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Abstract. For each d ≥ 2 we construct a connected open set Ω ⊂ d such that

Ω =int(clos(Ω)) and for each k ≥ 1 and each p ∈ [1,+∞), the subset W k,∞(Ω) fails to

be dense in the Sobolev space W k,p(Ω), in the norm of W k,p(Ω).
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1. Introduction.

We use to denote the set of real numbers, for the natural numbers, and by a domain

we mean a connected open set.

For each open set Ω ⊂ d, and for each k ∈ and p ≥ 1, let W k,p(Ω) denote the

(Sobolev) space of all those distributions f ∈ C∞
cs

(Ω)′ such that f and all its distribu-

tional partial derivatives ∂if of order |i| ≤ k are representable by integration against

functions belonging to Lp(Ω, dx). When endowed with the norm

f 7→ ‖f‖W k,p(Ω) =
∑

0≤|i|≤k

‖∂if‖Lp(Ω),

the space W k,p(Ω) becomes a Banach space (cf. [1]). These spaces are useful in the

theory of partial differential equations, and have been much studied.

In general, C∞(Ω)∩W k,p(Ω) is dense in W k,p(Ω) when p < +∞ (and is weak–star

dense when p = +∞), but it may happen that C∞
cs

(Ω) is not dense in W k,p(Ω). It may

even happen that C∞
cs

(d)|Ω is not dense in W k,p(Ω), even when Ω is a bounded domain.

A simple example, as Adams first observed (cf. [6]), is the slit disk. It is less easy to see

what happens when Ω =clos(int(Ω)). Fraenkel posed the question in his 1979 ‘rooms

and passages’ paper [3], and Amick [2] provided an example in 2 dimensions that works

whenever kp > 2. In 1981, Kolsrud showed how to make an example for any p ≥ 1 and

k ≥ 1. In both cases, the examples given were such that even C(closΩ) ∩W k,p(Ω) fails

to be dense in W k,p(Ω).

There were also some positive results. For bounded domains with very nice bound-

ary it is true that all functions belonging to W k,p(Ω) have extensions in W k,p(d), and

hence may be approximated (in norm for p < +∞, and weak–star for p = +∞) by
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smooth functions; one uses mollifiers. In 1981, Jones [4] established the W k,p extension

theorem for the so–called (ε−δ) domains, which include some rather badly–bounded do-

mains such as general quasi–disks in 2, so this entails that C∞(d)|Ω is dense in W k,p(Ω)

for (ε− δ) domains. Subsequently, in 1987, Lewis [7] showed that C∞(d)|Ω is dense in

W 1,p(Ω) whenever Ω is a Jordan domain in 2, and he asked [6] whether this holds for

general W k,p.

Given that C(closΩ) ∩ W k,p(Ω) need not always be dense in W k,p(Ω), it became

interesting to ask whether W k,∞(Ω) is always dense in W k,p(Ω) when p < +∞. I

understand that this question was first raised by Vodopyanov. The examples of Amick

and Kolsrud do not settle this question, because in them W k,∞(Ω) is not contained

in C(closΩ)|Ω. In 1994, Tartar (private communication) constructed na example for

cases of (d, k, p) such that W k,p(d) ⊂ C(d), and Vodopyanov (private communication),

independently, found an example subject to the same restriction. It was suspected that

this restriction was essential, and that for p < d/k one would find that for each bounded

domain Ω, with Ω =int closΩ, the space W k,∞(Ω) would be dense in W k,p(Ω).

The purpose of this paper is to show that this suspicion is unfounded: for each d ≥ 2,

there exists a bounded domain Ω, with Ω =int closΩ, such that for each p ∈ [1,+∞) and

each k ≥ 1, the space W k,∞(Ω) fails to be dense in W k,p(Ω); in fact, we shall produce

an Ω and a function

f ∈
⋂
k≥1

1≤p<∞

W k,p(Ω)

such that no sequence gn ∈ W 1,∞(Ω) converges to f in W 1,1(Ω) norm.
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2. The Construction.

The ingredients of the construction are Fraenkel’s ‘rooms and passages’ idea [3] and an

idea like Kolsrud’s use of the well–known ‘string of beads’. In fact, it is more convenient

to use a ‘string of diamonds’ (or, when d ≥ 3, a ‘field of cones’), because it has a

Lipschitz upper and lower boundary, and this allows us to establish the properties of

the example very quickly by appealing to the substantial body of results now known

about domains with Lipschitz boundaries.

Let d(a, r) denote the closed ball in d having centre a and radius r, and let d(a, r)

denote the corresponding open ball. Regard T = d−1(0, 1) as the closed equatorial plane

of d(0, 1), i.e.

T = {(x1, . . . , xd) ∈ d(0, 1) : xd = 0}.

Choos pairwise–disjoint closed balls

Bn = d−1(an, rn) ⊂ d−1(0, 1),

such that
⋃∞

n=1 Bn is dense in T and

∞∑
n=1

rd−1
n < 1.

This guarantees that the set

E = T ∼
∞⋃

n=1

Bn

has positive (d − 1)–dimensional volume, Hd−1(E). We further assume that rn < 1/2

for each n.

On each (d− 1)–dimensional Bn, erect the diamond, or cone:

Dn = {(x, z) ∈ d−1 × : x ∈ Bn, |z| ≤ dist(x, Sn)},
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where Sn denotes the boundary of Bn, a sphere of dimension d− 2.

Let

H = T ∪
∞⋃

n=1

Dn.

Then H is a compact subset of Bd(0, 1), and E ⊂ H. We note further that

H ⊂ d(0, 1) ∪ d−2,

where d−2 = {(x, 0) ∈ d−1 × : |x| = 1}.

Let Ω0 = d(0, 1) ∼ H. Then Ω0 is a bounded open set in d, having two components:

Ω+ = {(x1, . . . , xd) ∈ Ω0 : xd > 0},

and

Ω− = {(x1, . . . , xd) ∈ Ω0 : xd < 0}.

We proceed to construct the connected open set Ω by drilling a central vertical

round hole through each diamond Dn. Let

Cn =
{

(x, y) ∈ d−1 × : |y| < 2rn, |x− an| < r1/rn
n

}
.

Then Cn is an open subset of d, and using the fact that rn < 1/2 it is easy to check

that Cn ⊂ d(0, 1) and Cn ∩ E = ∅. Let

Ω = Ω0 ∪
∞⋃

n=1

Cn.

Then Ω is a bounded domaini, and equals the interior of its closure.

Next, we construct the function f . We take f to be a C∞ function on Ω such that

f = 1 on Ω+, f = 0 on Ω−, and on each Cn, f(x1, . . . , xd) depends only on xd and

satisfies ∣∣∣∣∂kf

∂xk
d

∣∣∣∣ ≤ αkr−k
n ,
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where the constants αk > 0 depend on k, but not on n.

3. The Properties of the Example.

(3.1) Let k ∈ and 1 ≤ p < +∞. Then for each n,

∫
Cn

|∇kf |pdx ≤
∫

Cn

αp
kr−kp

n dx,

so ∫
Cn

|∇kf |pdx ≤
∞∑

n=1

αp
kr−kp

n · 2rn · r(d−1)/rn
n < +∞.

Thus f ∈ W k,p(Ω).

(3.2) Next, we observe that, given z, w ∈ Ω, there is a polygonal arc Γ ⊂ Ω, joining

z to w, of length at most 5|z−w| (— the 5 is not intended to be sharp). It follows that

W 1,∞(Ω) is contained in (and in fact coincides with) Lip(1,Ω), and hence each function

g ∈ W 1,∞(Ω) is uniformly continuous on Ω, and hence extends uniquely to an element

of C(clos(Ω)).

(3.3) The domain Ω+ is a Lipschitz domain. Its boundary consists of two sections:

a hemisphere, and the graph of a Lip1 finction defined on d−1(0, 1), having gradient

bounded in norm by 1. The junction is well–behaved.

(3.4) Let R denote the reflection

R :


d−1 × → d−1 × ,

(x, y) 7→ (x,−y).

Suppose that there exists a sequence {gn} ⊂ W 1,∞(Ω) such that ‖f − gn‖W 1,1(Ω) → 0.

Then ‖f − gn‖W 1,1(Ω+) → 0, and

‖f ◦R− gn ◦R‖W 1,1(Ω+) = ‖f − gn‖W 1,1(Ω−) → 0.

6



By the theory of traces of BV functions (cf. [9, (5.10.7), p.259]), there is a continuous

linear map

ρ : W 1,1(Ω+) → L1(E,Hd−1)

such that ρ(g) = g|E whenever g ∈ C(closΩ+) ∩ W 1,1(Ω+). This fact rests upon the

Lipschitzian character of the boundary of Ω+, and the fact that E ⊂bdyΩ+.

It follows that ρ(gn) = ρ(gn ◦ R), since gn extends continuously to clos(Ω). Also

ρ(f) = 1 and ρ(f ◦R) = 0. Thus

0 < Hd−1(E)

=
∫

E

ρ(f)− ρ(f ◦R)dHd−1

= ‖ρ(f)− ρ(f ◦R)‖L1(E)

= lim
n↑∞

‖ρ(gn)− ρ(gn ◦R)‖L1(E)

= 0.

This contradiction shows that f does not belong to the closure of W 1,∞(Ω) in W 1,1(Ω).

It follows that for each k ∈ and 1 ≤ p < +∞,

f ∈ W k,p(Ω) ∼ closW k,p(Ω)W
k,∞(Ω).

Remark. To obtain the result for 1 < p < +∞, one could employ the older Lipschitz

boundary result of Stein (cf. [8, p. 192, 4.2]). The BV result quoted above allows us

to give a clean treatment of the general case. One could also give a direct proof of the

desired property.
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Problem.

As Vodopyanov points out, it now becomes interesting to characterise those domains Ω

such that W k,∞(Ω) is dense in W k,p(Ω).
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