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Abstract

We investigate how particle pair creation and annihilation, within the quantum transverse XY
model, affects the non-equilibrium steady state (NESS) and Liouvillian gap of the stochastic totally
asymmetric exclusion process. By utilising operator quantization we formulate a perturbative
description of the NESS. Furthermore, we estimate the Liouvillian gap by exploiting a Majorana
canonical basis as the basis of super-operators. In this manner we show that the Liouvillian gap can
remain finite in the thermodynamic limit provided the XY model anisotropy parameter remains
non-zero. Additionally, we show that the character of the gap with respect to the anisotropy
parameter differs depending on the phase of the XY model. The change of character corresponds
to the quantum phase transition of the XY model.

1. Introduction

A valuable way of understanding a many-body system is to characterise its phase diagram and its associated
transitions. This approach is useful across a broad class of domains, from the classical to the quantum
realms, at zero-temperature, and both in- and out-of thermal equilibrium. Although typically such domains
are clearly separated, there are situations where phase transitions in one such domain can influence the
behaviour of another.

A useful framework to address such issues is the Lindblad master equation [1, 2], through which one
may combine both Hamiltonian and classical stochastic dynamics. This methodology has been used, for
example, to explore mixed classical-quantum transport [3—6]. However, despite this success, it is difficult to
find systems where an interesting interplay can be maintained between classical/stochastic and quantum
phases. For example, for a spin chain with stochastic Lindblad processes only at the boundary spins, the
typical steady state behaviour is dictated by the quantum properties of the bulk Hamiltonian (see e.g. 3,
4]). On the other hand, if bulk stochastic processes are also allowed, these typically dominate [5, 6] and
leave little or no trace of the quantum phase transition to survive at late times.

In this paper we discuss a spin chain model where both classical stochastic and quantum phases are
simultaneously relevant to a degree that allows for a genuine interplay between them in the long-time
dynamics. The model is a combination of the transverse XY (TXY) Hamiltonian, or equivalently the Kitaev
chain [7], with a one-way classical stochastic hopping process, modelled by the totally asymmetric simple
exclusion process (TASEP). We refer to the combination of these two models as the TXY—TASEP.

The TASEP, considered in isolation, has a phase diagram for its non-equilibrium steady state (NESS)
that is determined by the stochastic hop-on/hop-off rates at its boundaries. The TXY Hamiltonian
undergoes a quantum phase transition in its ground state as the transverse magnetic field parameter is
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increased, assuming a non-zero XY anisotropy parameter 0, at § = 0 the model is critical for |h,| < 1. When
the two models are combined, one finds that for zero anisotropy, § = 0, the NESS retains many of the
properties associated with the classical TASEP and, as such, its behaviour can be essentially controlled via
the stochastic boundary (hop-on/hop-off) rates [6]. On the other hand, in the regime associated with the
ferromagnetic (topological) phase of the XY model, the steady-state more closely resembles a perturbed
infinite temperature state, but where the stochastic hop-on/hop-off rates do still dictate some key properties
of the perturbation.

The essential feature that allows for the balance between quantum and classical effects to be maintained
is the non-zero XY anisotropy, which together with the bulk stochastic hopping, opens a constant
Liouvillian gap that persists even for large system sizes. The precise scaling of the gap depends on the
underlying quantum phase and is thus controlled by the bulk topology of the TXY model band-structure.
This results in steady state properties that are very different in each of the quantum regimes.

From the perspective of the TASEP phase diagram [8], we see that steady states of the low- and
high-density phases are far more susceptible to the pair creation/annihilation associated with the XY
anisotropy. This effect is much less pronounced in the maximal current phase, where the tendency of the
XY anisotropy to drive the system towards half-filling is complementary to the maximal current
micro-states.

Crucially, because of the constant gap, even in the thermodynamic limit one can move quickly between
these limiting cases by simply tuning the transverse field. Systems with a finite gap in this limit are described
as rapidly mixing and it can be shown that the resultant steady states are robust to local perturbations and
uncorrelated at a scale equivalent to the inverse gap size [9—14]. Our results, obtained by similar methods to
prior studies of a dissipative XY model [15, 16], suggest that the XY system parameters can be used to
quickly engineer and tune specific features into the steady state and as such have the potential to be used as
a means of rapid state preparation.

The TXY-TASEP system does not allow for a direct analytical treatment, as available for related models
[3, 9, 17-30]. Our results are therefore arrived at by using a mix of numerical methods and approximate
approaches. On a numerical level we apply matrix product state (MPS) methods [31-36] to study steady
states and the Liouvillian gap [16, 37, 38]. However, we also use operator quantization [3, 21], and exploit
the block structure that occurs naturally via the associated canonical Majorana representation [39, 40], to
make concrete perturbative statements.

An overview of the paper is as follows: in section 2 we introduce key aspects of the TXY and TASEP
models, providing in addition a detailed summary of our main results and the physical picture that
emerges. In section 3 we detail our main numerical results, focusing in particular on the relationship of the
NESS with both the TASEP steady state and the maximally mixed state. In section 4 we discuss the
Liouvillian super-operator of the model from the perspective of operator quantization and outline its block
structure in what is called the canonical Majorana representation. This sets up our perturbative analysis of
the NESS in the weak-stochastic limit [6] and the subsequent focus on the two-quasiparticle super-operator
block [3, 40]. We provide a number of appendices for peripheral discussions. Appendix A derives the
continuous time TASEP master equation from the discrete time process. The remaining appendices
(appendices B, C and D) expand on the technical aspects and interpretations of the block perturbation
theory used in section 4.

2. Model and methods

2.1. Combining the TXY & TASEP models
Our model of study is the combination of two paradigmatic models for transport in one-dimensional
systems: the transverse-field XY model (TXY) and the totally asymmetric exclusion process (TASEP).
Separately both TXY and TASEP are well understood; the quantum XY spin model with a transverse
magnetic field can be solved exactly by mapping to free fermion model with superconducting terms present
due to the XY anisotropy. Likewise, the classical TASEP is solvable in the sense that there is an ansatz
solution for the NESS. Although this ansatz solution predates the tensor network concept, it takes the form
of a MPS [8].

We can incorporate both models into a single Lindblad master equation [1, 2]

.
== = —iXH(D) + €L(p),
ar iAH(p) + eL(p)

= L(p). (1)
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Figure 1. Top: our model is a chain of two-level quantum systems evolving by the combination of the transverse XY
Hamiltonian (TXY) and the totally asymmetric simple exclusion process (TASEP). The TXY model parameters are in red and
TASEP parameters are in black. Bottom: the phase diagrams for the ground state of the TXY Hamiltonian (left), and for
non-equilibrium steady state of the TASEP (right) where: LD = low density, HD = high density, MC = maximal current.

The TXY model is represented by the following commutator H(p) = (H, pl, with overall strength A and the

Hamiltonian N

—1

1406 ,,. 1-0.,.

hzz 67 — ( 5 67071+ — O';,J;,_,'_l) . (2)
j=1 j=1

Here h, is the transverse magnetic field and 0 < 6 < 1 the anisotropy parameter. We note that if § # 0, the
TXY-Hamiltonian has a quantum phase transition at |h,| = 1 (see figure 1). The anisotropic terms can be
rewritten as 20 (&f&il +0; 6;,,), so they can be seen to introduce pair creation/annihilation when 4 is
non-zero. We make this statement in the view that, after a Jordan—Wigner transformation, H can be
rewritten in terms of spinless fermions, which is known as the Kitaev chain [7]. Then the spin model can be
reinterpreted as particles hopping on a one-dimensional lattice where spin-up corresponds to an occupied
state and spin-down to an unoccupied state.

In the second term of (1) we have the TASEP, with overall strength € and modelled by the Lindblad

super-operator [6]
N-1

L(p) = aDI671(p) + BDIo3)(p) + Y, Dlo; 675,1(p), (3)
j=1

where D[/](p) = (plt — %@T@f) — % pl1?. The TASEP is a classical stochastic process that involves hard-core
particles hopping onto the first site of the chain with rate «, hopping off the end of the chain with rate 3,
and hopping in one direction through the bulk with rate equal 1. The TASEP has three distinct phases with
respect to v and 3 (see figure 1): the maximal current (MC) phase (« > 1/2 and 8 > 1/2), the low density
(LD) phase (o < 1/2 and 8 > «), and the high density (HD) phase (8 < 1/2 and 8 < «). This phase
diagram can be deduced from an exact MPS solution for the TASEP steady state, with infinite dimensional
matrices [8]. However, the exact solution can also be accurately approximated by a MPS with relatively
small bond dimension [6]. In this way we can generate an efficient MPS description of the TASEP steady
state in a way that can be further extended to find the steady state pngss of the full Liouvillian £, where an
exact MPS is not known. Away from the purely classical model, we can obtain the full NESS by a density
matrix renormalisation group (DMRG) implementation modified for open quantum systems [16, 37, 38].
We note that (3) is part of a continuous-time master equation, while TASEP is often considered as a
discrete time stochastic process. In appendix A we outline the derivation of (3) from the underlying discrete
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time stochastic process. By viewing the TASEP as a discrete time Markov process one can translate the
model to a non-Hermitian spin chain for which Bethe anatz methods can be applied to determine analytic
results, see e.g. [17—20]. We note also that our approach is not the only one with the aim to introduce
quantum effects into classical exclusion processes. A number of recent works have proposed quantum
modified versions of the symmetric simple exclusion process (SSEP) [41, 42] and ASEP [43] which employ
a non-Hermitian Hamiltonian formulation of the exclusion process that introduces noise in the particle
hopping amplitudes.

Our goal in this paper is to study the steady state and the Liouvillian gap of the corresponding
TXY-TASEP model’s Liouvillian super-operator £, as we vary the model parameters, including the
parameter €/ which controls the relative strength of the quantum TXY model and the classical TASEP in
(1). We set A = 1 for the remainder of this paper, essentially allowing A to define the unit of frequency. We
note that the steady state of L for the isotropic Hamiltonian, with i, = § = 0 and TASEP, has been
previously explored by other methods [6]. Also, the case of zero bulk TASEP hopping has been explored in
the more general scenario where particles can hop on or off either end of the chain [4].

2.2. Operator quantization—a Hilbert Schmidt formulation

In the following, it will be useful to represent the superoperator £ in (1) as a matrix that acts on a
vectorized representation of the quantum state p. We do this by choosing a convenient basis of orthonormal
operators {I';} with respect to the Hilbert—Schmidt inner product, i.e. (I';|I;) = Tr(I‘lTl"j) = 0;j. We choose
the so-called canonical Majorana basis [39, 40]:

ro. I/v2N,
D0 V2N, 3 V2N, oy V2N,
T iy / VN, iy V2N, . ianyan / V2N,

etc. (4)

These Majorana operators are defined from the spin operators as:
2n—2 2n—1
Yan-1 = (H 0i> Odn1> Yon = (H U,i) Ty (5)
k=1 k=1

forn =1,2,...,N. As shown in (4), an element I‘(j) of this basis is a product of Majorana operators, where
the upper index s is the number of 7’s in the product, and a labels the basis elements within each s
subspace. The factors of 1/1/2N ensure the normalisation (I'”|I5 ) = §,,0,;. In this basis the Liouvillian
superoperator £ has the matrix elements

L8 = (1)), (6)

where the upper indices (s, s’) label blocks in the matrix and the lower indices a, b label the matrix elements
within the (s, s") block [see figures 2(a) and (b) for an illustration of the matrix structure]. Likewise, the
vectorized density operator in this operator basis has the vector elements p¢¥ = Tr(I''¥ p).

The superoperator matrix E(;b’s,) can be non-Hermitian, resulting in a set of complex eigenvalues
{0, &1, &, .. .}, which we assume are ordered according to their real parts 0 > Re(&) > Re(&)) > ... etc.
The steady state corresponds to the eigenvalue with zero real part, Re(&y) = 0, and the Liouvillian gap is
defined as

Eaap = —Re(&)). (7)

The superoperator £ has some other interesting features that are worth pointing out. First, we note that it
preserves the parity of the label s (i.e. the operator £(I') is a linear combination of operator basis elements
with the same parity as s). This is seen clearly in figures 2(a) and (b), where £59) = 0if sand s’ have
different parity. Also, we highlight the s = s’ = 0 block [upper-left corner of figures 2(a) and (b)],
corresponding to the operator basis element T'® = I/1/2N. Using the master equation (1), it is
straightforward to show that this matrix element is always zero £*? = 0. Similarly, it can be shown that
this element is only connected to two others in the £2?) block, via the off-diagonal block £2 [as
illustrated in figure 2(b)]. The two non zero elements are

2 T2 31 = e(a — 1/2),

«27%721\171721\1\27%]1)) =—€e(B—1/2).
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Figure2. (a) The structure of £ in the canonical basis for a system size of N = 4. (b) The s = 0 block that corresponds to the
maximally mixed/thermal state is connected via terms dependent on the bulk and boundary driving to states |¢,)) = |7,7,))>
|#r)) = [Yn_17x))- These elements are highlighted, on the left within the £?% sub-block, by the upper orange dot and lower
cyan dot, which have respective values —¢(3 — 1/2) and e(ae — 1/2). (c) One of our main observations is that the complex
spectrum near & = 0 is dominated by the states generated from the extremal blocks £, £, £® and £L®N~V and that the
eigenvalues of these states are well approximated by diagonalizing within each block separately. This can be seen via a
non-Hermitian perturbative analysis where the effects of off-diagonal blocks appear only at second order, see section 3.2. In the
figure, we give spectral gaps for s = 1 (red), s = 2 (black) and s = 2N — 1 (blue) for a system of length N = 100, with v = 0.1,
S =0.3,and e = 0.1.

If these two matrix elements are zero (i.e.if « = 8 = 1/2 or if € = 0) then the maximally mixed state

p ~ T ~ Tis a valid steady state of the Liouvillian. If both matrix elements are non-zero but small then
we expect the NESS to be close to the maximally mixed state. This intuition is based partly on the structure
produced in our expression of the Liouvillian superoperator (see figures 2 and 6) and on prior work for
another system which allows for a NESS ansatz [44] with the maximally mixed state as the zeroth order
state. We will exploit this feature later in sections 3.2 and 4 to perturbatively estimate the steady state and
the gap scaling in the small € limit.

Furthermore, generically speaking, for a Lindblad equation comprised of a Hamiltonian which is
quadratic and Lindblad jump operators that are linear in fermion operators one finds that the Liouvillian
super-operator admits a block diagonal matrix form. As a result, the super-operator can be solved
block-by-block. There are cases however where exact treatments of the super-operator are possible despite
the underlying Lindblad equation not being entirely quadratic. Asymmetric boundary driving [3, 4] and
quartic stochastic processes [5, 45] are two such examples. Although similar approaches cannot be directly
applied to TXY—TASEP, we will show that using the canonical representation yields a useful block structure
which allows for perturbative estimation of the Liouvillian gap in the weak classical regime.

3. Non-equilibrium steady state

The NESS is defined as the state pngss for which £(pngss) = 0. The case for studying the NESS is
straightforward: it typically governs the system’s late time behaviour. There are various examples of open
quantum spin chains for which the NESS can be calculated exactly through analytical methods. One
important class are those for which matrix product ansatz solutions exist for the NESS [44, 46—49]. This
includes, for example, the purely classical TASEP (A = 0 in our model) for which a matrix product ansatz
solution was found by Derrida et al [8]. Other formulations allow one to utilise the methodology from the
Bethe Ansatz [17-20, 22-29] or operator quantization [3-5]. However, these exact analytical methods
cannot be applied to the full TXY-TASEP to determine the NESS. Instead, in this section we employ the
DMRG algorithm to numerically determine pngss.

3.1. Obtaining NESS from DMRG

We begin by comparing pngss to the classical TASEP steady pg, defined as the state for which L(pq) = 0
(where L is defined in (3)). For given TASEP boundary hopping rates (o, ) we know from the work of
Derrida et al [8] how to construct pq from its exact matrix product ansatz. However, introducing the
Hamiltonian term in (1) typically modifies the steady state so that it is no longer equal to the classical
TASEP steady state pq. For a given (a, ) we quantify the difference between pngss and pg with the overlap

<<PNESS |Pc1>> ) (8)
{oness|pxEss) (pe | pa)

O(ﬁNESS) ﬁcl) - \/

where (A|B) = Tr(A!B) is the Hilbert—Schmidt inner product for operators A and B. This overlap takes
values in the interval O € [0, 1], with O = 1 if pxpss = pa and O = 0 if the states pnpss and pg are

orthogonal (i.e. ({pngss|pa)) = 0).
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Figure 3. These figures contain numerical data for the overlap, as defined in (8), for three cases of ¢ = {0.1, 1,10} and capturing
features of the three TASEP phases. In (a)—(c), for the low density (LD) phase [« = 0.1 & /3 = 0.3] we observe a strong effect on
the overlap with changing d, in the high density (HD) phase one can see similar features. In (d)—(f), for the maximal current
(MC) phase [ = 0.7 & 8 = 0.9] we show the relatively weak effect of increasing ¢, note the restricted color range of values for
this row of figures. In (g), the overlap is shown against system size, N, showing an exponential decay with system size within the
high density (HD) phase (see inset showing log,,(O)). In the MC phase the overlap decays at a slower rate with respect to system
size. For (a)—(f), N = 50. For (g), = 0.1,h, = 0.5and ¢ = 0.1.

Assuming («, 3) in the LD phase, in figures 3(a)—(c) we plot the overlap O as a function of the
TXY-model parameters (, h,), for the three different TASEP strengths € = {0.1,1,10}. For € = 10 the
Liouvillian £ is dominated by the TASEP component of the model. It is not surprising, therefore, that in
figure 3(c) we see large regions in parameter space where O ~ 1. In particular, for small anisotropy ¢ we see
that pngss and pg are very similar. This is consistent with previous work by Temme et al [6], which
considered the transport properties for the TXY—TASEP in the special case of zero anisotropy ¢ = 0, and
found that the isotropic Hamiltonian has very little effect. However, even for ¢ = 10 where TASEP
dominates, we see in figure 3(c) that increasing the TXY anisotropy parameter to relatively small values
0 2 0.5 can lead to a significant decrease in the overlap O. This suggests that, in the LD phase, the TXY
anisotropy J plays an important role in driving the NESS away from the TASEP steady state. Similar results
are obtained for (a, B) chosen in the HD phase.

When € = 0.1, on the other hand, the TASEP is relatively weak compared to the TXY Hamiltonian in
(1), and so the steady state pngss may be very different from pg. This is borne out in figure 3(a), where
O < 1 for most values of (4, h,). However, even in this parameter regime we see a significant overlap O
when /i, > 1 and § is small, i.e. for parameters in the paramagnetic phase of the TXY-Hamiltonian. This
indicates that the quantum phase transition affects the properties of the NESS.

As mentioned above, our numerical results in figures 3(a)—(c) are plotted for («, /3) in the LD phase,
and similar results are obtained in the HD phase. However, the results are different for (o, /3) in the MC
phase. In figures 3(d)—(f) we can see that the overlap does not go to zero as in the LD phase for all (9, h,).
While an attempt has been made to highlight the different regions in (J, h,), the overlap is largely similar
across the parameter space. In figure 3(g) we plot the overlap O as a function of system size N, for various
choices of (a, ). We see that the overlap decays much more slowly with system size for («, ) in the MC
phase.

What can we say about pngss when it is driven away from pq by the TXY-Hamiltonian? In figures 4(a)
and (b) we plot the overlap O(pngss, i /2N) between the maximally mixed density matrix I /2N and the
steady state pngss of the full Liouvillian in the LD regime. We see that the anisotropy of the
TXY-Hamiltonian drives the steady state towards the maximally mixed state. As the parameter ¢ decreases,
corresponding to increasing relative strength of the TXY-Hamiltonian, we see that the NESS is driven even
more strongly towards the maximally mixed state. Moreover, with decreasing € one can clearly resolve
signatures of the phase transition of the XY-model at i, = 1 and § > 0. We note that the overlap
O(puess, 1 /2N) is related to the purity of the steady state by the equality O(pngss, I /2Ny =
1/+/2N Tr(piigss)» easily derived from equation (8).

We have shown then that increasing the TXY anisotropy can drive the NESS away from the classical
TASEP steady state, for (o, 3) in the LD/HD phase. To better understand this, we examine the overlap
(palLTL|pa) = |% lpa) ? which quantifies the susceptibility of the TASEP steady state pq to dynamics of
the full Liouvillian. Since LL|pq) = 0 we observe that (pa|LL|pa) = N (pa|H?|pa), so that the
susceptibility depends only on the Hamiltonian part of the Liouvillian. In figure 5(a) we see that the
isotropic Hamiltonian 6 = 0 has a relatively small effect on the classical steady state. However, for § > 0,
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at two relative strengths of e. In (a) e = 0.1, the weak classical regime, we can see that increased § quickly produces a more mixed
state for all h, though more slowly for h, > 1.1In (b) € = 1, a stronger classical regime, the value of h, has less relevance yet the
effect of increasing ¢ remains apparent. N = 50 for both figures.
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Figure 5. The susceptibility of p to dynamics by the Liouvillian {pg [£1L] pa) = N2 {pa |H?| pa)- (a) and (b) The introduction
of pairing § allows the the classical steady state to couple strongly to the quantum commutator in both low and high density
phases. (c) The strength of this coupling scales linearly with the system size in the low and high density phases (upper two lines).
We emphasis this by plotting the susceptibility divided by N so that the upper lines remain largely constant and the lower lines
decrease. All data in this figure was plotted with h, = 0.5and e = 0.1.

figure 5(b) shows that pq responds very strongly to the TXY-Hamiltonian in the LD and HD phases,
although not in the MC phase. This is reinforced by figure 5(c), which shows the susceptibility scales
linearly with system size N in the HD phase, but sub-linearly in the MC phase.

One can intuit the reasons for the strong response of p in this case by considering the steady state
configuration [8, 31, 50, 51] in those classical phases. In the LD phase, as the name suggests, there are many
empty sites. Rewriting the anisotropic terms of the Hamiltonian in (2) as (6767, , — 6767, ,) =
26(67 67, + 67 67,,), the operator 67 6%, | associated with the anisotropy can successfully be applied to
the state at many locations on the chain. Similarly, in the HD phase there are many occupied sites and the
pair annihilation operator, 6; 6, |, can be applied without annihilating the state. However, in the MC phase
the steady state is largely comprised of half-filled configurations which will not couple as strongly to the
anisotropic terms.

Another interesting property of the steady state pygsg is the expectation value (E) = Tr pypssH which
gives an indication of which Hamiltonian eigenstates take part in the steady state. In figure 6 we show how
the expectation value changes relative to the full eigen-spectrum of the system Hamiltonian. In the LD and
HD regimes the expectation value drifts towards the extrema of the the many body Hamiltonian spectrum,
provided the Hamiltonian is tuned to the paramagnetic region. This occurs due to the energetic importance
of either filled or empty sites (up or down spins) in this quantum phase. On the other hand, in the
ferromagnetic/topological regimes, the energy of the steady state coincides with the centre of the
many-body spectrum backing up the idea that here the system favours something close to the maximally

mixed state. In the maximal current phase, this behaviour dominates for all values of the transverse
field.
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Figure 6. The energy expectation values of (E) = Tr pypssH together with the many-body eigen-spectrum, E, of H, where only
band edges are shown. (a) « = 0.1, 5 =0.3,§ = 0.1, (b) « = 0.3, 3 =10.1,0 = 0.05, (c) « = 0.7, 3 = 0.9, 0 = 0.1. In all
figures, ¢ = 0.1 and N = 50. In the paramagnetic regimes |h,| > 1 the classical densities determined by the boundary rates result
in steady states with a clear low/high energy imbalance (a) and (b). This imbalance is suppressed in the ferromagnetic regime
|h.| < 1 and also throughout the maximal current phase (c).

3.2. NESS as a perturbation of the maximally mixed state

The perturbation theory utilised here for non-Hermitian systems is based on [52—54]. For additional
technical details see appendix B. As a starting point, one defines a ‘bare’ unperturbed Liouvillian £, with
eigenvalues &, and left and right eigenvectors (0, | and |v,)) such that (0, |Lo| vs) = 0umE,. We write the
perturbation as £; and an expansion of the steady state as [p)) = 3_;[p;)) the terms of which are produced
iteratively according to

| pi) = Lo L1 pj-1)s )

where £ is the pseudo-inverse defined as

gyt =y il (10)

En#0 "

At this point one might expect that H is chosen as the unperturbed piece of the Liouvillian and
subsequently that el becomes the perturbation. However, one can immediately see an obstacle arising from
this choice. Given (10), since H corresponds to the commutator of the Hamiltonian its spectrum is
massively degenerate and all eigenvectors of the Hamiltonian yield zero eigenvalue in the commutator. As a
result we would be left with a highly degenerate situation that is difficult to deal with.

We propose a way to circumvent this obstacle by exploiting the structure of elL. We know that once any
part of IL is switched on that the system will immediately have a preferred steady state. As such we propose
that to proceed we first treat diagonal (\) components of the TASEP term L differently from the off
diagonal (\) ones. Namely, we split the total L as the sum

el — G\L\ + 6\\]L\\. (11)
We note here that this expression of the splitting of €L is an equality, however we introduce new e variables

for the separate components for this calculation. In the end they will equalized to the original e variable.
Our unperturbed system will then consist of the collective diagonal blocks

2N
L= ¥ =3 el -, 2
SE even sE even

and the perturbation as the remaining off diagonal components

Lo=L—Ly= Z Lss+2) + £(5+2,5))

sE even

=€y > L& L L6429, (13)

SE even

The block diagonal form of £, means that we can write down its eigen-spectrum block by block. In practice
we observe numerically that the real component of £ for small €, grows linearly such that in what follows
it will be useful to write this dependence explicitly and expand the complex eigenvalue as £ = €\ ) +iEs.
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Another property of our unperturbed operator is that the pseudo-inverses of the blocks only act locally
within each block. This will allow us to simplify some expressions in the following and implies for example
that

Lit= > 1LY (14)

seeven

Then, with the maximally mixed state as our starting state |p,)) = |I)) we can proceed according to the
iterative procedure (9):

1) = = (LD L2 1),

[p2) = —[£9) 1252 py),
[pa) = —(LLPT LB 4 [£O)71£69)] ),

(15)

where only the non-zero L5 blocks/elements have been kept. Plugging in the dependence on the overall
weights we have for the first order expression:

| p1) = —en [LP]'LEY| 1),

EP
= -y 20 (@ L@ 1),

alo® L _7,17512) R
S~ B on)

U )y (16)
R

n

with |op)) = [117:))s [6r)) = [Yan_17an))s @ = @ — 1/2, 3 = 3 — 1/2 and where on the last line we have
also expanded the s = 2 block eigenvalues into their real and imaginary components.

Leaving the inner products in the numerator to one side for a moment we can consider which terms are
relevant in this first iterative correction by looking at cases for the coefficients in the sum:

-1
— EP <ear?,

—€\\ e’
YD ED T ey (17)
E\Tn n £ otherwise.
n

Evidently as we reinstate ¢, = €, — € and approach € — 0 the second case is irrelevant and only those
coefficients with small to negligible imaginary parts contribute to the correction.

What about the terms ('?|¢y/r)? An unusual feature of the block-decomposition is that we could in
principle have additional e, dependences occurring through the | 5{?). However, in practice we see via
direct evaluation that, to leading order, these vector elements are independent of €. This means, that in the
limit e, = €, — 0 we approach a fixed steady state that is not the infinite temperature state |I)). Moreover,
the magnitude of this deviation from the thermal state is dictated primarily by the scale given by 1/r? for
which the term 1/r\?) is the largest.

This outcome runs counter to typical perturbative statements where, as the small parameter tends to
zero, we approach the bare un-perturbed state (in this case |I))). Recall however that, to avoid dealing with
the massive degeneracy of the commutator H, we also allowed the small parameter € to enter into the bare
Liouvillian. In this iterative construction then, we do not necessarily expect that each successive iteration
will result in contributions that scale according to some positive power of €. Indeed, one expects that further
iterations would eventually lead to additional corrections in other s-even sectors that, similarly to the
explicit first iterative correction above, do not vanish as € — 0.

4. The Liouvillian gap

The next feature that we explore is the Liouvillian gap, which one can consider as a key indicator of
relaxation times towards the NESS [20, 31, 55, 56]. As shown in (7), this is defined £y,, = —Re(&)), where
&) is the eigenvalue of £ with the largest non-zero real component. For a review of gap behaviour in a
variety of related models see [9]. Generically in such studies the key indicator is how the Liouvillian gap
scales as a function of the system size, N, e.g. Egp ~ N % where the dynamical exponent z depends on the
particular model studied.
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Figure 7. Comparison of projection and MPS methods for a line cutat: a = 0.1, 5 = 0.3, = 0.7,¢ = 0.1 and N = 30. A low
virtual bond dimension (y = 20 in this case) can be used to estimate gapped low lying states in both sectors by adding a
weighted parity operator to £. The even-sector gap can be estimated directly due to the specific form the Liouvillian takes in the
canonical basis, which means that one can decouple the s = 0 block without affecting any other eigenvalues. In the odd sector,
when h, < 1, the relevant low & states are related to the evanescent Majorana modes of the closed system, see appendix D. On the
other side of this line, where h, > 1, these states join up to a continuum of states that the DMRG algorithm has trouble resolving.

4.1. Emergence of an open gap from XY anisotropy and bulk dissipation

Utilising a convenient basis for the Liouvillian super-operator (section 2.2), we find that the gap for this
system can be obtained via a MPS based approach [16, 37, 38]. Moreover we find that, in this limit, the full
Liovillian gap is closely shadowed by the gap obtained by restricting to the s = 2 sector only—the £?) gap
used in the last section. Analysing the scaling of s = 2 sector we find that it, and therefore the full
Liouvillian gap scale as

ggap Nf(5) h) + O(N71)> (18)

where (4, h,) is non-zero when |6]| > 0. This implies that the relaxation time is finite in the thermodynamic
limit when |d| > 0, since in this case the gap remains non-zero. This non-zero gap is not present in either
XX + TASEP [6], XX + SSEP [5] or XY + boundary driving [38] models. As such we can infer that it is a
consequence of combining both an XY anisotropy and bulk stochastic hopping. The precise functional form
of the gap function f(d, h,) for different types of dissipation, including TASEP, remains an interesting
question which we explore in future work [57].

4.2. MPS obtained Eg,p, versus 51(2)
Our key claims on the scaling of the gap are based on the assertion that, in the weak classical limit, the full
Liouvillian gap can be estimated by only solving the s = 2 sub-block. Our key tool here is a MPS calculation
where we can effectively project out the steady state from the variational algorithm. Here we exploit the
structure that the Liouvillian super-operator takes in the so-called canonical Majorana representation (see
figure 2), specifically using the fact that the s = 0 block is only connected to the s = 2 block via a single
off-diagonal block, £, This allows one to project out the steady state from the MPO that represents the
tull Liouvillian operator, while leaving all other eigenvalues unaffected.

In figure 7 we compare the results from £\ with the eigenvalues obtained from a full MPS treatment of
a system of N = 30 and see excellent agreement right across the phase diagram. In appendix B we also detail
a perturbative argument for why these values are so close, using the Rayleigh—Schrodinger non-Hermitian
formulation [52] of the TXY—TASEP system. A synopsis of this calculation is that in the small € regime, we
can consider s-blocks as only being weakly connected to their (s & 2)-block neighbours. Here spectrum &g,
can be expanded as

Eap = EX +EP + P 4., (19)

where 51-(5) is the ith eigenvalue from the s diagonal block and 51»(5)/ and 51-(5)” are the first and second order
corrections. Crucially, one finds that the first order correction £ is zero and that the second order
correction is much smaller than the zeroth order estimate, and typically scales as ¢” where p > 2, see
appendix B.
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Figure 8. [Left] Spectral gap scaling with & = 0.1, 8 = 0.3, ¢ = 0.1, h, = 0.5. A nonzero ¢ introduces a persistent gap in the
N — oo limit. [Right] A scan of the projected N — oo limit. The character of the gap changes when one traverses the quantum
phase transition at h, = 1 (red line). We note that the quantity plotted in the bottom figure is precisely ' of section 3.2.

4.3. Analysis of the s = 2 spectrum
In the weak classical limit we can use 51(2) now as a proxy for the full gap and more fully analyse the
parameter space of the model and assess its scaling as a function of system size, see figure 8. Our main result
is that, in the the thermodynamic limit N — oo, the gap g, — (9, h,) remains open if the anisotropy
parameter is non-zero. However the dependence &, has on ¢ also relies strongly on the magnetic field
parameter, with clear differences occurring between the different quantum phases of the Hamiltonian.
When § = 0 we find that f(0, h,) = 0 and thus g, ~ N~ N2 0. This value is completely unaffected
by changes in magnetic field 4, as a result of a Lindblad symmetry present, see e.g. [58]. However, for non
zero ¢ and when |h,| < 1 (where the underlying Hamiltonian has a topological gap and boundary
zero-energy modes) the Liouvillian gap develops linearly with § (the superconducting order parameter in
the fermionic picture). On the other hand where |h,| > 1, and the system Hamiltonian is non-topological
and the gap develops oc 6°. This smaller gap means that perturbations to the thermal state are far more
dramatic in this quantum regime. For a discussion on the odd sector blocks s = 1 and s = 2N — 1 see
appendices C and D.

4.4. Relaxation rate compared to related models

The interpretation of the gap as an inverse relaxation time leads one to consider the scaling of the gap with
system size. If one has an inverse relation between the gap and the system size then in the large N limit the
system will not relax to the steady state in finite time. As such one often aims to determine the dynamical
exponent, z, in the scaling relation £y, ~ N7*. If z = 0, the longest relaxation times for the dynamics
remain finite in the thermodynamic limit, while if z > 0 they diverge.

Generically, the dynamical exponent depends on a variety of factors from the model in question. The
gap scaling of our model has been found in certain special cases. It has been determined analytically [3, 4]
for the quantum XY model, with bi-directional dissipation on boundary sites only, that the gap scales as
Egap ~ N3 everywhere except for at |h,| = 1 — §” where the gap closes more rapidly as: g, ~ N~°. This
can be contrasted with the TASEP gap scalings which differ depending on the phase of the classical model.
There, one finds by various approaches [9, 19, 20, 31, 55] gap scalings of &g, ~ N? in the LD/HD phases,
Egp ~ N —3/2 in the MC phase, and Egap ~ N2 on the critical line, where v = 3.

A relatively generic bound for the gap scaling of &g, ~ N~' can be found for systems with only
boundary dissipation [9] which is a component of the model studied in this paper. However, the existence
of a finite gap for appropriate Hamiltonian parameters places the TXY—TASEP outside of the scope of these
results and indeed also outside the scope of integrable systems results [59, 60]. One can draw the conclusion
that both bulk and boundary dissipation together are necessary for a non-vanishing gap in all phases of the
TASEP.

5. Summary and conclusion

In this work we have explored the TXY TASEP system, showing how the interplay between XY anisotropy
and transverse field affect both the NESS and the gap that separates it from the rest of the Liouvillian
spectrum.
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An interesting aspect to the model is the ability to tune between different steady states that derive key
properties from the underlying quantum phase. These quantum effects are most profound in the parameter
spaces of low magnetic field (h, < 1) where the XY terms opens a Liouvillian gap that is approximately
linear in the anisotropy §. On the other hand, in the regimes associated with high transverse field (h, > 1)
we see that the steady state essentially reverts to the something like the purely stochastic NESS, mimicking
the scenario also found with no XY anisotropy, albeit with a gap now proportional to §°.

The low field deviations from the classical NESS, most pronounced in the TASEP low and HD regimes,
can be understood by viewing the XY anisotropy ¢ as a source of pair creation/annihilation which seeks to
drive the system towards half filling, and pin the energy expectation value to energies close to the centre of
the many-body spectrum. The high magnetic effect reduces this anisotropic drive toward half filling
allowing the particle densities to be largely determined by the classical boundary driving. This coincides
with NESS energy expectation values drifting towards the extremes of the Hamiltonian many-body spectra.

Our observations of a constant gap show that the TXY-TASEP system constitutes what is called a
rapidly mixing system. In this respect the canonical Majorana basis provides an intuitive way to understand
this in terms of the perturbations to the maximally mixed state and the gaps found in successive even-parity
excitation number blocks. In cases where the even quasi-particle gap is constant we can argue that, in the
weak classical limit, that successive perturbations will decay order-by-order. On the other hand, when the
gap closes with system size, or is at least very small (as in the large transverse field limit), one expects that
successive perturbations to the maximally mixed-state will not completely decay, so that the resulting NESS
remains very different.

The mechanism we describe shows how the quantum system can be used to rapidly switch between
radically different steady states, either by tuning § or the the transverse field h,. A natural question to ask
then is what types of pre-determined states that can be easily prepared in this fashion? Moreover, can
TXY-TASEP be a template from which one can develop such schema? In this paper we argue that this
so-called rapidly mixing aspect is due to both the bulk driving and XY anisotropy (due to the lack of similar
effects for boundary driven only or XX systems). An interesting question is if the XY model gives similar
results for other types of bulk driving/dissipation? Other work in this area suggest that this may indeed be a
general feature. In Joshi et al [16] the XY model with bulk dissipation showed distinctly different behaviours
of the steady-state negativity in the different quantum regimes. Moreover, they also observed rapidly
decaying correlations in the topological/ferromagnetic regime. This is consistent with a robust Liouvillian
gap and thus indicates that XY systems, together with bulk Lindblad operators generally, may prove a
promising avenue for rapid state preparation.
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Appendix A. TASEP embedded in a quantum spin chain

The classical TASEP dynamics are usually described as a stochastic discrete-time update rule [8]. To update
the configuration i; to the configuration 7,4 A, a time-step later, we randomly choose an integer from the
set {0,1,..., N} with a uniform distribution, i.e. each integer has a probability 1/(N + 1) of being selected.

(a) If the outcomeisi € {1,...,N—1},and if n; = 1 and n;4; = 0, we hop the particle from site i to site
i+ 1 with the probability yAt.

(b) If the outcome is i = 0, and if n; = 0, then we should introduce a particle at site i = 1 with the
probability aAt.

(c) If the outcome is i = N, and if ny = 1, then we should remove the particle at site i = N with the
probability SAf.
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We would like to represent this discrete-time state update rule as an operation on the N-qubit classical
state, that preserves the classical nature of the state, i.e. takes a diagonal density matrix to another diagonal
density matrix. To do this, we first consider the quantum operation that represents step (a) above, i.e. the
hopping of a particle from site 7 to site 7 + 1. This can be implemented with the operation p — A?OP[ Al
where:

1
AfPp) =3 KPpRYT, i€ {12, ,N—1}, (A.1)
for the Kraus operators:
K =1000i11) (0:0i41] + [0:Lig1) (0diga| + /T = YAL[1,0i11) (10| + [Liligr) (Liligal, (A.2)
K = /YAt 0i1i41) (1:0i44] . (A3)

Intuitively, the Kraus operator I%l(-l) hops a particle from site i to site i + 1, with probability yAt, only if
site i is occupied and site i 4+ 1 is unoccupied, i.e. it implements step (a). The Kraus operator K EO) leaves the
system unaffected in all other cases. It is easily checked that K EO) TK(_O) +K El) Tf(f-l) = 1, making this is a
well-defined, probability preserving quantum operation. It is also easily checked that this operation
preserves the classical nature of a state, since it takes any diagonal density matrix p to another diagonal
density matrix p.

Similarly, the quantum operation that represents steps (b) and (c) above are p — A°*[p] and
p — A°[p], respectively, where:

1
Aon[ﬁ] Z K(J) é]r):f, Aoff ﬁ Z OJf)prO]f)fT, (A.4)
=0

for the Kraus operators:

KO =1 —aAt]0,) (0,] + |11) (14], (A.5)
K = VaAt|1,) (04, (A.6)
K = on) (On] + /T — BAL|1y) (1n], (A7)
V/BAE|0y) (1x]. (A.8)

(1)
Koff

Again, it is straightforward to check that KQTK©® + KITK(D = 1 and K, ffTK o+ KOHTK i =1, and also
that these operations preserve the classical (1.e. dlagonal) nature of a state p.

Implementing each of these possibilities with the uniform probability 1/(N + 1) gives the full quantum
operation representing the discrete-time state update:

N-1

p(t+ Ar) = A[p(r)] = N—HAOH[ p(0)] + A°ff[ O+ N;H AhOP[p(t)] (A.9)

We can find the classical continuous-time master equation in the At — 0 limit of the discrete dynamics
above. First, we focus on the hopping operation A?OP. For this operation alone, the master equation is
found as:

Ahop o .
lim W VL1576, 1(p(1), (A.10)

where: £(0)[p] = 0pO" — L0TOp — : PO 0. Similarly, for the A°® and A° processes, we have:

1
2

A*[p()] = p(t)

Al‘it—>o At [’[A+]( (), (A.11)
off ~ ~
AIETOW = BLIGNI (D)), (A12)
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respectively. Combining each of these gives the TASEP continuous-time master equation

d ~ —
EP(t) =

N—1
(L) + BLER) + (72 L@; ® &im) BOL  (A13)
i=1

N+1 N+1

Finally, rescaling the rates «, 3, v by a factor of N + 1 gives (3) in the main text, where + is additionally set
to 1.

Appendix B. Block perturbation theory

The structure of the Lindblad operator in the canonical basis allows one to see why, in the weak classical
limit, one can typically focus on the extremum blocks s = 0,1,2 and 2N — 1 to understand the gap scaling.
Starting in the canonical basis, we generalise our previous notation and also label the block matrices
according to the excitation number blocks that they connect. For example £ is the block-matrix that
connects the Oth and 2nd excitation number blocks, whereas, like before, £ labels the n-excitation
number diagonal.

We wish to understand how the coupling to other blocks affects the energies of a particular block and so
employ a Rayleigh—Schrodinger non-Hermitian formulation problem [52], which proceeds very similar to
the Hermitian counterpart. We consider the diagonal blocks as our unperturbed system

Ly= Y [LY] = fj e LY —iAH® (B.1)
sceven SE even
and the perturbation as the off diagonal complement
Li=L—Lo= Y L4 Lot (B.2)
sE even
=€\ Z LGs2) 4 (29, (B.3)
sE even

The left and right eigenvectors | 175’”)} and | vf’“)} are those which diagonalise the diagonal blocks £
<<,Dt('l) “C’(n)‘ /Uj(m}» = 51-(")(5,‘]‘(5"”,(51”, (B4)

Starting with one of the zeroth order states which we obtained by diagonalising one of the diagonal
blocks £ we wish to understand how the addition of the off diagonal blocks perturb this energy

—EgMW W LM 4 (B.5)

The first order correction Si(”)' can be easily seen to vanish simply because £, does not connect any block to
itself
EM = (0" |L1] v]™) = 0. (B.6)

The leading correction to the eigenvalue can thus only occur at second order or higher. Generally, the
second order correction can be written as

o _ A0 1L o) (5 1 £4] )
i - Z g(n) . g(n) .

Jom ! 7

(B.7)

For the steady state |v(”)) with £ = 0 we see that, because £*? = 0, there can be no higher order
corrections to this eigenvalue (as one would expect). In our MPS calculations the same feature can be used
to decouple the steady state from the even parity sector and allows us to converge variationally on the first
even-parity excited state above the gap.
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Figure B1. The difference between the &,,, and £ along with the second order correction £ for a system size of N = 7 with
0 = 0 and 0.5 with boundary driving («, ) of (0.1,0.3) and (0.7,0.9).

Our primary focus here is to understand the energy scaling of states from the s = 2 excitation-number
block on a perturbative level. As £(*? = 0 we only have to consider perturbative paths that connect to the
s = 4 block and thus 20\ ) (D% g | D) | D
e _ Z<<Uj £ |Uj >><<Uj |L%2 ] v 7) (B.8)
i c@ _c@ : :

i ! J

The analysis above is fairly conventional. However there is one anomaly in that we have hidden the small
parameter € in both the diagonal and off diagonal blocks. Thus, we expect the parameter € to appear in both
numerator and denominator of the second order expansion above. For the off-diagonal terms the
contribution there is an overall € factor in each of the £ operators. However, we may also expect some ¢
contributions in both the zeroth order eigenstates and in the real part of the eigenvalues appearing in the
denominator.

If the imaginary part of the denominator is small with respect the real part then we see an €~
contribution occurring from these terms. In practice, however, we see that most of the weight of the occurs
in the opposite limit where the ¢! contribution is negligible. Indeed, we have found that this ¢! scaling is
compensated for via the e dependence within the eigenstates themselves, leaving a net scaling of € with
r > 2. In figure B1 we compare the &, with the zeroth EI estimate along with second order &/
correction. We see that for § = 0 the correction seems to actually scale close to € while for § = 0.5 the

1

scaling is closer to €.

One last question remains; how can we be sure that the real gap magnitude of 51(2) is smaller than that of
51(2)? Here we proceed by observation. In figure B2 we show the behaviour of the absolute value of
eigenvalues that are closest to the steady state for a system size of N = 16. In this figure and in all other
similar calculations we see that the the minimum even gap magnitude comes from the s = 2 sector, and that
it is approximately half that of the s = 4 sector.
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Figure B2. The minimum values of |Re £?| and [Re £¥| for N = 16, & = 0.7, 8 = 0.9, and h, = 1. In the small € limit these
eigenvalues are both proportional to € and we have |£\”| ~ 2|£1?|.

Appendix C. The meaning of even and odd sector gaps

In the main text we distinguished between the maximum non-zero real eigenvalues from both even and odd
parity sectors of the Liouvillian. It is worth discussing briefly what these eigenvalues represent. Firstly, we
note that the block-diagonal structure (see figure 2) can be interpreted as excitation number conservation,
which in the representation used here resembles magnetisation on a 2N-site spin chain. Interactions and/or
dissipation can break this symmetry but still allow excitation parity conservation. Parity then allows us to
divide up the full 22N dimensional space into two 2?N~! dimensional spaces.

The even sector consists of operators that preserve the parity of a state. This includes density operators
p =, py |¥) (1| where |1)) have well defined parity. For this reason the even-sector gap is what
determines the slowest relaxation rate towards the steady state. We have argued that this gap can be largely
understood by focusing on the s = 2 block of the basis rotated Liouvillian super-operator.

The operator Hilbert space allows for more possibility than density matrices. The odd-sector of the
super-operator £, for example, consists of basis states that represent fermionic creation and annihilation
operators [40] and odd numbered products of them. By definition such operators would switch the parity
of a state. For excitation number preserving systems suitable combinations of these single-particle operators
(T _sector) are the quasi-particle excitations and by combining products of such operators one can
generate more complicated n-particle excitation operators in the other excitation number blocks [40].
Although this meaning is diluted if there is no longer excitation number symmetry, it is important to know
where such states occur in order to distinguish them from the even sector gap. We will see again that the
extremal sectors (s = 1 and s = 2N — 1 in this case) allow us to predict the largest odd sector eigenvalue.

Appendix D. Spectrum of the odd sectors

In the canonical basis for the s = 1 and s = 2N — 1 sub-blocks the elements from the commutator can be
read directly from the adjacency-matrix used to define the quadratic Hamiltonian (see e.g. [39, 40]). In
these sub-blocks the terms from stochastic process occur only on the diagonal:

LY = —e[1/2+a — (/2 + 1/4)(non-1 + Snon) — (B/2 + 1/4) (61 + 0u2)], (D.1)

LOND = —e[1/2+ B~ (B/2 + 1/4)(uon—1 + Suan) — (/2 + 1/4) (31 + 622)]. (D.2)

Setting, as throughout, the bulk stochastic hopping amplitude to 1 and neglecting the boundary terms
we see that for the s = 1 (s = 2N — 1) sector the hop-on (hop-off) coefficient «v (3) acts constantly
throughout the bulk of the system and thus the largest real eigenvalues in each sector are effectively linearly
dependent on these hop-on and hop-off rates.

On top of this linear dependence, the imaginary components stemming from the Hamiltonian part of
the Liouvillian also play a crucial role. In the topologically trivial phase (|h,| > J) the bulk imaginary
spectrum in the continuum limit behaves approximately as

Im(E) = £+/(—h, +J cos(k))? + (¢ sin (k)?). (D.3)

16



10P Publishing

New J. Phys. 24 (2022) 023024 K Kavanagh et al

We note here that ] = 1 in our prior analysis and corresponds to the magnitude of the coherent hopping. In
the ferromagnetic/topological phase (h, < J) the open system develops evanescent edge modes on the
Im(E) = 0 line. These modes are the so-called Majorana zero modes that have been studied extensively in
recent years [7, 61—64]. In the limit that these zero-modes have a very long coherence length £ < J/0 > 1
(i.e. small §) we see that the associated real component saturates to the bulk value of ~ — e(y/2 4+ «) or
—€e(y/2 4 ) see (D.1) and (D.2). In the ferromagnetic limit (6 = 1 and h, = 0) the zero-modes are
0-functions at sites # = 1 and n = N and thus the real components can be estimated as —¢(1/2 + «)/2,
—e(1/24+ 8)/2,—e(1/4+ o — B/2),—e(1/4 +  — «/2). When « and [ are both small these topological
driven states slice through the even-sector gap to become closest to the steady state, see figures 2(c) and 7.
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