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Abstract.

Public key encryption has been studied in great detail mainly in the context of the
ring of integers. In this thesis, we develop analogues of popular encryption schemes in
the settings of Gaussian and Eisenstein integers. We will specifically study analogues
of the following asymmetric public key encryption schemes: RSA algorithm, Diffie-
Hellman Key Exchange and El Gamal.
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1. Introduction

Cryptography is the study of methods of sending messages in disguised form so that
only the intended recipients can remove the disguise and read the message; a good
reference is [9]. As stated in [10], a principal goal of public key cryptography is to
allow people to exchange confidential information, even if they have never met and
can communicate only via a channel that is begin monitored by an adversary.

Cryptography is a well-established field in mathematics and computer science. It is
commonly used in everyday life and is a vital part of today’s society and technology,
without most people being aware of where it is used. Cryptography allows us to
securely send emails, exchange messages on social media platforms and securely
access websites. It is also an essential part of online banking and transactions.
Digital currencies such as Bitcoin and Ethereum rely on the ideas developed in
cryptography. These are just a few examples to illustrate how important
cryptography is for our society.

Before the 1970s, most cryptographic systems used symmetric key algorithms, where
the same key is used for both encryption and decryption. In the 1970s, however,
asymmetric public key encryption had its breakthrough. Here, two different keys are
used: a public key for encryption and a secret private key for decryption. Important
cryptographic algorithms developed during this period include the RSA algorithm,
the Diffie-Hellman Key Exchange and the El Gamal encryption scheme. Each of
these algorithms is discussed in this thesis.

Various cryptographic methods using the ring of integers have been investigated. As
the properties of encryption schemes in this ring are well studied, a question that
arises is whether we can create an analogue in other rings. The rings of Gaussian and
Eisenstein integers are natural choices for the next rings to be be considered in this
regard.

In the first chapter, we present basic results in ring theory before going into detail
about the rings of Gaussian integers Z[i] and Eisenstein integers Z[ω]. Prime
numbers play an important role in cryptography. Therefore, we spend some time
discussing the different types of primes we obtain in each ring. The Sieve of
Eratosthenes allows us to find primes in Z, and we discuss analogues of it for Z[i]
and Z[ω].

Cryptography relies on results from number theory and group theory, so we devote
Chapters 5 and 6 to these areas. In particular, we investigate modular arithmetic. In
Z, a set of residue classes representatives modulo a given N > 1 is simply the set
0, 1, . . . , N − 1. By contrast, finding a set of residue classes in Z[i] and Z[ω] is not as
straightforward: in fact, even counting the residue classes takes some effort. In Z[i],
we count the residue classes using a version of Pick’s theorem for polygons (see
Theorem 5.21) while in Z[ω], we use a rather different approach using limits (see
Theorem 5.26). For us, the most useful complete set of residue classes in both rings
consists of all points in a fundamental rhombic region, although we also give a rather
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1. INTRODUCTION 7

different set of representatives when N is a Gaussian or Eisenstein prime but not a
Z-integer. Moreover, we have to find an analogue for Fermat’s Little Theorem in the
Gaussian and Eisenstein integers.

Prime numbers and methods of factorizing large numbers into their prime factors
play an important role in the security of cryptographic schemes. In fact, the RSA
algorithm relies on the fact that it is difficult to find the prime decomposition of
large numbers, while the Diffie-Hellman Key Exchange and the El Gamal encryption
scheme rely on the difficulty of solving the discrete logarithm problem for rings of
prime order. One question that might be asked is how we can efficiently determine
whether or not a large integer is prime. Therefore, we introduce the concept of
probabilistic primality testing. If a number passes this test we conclude that it is
probably a prime (and we can take this probability as close to 1, limited only by the
amount of time we are willing to allocate to the test). However, if it fails the test, we
can conclude that the number is definitely composite.

In Chapter 9, we establish an isomorphism between quotient rings of Z[i] and
quotient rings of Z as well as an isomorphism between quotient rings of Z[ω] and
quotient rings of Z. These isomorphisms will later allow us to translate some of our
work in the rings of Z[i] and Z[ω] to equivalent work in Z.

After a quick overview of public and private key encryption in Chapter 10, we will
begin to look at the various encryption schemes in detail.

In Chapters 11 and 12, we explain how the RSA algorithm works in Z and present
various methods that can be used to attack the encryption scheme. We then move on
to examine the analogue to the RSA algorithm in Z[i]. The interesting aspect here is
that we have to deal with three different cases. The first case is not secure at all, as
it can easily be attacked by efficient factorization. The second case at first seems
new, but the isomorphisms we established in Chapter 9 will reduce the problem to
working in Z. Thus, this case does not give any new insights. The third case is,
however, different from any RSA scheme in Z.

In a similar fashion, we also get three cases when analysing the RSA algorithm for
the Eisenstein integers. Again, one of them is not secure, one gives no new insight,
and one is new.

After discussing the RSA algorithm, we examine the Diffie-Hellman Key Exchange in
Chapters 15–17. We will first introduce the idea in Z before examining the analogues
in Z[i] and Z[ω]. In the ring of Gaussian integers, we have two different types of
primes: Z-primes and non-real Gaussian primes. Therefore, we obtain two different
cases for the Diffie-Hellman Key Exchange in Z[i]. Similarly, we also obtain two
different cases for the Eisenstein integers. Here, we also need to explore the number
of generators in our multiplicative groups and the form the generators can take.

The Diffie-Hellman Key Exchange only allows us to share a secret key, but it does
not allow messages to be exchanged. However, the closely related El Gamal
encryption scheme does allow for message to be exchanged. We discuss analogues of
El Gamal encryption for the rings Z, Z[i] and Z[ω] in Chapter 18.
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In the last chapter, we briefly discuss different methods to attack Diffie-Hellman Key
Exchange and El Gamal encryption.



2. Ring theoretic background

The Gaussian integers and the Eisenstein integers both form commutative rings. In
fact, both are Euclidean domains. In this chapter, we first discuss unique factorization
domains and principal ideal domains before moving on to Euclidean domains. For
more details see [6].
Throughout this thesis, Z is the set of all integers, while N and Z≥0 are the sets of
positive and non-negative integers, respectively.
First, we recall the definition of a ring.

Definition 2.1. A ring R is a set together with two binary operations + and × (called
addition and multiplication) satisfying the following conditions for all r, s, t ∈ R:

(1) (r + s) + t = r + (s+ t) (associativity of +).
(2) (r × s)× t = r × (s× t) (associativity of ×).
(3) There exists a zero element, denoted 0, such that r + 0 = r = 0 + r
(4) r + s = s+ r (commutativity of +).
(5) There exists an additive inverse −r ∈ R such that r + (−r) = 0 = (−r) + r.
(6) There exists an element 1 ∈ R such that r × 1 = r = 1× r.
(7) The following distributive laws hold:

(a) (r + s)× t = r × t+ s× t.
(b) r × (s+ t) = r × s+ r × t.

From now on, we mainly use juxtaposition to indicate multiplication, e.g. we write xy
in place of x× y.
Rings that also satisfy the commutative law for multiplication, i.e. rs = sr for all
s, t ∈ R, are called commutative rings. If a, b are elements in a commutative ring R,
we say that a divides b, written a | b, if b = ca for some c ∈ R.
Definition 2.2. An ideal of a ring R is a nonempty subset I of R such that (I,+) is
a subgroup of (R,+), and both xr and rx lie in R whenever x ∈ I and r ∈ R. In a
commutative ring R, a good way to define an ideal is to take the following set of finite
sums for some fixed x1, . . . , xn ∈ R:{

n∑
i=1

rixi

∣∣∣ r1, . . . , rn ∈ R} ,

This set, which is clearly an ideal, is denoted (x1, . . . , xn). A principal ideal is an ideal
of the form (x) for some x ∈ R.

An element z in a ring R is:

• a left zero divisor if z 6= 0 and zx = 0 for some x ∈ R, x 6= 0.
• a right zero divisor if z 6= 0 and yz = 0 for some y ∈ R, y 6= 0.

An element z ∈ R is a zero divisor if it is both a left and right zero divisor.
A ring R satisfies the cancellation law if

9



2. RING THEORETIC BACKGROUND 10

• ab = ac =⇒ a = 0 or b = c, and
• ba = ca =⇒ a = 0 or b = c

We omit the easy proof of the following lemma.

Lemma 2.3. A ring R satisfies the cancellation law if and only if it has no left or
right zero divisors.

Definition 2.4. A ring R is called a domain if it has no left or right zero divisors. An
integral domain is a commutative domain.

Definition 2.5. An element u ∈ R is a unit if there exists v ∈ R such that uv = 1
and vu = 1, i.e. u is a unit if it is invertible.

Definition 2.6. Elements a, b in a commutative ring R are associates if a = bu for
some unit u.

Definition 2.7. We say a nonzero element π in a domain R is irreducible if it is neither
a unit nor the product of two non-units.

Definition 2.8. Let R be a commutative ring and let p ∈ R be neither zero nor a
unit. We say that p is prime if the condition p | ab for some a, b ∈ R implies that
either p | a or p | b.

Proposition 2.9. In an integral domain, every prime element is irreducible.

Proof. Suppose p is a prime. We know that p is nonzero and not a unit. To prove
irreducibility, it remains to prove that if p = ab, then a and b cannot both be non-units.

Suppose p = ab. By primality, p must divide either a or b. Without loss of generality,
a = pr for some r, and so p · 1 = ab = p · rb. Thus, rb = 1, so b is a unit and p is
irreducible. �

Definition 2.10. A unique factorization domain (UFD) is an integral domain R in
which each nonzero element can be written as a product of a unit and zero or more
irreducibles, and this factorization is unique up to units (and rearrangement) in the
sense that if z ∈ R and

z = u
m∏
i=1

pi = v
n∏
j=1

qj ,

where u, v are units, and every pi and qj is irreducible, then n = m and there is a
permutation φ on {1, . . . ,m} such that pi and qφ(i) are associates for all 1 ≤ i ≤ m.

In the above definition and in what follows, it is convenient to define an empty product
to mean 1 in all cases. If m = 0, the existence of the permutation φ above can be
dropped (or we can define a permutation on an empty set to be the unique empty
relation on the empty set). If z is a non-unit, and so m > 0, we can always absorb
the unit into one of the irreducibles (to get an associated irreducible) and so z is a
product of irreducibles.

Lemma 2.11. In a unique factorization domain, a nonzero element is prime if and
only if it is irreducible.
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Proof. Let R be a unique factorization domain. By Proposition 2.9, primes of R are
irreducible, so it remains to show only that each irreducible element is a prime.

Let p be an irreducible in R and assume p | ab for some a, b ∈ R. We must show that
p divides either a or b. To say that p divides ab is to say ab = pc for some c in R.
Writing a and b as a product of irreducibles, we see from this last equation and from
the uniqueness of the decomposition into irreducibles of ab that the irreducible element
p must be an associate of one of the irreducibles occurring either in the factorization
of a or in the factorization of b. We may assume that p is an associate of one of
the irreducibles in the factorization of a, i.e. that a can be written as a product
a = (up)p2 . . . pn for u a unit and some (possibly empty set of) irreducibles p2, . . . , pn.
But then, p divides a, since a = pd with d = up2 . . . pn, completing the proof. �

Definition 2.12. A principal ideal domain (PID) is an integral domain in which every
ideal is principal (as defined in Definition 2.2).

Theorem 2.13. Every principal ideal domain is a unique factorization domain.

Proof. Let R be a principal ideal domain and let r be a nonzero element of R.
Suppose first that r is a unit. Since rs = 1 for some s ∈ R, we deduce that (r) = R.
Suppose that r = upq, where u is a unit, p is irreducible, and q is a product of zero
or more irreducibles. Since p is irreducible, it is easy to prove that (p) 6= R. Since
(upq) ⊂ (p), this contradicts the equation (r) = R. This proves unique factorization
for units, so we assume from now on that r is a non-unit.

First, we must show that r can be written as a finite product of irreducible elements
of R. Then, we must verify that this decomposition is unique up to units.

If r is irreducible, then we are done, as r is nonzero and not a unit. If not, then r can
be written as a product r = r1r2, where neither r1 nor r2 is a unit. If both of these
elements are irreducibles, then again we are done. Otherwise, at least one of the two
elements, say r1, is reducible, and so it can be written as a product of two non-unit
elements r1 = r11r12, and so forth.

We now must verify that this process terminates. Suppose this is not the case. From
the factorization r = r1r2, we obtain the proper inclusion of ideals: (r) ⊂ (r1) ⊂ R.
Note that the first inclusion is proper since r2 is not a unit. From the factorization of
r1, we similarly obtain (r) ⊂ (r1) ⊂ (r11) ⊂ R. If this process of factorization did not
terminate after a finite number of steps, then we would obtain an infinite ascending
chain of ideals

(r) ⊂ (r1) ⊂ (r11) ⊂ · · · ⊂ R ,

where all containments are proper, and the Axiom of Choice ensures that an infinite
chain exists.

We now show that any ascending chain I1 ⊆ I2 ⊆ · · · ⊆ R becomes stationary, i.e. there
is some positive integer n such that Ik = In for all k ≥ n. Equivalently, it is not possible
to have an infinite ascending chain of ideals where all containments are proper. Let
I =

⋃∞
i=1 Ii. It follows easily that I is an ideal. Since R is a PID, it is principally

generated, say I = (a). Since I is the union of ideals above, a must be an element of
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one of the ideals in the chain, say a ∈ In. But then we have In ⊆ I = (a) ⊆ In and so
I = In and the chain becomes stationary at In This proves that every nonzero element
of R which is not a unit has some factorization into irreducibles in R.

We next show that every irreducible is prime. Suppose that p is irreducible and that
p | ab for some a, b ∈ R. Let I = (a, p) and so there exists d such that (a, p) = (d).
Since p ∈ I, we have p = cd for some c ∈ R. By irreducibility, either c or d is a unit.
If d is a unit, then I = R and there exist r, s ∈ R such that ra + sp = 1. Thus,
b = rab+ spb and,‘since p | ab, we have p | b. On the other hand, if c is a unit, then p
and d are associates and so (p) = (d). Since a ∈ I, we deduce that p | a.
It remains to prove that the above decomposition is unique up to units. We proceed by
induction on n, the number of irreducible factors in some factorization of the element
r. If n = 0, then r is a unit and we already considered this case. Inductively, we prove
unique factorization for a product of n = k > 0 irreducibles, assuming that it holds
for a product of n irreducibles for all 0 ≤ n < k.

Assume therefore that some r ∈ R has the two factorizations

r = p1p2 · · · pk = q1q2 · · · qm ,
where every pi and qi is irreducible (and so also prime, by the above). We may also
assume, without loss of generality, that m ≥ k. Then, p1 divides the product on the
right, so p1 must divide one of the factors. Renumbering if necessary, we may assume
that p1 divides q1, i.e. q1 = p1u for some element u of R. Now u must be a unit because
q1 is irreducible. Thus, p1 and q1 are associates. Cancelling p1, we obtain the equation

p2 · · · pk = uq2q3 · · · qm = q′2q3 · · · qm .
where q′2 = uq2 is again an irreducible (as associate to q2). By induction, we conclude
that each of the factors on the left matches bijectively (up to associates) with the
factors on the far right, and hence (up to associates) with the factors in the middle.
Since p1 and q1 have already been shown to be associates, this completes the induction
step and the proof of the theorem. �

Definition 2.14. Any function N : R → Z≥0 with N(0) = 0 is called a norm on the
integral domain R. If N(a) > 0 for a 6= 0, we call N a positive norm.

Definition 2.15. A ring R is a Euclidean domain (ED) if R is an integral domain
and there is a Euclidean function δ : R \ {0} → N such that

δ(r) ≤ δ(rs) for r, s ∈ R \ {0}
and such that for all nonzero a, b ∈ R, there exists q, r ∈ R such that a = qb+ r where
either r = 0 or r 6= 0 and δ(r) < δ(b), i.e. we have a division algorithm for R.

We will see that the Gaussian integers and the Eisenstein integers both form Euclidean
domains with the very nice norm N(z) = zz̄, z ∈ R and δ = N |R\{0}.
An ED always has many different Euclidean functions δ; in particular, we can always
replace δ by mδ for any desired m ∈ N. We typically assume that an ED R is equipped
with some fixed Euclidean function δ. Then δ gives rise to a positive norm N , simply
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as the extension of δ to R with N(0) = 0. We call this N the standard norm of the
ED (with respect to δ).

Theorem 2.16. Every Euclidean domain is a principal ideal domain.

Proof. Let N be the standard norm of an ED R. If I is the zero ideal, it is certainly
principal. Otherwise, let d be any nonzero element of I with N(d) minimal, where N
is the standard norm; such a d exists since the set {N(a) | a ∈ I \ {0}} has a minimal
element by the Well Ordering of N. Clearly, (d) ⊆ I since d is an element of I. To
show the reverse inclusion, let a be any element of I and use the Division Algorithm
to write a = qd + r with N(r) < N(d). Then r = a − qd and both a and qd are in
I, so r is also an element of I. By the minimality of N(d), we see that r must be 0.
Thus, a = qd ∈ (d), showing that I = (d). �

Combining Theorems 2.16 and 2.13, we deduce:

Corollary 2.17. Every Euclidean domain is a unique factorization domain.



3. Gaussian Integers

As usual, we write complex numbers z ∈ C in the form z = a + bi, where Re(z) := a
and Im(z) := b are real numbers, and i2 = −1.

Throughout this chapter we are mostly following the ideas of [15].

Definition 3.1. The Gaussian Integers Z[i] are the collection of all z ∈ C such that
both Re(z) and Im(z) are integers.

For z = a+ bi ∈ Z[i], the conjugate of z is z̄ = a− bi. Addition and multiplication in
the ring of Gaussian integers Z[i] are inherited from C.
The Gaussian integer norm, N : Z[i]→ Z≥0, is defined by

N(a+ bi) = (a+ bi)
(
a+ bi

)
= a2 + b2.

Thus, N(z) is the square of the absolute value of z.

Since N(z) = zz̄, the following proposition follows readily.

Proposition 3.2. N : Z[i]→ Z≥0 is completely multiplicative, i.e. we have N(zw) =
N(z)N(w) for all z, w ∈ Z[i].

Our first application of the norm is a characterization of Z[i]-units.

Proposition 3.3. The following are equivalent for u ∈ Z[i].

(a) u is a unit.
(b) N(u) = 1.
(c) u ∈ {±1,±i}.

Proof. We first prove the equivalence of (a) and (b). Suppose u is a unit, and so
uv = 1 for some v ∈ Z[i]. Therefore, N(u)N(v) = N(uv) = N(1) = 1, and so both
N(u) and N(v) must be equal to 1.

For the converse, assume that N(u) = 1. As N(u) = uū, we get uū = 1. Hence, u is
a unit in Z[i].

The fact that (c) implies (b) is trivial. Finally, we prove that (b) implies (c). Suppose
u = a+ bi satisfies N(u) = 1, and so a2 + b2 = 1. The only solutions to this equation
are:

• a = ±1 and b = 0, or
• a = 0 and b = ±1˙

Throughout this chapter, a prime (or Gaussian prime for emphasis) refers to a prime
in Z[i]. We will refer to primes in Z as Z-primes.

Corollary 3.4. If z ∈ Z[i] is such that N(z) is a Z-prime, then z is a Gaussian prime.
14
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Proof. Let z ∈ Z[i] have prime norm, say N(z) = p. Consider any factorization of z
in Z[i], say z = xy. Taking norms, we get N(x)N(y) = p. N(x), N(y) ∈ Z, and as p is
prime, either N(x) or N(y) is 1. Hence, either x or y is a unit and thus z is prime. �

As an example of the above corollary, we note that 3+2i is prime becauseN(3+2i) = 13
is prime. However, the converse implication is not true. For example, N(3) = 9 is not
a Z-prime but 3 is a Gaussian prime (as follows for instance from Theorem 3.6 below).

We next show that the norm provides us with a Euclidean function for Z[i].

Proposition 3.5. The ring of Gaussian integers Z[i] is a Euclidean domain with
Euclidean function δ : Z[i] \ {0} → N given by δ(a+ bi) := N(a+ bi) = a2 + b2.

Proof. To show that there is a division algorithm, we let a+ bi, c+ di ∈ Z[i] and we
work inside Q[i] = {α + βi | α, β ∈ Q}:

a+ bi

c+ di
=
a+ bi

c+ di

c− di
c− di

=
(ac+ bd) + (bc− ad)i

c2 + d2

= α + iβ, α, β ∈ Q .

We can choose n,m ∈ Z such that |α− n| ≤ 1
2
and |β −m| ≤ 1

2
. Now we get

a+ bi

c+ di
= n+ im+ ((α− n) + i(β −m)) .

Let n+ im = q and (α− n) + i(β −m) = γ, then
a+ bi

c+ di
= q + γ .

Multiplying across by (c+ di) gives us a+ bi = q(c+ di) + γ(c+ di).

Now, γ(c + di) = (a + bi)− q(c + di). The right-hand side (a + bi)− q(c + di) lies in
Z[i], and therefore the left-hand side γ(c+ di) also lies in Z[i].

Let γ(c+ di) = r. We get

δ(r) = δ(γ(c+ di)) = δ(γ)δ(c+ di) ,

and as
δ(γ) = (α− n)2 + (β −m)2 ≤ 1

2
< 1 ,

we have δ(r) < δ(c+ di).

So, given a + bi, c + di ∈ Z[i], there exist q, r ∈ Z[i] such that a + bi = q(c + di) + r
and either r = 0 or r 6= 0, δ(r) < δ(c+ di). �

As Z[i] is a Euclidean domain, a Gaussian integer is irreducible if and only if it is
prime. An associate of a Gaussian prime is also a Gaussian prime, as is the conjugate
of a Gaussian prime.

Theorem 3.6. Every Gaussian prime is a factor of a Z-prime. Moreover, every Z-
prime p has one of the following Z[i]-factorizations.

• If p = 2, then 2 = (1+ i)(1− i) is a product of two associate Gaussian primes.
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• If p ≡ 3 (mod 4), then p is a Gaussian prime.
• If p ≡ 1 (mod 4), then p is a product ππ̄ of two conjugate non-associate
Gaussian primes.

Proof. Since Z ⊂ Z[i], the first statement of the theorem is obvious. Thus, to find
all Gaussian primes, it suffices to find the Z[i]-prime factorization of all Z-primes.

Let p be a Z-prime. Then N(p) = p2, and so either p is a Gaussian prime or it splits
into two Gaussian primes of norm p. If p splits, then p = πσ, where Im(π), Im(σ) 6= 0.
Since

πσ = p = N(π) = ππ̄ ,

we have σ = π̄. Thus, if p splits, then p = ππ̄. Note that not only do we have
Im(π) 6= 0, but also Re(π) 6= 0 (since π cannot be an associate of a Z-prime).

Suppose p = ππ̄, where π = a + bi. Then N(π) = a2 + b2 = p. Squares of integers
are equivalent to either 0 or 1 modulo 4, so a2 + b2 must be equivalent to 0, 1, or 2
modulo 4. In particular, if p ≡ 3 mod 4, then p does not split and all such Z-primes
are Z[i]-primes.

Since p is prime, we can rule out the possibility that a2 + b2 ≡ 0 mod 4. The case
a2 + b2 ≡ 2 mod 4 can occur only for p = 2, in which case we have 2 = (1 + i)(1− i),
so 2 does indeed split. Note that the split primes are associates: 1− i = −i(1 + i).

The only remaining case in which p might possibly split is when p ≡ 1 mod 4, so let
us consider this case. Euler’s criterion gives the following equation for the Legendre
symbol of −1 with respect to p:(

−1

p

)
= (−1)

p−1
2 = 1 ,

and so −1 is a quadratic residue modulo p.

Hence, there exists an integer c such that c2 + 1 = kp and 0 < c < p. Thus,
N(c+ i) = (c+ i)(c− i) = c2 + 1 = kp .

If p does not split, then either p | (c+i) or p | (c−i). So, p | 1, which is a contradiction.
We conclude that p is not a Z[i]-prime and that it factors as a product of two Z[i]-
primes, i.e. p = ππ̄.

Lastly, we must show that π̄ is not an associate of π. Suppose for the sake of contra-
diction that π̄ = uπ for some unit u. Writing π = a + bi with a, b 6= 0, the equation
ππ̄ = uπ2 becomes

A := a2 + b2 = u(a2 − b2 + 2abi) (3.7)
and so Im(A) = 0. Either u = ±1, in which (3.7) implies that 2ab = 0 (contradicting
the fact that a, b 6= 0) or u = ±i, in which (3.7) implies that a2 = b2 (contradicting
the fact that a2 + b2 ≡ 1 mod 4). Since we get a contradiction in either case, we see
that π̄ is not an associate of π. �

Every Gaussian integer can be factorized into a product of (Gaussian) primes. This
factorization is unique up to the order of the factors, multiplication by units and the
replacement of a Gaussian prime by any of its associates.
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3.1. Gaussian Sieve.

Similarly to the Sieve of Eratosthenes for the natural numbers, we can generate a sieve
for the Gaussian integers which we will call the Gaussian Sieve. We first define the first
octant O1 to consist of all nonzero z ∈ Z[i] with Re(z) > 0 and 0 ≤ Im(z) ≤ Re(z).
(Equivalently, arg(z) ∈ [0, π/4], but we prefer to reserve the symbol π to denote a
Gaussian prime.)

For the Gaussian sieve, the primary search region will be O1. It suffices to find all
primes in O1 since all other primes are generated by conjugation and/or multiplication
by units in Z[i]. There are typically eight primes that we can immediately write down
once we have any given prime π = a + bi ∈ O1 (although in some cases, these eight
reduce to four distinct primes): its associates −a − bi, b − ai, and −b + ai are also
prime, as are the conjugates a− bi, −a+ bi, b+ ai, and −b− ai.
Note though, that there is a big difference between a prime’s associates and their
conjugates. All associates are “essentially the same prime” for divisibility purposes,
but their conjugates (outside of the special cases a = b = 1 and ab = 0) are distinct
from the original prime. In particular, in order to sieve out all composite numbers,
we must not only discard the multiples of the Gaussian primes in O1 but also the
multiples of their conjugates. For instance, i(2− i)(5− 2i) = 9 + 8i ∈ O1 is composite
but it does not have prime factors in O1.

Thus, although we search for primes only in O1, we also need to deal with the larger
set Õ1 := {z, z̄ | z ∈ O1}. It is useful also to define an equivalence relation ∼ on Õ1

where z ∼ w if and only if w ∈ {z, z̄}. We define the associated equivalence classes
[z] = {z, z̄}, z ∈ Õ1 and the set Õ1/ ∼ of these equivalence classes.

To carry out the sieving process, the first thing that we need to do is to place the
elements of O1 in a sequence by defining a useful total order ≺ on O1. Specifically, we
define ≺ to be lexicographic order on the coordinates (a, b) of a+ bi ∈ O1, i.e. a+ bi ≺
c+ di if either a < c or a = c and b < d. We also denote by ≺ the induced total order
on Õ1/ ∼: for z, w ∈ O1, we write [z] ≺ [w] iff z ≺ w. As usual, we write x � y to
mean that either x ≺ y or x = y, and we write x � y as a synonym or y ≺ x. We
similarly define � and � on Õ1/ ∼.

It is clear that the two maps we call ≺ are total orders (on O1 and on Õ1/ ∼). In
order for ≺ to be a useful total order for our sieving process, it should interact well
with factorization in a sense that we now prove.

Lemma 3.8. Suppose x, y ∈ Õ1 and [x] 6= [y]. Then,

(a) y and x are not associates.
(b) If y is divisible by x, then [x] ≺ [y].

Consequently, the Gaussian prime factors π ∈ Õ1 of any y ∈ Õ1 all satisfy [π] � [y],
with equality if and only if y is a Gaussian prime.

Proof. The arguments of any two distinct points in Sw := {w, iw,−w,−iw}, for any
w ∈ C \ {0}, differ by at least π/2. Since the angle of the cone Õ1 is π/2, the only
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way that it can contain two distinct associates x, y of the one number is if one has
argument π/4 and the other has argument −π/4, i.e. they both have the form a± ai
for some a ∈ N. This is inconsistent with [x] 6= [y], so we have proven (a).

We next prove (b). Note first that if z = a+ bi ∈ O1, then a2 ≤ N(z) = a2 + b2 ≤ 2a2,
and so

(Re(z))2 ≤ N(z) ≤ 2 (Re(z))2 , z ∈ O1 .

If u, v ∈ O1, u ≺ v, then either

(i) 0 < Re(u) < Re(v) or
(ii) 0 < Re(u) = Re(v) and 0 ≤ Im(u) < Im(v).

In case (i), we have N(u) ≤ 2(Re(u))2 < 2(Re(v))2 ≤ 2N(v). In case (ii), it is clear
that N(u) < N(v). So, in both cases, N(u) < 2N(v) whenever u ≺ v. In view of the
identity N(w) = N(w̄), w ∈ Z[i], we conclude that

N(u) < 2N(v), for all u, v ∈ Õ1, [u] ≺ [v] . (3.9)

Suppose now that x, y ∈ Õ1, [x] 6= [y], and that y = zx for some z ∈ Z[x]. By (a), x, y
are not associates. Thus, N(y) = N(z)N(x) ≥ 2N(x). In view of (3.9), we cannot
have [y] ≺ [x]. Since [y] 6= [x], we have proved (b).

The final statement of the lemma follows easily from (b). �

With Lemma 3.8 in hand, we can find the Gaussian primes by sieving as follows. We
first discard 1, the only unit in O1. We then inductively declare the next remaining
element x ∈ O1 to be a Gaussian prime and discard all multiples y ∈ O1 of x satisfying
x ≺ y and repeat the process. (Above and later, terms such as next and previous are
always defined with respect to ≺.) To carry this out in a practical setting (typically
on a computer), we confine our work to a bounded initial segment of O1 such as all
z ∈ O1 satisfying z �M +Mi for some M ∈ N. We illustrate this process by carrying
it out for M = 10.

Below, whenever we talk of discarding multiples of x, we mean that we discard from
consideration all Gaussian integer multiples y ∈ O1 of x satisfying x ≺ y � 10 + 10i.

Example 3.10. We use the Gaussian Sieve to find all primes π ∈ O1, π � 10 + 10i.
In the diagrams associated with each step of the sieving process, the Gaussian integers
are the intersection points of dotted lines, we mark the primes in O1 that we have
found so far by •, we mark the unit 1 by ×, and we mark all associated (discarded)
multiples of those primes by either ⊗ or ×, depending on whether this element was
discarded at the current step or an earlier step, respectively. Gaussian integers in
O1 whose primality status has yet to be decided after some step of the induction are
shown as undecorated intersection points.

After discarding 1, the next element of O1 is 1 + i. We declare it to be a prime and
discard all multiples y of 1+i. (Unlike later primes, we do not need to discard multiples
of the conjugate prime 1 − i because 1 + i and 1 − i are associates.) This concludes
Step 1 and is illustrated in Figure 1.
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We now move on to 2 + i, the next remaining element of O1 after 1 + i. We declare
2 + i to be a prime and discard all multiples y of 2± i. This concludes Step 2 and is
illustrated in Figure 2.
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Figure 2. Gaussian Sieve after Step 2
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The next remaining element of O1 after 2+i is 3. We declare 3 to be prime and discard
all its multiples. This concludes Step 3 and is illustrated in Figure 3.
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Figure 3. Gaussian Sieve after Step 3

The next remaining element of O1 after 3 is 3 + 2i. We declare it to be a prime and
discard all multiples of 3± 2i to get Figure 4.
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Figure 4. Gaussian Sieve after Step 4



3. GAUSSIAN INTEGERS 21

The next remaining element of O1 after 3 + 2i is 4 + i. We claim that if x, y ∈ O1 are
such that 4+ i � x ≺ y � 10+10i and x is a factor of y, then y must also have a factor
z ∈ Õ1 such that [z] ≺ [x]. The prime factors π ∈ Õ1 of z satisfy [π] � [z] ≺ [x] by
Lemma 3.8 so if we accept this claim, then all such composite y are already discarded.
It follows that, in addition to declaring 4 + i to be prime, we can also declare to be
prime every x ∈ O1 satisfying 4 + i ≺ x � 10 + 10i that has not previously been
discarded.
Let us prove the claim. First, it is straightforward to show that if x, y ∈ O1, y �
10 + 10i, with y = zx for some z ∈ Z[i], then z ∈ Õ1. Suppose for the sake of
contradiction that y = zx where we do not have [x] � [z].
If 4 + i � w ∈ O1, then w = a + bi, where either a = 4 and b ≥ 1, or a > 4. In the
former case, N(w) ≥ 42 + 1 = 17, while in the latter case, N(w) ≥ 52 = 25. Thus, in
either case, N(w) ≥ 17. Taking w = x and w = z in this inequality gives

N(y) = N(z) ·N(x) ≥ 172 > 200 = N(10 + 10i) ≥ N(y) ,

yielding a contradiction. Note that the last inequality follows readily from the inequal-
ity y � 10 + 10i.
Now that the claim is proved, we see that we have the following complete list of
Gaussian primes π ∈ O1 satisfying π � 10 + 10i:

1 + i, 2 + i, 3, 3 + 2i, 4 + i, 5 + 2i, 5 + 4i, 6 + i, 6 + 5i, 7,
7 + 2i, 8 + 3i, 8 + 5i, 8 + 7i, 9 + 4i, 10 + i, 10 + 3i, 10 + 7i, 10 + 9i.

The situation is thus as in Figure 5; since the process is now finished (for primes
π � 10 + 10i), we indicate only primes in this final diagram.

Figure 5. Gaussian primes in first octant

If we want to find all Gaussian primes, not just those in O1, we simply multiply by
units and take conjugates of the primes provided by our Gaussian Sieve. For instance,
doing this for the primes in Figure 5 gives Figure 6. Axes of symmetry are added to
emphasise the symmetry.
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Figure 6. Gaussian primes

Having completed the sieving process for x ∈ O1 ≺ 10+10i, let us discuss some details
of the process for x ≺ M + Mi for general M ∈ N, M > 1, that are not completely
clear from the above special case.

First of all, there is the question of stopping conditions for the main set of steps of
the sieving process, i.e. when can we declare that we have gone far enough and all
remaining x ∈ O1, x �M +Mi are prime?

As in the special case M = 10 examined above, if a number x ∈ O1, x � M + Mi, is
composite, it must have a prime factor π satisfying N(π) ≤ M

√
2 =

√
N(M +Mi).

Thus, we need to discard only multiples of such numbers. This means that we need
to consider x = a + bi ∈ O1 only for a2 ≤ M

√
2 and, for fixed a > 1, we need to

consider b only for b ≤ min{a − 1,
√
M
√

2− a2}. (We never need to consider b = a
since a + ai is already discarded as a multiple of 1 + i.) Thus, the required sieving
region is roughly as shaded in Figure 7.

Given a fixed prime π = a + bi found in the sieving process, we now need to discuss
what multiples of τ ∈ {π, π̄} need to be discarded. In both cases, we should discard
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b

a

b = a− 1

b =
√
M
√

2− a2

21/4M1/2

1 21/4M1/2

Figure 7. Sieving region

w = zτ for every z ∈ Z[i] that produces a product w ∈ O1, w � M + Mi, unless we
know that it has already been discarded. By considering how the arguments of z, τ ,
and w ∈ O1 relate to each other, we see that

• if τ = π, then z must lie in Õ1,
• if τ = π̄ with b > 0, then z must lie in the first quadrant with d > 0.

Throughout our analysis, we write z = c+di and w = e+fi, so that either e = ac−bd
and f = ad+ bc (if τ = π) or e = ac+ bd and f = ad− bc (if τ = π̄).

Let us first consider the special case π = 1 + i. In this case, e = d+ c and f = d− c,
so we need to discard every e + fi where 2 ≤ e ≤ M , 0 ≤ f ≤ e, and e − f is even.
Note in particular that we discard e+ ei for all 2 ≤ e ≤M . From now on, we assume
that π � 1 + i, and so N(π) ≥ N(2 + i) = 5.

We implement the deletion of multiples of τ in computer code using an outer loop
over appropriate c ∈ Z and an inner loop (for fixed c) over appropriate d ∈ Z. The
problem now is to choose the definitions of appropriate in this last sentence so as to
minimise the amount of calculations involved. More explicitly, we consider multipliers
z = c + di for all cmin ≤ c ≤ cmax and dmin ≤ d ≤ dmax where cmin and cmax depend
only on τ , but dmin and dmax can additionally depend on c.

Below, we consider possible computational efficiencies that involve increasing cmin and
dmin and decreasing cmax and dmax. There are other efficiencies that we do not discuss
because they involve coding optimizations rather than mathematical optimizations.
For instance, computers can add and subtract faster than they can multiply so, once
we have computed w = e+fi for τ = π and a given z = c+di and we wish to compute
the new w for z = c + (d + 1)i in the next pass of the inner loop, it is more efficient
to subtract b from e and add a to f instead of carrying out another multiplication in
our code.
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Consider first τ = π. We first consider the outer loop, i.e. the values of c that we need
to handle. Since z ∈ Õ1, we certainly have c ∈ N. Moreover, N(w) = N(z)N(π),
N(z) ≥ c2, and N(x) ≤ 2M2 for all x ∈ O1, x �M +Mi, so it would certainly suffice
to take cmin = 1 and cmax = bM

√
2/N(π)c. However, we can do better than this, at

least for cmin. If [z] ≺ [π], then Lemma 3.8 ensures that w is a multiple of some prime
or its conjugate that was considered at an earlier step. Thus, we can take cmin = a
rather than cmin = 1.

We now consider the inner loop. As already mentioned, we must have z ∈ Õ1, and so
we could take dmin = −c and dmax = c. However, we can do better than this for both
dmin and dmax.

Since w ∈ O1, we must certainly have − arg(π) ≤ arg(z). Thus, instead of taking
dmin = −c, we can take dmin = −bcb/ac. We then loop through successive values of d
and calculate the associated products w until we reach a point where f ≥ e, at which
point we can stop because any further increase in b decreases e and increases f , taking
w outside O1.

We have not explicitly written down a new dmax, but our stopping condition defines
it implicitly. By considering the equation arg(w) = arg(z) + arg(π), we see that this
stopping condition is reached before d reaches c, i.e. the new (implicitly defined) dmax
is strictly less than the initial inefficient choice dmax = c.

Other minor improvements could be made. For instance, since we only need to consider
z with [π] � [z], when c = a, it suffices to consider d = −b and d ≥ b. To see
this, note that in our discussion of the inner loop, we said that we could start with
d = −bcb/ac, which here means starting with d = −b. We do not need to consider
values −b < d < b because then [z] ≺ [π]. (The number of multipliers that each of
the previous improvements removed from consideration grows quadratically inM , but
the savings here grow only linearly in M , which is why we described it as a minor
improvement.)

The minor improvement above is part of the reason why we did not discard any point
in Step 4 of the sieving process forM = 10. In this step, we were considering multiples
of π = 3 + 2i. Since ππ̄ = 13 � 10, we only need to consider z = 3 + di for d ≥ 2
and z = c + di for c ≥ 4. In the former case, we get a product e + fi with f > e,
so we have already reached the stopping condition in the inner loop. We do not
need to consider the latter case because of the stopping condition for the outer loop,
i.e. because M

√
2/N(π) = 10

√
2/13 < 4. (This is only a partial explanation of the

absence of any points discarded in this step because it relates only to multiples of π.
We have yet to consider multiples of π̄, but a very similar analysis applies there, as
we will see.)

Let us now discuss how to efficiently deal with multiples of π̄ = a− bi where, without
loss of generality, b > 0. For the outer loop, we can, as for τ = π, take cmin = a and
cmax = bM

√
2/N(π)c.

As for the inner loop, recall that the multiplier z = c+di must lie in the first quadrant
with d > 0. Since we need f = ad − bc ≥ 0, we can choose dmin = dcb/ae. As we
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increment d, each of e, f , and arg(z) increases, and arg(w) also increases. Thus, we
can stop when either f ≥ e or min{e, f} > M .



4. Eisenstein Integers

Definition 4.1. The set of Eisenstein Integers is Z[ω] = {a+ bω | a, b ∈ Z}, where

ω =
−1 + i

√
3

2
is a primitive cube root of unity.

It is easily verified that the (complex) conjugate of ω is ω2. It follows that the conjugate
of z = a+ bω ∈ Z[ω] is z̄ = a+ bω2, a, b ∈ Z.
When writing z ∈ Z[ω] in “expanded” form, we can choose between the a + bω form
and the a + bω2 form. These are equivalent since ω2 = −ω − 1. For either form, we
employ the implicit convention that a, b ∈ Z. We mostly use the a+ bω form, but the
equation a+ bω2 = a+ bω makes the a+ bω2 form useful for sieving in Section 4.1.
Addition and multiplication in the ring of Eisenstein integers Z[ω] are inherited from
C. It follows that if a+ bω, c+ dω ∈ Z[ω], then

• (a+ bω) + (c+ dω) = (a+ c) + (b+ d)ω, and
• (a+ bω)(c+ dω) = (ac− bd) + (bc+ ad− bd)ω

A norm of the Eisenstein integers, N : Z[ω]→ Z≥0, is defined by

N(z) = zz̄ = a2 − ab+ b2 =
3a2

4
+
(
b− a

2

)2
.

whenever z = a+bω. Throughout this chapter, we will use without comment whichever
of these forms of the norm is most convenient.
Using the form N(z) = zz̄, the following proposition follows readily.

Proposition 4.2. The norm N : Z[ω]→ Z≥0 is completely multiplicative (as implicitly
defined in Proposition 3.2).

Proposition 4.3. The following are equivalent for u ∈ Z[ω].

(a) u is a unit.
(b) N(u) = 1.
(c) u ∈ {±1,±ω,±ω2}.

Proof. The fact that (c) implies (b) is trivial, and we also omit the easy proof of
equivalence of (a) and (b) (which in any case is very similar to the corresponding
equivalence in Proposition 3.3).
Finally, we prove that (b) implies (c). Let u = a+ bω ∈ Z[ω] be such that N(u) = 1,
i.e.

3a2

4
+
(
b− a

2

)2
= 1 .

Multiplying both sides by 4 gives us:
3a2 + (2b− a)2 = 4 .

The solutions to this equation are:
26
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(i) a2 = 1 and (2b− a)2 = 1, or
(ii) a2 = 0 and (2b− a)2 = 4.

Case (i) implies that either
• a = 1 and b ∈ {0, 1}, or
• a = −1 and b ∈ {−1, 0}.

Case (ii) implies that a = 0 and b = ±1.
Hence, the units in Z[ω] are ±1,±ω and ±ω2. �

Throughout this chapter, a prime (or Eisenstein prime for emphasis) refers to a prime
in Z[ω]. We will refer to primes in Z as Z-primes.

Corollary 4.4. If z ∈ Z[ω] is such that N(z) is a Z-prime, then z is an Eisenstein
prime.

We omit the proof of this corollary, as it is analogous to the proof of Corollary 3.4.

As an example of the above corollary, note that 3+2ω is prime becauseN(3+2ω) = 7 is
prime. However, the converse is not true. For example, N(11) = 121 is not a Z-prime
but 11 is an Eisenstein prime (as follows for instance from Theorem 4.6 below).

We next show that the norm provides us with a Euclidean function for Z[ω].

Proposition 4.5. The ring of Eisenstein integers Z[ω] is a Euclidean domain with
Euclidean function δ : Z[ω] \ {0} → N given by δ(a+ bω) = a2 − ab+ b2.

Proof. To show that there is a division algorithm, we let a+ bω, c+ dω ∈ Z[ω] and
we work inside Q[ω] = {α + βω | α, β ∈ Q}.

a+ bω

c+ dω
=
a+ bω

c+ dω
· c+ dω2

c+ dω2
=

(ac− ad+ bd) + (bc− ad)ω

c2 − cd+ d2

= α + βω , where α, β ∈ Q .

We can choose n,m ∈ Z such that |α− n| ≤ 1
2
and |β −m| ≤ 1

2
. Now, we get

a+ bω

c+ dω
= n+ ωm+ ((α− n) + (β −m)ω) .

Let n+mω = q and (α− n) + (β −m)ω = γ. Then
a+ bω

c+ dω
= q + γ .

Multiplying across by (c+ dω) gives

a+ bω = q(c+ dω) + γ(c+ dω) .

Now, γ(c + dω) = (a + bω) − q(c + dω). The right-hand side, (a + bω) − q(c + dω),
lies in Z[ω], and therefore the left-hand side, γ(c+ dω) also lies in Z[ω].

Let γ(c+ dω) = r. We get

δ(r) = δ(γ(c+ dω)) = δ(γ)δ(c+ dω) ,
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and as
δ(γ) = (α− n)2 − (α− n)(β −m) + (β −m)2 ≤ 3

4
< 1 ,

we get δ(r) < δ(c + dω). So, given a + bω, c + dω ∈ Z[ω], there exist q, r ∈ Z[ω] such
that a+ bω = q(c+ dω) + r and either r = 0 or r 6= 0, δ(r) < δ(c+ dω). �

As Z[ω] is a Euclidean domain, an Eisenstein integer is irreducible if and only if it
is prime. An associate of an Eisenstein prime is also an Eisenstein prime, as is the
conjugate of an Eisenstein prime.

Theorem 4.6. Every Eisenstein prime is a factor of a Z-prime. Moreover, every
Z-prime p has one of the following Z[ω]-factorizations.

• If p = 3, 3 = (2+ω)(2+ω2) is the product of two associate Eisenstein primes.
• If p ≡ 2 (mod 3), then p is an Eisenstein prime.
• If p ≡ 1 (mod 3), then p is a product of two conjugate non-associate Eisenstein
primes ππ̄.

Proof. Since Z ⊂ Z[ω], the first statement of the theorem is obvious. Thus, to find
all Eisenstein primes, it suffices to find the Z[ω]-prime factorization of all Z-primes.

Let p be a Z-prime. Then N(p) = p2, and so either p is an Eisenstein prime or it splits
into two Eisenstein primes of norm p. If p splits, then p = πσ, where Im(π), Im(σ) 6= 0.
Since

πσ = p = N(π) = ππ̄ ,

we have σ = π̄. Thus, if p splits, then p = ππ̄.

Suppose p = ππ̄, where π = a + bω, and so N(π) = a2 − ab + b2. If either a or b
is a multiple of 3, it is clear that N(π) is equivalent to either 0 or 1 modulo 3. If
a = b = ±1 mod 3, then N(π) = 1 (mod 3). Finally, if one of a and b is equivalent
to 1 modulo 3 and the other equivalent to −1 modulo 3, then N(π) ≡ 0 mod 3. Note
that we never get N(π) ≡ 2 mod 3, and so we conclude that if p ≡ 2 mod 3, then p
does not split and all such Z-primes are Eisenstein primes.

Given that N(π) = p is prime, the case N(π) ≡ 0 mod 3 can occur only for p = 3, in
which case we have 3 = (1 + 2ω)(1 + 2ω2). These two Eisenstein primes are associates
since −(1 + 2ω2) = 1 + 2ω.

Finally, it remains to consider the case p ≡ 1 mod 3. Suppose we can show that
(c + ω)(c + ω2) = kp, for 0 < c < p, and some k ∈ Z. If p does not split, then either
p | (c+ ω) or p | (c+ ω2), so p | 1, which is a contradiction. So we want to prove that
there exists such a c.

Now, N(c+ω) = c2− c+ 1 ≡ 0 (mod p). A solution to this in the field Zp is formally
given by the usual equation

c =
1±
√
−3

2
,

assuming that this makes sense. The only reason that this equation might not make
sense is if −3 does not have a square root.



4. EISENSTEIN INTEGERS 29

By Euler’s criterion and the Law of Quadratic Reciprocity,(
−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)

p−1
2

(p
3

)
(−1)

(p−1)(3−1)
4 =

(p
3

)
.

Clearly,
(
p
3

)
= 1 if p ≡ 1 (mod 3). So there exists c such that 0 < c < p and

c2 − c+ 1 = kp. Hence, p must split, i.e. p = (a+ bω)(a+ bω2). �

Every Eisenstein integer can be factorized into a product of Eisenstein primes. This
factorization is unique up to the order of the factors, multiplication by units and the
replacement of an Eisenstein prime by any of its associates.

4.1. Eisenstein Sieve.

We can generate an Eisenstein Sieve in a similar fashion to the Gaussian Sieve. We
first define the fundamental cone C1 ⊂ Z[ω] to consist of all nonzero z = a+bω ∈ Z[ω]
such that b ≤ a/2. (Equivalently, arg(z) ∈ [0, π/6], but we prefer to reserve the symbol
π to denote an Eisenstein prime.)

For the Eisenstein Sieve, the primary search region will be C1, since all other Eisenstein
integers can be generated by conjugation and/or multiplication by units in Z[ω]. If
an Eisenstein integer in C1 is prime, then its associates and their conjugates are also
prime. (As in the Gaussian case, a prime will always refer to an Eisenstein prime, and
we use Z-prime to refer to a prime in Z.)
Since there are six units, every Eisenstein prime has six associates (including itself),
and these six each have their conjugates, giving twelve related primes in general (al-
though, as in the Gaussian case, the total number halves in certain cases). Explicitly,
given a prime a+bω, its associates are itself, b+(b−a)ω, b−a−aω, and the negatives
of these, and the conjugates are a− b− bω, b+ aω, a+ (a− b)ω, and the negatives of
these.

As for the Gaussian primes, we need to deal not only with the search region C1, but
also with the larger region C̃1 := {z, z̄ | z ∈ C1}. We define an equivalence relation
∼ on C̃1 where z ∼ w if and only if w ∈ {z, z̄}. We define the associated equivalence
classes [z] = {z, z̄}, z ∈ C̃1 and the set C̃1/ ∼ of these equivalence classes.

As with the Gaussian integers, the first thing that we need to do is to place the elements
of C1 in a sequence by defining a useful total order ≺ on C1. Specifically, we define ≺
to be lexicographic order on the “coordinates” (a, b) of a+bω ∈ C1, i.e. a+bω ≺ c+dω
if either a < c or a = c and b < d. We also denote by ≺ the inherited total order on
C̃1/ ∼: for z, w ∈ C1, we write [z] ≺ [w] iff z ≺ w. We define the relations � and �
on C1 and on C̃1/ ∼ in the obvious way.

It is clear that the two maps we call ≺ are total orders (on C1 and on C̃1/ ∼). In
order for ≺ to be a useful total order, we need the following Eisenstein analogue of
Lemma 3.8.

Lemma 4.7. Suppose x, y ∈ C̃1 and [x] 6= [y].

(a) y and x are not associates.
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(b) If y is divisible by x, then [x] ≺ [y].

Consequently, the Eisenstein prime factors π ∈ C̃1 of any y ∈ C̃1 all satisfy [π] � [y],
with equality if and only if y is an Eisenstein prime.

Proof. We first claim that

N(y) ≤ 4N(x)

3
, for all x, y ∈ C̃1, [y] � [x] (4.8)

Since N(y) = N(ȳ), it suffices to prove this claim for x, y ∈ C1. This follows rather
easily from the fact that the minimum value of a2 − ab+ b2 for fixed a ∈ N and b ∈ R
satisfying 0 ≤ b ≤ a/2 occurs at b = a/2 (which in turn follows readily by a variety of
means, including calculus or plane geometry, so we omit the details).

With (4.8) in hand, the rest of the proof is as for Lemma 3.8. �

To carry out the Eisenstein sieve, we first discard the units 1 and 1 + ω. We declare
the ≺-minimal remaining element of C1, namely 2, to be prime, and we discard all its
(Eisenstein) multiples y ∈ C1. Then, we move on to the next Eisenstein integer and
we repeat the process of deleting its multiples. (Above and later, terms such as next
and previous are always defined with respect to ≺.) To carry this out in a practical
setting (typically on a computer), we confine our work to a bounded initial segment
of C1 such as all z ∈ C1 satisfying z � 2M + Mi for some M ∈ N. We illustrate this
process by carrying it out for M = 5.

Below, whenever we talk of discarding multiples of x, we mean that we discard from
consideration all Eisenstein integer multiples y ∈ C1 of x satisfying x ≺ y � 10 + 5ω.

Example 4.9. We use the Eisenstein Sieve to find all primes π ∈ C1, π � 10 + 5ω. In
the diagrams associated with each step of the sieving process, the Eisenstein integers
are the intersection points of dotted line segments. Each such segment consists of all
points in C1 of the form n + tω or m + tω2, as t ∈ R ranges over R, and n or m is a
fixed integer. Since an Eisenstein integer can be written in both forms, any Eisenstein
integer in C1 is obtained by intersecting two such line segments.

At each step, we mark the primes in C1 that we have found so far by •, we mark
the units by ×, and we mark all associated (discarded) multiples of those primes by
either ⊗ or ×, depending on whether this element was discarded at the current step or
an earlier step, respectively. Eisenstein integers in C1 whose primality status has yet
to be decided after some step of the induction are shown as undecorated intersection
points.

After discarding the unit 1, the first Eisenstein integer we find is 2. We discard all
multiples multiples of 2 up to 10 + 10i, as illustrated in Figure 8.

Now, we move on to 2+ω, the next Eisenstein integer in C1 that has not been discarded.
We declare 2 + ω to be an (Eisenstein) prime and discard all multiples y of 2 + ω, as
illustrated in Figure 9.

Let us note two points here. First, note that for this step, there is no need to discard
multiples of the conjugate prime 2 + ω2, because it is an associate of 2 + ω.
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× ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗

⊗ ⊗

Figure 8. Eisenstein Sieve after Step 1

× × × × ×

× × × ×

× ×

⊗ ⊗
⊗ ⊗

⊗
⊗ ⊗

⊗

Figure 9. Eisenstein Sieve after Step 2

Second, as in the Gaussian case, it suffices to consider multipliers a + bω such that
[2 + ω] � [a + bω]. To do this with multipliers in C̃1 \ C1, it is convenient to use the
format a+ bω2 instead of a+ bω since it interacts better with ≺. For instance, if using
the format a+bω2, we can take 2+ω2 as the first multiplier. If using the other format,
it would be a mistake to look only at multipliers of the form a+ bω for a ≥ 2 because
we would miss the multiple (2 + ω)(1− ω) = 3.
We next declare 3+ω to be prime and discard all multiples of 3+ω and of its conjugate
3 + ω2, as illustrated in Figure 10.
The next remaining number is 4+ω. As before, we declare this to be prime. However,
we claim that in fact all remaining x ∈ C1, 4 + ω ≺ x ≺ 10 + 5ω are prime.
To prove our claim, suppose that y ∈ C1, y � 10 + 5ω is composite. We first use
(4.8) to deduce that N(y) ≤ 4N(10 + 5ω)/3 = 100. Suppose y has a prime factor
π = a+ bω ∈ C̃1, with [4 + ω] � [π]. Then, we also have [4] ≺ [π], and so we similarly
deduce that N(π) ≥ 3N(4)/4 = 12. Since 12 exceeds the square root of 100, y cannot
have two such prime factors. Thus, y must have a prime factor τ such that [τ ] ≺ [4+ω]
and so it is already discarded at an earlier step. This proves the claim.
Thus, at the end of the sieving process, we have the following complete list of Eisenstein
primes π ∈ C1, π � 10 + 10ω:
2, 2 + ω, 3 + ω, 4 + ω, 5, 5 + 2ω, 6 + ω,
7 + ω, 7 + 3ω, 9 + ω, 9 + 2ω, 9 + 4ω, 10 + 3ω.
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× × ×× × × ×
× ×

×× × × ×
× ×

× ×
×

⊗
⊗

⊗

Figure 10. Eisenstein Sieve after Step 3

Figure 11. Eisenstein primes in the first octant

The situation is thus as in Figure 11; since the process is now finished (for primes
π � 10 + 5ω), we indicate only primes in this final diagram.

If we want to find all Eisenstein primes, not just those in C1, we simply multiply by
units and take conjugates of the primes provided by our Eisenstein Sieve. For instance,
doing this for the primes in Figure 11 gives Figure 12. Axes of symmetry are added
to emphasise the symmetry.

Having completed the sieving process for x ≺ 10 + 5ω, let us discuss some details of
the process for x ≺ 2M +Mω for general M ∈ N, M > 1.

First of all, there is the question of stopping conditions for the main steps of the sieving
process, i.e. when can we declare that we have gone far enough and all remaining
x ∈ C1, x � 2M +Mω are prime?

If a number x ∈ C1, x � 2M + Mω, is composite, it must have a prime factor π
satisfying

N(π) ≤
√
N(x) ≤

√
4 ·N(2M +Mω)

3
= 2M ,

and so we need to discard only multiples of such numbers; note that the second inequal-
ity above follows from (4.8). Again by (4.8), if π = a+bω ∈ C1 (and so a � π), we have
N(π) ≥ 3N(a)/4 = 3a2/4. This means that we need to examine only x = a+ bω ∈ C1
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Figure 12. Eisenstein primes

where 3a2/4 ≤ 2M , and so a ≤ 2
√

2M/3. Also, for fixed a > 0, we need to consider b
only for max{a/2−

√
2M − 3a2/4, 0} ≤ b ≤ a/2.

Given a fixed prime π = a + bω found in the sieving process, we now need to discuss
what multiples of τ ∈ {π, π̄} need to be discarded. In both cases, we should discard
w = zτ for every z ∈ Z[ω] that produces a product w ∈ C1, w � 2M + Mω, unless
we know that it has already been discarded. By considering how the arguments of z, τ ,
and w ∈ C1 relate to each other, we see that

• if τ = π, then z must lie in C̃1,
• if τ = π̄ with b > 0, then z must lie in the region consisting of all c + dω,

0 < d ≤ c.

Throughout our analysis, we write z = c+ dω (if d > 0) or z = c− dω2 (if d < 0) and
w = e+ fω.

We implement the deletion of multiples of τ in computer code using an outer loop
over appropriate c ∈ Z and an inner loop (for fixed c) over appropriate d ∈ Z, and
we would like to minimise the amount of calculations involved. More explicitly, we
consider multipliers z = c+dω (if d ≥ 0) or z = c−dω2 (if d < 0) for all cmin ≤ c ≤ cmax
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and dmin ≤ d ≤ dmax where cmin and cmax depend only on τ , but dmin and dmax can
additionally depend on c.

Consider first τ = π. Note that either e = ac − bd and f = bc + ad − bd if d ≥ 0 or
e = ac − bd + ad and f = bc + ad if d < 0. We first consider the outer loop, i.e. the
values of c that we need to handle. Since z ∈ C̃1, we certainly have c ∈ N. Moreover,
N(w) = N(z)N(π), N(z) ≥ 3c2/4, and N(x) ≤ 4M2 for all x ∈ C1, x � 2M + Mω,
so it would certainly suffice to take cmin = 1 and cmax =

⌊
2M/

√
N(π)

⌋
. However, we

can do better than this, at least for cmin. If [z] ≺ [π], then Lemma 4.7 ensures that
w is a multiple of some prime or its conjugate that was considered at an earlier step.
Thus, we can take cmin = a rather than cmin = 1.

We now consider the inner loop. As mentioned already, we must have z ∈ C̃1, and so
we could take dmin = −bc/2c and dmax = bc/2c. However, we can do better than this
for both dmin and dmax.

Since w ∈ C1, we must certainly have arg(z) ≥ − arg(π). Thus, instead of taking
dmin = −bc/2c, we can take dmin = −bcb/ac. We then loop through successive values
of d and calculate the associated products w until we reach a point where f > e/2. By
considering the arguments of π, z, and w, it is clear that this point is reached for some
d satisfying 0 ≤ d ≤ c/2. We can stop because any further increase in d increases the
arguments of both z and w, taking w further outside C1.

Let us now discuss how to efficiently deal with multiples of π̄ = a+bω2 where, without
loss of generality, b > 0. Note that we now have e = ac + bd − bc and f = ad − bc
(since we must have d > 0, or equivalently arg(z) > 0, to ensure that arg(w) > 0).

For the outer loop, we can, as for τ = π, take cmin = a and cmax =
⌊
2M/

√
N(π)

⌋
.

As for the inner loop, recall that the multiplier z = c + di must satisfy 0 < d < c.
Since we need f = ad − bc ≥ 0, we can choose dmin = dcb/ae. As we increment d,
each of e, f , and arg(z) increases, and arg(w) also increases. Thus, we can stop when
f ≥ e/2, e > 2M , or f > M .



5. Number theory in Z[i] and Z[ω]

In this chapter, we discuss various number theoretic results for Z that are also true
in Z[i] and Z[ω]. We often take R to be any one of these three rings. In fact, our
presentation is valid in any ring R that has a norm N : R → Z≥0 which provides
a Euclidean function (by restricting to nonzero elements) and which is completely
multiplicative (as implicitly defined in Proposition 3.2), but we prefer to keep the
emphasis on these special rings because they are the ones that are important for us.
As a standing assumption, N(z) := zz̄ in Z[i] and Z[ω] and N(z) := |z| in Z.
We begin with a result that depends only on the fact that N provides us with a
Euclidean function.

Theorem 5.1 (Division Theorem). Let R denote Z, Z[i], or Z[ω]. For a, b ∈ R with
b 6= 0, there exist q, r ∈ R such that a = qb+ r and N(q) < N(b).

The number q is the quotient, while the number r is the remainder. The remainder is
bounded in size by the size of the divisor b, where the size of the numbers is determined
by their norm.

We omit the obvious proof of the following proposition.

Proposition 5.2. Suppose a, b, c ∈ Z, with c 6= 0. The Gaussian integer z = a + bi
and the Eisenstein integer z = a + bω are each divisible by c if and only if c | a and
c | b in Z.

Letting b = 0 in Proposition 5.2 tells us that divisibility between ordinary integers
does not change when working in Z[i] or Z[ω], i.e.

c | a in Z ⇔ c | a in Z[i] ⇔ c | a in Z[ω] , a, c ∈ Z . (5.3)

Because the norm N is completely multiplicative on each of our special rings R, and
because N(z) > 0 for z 6= 0 (a consequence of the fact that N |R\{0} is a Euclidean
function), it is easy to prove the following result.

Proposition 5.4. Let R denote Z, Z[i], or Z[ω]. Then

(a) if a ∈ R, then a is a unit if and only if N(a) = 1;
(b) if a, b ∈ R and b | a in R, then N(b) | N(a) in Z.

Definition 5.5. Let R denote Z, Z[i], or Z[ω]. For nonzero a and b in R, a greatest
common divisor (GCD) of a and b is a common divisor with maximal norm.

For instance, in all three rings R, z is always a GCD of z and 0: certainly, it is a
common divisor and, by Proposition 5.4, no common divisor can have a larger norm
than z.

Note that if we have an equation a = qb+ r in R as above, then every GCD of a and
b is also a GCD of b and r, and vice versa. This follows from the easily proven fact
that any common divisor of a and b is also a common divisor of q and r, and vice

35
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versa. (This paragraph and the previous one are key ingredients in the proof of the
Euclidean algorithm later.)

Definition 5.6. Let R denote Z, Z[i], or Z[ω]. Let a, b ∈ R. We say a and b are
coprime if their only common factors are units.

We now state the Euclidean algorithm. The proof for Z is well-known and that for
Z[i] and Z[ω] is very similar, so we do not include it.

Theorem 5.7 (Euclidean algorithm). Let R denote Z, Z[i], or Z[ω]. Let a, b ∈ R
be nonzero, where we also write r−1 = a and r0 = b. Recursively apply the division
theorem, starting with this pair, and make the divisor ri−1 and remainder ri in the ith
equation the new dividend and divisor, respectively, in the (i+1)st equation for as long
as ri is non-zero:

a = q1b+ r1, N(r1) < N(b)

b = q2r1 + r2, N(r2) < N(r1)

r1 = q3r2 + r3, N(r3) < N(r2)

...

We stop the process at the nth equation if the remainder rn equals 0. The last nonzero
remainder rn−1 is a greatest common divisor of a and b.

Example 5.8. In this example, we illustrate how to use the division algorithm on two
Gaussian integers a and b to calculate their greatest common divisor. Let a = 41+24i
and b = 11− 2i, then

41 + 24i

11− 2i
=

(41 + 24i)(11 + 2i)

112 + 22
=

403 + 346i

125
,

where 3 < 403/125 < 7/2 and 5/2 < 346/125 < 3. Rounding the real and the
imaginary parts to the closest integer, we get 3+3i. N(3+3i) = 18 < N(11−2i) = 125.
Hence, we get

41 + 24i = (3 + 3i)(11− 2i) + (2− 3i) .

Now, using the division algorithm on 11− 2i and 2− 3i we get

11− 2i

2− 3i
=

(11− 2i)(2 + 3i)

22 + 32
=

28 + 29i

13

where 2 < 28/13 < 5/2 and 2 < 29/13 < 5/2. So, rounding both fractions to the
closest integer gives us 2 + 2i, where N(2 + 2i) = 8 < N(2− 3i) = 13. Hence

11− 2i = (2 + 2i)(2− 3i) + 1

and 2− 3i = (2− 3i) · 1 + 0.

We conclude that 1 is a GCD of 41 + 24i and 11 − 2i (as are −1 and ±i). We have
also shown that 41 + 24i and 11− 2i are coprime.
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Example 5.9. In this example, we illustrate how to use the division algorithm on two
Eisenstein integers a and b to calculate their greatest common divisor. Let a = 15+12ω
and b = 5 + 3ω, then

15 + 12ω

5 + 3ω
=

(15 + 12ω)(5 + 3ω2)

52 − 5 · 3 + 32
=

66 + 15ω

19
,

where 3 < 66/19 < 7/2 and 1/2 < 15/19 < 1. Rounding the real and the imaginary
parts to the closest integer, we get 3 + ω. N(3 + ω) = 7 < N(5 + 3ω) = 19. Hence, we
get

15 + 12ω = (3 + ω)(5 + 3ω) + (3 + ω) .

Now, using the division algorithm on 5 + 3ω and 3 + ω we get
5 + 3ω

3 + ω
=

(5 + 3ω)(3 + ω2)

32 − 3 · 1 + 12
=

13 + 4ω

7

where 3/2 < 13/7 < 2 and 1/2 < 4/7 < 1. So, rounding both fractions to the closest
integer gives us 2 + ω, where N(2 + ω) = 3 < N(3 + ω) = 7. Hence

5 + 3ω = (2 + ω)(3 + ω) + (−ω)

and 3 + ω = (2 + 3ω) · (−ω).

We conclude that −ω is a GCD of 15 + 12ω and 5 + 3ω (as are ω, ±ω2, and ±1). We
have also shown that 15 + 12ω and 5 + 3ω are coprime.

Note that above, we talk about “a” GCD rather than “the” GCD. This is because
associates of any GCD are also GCDs, as we will show next. This is true also in Z if
we defined GCD in a similar fashion. More explicitly, we could define N(z) = |z| for
all z ∈ Z to give a completely multiplicative norm whose restriction to Z \ {0} is a
Euclidean function. With the analogous definition of GCD in Z, −d is a GCD of two
elements of Z if and only if d is a GCD of these same elements. However, in the case
of Z, we normally insist that the GCD is positive (as is implicit in this original use of
the terminology), so this makes the GCD unique in Z.

Proposition 5.10. Let R denote Z, Z[i], or Z[ω]. For nonzero a and b in R, let d
be a greatest common divisor produced by the Euclidean algorithm. The set of greatest
common divisors of a and b is precisely the set of unit multiples of d.

Proof. Let d′ be a greatest common divisor of a and b in R. From the proof of the
Euclidean algorithm, d′ | d, as d′ is a common divisor. Hence, we can write d = d′c, so

N(d) = N(d′)N(c) ≥ N(d′).

Since d′ is a greatest common divisor, its norm is maximal among the norms of common
divisors, so the inequality N(d) ≥ N(d′) has to be an equality. That implies N(c) = 1
which is equivalent to c being a unit . Thus, d and d′ are unit multiples of each other.

Conversely, if d′ is a unit multiple of d in R, then the completely multiplicative nature
of N plus the fact that N(u) = 1 for every unit u implies that d′ is also a greatest
common divisor. �
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Our next theorem is a form of Bezout’s identity for each of our three rings.

Theorem 5.11. Let R denote Z, Z[i], or Z[ω]. Let d be any greatest common divisor
of two nonzero elements of R. Then d is a linear combination of a and b, i.e. it can
be written in the form xa+ yb for some x, y ∈ R.

Proof. Writing d as a linear combination of a and b is unaffected by replacing d
with a unit multiple. Thus, by Proposition 5.10, we need to prove the statement
only for d := rn−1, the greatest common divisor given by the Euclidean algorithm in
Theorem 5.7.

If b | a in R, then b is a GCD of a and b and it clearly can be written as a linear
combination of a and b. This fact is also clear if n = 2, i.e. if d = r1. From now on,
we assume that n > 2 in Theorem 5.7).

We claim that d is a linear combination of a and b. To prove this, we proceed by
“backward induction”. We first have rn−3 = qn−1rn−2 + rn−1, so certainly d = rn−1 is a
linear combination of rn−3 and rn−2. Suppose d = xkrk−1+ykrk is a linear combination
of rk−1 and rk for some 1 ≤ k ≤ n− 2. Since rk−2 = qkrk−1 + rk, we deduce that

d = xkrk−1 + yk(rk−2 − qkrk−1) = ykrk−2 + (xk − ykqk)rk−1 ,
and so d is also a linear combination of rk−2 and rk−1. Continuing in this matter until
we reach k = 0, our claim follows. �

Corollary 5.12. Let R denote Z, Z[i], or Z[ω]. Nonzero elements a and b of R are
coprime if and only if we can write

1 = xa+ yb

for some x, y ∈ R.

Proof. If a, b ∈ R are coprime, then 1 is a greatest common divisor of a and b, thus
1 = ax + by for some x, y ∈ R by Theorem 5.11. Conversely, if 1 = ax + by for some
x, y ∈ R, then any common divisor of a and b is a divisor of 1, and thus a unit. Hence,
this implies that a and b are coprime. �

In the next two examples, we extend the euclidean algorithm to write a GCD of specific
a and b in Z[i] or Z[ω] as a linear combination of a and b.

Example 5.13. In Example 5.8, we applied the division algorithm to a = 41 + 24i
and b = 11− 2i and got:

41 + 24i = (3 + 3i)(11− 2i) + (2− 3i)

11− 2i = (2 + 2i)(2− 3i) + 1

2− 3i = (2− 3i) · 1 + 0

Running the division algorithm backwards we get:

1 = (11− 2i)− (2 + 2i)(2− 3i)

= (11− 2i)− (2 + 2i)((41 + 24i)− (3 + 3i)(11− 2i))

= (1 + 12i)(11− 2i)− (2 + 2i)(41 + 24i)
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Example 5.14. In Example 5.9, we applied the division algorithm to a = 15 + 12ω
and b = 5 + 3ω and got:

15 + 12ω = (3 + ω)(5 + 3ω) + (3 + ω)

5 + 3ω = (2 + ω)(3 + ω) + (−ω)

3 + ω = (2 + 3ω)(−ω) + 0

Running the division algorithm backwards we get:

−ω = (5 + 3ω)− (2 + ω)(3 + ω)

= (5 + 3ω)− (2 + ω)((15 + 12ω)− (3 + ω)(5 + 3ω))

= (6 + 4ω)(5 + 3ω)− (2 + ω)(15 + 12ω)

Corollary 5.15. Let R denote Z, Z[i], or Z[ω]. If a | c and b | c in R, where a and b
are coprime, then ab | c.

Proof. Let c = ka and c = lb for some k, l ∈ R. Since a and b are coprime, we can
solve the equation

1 = xa+ yb

for some x, y ∈ R. Multiplying both sides of the equation by c, we get:

c = xac+ ybc

= xalb+ ybka

= (xl + yk)ab .

Thus, ab | c. �

Proposition 5.16. Let R denote Z, Z[i], or Z[ω]. If c | ab in R, and a and c are
coprime, then c | b. Thus, if p is prime and p | ab, then either p | a or p | b.

Proof. As c | ab we have nc = ab for some n ∈ R. If a and c are coprime, then we
know that there exist x, y ∈ R such that 1 = xa+ yc. Multiplying both sides by b, we
obtain

b = xab+ ycb = xnc+ ycb = c(xn+ yb).

Since (xn+ yb) is an element of R, it follows that c | b.
The second part of the proposition follows from the fact that if p 6 | a then a and p are
coprime. �

We now state a version of the Chinese remainder theorem. Note that if m is a nonzero
element of Z, Z[i], or Z[ω], then x lies in (m), the ideal generated by m, if and only if
m | x.

Theorem 5.17 (Chinese remainder theorem). Let R denote Z, Z[i], or Z[ω]. Suppose
m,n ∈ R are nonzero and coprime. The map f : R/(mn) → R/(m) × R/(n) defined
on cosets by f(x+ (mn)) = (x+ (m), x+ (n)) is a ring isomorphism.
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Proof. If x + (mn) = y + (mn), then x − y ∈ (mn), which means that mn divides
x − y, and so both m and n divide x − y. It follows that x + (m) = y + (m) and
x+(n) = y+(n), and so the map f is well-defined. The ring homomorphism properties
are similarly easily established, so we omit the proof.

Next, we show that f is injective. Suppose x+ (m) = y + (m) and x+ (n) = y + (n)
for some x, y ∈ Z. Then m | x− y and n | x− y. Since m and n are coprime, it follows
from Corollary 5.15 that mn | x − y, and so x + (mn) = y + (mn). This establishes
injectivity.

Finally, we want to prove that f is surjective. Suppose we want to find z ∈ R such
that z ∈ a+ (m) and z ∈ b+ (n). Since m and n are coprime, Corollary 5.12 implies
that there exist x, y ∈ R such that xm+ yn = 1. Let z = yna+ xmb. Then

z = (1− xm)a+ xmb = a+m(−xa+ xb) ∈ a+ (m)

and
z = yna+ (1− yn)b = b+ n(ya− yb) ∈ b+ (n) ,

so f(z + (mn)) = (a+ (m), b+ (n)), as required. �

We now define congruences in R ∈ {Z,Z[i],Z[ω]}. Note that our definition is consistent
with the usual one on Z because x ∈ (c) is equivalent to x being divisible by c.

Definition 5.18. Let R denote Z, Z[i], or Z[ω]. Let a, b, c ∈ R, c 6= 0. We say that
a is congruent to b modulo c, denoted a ≡ b (mod c), if a − b ∈ (c). The congruence
class of a mod c is {b | b ∈ R and b ≡ a (mod c)}.

Note that if c and c′ are associates, then (c) = (c′), so congruence modulo c and
modulo c′ give the same equivalence classes.

We next need to discuss polygons in preparation for a theorem that we will need.
For us, a polygonal curve consists of a finite set of positive length line segments Lk,
1 ≤ k ≤ n, in R2 such that the endpoints of each Lk are vk−1 and vk, where v0 = vn.
A polygon is the closed bounded subset of R2 consisting of a polygonal curve and the
planar region bounded by this curve; we denote it by Poly(v1, . . . , vn) since specifying
the vertices specifies the polygon. We call a polygon simple if the boundary line
segments Li and Lj meet only at vk and then only if i = j + 1 or i = j − 1. We call a
simple polygon P strictly convex if the line segment L between two distinct boundary
points x, y of P is a subset of P and meets the boundary of P only at x and y, unless
x, y lie on the same Lk. As is well known, this is equivalent to the interior angle at
vk—meaning the angle between Lk−1 and Lk on the side of the interior—being strictly
less than 180 degrees for all 1 ≤ k ≤ n.

The following is a restricted version of a well-known theorem of Pick.

Theorem 5.19 (Pick’s theorem: special case). Suppose S is a strictly convex polygon
in R2, all of whose vertices lie in Z2. Then the area of S is m+ n/2− 1, where m is
the number of elements of Z2 lying strictly inside P and n is the number of elements
of Z2 lying on the boundary of P .
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Proof. For any simple polygon P , we write mP for the number of elements of Z2

lying strictly inside P and nP for the number of elements of Z2 lying on the boundary
of P . The Pick function is the function f with domain the set of all simple polygons
P defined by f(P ) = area(P )− (mP + nP/2− 1). We call a simple polygon P a Pick
polygon if f(P ) = 0. We are required to prove that all strictly convex polygons are
Pick polygons.

The basic idea of the proof is that we first prove that certain building blocks are Pick
polygons, and then we prove that if we take some Pick polygons and cut or glue them
in certain ways to create new polygons, then the new polygons are also Pick polygons.
Finally, we show that such cutting and gluing allows us to create a general strictly
convex polynomial from our building blocks.

Our building blocks are rectangles R with sides parallel to the coordinate directions.
Suppose R is a rectangle with vertices (x, y), (x + a, y), (x + a, y + b), and (x, y + b)
for some x, y ∈ Z and a, b ∈ N. The number of interior points m is (a− 1)(b− 1) and
the number n of boundary points is 2(a− 1) + 2(b− 1) + 4 = 2a+ 2b, so

m+
n

2
− 1 = (a− 1)(b− 1) + a+ b− 1 = ab = area(R) ,

showing that R is a Pick polygon.

The gluing procedure involves two simple polygons P1 and P2 that have a common
side S but that have no other points in common. Then P0 := P1∪P2 is another simple
polygon. Suppose the number of interior and boundary points in Pi, i ∈ {0, 1, 2},
are mi and ni, respectively, and suppose that there are k points of Z2 on S. The
endpoints of S are vertices of Pi, i ∈ {0, 1, 2}. All other points of S are boundary
points of P1 and P2 but become interior points of P0. Thus, m0 = m1 + m2 + k − 2
and n0 = n1 + n2 − 2k + 2 and so

m0 + n0/2− 1 = (m1 +m2) + (n1 + n2)/2− 2 = (m1 + n1/2− 1) + (m2 + n2/2− 1) .

Since also area(P0) = area(P1) + area(P2), we see that f(P0) = f(P1) + f(P2); we
call this last equation the gluing equation. The gluing procedure can be iterated to
get an equation of type f(P0) =

∑k
i=1 f(Pk) whenever repeated gluing of polygons

Pi, 1 ≤ i ≤ k, in the manner described above, eventually creates a new polygon P0.
We call this last equation the extended gluing equation. The extended gluing equation
implies in particular that if a polygon P0 is formed by gluing a set of Pick polygons
together, it is also a Pick polygon.

Next, we prove that T is a Pick polygon if T is a right-angled triangle whose non-
hypotenuse sides are in the coordinate directions. Note that any such T forms half of
a rectangle R with sides parallel to the coordinate directions. The hypotenuse of T is
a diagonal of R and the image of T under a central symmetry through the midpoint
of the hypotenuse of T is a congruent triangle T ′ with the same hypotenuse such that
R := T ∪ T ′. Furthermore, the same central symmetry sets up a 1-1 correspondence
between the elements of Z2 in T and those in T ′, with interior points corresponding
to interior points and boundary points to boundary points. Thus, we have mT ′ = mT

and nT ′ = nT , and of course area(T ′) = area(T ), so f(T ) = f(T ′). By the gluing
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equation for (P0, P1, P2) = (R, T, T ′), we see that 0 = f(R) = f(T ) + f(T ′) = 2f(T ),
so T is also a Pick polygon.
Next, suppose T is a general triangle with vertices in Z2. The minimum and maximum
values of the x-coordinates and of the y-coordinates provide us with four numbers and,
since there are only three vertices, two of these numbers must be associated with a
single vertex, in the sense that this vertex takes on an extreme value in both coordinates
among the values given by the three vertices.
If we reflect through the first or second coordinate axis, we swap the notions of maxi-
mum and minimum for the other coordinate while keeping the numbers of interior and
boundary points and the area fixed (and so the reflected triangle is Pick if and only if
the original triangle is Pick). Thus, we can assume without loss of generality that a
fixed vertex u of T minimises both coordinate values among the set of vertices.
There are now two cases. Case 1 is where one of the other vertices, v, maximizes
the first coordinate while the final vertex w maximizes the second coordinate. As
illustrated in Figure 13, we can adjoin triangles T1, T2, and T3 to T to get a rectangle
R. (One or more of these adjoined triangles might be missing if one or more sides
of T are in coordinate directions.) In any case, since the adjoined triangles and the
rectangle are all Pick polygons, it follows from the extended gluing equation that T is
also a Pick polygon.

T

T1

T2

T3

Figure 13. General triangle T : Case 1

Case 2 is where one of the other coordinates, v, maximizes both of the other coor-
dinates. As illustrated in Figure 14, we can again adjoin right-angled triangles Ti,
1 ≤ i ≤ 5, with non-hypotenuse sides in the coordinate directions to get a rectangle
R. We then deduce as in Case 1 that T is a Pick polygon.
Finally, we prove by induction on the number n of vertices that a strictly convex poly-
gon is Pick. We have shown it to be true for a triangle, so suppose P := Poly(v1, . . . , vn)
is a strictly convex polygon for some n > 3, and that every strictly convex polygon
with strictly fewer than n vertices is Pick. By strict convexity, drawing a line segment
from v1 to v3 allows us to cut P into two subpolygons: P1 := Poly(v1, v2, v3) and
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T

T1

T2
T3 T4

T5

Figure 14. General triangle T : Case 2

P2 := Poly(v1, v3, v4, . . . , vn). Then P1 and P2 are strictly convex polygons (since their
interior angles at v1 and v3 are strictly less than the angles at the same points for P ,
and all other interior angles are the same as they are in P ). Since P1, P2 have fewer
than n vertices, they are Pick, and now P inherits the Pick property from P1 and
P2. �

Remark 5.20. In the terminology of the above proof, the full-strength Pick’s theorem
says that all simple polygons are Pick polygons. The above proof gives most of the
proof of this full-strength result. We only need to show that a simple polygon with
n > 3 vertices can always be cut into two simple polygons, each with strictly fewer
than n vertices. This can be shown, but we will not give the details because we do
not need this full-strength result.

The next theorem further illustrates the analogy between the norm in Z[i] and the
absolute value in Z, as we have |n| distinct Z-congruence classes modulo n for n ∈ Z.

Theorem 5.21. For z ∈ Z[i]\{0}, there are N(z) distinct congruence classes modulo
z.

Proof. The multiples of z = a+ ib are precisely all numbers of the form (c+ di)z =
cz + d(iz), i.e. the linear combinations of z and iz. If we join neighbouring multiples
with line segments, we get a square tiling of the plane with sidelength

√
a2 + b2 =√

N(a), and so this square has area N(z). (By a neighbouring multiple, we mean that
we change c+ di to c′ + d′i, where (c′, d′) ∈ {(c± 1, d), (c, d± 1)}.)
This tiling allows for a geometric understanding of congruence classes. If we think of
these squares as tiles that can be shifted (or translated), then u and v are equivalent
modulo z if and only if, when we shift the square containing u directly on top of the
square containing v, u lies directly on top of v. In particular, the set of congruence
classes corresponds, mostly in a 1-1 fashion, with the subset of Z[i] lying in one of
these closed squares, which we call S. We say “mostly” above because the boundary
points are exceptional: it is clear that the four vertices of S all correspond to the same
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congruence class and all other Z[i] points lying on the boundary of S correspond in
pairs to residue classes (since any two opposite sides of S give the same set of residue
classes).

Thus, the number M of congruence classes is m+ (n− 4)/2 + 1 = m+n/2− 1, where
m is the number of Z[i] points in the interior of S and n is the number of lattice points
on the boundary of S. By Pick’s theorem for a square, we have shown that M is the
area of S, which we know to be N(z), and so we are done. �

When talking about congruence modulo a specific nonzero Gaussian integer c, we
use the term fundamental region to mean a subset of C that contains exactly one
representative from each congruence class. (It is the set R ∩ Z[i] of congruence class
representatives that really interests us, but we define the region R because it is often
more easily specified than R ∩ Z[i].)

Given c ∈ Z[i] \ {0}, we now explicitly define an associated fundamental region R
(dependent on c) and a method for reducing a ∈ Z[i] modulo c, meaning a method for
finding b ∈ Z[i] ∩ R such that a is equivalent to b modulo c. The term “reducing” is
used because b has a smaller norm than most Gaussian integers b′ that are equivalent
to a modulo c. However, because we choose R to be simple geometrically, the reduced
number b is often not the norm-minimising representative.

We distinguish between two cases:

• Case 1: c is an associate of a Z-integer.
• Case 2: c is not an associate of a Z-integer.

Case 1:
We can assume without loss of generality that c > 0. To find a b of small norm
satisfying a ≡ b (mod c), where a is a Gaussian integer and c 6= 0 is a Z-integer,
we simply find the remainders of the real and imaginary parts of a upon Z-division
by c, where both remainders have values between 0 and |c| − 1 inclusive. This gives
|c|2 = N(c) representatives, so we have found a complete set of representatives of the
congruence classes. Thus, the fundamental region is the “half-open” square R = Rc =
[0, c)2 ⊂ R2 (where we have identified C with R2 for notational brevity).

Example 5.22. In this example, we reduce −50344 + 74730i mod 437.

−50344 ≡ 348 and 74730 ≡ 3 (mod 437).

Hence, −50344 + 74730i ≡ 348 + 3i (mod 437).

Case 2:
To define a fundamental region R for the set of congruence classes modulo a Gaussian
integer c that is not an associate of an integer, it is first convenient to extend equiv-
alence modulo c from Z[i] to C in the obvious way: z, w ∈ C are equivalent modulo
c if z − w is a Gaussian integer that is divisible by c. Below, equivalent means this
extended notion of equivalence modulo c.

We define our fundamental region R = Rc to be the “half-open” square with vertices
at the origin, c, ic and (1 + i)c. To define what we mean by “half-open”, we need
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to specify what parts of the boundary are included in R. Specifically, R contains all
points on the line segments from 0 to c and from 0 to ic except for c and ic. We do
not include the other two boundary line segments, since any point on one of those line
segments is equivalent to some point on a parallel boundary line segment that we have
included. Note that 0 is the only included vertex; the other three are equivalent to it.1

The square R is a single tile in a regular square tiling of the plane that partitions C
into tiles given by translates of R: the other tiles R′ are precisely the translates by
(a + ib)c of R for some a, b ∈ Z: to get from R to R′, we need to hop a tiles in the
direction given by c, and hop b tiles in the direction given by ic. Note that, in order to
ensure that we get a partition, it is crucial that we included exactly two (non-parallel)
sides and one vertex in R. It follows that R contains precisely one representative of
each equivalence class modulo c, and so it is indeed a fundamental region.
It remains to give an algorithm for finding the element w ∈ Z[i]∩R that is equivalent
to a given z ∈ Z[i]. We first define the Gaussian floor function f : C → Z[i] by
f(x+ iy) = m+ in for all x, y ∈ R, where m and n are the greatest integers that are no
larger than x and y, respectively. We then define g : Z[i]→ Z[i] by g(z) := z−c·f(z/c).
It is clear that g(z)− z is a multiple of c, and so g(z) is equivalent to z. To show that
g gives the required reduction modulo c, it therefore suffices to prove that g(z) ∈ R for
all z ∈ Z[i]. First, note that g(z)/c = w−f(w), where w := z/c. It is clear that for all
u ∈ C, u−f(u) lies in the unit square U := {a+ ib ∈ C | 0 ≤ a, b < 1}. Multiplication
by c is a similarity map from U to R, so it follows that g(z) ∈ R, as required.
To emphasise that the square R in Case 2 does not have sides parallel to the real and
imaginary axes, we will often refer to it as a rhombus or rhombic region below.
Observation 5.23. If c is a prime above (Case 1 or Case 2), then 0 is the only
Gaussian integer that is an included boundary element of R. To see this, we first note
that, if a ∈ R is a nonzero Gaussian integer on the line segment between 0 and c,
then it cannot be c. Now, a and c have a greatest common divisor b lying on the line
segment from a to c: in fact, we can define b = c · gcd(N(a), N(c))/N(c), where N is
the norm on Z[i]. Now, b is a divisor of c but is not an associate of it (since it has
smaller norm) and b is not a unit (since it does not lie on the real or imaginary axes),
so this contradicts the assumption that c is prime. We similarly rule out any nonzero
Gaussian integer on the line segment from 0 to ic.
Example 5.24. Let us find congruence class representatives of 3+2i. Our fundamental
region R is the half-open square with vertices 0+0i, 3+2i, −2+3i and 1+5i. As always,
0 ∈ R. However, since 3 + 2i is prime, all other congruence class representatives are
in the interior of R. Visualising this, we get Figure 15, where we indicate all elements
of Z[i] ∩R with solid dots, and some nearby elements of Z[i] \R with open dots.
As indicated in Figure 15, the set Z[i] ∩R of congruence class representatives is:
{0, i, 1 + i, −1 + 2i, 2i, 1 + 2i, 2 + 2i, −1 + 3i, 3i, 1 + 3i, 2 + 3i, 4i, 1 + 4i} .

1The difference in the way we defined R = Rc in Cases 1 and 2 is solely due to the tools and
notation available to us for defining R when c ∈ Z. In actuality, regardless of whether c is handled by
Case 1 or Case 2, every Rc is a member of the same similarity class of sets. In fact, if c1, c2 ∈ Z[i]\{0},
then multiplication by c2/c1 defines a similarity map from Rc1 to Rc2 .
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Example 5.25. In this example, we reduce −50344 + 74730i mod 3 + 2i. We start
by computing (−50344 + 74730i)/(3 + 2i):

−50344 + 74730i

3 + 2i
=

(−50344 + 74730i)(3− 2i)

13
=
−1572 + 324878i

13

Since ⌊
−1572

13

⌋
= −121 and

⌊
324878

13

⌋
= 24990 ,

we have f((−50344 + 74730i)/(3 + 2i)) = −121 + 24900i. We now calculate

g(−50344 + 74730i) = (−50344 + 74730i)− (3 + 2i)(−121 + 24990i) = −1 + 2i ,

and so −50344 + 74730i ≡ −1 + 2i (mod 3 + 2i).

We next state the Eisenstein version of Theorem 5.21.

Theorem 5.26. For z ∈ Z[ω] \ {0}, there are N(z) distinct residue classes modulo z.

Proof. The multiples of z = a+ bω are precisely all numbers of the form (c+dω)z =
cz+d(zω), i.e. the linear combinations of z and zω. If, as in the Gaussian case, we join
neighbouring multiples with line segments, we get a tiling of the plane by rhombuses
with sidelength

√
a2 − ab+ b2 =

√
N(z). Each rhombus is defined as a closed set, so

neighboring ones intersect along a side.

Let us label as R0,0 the tile with vertices 0, z, z+zω, and zω, and label as Rc,d the tile
obtained by shifting R by cz + d(zω) for some c, d ∈ Z. Since all the tiles are copies
of R0,0 that have been shifted by an element of Z[ω], all tiles have the same number
NE of elements of Z[ω].

Let NC be the number of congruence classes modulo z. A set of representatives of
the congruence classes corresponds, mostly in a 1-1 fashion, with the subset of Z[ω]
contained in any one of these tiles R. We say “mostly” because the four vertices of R
are all in the same congruence class and opposite pairs of other boundary points give
the same congruence class. Thus, NE > NC .

Figure 15. Fundamental region R for 3 + 2i; Z[i] ∩R highlighted
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We next define R(M) for eachM ∈ N to be the rhombic subset of C given by the union
of the tiles Rc,d, 0 ≤ c < M , 0 ≤ d < M . Let V (M) denote the number of elements
of Z(ω) in R(M) divided by M2. By definition, V (1) = NE > NC . For M > 1,
we have V (M) < NE since points interior to R(M) that are vertices of individual
tiles are only counted once across the four tiles containing them, and all other points
interior to R(M) that are on the boundary of individual tiles are only counted once
across the two tiles containing them. This lowered counting exactly matches how we
should count congruence classes, and dividing by M2 compensates for the repeated
counting of the same congruence class on different tiles. Despite this, we do not have
V (M) = NC because the correspondence between points in R(M) and congruence
classes goes wrong at the boundary of R(M). However, because the length of the
boundary of R(M) is proportional to M rather than M2, this error tends to 0 as
M →∞. Thus, V (M)→ NC as M →∞.

We will next approximately count the number of elements of Z(ω) in R(M) using the
area of R(M). R0,0 is a rhombus of sidelength

√
N(z) and angle 60 degrees between

one pair of neighboring sides, so its area is
√

3N(z)/2. Thus, the area of R(M) is
M2
√

3N(z)/2.

We now define a microtile to be any rhombus of sidelength 1 that has one pair of sides
parallel to the direction from 0 to 1 and the other pair of sides parallel to the direction
from 0 to ω. Note that the area of a microtile is

√
3/2. Let us “roughly tile” R(M)

with microtiles. By this, we mean that we tile the whole plane with microtiles and
then take only the microtiles that lie fully within R(M). We insist that the tiling is
arranged so that 0 is a vertex of one of the microtiles: this ensures that the vertices
of the microtiles are precisely the elements of Z[ω].

Comparing areas, we see that the number T (M) of microtiles that we use to roughly tile
R(M) is at most (M2

√
3N(z)/2)/(

√
3/2) = M2N(z). Writing U(M) := T (M)/M2,

we see that U(M)→ N(z) as M →∞ because the area of R(M) that is not covered
by microtiles is at most proportional to M .

Let us assign each point of Z[ω] to the microtile in this tiling for which it is the
bottom right vertex: this sets up a 1-1 correspondence between elements of Z[ω] and
microtiles in the planar tiling. It follows that V (M) as defined above is roughly equal
to U(M) where, as always, there is an error that is bounded by a multiple of 1/M in
this estimate. Since V (M) → NC and U(M) → N(z) as M → ∞, we deduce that
NC = N(z), as required. �

It is straightforward to tweak the above proof to produce a different proof of Theo-
rem 5.21.

We now discuss how to reduce an Eisenstein integer a modulo some other Eisenstein
integer c 6= 0, meaning how to find another Eisenstein integer b that is in the same
congruence class (mod c) as a but which has small norm.

As in the case of Gaussian integers, for a given c ∈ Z[ω]\{0}, we now explicitly define an
associated fundamental region R (dependent on c) and a method for reducing a ∈ Z[ω]



5. NUMBER THEORY IN Z[I] AND Z[ω] 48

modulo c, meaning a method for finding b ∈ Z[ω] ∩ R such that a is equivalent to b
modulo c.

We distinguish between two cases:

• Case 1: c is an associate of a Z-integer.
• Case 2: c is not an associate of a Z-integer.

Case 1:
We can assume without loss of generality that c > 0. To find a b of small norm
satisfying a ≡ b (mod c), where a is an Eisenstein integer, we simply write a = d+eω,
and find remainders of d and e upon Z-division by c, where both remainders have
values between 0 and |c| − 1 inclusive. This gives |c|2 = N(c) representatives, giving a
complete set of representatives of the congruence classes. The fundamental region is
the “half-open” square R = Rc = [0, c)2 ⊂ R2 (where we again identify C with R2).

Example 5.27. In this example, we reduce 9348 + 3109ω (mod 314).

9348 ≡ 242 (mod 314) and 3109 ≡ 283 (mod 314).

Hence, 9348 + 3109ω ≡ 242 + 283ω (mod 314).

Case 2:
To find a b satisfying a ≡ b (mod c), where a is an Eisenstein integer and c is a nonzero
Eisenstein integer that is not an associate of a Z-integer, we first need to define our
fundamental region for the set of congruence classes.

We define our fundamental region R for the Eisenstein integers in a similar way to the
Gaussian integers. We again can determine our rhombic fundamental region by the
vertices at the origin, c, ωc and (1 + ω)c. Similar to the Gaussian integers, all four
vertices represent the same congruence class so we include only the origin, and we also
include the two open intervals from 0 to c and from 0 to ωc. (Unlike the situation for
Z[i], the fundamental region for Z[ω] congruence classes is not a square, although it is
still a rhombus.)

The rest of the argument is similar to the Gaussian integers, so we omit the details.
We can find the representative of the equivalence class of an Eisenstein integer z, by
the same function as presented earlier: g(z) := z − c · f(z/c), where f : C → Z[ω] is
the Eisenstein floor function defined by f(x + ωy) = m + ωn whenever x, y ∈ R and
m,n are the greatest integers that are no larger than x, y, respectively.

Let us consider an example with Eisenstein integers.

Example 5.28. Let us find congruence class representatives of 5 + 2ω. Our funda-
mental region R is the half-open rhombus with vertices 0 + 0i, 5 + 2ω, −2 + 3ω, and
3 + 5ω. As always, 0 ∈ R. However, since 5 + 2ω is prime, all other congruence class
representatives are in the interior of R. Visualising this, we get Figure 16, where we
indicate all elements of Z[ω]∩R with solid dots, and some nearby elements of Z[ω]\R
with open dots.
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As indicated in Figure 16, the set Z[ω] ∩R of congruence class representatives is:
{0, ω, 1 + ω, 2 + ω, −1 + 2ω, 2ω, 1 + 2ω, 2 + 2ω, 3 + 2ω, 4 + 2ω,

−1 + 3ω, 3ω, 1 + 3ω, 2 + 3ω, 3 + 3ω, 4 + 3ω, 1 + 4ω, 2 + 4ω, 3 + 4ω} .
Example 5.29. In this example, we reduce 9348 + 3109ω mod 9 + 7ω. We start by
computing f((9348 + 3109ω)/(9 + 7ω)):

9348 + 3109ω

9 + 7ω
=

(9348 + 3109ω)(9 + 7ω2)

67
=

40459− 37455ω

67

Since ⌊
40459

67

⌋
= 603 and

⌊
−37455

67

⌋
= −560 ,

we have f((9348 + 3109ω)/(9 + 7ω)) = 603− 560ω.
We now calculate

g(9348 + 3109ω) = (9348 + 3109ω)− (9 + 7ω)(603− 560ω) = 1 + 8ω ,

and so 9348 + 3109ω ≡ 1 + 8ω (mod 9 + 7ω).

We next explore other aspects of equivalence classes modulo z and their representa-
tives.

Definition 5.30. Let x, c ∈ R with c 6= 0, where R stands for Z, Z[i], or Z[ω]. We
denote by [x]c, or simply [x] if c is understood, the equivalence class of all z ∈ R that
are congruent to x mod c. (Thus [x]c = x+ (c).)

Cross [3] found an alternative simple and explicit set of congruence class representa-
tives, at least modulo a Z[i]-prime power. We next present his theorem.

Theorem 5.31. We denote by p and q positive primes in Z, subject to the congruences
p ≡ 3 (mod 4) and q ≡ 1 (mod 4). We write π for one of the Z[i]-prime factors of
q and let α be the prime 1 + i. The equivalence classes of Z[i] modulo a power of a
Z[i]-prime are given as follows; all listed classes are distinct.

(1) Z[i]/(πn) = {[a] : 0 ≤ a ≤ qn − 1}.

Figure 16. Fundamental region R for 5 + 2ω; Z[i] ∩R highlighted
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(2) Z[i]/(pn) = {[a+ bi] : 0 ≤ a ≤ pn − 1 and 0 ≤ b ≤ pn − 1}.
(3) Z[i]/(α2m) = {[a+ bi] : 0 ≤ a ≤ 2m − 1 and 0 ≤ b ≤ 2m − 1}.
(4) Z[i]/(α2m+1) = {[a+ bi] : 0 ≤ a ≤ 2m+1 − 1 and 0 ≤ b ≤ 2m − 1}.

Proof. First, we observe that Z[i]/(α2m) = Z[i]/(2m) and Z[i]/(α2m+1) = Z[i]/(2mα)
because α2m ∼ 2m, where x ∼ y means that x and y are associates (and so ∼ is an
equivalence relation).
Now, if a+ bi ≡ c+ di (mod α2m), then 2m divides both a− c and b− d, so that the
classes of (3) are distinct. A similar argument applies to the classes in (2). If [a] = [b]
in Z[i]/(πn), then πn divides a− b. Let πnγ = a− b for some γ ∈ Z[i]. Taking complex
conjugates, we get π̄n = a− b = a− b, so that π̄n also divides a− b. Since π and π̄ are
not associates, πnπ̄n = qn divides a− b implying that the classes in (1) are distinct.
If [a+ bi] = [c+ di] in Z[i]/(α2m+1) = Z[i]/(2mα), then 2mα divides a− c+(b−d)i. A
fortiori, 2m divides b−d and, if 0 ≤ b, d ≤ 2m−1 as in (3), then b = d. With b = d, we
now see that 2mα divides a− c. Let a− c = 2mk, where k ∈ Z since a− c ∈ Z. Then
α divides k so that N(α) = 2 divides N(k) = k2. It follows that k is even, i.e. 2m+1

divides a− c and the classes in (4) are distinct.
Finally, since the listed elements are pairwise noncongruent in each case, and since the
number of elements in each case matches the norm of the prime power, we see that we
indeed have complete sets of representatives. �

We next adapt the above theorem to the Eisenstein integers, based on the ideas in [3]
for the Gaussian integers. Here, we denote by p and q positive primes in Z, subject
to the congruences p ≡ 2 (mod 3) and q ≡ 1 (mod 3). We write π for one of the
Z[ω]-prime factors of q and let α denote the prime 1 + 2ω.

Theorem 5.32. The equivalence classes of Z[ω] modulo a power of a prime are given
as follows; all listed classes are distinct.

(1) Z[ω]/(πn) = {[a] : 0 ≤ a ≤ qn − 1}.
(2) Z[ω]/(pn) = {[a+ bi] : 0 ≤ a ≤ pn − 1 and 0 ≤ b ≤ pn − 1}.
(3) Z[ω]/(α2m) = {[a+ bi] : 0 ≤ a ≤ 3m − 1 and 0 ≤ b ≤ 3m − 1}.
(4) Z[ω]/(α2m+1) = {[a+ bi] : 0 ≤ a ≤ 3m+1 − 1 and 0 ≤ b ≤ 3m − 1}.

The proof is very similar to that for the Gaussian integers, so we omit it.
The divisibility equivalence (5.3) immediately implies the following congruence equiv-
alence.

Theorem 5.33. Let R denote Z[i] or Z[ω]. For a, b, c ∈ Z, we have a ≡ b (mod c) in
Z if and only if a ≡ b (mod c) in R.

Theorem 5.34. Let R denote Z, Z[i], or Z[ω]. If π is prime in R, and a, b ∈ R, then
ab ≡ 0 (mod π) if and only if a ≡ 0 (mod π) or b ≡ 0 (mod π).

Proof. If one of a and b is congruent to 0 mod π, it follows that ab ≡ 0 (mod π).
Conversely, suppose ab ≡ 0 (mod π), and so π | (ab− 0). Since π is prime, it follows
that either π | a or π | b, i.e. either a ≡ 0 (mod π) or b ≡ 0 (mod π).
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The proof for Z[i] and for Z[ω] is similar. �

We have seen two different sets of congruence class representatives for both Gaussian
and Eisenstein integers: one is the approach of Cross [3], while the other involves the
(Gaussian/Eisenstein) integers contained in a rhombic fundamental region R. From
now on, when we are reducing modulo a Gaussian or an Eisenstein integer, we always
use the representatives contained in the rhombic fundamental region.

Theorem 5.35. Let R denote Z, Z[i], or Z[ω]. For a and b in R with b 6= 0, the
congruence ax ≡ 1 (mod b) is solvable if and only if a and b are coprime in R. If a
and b are coprime, then any linear congruence ax ≡ c mod b has a unique solution.

Proof. To find x ∈ R such that ax ≡ 1 (mod b), we need to solve ax + by = 1 with
x, y ∈ R. By Corollary 5.12, this can be done if and only if a and b are coprime.

Once we can invert a (mod b), we can solve ax ≡ c (mod b) by multiplying both sides
by the inverse of a (mod b). This gives us the unique solution. �

Proposition 5.36. Let R denote Z, Z[i], or Z[ω]. Let b, n ∈ R, where n is not a unit.
Then b is invertible modulo n if and only if 1 is a GCD of b and n.

Proof. Assume b is invertible modulo n, and let c denote its inverse. Since bc = 1
(mod n), this implies bc−1 = kn for some k ∈ Z. Equivalently, bc−kn = 1. It follows
from Corollary 5.12 that 1 is a GCD of b and n.

For the converse, suppose that 1 is a GCD of b and n. By Theorem 5.11, there exist
integers x, y such that xb + yn = 1. It follows that x is a multiplicative inverse of
b. �

Definition 5.37 (Euler φ-Function). For n ∈ N, n > 1, we define the Euler φ-function,
φ(n), as the number of positive integers less than n that are coprime with n. We define
φ(1) = 1. Alternatively, in view of Corollary 5.12, φ(n) is the number of units in the
ring Zm.

For every prime p, it is clear that φ(p) = p− 1.

We now show that φ is multiplicative, meaning that φ(mn) = φ(m)φ(n) whenever m
and n are coprime.

Theorem 5.38. Suppose m,n ∈ N are coprime. Then φ(mn) = φ(m)φ(n).

Proof. By our alternative definition of φ, φ(mn) is the number of units in Zmn,
while φ(m)φ(n) is the number of units in Zm × Zn. When m and n are coprime, the
Chinese remainder theorem Theorem 5.17 establishes an isomorphism between Zmn
and Zm × Zn, so we are done. �

We now give a general formula for φ(n).
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Theorem 5.39. Suppose that n =
∏t

i=1 p
αi
i , where the pi are distinct Z-primes and

αi ∈ N, 1 ≤ i ≤ t. Then

φ(n) = n

t∏
i=1

(
pi − 1

pi

)
.

Proof. As φ is multiplicative, we know that

φ(n) = φ

(
t∏
i=1

pαi
i

)
=

t∏
i=1

φ(pαi
i ).

Clearly, every n ∈ N that is not a multiple of pi is coprime to pi, and hence to pαi
i .

Thus,

φ(n) =
t∏
i=1

(
pαi
i − p

αi−1
i

)
=

t∏
i=1

pαi−1
i (pi − 1) .

It follows that

φ(n) = n
t∏
i=1

(1− 1/pi) ,

as required. �

Lemma 5.40. For n > 2, φ(n) is even.

Proof. We split this proof up into two cases.

Case 1: Assume n has (at least one) odd prime factor, say p. It follows from Theo-
rem 5.39 that p− 1 | φ(n). As p is an odd prime, p− 1 is even, and so 2 | p− 1 | φ(n).
Thus, φ(n) is even.

Case 2: Assume that n has no odd prime factors. Thus, the only prime factor of n
is 2 and so n = 2k, where k > 1. By Theorem 5.39, φ(n) = 2k(1 − 1

2
) = 2k−1, where

k − 1 > 0. Hence φ(n) is even. �

We model the definition of φ-function for Z[i] and Z[ω] on the alternative definition
of the Euler φ-function, see [15]:

Definition 5.41. Let R denote Z[i] or Z[ω]. For nonzero a in R, let φ(a) be the
number of units in R/(a). To distinguish between the φ functions on different rings,
we often write φZ, φZ[i], etc.

We saw that if p is a Z-prime then φZ(p) = p − 1. It is similarly clear that if π is
a Gaussian prime, then φZ[i](π) = N(π) − 1, while if σ is an Eisenstein prime, then
φZ[ω](σ) = N(σ)− 1.

The following theorem gives the Z[i]- and Z[ω]-analogues of Theorems 5.38 and 5.39.

Theorem 5.42. Let R denote Z[i] or Z[ω].

(a) If m and n are coprime in R, then φR(mn) = φR(m)φR(n).
(b) If π is a prime in R, and k ∈ N, then φ(πk) = N(πk−1)(N(π)− 1).
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Let us simply sketch the proof of the above theorem. The proof of (a) is formally
the same as Theorem 5.38 since our version of the Chinese remainder theorem holds
in Z[i] and Z[ω] as well as in Z. As for (b), we simply need to note that there is a
unique congruence class mod π corresponding to non-units in R, and this corresponds
to N(πk−1) congruence classes mod πk.
We now state a version of Fermat’s Little Theorem for all three of our rings.

Theorem 5.43. Let R denote Z, Z[i], or Z[ω]. Suppose a, π ∈ R are coprime and π
is a prime. Then aN(π)−1 ≡ 1 (mod π).

Proof. In any ring, the units form a multiplicative group. Here, π is prime, so every
nonzero element in the factor ring R/(π) is a unit. By Lagrange’s theorem, the order
of the cyclic subgroup generated by any unit in R/(π) divides the order N(π) − 1 of
the group of units. �

We now state Euler’s extension of Fermat’s Little Theorem, and a simple but useful
corollary of it.

Theorem 5.44. Let a, n ∈ Z, n 6= 0. If gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n).

Corollary 5.45. Let p and q be two distinct primes and let m ∈ N. For every k ∈ N:
mk(p−1)(q−1)+1 ≡ m (mod pq) .

We now restate Euler’s extension in a way that makes it true in all three of the rings
that interest us. The proof remains essentially the same.

Theorem 5.46. Let R denote Z, Z[i], or Z[ω]. Let φR(ν) denote the number of units
in the ring R/(ν). Then, for any a ∈ R, we have aφR(ν) ≡ 1 (mod ν).

5.1. Exponentiation for Gaussian and Eisenstein integers.

Raising a Gaussian or Eisenstein integer to an integer power can be viewed as special
cases of exponentiating a complex number.
For instance, suppose z = a + bi, a, b ∈ Z, and suppose we want to compute zn for
some n ∈ N. We can first write z in exponential form, facilitating the computation of
zn, and then rewrite the solution in the usual Z[i]-format. Explicitly,

z = a+ bi = r · eiθ ,
where r =

√
a2 + b2 and θ = arg(a+ bi). Then, zn = rn ·eiθn. Thus, zn = c+di, where

c = rn · cos

(
n · arg

(
b

a

))
and d = rn · sin

(
n · arg

(
b

a

))
.

Example 5.47. In this example, we want to compute (3 + 2i)5 mod (4 + i).

First, we calculate r =
√

32 + 22 =
√

13 and θ = arctan(2/3), so

z := 3 + 2i =
√

13 · exp(i · arctan(2/3)) .

Now,
z5 = 135/2 · exp(5i · arctan(2/3)) .
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We can rewrite this as c+ di, c, d ∈ Z, where

c = 135/2 · cos(5 arctan(2/3)) = −597 ,

d = 135/2 · sin(5 arctan(2/3)) = 122 .

Hence, (3 + 2i)5 = −597 + 122i. Finally, we reduce this: −597 + 122i ≡ −1 + i
(mod 4 + i).

However, the above method only works efficiently for small numbers. For large |z|, the
numbers c and d computed above prior to reduction are too big to be calculated effi-
ciently. To speed up the calculations and to use a more efficient way of exponentiating
large numbers, we use the following algorithm:

Fast Exponentiation Algorithm

The fast exponentiation algorithm is an efficient method to calculate powers using
modular arithmetic. For small exponents, exponentiation is easily carried out. For big
exponents, however, exponentiation gets increasingly difficult. The fast exponentiation
algorithm enables us to efficiently calculate the solutions using large exponents. This
algorithm is based on calculating squares and multiplication, hence why it is often also
referred to as the Square-and-Multiply Algorithm. A key feature is that we continually
reduce mod n as we proceed, stopping the calculations from getting cumbersome.

To illustrate this algorithm, we first demonstrate it using an example in Z, and then
discuss an example in Z[i].

Example 5.48. Let us calculate 3412 (mod 101).

31 = 3 ≡ 3 (mod 101)

(31)2 = 32 ≡ 9 (mod 101)

(32)2 = 34 ≡ 81 (mod 101)

(34)2 = 38 ≡ 97 (mod 101)

(38)2 = 316 ≡ 16 (mod 101)

(316)2 = 332 ≡ 54 (mod 101)

(332)2 = 364 ≡ 88 (mod 101)

(364)2 = 3128 ≡ 68 (mod 101)

(3128)2 = 3256 ≡ 79 (mod 101)

Now, 3412 = 3256+128+16+8+4, and so

3412 ≡ 79 · 68 · 16 · 97 · 81 ≡ 80 (mod 101) .

Example 5.49. As in Example 5.47, we calculate (3 + 2i)5 (mod 4 + i). However,
this time, we use the fast exponentiation method.

(3 + 2i)2 = 5 + 12i and 5 + 12i ≡ −2i (mod 4 + i), and so

(3 + 2i)4 ≡ (−2i)2 ≡ −4 (mod 4 + i) .
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Now,
(3 + 2i)5 ≡ (3 + 2i)4 · (3 + 2i) ≡ (3 + 2i) · (−4) ≡ −12− 8i ≡ −1− i (mod 4 + i) .

The fast exponentiation algorithm can similarly be used to efficiently raise Eisenstein
integers to large exponents modulo any given number.



6. Group theoretic background

Definition 6.1. A group is a set G equipped with a binary operation ◦ : G×G→ G
satisfying the following conditions:

• (Closure:) For all g, h ∈ G, g ◦ h ∈ G.
• (Existence of identity:) There exists an identity e ∈ G such that for all g ∈ G,
e ◦ g = g = g ◦ e.
• (Existence of inverses:) For all g ∈ G, there exists an element h ∈ G such that
g ◦ h = e = h ◦ g. Such an h is called an inverse of g.
• (Associativity:) For all g1, g2, g3 ∈ G, (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

If G has a finite number of elements, we say G is a finite group. We let |G| denote the
order of the group, i.e. the cardinality of the set G.

If the group operation ◦ is commutative, i.e. if for all g, h ∈ G, g ◦ h = h ◦ g, then the
group G is an abelian group.

It is readily verified that the identity element in the group G is unique and each element
g ∈ G has a unique inverse. From now on, 1 denotes the identity element and g−1

denotes the inverse of g.

A set H ⊆ G is a subgroup of G if H itself forms a group under the same operation
associated with G. Every group G always has the trivial subgroups G and {1}. We
call H a strict subgroup of G if H 6= G.

Lemma 6.2. Let G be a group and a, b, c ∈ G. If ac = bc, then a = b. In particular,
if ac = c, then a is the identity in G.

Proof. We know that ac = bc. Multiplying both sides by the inverse c−1 of c, we get

ab = bc⇒ (ac)c−1 = (bc)c−1 ⇒ a(cc−1) = b(cc−1)⇒ a · 1 = b · 1⇒ a = b . �

Theorem 6.3. Let G be a finite group, and we write m = |G|. Then gm = 1 for every
g ∈ G.

We present a proof only for the abelian case, which suffices for us. (The well-known
proof of the full-strength result involves a consideration of cosets of the subgroup
generated by g. However, we do not even formally define cosets in this thesis.)

Proof. Fix arbitrary g ∈ G, and let g1, . . . , gm be the elements of the finite abelian
group G. We claim that

g1 · g2 · · · gm = (gg1) · (gg2) · · · (ggm).

To see this, note that ggi = ggj implies gi = gj by Lemma 6.2. So each of the m
elements in parentheses on the right-hand side is distinct. Because there are exactly
m elements in G, the m elements being multiplied together on the right-hand side are
simply all elements of G in some permuted order. Since G is abelian, the order in which
elements are multiplied does not matter, and so the right-hand side is equal to the

56
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left-hand side. Again using the fact that G is abelian, we can pull out all occurrences
of g and obtain

g1 · g2 · · · gm = (gg1) · (gg2) · · · (ggm) = gm · (g1 · g2 · · · gm).

By Lemma 6.2, this implies that gm = 1. �

Corollary 6.4. Let G be a finite group with |m| = G > 1. If x, y ∈ Z are such that
x ≡ y (mod m), then for every g ∈ G, we have gx = gy.

Proof. Suppose without loss of generality that x > y and so x = km + y for some
k ∈ N. Using Theorem 6.3, we get

gx = gkm+y = gkm · gy = (gm)k · gy = 1k · gy = gy ,

as claimed. �

Corollary 6.5. Let G be a finite group with m = |G| > 1. Let e > 0 be an integer,
and define fe : G→ G by fe(g) = ge. If gcd(e,m) = 1, then fe is a permutation (i.e. it
is a bijection). Moreover, if we choose d ∈ N such that d ≡ e−1 (mod m) then fd is
the inverse of fe.

Proof. Since G is finite, the result follows once we show that fd is the inverse of fe.
The assumption on d says that de = 1 + km for some m ∈ N. Thus,

fd(fe(g)) = fd(g
e) = (ge)d = ged = g1 · gkm = g1 = g ,

where the fifth equality follows from Corollary 6.4. �

In the following proposition, finiteness is essential. For instance, N is a nonempty
subset of (Z,+) which is closed under addition, but it is not a subgroup because it
contains neither an identity nor inverses.

Proposition 6.6. Let G be a finite group, and let H be a nonempty subset of G. If
ab ∈ H for all a, b ∈ H, then H is a subgroup of G.

Proof. We need to verify that H satisfies all the conditions of Definition 6.1. By
assumption, H is closed under the group operation. Associativity in H is inherited
from G. Let m = |G| (here we use the fact that G is finite), and consider an arbitrary
element a ∈ H. Closure of H means that H contains am = 1 as well as am−1 =
am · a−1 = a−1. Thus, H contains the identity as well as the inverse of each of its
elements, making it a group. �

Lemma 6.7. Let H be a strict subgroup of a finite group G (i.e. H 6= G). Then,
|H| ≤ |G|/2.

Proof. Let h̄ be an element of G that is not in H; since H 6= G, we know that h̄
exists. Consider the set H̄ := {h̄h | h ∈ H}. We show that (1) |H̄| = |H|, and (2)
every element of H̄ lies outside of H, i.e. the intersection of H and H̄ is empty. Since
both H and H̄ are subsets of G, these imply |G| ≥ |H| + |H̄| = 2|H|, proving the
lemma.
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Suppose h1, h2 ∈ H. If h̄h1 = h̄h2 then by Lemma 6.2, we have h1 = h2. This shows
that every distinct element h ∈ H corresponds to a distinct element h̄h ∈ H̄, proving
(1).
Assume for the sake of contradiction that h ∈ H is such that h′ := h̄h ∈ H. Then
h̄ = h′h−1 ∈ H, contradicting the assumption that h̄ ∈ G \ H. This proves (2) and
completes the proof of the lemma. �

6.1. The group Z∗N .
Let us define the modulo function ModN : Z→ ZN := {0, . . . , N−1} by ModN(n) = k,
where k ∈ ZN is such that n ≡ k (mod N).
The set ZN is a group under addition modulo N ∈ N, i.e. addition +N on ZN is defined
by x +N y = ModN(x + y). We simply write + in place of +N from now on. More
interesting to us, however, is a related group under multiplication, namely

Z∗N := {b ∈ {1, . . . , N − 1} | gcd(b,N) = 1}
i.e. Z∗N consists of integers in the set {1, . . . , N − 1} that are coprime to N . The
multiplication operation, ·N , is defined by x ·N y = ModN(xy). Below, we more briefly
write x · y, or simply xy, in place of x ·N y.
Corollary 6.8. For N > 1 and for integer e > 0, define fe : Z∗N → Z∗N by fe(x) =
xe (mod N). If e is coprime to N , then fe is permutation. Moreover, if d = e−1

(mod φ(N)), then fd is the inverse of fe.

6.2. Isomorphisms and the Chinese Remainder Theorem.

Definition 6.9. Let G,H be groups with group operations ◦G and ◦H respectively.
A function f : G→ H is an isomorphism from G to H if:

1. f is a bijection, and
2. for all g1, g2 ∈ G we have f(g1 ◦G g2) = f(g1) ◦H f(g2).

We say that two groups G and H are isomorphic and write G ∼= H if there exists an
isomorphism from G to H, .

An isomorphism from G to H is just a renaming of elements of G as elements of H.
If G is finite and G ∼= H, then H must be finite and of the same cardinality as G.
Moreover, if there exists an isomorphism f from G to H, then f−1 is an isomorphism
from H to G.

Definition 6.10. Given groups G,H with group operations ◦G, ◦H , respectively, we
define a new group G×H, the direct product of G and H as follows: The elements of
G×H are ordered pairs (g, h) with g ∈ G and h ∈ H. Thus, if G has n elements and
H has n′ elements, then G×H has n · n′ elements. The group operation ◦ on G×H
is applied componentwise; that is

(g, h) ◦ (g′, h′) := (g ◦G g′, h ◦H h′).

We now state a group theoretic version of the Chinese remainder theorem. We omit
the proof since it follows from Theorem 5.17.
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Theorem 6.11 (Chinese remainder theorem). Let N = pq where p, q > 1 are coprime.
Then

ZN ∼= Zp × Zq and Z∗N ∼= Z∗p × Z∗q.
Moreover, let f be the function mapping elements x ∈ {0, . . . , N − 1} to pairs (xp, xq)
with xp ∈ {0, . . . , p− 1} and xq ∈ {0, . . . , q − 1} defined by

f(x) := (Modp(x),Modq(x)) .

Then f is an isomorphism from ZN to Zp × Zq, and the restriction of f to Z∗N is an
isomorphism from Z∗N to Z∗p × Z∗q.

Let G,H be two groups with group operations ◦G, ◦H , respectively, and let f be an
isomorphism from G to H, where both f and f−1 can be computed efficiently. Then,
for g1, g2 ∈ G, we can compute g = g1 ◦G g2 in two ways: either by directly computing
it in G, or via the following steps:

1. Compute h1 = f(g1) and h2 = f(g2).
2. Compute h = h1 ◦H h2 using the group operation in H.
3. Compute g = f−1(h).

Now, we look at specific examples working modulo n. We write a↔ (b, c) or (b, c)↔ a
whenever f(a) = (b, c) in Theorem 6.11.

Example 6.12. In this example, we let p = 5 and q = 13. Then Z65
∼= Z5 × Z13.

Suppose that we want to compute 16 · 37 (mod 65). Since 16 ≡ 1 (mod 5), 16 ≡ 3
(mod 13), 37 ≡ 2 (mod 5), and 37 ≡ 11 (mod 13), we have

16↔ (1, 3) and 37↔ (2, 11) .

In Z5 × Z13, we have

(1, 3) · (2, 11) ≡ (Mod5(1 · 2),Mod13(3 · 11)) ≡ (2, 7).

Finally, (2, 7)↔ 7, and so 16 · 37 ≡ 7 (mod 65).

Example 6.13. Again, we let p = 5 and q = 13, so Z65
∼= Z5 ×Z13. Suppose that we

want to compute 1637 (mod 65). As before, 16↔ (1, 3), so 1637 ↔ (1, 3)37.

(1, 3)37 ≡ (Mod5(1
37),Mod13(3

37)) ≡ (1, 3).

Thus, 1637 ≡ 16 (mod 65). (Note that the quickest way to compute Mod13(3
37) above

is to use Theorem 6.3: since |Z∗13| = 12, we have 337 = 31+3×12 ≡ 3 (mod 13).)

We also need to discuss how to convert back and forth between the elements in Zn
and the elements in Zp and Zq, where n = pq and p, q are distinct primes. Assuming
p and q are known, we can as above map an element x modulo n to the corresponding
element of Zp × Zq by mapping x to (Modp(x),Modq(x)).

To discuss the other direction, we take an element (xp, xq) ∈ Zp × Zq and we want to
map it to the corresponding element of Zn. We can write (xp, xq) as

(xp, xq) = xp · (1, 0) + xq · (0, 1).
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So, if we can find elements 1p, 1q ∈ {0, . . . , N−1} such that 1p ↔ (1, 0) and 1q ↔ (0, 1),
then, using the Chinese remainder theorem, we get

(xp, xq)↔ Modn(xp · 1p + xq · 1q).

Since p, q are distinct primes, gcd(p, q) = 1. Therefore, using the Euclidean algorithm
and running it backwards, we can find integers a, b such that

ap+ bq = 1 .

Note that bq ≡ 0 (mod q) and bq ≡ 1 (mod p). Hence, bq (mod n) ↔ (1, 0), i.e. bq
(mod n) ≡ 1q. Similarly, ap (mod n) ≡ 1q.

In summary, we can convert an element represented as (xp, xq) to its representation
modulo n via the following steps (assuming p and q are known):

1. Compute a, b such that ap+ bq = 1.
2. Set 1p := bq and 1q := ap.
3. Compute x := Modn(xp · 1p + xq · 1q).

Note that we do not need to reduce 1p and 1q mod n because it suffices to reduce them
in the final step.

Example 6.14. Again, we let p = 5 and q = 13, and so Z65
∼= Z5 × Z13. Suppose

that we are given (4, 3) ∈ Z5 × Z13 and we want to convert this to the corresponding
element of Z65. Using backwards substitution for the Euclidean algorithm, we get

2 · 13− 5 · 5 = 1.

Thus, 15 ≡ 2 · 13 ≡ 26 (mod 65) and 113 ≡ −5 · 5 ≡ 40 (mod 65). (To verify this, we
check that 15 ≡ 26 ≡ 1 (mod 5), 15 ≡ 26 ≡ 0 (mod 13), 113 ≡ 40 ≡ 0 (mod 5) and
113 ≡ 40 ≡ 1 (mod 13).)

Using these values, we compute

(4, 3) = 4 · (1, 0) + 3 · (1, 0)

↔ 4 · 1p + 3 · 1q (mod 65)

= 4 · 26 + 3 · 40 (mod 65)

= 29 (mod 65)

Since 29 gives 29 ≡ 4 (mod 5) and 29 ≡ 3 (mod 13), this is indeed the correct result.

6.3. Cyclic Groups.

Definition 6.15. Let G be a finite group and g ∈ G. The order of g, written ord(g),
is the smallest positive integer i with gi = 1.

Below, gx for negative integers x is to be interpreted as h−x where h = g−1.

Proposition 6.16. Let G be a finite group, and g ∈ G an element of order i. If
x, y ∈ Z, then gx = gy if and only if x = y (mod i).



6. GROUP THEORETIC BACKGROUND 61

Proof. Suppose x = y (mod i), and so x− y = ki for some k ∈ Z. If k ≥ 0, then

gx = gygki = gy · (gi)k = gy · 1 = gy ,

as required. If instead k < 0, reverse the roles of x and y above to reach the same
conclusion.

To prove the other direction, suppose gx = gy where, without loss of generality, y ≤ x.
We write x− y in the form qi+ r for some non-negative q, r ∈ Z, 0 ≤ r < i. Then,

1 = gx−y = gqi+r = (gi)qgr = gr .

Thus, gr = 1. This contradicts the definition of the order of g unless r = 0, in which
case it is clear that x ≡ y (mod i). �

In any group G, the identity element is the only element of order 1, and generates the
group (1) = {1}. If there is an element g ∈ G that has order m, where m is the order
of the group G, then (g), the subgroup generated by g, equals G. In this case, we call
G a cyclic group and say that g is a generator of G.

Note that every cyclic group is abelian.

Definition 6.17. A group G is cyclic if G can be generated by a single element, i.e.,
there exists some element g ∈ G such that G = {gn | n ∈ Z}.

If g is a generator of G then, by definition, every element h ∈ G is equal to gx for some
x ∈ {0, . . . ,m− 1}, where m is the order of G.

Proposition 6.18. Let G be a finite group of order m, and say g ∈ G has order i.
Then i | m.

Proof. By Theorem 6.3, we know that gm = 1 = g0. Proposition 6.16 implies that
m = 0 (mod i). �

Corollary 6.19. If G is a group of prime order p, then G is cyclic. Furthermore, all
elements of G except the identity are generators of G.

Proof. By Proposition 6.18, the only possible orders of elements in G are 1 and p.
Only the identity element has order 1, and so all other elements have order p and
generate G. �

Lemma 6.20. Let g ∈ G, with ord(g) = n. Then, for any k | n, there exists h ∈ G
with ord(h) = k.

Proof. We simply let h = gn/k. �

Lemma 6.21. Suppose G is an abelian group and a, b ∈ G are such that ord(a) = n
and ord(b) = m, where gcd(n,m) = 1. Then, there exists c ∈ G, with ord(c) = nm.

Proof. We claim that ab has order nm. As (ab)nm = (an)m(bm)n = 1m1n = 1, we see
that ord(ab) = k, for some k | nm.

(ab)k = 1 =⇒ ak = b−k .
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Raising both sides to themth power, we get amk = 1. Thus, n | mk. But as gcd(n,m) =
1, this implies that n | k. As G is abelian, we can switch the roles of a and b and get
m | k. Thus, nm | k and hence, k = nm. �

Lemma 6.22. Suppose G is an abelian group and a, b ∈ G are such that ord(a) = n
and ord(b) = m. Then, there exists c ∈ G such that ord(c) = [n,m], where [n,m] is
the lowest common multiple of n and m.

Proof. By Lemma 6.20, there exists c1, c2, c3 ∈ G with

ord(c1) = gcd(n,m), ord(c2) =
n

gcd(n,m)
and ord(c3) =

m

gcd(n,m)
.

Each of the orders are pairwise coprime, hence, by Lemma 6.21, there exists c ∈ G
such that

ord(c) = gcd(n,m) · n

gcd(n,m)
· m

gcd(n,m)
=

nm

gcd(n,m)
= [n,m] . �

Theorem 6.23. If p is prime, then Z∗p is a cyclic group of order p− 1.

Proof. Since p is a prime, all nonzero elements of Zp are coprime to p. This means
that (Zp,+, ∗) is actually a field, a fact that we will need later. For now, though,
we note that Z∗p contains all the nonzero numbers and so the order of Z∗p is p − 1,
as required. Hence, we only need to show that Z∗p is cyclic, and we prove this by
contradiction.

Assume Z∗p is not cyclic. Let mi := ord(i). By Lemma 6.22, there exists c ∈ Z∗p with
ord(c) = d := [m1, . . . ,mp−1]. Since Z∗p is not cyclic, d must be a strict divisor of p−1,
lest c be a generator of the group.

Since d is a multiple of every mi, we have id − 1 = 0 (mod p, of course) for all i ∈ Z∗p.
Thus, the polynomial xd − 1 has p − 1 roots in the field Zp. Since a polynomial of
degree d can have at most d roots in a field, and since d is strictly less than p− 1, we
get a contradiction. �



7. Factorization and Primality Testing

Given a positive integer n, the idea of factorization is to find integers p, q > 1 such
that n = pq. Theoretically, the trial division factorization algorithm (TDFA, below)
is straightforward: we simply test if n is divisible by p for all possible divisors p,
beginning with p = 2, and in turn for increasingly larger p until we find a factor.

TDFA always succeeds. In fact, the smallest prime factor of composite n is no larger
than b

√
nc, so we do not need to go any further than this: if no factor has been found

once we have tested for divisibility by all numbers smaller than this, we can conclude
that n is prime.

However, TDFA is slow if n has no small factors, in the sense that its smallest factor
d > 1 has digit length comparable with the digit length of

√
n or n. Below, we discuss

more precisely how slow this method is and what we mean by “digit length”.

There are some optimizations that could be performed on TDFA. The simplest of
these involves trying division only by p = 2 and all odd p ≤ b

√
nc. Even with this

and other optimizations, the time required to carry out TDFA grows exponentially as
a function of the number of digits in n when n is written in some fixed base, making
this an exponential time algorithm, at least when n has no small factors. Exponential
time algorithms are notorious for being computationally infeasible for modestly large
n (e.g. for a 1000-digit number).

To be more precise, suppose we use base 2, which is often done. We say that n is
of digit length k if its standard base-2 representation has k digits. The number Ck
of positive integers that are of digit length at most k is 2k − 1 (assuming that we
“waste” only one such digit string to represent 0). Even if we only count odd numbers,
Ck is comparable with 2k for all large k, meaning that Ck ≥ c · 2k, where c > 0 is
independent of k. It follows that if we apply TDFA to a number n of digit length k,
then the number of trial divisions is comparable with 2k/2.

There are more advanced factorization methods that are faster than TDFA, but all
known ones are superpolynomial in the digit length, meaning that in the worst case
scenario, the amount of calculation required to factorize a number of digit length k
grows at a rate faster than km for any fixed m. Any growth rate that is subexponen-
tial is significantly better than an exponential growth rate but algorithms that require
superpolynomial time are still considered slow and the underlying problem (e.g. fac-
torization in this case) is still computationally infeasible once n is modestly large (as
above).

The RSA cryptographic system, which we discuss later, depends on the difficulty of
factorizing large numbers. If we used an integer in RSA that could be easily factorized,
the system could be “cracked” once we factorize this integer, i.e. we could efficiently
decrypt any encrypted message.

Although factorizing a large integer n into its prime factors may not be computa-
tionally feasible, it is easier to test n for primality. The aim of primality testing is

63
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to determine whether a given integer is prime or not without having to factorize the
integer into its prime decomposition.

There are both deterministic and probabilistic primality testing algorithms. A deter-
ministic method gives a definitive conclusion in all cases, while a probabilistic method
does not. The advantage of probabilistic methods is that they can give a near-certain
conclusion much faster than the time required to give a definitive answer.

The idea of probabilistic primality testing is that we choose a random parameter a
from a sample space that depends on the number n that we wish to test. There are
two possible outcomes for the test: either n is definitely composite if it “fails” the test
or its status remains undetermined if it “passes” the test. However, if it passes the
test, the likelihood that n is prime increases and the likelihood that it is composite
decreases, typically by at least some fixed factor (such as 2).

The strategy therefore is carry out such tests repeatedly for various different choices
of a. If n fails even one of these tests, we stop testing because we have determined
that n is composite. However, once n passes enough of these tests, we can confidently
declare it to be prime. This declaration may be erroneous, but it is very unlikely to
be so. Thus, we do not seek to formally prove that n is prime but rather we seek very
strong evidence that it is prime. By contrast, if n is not prime, these methods will
usually reveal this with certainty within a reasonable amount of time.

In this chapter, we discuss two commonly used probabilistic primality tests, namely
the Fermat test and the Miller-Rabin test, which can be used to test if a given odd
n ∈ N is prime.

7.1. Fermat’s primality test.

Fermat’s primality test is based on Fermat’s little theorem. We first pick an integer
b such that gcd(b, n) = 1; we use the Euclidean algorithm to find gcd(b, n). Then,
we reduce bn−1 (mod n); because modern computer languages typically have a mod
operator that performs such a reduction, the reduction is listed in the pseudocode
below simply as computing bn−1 mod n. If bn−1 6≡ 1 (mod n), Fermat’s little theorem
says that n cannot possibly be prime.

The following pseudocode shows how to implement this algorithm to carry out a single
test of this type.
Choose 1 < b < n− 1 at random
x := bn−1 mod n
if x = 1 then

return “n is possibly prime”
else

return “n is composite”
end if

We could add a preliminary check that gcd(b, n) = 1. This can be verified quickly by
the Euclidean algorithm. If this equation fails, then n is certainly not prime.
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Note that we do not allow the choices b = 1 and b = n− 1 above (since n would pass
the test regardless, in the latter case because −1 raised to an even power is equivalent
to 1 modulo n).

If bn−1 6≡ 1 (mod n), where gcd(b, n) = 1, then n is not prime and we call b a witness
(to the fact that n is not a prime). We now show that if there is any witness, then
there are many.

Theorem 7.1. Fix N ∈ N. Suppose there exists a witness that N is composite. Then
at least half the elements of Z∗N are witnesses that N is composite.

Proof. Let B be the set of elements in Z∗N that are not witnesses, that is, b ∈ B means
bN−1 ≡ 1 (mod N). Clearly, 1 ∈ B. If a, b ∈ B, then (ab)N−1 = aN−1bN−1 = 1 · 1 ≡ 1
(mod N), and hence ab ∈ B. By Proposition 6.6, we conclude that B is a subgroup of
Z∗N . Since by assumption there is at least one witness, B is a strict subgroup of Z∗N .
Lemma 6.7 then shows that |B| ≤ |Z∗N |/2, showing that at least half the elements of
Z∗N are not in B and are therefore witnesses. �

It can be shown that there always exist composite integers n such that the condition
bn−1 ≡ 1 (mod n) holds for any given a. Such numbers n are called pseudoprimes.
Therefore, we run the test s times (for some suitably large s), with a different value
of b each time, to increase our confidence in n being prime.

Example 7.2. We use Fermat’s primality test to test whether 117 is prime or compos-
ite. Consider 3 as the base, noting that gcd(3, 117) = 1. We reduce 3117−1 (mod 117).
Applying the fast exponentiation algorithm, we get 3116 ≡ 9 (mod 117). Hence, 117
is composite.

Example 7.3. We use Fermat’s primality test to test whether 113 is prime or compos-
ite. We pick 2 as the base, noting that gcd(2, 113) = 1. We reduce 2113−1 (mod 113).
Applying the fast exponentiation algorithm, we get 2112 ≡ 1 (mod 113). Hence, 113
is possibly prime (and indeed it is prime).

Definition 7.4. Let n be a composite integer and let b ∈ N. If gcd(b, n) = 1 and
bn−1 ≡ 1 (mod n), then n is called a pseudoprime to the base b.

There are composite integers where Fermat’s little theorem holds for all choices of b.

Definition 7.5. A composite number n is a Carmicheal number if it is a pseudoprime
to every base b such that gcd(b, n) = 1.

Carmichael numbers are a particular problem for Fermat’s primality test. If we are
unlucky enough to pick a Carmichael number as our n, and we use this method to
test primality, then we will probably eventually declare n to be prime even if we carry
out many tests. Fortunately, it can be shown that Carmichael numbers do not have
positive density in the sense that the proportion of numbers less than or equal to N
that are Carmichael numbers tends to 0 as N →∞; see for instance [7].
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7.2. The Miller-Rabin Test.

The Miller-Rabin test [13] is another probabilistic primality test. We will see that
it effectively involves organising the calculations of Fermat’s primality test in such a
way that we get more benefit from our work. Crucially, there are no Miller-Rabin
equivalents to Carmichael numbers, i.e. if a number passes the Miller-Rabin test to all
possible bases, then it is definitely prime. In practice though, we usually only carry
out enough tests to ensure high confidence in a number being prime, so this is also
effectively a probabilistic primality test.

The test is based on the following theorem:

Theorem 7.6. Suppose n > 1 is an odd integer, and let us write n − 1 in the form
2st, where s, t ∈ N and t is odd. If there exists an integer b, 0 < b < n, such that

bt 6≡ 1 (mod n) and b2
it 6≡ −1 (mod n) , i ∈ {0, 1, . . . , s− 1} , (7.7)

then n is composite.

Proof. We prove the theorem by contradiction. Suppose 0 < b < n is such that (7.7)
holds, but that n is prime. In particular, b is coprime to n. Let us write b ∈ Mi if
b2

it ≡ 1 (mod n). By Fermat’s little theorem, b ∈ Ms while, by assumption, b /∈ M0.
Thus there exists some integer k, 0 < k < s, such that b ∈Mk but b /∈Mk−1.

Because n is prime, (Zn,+, ∗) is a field and so quadratic polynomials have at most
two distinct roots there. Since 1 and −1 are roots of the polynomial P (x) := x2 − 1,
there are no other roots. (An alternative number theoretic proof of this fact is given in
Lemma 7.10 below.) Since b ∈Mk but b /∈Mk−1, it follows that b2

k−1t ≡ −1 (mod n),
contradicting (7.7), and so we are done. �

Based on the above, the following algorithm implements a single Miller-Rabin primality
test.

(1) Write n− 1 = 2st for some integers s, t > 0.
(2) Choose 1 < b < n− 1 at random.
(3) Let x ≡ bt (mod n).
(4) If x ≡ ±1 (mod n), then stop. The number n is possibly prime.
(5) Otherwise, repeatedly square x, at most s− 1 times. If you get −1 at any stage,

stop. The number n is possibly prime.
(6) If after squaring s− 1 times, x is still not −1 mod n, then stop. The number n is

composite.

As in the Fermat primality test, we could add a preliminary check that gcd(b, n) = 1.
If this equation fails, then n is certainly not prime.

Writing the test in pseudocode, we get the following:
Write n− 1 = 2st for some integer s and odd t
Choose 1 < b < n− 1 at random
x := bt mod n
if x = 1 or x = n− 1 then
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return “n is possibly prime”
else

for i from 1 to s− 1 do
x := x2 mod n
if x = −1 then

return “n is possibly prime”
end if

end for
return “n is composite”

end if

Example 7.8. In this example, we use the Miller-Rabin test to determine whether
117 is prime or composite. First, we write n− 1 = 116 = 2st, where s = 2 and t = 29.
Now, we pick 3 as the base, and check that gcd(3, 117) = 1 and that 1 < 3 < 116.

We now calculate x ≡ 329 ≡ 9 (mod 117). Since x 6≡ ±1, we repeatedly square x, at
most s = 2 times.

s = 1 : x2 ≡ 92 ≡ 81 (mod 117).

s = 2 : (x2)2 ≡ 812 ≡ 9 (mod 117).

Now, x has been squared 2 times without getting ±1, so we conclude that 117 is
composite.

Example 7.9. In this example, we use the Miller-Rabin test to determine whether
113 is prime or composite. First, we write n− 1 = 112 = 2st, where s = 4 and t = 7.
We pick 2 as the base, and check that gcd(2, 113) = 1 and 1 < 2 < 112.

We now calculate x ≡ 27 ≡ 15 (mod 113). Since x 6≡ ±1, we repeatedly square x, at
most s = 4 times.

s = 1 : x2 ≡ 152 ≡ −1 (mod 113).

At this stage, we already stop because x ≡ −1 (mod 113). Thus 113 passes the
Miller-Rabin test for base b = 3, and so 113 is possibly prime.

We say that a ∈ Z∗N is a strong witness that N is composite (or simply a strong
witness) if

(1) at 6≡ ±1 (mod N) and
(2) a2it 6≡ −1 (mod N) for all i ∈ {1, . . . , s− 1}

For the following Lemma, we say x ∈ Z∗N is a square root of 1 modulo N if x2 ≡ 1
(mod N).

Lemma 7.10. If N is an odd prime, then the only square roots of 1 modulo N are
±1 (mod N).

Proof. Suppose x2 ≡ 1 (mod N) for some x ∈ {1, . . . , N − 1}. Then 0 = x2 − 1 =
(x+ 1)(x− 1) (mod N), implying that N | (x+ 1) or N | (x− 1) by Proposition 5.16.
This can only possibly occur if x ≡ ±1 (mod N). �
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Theorem 7.11. Let N be an odd number that is not a prime power. Then at least
half the elements of Z∗N are strong witnesses that N is composite.

Proof. Let B ⊆ Z∗N denote the set of elements that are not strong witnesses. We
define a set B′ and show that: (1) B is a subset of B′, and (2) B′ is a strict subgroup
of Z∗N . This suffices because by combining (2) and Lemma 6.7 we have that |B′| ≤
|Z∗N |/2. Furthermore, by (1) it holds that B ⊆ B′, and so |B| ≤ |B′| ≤ |Z∗N |/2 as in
Theorem 7.1. Thus, at least half the elements of Z∗N are strong witnesses. (We do not
claim that B is a subgroup of Z∗N .)
Note first that −1 ∈ B since t is odd and so (−1)t ≡ −1 (mod N). Let 0 ≤ i ≤ s− 1

be the largest integer j for which there exists an a ∈ B with a2
jt ≡ −1 (mod N),

alternatively, i is the largest integer for which there exists an a ∈ B with

(at, a2t, . . . , a2
st) = (∗, . . . , ∗,−1, 1, . . . , 1) .

where the (i+ 1)st term is −1. Since −1 ∈ B and (−1)2
0t ≡ −1 (mod N), some such

i exists. We fix i as above, and define

B′ := {a | a2it ≡ ±1 (mod N)}.
We now prove what that B′ has the desired properties.

Claim 1: B ⊆ B′.

Let a ∈ B. Then either at ≡ 1 (mod N) or a2jt ≡ −1 (mod N) for some 0 ≤ j ≤ s−1.
In the first case, a2it = (at)2

i ≡ 1 (mod N) and so a ∈ B′. In the second case, we have
j ≤ i by choice of i. If j = i, then clearly a ∈ B′. If j < i, then a2it = (a2

jt)2
i−j ≡ 1

(mod N) and a ∈ B′. Since a was arbitrary, this shows B ⊆ B′.

Claim 2: B′ is a subgroup of Z∗N .
Clearly 1 ∈ B′. Furthermore, if a, b ∈ B′ then

(ab)2
it = a2

itb2
it ≡ (±1)(±1) ≡ ±1 (mod N) ,

and so ab ∈ B′. By Proposition 6.6, B′ is a subgroup.

Claim 3: B′ is a strict subgroup of Z∗N .
If N is an odd, composite integer that is not a prime power, then N can be written
as N = N1N2 with N1, N2 > 1 odd and gcd(N1, N2) = 1. Appealing to the Chinese
remainder theorem, let a↔ (a1, a2) denote the representation of a ∈ Z∗N as an element
of Z∗N1

× Z∗N2
; that is a1 ≡ a (mod N1) and a2 ≡ a (mod N2). Take a ∈ B′ such that

a2
it ≡ −1 (mod N) (such an a must exist by the way we defined i), and a↔ (a1, a2).

Since −1↔ (−1,−1), we have

(a1, a2)
2it = (a2

it
1 , a2

it
2 ) ≡ (−1,−1) (mod N) ,

and so
a2

it
1 ≡ −1 (mod N1) and a2

it
2 ≡ −1 (mod N2)

Consider the element b ∈ Z∗N with b↔ (a1, 1). Then

b2
it ↔ (a1, 1)2

it ≡ (a2
it

1 , 1) = (−1, 1) 6↔ ±1.
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That is, b2it 6= ±1 (mod N) and so we have found an element b 6∈ B′. This proves
that B′ is a strict subgroup of Z∗N and so, by Lemma 6.7, the size of B′, and thus the
size of B, is at most half the size of Z∗N . �

Notice that, although Theorems 7.1 and 7.11 are quite similar, there is one major
difference between them. In the former theorem, Carmichael numbers are exceptional
and so we need to assume that there is at least one witness before we can draw any
conclusion. By contrast, in the latter theorem, we do not need to assume that a witness
exists since it always does, at least as long as N is not a prime power.

We claim that, although it looks more complicated, the amount of computation for
fixed n and base b is no greater (and may be less!) in Miller-Rabin than it is in Fermat.
This is because an effective way of organising the computation of the reduced form
of bn−1 mod n is to first reduce bt mod n (using the fast exponentiation algorithm in
Section 5.1), and then square and reduce s times; here, we assume that n− 1 = 2st as
before. If we do it this way, we can examine the numbers we get along the way and
stop if either the initial reduced power bt mod n equals 1 or if it or any later reduced
power equals −1.

Consider, for instance, n = 73. Here, n − 1 = 72 = 23 · 9. If we want to compute
b72, we could compute the reduced form of b2i for 1 ≤ i ≤ 6 and then b72 = b2

6 · b23 :
this involves seven multiply-and-reduce operations mod 73 (squaring six times and
one other multiplication) but doing the calculation this way does not facilitate Miller-
Rabin. If instead we compute and reduce b9 = b1 · b23 mod 9, and then square and
reduce b9 three more times, we have done the same amount of work (i.e. seven multiply-
and-reduce operations), but we computed b9, b18, and b36 along the way, so we can
use these to carry out the Miller-Rabin test. If any of these reduced numbers equals
n− 1 (i.e. if it is equivalent to −1 mod n), then we stop early and we have done less
computation than the Fermat test requires us to do.



8. Primality Testing in Z[i] and Z[ω]

In this chapter, we investigate primality testing for Z[i] and Z[ω]. It turns out that
this readily reduces to primality testing for Z, and so we can use Fermat’s primality
test or the Miller-Rabin test to solve this problem.

We first consider primality testing in Z[i]. Recall that, up to multiplication by a unit,
there are two main families of Z[i]-primes: the Z-primes p of the form 4n + 3, and
conjugate prime pairs {π, π̄} where ππ̄ = p for a Z-prime p of the form 4n+ 1; in both
cases, n ∈ Z. The only other Z[i]-prime – again up to multiplication by a unit – is
1 + i.

Thus, if we want to determine whether a nonzero Gaussian integer z = a+bi, a, b ∈ Z,
is possibly prime or not, we can use the following algorithm.

If either a = 0 or b = 0, then z is a Z[i]-prime if and only if it is a unit multiple of
a Z-prime p that is congruent to 3 modulo 4. Thus, we should check this congruence
and, if it is valid, then z is prime if and only if |z| is a Z-prime, something that we
can investigate using the methods of the previous chapter.

If instead both a and b are nonzero, we calculate the norm N(z). By Corollary 3.4
and Theorem 3.6, z is a Z[i]-prime if and only if N(z) is a Z-prime (and necessarily
N(z) is either 2 or it is equivalent to 1 modulo 4).

In the following examples, we use Fermat’s primality test and the Miller-Rabin test to
investigate the primality of some Gaussian integers.

Example 8.1. We investigate whether 4 + 5i is prime or not in Z[i]. First, note that
N(4+5i) = 41. Because 41 is such a small number, we readily see that it is a Z-prime,
and so 4 + 5i is a Z[i]-prime.

However, if we were uncertain of the Z-primality of 41, we could for instance apply
Fermat’s primality test. Let us pick 3 as the base number (since gcd(41, 3) = 1). By
Fermat’s little theorem, we need to calculate 340 (mod 41). Using fast exponentiation,
we find 304 ≡ 1 (mod 41). Hence, 41 is possibly prime by Fermat’s primality test.

Example 8.2. We investigate whether 97 is prime or not in Z[i]. Since 97 6≡ 3
(mod 4), no further work is required: 97 is not a Z[i]-prime.

Example 8.3. We investigate whether 16 + 9i is prime or not in Z[i]. First, note that
N := N(16 + 9i) = 337. Because 337 is not such a large number, and

√
337 < 19, its

primality is readily verified by checking that it is not divisible by any of the Z-primes
p for which 2 ≤ p ≤ 17. Thus, 16 + 9i is a Z[i]-prime.

However, if we were uncertain of the Z-primality of 337, we could for instance apply
the Miller-Rabin test. First, we write N − 1 = 336 = 2st, where s = 4 and t = 21.
Let us pick 5 as the base, noting that gcd(5, 337) = 1 and 1 < 5 < 336. We reduce
x := 521 modulo 337 to get x ≡ 191 (mod 337). As x 6≡ ±1, we continue the algorithm,
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squaring x at most s = 4 times.
s = 1 : x2 ≡ 1912 ≡ 85 (mod 337)

s = 2 : x4 ≡ 852 ≡ 148 (mod 337)

s = 3 : x8 ≡ 1482 ≡ −1 (mod 337).

Hence, by the Miller-Rabin test, 337 is possibly prime, and 16 + 9i is possibly prime
in Z[i]. We could test with other bases to increase our confidence in the primality of
16 + 9i.

Primality testing for the Eisenstein integers follows along similar lines. As for the
Gaussian integers, there are two main families of Z[ω]-primes, up to multiplication by
a unit: the Z-primes p of the form 3n + 2, and conjugate prime pairs {π, π̄} where
ππ̄ = p for a Z-prime p of the form 3n + 1; in both cases, n ∈ Z. The only other
Z[ω]-prime—again up to multiplication by a unit—is 2 + ω.

Thus, if we want to determine whether a nonzero Eisenstein integer z = a + bω,
a, b ∈ Z, is possibly prime or not, we can use the following algorithm.

If either a = 0 or b = 0, then z is a Z[ω]-prime if and only if it is a unit multiple of
a Z-prime p that is congruent to 2 modulo 3. Thus, we should check this congruence
and, if it is valid, then z is prime if and only if |z| is a Z-prime, something that we
can investigate using the methods of the previous chapter.

If instead both a and b are nonzero, we calculate the norm N(z). By Corollary 4.4
and Theorem 4.6, z is a Z[ω]-prime if and only if N(z) is a Z-prime (and necessarily
N(z) is either 3 or it is equivalent to 1 modulo 3).



9. Isomorphisms between certain quotient rings

In this chapter, we show that certain quotients of the rings Z and Z[i] are isomorphic,
as are certain quotients of the rings Z and Z[ω]. This will later allow us to simplify
the calculations for the RSA algorithm in Z[i] and Z[ω].

9.1. Isomorphisms between quotients of Z and Z[i].

We will establish this isomorphism map based on [5].
Recall that the units in Z[i] are ±1 and ±i. Hence, given a, b ∈ Z, the ideals (a+ bi),
(−a− bi), (−b+ ai) and (b− ai) are all the same.

Fact 9.1. Z[i]/(a+ bi) ∼= Z[i]/(−a− bi) ∼= Z[i]/(−b+ ai) ∼= Z[i]/(b− ai).

Fact 9.2. Z[i]/(0) ∼= Z[i] and Z[i]/(1) ∼= {0}.

For our next theorem, we define Za[i] for an integer a > 1 to be the set of formal sums
x + yi, x, y ∈ Za, with the ring operations defined as in Z[i] except using the ring
operations of Za in place of those of Z.

Theorem 9.3. If a is a positive integer larger than 1, then

Z[i]/(a) ∼= Za[i] .

Proof. Define φ : Z[i] → Za[i] by φ(x + yi) = [x]a + i [y]a, where [ · ]a denotes the
equivalence class modulo a. This mapping is clearly a surjective ring homomorphism.
Since φ(a) = [a]a = [0]a = 0, a belongs to ker(φ), and hence (a) ⊆ ker(φ).
On the other hand, if φ(x+yi) = 0, then both x and y are congruent to 0 modulo a, so
we can write x = ax′ and y = ay′ for some integers x′ and y′. Thus, x+yi = ax′+ay′i =
a(x′+ y′i) lies in (a). Therefore, ker(φ) = (a), which implies that Z[i]/(a) ∼= Za[i]. �

Theorem 9.4. If a is a positive integer larger than 1, then Za[i] is a field if and only
if a is a prime in Z that is congruent to 3 mod 4.

Proof. Suppose first that Za[i] is a field. Since there are no zero divisors of the form
c+ 0i, c ∈ Za \ {0}, it follows that a must be prime. Moreover, a cannot be 2 since, if
it were, then (1 + i)2 ≡ 0 (mod a), giving a contradiction.
So, let a be an odd prime, and let Za[x] be the polynomial ring over Za as usual.
Consider the usual ring homomorphism φ : Za[x]→ Za[i] given by φ(x) = i. It is clear
that ker(φ) = (x2 + 1). By the isomorphism theorem for rings, Za[i] ∼= Za[x]/(x2 + 1),
and this is a field if and only if x2 + 1 is irreducible modulo a. This is equivalent to
stating that there are no solutions to x2 ≡ −1 (mod a). This equation has solutions
for a an odd prime if and only if a ≡ 1 (mod 4). Thus, we conclude that a ≡ 3
(mod 4).
Now, suppose that a is a prime congruent to 3 modulo 4, and consider again the ring
homomorphism φ. Since x2 + 1 is irreducible, the kernel (x2 + 1) is a maximal ideal.
Thus, Za[i] is a field. �
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As a corollary to this theorem, we get the following result that we established previ-
ously.

Corollary 9.5. If a is a positive integer larger than 1, then a is prime in Z[i] if and
only if a is a prime in Z that is congruent to 3 modulo 4.

We now come to our main isomorphism theorem for quotients of Z and Z[i].

Theorem 9.6. If a and b are coprime integers, then Z[i]/(a + bi) is isomorphic to
Za2+b2.

Proof. Using Fact 9.1, we can assume without loss of generality that a and b are
both positive integers. We observe that b is coprime to a2 + b2, so b−1 exists in Za2+b2 .
(Here, b−1 is an element of the inverse of the equivalence class of b modulo a2 + b2.)

Since a2 + b2 ≡ 0 (mod a2 + b2), we have a2 ≡ −b2 (mod a2 + b2), implying that
(ab−1)2 ≡ −1. We define ψ : Z[i]→ Za2+b2 by ψ(x+ yi) = x− (ab−1)y (mod a2 + b2).
Clearly, ψ is surjective and preserves addition.

We next show that ψ preserves multiplication. Let α = x+ yi and β = w + zi. Then

ψ(α) · ψ(β) = ψ(x+ yi) · ψ(w + zi) = (x− ab−1y) · (w − ab−1z)

≡ (xw) + a2b−2(yz)− ab−1(xz + yw)

≡ (xw − yz)− ab−1(xz + yw)

= ψ((xw − yz) + (xz + yw)i)

= ψ((x+ yi) · (w + zi))

= ψ(α · β),

as required. Moreover, because ψ(a+ bi) = a− ab−1b ≡ 0, (a+ bi) ⊆ ker(ψ).

For the converse containment, suppose c+di ∈ ker(ψ). Since 0 ≡ ψ(c+di) = c−ab−1d,
we have c ≡ ab−1d, and so b(c+ di) ≡ d(a+ bi). We conclude that b(c+ di) ∈ (a+ bi),
and so c + di ∈ (a + bi) because a and b are coprime. Thus, ker(ψ) ⊆ (a + bi), which
means that ker(ψ) = (a+ bi), and so Z[i]/(a+ bi) is isomorphic to Za2+b2 . �

Again, this theorem leads to a result that we have already discussed in Chapter 3.

Corollary 9.7. If a and b are coprime integers, then a + bi is a prime in Z[i] if and
only if a2 + b2 is prime in Z.

Suppose we want to understand better the isomorphism φ : Z[i]/I → Z/J implicitly
constructed in the proof of Theorem 9.6, where I = (a + bi) and J = (a2 + b2) are
the ideals of interest in Z[i] and Z, respectively. (φ is implicitly constructed via the
equivalence between φ(z + I) = n+ J and ψ(z) = n+ J , where ψ is as in the proof of
Theorem 9.6.)

Suppose first that we are given c, d ∈ Z and we want to compute e, where φ(c+di+I) =
e+ J , or equivalently ψ(c+ di) = e+ J . Then, as in the above proof, e is any integer
that is equivalent to c− (ab−1)d mod (a2 + b2).
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There is also the inverse problem: suppose we are given e and we want to find c and
d. Again, we want to solve the equivalence c − (ab−1)d ≡ e mod (a2 + b2). Taking
d = 0, we get the solution c + di = e + 0i. All other solutions differ from this one by
a (Gaussian integer) multiple of a+ bi.

Example 9.8. Taking a+ bi = 3 + 2i and I = (3 + 2i) ⊂ Z[i], Theorem 9.6 says that
Z[i]/I ∼= Z32+22 = Z13 = Z/J , where J = (13) ⊂ Z. Writing ψ : Z[i]→ Z/J as before,
suppose we want to find ψ(7 + 4i). By the proof of Theorem 9.6,

ψ(7 + 4i) = 7− (3 · 2−1) · 4 + J = 7− (3 · 7) · 4 + J = 1 + J ,

and so ψ(7 + 4i) = 1 + J .

Suppose next that we want to find (x, y) such that ψ(x+ yi) = 2 +J . Hence, we want
to solve the equation

x− (3 · 7) · y ≡ 2 (mod 13) .

Letting y = 0, we get the solution x = 2. Hence, ψ(2+0i) = 2+J . The other solutions,
of course, are the Gaussian integers that differ from 2 by a Gaussian multiple of 3+2i,
so examples include −1− 2i, 5 + 2i, 8 + 4i, 14 + 8i, 3i, etc.

9.2. Isomorphisms between quotients of Z and Z[ω].

The units in Z[ω] are ±1, ±ω and ±ω2. Hence, we know that for integers a and b, the
ideals (a+ bω), (−a− bω), (aω+ bω2), (−aω− bω2), (aω2 + b) and (−aω2− b) are the
same.

Fact 9.9. Z[ω]/(a+ bω) ∼= Z[ω]/(−a− bω) ∼= Z[ω]/(aω+ bω2) ∼= Z[ω]/(−aω− bω2) ∼=
Z[ω]/(aω2 + b) ∼= Z[ω]/(−aω2 − b)

Fact 9.10. Z[ω]/(0) ∼= Z[ω] and Z[ω]/(1) ∼= {0}.

The following theorem has almost the same proof as its Gaussian equivalent, Theo-
rem 9.3, so we omit the proof.

Theorem 9.11. If a is a positive integer larger than 1, then

Z[ω]/(a) ∼= Za[ω]

Theorem 9.12. If a is a positive integer larger than 1, then Za[ω] is a field if and
only if a is a prime in Z that is congruent to 2 modulo 3.

Proof. Suppose first that Za[ω] is a field. Since there are no zero divisors of the form
c + 0ω, c ∈ Za \ {0}, it follows that a must be prime. Moreover, a cannot be 3 since,
if it were, then (2 + ω)2 ≡ 0 (mod a), giving a contradiction.

So, let a be a prime 6= 3, and let Za[x] be the polynomial ring over Za as usual. It
is clear that ker(φ) = (x2 − x + 1). By the isomorphism theorem for rings, Za[ω] ∼=
Za[x]/(x2 − x+ 1), and this is a field if and only if x2 − x+ 1 is irreducible modulo a.

This is equivalent to stating that there are no solutions to x2 − x ≡ −1 mod a. As
we showed in the proof of Theorem 4.6, this equivalence has solutions for a prime a,
a 6= 3, if and only if a ≡ 1 (mod 3). Thus, we conclude that a ≡ 2 (mod 3).
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Now, suppose that a is a prime congruent to 2 modulo 3, and consider again the ring
homomorphism φ. Since x2− x+ 1 is irreducible, the kernel (x2− x+ 1) is a maximal
ideal. Thus, Za[ω] is a field. �

As a corollary to this theorem, we get the following result that we established in
Chapter 4.

Corollary 9.13. If a is a positive integer larger than 1, then a is prime in Z[ω] if and
only if a is a prime in Z that is congruent to 2 modulo 3.

Theorem 9.14. If a and b are coprime integers, then Z[ω]/(a+ bω) is isomorphic to
Za2−ab+b2.

Proof. Since (z) = (zu) whenever u is a unit, and multiplication by a unit corre-
sponds geometrically to rotation by any multiple of 60 degrees, we can assume without
loss of generality that a and b are both positive integers. We observe that b is coprime
to a2 − ab + b2, so b−1 exists in Za2−ab+b2 . (Here, b−1 is an element of the inverse of
the equivalence class of b modulo a2 − ab+ b2.)

Since a2− ab+ b2 ≡ 0 (mod a2− ab+ b2), we have a2− ab ≡ −b2 (mod a2− ab+ b2),
implying that (ab−1)2 ≡ −1 + ab−1. We define ψ : Z[ω] → Za2−ab+b2 by ψ(x + yω) =
x− (ab−1)y (mod a2 − ab+ b2). Clearly, ψ is surjective and preserves addition.

We next show that ψ preserves multiplication. Let α = x+ yω and β = u+ vω. Since

ψ(α) · ψ(β) = ψ(x+ yω) · ψ(u+ vω) = (x− ab−1y) · (u− ab−1v)

≡ xu− ab−1xv − ab−1yu+ (ab−1)2yv

≡ xu− yv − ab−1(xv + yu− yv)

= ψ(xu− yv)− ab−1(xv + yu− yv)

= ψ((xu− yv) + (xv + yu− yv)ω)

= ψ(α · β),

as required. Moreover, because ψ(a+ bω) = a− ab−1b ≡ 0, (a+ bω) ⊆ ker(ψ).

For the converse containment, suppose c + dω ∈ ker(ψ). Since 0 ≡ ψ(c + dω) =
c − ab−1d, we have c ≡ ab−1d, and so b(c + dω) ≡ d(a + bω). We conclude that
b(c + dω) ∈ (a + bω), and so c + di ∈ (a + bω) because a and b are coprime. Thus,
ker(ψ) ⊆ (a + bω), which means that ker(ψ) = (a + bω), and so Z[i]/(a + bω) is
isomorphic to Za2−ab+b2 . �

Again, this theorem leads to a result that we have already proved.

Corollary 9.15. If a and b are coprime integers, then a + bω is a prime in Z[ω] if
and only if a2 − ab+ b2 is prime in Z.

Suppose we want to understand better the isomorphism φ : Z[ω]/I → Z/J implicitly
constructed in the proof of Theorem 9.14, where I = (a + bω) and J = (a2 + b2) are
the ideals of interest in Z[ω] and Z, respectively. (φ is implicitly constructed via the
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equivalence between φ(z + I) = n+ J and ψ(z) = n+ J , where ψ is as in the proof of
Theorem 9.14.)

Suppose first that we are given c, d ∈ Z and we want to compute e, where φ(c+dω+I) =
e + J , or equivalently ψ(c + dω) = e + J . Then e is any integer that is equivalent to
c− (ab−1)d mod (a2−ab+ b2). Solving for e given (c, d), or vice versa, is then handled
in a manner very similar to the Gaussian case.



10. Public vs Private Key Encryption: overview

In this chapter, we establish what public key encryption is and how it differs from
private key encryption, see [8]. We start by defining the correctness requirement that
any encryption scheme must satisfy.

Definition 10.1. Let M be the set of all plaintext messages m and K be the set of
all possible keys k. For a cipher system to be correct, we require Dk(Ek(m)) = m,
∀m ∈M , ∀k ∈ K.

In other words, encrypting and then decrypting a message always yields the original
message.

Private key encryption enables two parties to communicate with each other. The
communicating parties share a private key for encrypting and decrypting messages.
Private key cryptosystems are symmetric cryptosystems: here, symmetric means that
the shared key is used for both encryption and decryption.

In contrast to symmetric private key encryption, we have asymmetric public key en-
cryption. Asymmetric here means that we use two different keys: a public key for
encryption and a private key for decryption.

A party wishing to join a public key encryption system generates a pair of keys: a
public key and a private key. The public key is published and allows anyone who
knows it to encrypt messages. The private key, however, is kept secret and is known
only to the party that generated the key. This private key is used for decryption and
enables the party to recover the original message from the ciphertext. Only the person
that knows the private key can decrypt messages, but anyone who knows the public
key can encrypt messages. That is, when two parties want to communicate with each
other, they each generate their own public key and private key and they exchange
their public keys.

One of the most important public key encryption systems is the RSA algorithm, which
we will discuss in the next chapter.
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11. RSA Algorithm in Z

The RSA algorithm [14] is named after Ronald Rivest, Adi Shamir and Leonard
Adleman, who discovered it in 1977. Up until now, the RSA algorithm has been one
of the most important and best-known asymmetric encryption methods. The security
of this public key cryptosystem is based on the difficulty of decomposing large numbers
into their prime factors.

To encrypt or decrypt messages using the RSA algorithm, we perform the following
steps:

First, we pick two large primes p and q and calculate their product N = pq. We then
calculate φ(N), where φ(N) is the Euler φ-function. Let the encryption exponent e be
chosen so that 1 < e < φ(N) and gcd(e, φ(N)) = 1. The pair (N, e) is the public key.
The decryption exponent d is the inverse of e mod φ(N), i.e. ed ≡ 1 (mod φ(N)).
The pair (N, d) is the private key.

To encrypt a numerical message M , where 0 ≤ M < N , we compute C ≡ M e

(mod N). To decrypt the encrypted message C, we calculate M ≡ Cd (mod N).

To verify the correctness of the RSA algorithm, we need to verify the correctness
requirement in Definition 10.1, i.e. we need to check that (M e)d ≡M (mod N). This
follows from the equivalence ed ≡ 1 (mod φ(N)), as we now show.

The key fact is that ed− 1 is a multiple of φ(N) = (p− 1)(q− 1), and so is a multiple
of both p − 1 and q − 1. We want to show that M ed −M is divisible by N , which is
equivalent to showing that it is divisible by both p and q.

If M is a multiple of p, then it is trivial that M ed −M is divisible by p. Otherwise,
M is a unit mod p and so, by Theorem 5.43 (Fermat’s Little Theorem), Mp−1 ≡ 1
(mod p). It follows that M ed−1 ≡ 1 (mod p), and so M ed −M is a multiple of p. The
fact that M ed −M is a multiple of q follows similarly.

Note that the above shows that we could slightly improve our method and work with
smaller exponents: we need only that ed−1 is a multiple of both p−1 and q−1, and so
it should be a multiple of the least common multiple λ(n) of p−1 and q−1. Note that
φ(n) is clearly a multiple of λ(n) but λ(n) is smaller since 2 is a common factor of p−1
and q − 1 (p and q are “large primes”, and so certainly odd). Thus, we can compute d
as the inverse of e mod λ(n) rather than mod φ(n). This makes the algorithm more
efficient (although typically only a little more efficient because gcd(p − 1, q − 1) is
usually much smaller than p or q), but makes no significant theoretical difference, so
we stick with the φ(n)-variant that was used in the original RSA paper.

The following pseudocode shows one way to generate the public key (N, e) and the
private key (N, d) for two given primes p and q.
N := p · q
phi := (p− 1) · (q − 1)
e := 2
while e < phi do
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if gcd(e, phi) = 1 then
break

else
e := e+ 1

end if
end while
k := 2
d := (k · phi+ 1)/e
while k < (phi− 1) do

if d is an integer then
break

else
k := k + 1

end if
end while

The above method is the easiest one to write down but let us note that the computation
of d can actually be made much more efficient by using “backward induction” in the
Euclidean algorithm as in the proof of Theorem 5.11 to prove Bezout’s identity. The
idea is that, because e and φ(N) are coprime, we can find integers x, y such that
ex + φ(N)y = 1, and now x is essentially the desired decryption exponent, although
we might want to add/subtract some multiple of φ(N) to x in order to get a decryption
exponent d satisfying 0 < d < φ(N).

With our public and private keys in hand, the task of encryption and decryption
is straightforward. Specifically, to encrypt a numerical message 0 ≤ M < N , we
calculate:

c ≡M e (mod N) .

To decrypt a given ciphertext 0 ≤ c < N , we calculate:

m ≡Md (mod N) .

As usual, all exponentiation should be done using the fast exponentiation algorithm
in Section 5.1.

Example 11.1. In this example, we call our two participating parties Alice and Bob.
Bob wants to send Alice a message using the RSA algorithm. Alice must first generate
a pair of keys to enable the communication.

Alice picks two primes p = 37 and q = 53 and calculates their product N = 37 · 53 =
1961. She also calculates φ(1961) = φ(37)φ(53) = 36 · 52 = 1872. Alice then picks her
encryption exponent e such that gcd(e, 1872) = 1 and 1 < e < 1872; Alice picks e = 5.
Now, Alice publishes her public key (N, e) = (1961, 5), allowing Bob to send her an
encrypted message.

Alice also generates her private key so that she can decrypt Bob’s message. Therefore,
she solves the equation 5d ≡ 1 (mod 1872) for d to get d = 749. Alice keeps her
private key (N, d) = (1961, 749) a secret.
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Bob wants to send the message M = 21 to Alice. Thus, he calculates C ≡ 215 ≡ 1299
(mod 1961). Bob sends C = 1299 to Alice.

Alice decrypts this message to determine the original message. She therefore calculates
M ≡ 1299749 (mod 1961) and finds that Bob’s message was M = 21.

Lastly, note that, although a typical N used for encryption is fairly large—the mini-
mum recommendation for N is currently at least 2048 “bits”, where a bit is a base-2
digit—it is probably much shorter than any real-life message that we wish to encrypt.
Consequently, we must break the full message M into blocks of bit-length at most L,
where 2L ≤ N , and then it is these blocks that we encode, and which the receiver
decodes and reassembles into the full message. In fact, ensuring that there is a gap
between L and log2N is typical so that we can pad the hash with some random bits
for security purposes.

11.1. RSA Digital Signature.

In the previous example, we illustrated how Bob can send a message to Alice using the
RSA algorithm. Now, we discuss the case where Alice sends Bob a message. Rather
than being concerned with encrypting the message, suppose she wants to allow Bob
to verify that the message came from Alice. This time, she encrypts with her own
private key, rather than Bob’s public key.

Suppose as before that Alice has the public key (N, e) and the private key (N, d). Alice
wants to send the numerical message M , 0 ≤ M < N . She can calculate S ≡ Md

(mod N), where S is the signature. Then, Alice sends the message (S,M) to Bob.
Bob has Alice’s public key, so he can then calculate Se (mod N). Since S ≡ Md

(mod N), Se ≡ (Md)e ≡M (mod N).

If Se ≡ M (mod N), this gives a valid signature, while Se 6≡ M (mod N) gives an
invalid signature. Thus, if Bob verifies a valid signature, he can be confident that the
message comes from Alice.

For various reasons, including efficiency, the full message is not signed in this manner.
Instead of breaking the messageM into blocks and signing each one, a so called hashing
function is first applied to replace the long message by a much shorter message digest.
Mathematically, this hashing function is fN : N→ N, whose values are all less than our
desired integer N ∈ N. In practice, fN takes a message of arbitrarily long bit-length
and replaces it by a message digest of bit-length at most L, where 2L ≤ N ; as for
encryption, it is common to ensure that there is a gap between L and log2N is typical
so that we can pad the digest for security purpose.

Hashing and padding the message, and then encrypting the much shorter digest (using
Alice’s private key), is typically much faster than encrypting the full message, making
this method is more efficient.

Suppose now that Alice has public and private keys (NA, eA) and (NA, dA), respectively,
and Bob’s corresponding keys are (NB, eB) and (NB, dB). Using a mutually agreed
hashing function fN , Alice computes fN(M) and raises it to the power dA to get the
digital signature S. Separately, Alice raises each padded block of the message M to
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the power eB and sends them to Bob. Once Bob receives, decrypts, and reassembles
the message M from these encrypted blocks, he can compute fN(M) and compare it
with SeA . If they match, he can read the message, safe in the knowledge that it is
from Alice.

A third party can also use the public key to compute SeA = fN(M), so we must
make sure that fN is a so-called cryptographic hashing function (CFA). One important
property that a CFA fN must have is that fN(M) should give essentially no useful
information about M . A CFA should also have the property that for two randomly
chosen messagesM andM ′, the probability that fN(M) = fN(M ′) is extremely small:
this ensures that Alice will almost certainly produce different digital signatures for
different messages so that the signature is useless to a third party.

Such CFAs (with acronyms such as SHA and DSA) exist and are commonly used in
cryptography, but we will not discuss them further here. Note that fN does not have
to be different for different N : it suffices that it corresponds to a bit-length that is
less than log2N , typically with a gap in this difference to allow padding. Thus, if
we choose N to have bit-length at least 2048, we could for instance use the common
SHA-1 hashing method since it gives hash values with at most 160 base-2 digits.

Example 11.2. In this toy example, we illustrate how the RSA algorithm works,
focusing on the digital signatures, but not including breaking a long message into
blocks or hashing.

Alice wants to send Bob a message M = 15 and wants to ensure that Bob knows that
the message is from her. She computes a number E, 0 ≤ E < NB, that is equivalent to
M eB mod NB. She also computes a signature S, as detailed below, and then transmits
(E, S) to Bob.

Let us assume that Alice’s keys are (NA, eA) = (1961, 5) and (NA, dA) = (1961, 749),
as in Example 11.1. Alice calculates 15749 ≡ 1054 (mod 1961), and so S = 1054.

Bob decrypts the message by computingM as the number satisfying 0 ≤M < NB that
is equivalent to EdB mod NB. Bob verifies the signature by computing SeA mod NA.
Since 15 ≡ 10545 mod 1961, the signature matches and the message is likely to be
from Alice.

Note that in the above example, an eavesdropping third party could decrypt the sig-
nature to get the message, so the procedure is defective. Thus hashing is an essential
step to ensure that such signed communication preserves the secrecy of the message.

An alternative method, described in the original RSA paper [14], uses Alice’s private
key to compute the signed message S as above, and then uses Bob’s public key to
encrypt S, yielding a twice-encrypted message T that Alice sends to Bob. Bob uses
his own private key to recover S, and then Alice’s public key to recover the original
message. This method also provides a secure communication and a verifiable signature,
but the message digest method mentioned earlier is the standard nowadays.



12. Attacking RSA

Now that we have explained how the RSA algorithm works, we will discuss how this
public key encryption scheme can be attacked.

12.1. Factorization.

A common way to attack the RSA algorithm is by trying to factorize the modulus
N = pq into its prime decomposition.

In the following proposition, see [1], we show that knowing the private key d and
factoring N are equivalent. Thus, as soon as the factorization of N is known, d can
be determined and vice versa.

Proposition 12.1. Let (N, e) be an RSA public key. Given the private key d, we can
efficiently factor the modulus N = pq. Conversely, given the factorization of N , we
can efficiently recover d.

Proof. We assume first that we know the factorization of N . The factorization of N
gives us φ(N). As e is known, we can easily solve the equation ed ≡ 1 (mod φ(N)) to
determine d; see the pseudocode and subsequent discussion in Chapter 11.

To prove the converse, we show knowing d allows us to factorize N . Given d, we
compute k = de− 1. By definition of e and d, we know that k is a multiple of φ(N).
Since φ(N) is even, we have k = 2tr for some odd r and t ≥ 1. We know that gk = 1
for every g ∈ Z∗N , and therefore gk/2 is a square root of unity modulo N . By the
Chinese remainder theorem, 1 has four square roots modulo N = pq. Two of these
square roots, namely ±1, do not help us to factorize N . The other two are ±x, where
x satisfies x ≡ 1 mod p and x ≡ −1 mod q. Using either of these last two square roots,
we can factorize N , since gcd(x− 1, N) equals one of the two prime factors.

Thus, the idea is that we randomly choose g ∈ Z∗N . With probability at least 1/2
(over the choice of g), one of the elements in the sequence gk/2, gk/4, . . . , gk/2t mod N
is a square root of unity that reveals the factorization of N . So, by investigating this
sequence for sufficiently many randomly chosen g, we can factorize N with probability
as close to 1 as we wish. �

We will now discuss some commonly used methods for factorization.

12.1.1. Fermat’s Method. Fermat’s factorization method derives from the idea
that we can write integers as sums or differences of squares.

Proposition 12.2. Let n be a positive odd integer. There is a 1-to-1 correspondence
between factorizations of n in the form n = ab, where a ≥ b > 0, and representations
of n in the form t2 − s2, where s and t are nonnegative integers. The correspondence
is given by the equations

t =
a+ b

2
, s =

a− b
2

, a = t+ s, b = t− s.
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Proof. Given such a factorization, we can write n = ab = ((a+ b)/2)2− ((a− b)/2)2,
so we obtain the representation as a difference of two squares. Conversely, given
n = t2 − s2 we can factor the right side as (t + s)(t − s). The equations in the
proposition explicitly give the 1-to-1 correspondence between the two ways of writing
n. �

If n = ab, where a and b are close together, then s = (a − b)/2 is small, and so t is
only slightly larger than

√
n. In this case, we can find a and b by trying all values for

t starting with d
√
ne until we find one for which t2 − n = s2 is a perfect square.

When the two factors a and b are relatively close, Fermat’s factorization method can
be fast, but when they are further apart, this method is not efficient enough to use.
Assuming that n is not a perfect square, the following pseudocode illustrates how to
use Fermat’s factorization method to decompose an odd integer n into its prime factors
p and q.
x := d

√
ne

y :=
√
x2 − n

while y is not a perfect square do
x := x+ 1

end while
Print(n equals (x-y) * (x+y)

We will illustrate Fermat’s factorization method with an example.

Example 12.3. In this example, we let n = 481. Therefore, x = d
√

481e = 22.

y =
√

222 − 481 =
√

3

y =
√

232 − 481 =
√

48

y =
√

242 − 481 =
√

95

y =
√

252 − 481 =
√

144 = 12

Hence, n = (25− 12)(25 + 12) = 13 · 37.

12.1.2. Pollard Rho Method of Factorization. The Pollard rho method of fac-
torization was invented by John Pollard in 1975, see [12]. For this method, we choose a
polynomial f whose iterates generate a large set of integers modulo n. It is important
to choose a polynomial f that maps Z/nZ to itself in a “random” way; in particular,
linear polynomials should not be used, as the mapping is “not random enough”. Fur-
thermore, no polynomial that defines an injective map on Z/nZ should be used. Any
polynomial of degree at least 2 can be used, and typically, polynomials of the form
x2 + c, where c 6= 0,−1,−2 are used.

We pick a starting value x0 and calculate the sequence of iterated f -values

f(x0), f(f(x0)), f(f(f(x0))), . . .

For brevity, we write this sequence as

x1, x2, x3, . . .
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i.e. xi = f(xi−1) for every i ∈ N. Often, x0 is taken to equal 2, but other starting
values can be used.

We are interested in the above sequence modulo both n and p, where p is an (unknown)
prime factor of a composite number n. More generally, it usually suffices to find any
factor d of n satisfying 1 < d < n. If d is not prime and we need a prime factor, we
can simply repeat the process, but with n replaced by the smaller number d. Clearly,
such a repeated process gives a prime after a finite number of steps.

We would like to find indices k < i such that xi ≡ xk mod p, but xi 6≡ xk mod n. If we
find this, then gcd(xi − xk, n) = d > 1. Since d is a non-trivial divisor of n, we have
factorized n, as required. Since p is unknown, in practice we reverse the process: we
calculate gcd(xi − xk, n) for various values of k < i, and keep going until this gcd is
different from 1.

The “rho” in the name of this method reflects the fact that the initial terms in the
sequence x1, x2, x3, . . . may be non-periodic, giving the “tail” of the Greek letter rho,
but eventually it becomes periodic, giving the “circle” of rho. If gcd(xi − xk, n) = 1
for our current choice of integers 0 ≤ k < i, it may be because k is too small (i.e. it
is in the tail of the rho) or it may be because we have not yet tried a large enough
i (i.e. we haven’t gone “all the way around the circle”). Thus, it is important to try
various consecutive values of i for each k, but also to let k increase if we fail to find
an i with gcd(xi − xk, n) > 1 for many consecutive values of i.

More details on Pollard’s rho method of factorization, often called the “Monte Carlo”
method of factorization, can be found in [12]. There are different variations of the
algorithm based around how we choose the various values of i and k to test.

For the remainder of this chapter, we will discuss a variation due to Brent, which we
will call the Pollard-Brent method, and we will give an example. A detailed comparison
of the Pollard-Brent method with the original Pollard rho method can be found in [2].

Every variation of Pollard’s rho method is based on the following observation:

Let S = 0, 1, 2, . . . , N − 1, where N is a (large) integer. Pseudorandom numbers are
often generated by an iteration of the form

xi+1 = f(xi),

where f : S → S, and x0 ∈ S, are as described above. Since S is finite, there exists
µ ≥ 0, and ν ≥ 1 such that

xµ+ν = xµ ,

and so it follows that
xk+ν = xk , for all k ≥ µ . (12.4)

The minimal such ν is called the period of the sequence (xi), but in general the
sequence is not actually periodic until we have passed an initial non-periodic part of
the sequence.

Above, we should think of S as being the residue classes modulo some number j.
The numbers ν and µ are likely to be smaller when j is an (unknown) factor d of a
composite number n than they are for j = n, so we can likely find i and k such that
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xi ≡ xk mod d, but xi 6≡ xk mod n. If, however, the period is the same for n as for its
factors 1 < d < p, then the method has failed for this choice of starting value x0. In
that case, we can try again with a different starting value.

The Pollard-Brent variation is based on using powers of 2. More precisely, we choose
k = 2l − 1 for some fixed l, and then try out i for all 2l ≤ i < 2l+1, calculating
m = |xi− xk| and gcd(m,n) = d. Note that we lose nothing by not looking at smaller
values of i for a given k, since if xj ≡ xk mod p for some 0 ≤ j < k = 2l − 1, then the
same equivalence holds with j replaced by i = 2k − j since i − k = k − j. Note also
that in this case, k < i < 2l+1.

The relative efficiency of this method is a consequence of the fact that there is no need
to minimise µ in (12.4): we simply want to go far enough into the sequence so that
we are in the periodic part. Thus, the value of k jumps almost to the next power of 2
whenever we have computed that far into the sequence. By contrast, it is important
to find the period ν (working modulo an unknown factor d > 1) rather than some
multiple of it because a multiple of it might also be a multiple of the period modulo
n causing the method to fail. For that reason, we try every value of i from k + 1 = 2l

up to 2k+ 1 = 2l+1 − 1, corresponding to a fresh search for any period between 1 and
k, rather than looking for periods longer than we looked for with our previous values
of k.

Since the algorithm revolves around finding k < i such that gcd(xi−xk, n) > 1, we can
force the inequalities 0 ≤ xi, xk < n by replacing these numbers with representatives
modulo n. This leaves gcd(xi−xk, n) unchanged since f is a polynomial so theoretically
it makes no difference. Practically, however, this is of great benefit in terms of efficient
calculations since if we do not do this, the values in this sequence get very large rather
quickly (for a typical polynomial of degree at least 2).

Here are the detailed steps of the Pollard-Brent algorithm. It involves storing only two
values of the sequence (xj) at any one time. We call these two values x and y. Mostly,
x will correspond to xk above, and y will correspond to xi, but see also the commentary
below the algorithm where the “computer-friendly” algorithm is interpreted in more
traditional mathematical language.

(1) Given the number n that we are trying to factorize, choose a polynomial f of
degree at least 2, and treat f as a map from Zn to Zn.

(2) Let l := 0 and i := 0. Choose an initial value y ∈ Zn.
(3) Let k := i and x := y.
(4) Increase i by 1 and replace y by f(y).
(5) Let m := |y − x| mod n and d := gcd(n,m).
(6) If d > 1, stop and report d as a factor of n.
(7) If i < 2l+1 − 1, go back to Step 4.
(8) Increase l by 1 and go back to Step 3.

Step 2 initialises the variable l that keeps count of our powers of 2. It also assigns an
initial value, previously called x0, to the variable y. In fact, since i = 0, we initially
have y = xi = x0. We will have y = xi throughout the algorithm.
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Step 3 is the initialization of the “outer loop”. In this loop, we try out different values
of k. Whenever we reach this step, i is one less than a power of 2. This is the one step
where we redefine x and k so x = xk throughout the algorithm.
Step 4 is where we increment i and, for the new i, we compute y = xi to be f(xi−1).
This is the start of the inner loop, a loop where we try out different values of i for
the current value of k. Note that the first time that this step is executed is after
Step 3, where we defined k to be i, so the first iteration of the inner loop corresponds
to i = k + 1.
In Step 5, the absolute value makes no mathematical difference, but we take it in case
we wish to use available computer code for the gcd function that requires non-negative
function arguments.
Step 7 is the end of the inner loop and Step 8 is the end of the outer loop. Note
that the change to k in Step 8 ensures that k = 2l − 1 for our new value of l. The
redefinition of x ensures that x equals xk for the new value of k.
We now give an example to illustrate the Pollard-Brent method.

Example 12.5. Suppose n = 481, f(x) = x2 + 1, and x0 = 2.
l = k = 0, i = 1:
x1 = f(x0) = 22 + 1 = 5
m = |x1 − x0| = |5− 2| = 3
d = gcd(481, 3) = 1, so we continue
l = k = 1, i = 2:
x2 = f(x1) = 52 + 1 = 26
m = |x2 − x1| = |26− 5| = 21
d = gcd(481, 21) = 1, so we continue
l = k = 1, i = 3:
x3 = f(x2) = 262 + 1 = 196 (mod 481)
m = |x3 − x1| = |196− 5| = 191
d = gcd(481, 191) = 1, so we continue
l = 2, k = 3, i = 4:
x4 = f(x3) = 1962 + 1 = 418 (mod 481)
m = |x4 − x3| = |418− 196| = 222
d = gcd(481, 222) = 37, so we stop
Hence, 37 is a factor of 481, and we get 481 = 13 · 37.

12.2. Encrypting short messages using small eee.
Let M be the numerical message we want to encrypt and let N = pq. We observe that
when M < N1/e, raising M to the eth power and reducing it modulo N involves no
modular reduction since M e < N . Given the ciphertext C = M e mod N , an attacker
can determine M by calculating M = C1/e in Z. This can easily be done: finding eth
roots is easy over Z and only difficult when working modulo N .
Hence, for small exponents e, the RSA algorithm is vulnerable to attacks. We illustrate
this idea with an example.
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Example 12.6. Let (10379, 3) be the public key. We want to encrypt the message
M = 15. Hence, we get C ≡ 153 ≡ 3375 (mod 10379). As 15 < 3

√
10379, the

reduction of 153 modulo 10379 is itself. If an eavesdropper wants to determine the
original message M , he simply needs to compute M = 3

√
3375 = 15.

12.3. Encrypting related messages.

For this attack, we assume that two related messages were sent to the same recipient.
Suppose we send messages M and M + δ to a recipient using the public key (N, e),
where δ is known but the message M is not. By encrypting M and M + δ, we obtain
C1 ≡ M e (mod N) and C2 ≡ (M + δ)e (mod N), respectively. An eavesdropper can
define the two polynomials p1(x) := xe − C1 (mod N) and p2(x) := (x + δ)e − C2

(mod N), both of degree e. We observe that x = M is a root modulo N of both
polynomials. Thus, both polynomials have the linear factor x − M . Hence, if the
greatest common divisor of p1(x) and p2(x) modulo N is linear, this will reveal the
messageM . Since the greatest common divisor can be computed efficiently, this attack
is feasible for small exponents e.

Example 12.7. In this example, we let the public key be (145, 3), the message be
M = 15 and we let δ = 2. Thus, we get

C1 ≡ 153 ≡ 40 (mod 145) and C2 ≡ (15 + 2)3 ≡ 173 ≡ 128 (mod 145).

We define the two Z145-polynomials p1(x) = x3 − 40 and p2(x) = (x + 2)3 − 128 ≡
x3 + 6x2 + 12x + 25. Both polynomials have the common factor x − 15. Thus,
factorizing both polynomials (in Z145[x]), we get p1(x) = (x − 15)(x2 + 15x + 80)
and p2(x) = (x − 15)(x2 + 21x + 37). And indeed, x − 15 is the greatest common
divisor of p1(x) and p2(x). This shows that the original message was M = 15.

12.4. Sending the same message to multiple receivers.

Suppose we want to encrypt the message M and send it to k different parties, all of
whom have chosen the same encryption exponent e but different N , i.e. we need to
use the public keys (Ni, e) for 1 ≤ i ≤ k. If gcd(Ni, Nj) 6= 1 for some i 6= j, we
can factorize Ni and Nj and easily recover the message M , so let us suppose that
gcd(Ni, Nj) = 1 for all 1 ≤ i < j ≤ k. An eavesdropper sees

Ci ≡M e (mod Ni), i = 1, . . . , k.

Let N =
∏k

i=1Ni. Using the Chinese remainder theorem, there exists a unique non-
negative integer C∗ < N such that

C∗ ≡ Ci (mod Ni), i = 1, . . . , k.

Suppose now that k ≥ e. ThenM e satisfies the above set of k equations, and M e < N
as M < min{Ni | 1 ≤ i ≤ k}. Thus, C∗ = M e over the integers, and so the message
M can be easily recovered by computing the eth root of C∗.

Example 12.8. In this example, we send the message M = 15 to three different
parties using the public keys (187, 3), (161, 3) and (145, 3), respectively. Encrypting
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M = 15, we obtain
C1 ≡ 153 ≡ 9 (mod 187)

C2 ≡ 153 ≡ 155 (mod 161)

C3 ≡ 153 ≡ 40 (mod 145).

As 187, 161 and 145 are all coprime, we can now solve the following system of linear
congruences using the Chinese remainder theorem:

x ≡ 9 (mod 187)

x ≡ 155 (mod 161)

x ≡ 40 (mod 145).

Thus, we get x ≡ 3375 (mod 4365515). We know that M3 = x. Therefore, M = 3
√
x

and we get M = 3
√

3375 = 15. And indeed, M = 15 was the message that we
encrypted.

12.5. Blinding.

Another way to attack the RSA algorithm is a technique called blinding, see [1]. To
illustrate the idea of blinding, we call the two parties involved Alice and Bob. Alice
obtains a valid signature on a message of her choice by asking Bob to sign a random
“blinded” message. Bob has no idea what message he is actually signing. Using
the signature from the “blinded” message, Alice can obtain Bob’s signature from the
“blinded” message and use it to sign the original message in Bob’s name.

Let (N, e) be Bob’s public key and (N, d) be his corresponding private key. Suppose an
attacker called Alice wants Bob’s signature on a message M ∈ Z∗N . Alice knows that
Bob would refuse to sign the message once he reads it, so Alice can try the following:
she chooses a random r ∈ Z∗N and defines M ′ := reM mod N . Then she asks Bob to
sign the message M ′. Bob may be willing to sign M ′ since it seems meaningless, so
he sends the signature S ′ back to Alice, where S ′ ≡ (M ′)d mod N . Alice merely has
to compute S := S ′/r (mod N) in order to obtain Bob’s signature S on the original
message M . Indeed,

Se ≡ (S ′)e/re ≡ (M ′)ed ≡M ′/re ≡M (mod N).

As discussed in Chapter 11.1, most signature schemes do not directly sign a message,
but rather a hashed message digest, so this attack is not a serious concern to the RSA
algorithm. Nevertheless, let us illustrate the idea of blinding with an example of a
directly signed message.

Example 12.9. Suppose Bob’s public key is (91, 5) and his private key is (91, 29).
Alice wants Bob to sign the message M = 35, but Bob refuses. Alice picks r = 18 and
calculates M ′ ≡ 185 · 35 ≡ 84 (mod 91). This time, Bob agrees to sign the message
and so he computes S ′ ≡ 8429 ≡ 28 (mod 91) and sends this signature to Alice. Alice
now computes S = 28/18 ≡ 42 (mod 91). Thus, Alice now knows that the signature
to her original message M = 35 is S = 42. And indeed, 3529 ≡ 42 mod 91.



13. RSA Algorithm in Z[i]

Having discussed the RSA algorithm in the integers, our goal now is to extend this
algorithm to the Gaussian integers.

Recall that modular arithmetic in Z[i] was discussed in Chapter 5. One difference in
notation below from that in Chapter 5 is that we will write NZ[i](x) for the Gaussian
norm of x ∈ Z[i]. This is consistent with our use of φZ[i](x) for Gaussian φ-function
values, and also helps to distinguish the norm from the product of two primes, which
we call N as we did in Z.
Recall from Theorem 3.6 that the prime factorization of a Z-prime p in Z[i] is as given
by the following three cases:

• If p = 2, then 2 = (1 + i)(1− i) is a product of two associate Gaussian primes.
• If p ≡ 3 (mod 4), then p is a Gaussian prime.
• If p ≡ 1 (mod 4), then p is a product ππ̄ of two conjugate non-associate
Gaussian primes.

Since the primes used in the RSA algorithm must be sufficiently large, we omit the
case p = 2, as the Gaussian prime 1 + i is simply too small to be used in the RSA
algorithm. Thus, we only deal with the primes p and π, where p is a Z-prime of the
form 4n+ 3 and π is a non-real Gaussian prime.

When choosing p and q for the RSA algorithm in Z[i], where p 6= q, we have 3 different
options:

• p, q are both Z-primes of the form 4n+ 3;
• p, q are both non-real Gaussian primes;
• one of p and q is a Z-prime and the other is a non-real Gaussian prime.

We now discuss each of the three cases in detail.

13.1. Case 1: A Z-prime and a non-real Gaussian prime.

We start with discussing the case where one of the primes p and q is a Z-prime of the
form 4n+3 and the other is a non-real Gaussian prime. This case is completely unsuit-
able for encryption because its prime decomposition can be obtained very efficiently.
To see this, suppose we pick a Z-prime p and a non-real Gaussian prime π = a + bi,
a, b ∈ Z. Computing their product gives N = p(a + bi) = pa + pbi. Since a and b are
coprime, p is the greatest common divisor of the real and imaginary parts of N , and
so the division algorithm can be used to factorize N efficiently.

Example 13.1. Let N = 1270 + 1651i be the product of the primes p and π, where
p and π are unknown. We use the division algorithm to find the prime factors of N .

1651 = 1270 + 381

1270 = 3 · 381 + 127

381 = 3 · 127 + 0
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Hence, gcd(1651, 1270) = 127, and so one of the factors equals 127. Dividing both
1270 and 1651 by 127 gives the other prime factor, 10 + 13i.

As this case of the RSA algorithm in Z[i] cannot be implemented securely, we do not
discuss it further.

13.2. Case 2: Two Z-primes.

We next discuss the RSA algorithm in Z[i] for two Z-primes of the form 4n+ 3. Since
we are working with Z-primes, this approach works in a fairly similar fashion to the
RSA algorithm in Z. However, both the original and the encrypted messages now have
both real and imaginary parts.

We start with an example of how to encrypt and decrypt a message of the form a+ bi.

Example 13.2. In this example, we pick our Z-primes to be p = 19 and q = 23 and
we want to encrypt the message M = 4 + 7i.

We start by calculating the product of p and q: N = 19 · 23 = 437. Next, we calculate

φZ[i](437) = φZ[i](19)φZ[i](23) = (NZ[i](19)− 1)(NZ[i](23)− 1) = 360 · 528 = 190080 .

We choose e = 7 to be our encryption exponent; note that gcd(7, 190080) = 1 and
1 < 7 < 190080.

To find the decryption exponent d, we solve the equation 7 · d ≡ 1 mod 190080 to get
d = 81463.

Encrypting the messageM = 4+7i using the RSA algorithm, we reduce (4+7i)7 mod
437 to get C = 141 + 265i. To decrypt the ciphertext C = 141 + 265i, we reduce
(141 + 265i)81463 (mod 437), giving the original message M = 4 + 7i.

The above example illustrates that encryption and decryption over Z[i] works in a
similar fashion as over Z. Note though that we must use the φZ[i]-function rather than
the Euler φ-function.

And indeed, as the operations are the same as in Z, i.e. we are only using multiplication
and reduction modulo N , the correctness requirement from Definition 10.1 also holds
for this case of the RSA algorithm in Z[i], i.e. Dk(Ek(M)) = M also holds over Z[i].
Verifying this, we get (M e)d ≡M ed ≡M (mod N), as ed ≡ 1 (mod φZ[i](N)).

As both p and q are Z-primes, the attacks that we discussed in Chapter 12 for the
RSA algorithm over Z work exactly the same way over Z[i].

What might give hope that the RSA algorithm over Z[i] in this case may be a little
more secure than the RSA algorithm over Z for the same value of N = pq is the fact
that φZ[i](N) > φZ(N). Therefore, we have a larger set from which we can choose the
encryption exponent e and we get a larger set of possible decryption exponents d.
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13.3. Case 3: Two non-real Gaussian primes.

The final case for the RSA algorithm in Z[i] that we need to discuss is the case where
we choose two non-real Gaussian primes, say π and σ.

As the only operations we use here are multiplication and reduction modulo N , this
case of the RSA algorithm, using two Gaussian primes, works similarly to the case
with two Z-primes discussed above. Furthermore, we can verify that the correctness
requirement from Definition 10.1 holds, i.e. Dk(Ek(M)) = M also holds for this case
of the RSA algorithm over Z[i].

However, we have two different ways of carrying out the work here. The first option is
to perform all calculations in Z[i]. The second option is to use the isomorphism map
between quotients of Z and Z[i] that we established in Theorem 9.6.

We will start with an example where we perform all the calculations in Z[i].

Example 13.3. In this example, we choose the two Gaussian primes be π = 3 + 2i
and σ = 6 + 5i, and we want to encrypt the message M = −23 + 17i using the RSA
algorithm over Z[i]. We first compute the product N := πσ = (3+2i)(6+5i) = 8+27i,
and then calculate

φZ[i](8 + 27i) = φZ[i](3 + 2i)φZ[i](6 + 5i)

= (NZ[i](3 + 2i)− 1)(NZ[i](6 + 5i)− 1) = 12 · 60 = 720 .

We choose e = 7 to be our encryption exponent, noting that gcd(φZ[i](8 + 27i), 7) = 1
and 1 < 7 < φZ[i](8 + 27i). Thus, the public key is (8 + 27i, 7). Now, we solve the
equation ed ≡ 1 mod 720 for d, i.e. we solve 7 · d ≡ 1 mod 720, and obtain that our
decryption exponent is d = 103. Thus, the private key is (8 + 27i, 103).

To encrypt the message M , we need to reduce (−23 + 17i)7 (mod 8 + 27i). Below, all
equivalences are mod 8 + 27i. Following the fast exponentiation algorithm, we get

(−23 + 17i)2 ≡ −19 + 29i ,

(−23 + 17i)4 ≡ (−19 + 29i)2 ≡ −1 + 19i ,

and so,

(−23 + 17i)7 ≡ (−1 + 19i)(−19 + 29i)(−23 + 17i) ≡ −18 + 29i .

Thus, (−23 + 17i)7 ≡ −18 + 29i is the encrypted message.
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To decrypt the ciphertext C ≡ −18 + 29i, we reduce (−18 + 29i)103 (mod 8 + 27i).
Using fast exponentiation again, we get

(−18 + 29i)2 ≡ 7i

(−18 + 29i)4 ≡ −14 + 19i

(−18 + 29i)8 ≡ −5 + 8i

(−18 + 29i)16 ≡ −7 + 28i

(−18 + 29i)32 ≡ 7i

(−18 + 29i)64 ≡ −14 + 19i

and so (−18+29i)103 ≡ (−14+19i)(7i)(−14+19i)(7i)(−18+29i) ≡ −23+17i, which
was our original message M .

We will now discuss how to carry out an equivalent encryption using the isomorphism
map. For this approach, we first pick the two Gaussian primes, say π and σ and, as
usual, define N := πσ. Doing arithmetic mod N means working over the quotient
ring Z[i]/(N). Since neither π nor σ are in Z, N = a+ bi, where a and b are coprime.
Consequently, Theorem 9.6 tells us that Z[i]/(N) ∼= ZNZ[i](N); this isomorphism allows
us to recast the Gaussian RSA modulo N in terms of the normal RSA algorithm for
Z modulo NZ[i](N).

As N is a Gaussian integer of the form a + bi, where a and b are coprime, we can
compute b−1 in ZNZ[i](N). We then obtain the isomorphism map ψ, where ψ(x+ yi) =

x − (a · b−1) · y (mod NZ[i](N)). Note that ψ is the map we obtained by proving
Theorem 9.6.

We now illustrate this idea by redoing Example 13.3, but using our isomorphism.

Example 13.4. Let π = 3 + 2i and σ = 6 + 5i as in Example 13.3. As before,
N = 8 + 27i, and so we are working in Z[i]/(8 + 27i). Since NZ[i](8 + 27i) = 793, we
have Z[i]/(8 + 27i) ∼= Z793.

To write down the isomorphism map ψ, we first need to compute 27−1 in Z793. Solving
27x ≡ 1 mod 793, we find x ≡ 235 mod 793. Thus our desired isomorphism is

ψ(x+ yi) ≡ x− (8 · 235)y ≡ x− 294y (mod 793) .

As in Example 13.3, we encrypt the message M = −23 + 17i. We first compute

ψ(−23 + 17i) ≡ −23− 294 · 17 ≡ 530 (mod 793) .

Now, let e = 7 as in Example 13.3, and we compute 5307 ≡ 179 mod 793. Recall
that in Example 13.3, our solution was C = −18 + 29i. And indeed, applying the
isomorphism map to this answer, we get

ψ(−18 + 29i) = −18− (294) · 29 ≡ 179 mod 793 .

Thus, in fact, we get the same answer.
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13.4. RSA Digital Signature in Z[i].

Above, we discussed the three different cases for the RSA algorithm in the Gaussian
integers and found that the algorithm works similarly to the RSA algorithm in Z. In
Chapter 11.1, we discussed the RSA algorithm including digital signatures and saw
that the only operations included were multiplication and reduction modulo N , where
N is the product of the two primes. Since the cases for the Gaussian integers work
similarly to the integer case, we do not need to discuss the digital signatures for the
Gaussian integers in detail as the operations are the same.

To sign a numerical message M , we again compute S ≡ Md (mod N) to obtain the
signature S and send the message (S,M) to the other party. The receiver of the
message checks whether Se (mod N) is equivalent to M to determine whether S is a
valid signature or not.

13.5. Attacking RSA in Z[i].

The methods for attacking the RSA-algorithm in Z[i] can be adapted from those
discussed in Chapter 12 for Z. All other attacks work similarly to the integer case.
Therefore, we need not elaborate on this.

13.6. Conclusion.

In summary, we have seen three different approaches to an RSA algorithm for Z[i].

The first approach is to take a Z-prime and a non-real Gaussian prime. As we have
already noted, this approach is hopeless: it can be easily attacked and is therefore not
a secure implementation for the RSA algorithm in Z[i].

The second approach is to take two Z-primes of the form 4n + 3, while the third
approach is to take two Gaussian primes. Both approaches work similarly to the RSA
algorithm in Z.
The third approach in particular is very similar to RSA over Z, since we have an
isomorphism between the quotient rings Z[i]/(I) and Z/(J), where I = (a + bi) and
J = (a2 + b2), and so all calculations are essentially the same up to isomorphism. This
approach is therefore just RSA over Z in disguise, so it can be discarded as it offers
nothing new.

The second approach is analogous, but not isomorphic, to RSA over Z. Thus, we have
a new but related variant of RSA. It might even be a slightly more secure variant since
we have a larger set from which to choose our encryption and decryption exponents,
but this would need further investigation.



14. RSA Algorithm in Z[ω]

Having studied the RSA algorithm in the Gaussian integers, we now want to develop
this algorithm in the context of the Eisenstein integers.

Recall from Theorem 4.6 that the prime factorization of a Z-prime p in Z[ω] is as given
by the following three cases:

• if p = 3, 3 = (2 +ω)(2 +ω2) is the product of two associate Eisenstein primes,
• if p ≡ 2 (mod 3), then p is an Eisenstein prime,
• if p ≡ 1 (mod 3), then p is a product of two conjugate non-associate Eisenstein
primes ππ̄.

Similarly to the Gaussian integers, we ignore the case p = 3, as the Eisenstein prime
2 +ω is too small to be used in the RSA algorithm. Thus, we only look into the cases
p and π, where p is a Z-prime of the form 3n+ 2 and π is a non-real Eisenstein prime.

When choosing p and q for the RSA algorithm in Z[ω], where p 6= q, we have three
different options:

• p, q are both Z-primes;
• p, q are both non-real Eisenstein primes;
• one of p and q is a Z-prime and the other is a non-real Eisenstein prime.

We now discuss each of the three cases in detail.

14.1. Case 1: A Z-prime and a non-real Eisenstein prime.

The first case we will discuss is the case where we choose π to be an non-real Eisenstein
prime and p to be a Z-prime of the form 3n + 2. As for the analogous case for the
Gaussian integers, this case for the Eisenstein integers cannot be safely implemented
in the RSA algorithm. To see this, suppose we pick a Z-prime p of the form 3n+2 and
a non-real Eisenstein prime π = a+ bω. Calculating the product N = p ·π = pa+pbω,
we see that p is a common factor. Hence, using the divison algorithm, we can efficiently
factorize N and therefore easily attack this implementation of the RSA algorithm.

Example 14.1. Let N = p · q = 1507 + 8083ω, where p and q are unknown. Using
the division algorithm, we determine the prime factors p and q:

8083 = 5 · 1507 + 548

1507 = 2 · 548 + 411

548 = 411 + 137

411 = 3 · 137 + 0

Hence, gcd(1507, 8083) = 137 and so one of the prime factors of N is 137. Dividing
both 1507 and 8083 by 137, we obtain the other prime factor, 11 + 59ω.
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14.2. Case 2: Two Z-primes.

We next discuss the RSA algorithm in Z[ω] for two Z-primes of the form 3n+ 2. Since
we are working with Z-primes, this approach works in a fairly similar fashion to the
RSA algorithm in Z. However, both the original and the encrypted messages now lie
in Z[ω] (modulo some product N of two primes).

We start by illustrating this with an example.

Example 14.2. In this example, we pick our Z-primes to be p = 17 and q = 23 and
we want to encrypt the message M = 5 + 3ω.

First, we calculate the product N = p · q = 17 · 23 = 391 and compute the φZ[ω](391)
to find the number of Eisenstein integers coprime to 391:
φZ[ω](391) = φZ[ω](17)φZ[ω](23) = (NZ[ω](17)− 1)(NZ[ω](23)− 1) = 288 · 528 = 152064 .

We choose e = 13, noting that gcd(13, 152064) = 1 and 1 < 13 < 152064. We
want ed ≡ 1 (mod φZ[ω](N)), so we solve the equivalence 13d ≡ 1 mod 152064 to get
d ≡ 46789.

To encrypt the messageM = 5+3ω, we reduce (5+3ω)13 mod 391 to get the ciphertext
C = 250 + 366ω. To check if the encryption system works, we decrypt the ciphertext
by reducing (250 + 366ω)46789 mod 391 to get the original message M = 5 + 3ω.

The above example illustrates that encryption and decryption over Z[ω], using two
Z-primes, works in a similar fashion as over Z. Note though that we must use the
φZ[ω]-function rather than the Euler φ-function.

And indeed, as the operations are the same as in Z, i.e. we are only using multiplication
and reduction modulo N , the correctness requirement from Definition 10.1 also holds
for this case of the RSA algorithm in Z[ω], i.e. Dk(Ek(M)) = M also holds over Z[ω].
Verifying this, we get (M e)d ≡M ed ≡M (mod N), as ed ≡ 1 (mod φZ[ω](N)).

As both p and q are Z-primes, the attacks that we discussed in Chapter 12 for the
RSA algorithm over Z work exactly the same way over Z[ω].

As for the corresponding case over Z[i], we could hope that the RSA algorithm over
Z[ω] in this case may be a little more secure than the RSA algorithm over Z for the
same value of N = pq due to the fact that φZ[ω](N) > φZ(N). Therefore, we have a
larger set from which we can choose the encryption and decryption exponents e and
d.

14.3. Case 3: Two non-real Eisenstein primes.

The final case for the RSA algorithm in Z[ω] that we need to discuss is the case where
we choose two non-real Eisenstein primes π and σ.

As the only operations we use here are multiplication and reduction modulo N , this
case of the RSA algorithm works similarly to the case with two Z-primes discussed
above. Furthermore, we can verify that the correctness requirement from Defini-
tion 10.1 holds, i.e. Dk(Ek(M)) = M also holds for this case of the RSA algorithm
over Z[ω].
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As in the corresponding case for Gaussian integers, we have two different ways of
carrying out the work here. The first option is to perform all calculations in Z[ω]. The
second option is to use the isomorphism map between quotients of Z and Z[ω] that we
established in Theorem 9.14 and perform all calculations in Z.
We will start with an example where we perform all the calculations in Z[ω].

Example 14.3. In this example, we let p = 5 + 2ω and q = 7 + 3ω and we want to
encrypt the message M = 4 + 5ω using the RSA algorithm over Z[ω].
We start by calculating the product of the two primes and obtain N = 29+23ω. Next,

φZ[ω](29 + 23ω) = φZ[ω](2 + 5ω) · φZ[ω](7 + 3ω)

= (NZ[ω](2 + 5ω)− 1)(NZ[ω](7 + 3ω)− 1) = 18 · 36 = 648 .

We let e = 5, noting that gcd(5, 648) = 1 and 1 < 5 < 648. Solving the equivalence
5d ≡ 1 (mod 648) for d, we obtain d = 389.
To encrypt our message M = 4 + 5ω, we reduce (4 + 5ω)5 mod 29 + 23ω to get the
ciphertext C = 11 + 23ω. To decrypt this message, we reduce (11 + 23ω)389 mod
29 + 23ω, yielding the original message M = 4 + 5ω.

Next, we consider the same case, but handle it using the isomorphism map. We again
choose two Eisenstein primes, say π and σ, and calculate their product N . Doing
arithmetic mod N means working over the quotient ring Z[ω]/(N). Since neither π
nor σ are in Z, N = a+ bω, where a and b are coprime. Consequently, Theorem 9.14
tells us that Z[ω]/(N) ∼= ZNZ[ω](N); this isomorphism allows us to recast the Eisenstein
RSA modulo N in terms of the normal RSA algorithm for Z modulo NZ[i](N).
As N is an Eisenstein integer of the form a + bω, where a and b are coprime, we can
compute b−1 in ZNZ[ω](N). We then obtain the isomorphism map ψ, where ψ(x+yω) =

x − (a · b−1) · y (mod NZ[ω](N)). Note that ψ is the map we obtained by proving
Theorem 9.14.
We now illustrate this idea by redoing Example 14.3, but using our isomorphism.

Example 14.4. Let p = 5 + 2ω and q = 7 + 3ω as in Example 14.3. As before,
N = 29+23ω, and so we are working in Z[ω]/(29+23ω). Since NZ[ω](29+23ω) = 703,
we have Z[ω]/(29 + 23ω) ∼= Z703.
To write down the isomorphism map ψ, we first need to compute 23−1 in Z703. Solving
23x ≡ 1 mod 703, we find x ≡ 214 mod 703. Thus our desired isomorphism is

ψ(x+ yi) ≡ x− (29 · 214)y ≡ x− 582y (mod 703) .

As in Example 14.3, we encrypt the message M = 4 + 5ω. We first compute
ψ(4 + 5ω) ≡ 4− 582 · 5 ≡ 609 (mod 703) .

Now, let e = 5 as in Example 14.3, and we compute 6095 ≡ 685 mod 703. Recall
that in Example 14.3, our solution was C = 11 + 23ω. And indeed, applying the
isomorphism map to this answer, we get

ψ(11 + 23ω) = 11− 582 · (23) ≡ 685 mod 703 .
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Thus, in fact, we get the same answer.

14.4. Conclusion.

As for Z[i], we have seen three different approaches to an RSA algorithm for Z[ω]

The first approach is to take a Z-prime and a non-real Eisenstein prime. As we have
already noted, this approach is hopeless: it can be easily attacked and is therefore not
a secure implementation for the RSA algorithm in Z[ω].

The second approach is to take two Z-primes of the form 3n + 2, while the third
approach is to take two Eisenstein primes. As with the Gaussian integers, both ap-
proaches work similarly to the RSA algorithm over Z.
The third approach in particular is very similar to RSA over Z, since we have an
isomorphism between the quotient rings Z[ω]/(I) and Z/(J), where I = (a+ bω) and
J = (a2 − ab + b2), and so all calculations are essentially up to isomorphism. This
approach is therefore just RSA over Z in disguise, so it can be discarded as it offers
nothing new.

The second approach is analogous, but not isomorphic, to RSA over Z. Thus, we have
a new but related variant of RSA. It might even be a slightly more secure variant since
we have a larger set from which to choose our encryption and decryption exponents,
but again this would need further investigation.



15. Diffie-Hellman Key Exchange in Z

The Diffie-Hellman Key Exchange, published in 1976 by Whitfield Diffie and Martin
Hellman [4], was the first asymmetric encryption scheme to be made public.

Suppose two parties, whom we will call Alice and Bob, wish to create a shared secret
message, typically an encryption key. To set up the Diffie-Hellman Key Exchange,
Alice and Bob publicly agree on a prime number p and a generator g for the multi-
plicative group Z∗p. Alice chooses a random integer a to be her encryption exponent,
where 1 ≤ a ≤ p− 1, and calculates A ≡ ga mod p. Similarly, Bob chooses his encryp-
tion exponent b, where 1 ≤ b ≤ p− 1, and calculates B ≡ gb mod p. They share their
public keys (p, g, A) and (p, g, B) with each other, but keep the encryption exponents
secret. Alice now computes ka ≡ Ba mod p, and Bob computes kb ≡ Ab mod p. Since

ka ≡ Ba ≡ (gb)a ≡ gab ≡ (ga)b ≡ Ab ≡ kb (mod p) ,

ka ≡ kb is a shared secret message.

We now illustrate the Diffie-Hellman Key Exchange with an example.

Example 15.1. Alice and Bob decide to work with the prime number p = 11 and
the generator g = 2. Alice chooses the encryption exponent a = 7 and calculates
A ≡ ga ≡ 27 ≡ 7 (mod 11). Alice’s public key is now (p, g, A) = (11, 2, 7). Bob
chooses b = 6 to be his encryption exponent. He calculates B ≡ gb ≡ 26 ≡ 9
(mod 11). Bob’s public key is (p, g, B) = (11, 2, 9).

To get the secret message, Alice calculates ka ≡ Ba ≡ 97 ≡ 4 (mod 11), Bob calculates
kb ≡ Ab ≡ 76 ≡ 4 (mod 11). Then ka ≡ kb ≡ 4 is Alice and Bob’s shared secret
message.

If G is a cyclic group of order p, with generator g, then {g0, g1, . . . , gp−1} is all of G.
Thus, for every h ∈ G, there is a unique x ∈ Zp such that gx = h. When the underlying
group G is understood from the context, we call this x the discrete logarithm of h with
respect to g and write x = logg h. (Logarithms in this case are called discrete because
they take values in a finite range.)

A Diffie-Hellman eavesdropper can discover Alice and Bob’s shared secret by comput-
ing one of their private keys, i.e. either a ≡ logg A or b ≡ logg B. For that reason, the
Diffie-Hellman Key Exchange is called a discrete logarithm encryption system. It is
effective because there is no known method of computing discrete logarithms that is
efficient for large primes p.
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16. Diffie-Hellman Key Exchange in Z[i]

In this chapter, we describe a variant of the Diffie-Hellman Key Exchange for the
Gaussian integers.

The discussion of the Diffie-Hellman Key Exchange in Z[i] can be divided into two
cases. In the first case, we consider Z-primes of the form p ≡ 1 mod 4, i.e. we work
with Gaussian primes π, where π is of the form a+ bi. In the second case, we consider
Z-primes of the form p ≡ 3 mod 4.

16.1. Case 1: Using a non-real Gaussian prime.

We begin by discussing the case where π is a non-real Gaussian prime. As for the
RSA Algorithm, we have two options here. We can either work in Z[i], or use the
isomorphism map between Z[i] and Z and perform all the calculations in Z. By virtue
of this isomorphism, the calculations work the same way as in Z, and so this case is
not genuinely new.

However, there is one interesting aspect to consider, namely the number of generators
in Z[i]. First, note that the number of generators of Z∗p is φZ(φZ(p)), where φZ is the
Euler φ-function and p is an odd prime. To see this, first note that n := φZ(p) is the
order of Z∗p, and that Z∗p is always cyclic. Thus, if g is a generator of Z∗p, then gk is a
generator if and only if k is coprime to p, and so there are φZ(n) generators of Z∗p, as
claimed.

In Chapter 5, we saw that many results on Z have analogues on Z[i] where we replace
the prime π by the norm NZ[i](π) and φZ by φZ[i], so one might expect that there are
φZ[i](φZ[i](π)) generators in the multiplicative group of Z[i]/(π).

However, this is incorrect: the actual number of generators of this group is φZ(φZ[i](π)).
To see this, first note that it follows from the isomorphism theorem Theorem 9.6 that
all nonzero elements of Z[i]/(π) form a cyclic group of order n := φZ[i](π) = NZ[i](π)−1,
and now as before the number of generators of this group is φZ(n).

We summarise the above observation as a corollary.

Corollary 16.1. Let π be a non-real Gaussian prime and let n := NZ[i](π). The
isomorphism map between the quotient rings Z[i]/(π) and Z/(n) maps the generators
of the multiplicative group of Z[i]/(π) to the generators of Z∗n. Consequently, the
number of generators is φZ(n).

We now illustrate this with an example.

Example 16.2. Let π = 3 + 2i and note that NZ[i](3 + 2i) = 13. We calculate
φZ(φZ[i](π)) to obtain the number of generators in Z[i]/(3 + 2i). Now, φZ[i](3 + 2i) =
NZ[i](3 + 2i) − 1 = 13 − 1 = 12 and φZ(12) = 4, so the number of generators of the
multiplicative group of Z[i]/(3 + 2i) is 4.
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16.2. Case 2: Using a Z-prime.

Here, we use a Z-prime p that is also a Gaussian prime, i.e. p ≡ 3 mod 4. Although
we cannot now use the isomorphism map between Z[i] and Z here, the only operations
used are multiplication and reduction modulo p. Thus, this case also works in a similar
fashion to the integer case and the congruence

Ab ≡ (ga)b ≡ gab ≡ (gb)a ≡ Ba (mod p)

also holds in Z[i].

The number of generators can be determined as in Case 1 by calculating φZ(φZ[i](p)).
Note that all generators are of the form a + bi, where a, b 6= 0 since if a or b were 0,
powers thereof modulo a Z-prime would not be equivalent to a Gaussian integer of the
form c+ di, where c, d 6= 0.

16.3. Conclusion.

In conclusion, there are two different approaches to developing a Z[i]-variant of the
Diffie-Hellman Key Exchange: we can either work with Z-primes of the form 4n + 3
or we can work with non-real Gaussian primes. Regardless of our choice of the prime,
we have seen that the Diffie-Hellman Key Exchange works the same way in Z[i] as it
does in Z.
The interesting part we noted here is that we get the number of generators by com-
puting φZ(φZ[i](p)), where p is our Gaussian prime. This works in both cases, that is,
whether p is a Z-prime or not. Depending on the type of prime, we get two different
types of generators a + bi. When p is a Z-prime, we must have a, b 6= 0, whereas if p
is a non-real Gaussian prime, we can only say that at least one of a and b is nonzero.
Apart from that, the Z[i]-variant of the Diffie-Hellman Key Exchange does not bring
any new insights.



17. Diffie-Hellman Key Exchange in Z[ω]

Analogously, we can discuss a variant of the Diffie-Hellman Key Exchange in the
context of the Eisenstein integers Z[ω]. The discussion in Z[ω] can be split up into
two cases. In the first case, we consider Z-primes of the form p ≡ 1 mod 3, i.e. we
work with Eisenstein primes π, where π is of the form a+ bω. In the second case, we
consider Z-primes of the form p ≡ 2 mod 3.

17.1. Case 1: Using a non-real Eisenstein prime.

Similar to the Gaussian case, this case for the Eisenstein integers offers no new insights.
Again, we can either work in Z[ω] or use the isomorphism between Z and Z[ω] and
calculate everything in Z.

Suppose π is the non-real Eisenstein prime. As in the Gaussian case, the number of
generators of the multiplicative group of Z[ω]/(π) is φZ(φZ[ω](p)). To see this, first note
that it follows from the isomorphism theorem Theorem 9.14 that all nonzero elements
of Z[ω]/(π) form a cyclic group of order n := φZ[ω](π) = NZ[ω](π) − 1, and now as
before the number of generators of this group is φZ(n).

We summarise the above observation as a corollary.

Corollary 17.1. Let π be a non-real Eisenstein prime and let n := NZ[ω](π). The
isomorphism map between the quotient rings Z[ω]/(π) and Z/(n) maps the generators
of the multiplicative group of Z[ω]/(π) to the generators of Z∗n. Consequently, the
number of generators is φZ(n).

The generators in this case of the Diffie-Hellman Key Exchange are of the form a+bω,
where at least one of a and b is nonzero: a and b cannot both be equal to 0, as 0
cannot generate the group.

17.2. Case 2: Using a Z-prime.

Here, we use a Z-prime p that is also an Eisenstein prime, i.e. p ≡ 2 mod 3. Although
we cannot now use the isomorphism map between Z[ω] and Z here, the only operations
used are multiplication and reduction modulo p. Thus, this case works in a similar
fashion to the integer case and the congruence

Ab ≡ (ga)b ≡ gab ≡ (gb)a ≡ Ba (mod p)

also holds in Z[ω].

The number of generators can be determined as in Case 1 by calculating φZ(φZ[ω](p)).
Note that all generators are of the form a + bω, where a, b 6= 0 since if a or b were 0,
powers thereof modulo a Z-prime would not be equivalent to an Eisenstein integer of
the form c+ dω, where c, d 6= 0.
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17.3. Conclusion.

In conclusion, there are two different approaches to developing a Z[ω]-variant of the
Diffie-Hellman Key Exchange: we can either work with Z-primes of the form 3n+ 2 or
we can work with non-real Eisenstein primes. Regardless of our choice of the prime,
we have seen that the Diffie-Hellman Key Exchange works the same way in Z[ω] as it
does in Z.
The interesting part we noted here is that we get the number of generators by com-
puting φZ(φZ[ω](p)), where p is our Eisenstein prime. This works in both cases, that is,
whether p is a Z-prime or not. Depending on the type of prime, we get two different
types of generators a+ bω. When p is a Z-prime, we must have a, b 6= 0, whereas if p
is a non-real Eisenstein prime, we can only say that at least one of a and b is nonzero.
Apart from that, the Z[ω]-variant of the Diffie-Hellman Key Exchange does not bring
any new insights.



18. El Gamal in Z, Z[i] and Z[ω]

The El Gamal encryption scheme is an extension of the Diffie-Hellman Key Exchange
to allow public key encryption. It is based on Diffie-Hellman, but allows two parties
not only to share a secret message, but also to exchange encrypted messages. This
encryption scheme was first published by Taher El Gamal in 1985.

Suppose that the two parties who want to share an encrypted message are called Alice
and Bob. We discuss the El Gamal encryption scheme for the case where Bob sends
Alice an encrypted message and Alice decrypts the message.

The El Gamal encryption scheme includes the following steps. (In all cases below,
“calculating x ≡ E mod p”, where E is some expression, means reducing E mod p,
i.e. computing an integer x, 1 ≤ x < p, which is equivalent to E mod p.)

(1) Alice chooses a prime p and a generator g of Z∗p.
(2) Alice chooses her private key a, where 1 ≤ a ≤ p − 1, and creates her public key

A ≡ ga mod p.
(3) Alice makes the key (p, g, A) public knowledge.
(4) If Bob wants to send Alice a messageM , he first chooses an integer b as his private

key, where 1 ≤ b ≤ p− 1, and calculates K ≡ Ab mod p.
(5) Bob then encrypts M as the pair of numbers B ≡ gb mod p and C ≡ KM mod p

and sends (B,C) to Alice.
(6) To decrypt the message, Alice first calculates K ≡ Ba mod p.
(7) Alice then calculates M ≡ K−1C mod p.

We illustrate the El Gamal encryption scheme with an example.

Example 18.1. Alice chooses her prime p = 23, her generator g = 5 for Z∗23 and her
private key a = 7. Alice calculates A ≡ ga ≡ 57 ≡ 17 mod 23 and publishes (23, 5, 17)
as her public key.

Bob wants to send the numerical message M = 15 to Alice. He picks b = 9 and
calculates K ≡ Ab ≡ 179 ≡ 7 mod 23. Bob also calculates B ≡ gb ≡ 59 ≡ 11 mod 23
and C ≡ K ·M ≡ 7 · 15 ≡ 13 mod 23. He sends the pair (11, 13) to Alice.

Alice can now calculate K ≡ Ba ≡ 117 ≡ 7 mod 23. She also knows that M ≡
K−1 · C mod p. She finds K−1 by solving the equation K ·K−1 ≡ 1 mod 23, i.e. she
solves 7K−1 ≡ 1 mod 23 and finds that K−1 ≡ 10 mod 23. Alice now calculates
M ≡ K−1 · C ≡ 10 · 13 ≡ 15 mod 23, to get the original message M = 15.

We remark that Alice could actually calculate K−1 directly, without calculating K.
To see this, note first that K ≡ Ba mod p, and so K−1 ≡ (Ba)−1 ≡ B−a mod p. By
Fermat’s Little Theorem, Theorem 5.43, we have Bp−1 ≡ 1 mod p. Hence,

K−1 ≡ B−a ≡ B−a(1) ≡ B−aBp−1 ≡ Bp−a−1 mod p .

As discussed in the previous two chapters, the Diffie-Hellman Key Exchange works in
Z[i] and Z[ω] in the same way as in Z. Since the El Gamal system is based on the
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Diffie-Hellman Key Exchange, there is thus no difference in the El Gamal encryption
scheme in Z, Z[i] and Z[ω], Hence, we do not discuss this any further.



19. Attacking Diffie-Hellman and El Gamal

The Diffie-Hellman Key Exchange and the El Gamal encryption are both discrete
logarithm encryption schemes. There are several methods to attack such schemes.
In this chapter, we will discuss in detail some possible attacks on discrete logarithm
encryption schemes.

19.1. Brute-force attack.

The idea behind the brute-force attack is simply to compute powers of the generator
g until we find the result y.

g1
?
= y

g2
?
= y

...

gx
?
= y

This method is a very time-consuming way to calculate the discrete logarithm. For
a random logarithm x, we expect to find the correct solution after checking half of
the possible values for x. To thwart such brute-force attacks on discrete logarithmic
encryption, we need to choose a group G whose order |G| is sufficiently large. The
Diffie-Hellman Key Exchange works with groups Z∗p, where p is prime. This means on
average that (p − 1)/2 computations are required to find the solution to the discrete
logarithm. Bearing in mind today’s computer technology, the group should at least
be of order 280 to render brute-force attacks infeasible.

19.2. Pohlig-Hellman algorithm.

This algorithm for attacking discrete logarithmic encryption was published in 1978
by Stephen Pohlig and Martin Hellman [11], who credit Roland Silver with having
discovered the algorithm independently of them (and so the algorithm is sometimes
called the Silver-Pohlig-Hellman algorithm).

With any attack on a discrete logarithm scheme, the aim is to find x such that y ≡
gx mod p for given y, g, and p; as usual, p is a prime and g is a generator of Z∗p.
Thus, g has order p− 1 and so x is defined mod p− 1, so we may as well assume that
0 ≤ x < p− 1.

Since p is a large prime, p − 1 is certainly not prime. The idea of Pohlig-Hellman is
to divide and conquer. Suppose

p− 1 = qa11 q
a2
2 . . . qarr (19.1)

is the prime decomposition of p − 1, where ai ∈ N for all i. Instead of computing
x (mod p − 1), we will instead compute x (mod qaii ) for each i and use the Chinese
Remainder Theorem then to efficiently recover x (mod p− 1). Effectively, we reduce
the discrete log problem mod p−1 to a set of discrete log problems mod qaii . In fact, we
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will see that we can do even better than this by reducing each of these latter problems
more or less to a set of discrete log problems mod qi. It follows that Pohlig-Hellman
gives an efficient way to find x if all prime factors qi are relatively small, but it is not
particularly helpful if p− 1 has one or more very large prime factors.

Thus, to protect against a Pohlig-Hellman attack we should aim to find such a prime p.
We could for instance first choose a large prime q and then test for primality numbers
of the form p = 2kq+ 1 for some positive integer k. The well-known Dirichlet theorem
on arithmetic progressions indicates that there are infinitely many such primes and
indeed the prime number theorem for arithmetic progressions gives us reassurance
about how many such numbers we expect to have to test before we find such a prime
p.

To eliminate unnecessary indices in our explanation of the Pohlig-Hellman algorithm,
we write q := qi for a fixed but arbitrary i, and we write b in place of ai, where ai and
ai are as above. Our task is therefore to find u such that 0 ≤ u < qb and x ≡ u mod qb.
To reduce this discrete log problem mod qb to a set of similar problems mod q, we
write u in its base-q expansion, i.e. u =

∑b−1
k=0 ukq

k, where 0 ≤ uk < q for all 0 ≤ k < b,
and so there exists an integer m such that

x = mqb +
b−1∑
k=0

ukq
k . (19.2)

We will calculate the digits uk one at a time.

To make this process work, we first compute and record all qth roots of unity mod p:

rq,j ≡ gj(p−1)/q mod p and 0 ≤ rq,j < p , 0 ≤ j < q ,

Since x ≡ u mod qb, it follows from (19.2) that x = u0 + M0q for some integer M0.
Thus, defining y0 := y and writing equivalences mod p, we define 0 ≤ Y0 < p by

Y0 ≡ y
(p−1)/q
0 ≡ gx(p−1)/q =

(
gu0+M0q

)(p−1)/q
= gu0(p−1)/q · gM0(p−1) ≡ gu0(p−1)/q .

and so u0 = j, where 0 ≤ j < q is the index satisfying Y0 = rq,j.

Assume inductively that we have computed uk for 0 ≤ k < n < b and we want to
compute un. Letting yn ≡ y ·g−sn mod p, where sn =

∑n−1
k=0 ukq

k, it follows from (19.2)
that yn ≡ gunq

n+Mnqn+1
mod p, for some integer Mn. Thus, writing equivalences mod

p„ we define 0 ≤ Yn < p by

Yn ≡ y(p−1)/q
n+1

n ≡
(
gunq

n+Mnqn+1
)(p−1)/qn+1

= gun(p−1)/q · gMn(p−1) ≡ gun(p−1)/q .

and so un = j, where 0 ≤ j < q is the index satisfying Yn = rq,j.

We will now illustrate the Pohlig-Hellman algorithm with an example in which we use
the same notation as above.

Example 19.3. Let us solve the equation 3 ≡ 2x (mod 19) for x by using the Pohlig-
Hellman algorithm. Thus, y = 3, g = 2, and p = 19.

First, we compute φ(19) = 18 and write it in its canonical form 18 = 2 · 32.
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We now calculate the qth roots of unity for q ∈ {2, 3}; all equivalences in these
calculations are mod 19.

For q = 2:
r2,0 ≡ 20·18/2 ≡ 1 and r2,1 ≡ 21·18/2 ≡ 29 ≡ −1.

For q = 3:
r3,0 ≡ 20·18/3 ≡ 1, r3,1 ≡ 21·18/3 ≡ 26 ≡ 7, and r3,2 ≡ 22·18/3 ≡ 212 ≡ 11.

For each (q, b) = (qi, ai), we now wish to find 1 ≤ u < qb so that x ≡ u mod qb.

For q = 2, we calculate
y(p−1)/q ≡ 39 ≡ −1 mod 19 .

Since r2,1 ≡ −1, we see that u = u0 = 1, so x ≡ 1 mod 2.

For q = 3, we wish to find 1 ≤ u < 32 so that x ≡ u mod 32. We write u = u0 + 3u1,
where 0 ≤ uk < 3 for k ∈ {0, 1}. We first calculate

y
(p−1)/q
0 ≡ 36 ≡ 7 (mod 19).

Since r3,1 ≡ 7, we have u0 = 1.

We now calculate

y1 ≡ y · g−u0 ≡ 3 · 2−1 ≡ 3 · 10 ≡ 11 ,mod19

and so
y
(p−1)/q2
1 ≡ 1118/9 ≡ 112 ≡ 7 mod 19 .

From r3,1 ≡ 7, we deduce that x1 = 1. Hence, x ≡ 1 + 1 · 3 ≡ 4 mod 9. Thus, we want
to find x such that

x ≡ 1 mod 2 and x ≡ 4 mod 9

The solution is of course x ≡ 13 mod 19. Indeed, it is clear that 3 ≡ 213 (mod 19).

19.3. Shank’s baby step giant step algorithm.

Shank’s baby step giant step algorithm is a rather straightforward approach to attack-
ing discrete logarithmic encryption, and is named after Daniel Shanks. As before, we
aim to find x such that y ≡ gx mod p, where g is a generator of the cyclic group of
order p and p is prime. We know that x must lie somewhere in the cycle

1 = g0, g1, g2, . . . , gp−2, gp−1, gp ≡ 1 .

To solve the equation y ≡ gx (mod p) for x, where y, g, and p are known, we follow
this algorithm:

(1) Define n = d√pe.
(2) Reduce g−1 mod p, i.e. find h such that 1 ≤ h < p and g · h ≡ 1 (mod p).
(3) Make a table of reduced values of y · g−r mod p for all 0 ≤ r ≤ n− 1.
(4) Reduce gn mod p.
(5) Reduce (gn)k mod p, for successive integers k ≥ 0, until we get a match in the

table of Step (4).
(6) Use y · g−r ≡ (gn)k (mod p) to solve for x = nk + r.
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Step (3) in this algorithm is the baby step phase, as we go through all possible r in
the list. Step (5) refers to the giant step phase, where we raise (gn) to powers of k.

Unlike Pohlig-Hellman, this algorithm does not typically lead to an efficient solution
to the discrete logarithm problem for large p. Thus, we only need to pick p large
to protect against it. The previously discussed protection against a Pohlig-Hellman
attack will also protect against a baby step giant step attack.

Example 19.4. We use Shank’s baby step giant step algorithm to solve the equation
3 ≡ 2x (mod 19). We are using the same equation as in Example 19.3 to illustrate the
differences between the two attacks.

Let n = d
√

19e = 5.

We calculate g−1 ≡ 2−1 ≡ 10 mod 19. We now reduce y · g−r ≡ 3 · 10r mod 19 for
0 ≤ r ≤ 4:

3 · 20 ≡ 3 mod 19

3 · 2−1 ≡ 11 mod 19

3 · 2−2 ≡ 15 mod 19

3 · 2−3 ≡ 17 mod 19

3 · 2−4 ≡ 18 mod 19

With this list of values in hand, we next compute gn ≡ 25 ≡ 13 mod 19. We then start
reducing (gn)k mod p for k ≥ 0, and compare the solutions with our list of values:

(25)0 ≡ 1 mod 19

(25)1 ≡ 13 mod 19

(25)2 ≡ 17 mod 19

Since (25)2 ≡ 17 mod 19 gives us a match, we have

3 · 2−3 ≡ (25)2 mod 19 ,

and so x = 5 · 2 + 3 = 13. And indeed, if we check the solution, we get 3 ≡ 213

(mod 19). Note that we have obtained the same solution as in Example 19.3.
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