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DE PAEPE’S DISC HAS NONTRIVIAL POLYNOMIAL HULL

A. G. O’FARRELL and M. A. SANABRIA-GARCÍA

Abstract

The topological disc (De Paepe’s)

P =
{

(z2, z̄2 + z̄3) : |z| 6 1
}
⊂ C2

is shown here to have non-trivial polynomially convex hull. In fact, the authors show that this holds for all
discs of the form X = {(z2, f(z̄)) : |z| 6 r}, where f is holomorphic on |z| 6 r, and f(z) = z2 + a3 z

3 + . . . ,
with all coefficients an real, and at least one a2n+1 6= 0.

1. Introduction

The polynomial hull of a compact set X ⊂ Cn is defined as

X̂ =
{
z ∈ Cn : |p(z)| 6 sup

X

|p| for every holomorphic polynomial p
}
.

This object is important for approximation theory, Banach algebras and spectral
theory, and has been the subject of much study. It is, however, usually a difficult
problem to give an explicit description of the polynomial hull of specific compact
sets X. It is known that the polynomial hull of a smooth arc in Cn is itself, and
that the polynomial hull of a smooth simple closed curve Γ is either itself, or is
obtained by adjoining a one-dimensional analytic variety Γ̂ whose boundary is Γ (see
[1, Chapter 12] and the references therein).

For smooth surfaces X ⊂ C2, some problems remain, but the situation is pretty
well understood when X is diffeomorphic to the closed unit disc, and either X
is totally real or X has an isolated complex tangent plane that satisfies a non-
degeneracy condition; see the survey [7] for an account of the local theory.

One of the problems at the frontier of our understanding concerns the nature of
the hull of a topological disc in C2 which is smooth except for a single singular
point. Another problem concerns the hull of a pair of smooth discs having a single
common point, at which they are tangent to one another. This paper addresses a
problem that relates to both cases.

In 1984, P. J. de Paepe (see [4]) asked about the hull of the topological disc

P =
{

(z2, z̄2 + z̄3) : |z| 6 1
} ⊂ C2.

There have been a number of results about ‘similar’ discs in the interim, but the
problem of whether or not P equals its own hull has resisted attack until now. We
solve this problem (in the context of a rather more general class of such problems),
and we describe a related result about pairs of tangent discs. The method of proof
uses ideas from complex dynamical systems applied to the composition of two
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non-commuting involutions associated with the disc. The inspiration for the idea
came from the great Acta paper [3] of Moser and Webster about normal forms for
surfaces in C2 having an isolated complex tangent of (Bishop) elliptic type.

There are two holomorphic involutions of a disc naturally associated to De
Paepe’s problem. The problem considered by Moser and Webster gives rise to a
pair of involutions of a neighbourhood of 0 in C4. Moser and Webster imbedded
the composition of their involutions into a flow, and then complexified the flow
to obtain orbits which were analytic discs. We follow a broadly similar strategy,
although the detail of the execution is quite different.

2. The main result

Theorem 2.1. Let f(z) be analytic on a neighbourhood of the origin, and such that
f(z) = z2 + a3 z

3 + . . . , with all coefficients an real, and at least one a2n+1 6= 0. Then
for r > 0 small enough, the compact topological disc

X =
{

(z2, f(z̄)) : |z| 6 r} ⊂ C2

has non-trivial polynomial hull.

Proof. Consider the non-trivial holomorphic involution τ1(z) = −z, and let τ2

be the non-trivial holomorphic involution defined by f(τ2(z)) = f(z) near 0.

Let ϕ = τ1 ◦ τ2. Then
ϕ = z + b2z

2 + . . .

near 0, with real coefficients bn. (For De Paepe’s function, b2 = 1. In general,
ϕ(z) = z + bpz

p + . . . for some p > 2, with bp 6= 0.) We note that as ϕ has real
coefficients and is the composition of two involutions, either the positive real axis is
an attracting direction and the negative a repelling one (near 0), or vice versa.

From the theory of one-dimensional complex dynamical systems (see [2, Chap-
ter 2]), there exists a region D (a ‘petal’) with 0 ∈ bdyD and such that ϕ : D → D,
and the action of ϕ on D is conjugate to a translation z 7→ z + 1 on a region D′
that contains a right half-plane Π+. Therefore, we can find a region D′′ ⊂ D and
a semi-flow ϕτ(z) (for τ ∈ H and z ∈ D′′) on D′′, where H is the right half-plane
semigroup H = {τ ∈ C : <e τ > 0}, with ϕ1 = ϕ. Moreover, ϕs(x) ∈ R for s > 0
and x ∈ D′′ ∩R, an open interval having 0 as one endpoint (see Figure 1).

Figure 1. Possible D shapes with D′′ inside.
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Let ζ0 be any point on D′′ ∩R. Then ϕs(ζ0) is real-valued for s > 0, so

ϕτ̄(ζ0) = ϕτ(ζ0)

by the reflection principle, for all <e τ > 0.
Let Ω denote the strip {τ ∈ C : 0 < <e τ < 1/2}, and let L = {τ ∈ C : <e τ = 0}

and R = {τ ∈ C : <e τ = 1/2} be its bounding straight lines.
Define

Φ(τ) =
(
ϕτ(ζ0),−ϕ1−τ(ζ0)

)
,

F(z1, z2) =
(
z2

1 , f(z2)
)
,

G = F ◦ Φ.

Then G(Ω) is a nonsingular one-dimensional analytic variety, imbedded in C2, with
boundary G(L) ∪ G(R) ∪ {0}.

Fix τ = it ∈ L. Then, letting z = ϕit(ζ0), we obtain

Φ(τ) =
(
ϕit(ζ0),−ϕ(ϕ−it(ζ0))

)
=
(
z,−ϕ(z̄)

)
,

and

G(τ) =
(
z2, f(−ϕ(z̄))

)
=
(
z2, f(z̄)

)
,

so G(L) ⊂ X.
On the other hand, if τ = 1/2 + it ∈ R, then 1 − τ = 1/2 − it = τ̄, so letting

z = −ϕτ(ζ0), we obtain

Φ(τ) =
(
ϕ1/2+it(ζ0),−ϕ1/2−it(ζ0)

)
= (−z, z̄),

and

G(τ) =
(
z2, f(z̄)

)
,

so G(R) ⊂ X, as well. Therefore G(bdy Ω) ⊂ X.
Since X \{0} is a smooth totally real submanifold of C2, its intersection with G(Ω)

is at most a one-dimensional set, so G(Ω) 6⊂ X. Also, G(Ω) belongs to the polynomial
hull of X (by the maximum principle), so X has non-trivial polynomially convex
hull. 2

We note that the proof of Theorem 2.1 exhibits a three-manifold in the polynomial
hull of X, which is fibred by a one-parameter family of non-singular complex curves.
We conjecture that this is the entire polynomial hull, in the case of De Paepe’s disc.

3. Concluding remarks

It has been observed in the past (see De Paepe’s survey [6]) that the hull of De
Paepe’s disc is related to the hull of a pair of discs, disjoint except for a single
common tangent at the origin. By much the same method, we can show that the
following proposition is true.

Proposition 3.1. Let f(z) and g(z) be analytic in a neighbourhood of the origin
such that f(0) = g(0), f′(0) = g′(0) 6= 0, and f′′(0) 6= g′′(0), and let

X = {(z, w) ∈ C2 : w = f(z̄) or w = g(z̄)}.
Suppose also that f and g are real-valued on the real axis (near 0). Then X has
non-trivial polynomial hull.
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Proof. Without loss of generality, we can suppose that f(0) = g(0) = 0. By
applying the holomorphic automorphism (z, w) 7→ (f(z), w), we reduce to the
case where f(z) = z, g(z) is real-valued on the real axis and g′(0) = 1, while
g′′(0) 6= 0.

We let ϕ = g. The conditions above imply that either the positive real axis is an
attracting direction and the negative is repelling, or vice versa.

We proceed then as in the proof of Theorem 2.1, but we now consider

Φ(τ) =
(
ϕτ(ζ0), ϕ1−τ(ζ0)

)
.

Then Φ(Ω) is a non-singular analytic curve in C2, with boundary G(L) ∪G(R) ∪ {0}
contained in X. We proceed to check that this boundary lies in X.

Fix τ = it ∈ L. Then, letting z = ϕit(ζ0), we obtain

Φ(τ) =
(
ϕit(ζ0), ϕ(ϕ−it(ζ0))

)
=
(
z, ϕ(z̄)

)
=
(
z, g(z̄)

)
so Φ(L) ⊂ X.

On the other hand, if τ = 1/2 + it ∈ R, then 1 − τ = 1/2 − it = τ̄, so letting
z = ϕτ(ζ0), we obtain

Φ(τ) =
(
ϕ1/2+it(ζ0), ϕ1/2−it(ζ0)

)
= (z, z̄),

so Φ(R) ⊂ X, as well. Therefore Φ(bdy Ω) ⊂ X, and the same argument as in the
proof of Theorem 2.1 shows that X has non-trivial polynomial hull. 2

Remark 3.2. De Paepe previously observed that the disc

X =

{(
z2,

(
z̄

1 + z̄

)2
)

: |z| 6 1

2

}
is non-convex (see [5]). In this particular case, the semigroup action that occurs in
the above proof is realized by a semigroup of linear fractional transformations. The
main point of the above argument is the method by which a suitable semigroup is
identified in the general case.

Remark 3.3. Using the proper holomorphic map (z1, z2) 7→ (z2
1 , z2), we see from

Theorem 2.1 that the pair of discs{(
z, z̄2 + z̄3

)} ∪ {(z, z̄2 − z̄3
)}

has non-trivial polynomial hull. These discs are both totally real on a deleted
neighbourhood of 0, and have second-order contact at 0.

Remark 3.4. We note that Proposition 3.1 is still valid under the weaker as-
sumption of g ◦ f−1 being real-valued on the real axis. On the other hand, the same
argument shows that the union of the two tangent discs

X =
{

(z, w) ∈ C2 : w = z̄ or w = g(z̄)
}

where the holomorphic function g is real-valued on the real axis and g(0) = 0,
g′(0) = 1, g′′(0) = . . . = g(2n−1)(0) = 0, and g(2n)(0) 6= 0, is non-polynomially convex.
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