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1. Introduction.

We consider the one–dimensional discrete dynamical system xn+1 = f(xn), where

f(x) = Q− Ax

1 + x2
, ∀ x ∈ R.

This system arises in Laser Physics, as was pointed out by Bonifacio and Lugiato [B,
H]. It provides a model for the evolution of a Fabry–Perot cavity containing a saturable
absorber and driven by an external laser. Time is measured in steps of one cavity
lifetime, Q is the appropriately normalised (non–dimensionalised) input field, and A is
a parameter which depends on the specifics of the apparatus. In this application, A is
always positive. It is known as the “bistability parameter”(see below). The value of xn

is the normalised field in the cavity at time n.
This system is a highly–simplified model of the physical system. A more elabo-

rate standard model involves a 3–dimensional continuous dynamical system (formally
identical to the well–known Lorenz system), and has been the subject of much study
and simulation [B, C]. The simplified system is derived by taking an adiabatic limit in
the standard model, and discretising. Theoretical and experimental work [M, HA, CA]
shows that both the standard model and real systems admit very varied behaviour. The
system may converge to a fixed point, possess two stable fixed points, converge to a limit
cycle (pulse), or behave chaotically, depending on the parameters. There is considerable
potential application for devices exhibiting these phenomena, in modulators, switching
devices, optical memories, and so on.

It is interesting to ask to what extent the simple system mirrors the physical sys-
tem. Heffernan [H] simulated it for a substantial sample of parameter values (A,Q),
and observed the occurrence of one or more stable fixed points and stable periodic
cycles. Sampling (A,Q) along a number of lines in the (Q,A)–plane, he observed re-
peated period–doubling, but this did not appear to lead to chaos. Instead, the doublets
re–merged eventually. The system was also studied by Bier and Bountis [BB], with
particular reference to this re–merging phenomenon.

The purpose of the present investigation was to determine rigourously the param-
eter ranges for instability, bistability, and especially chaos in the system. The approach
used was analytical. Maple, Mathematica and purpose–written programs in C and
MODULA-2 were employed for symbolic manipulation, emulation, curve– and surface–
sketching, root–solving, and estimation. This approach enabled us to identify parameter
values for which an extensive range of pathological behaviour is exhibited, including var-
ious kinds of chaos. Emulation proved consistent with these findings.

For clarity, we define the terms stability, bistability, multistability, stable pulsing,
and chaos. This is necessary because these terms are used in various ways in the
literature.
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Let X be a topological space and f : X → X be continuous. We denote by fn the
n–th iterate of f , and by Per(f) the set of period points of f .

We say that f is T–chaotic on X if we have

(1) the set Per(f) is dense in X and
(2) for each nonempty open set U ⊂ X, there exists n > 0 such that fn(U) = X.

This concept is due to O. Tamaschke (private communication). Condition (2) is redun-
dant if X is a closed interval, as is easily seen.

We say that f is D-chaotic if we have

(1) Per(f) is dense in X and
(2) (topological transitivity) for each nonempty open set U ⊂ X,

⋃∞
n=1 fn(U) is dense

in X.

This concept is due to Devaney [D]. If f is D–chaotic, and X is a metric space, then f
has the property of sensitive dependence on initial conditions: there exists δ > 0 such
that for each nonempty open set U ⊂ X there exist points x, y ∈ U and n ∈ N such that
dist(fn(x), fn(y)) > δ (cf. [BA]). In the literature, one sometimes finds this property
alone, or even watered–down versions of it, taken as the definition of chaos.

Evidently, T–chaos is stronger than D–chaos, and stronger than all other chaos–
concepts in use. So if a system is shown to be T–chaotic, that should satisfy everyone.

We observe that if some iterate fn is T–chaotic, then so is f .
Now consider maps f : R → R. If f(K) ⊂ K, then we say that f is T–chaotic

(respectively, D–chaotic) on K if f |K is T–chaotic (respectively, D–chaotic).
If some iterate fn is D–chaotic in a set K, then it is readily seen that f itself is D–

chaotic on
⋃n−1

j=0 f j(K). Some authors would not regard f as chaotic unless it is chaotic
on some nontrivial interval X. Now f might well be chaotic on some Cantor–type set,
without being chaotic on any nontrivial interval. To distinguish these possibilities, we
say that f exhibits fractal chaos if f is chaotic on some nonempty totally–disconnected
perfect set X, and that f exhibits interval chaos if f is chaotic on some closed interval
of positive length.

Now we restrict further, to smooth maps f : R → R. For such maps, a fixed point
p is stable or attracting (resp., unstable or repelling) if |f ′(p)| < 1, (resp., |f ′(p)| > 1).
To a stable fixed point p, we associate its basin of attraction

{x ∈ R : fn(x) → p}

and its local stable set or immediate basin of attraction, which is the connected compo-
nent of p in the basin of attraction. To a repelling fixed point p, we associate its local
unstable set, which is the largest open interval about p in which f is one–to–one and
|f(x) − p| > |x − p|. In a similar way we talk about attracting or repelling cycles and
their local stable or unstable sets.

We say that f exhibits n–stability if it has n attracting fixed points. Stability is
1–stability, and bistability is 2–stability. Multistability is n–stability for some n. We
say that f exhibits n–stable pulsing if it has n attracting cycles. So 1–stable pulsing
(or just stable pulsing) occurs if there is a unique attracting periodic cycle, and bistable
pulsing occurs if there are two. It is important to distinguish, for instance, bistability
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(two attracting fixed points) from stable pulsing with a two–cycle (one attracting two–
cycle). The parameter A is called the bistability parameter because it was realised that
for some A–values (small ones) bistability cannot occur for any Q, whereas for others
it can.

In physical systems there is noise, and in numerical simulation there is round–
off error*. As a result, fractal chaos is not observable in the long–term behaviour
of experiment or simulation if the complement of the fractal is attracted to periodic
cycles. The effect on the transient behaviour may, however, be significant. Cavity
lifetimes range up to a few nanoseconds, so only transient behaviour that survives for
(at least) millions of time–steps will show up on an oscilloscope. But if it is proposed
to use the device as a component in an optical computer or for communications, then it
is essential that transients decay to insignificance in a few time–steps. In this case, the
occurrence of extensive unstable invariant sets must be avoided. Fractal chaos implies
the existence of repelling periodic points of arbitrarily–large order, and if the system is
unlucky enough to start on or very near to one of these, then it could take thousands
of steps to settle. A device incorporating such fractal chaos would be unreliable, slow
(clock speeds of the order of microseconds), or both.

Our main finding is the existence of a major threshold A = A0, somewhere between
3.5 and 3.9. We also find minor thresholds at A = 8 and A = 10.98, and a number
of others. The parameter A is the main control in the system. For fixed values of
A between −A0 and A0, the system exhibits stability or stable pulsing. Variation
of the parameter Q produces a more–or–less complicated sequence of period–doubling
bifurcations and re–mergings, as observed by Heffernan. For A outside this range there
is an open set of Q’s for which the system exhibits structurally–stable fractal chaos.
There are particular values of Q at which homoclinic bifurcations occur, and at these
the system appears to exhibit interval chaos. Bistability occurs in a relatively narrow
range of Q’s when A exceeds 8. Bistable pulsing with (for instance) a stable fixed point
and a stable 2–cycle can occur. We show that n–stable pulsing with n > 2 is impossible.
Fortunately, bistability is never accompanied by chaos, so to the extent that this model
reflects reality, there are reasonable prospects for the practicality of optical switching
devices based on this technology. However, if the “apparatus parameter” A is chosen
to allow bistability, and the applied field Q is brought from zero to a value which gives
bistability, then the resulting curve of systems includes chaotic systems.

* Round–off does not quite emulate noise. For instance, round–off errors will not
usually push a small positive number through zero.
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2. Preliminaries.
We assume A 6= 0. Let

g(x) =
−x

1 + x2
[Figure 1.]. Then

g(x) = −1
2

{
1

x + i
+

1
x− i

}
,

g(k)(x) =
(−1)k+1k!

2

{
1

(x + i)k+1
+

1
(x− i)k+1

}
=

(−1)k+1k!
(x2 + 1)k+1

{
xk+1 −

(
k + 1
k − 1

)
xk−1 + · · ·

}
.

Thus

g′(x) =
x2 − 1

(x2 + 1)2
,

g′′(x) =
−2(x3 − 3x)

(x2 + 1)3
,

g′′′(x) =
6(x4 − 6x2 + 1)

(x2 + 1)4
.
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Figure 1: Graph of g

Now f(x) = Q+Ag(x), so f has the same critical points, inflections, and Schwarzian
derivative

S(f) =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

as does g. The critical points are at x = ±1, and at these points f(x) = Q∓ 1
2A. The

nonzero inflections are at ±
√

3, and at these points

f(x) = Q∓ A
√

3
4

and f ′(x) = A/8.

The fixed points of f are given by

x3 −Qx2 + (A + 1)x−Q = 0.

There is at least one, and at most 3. There cannot be more than 2 attracting fixed
points, since there is a non–attracting fixed point between any two attracting fixed
points. Thus n-stability occurs only in the forms of stability and bistability.

The Schwarzian is
−6

(1− x2)2
.

Since it is negative, there is a severe restriction on the possible occurrence of at-
tracting periodic cycles. If p is an attracting periodic point of period n, then there is a
point q = f i(p) in the orbit of p such that the local stable set W (fn, q) of q for fn is an
unbounded interval, or contains one of the critical points ±1 [D]. Thus, there can be at
most 4 attracting cycles, a priori. We can actually say more.

Theorem (2.1). f has at most two attracting cycles.

Proof. We give the argument for the case A > 0. The case A < 0 is similar and A = 0
is trivial.

Suppose we have 3 distinct attracting periodic points pi with periods ni for 1 ≤ i ≤
3. Let Gj

i be the immediate basin of attraction of f j(pi) for fni (for 0 ≤ j ≤ ni − 1).
Let

Ei = ∪ni−1
j=0 Gj

i .

There are 3 cases to consider.

Case 1: 1 ∈ E1, −1 ∈ E2, and E3 is unbounded. Suppose E3 is unbounded to
the right. Then [s,∞) ⊆ E3 for some s in the image of f . Hence f(−1) ∈ E3 which
contradicts the fact that −1 ∈ E2. Suppose E3 is unbounded to the left, then a similar
argument shows that f(1) ∈ E3 which contradicts the fact that 1 ∈ E1.

Case 2: 1 ∈ E1, E2 is unbounded right, and E3 is unbounded left. As in Case 1
we get that f(1) ∈ E2 which is a contradiction.
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Case 3: −1 ∈ E1, E2 is unbounded right, and E3 is unbounded left. As in Case
1 we get that f(−1) ∈ E3 which is a contradiction.

We observe that this theorem may also be proved by appealing to what is known
about complex dynamics. The theory of rational dynamical systems acting on the
Riemann sphere (cf. [D, p. 281]) shows that each attracting cycle for f attracts a
critical point. Since ±1 are the only critical points of f , even on the sphere, it follows
that there are at most 2 attracting cycles, as required.

Variation of Q has the effect of sliding the graph of f vertically, and considering
this it is clear that there will be only one fixed point if the slope at the inflections is less
than or equal to 1. This applies when −1 ≤ A ≤ 8. For A < −1 or A > 8, the existence
of more than one fixed point depends on the value of Q. In any case, there is only one
fixed point when |Q| is very large, and it attracts the whole line.

The points where f ′(x) = 1 are given by

x = ±

√
A− 2±

√
A2 − 8A

2
.

There are no such points unless A ≤ −1 or A ≥ 8. There are 4 if A > 8 and 2 if A < −1.
The points where f ′(x) = −1 are given by

x = ±

√
−A− 2±

√
A2 + 8A

2
.

There are no such points if −8 < A < 1, 4 if A < −8 and 2 if A > 1.
It is clear from this preliminary analysis that the primary measure of the complexity

of the system is A. We proceed to examine the various interesting ranges of A, and to
see the effect of Q in each range. First we focus on cycles, and then we look at chaos.
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3. Cycles.

In this section we examine the simple bifurcations of the system, and the occurrence of
various kinds of cycles. Apart from determining the multistable pulsing behaviour of
the system, this will give us some indication of where to look for chaos.

(3.1) Universal stability: |A| ≤ 1.

When |A| ≤ 1, we have |f ′(x)| < 1 except perhaps at x = 0. Thus |f(x)− f(y)| <
|x − y| whenever x 6= y. Since f is bounded, it follows that for each x0 ∈ R, the sys-
tem converges to the unique fixed point. Convergence is exponential except in the cases

(A,Q) = (1, 0), (−1, 0).
Figure 2: The fixed point when A = 1

Figure 2 shows the location of the fixed point as a function of Q, when A = 1.
To obtain exponential convergence at a fixed worst rate independent of Q, it is

necessary to restrict to |A| strictly less than 1.
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(3.2) Period–doubling for 1 < A < 8.

Let 1 < A < 8. The range of f ′ then lies in the interval [−A,A/8]. As we vary Q from
−∞ to +∞, the graph of f slides vertically, and (for generic A, i.e. for an open dense
set of A’s) period–doubling bifurcations occur when the points where f ′(x) = −1 fall
on the diagonal. This happens at Q = ±Q1(A), where

Q1(A) = ±
(

b +
Ab

1 + b2

)
,

where

b =

√
−2−A +

√
A(A + 8)

2
.

Figure 3: Onset of two–cycles

The graphs of ±Q1(A) are shown in figure 3. As Q increases through −Q1 or
decreases through Q1, the system bifurcates from a single universally–attracting fixed
point to an attracting two-cycle. Heffernan’s work suggested that there is no further
bifurcation when A = 2, but that 4–cycles occur by A = 3 — we were unable to replicate
his work exactly; his diagrams lack the symmetry under (Q, x) 7→ (−Q,−x) which
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theory indicates (cf. section (3.4) below) and have other imperfections, but nevertheless
represent a considerable achievement, given the primitive equipment available to him.
We observe that the onset of 4–cycles cannot begin before f2′ can take the value −1,
so a lower bound for the A–threshold for the onset of 4–cycles is

inf{A > 0 : inf
Q

inf
x

(f2)′(x) ≤ −1}.

Now (f2)′(x) = f ′(f(x))f ′(x), hence it cannot be less than −A · (A/8). With x = 0
and Q =

√
3, (f2)′(x) attains this value, so

inf
Q

inf
x

(f2)′(x) = −A2/8,

and a crude lower bound for the A–threshold (for the onset of 4–cycles) is A =
√

8. The
actual value of the threshold may be obtained by observing that it occurs at or before
the least positive A–value for which f2′ = −1 occurs at a two–cycle. Computation
shows that this value is approximately 2.9285, and that a 4–cycle does not occur before
2.92.

Definition. We define the threshold Dn to be the infimum of those positive A for
which, for some Q, fA,Q has an n–cycle.

Theorem (3.1). If f exhibits D–chaos on some infinite invariant set, then A ≥ D2n

for each n ≥ 1.

Proof. In fact, fA,Q can have neither dense period points nor topological transitivity
unless A ≥ D2n . For the number of period m points of f is finite for each m, so if Per(f)
is dense in an infinite set, then f must have points of arbitrarily high period. But equally,
if f is topologically–transitive, then an argument like the proof of Sarkovskii’s theorem
shows that f has points of arbitrarily high period, and hence (by Sarkovskii’s theorem)
has points of period 2n for each positive n.

Computation using Maple shows that

2.92 ≤ D4 ≤ 2.93,
3.4 ≤ D8 ≤ 3.5,
3.5 ≤ D16 ≤ 3.55.

Thus D–chaos does not set in before A = 3.5.
We note in passing that application of the fundamental theorem of algebra to count

period points for f shows that there is at most one 2–cycle, and there are at most two
3–cycles, three 4–cycles, thirty 8–cycles, and more generally

22n−n − 22n−1−n

2n–cycles.
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(3.3) Three–cycles for A < 8.
It is not difficult to select parameters A < 8 and Q for which there is a three-cycle. For
instance, take A = 2Q and let Q be the (unique) solution of

Q− 2Q2

1 + Q2
= 1.

(In fact

Q = 1 +
2

3

√
3(9 +

√
57

+ 3

√
9 +

√
57

9

= 2.7692923542 . . . ,

A = 5.5385847084 . . .).

Then f(0) = Q, f(Q) = 1, and f(1) = 0. Since f ′(1) = 0, the 3–cycle is super–
attracting. This system therefore has periodic points of all orders, by Sarkovskii’s
theorem [D], and exhibits sensitive dependence on initial conditions on an uncount-
able (possibly non-invariant) set, by the Li–Yorke theorem [L]. However, with noise
added it will very rapidly converge to the 3–cycle, so this is an example of bad be-
haviour that is unobservable in the long–term. This result was confirmed by simulation.

Figure 4: Superattracting 3–cycle
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Figure 4 shows the superattracting 3–cycle. If the parameters (A,Q) are varied
slightly, then the superattracting property is lost (generically), but an attracting 3–
cycle remains, so the bad behaviour of the system is robust.

More generally, it is easy to prove that three–cycles occur for each A > 5.53 . . .. In
fact, let A > 5.53 . . .. The condition that fA,Q have a 3–cycle through the origin is that
f2

A,Q(Q) = 0. Excluding the trivial case Q = 0, this amounts to

Q− AQ

1 + Q2
=

A±
√

A2 − 4Q2

2Q
,

or

2Q2

(
1− A

1 + Q2

)
−A = ±

√
A2 − 4Q2.

Letting z = Q2 and squaring, we get

{
2z

(
1− A

1 + z

)
−A

}2

= A2 − 4z,

which gives a quartic in z. Solving using Mathematica, we get a positive real solution
z provided

A3

4
− 3A2

2
+ A− 2 > 0.

Using subdivision, we find that this holds for A > 5.53 . . ..
Straight computational search for the onset of three–cycles shows that they start

to occur at A = 4.9442719. So somewhere between A = 3.5 and A = 4.95 . . ., there is a
threshold, above which (at least) sensitive dependence on initial conditions can occur.
We return to this matter below, and obtain more exact information.
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(3.4) Bistability for A > 8.

Fix A > 8. As Q varies, six simple bifurcations will occur, at the 4 values of Q
which make the diagonal tangent to the graph of f , and at the 2 values for which the
diagonal cuts the graph at a point where the slope is −1. In sequence, as Q increases,
these bifurcations are either of types saddle-node, saddle-node, period-doubling, period-
doubling, saddle-node, and saddle-node (in that order), or are of types saddle–node,
period–doubling, saddle-node, saddle-node, period–doubling, and saddle-node (in that
order). Which sequence occurs depends on whether the tangent line to the graph y =
Ag(x) at the positive point where the slope is 1 passes below or above the positive point
where Ag′ = −1. The threshold between the two patterns occurs at A = 10.986548
This was determined by using subdivision to solve the equation

u− l =
Au

1 + u2
− Al

1 + l2
,

where

u =

√
A− 2 +

√
A(A− 8)

2
,

v =

√
−A− 2 +

√
A(A + 8)

2
.

(For 8 < A < 10.98 . . . the tangent passes below the point and the first sequence of
bifurcations occurs). The first three bifurcations in the sequence involve negative Q
and x and the rest positive Q and x. In view of the formula

fA,Q(x) = −fA,−Q(−x),

the map m(x) = −x is a topological equivalence between fA,Q and fA,−Q, so it is
sufficient to describe the dynamics for either non–positive or non–negative Q.

Let 8 < A < 10.98 . . .. Let 0 < Q1(A) < Q2(A) < Q3(A) be the positive simple bi-
furcation parameters. For Q close to Q1 (and Q < Q1) or Q close to−Q1 (and Q > −Q1)
the system has an attracting 2–cycle. For Q > Q3, there is a universally–attracting
fixed point. For Q1 < Q < Q2, there is a single universally attracting fixed point,
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Figure 5: Squeeze Illustration: A = 11, Q = 6.

Now let A > 10.98 . . .. Let 0 < Q1(A) < Q2(A) < Q3(A) be the positive simple
bifurcation parameters. When Q > Q1, the largest fixed point is attracting. As Q grows
towards Q1, the system bifurcates repeatedly, acquiring longer and longer attracting
cycles. The lengthening cycles can be understood by observing that the trajectories
have to “squeeze through a narrower and narrower gap”as Q approaches Q1 from below.
For example, experiments with A = 20 illustrate how the global features of the map
complicate the simple saddle–node bifurcation at 8.7041. There is a stable attracting
fixed point for Q2 > Q > 8.7041. As Q approaches 8.7041 from below, there is an
elaborate series of bifurcations, and no remerging. The periods grow arbitrarily long,
and then are suddenly cut off when the new pair of fixed points appears.

We shall see below that this “squeeze” phenomenon is another source of chaos.

In all cases when A > 8, the most interesting behaviour occurs in the range Q2 <
Q < Q3. There are then three fixed points, of which the largest is attracting the second
is repelling, and the least is attracting. In other words, we have optical bistability . The
onset of optical bistability was observed experimentally by Szöke et al. [S]. This open
interval in which bistability occurs contains the Q–value for which the critical point 1
is fixed, which is Q = 1 + A/2. For large A, the curve approximates to a parabola near
the critical point, and the endpoints Q2 and Q3 are roughly equidistant from this value.
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It is easy to estimate that

Q2, Q3 ≈ 1 +
A

2
± 2

A
.

For example, with A = 20, the bistability interval for Q is only about 0.2 units long.

Figure 6: Simple bifurcations for A > 8

It is interesting to note that when A > 10.98 . . ., the bifurcation that ends the
bistability region on the left is a period–doubling bifurcation. Thus for Q slightly less
than Q2, the system exhibits bistable pulsing with one stable fixed point and one stable
2–cycle.

Theorem (3.2). Let A > 0 and Q ∈ R. If fA,Q exhibits bistability, then it does not
exhibit chaos on any infinite set.

Proof. Without loss in generality, we assume that Q > 0.
The fixed points p1, p2, p3 are positive, and we may order them so that p1 < p2 < p3.

Evidently, p2 > 1. Also, p1 and p3 are attracting and p2 is repelling. It is readil;y seen
that the local stable set of p3 is (p2,+∞).

Let q2 be the unique point with 0 < q2 < p1 and f(q2) = f(p2). Choose q1 such
that

(q2, p2) ∩ f−1(p1) = {p1, q1}.

14



Fix x0 ∈ (−∞, p2), and consider xn = fn(x0). If x0 < q2, then x1 > p2 and
xn → p3. Thus (−∞, q2) is attracted to p3. If q2 < x0 < p2, then xn → p1 or there
exists m such that xm ∈ (p1, q1). Now the local stable set of p1 must have a critical
point (cf. Section 1 above), hence has 1, hence contains the open interval between q1

and p1. Thus in either case xn → p1.
Thus the basin of attraction of p1 is (q2, p2), and the basin of attraction of p3 is

(−∞, q2) ∪ (p2,+∞). So there is no chaos.

4. Chaos: The Major Threshold.
We have seen that the system behaves simply when 0 < A < 3.5, and that it exhibits
sensitive dependence on initial conditions on an uncountable (possibly non-invariant)
set at A = 4.95 . . ..

Definition. The major threshold A0 is the infimum of those positive A such that fA,Q

exhibits D–chaos on some infinite invariant set for some Q.

To search for A0, we consider snap–back repellors, defined as follows.

Definition. (a) A point p is called a snap–back repellor of period r for f if p is a
repelling periodic point of period r and there exists a point x in the local unstable set
of the cycle of p and a natural number k such that fk(x) = p. Such a point x is called
a homoclinic point. If (fk)′(x) 6= 0, then p is said to be a non–degenerate snap–back
repellor. Otherwise, there is a critical point c in the forward orbit of x. In that case,
if m is the least number for which fm(c) = p, then we call p an m–step degenerate
snap–back repellor.

Definition. For r ≥ 1, the threshold Ar is the infimum of those positive A such that
for some Q fA,Q has a degenerate snap–back repellor of period r.

Theorem (4.1). For each n ≥ 1, we have D2n ≤ A0 ≤ A2n .

Remarks. 1. We shall see that A4 = 3.8 . . ., and we have seen that D16 = 3.5 . . ., so
this theorem shows that

3.5 ≤ A0 ≤ 3.9.

2. We conjecture that
sup
n≥1

D2n = inf
n≥1

A2n ,

and if this is correct then more exact estimation of A0 is a matter of mere computation.

Theorem (4.1) is a consequence of Theorem (3.1) and the following two lemmas.

Lemma (4.2). Let f : R → R be smooth. If f has a non-degenerate snap–back
repellor, then some iterate of f exhibits T–chaos on some nonempty perfect set, and
hence f itself exhibits D–chaos on some nonempty perfect set.

Proof. This is essentially proved in [D] (1.16). The hypotheses allow us to find disjoint
closed intervals I and J and some n ∈ N such that

I ∪ J ⊂ f(I) ∩ f(J),
|fn′| > 1 on I ∪ J.
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Defining
K = {x ∈ R : fnk ∈ I ∪ J, ∀k ≥ 0},

it is readily seen that fn|K is topologically conjugate to the shift on 2N, and hence is
T–chaotic. Thus f is D–chaotic.

Lemma (4.3). For all but a finite number of A, if fA,Q0 has a degenerate k–step snap–
back repellor, then there is an open interval I = (Q0, Q0 + ε) or I = (Q0 − ε,Q0) (with
ε > 0) such that fA,Q has a non-degenerate k–step snap–back repellor for each Q ∈ I.

Remark. In fact this is a special case of a more general statement about the behaviour
of generic 1–parameter families of maps near degenerate snap–back repellors.

Proof. We give the proof for the period 1 case. The general case is similar.
Fix A and Q0 such that fA,Q0 has a degenerate k–step snap–back repellor. Choose

a point c and a point p0 such that
fk

A,Q0
(c) = p0 = fA,Q0(p0),

(fk
A,Q0

)′(c) = 0,

|f ′A,Q0
(p0)| > 1,

and c belongs to the local unstable set of the repelling fixed point p0. Consider the
system of equations

fk
A,Q(x) = p

fA,Q(p) = p

}
(∗)

for (x, p, Q) near (c, p0, Q0). At (c, p0, Q0) the Jacobian is

det

(
∂fk

Q(c)

∂Q −1
1 f ′Q(p)− 1

)
evaluated at c, p0, Q0. Hence the Jacobian is

1 + (f ′Q0
(p0)− 1)

∂fk
Q(c)
∂Q

∣∣∣∣∣
Q=Q0

If this is zero, then we have 4 functionally independent polynomial equations relating
A,Q0, p0, c, and this can only happen for a finite number of A. So we may assume that
this does not happen, and then we may solve the system (∗) above to obtain Q as a
function of x near x = c.

A straightforward computation shows that dQ
dx (c) = 0. If d2Q

dx2 (c) = 0, then we have
again 4 functionally independent polynomial equations relating A,Q0, p0, c, which can
only happen for a finite number of A. Excluding these exceptional A, we see that the
system (∗) above has 2 solutions for x as a function of Q when Q lies in an interval
(Q0 − ε,Q0) or (Q0, Q0 + ε), for some ε > 0, depending on the sign of d2Q

dx2 (c). By
continuity, either of these relations yields a non-degenerate snap–back repellor for fA,Q.

We now search for degenerate snap–back repellors. We begin by estimating A1.
We have the following.
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Theorem (4.4). The threshold A1 for the occurrence of period 1 degenerate snap–back
repellors is the solution for A of

(∗∗)

{
f2

A,Q(1) = f3
A,Q(1),

fA,Q(−1) = 1.

Proof. Because of the topological equivalence x 7→ −x between fA,Q and fA,−Q,
remarked on above, we can restrict to the case where 1 lies on the orbit of the homoclinic
point. So we consider the possibility that for some n ≥ 1

(1) p = fn(1) is a repelling fixed point and
(2) 1 lies in the orbit under f of some point belonging to the local unstable set of p.

This cannot occur for n = 1, so the first interesting case is n = 2. Since we are assuming
A < 8, f ′ never reaches 1, so f ′(p) < −1. The conditions then become:

f3(1) = f2(1)(3)
f ′(f2(1)) < −1(4)

f(−1) ≥ 1(5)

We note that Q must be negative. (This is seen as follows: If Q = 0, then 0 = p = f2(1),
so A = 0 and the map is constant, so p is not repelling. If 0 < Q ≤ A/2, then f(1) ≤ 0, so
f2(1) ≥ Q > p. If A/2 < Q < 1+A/2, then 0 < f(1) < p, so f2(1) > p. If Q = 1+A/2,
then 1 is a stable fixed point. If Q > 1 + A/2, then f3(1) > f2(1) > f(1) > 1.)

If we let Wu(f, p) denote the local unstable set of p, then (5) implies that
Wu(f, p) = (−1, 1). (This is seen by noting first that the endpoints e of Wu(f, p) satisfy
one of the conditions:

f(e) = e(6)
f(e)− p = p− e(7)

f ′(e) = 0 and e is a local extremum,(8)
e = ±∞(9)

Analysis shows that (8) is the relevant condition in our situation and so the endpoints
are ±1. )

For 0 < A < 20, inspection of the graph using Mathematica makes it clear that
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∃!Q∗(A) such that−∞ < Q < 0 and f3(1) = f2(1).
Figure 7: Q∗(A) : f3(1) = f2(1)

So the question is, for which A does Q = Q∗(A) satisfy conditions (4) and (5)?
These conditions can be expressed

−

√√
A2 + 8A−A− 2

2
< f2

A,Q∗
(1)(4′)

A ≥ 2− 2Q∗(A)(5′).

It turns out that (4′) is satisfied already when A = 2, so (5′) becomes the determin-
ing condition, i.e. we have equality in (5) at the threshold, so the homoclinic bifurcation
is doubly–degenerate (the fixed point is on the orbit of both critical points).

So far, we have just examined 2–step degenerate snap–back repellors of period 1.
Could a k–step degenerate snap–back repellor of period 1 occur for some larger k and
some A smaller than the solution of (∗∗)? This is ruled out by the following lemma,
thus completing the proof of the theorem.

Lemma 4.5. Let 1 < A < 8. Suppose that there exist Q and n such that fn
A,Q(1) is a

repelling fixed point and 1 lies in the closure of the local unstable set of f . Then there
exists Q′ such that f2

A,Q′(1) is a repelling fixed point and 1 lies in the closure of the

local unstable set of f2
A,Q′(1).
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Proof. Suppose there exist Q0 and n > 2 such that fn
A,Q0

(1) is a repelling fixed point
for fA,Q0 . Then p0 = fn

A,Q0
(1) lies in (−1, 1) and f ′A,Q0

(p0) < −1. It is readily seen
that we cannot have fn−1(1) = 0, so there are two cases to consider.

Case 1, in which fn−1(1) < 0. Let a = fn−1(1). Then a < −1, since f(a) = p and
a 6= p. Thus f(1) = inf f ≤ a.. Thus if x 6= f(1) has f(x) = f2(1), then −1 < x < 0,
p = f(a) > f2(1), p < x, p < 0, f ′(x) < f ′(p) < −1, x > p > f(x).

Now consider the effect of increasing Q. The point f(1) increases, at least until it
reaches −1. While this goes on, f2(1) increases, and the other place x where f(x) =
f2(1) decreases towards −1. The fixed point p increases, and since it starts off greater
than −1, it must cross x for some value of Q. The slope of f at this x is between the
original slopes f ′(p) and f ′(x), and hence is less than −1. Thus there is a Q larger than
Q0 such that f2(1) is a repelling fixed point. Finally, we note that for this Q we have
f(1) < −1 and f(−1) > 1 (the latter since Q > Q0). So we are done in this case.

Case 2, in which fn−1(1) > 0. Let a = fn−1(1). Then since −fA,Q0(−x) = fA,−Q0(x)
we see that −p0 is a repelling fixed point for fA,−Q0 , and is the image under fA,−Q0 of
−a 6= −p0, and that the image of fA,−Q0 contains [−1, 1], so we are back to Case 1.

Remarks. 1. We wrote a C program to estimate A1. The algorithm was:

Search in [2,6] for A1 = inf A such that (4′) and (5′) hold, where Q∗(A) is computed
by solving f3(1) = f2(1) using bisection on the interval [−A, 0].

This short program runs quickly and gives A1 = 4.875130.

2. At the threshold A = A1, the corresponding value of Q∗(A) is -1.437565 and the
fixed point is at -0.258056. A plot of the bifurcation values Q∗(A) is shown in figure 7.
We note that calculation indicates that Q∗(A) decreases monotonically to −2 as A ↑ ∞.

3. At the threshold values Q∗(A), for A > 4.875130, emulation of the system
showed apparent interval chaos. O’Reilly has demonstrated that interval chaos does
indeed occur for these doubly–degenerate systems, and the details will appear elsewhere.

Finally, we considered the occurrence of degenerate snap–back repellors of period
greater than 1. We wrote Maple routines [CG] to search for A and Q satisfying the
conditions: 

fn+m(1) = fn(1),
|(fm)′(fn(1))| > 1,

1 ∈
⋃
j

f j(fn(1)− ε, fn(1) + ε)), ∀ε > 0,

Details of the Maple scripts used are available on request from aof@maths.may.ie. It
was found that n = m = 2 produced only a very modest upper bound of 4.9 for A2, but
that n = m = 4 gave a significant improvement. A degenerate snap–back repellor of
period 4 occurs for A = 3.9. Thus A4 ≤ 3.9 and so 3.9 is also an upper bound for A0.
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Figure 8 shows an overall sketch of the behaviour of the system as (A,Q) is varied.

Figure 8: Overview

The hatched region is one of those in which fractal chaos has been demonstrated.
This chaos is caused by a period 1 snap–back repellor. There are many additional bands
of fractal chaos, due to higher–period snap–back repellors. When A exceeds 10.98, a
new source of chaos arises from the “squeeze” phenomenon. Consider values of Q a
little less than Q1 (cf. Figure 5). Graphical analysis shows the forward orbit of the
critical point −1 passing through the narrow passage between the diagonal and the last
point on the graph with f ′ = 1, and its points bunch closely. The backward orbit of
the (repelling) fixed point passes through the same gap, and bunches also. Continuity
shows that for any large m, there exists a value of Q such that −1 is mapped to the
fixed point after m steps. Thus the tangent–node bifurcation is an accumulation point
of homoclinic bifurcations.
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Summary:
The system

xn+1 = f(xn)

f(x) = Q− Ax

1 + x2

was studied for positive A, to see what range of behaviour it exhibits. Related laser sys-
tems have shown bistability and chaos. It was found that the “bistability parameter”A
is the major control. This parameter passes through a major threshold A0 estimated
between 3.5 and 3.9. The system behaves predictably for 0 < A < A0, exhibiting sta-
ble pulsing and a more–or–less complicated finite sequence of simple bifurcations and
remergings as Q is varied. For A > A0, homoclinic bifurcations occur as Q is varied,
and the system exhibits structurally–stable fractal chaos and computation indicates un-
stable interval chaos at threshold Q–values. For A > 8, bistability occurs. There is a
further threshold at A = 10.98 . . ., above which bistable pulsing is possible. For large
A, bistability occurs when Q differs from 1 + A/2 by an amount that is asymptotic to
2/A, so that the bistability region narrows as A increases. In the bistable case, the local
stable set of the lower fixed point is very short, and gets even shorter as A grows. Thus
there is a marked lack of symmetry in the system, considered as a two–state system: it is
much more likely to be found in one state than the other. Bistability is never associated
with chaos. However, if (A,Q0) gives bistability, then there exists Q between 0 and Q0

for which (A,Q) gives chaos. It would be interesting to see experimental investigation
of a Fabry–Perot system, tuned to say A = 6 or so. The system never exhibits n–stable
pulsing with n > 2.
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