

 
Fig 3. Average packet loss (percentage) per station for multiple robot stations 

sending via a single 802.11ac access point under the experimental 

conditions. 

than 9 out of 15 fps can occur with average packet loss as low 
as 2.5%. 

 The final metric we considered was latency. In simulation, 
the latency is less than 4 ms for the low profile, but exceeds 
our threshold of 66.6 ms with 7 robots in the medium profile 
and 5 robots in the high profile. In physical tests with real 
network equipment the results were different. With the private 
network, the average latency per robot was quite usable at less 
than 12 ms for all configurations of the low profile, up to 11 
robots on the medium profile, and just one robot in the high 
profile. All other configurations, however, had average 
latencies ranging from 158 to 245 ms which are likely too long 
to be usable.  

 The enterprise network exhibited more variable latencies. 
In the low profile average latencies were 16 ms up to 11 robot 
stations, but standard deviations of 80 to 277 ms for 7 robots 
or more, indicated that some robots were already suffering 
unusable latencies at this point. Results for the medium profile 
were similar. Average latencies for the high profile were a 
little longer (up to 44ms) and standard deviations exceeded 

 
Fig 4. Frame loss rate per robot in relation to the attempted aggregate bit rate 

from multiple robots (A) and the packet loss percentage per robot (B). 



100 ms in configurations with 5 robots or more. In summary, 
these results show that WiFi latency can become a problem 
for at least some robots once there are between 5 and 11 robots 
using a single AP, depending on the amount of offloading data 
transmission being attempted. 

 Our experimental findings pertain to static clients 
connected to a single access point and was designed to be a 
representative snapshot in time of the positioning of multiple 
mobile robots. Using mobile robots would have introduced 
more variability into the results. Sometimes the results may 
potentially have been better, but in many situations they may 
have been worse, for example in scenarios where all robots are 
positioned far from the access point.  

 In scenarios involving two or more access points, 
performance improvement is possible by distributing clients 
across access points. These scenarios can potentially enhance 
the overall system performance in comparison to the single 
access point setup reported here. However, we contend that 
using mobile robots the single access point scenario is still the 
most important bottleneck to understand. Unless specific 
techniques are employed to limit the number of robots moving 
into the physical area covered by any given access point, there 
will always (and perhaps frequently) be situations where a 
number of robots all use a single access point and this is reason 
we chose to explore this scenario in our work. 

VI. CONCLUSION 

In this work we examined the scalability of computation 
offloading (using the static offloading strategy strategy and 
three different offloading traffic profiles) for deployments of 
1 to 13 robots within range of a single wireless AP in a realistic 
802.11ac WiFi environment. The purpose of this work is to 
help designers of robot systems understand if computation 
offloading is viable in realistic network environments and to 
be aware of the difference between predications based on 
simulation or controlled laboratory settings relative less 
controlled real-world settings. 

Our results show that WiFi network capacity is far less 
than might be expected (based on advertised AP data rates) 
and that issues of increased packet loss (and frame loss) and 
packet latency occur quickly as the attempted aggregate bit 
rate of offloading data increases. While the problem of frame 
rate degradation due to frame loss might be mitigated with 
FEC, this would further increase the attempted aggregate data 
rate from multiple robots and worsen congestion related 
issues. 

In general, our results show that static computation 
offloading is a viable strategy only in limited circumstances. 
It is not viable with high profile robots, while its viability for 
low and medium profile robots is limited by the robot 
application’s tolerance for dropped frames and latency. 
Although dynamic computation offloading appears to offer an 
alternative to static offloading, it is not directly comparable. 

In particular, if QoS is not to degrade when dynamic 
computation offloading cannot take place, then the robot must 
be able to perform the computations that it would have 
offloaded onboard and with the same completion deadlines. 
We conclude that WiFi capacity has significant implications 

for the deployment of robots that depend on computation 
offloading to achieve their required quality of service levels 
and that further studies with computation offloading schemes 
in real-world networks are warranted to understand what 
service levels can be reliably achieved. 
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