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Abstract

In this thesis, an account of the Birch and Swinnerton-Dyer conjecture and some of its
history are presented. A framework on the theory of elliptic curves is developed from
the ground up. Then, several advanced definitions and results from algebraic geometry
are given. This includes an accessible chapter about the Tate-Shafarevich group. These
results will help illuminate some of the reasoning behind Birch and Swinnerton-Dyer’s
work. Finally, a thorough, up to date report on the progress of the conjecture is included.
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Chapter 1

Introduction

For nearly 60 years, the Birch and Swinnerton-Dyer conjecture has captured the attention
of mathematicians as one of the deepest, most difficult problems the subject has to offer.
The conjecture itself is a culmination of countless results from algebra, number theory
and analysis. The interplay of these three fields is evident in the conjecture and plays a
significant part in why so many mathematicians are fascinated by it.

In the second chapter, an overview of elliptic curves and an account of why they were
developed is included. This includes a comprehensive section on Mordell’s theorem. The
purpose of this chapter is two-fold. Firstly, to provide motivation to readers and sec-
ondly, to establish a good starting point from which the theory underlying the Birch and
Swinnerton-Dyer conjecture may be developed.

The purpose of the third chapter is to introduce the Tate-Shafarevich group. This group
plays a huge role, not only in Birch and Swinnerton-Dyer’s work, but in modern algebraic
geometry. It is an intriguing object which has significant implications, particularly in rela-
tion to Hasse’s famous local-global principle.

After this, a summary of Birch and Swinnerton-Dyer’s paper Notes on elliptic curves I is
given in chapter four. This chapter is included so that the reader may gain some insight
into how Birch and Swinnerton-Dyer were able to arrive at their conjecture. This chapter
is essentially self-contained and is included for the sake of completeness.
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CHAPTER 1. INTRODUCTION

The goal of the fifth chapter is to provide some preliminary notions, not included in previ-
ous chapters, that are required to understand the statement of the conjecture and its strong
form. It also contains several concepts that are needed to understand the progression of
the conjecture and its partial resolutions.

The final chapter includes a complete statement of the conjecture, a list of consequences
if the conjecture should turn out to be correct and a history of special cases in which it has
been resolved.

There are two appendices, one on projective geometry, which is needed to formalise
’points at infinity’ and another on p-adic numbers which includes a statement of Hensel’s
lemma.
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Chapter 2

Elliptic Curves (A Complex History)

From acoustics to optics, and from the quantum world to the solar system, the science
of our universe is heavily intertwined with ellipses. In fact, one of the classical systems
in physics, a 2D harmonic potential, only admits elliptical paths1. For these and other
reasons, many of history’s greatest mathematicians including Legendre, Jacobi and Weier-
strass, sought to understand them.

Though it would not be difficult to argue that ellipses are no more than compressed circles,
shapes that have been well understood since antiquity, the study of circles is trivial due to
their symmetry. However, we shall discover that because of their eccentric behaviour,
studying ellipses gives rise to applications well beyond geometry.

Ellipses are circles that have been scaled (stretched or contracted) horizontally and/or ver-
tically. To describe them algebraically, the x and y variables in the equation for the unit
circle can be suitably scaled. An ellipse of width 2a and height 2b is given by the equation

x2

a2 +
y2

b2 = 1.

It is immediate from this description that the parametrisation of such an ellipse is

p(θ) = (a cos(θ), b sin(θ)), where θ ∈ [0, 2π).

1Under the assumption that the paths are stable and closed.
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CHAPTER 2. ELLIPTIC CURVES (A COMPLEX HISTORY)

With this parametrisation, it is natural to try and find a formula for the perimeter of an
ellipse. Apart from being a nice mathematical curiosity, finding such a formula has far
reaching consequences throughout physics. Generally, the stable, periodic motion of one
celestial body relative to another follows an elliptical path. For example, the motion of the
Earth about the Sun. Finding the perimeter of such an ellipse gives the length of the path
the orbiting object needs to travel before it returns to its initial position.

By applying the parametrisation above and the arc length integral,

L =
∫ b

a
| f ′(t)|dt

the perimeter of an ellipse can be written as

P =
∫ 2π

0

√
a2 sin(θ)2 + b2 cos(θ)2dθ.

Unfortunately, this integral is notoriously difficult. Attempting to compute it was what led
mathematicians to investigate a large family of similar integrals, known as elliptic inte-
grals for their historic ties to ellipses.

First note that by rewriting the perimeter integral in Cartesian co-ordinates, it is easier to
exploit the vertical and horizontal symmetries of an ellipse. The substitution x = sin(θ)
implies

P = 4
∫ 1

0

√
a2x2 + b2(1 − x2)
√

1 − x2
dx.

Usually, the variable k :=
√

1 −
(

a
b

)2
is introduced to make this integral simpler. The vari-

able k is known as the eccentricity of the ellipse and gives an indication of how elongated
it is. The formula then reduces to

P = 4b
∫ 1

0

√
1 − k2x2

√
1 − x2

dx.

The standard notation for the above integral is

E(k) :=
∫ 1

0

√
1 − k2x2

√
1 − x2

dx,
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and it is often generalised by allowing the upper limit of integration to vary,

E(t, k) :=
∫ t

0

√
1 − k2x2

√
1 − x2

dx.

By allowing k to vary, these integrals form a family known as the elliptic integrals of the
second kind2. They are essential for determining the arc length between arbitrary points
on an ellipse. As for elliptic integrals of the first kind, they are of the form

K(t, k) =
∫ t

0

1
√

1 − x2
√

1 − k2x2
dx.

Whereas E(t, k) gave an indication of how far an object travels along a given path, K(t, k)
gives an indication of how long this journey will take. For example, it is used to calculate
the period of a simple pendulum. It can also be interpreted as a generalisation of arcsin
since if k = 0, K(t, 0) = arcsin(t). The same reasoning applies to the inverse of K(t, k) with
respect to t (k fixed). This inverse is denoted t(K, k) and can be viewed as a generalisation
of sin.

Legendre and Jacobi studied these functions meticulously, as they appear in many classical
mechanics problems. While researching the properties of these functions, Jacobi discov-
ered that if the domain of the variable K is extended from R to C, the functions t(K, k)
become doubly periodic over C.

Definition 2.1. A function f : C −→ C is doubly periodic if there existω1, ω2 ∈ C, linearly
independent over R, such that

f (z) = f (z + ω1) = f (z + ω2) for all z ∈ C.

Equivalently, if L(ω1, ω2) is defined to be the lattice in C generated by ω1 and ω2, i.e.

L(ω1, ω2) := {nω1 + mω2 | n,m ∈ Z},

then another way of saying f is doubly periodic, with respect to L(ω1, ω2), is

f (z) = f (z + λ) for all z ∈ C and all λ ∈ L(ω1, ω2).

2The reason they are known as the second kind is due to Legendre and is simply a consequence of the
order these integrals appeared in his work.
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CHAPTER 2. ELLIPTIC CURVES (A COMPLEX HISTORY)

It is not difficult to see that lattices are subgroups of C under addition, and that the quotient
groups C/L are isomorphic to the torus group T1 � S 1 × S 1. Lattices can be visualised in
C as something similar to the following diagram.

Another important property of t(K, k) is that it is meromorphic, meaning that it can be
expanded locally as a complex Laurent series everywhere. Jacobi coined the term elliptic
function to reference all meromorphic, doubly periodic functions.

It cannot be overstated the impact studying elliptic functions has had on mathematics.
Whether it be introducing modular forms to number theory or elliptic curves to algebra
and geometry, they are the origin of many fascinating topics.
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Although the functions t(K, k) are interesting in their own right, studying elliptic functions
in general is much more fruitful. Elliptic functions are not uncommon and are relatively
easy to construct, so finding them is not an issue. However, classifying them is more diffi-
cult. Ideally, for a given lattice L, it would be desirable to have a finite number of elliptic
functions over L which generate all elliptic functions over L. This scenario is analogous to
how smooth, periodic functions can be expanded in terms of sin and cos as Fourier series.

Due to the work of Weierstrass, it is known that two such generators always exist. They
are known as the Weierstrass ℘-functions with respect to L.

For an arbitrary lattice L, the first Weierstrass ℘-function is defined as

℘L(z) :=
1
z2 +

∑
λ∈L
λ,0

(
1

(z − λ)2 −
1
λ2

)
.

The second Weierstrass ℘-function is the derivative of the first divided by a factor3 of −2,

℘′L(z) :=
∑
λ∈L

1
(z − λ)3 .

The following theorem encapsulates why the Weierstrass ℘-functions are essential and
why they are regarded as the generators for elliptic functions.

Theorem 2.1. A complex function f : C −→ C is an elliptic function with respect to L if
and only if f ∈ C(℘L, ℘

′
L).

In the preceding discussion, it was clear that ℘L(z) and ℘′L(z) share several properties with
sin(x) and cos(x). Both pairs are periodic, one over C and the other over R. Both can be
differentiated infinitely often and both can be expanded locally via Laurent series. Also,
both pairs act as generators for large classes of important functions.

There are many more similarities they have in common, but the two most consequential
will be described in the following sections. Herein, they are referred to as the Algebraic
Law and the Addition Law.

3Sometimes this factor is kept, but we exclude it to make life simpler.
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CHAPTER 2. ELLIPTIC CURVES (A COMPLEX HISTORY)

2.1 The Algebraic Law
There is no shortage of algebraic relations between sin and cos, but perhaps the most fa-
mous among them is sin2(θ) + cos2(θ) = 1. This equation can be interpreted as saying the
point (sin(θ), cos(θ)) lies on the algebraic curve x2 + y2 = 1, for any θ ∈ R. Provided a
unique lattice L is specified, a similar result, outlined below, can be obtained for ℘L(z) and
℘′L(z).

First, let R := min{ |λ|
∣∣∣ λ ∈ L, λ , 0}. Then, the Laurent expansions of ℘L and ℘′L in the

disc |z| < R are of the form

℘L(z) =
1
z2 + g(z)

and
℘′L(z) =

1
z3 + h(z)

where g(z) and h(z) are holomorphic in this disc.

Furthermore, it is straightforward to verify that

℘′L(z)2 − ℘L(z)3 =
A
z2 + i(z),

where i(z) is holomorphic in the disc |z| < R and A is a constant depending on L.

These equations imply that ℘′L(z)2 − ℘L(z)3 − A℘L(z) must be holomorphic in a neighbour-
hood of zero.

From the definition of ℘L and ℘′L it is clear that the only possible poles of the function
℘′L(z)2−℘L(z)3−A℘L(z) are the lattice points λ ∈ L. However, since ℘′L(z)2−℘L(z)3−A℘L(z)
is holomorphic at zero, it must be holomorphic at each λ ∈ L due to the fact it is doubly
periodic. Hence it is entire, bounded, and thus, constant by Liouville’s theorem.

It follows immediately that

℘′L(z)2 = ℘L(z)3 + A℘L(z) + B

for some A,B ∈ C, both dependent on L.

14



2.2. THE ADDITION LAW

This result can be rephrased as saying (℘L(z), ℘′L(z)) is a solution to the algebraic curve
y2 = x3+Ax+B for any z ∈ C. For reasons that will become apparent later, the discriminant
of this cubic i.e. ∆ := 4A3 + 27B2 will never be zero. When an algebraic curve of the form
y2 = x3 + Ax+ B has a non-zero cubic discriminant, it is known as an elliptic curve. These
curves are central to modern mathematics and are the primary object of study in this thesis.
The Algebraic Law summarises what was discussed above. The converse is also included
for completeness.

The Algebraic Law. For any lattice L and any z ∈ C, the point (℘L(z), ℘′L(z)) will always
lie on an elliptic curve y2 = x3+Ax+B, where A and B are dependent on L. Furthermore,
every elliptic curve corresponds to a unique lattice in C.

2.2 The Addition Law
Another well known result in trigonometry is the existence of a group homomorphism
between (R/Z, +) and the circle group S 1 via the map θ 7→ (sin(θ), cos(θ)). The fact such
a homomorphism exists is a result of the addition formulas:

sin(θ1 + θ2) = sin(θ1) cos(θ2) + cos(θ1) sin(θ2),
cos(θ1 + θ2) = cos(θ1) cos(θ2) − sin(θ1) sin(θ2).

Using ℘L and ℘′L, similar formulas can be constructed for (C/L, +). These formulas can
then be used to induce a group structure on elliptic curves. This is reminiscent of how a
group law for the curve x2 + y2 = 1 can be determined by examining the above equations.

The formulas for ℘L and ℘′L come in several cases. Case 1 is the most important as it is
the most commonly used and is the basis for the others. The remaining three cases all deal
with technicalities of limits.

15



CHAPTER 2. ELLIPTIC CURVES (A COMPLEX HISTORY)

Case 1. When ℘L(z1) , ℘L(z2) then

℘L(z1 + z2) =
(℘′L(z2) − ℘′L(z1)
℘L(z2) − ℘L(z1)

)2
− (℘L(z1) + ℘L(z2))

and

℘′L(z1 + z2) =
1
2

(℘′L(z2) − ℘′L(z1)
℘L(z2) − ℘L(z1)

)(
℘L(z1) − ℘L(z1 + z2)

)
− ℘′L(z1).

Case 2. If ℘L(z) has a pole at z1 and z2, then ℘L(z) and ℘′L(z) have a pole at z1 + z2.

Case 3. If ℘L(z1) = ℘L(z2) but ℘′L(z1) , ℘′L(z2), then ℘L(z) and ℘′L(z) have a pole at z1 + z2.

Case 4. If ℘L(z1) = ℘L(z2) and ℘′L(z1) = ℘′L(z2), then

℘L(z1 + z2) =
(3℘L(z1)2 + A

2℘′L(z1)

)2
− 2℘L(z1)

and

℘′L(z1 + z2) =
(3℘L(z1)2 + A

2℘′L(z1)

)
(℘L(z1) − ℘′L(z1 + z2)) − ℘′L(z1).

In the fourth case, A is the same as before (it is the coefficient of x in the elliptic curve
associated to the lattice L).

The collection of formulas above is the Addition Law. The proof of these formulas is quite
long, so for the sake of cohesion it is excluded. A full proof can be found in [30], chapter 9.

The Addition Law describes how a group law can be induced on elliptic curves via addition
over C. The group induced on the elliptic curve E is denoted E(C). To ensure the elliptic
curves are groups, it is necessary to add a point at infinity (denoted ’∞’) which acts as the
identity element. This process can be defined rigorously using projective geometry4.

4See Appendix
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2.2. THE ADDITION LAW

There are several cases to consider when defining the group operation, which is denoted
’+’. Let (x1, y1) and (x2, y2) be points on an elliptic curve y2 = x3 + Ax + B with ∆ , 0,
then the group structure is defined as follows.

Case 1. If x1 , x2, let m = y2 − y1
x2 − x1

. Then (x1, y1)+(x2, y2) = (x3, y3) where x3 = m2−x1−x2

and y3 = m(x1 − x3) − y1.

Case 2. (x1, y1) +∞ = ∞ + (x1, y1) = (x1, y1) and∞ +∞ = ∞.

Case 3. If x1 = x2 but y1 , y2, then y1 = −y2 and (x1, y1) + (x2, y2) = ∞.

Case 4. Suppose x1 = x2 and y1 = y2 and let m =
3x2

1 + A
2y1

for y1 , 0. Then (x1, y1) +

(x2, y2) = (x3, y3) where x3 = m2 − 2x1 and y3 = m(x1 − x3) − y1 . If y1 = 0, then
(x1, y1) + (x2, y2) = ∞.

By substituting xi = ℘L(zi), yi = ℘
′
L(zi) and x3 = ℘L(z1 + z2), y3 = ℘

′
L(z1 + z2) into these

formulas, the Addition Law5 reappears.

Cases 2, 3 and 4 define the identity of the group as ∞ and the inverse of (x, y) as (x,−y).
Showing that the group operation ’+’ is closed and commutative is relatively easy by ex-
amination. However, without the use of the Addition Law, associativity requires a great
deal of algebraic manipulation to prove and will not be done here.

It is not difficult to extend the definition of an elliptic curve to general fields. This will be
the subject of the next section. For simplicity, fields F with Char(F) = 2, 3 are excluded
in this thesis as issues arise with powers of 2 and powers of 3, though it is still possible to
define elliptic curves over these fields. For more, see [30], chapter 2.

5Observant readers will notice a factor of 1
2 is missing from Case 1. This does not effect the group

structure. It is removed so that the elliptic curve is monic in both variables.
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CHAPTER 2. ELLIPTIC CURVES (A COMPLEX HISTORY)

2.3 General Elliptic Curves
In the previous sections, an elliptic curve was defined as an algebraic curve of the form
y2 = x3 + Ax + B where A, B ∈ C and ∆ = 4A3 + 27B2 , 0. An additional point at
infinity was added to give a group structure. However, this is just a special case. There is
no reason why the definition of an elliptic curve cannot be extended to other fields. The
general definition is as follows.

Definition 2.2. Let F be a field and L be a subfield of F. Suppose A, B ∈ L and ∆ :=
4A3 + 27B2 , 0. Then E : y2 = x3 + Ax + B is an elliptic curve defined over L. The set of
F-rational points on this curve is denoted

E(F) :=
{
(x, y) ∈ F × F

∣∣∣ y2 = x3 + Ax + B
}
∪

{
∞

}
.

Two important examples are;

E(Q) :=
{
(x, y) ∈ Q × Q

∣∣∣ y2 = x3 + Ax + B
}
∪

{
∞

}
.

and

E(R) :=
{
(x, y) ∈ R × R

∣∣∣ y2 = x3 + Ax + B
}
∪

{
∞

}
.

As one would expect, elliptic curves defined over L also have a group structure. The for-
mulas in Cases 1 to 4 of the previous section defined a group law for elliptic curves over C.
However, each formula makes sense and is well-defined over the field L, since it contains
the element A and has Char(L) , 2, 3 by assumption. Hence the same algebraic manipula-
tion that proved the group E(C) was closed, abelian and associative also works for E(L).
Inverses remain the same i.e. −(x, y) = (x,−y), while∞ still acts as the identity.

Note that elliptic curves defined over Q are often referred to as rational elliptic curves.

When working over R, it is possible to interpret the group E(R) geometrically. Let P,Q ∈
E(R). Then −(P + Q) will be the unique point in E(R) that is co-linear with P and Q. The
point P + Q will be the reflection of −(P + Q) about the x-axis, since −(x, y) := (x,−y) for
all (x, y) ∈ E(R). This idea is illustrated by the diagram on the next page. The red curve is
the set E(R).
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2.3. GENERAL ELLIPTIC CURVES

In the first figure, the points R and R′ denote P+Q and −(P+Q) respectively. The second
figure explains how a point, in this case Q is added to itself. The tangent line at Q inter-
sects the elliptic curve at the point P, which denotes −(Q + Q). The reflection of P about
the x-axis gives −P = Q + Q. In order to be able to define a tangent line at every point on
the curve, it is necessary and sufficient that ∆ be non-zero. If that were not the case then
the curve would contain self-intersections. The third diagram reiterates the fact that the
inverse of a point P on an elliptic curve is its reflection about the x-axis, Q. Note that 0 is
different notation for∞.

Now that elliptic curves have been defined for general fields, our next goal will be to un-
derstand them. Depending on the field of interest, this can be relatively easy or incredibly
hard. In fact, a complete description of the rational case is still unknown. One of the most
plausible descriptions to date arose from the work of Birch and Swinnerton-Dyer in their
seminal papers [26] and [27], as we shall see. It is known as the Birch and Swinnerton-
Dyer conjecture.
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CHAPTER 2. ELLIPTIC CURVES (A COMPLEX HISTORY)

2.4 Classifying Elliptic Curve Groups
One of the main goals in group theory is to classify groups up to isomorphism. For elliptic
curve groups, this is a highly non-trivial problem and has only been resolved completely
in special cases. Two of the most famous examples are:

Theorem 2.2. Let E be an elliptic curve defined over C. Then E(C) � S 1 × S 1 where S 1

is the circle group.

Theorem 2.3. Let E be an elliptic curve defined over R. Then E(R) � S 1 if ∆ < 0 and
E(R) � Z2 × S 1 if ∆ > 0.

A proof of the first fact can be found in [30], chapter 9. The second follows from general
results in Lie theory.

For an elliptic curve E defined over a finite field Fpn , finding the isomorphism class of
E(Fpn) is difficult but not impossible. In fact since Fpn is finite, E(Fpn) is too, so this prob-
lem can be resolved in a finite number of steps, by hand or by computer. Thus, the most
interesting cases are the elliptic curve groups defined over fields of characteristic zero.
Since Q is the smallest6 such field, classifying E(Q) is essential.

In 1901, Henri Poincaré proposed that any point on a rational elliptic curve E(Q) should
be expressible as a sum of finitely many infinite order points on E(Q) and finitely many
finite order points on E(Q) (addition in this case being the group operation for elliptic
curves). The minimum number of infinite order points required to do this is referred to
as the rank of the curve. The points of finite order are referred to as torsion points. A
modern formulation of his conjecture is

Conjecture. Let E be an elliptic curve defined over Q, then E(Q) is a finitely generated
group.

6In the sense that every field of characteristic zero contains a subfield isomorphic to Q. It is the only field
with this property.
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2.4. CLASSIFYING ELLIPTIC CURVE GROUPS

Since E(Q) is always commutative, the classification of finitely generated abelian groups
can be used to restate the conjecture.

Conjecture. Let E be an elliptic curve defined over Q, then E(Q) is isomorphic to a finite
direct product of cyclic groups i.e.

E(Q) � Zr ×

N∏
i=1

Zqi

where r is the rank of E, N depends on E and each qi is a prime power. The product of
the finite cyclic groups forms a subgroup denoted T which is sometimes referred to as the
torsion subgroup.

A corollary of the above conjecture is that the rank of an elliptic curve will always be finite.

Two decades after it was posed, Poincaré’s conjecture was finally proved by Louis J.
Mordell in 1922, see [19]. The result is named after Mordell in honour of his proof.
Since its discovery, Mordell’s theorem has been significantly generalised and has gone on
to become a foundational result in number theory and algebraic geometry.

Mordell’s Theorem. Let E be an elliptic curve defined over Q, then

E(Q) � Zr × T

for some r ∈ N ∪ {0} and some finite group T .

Proving Mordell’s theorem is rather difficult and would take too long to complete in this
thesis. Instead, the basic ideas and strategy of the proof are described. Complete proofs
can be found in [19], [23] and [30].

Firstly, the introduction of two definitions is required.

Definition 2.3. Let
(a
b ,

c
d
)

be a point on E(Q), written so that a and b are coprime. The

multiplicative height H : E(Q) −→ R+ is defined as H
(a
b ,

c
d
)

:= max{|a|, |b|}. Further-
more, H(∞) = 1 by assumption.

Definition 2.4. The logarithmic height h : E(Q) −→ R+ is defined as h(P) := log(H(P)).
Furthermore, h(∞) = 0 by assumption.

These functions play an important role as they quantify how large the numerators and
denominators of rational points on elliptic curve are. Studying how the values of the
height functions change under the group law on E(Q) is at the heart of Mordell’s proof.
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The following properties of the logarithmic height are essential for the proof. The corre-
sponding properties for the mulitplicative height can be obtained by exponentiating.

Property 1. Let P and Q be arbitrary points on E(Q). Then there exists a constant C1

depending on E and one of the points (say Q) such that

h(P + Q) ≤ 2h(P) +C1.

Property 2. Let P be an arbitrary point on E(Q). Then there exists a constant C2 depend-
ing on E such that

h(2P) ≥ 4h(P) −C2.

Property 3. Let C3 be any positive constant. Then there are only finitely many P ∈ E(Q)
such that h(P) ≤ C3.

The final result needed for the proof is group theoretic in nature. It is what allows us to
translate the above properties into information about group structure.

The Weak Mordell Theorem. E(Q)/2E(Q) is a finite group.

Proving this result is the most difficult part of Mordell’s theorem, which is why it is
known as the weak Mordell theorem. A proof is provided below in the case where
E : y2 = x3 + Ax + B only has rational roots i.e. x3 + Ax + B = 0 only has rational
solutions. The proof is essentially the same as [30], chapter 8. It is accomplished through
several lemmas, which will be delineated now.

The first lemma provides a canonical form for these elliptic curves.

Lemma 2.1. Suppose E : y2 = x3 + Ax + B is defined over Q and that the polynomial
x3 + Ax + B = 0 only has rational roots. Then, there exists an elliptic curve of the form
E′ : y2 = (x − n1)(x − n2)(x − n3) with ni ∈ Z such that E(Q) � E′(Q).

Proof. Since E only has rational roots, it can be written as

y2 =

(
x −

a1

b1

) (
x −

a2

b2

) (
x −

a3

b3

)
where ai

bi
∈ Q.

22



2.4. CLASSIFYING ELLIPTIC CURVE GROUPS

By substitution, it is easily verified that for each n ∈ N, the rational map (x, y) −→
(

x
n2 ,

y
n3

)
is an isomorphism between E(Q) and En(Q), where En is defined as y2 = x3 + An4x+ Bn6.

Thus, if n = b1b2b3, E(Q) will be isomorphic to the group of rational points on(
y

(b1b2b3)3

)2

=

(
x

(b1b2b3)2 −
a1

b1

) (
x

(b1b2b3)2 −
a2

b2

) (
x

(b1b2b3)2 −
a3

b3

)
.

Multiplying both sides by (b1b2b3)6 removes all denominators but does not change the
solutions to the above equation. Thus, E(Q) will be isomorphic to the group of rational
points on an elliptic curve of the form

y2 = (x − n1)(x − n2)(x − n3) (2.1)

where the ni are integers. Note that since the discriminant of an elliptic curve is never zero,
these three integers are all distinct. □

Therefore, it can be assumed without loss of generality that E : y2 = x3 + Ax + B can
always be rewritten in the form (2.1). This assumption will be made for the remainder of
this chapter.

The next step is to consider an important map7 defined on E(Q). This map can be con-
structed through Galois cohomology, a topic that will be discussed later. The symbol
Q∗/(Q∗)2 denotes the multiplicative group of rationals modulo squares. In what follows
≡ will denote equality in this quotient group. For an example of how this group works,
consider rs2 ∈ Q∗, where r, s ∈ Q∗. Then rs2 ≡ r in the group Q∗/(Q∗)2 because square
terms are necessarily trivial.

The map of interest is

ψ : E(Q) −→ Q∗/(Q∗)2 × Q∗/(Q∗)2 × Q∗/(Q∗)2

defined by the following cases

(x, y) 7→ (x − n1, x − n2, x − n3) if y , 0,
(n1, 0) 7→ ((n1 − n2)(n1 − n3), n1 − n2, n1 − n3),
(n2, 0) 7→ (n2 − n1, (n2 − n1)(n2 − n3), n2 − n3),
(n3, 0) 7→ (n3 − n1, n3 − n2, (n3 − n1)(n3 − n2)),
∞ 7→ (1, 1, 1).

7This map comes from the classical process of 2-descent, an account of which is provided in [6] and
[30].
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The group operation on Q∗/(Q∗)2×Q∗/(Q∗)2×Q∗/(Q∗)2 is component-wise multiplication
inherited from Q∗/(Q∗)2. The next lemma describes why this map is so important.

Lemma 2.2. The map ψ is a homomorphism.

Proof. Let (x1, y1), (x2, y2) and (x3, y3) be three co-linear points on E(Q). This is equiv-
alent to saying (x1, y1) + (x2, y2) = (x3,−y3). Assume for the time being that yi , 0 for
i ∈ {1, 2, 3}.

Let y = mx + c be the line passing through the three points. This line passes through
two distinct rational points so m and c are themselves rational. Then, by definition, the
equation (x − n1)(x − n2)(x − n3) − (mx + c)2 = 0 has roots at x = x1, x2 and x3, thus,

(x − n1)(x − n2)(x − n3) − (mx + c)2 = (x − x1)(x − x2)(x − x3).

Evaluating this polynomial at n1, n2 and n3, it becomes clear that for each i ∈ {1, 2, 3}, one
has

(x1 − ni)(x2 − ni)(x3 − ni) ≡ 1 in Q∗/(Q∗)2. (2.2)

This is equivalent to saying

ψ(x1, y1)ψ(x2, y2)ψ(x3, y3) ≡ (1, 1, 1) in Q∗/(Q∗)2 × Q∗/(Q∗)2 × Q∗/(Q∗)2. (2.3)

Next, let a ∈ Q∗. Using the fact that a2 ≡ 1 in Q∗/(Q∗)2 it follows immediately that for any
a1, a2, a3 ∈ Q

∗

(a1, a2, a3)2 ≡ (a2
1, a

2
2, a

2
3) ≡ (1, 1, 1) (2.4)

in Q∗/(Q∗)2 × Q∗/(Q∗)2 × Q∗/(Q∗)2.

Multiplying both sides of (2.3) by ψ(x3, y3), (2.4) implies

ψ(x1, y1)ψ(x2, y2) ≡ ψ(x3, y3).
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Furthermore, since ψ(x, y) does not depend on the sign of y, it follows that ψ(x, y) ≡
ψ(x,−y). This implies that

ψ(x1, y1)ψ(x2, y2) ≡ ψ(x3,−y3) ≡ ψ((x1, y1) + (x2, y2))

by definition of (x3,−y3). Hence ψ is a homomorphism when yi , 0.

The only non-trivial case left to prove is when exactly one point (xi, yi), i ∈ {1, 2, 3},
satisfies yi = 0. The cases where there are two or more such points are easily verified.
Suppose then, without loss of generality, that (x1, y1) = (n1, 0). By the above discussion, it
suffices to prove

ψ(x1, y2)ψ(x2, y2)ψ(x3, y3) ≡ (1, 1, 1)

for ψ to be a homomorphism.

By definition of ψ it is easy to verify that (2.2) continues to hold for i ∈ {2, 3} i.e.

(x1 − ni)(x2 − ni)(x3 − ni) ≡ 1 in Q∗/(Q∗)2 for i ∈ {2, 3}. (2.5)

Thus, the proof relies on showing that

(n1 − n2)(n1 − n3)(x2 − n1)(x3 − n1) ≡ 1. (2.6)

Since (x2, y2), (x3, y3) ∈ E(Q), one has y2
2 = (x2 − n1)(x2 − n2)(x2 − n3) and y2

3 = (x3 −

n1)(x3 − n2)(x3 − n3), hence

(x2 − n1)(x2 − n2)(x2 − n3) ≡ 1
(x3 − n1)(x3 − n2)(x3 − n3) ≡ 1.

Multiplying both sides of the top equation by (x2−n1) and both sides of the bottom equation
by (x3 − n1), it follows from (2.4) that

(x2 − n1) ≡ (x2 − n2)(x2 − n3),
(x3 − n1) ≡ (x3 − n2)(x3 − n3).

Using (2.4) and (2.5) this can be rewritten as

(x2 − n1) ≡ (x1 − n2)(x3 − n2)(x2 − n3),
(x3 − n1) ≡ (x2 − n2)(x1 − n2)(x3 − n3).

Then, taking the product of x2 − n1 and x3 − n1, and using (2.5) again gives

(x2 − n1)(x3 − n1) ≡ (x1 − n3)(x1 − n2).

25



CHAPTER 2. ELLIPTIC CURVES (A COMPLEX HISTORY)

Finally, since x1 = n1, it follows that

(x2 − n1)(x3 − n1) ≡ (n1 − n2)(n1 − n3).

Multiplying both sides by (n1 − n2)(n1 − n3) gives (2.6). Hence ψ is a homomorphism.
□

The next lemma provides a complete description of the kernel of ψ.

Lemma 2.3. The kernel of ψ is the subgroup 2E(Q).

Proof. Since 2E(Q) is trivially contained in Ker(ψ), it suffices to prove Ker(ψ) ⊆ 2E(Q).
This is equivalent to saying that (x, y) ∈ 2E(Q) if ψ(x, y) ≡ (1, 1, 1).

Suppose then (x, y) ∈ E(Q) and ψ(x, y) ≡ (1, 1, 1). This implies, for each i ∈ {1, 2, 3}, that
there exists ri ∈ Q such that

(x − ni) = r2
i .

Now, define p(t) = at2 + bt + c to be the unique quadratic polynomial such that p(ni) = ri.
The polynomial x − t − p(t)2 will then have roots at each ni as a result. Equivalently,

x − t − p(t)2 = (t − n1)(t − n2)(t − n3) f (t)

for some f (t) ∈ Q[t]. By applying lemma 2.1 this can be rewritten as

x − t − p(t)2 =
(
t3 + At + B

)
f (t).

By expanding p(t)2 and using the fact

t3 = −At − B + (t3 + At + B),
t4 = −At2 − Bt + (t3 + At + B).

it can be shown there exists q(t) ∈ Z[t] such that for all t ∈ C,

x − t = (b2 + 2ac − Aa2)t2 + (2bc − 2Aab − Ba2)t + c2 − 2Bab + (t3 + At + B)q(t).

Since both x − t and (b2 + 2ac − Aa2)t2 + (2bc − 2Aab − Ba2)t + c2 − 2Bab have degrees
less than three and differ from each other by a multiple of a cubic polynomial, they must
be equal. In other words

b2 + 2ac − Aa2 = 0,
2bc − 2Aab − Ba2 = −1,
c2 − 2Bab = x.
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Now, suppose for the sake of contradiction that a = 0. By the first equation this would
imply b = 0, which would mean p(t)2 is a constant polynomial and n1 = n2 = n3, which
contradicts the fact ∆ , 0. So a is non-zero.

If the first and second equations are multiplied by b
a3 and −1

a2 respectively, they become

(
b
a

)3

+
2bc
a2 − A

(
b
a

)
= 0,

−2bc
a2 + 2A

(
b
a

)
+ B =

1
a2 .

Adding both these equations together gives(
±1
a

)2

=

(
b
a

)3

+ A
(
b
a

)
+ B.

Therefore,
(
b
a ,

1
a

)
and

(
b
a ,
−1
a

)
are elements of E(Q).

To complete the proof, it suffices to show that either 2
(
b
a ,

1
a

)
= (x, y) or that 2

(
b
a ,
−1
a

)
=

(x, y).

For an arbitrary point (x, y) ∈ E(Q), Case 4 of the Addition Law on page 16, implies the
following

2(x̃,±ỹ) = (x, y)⇐⇒ x =
x̃4 − 2Ax̃2 − 8Bx̃ + A2

4ỹ2 .
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With this in mind, solve the equation b2+2ac−Aa2 = 0 for c and substitute into c2−2Bab =
x to get

x =
A2a4 − 2Aa2b2 + b4 − 8Ba3b

4a2 .

Dividing by a4 in the numerator and denominator completes the proof. □

The final lemma ties everything together.

Lemma 2.4. The image of ψ is finite.

Proof. Every rational number can be written uniquely as the product of a square ratio-
nal and a squarefree integer. Thus, it suffices to prove that there are only finitely many
squarefree integers a, b, c such that

x − n1 ≡ a
x − n2 ≡ b
x − n3 ≡ c

where y2 = (x − n1)(x − n2)(x − n3).

To start, let p be prime and define the p-adic valuation of an integer m as

νp(m) :=

max{k ∈ N ∪ {0} | pk divides m} if m , 0,
∞ if m = 0.

This can be extended to the rationals via the formula νp

(m
n
)
= νp(m) − νp(n).

Now suppose p is a prime dividing a and x is rational. Since a is squarefree, this means
νp(x−n1) must be odd. Furthermore, if νp(x−n1) is negative, it is not difficult to show that
νp(x − n1) = νp(x − n2) = νp(x − n3), since adding integers to reduced fractions will not
change the denominator. However, then νp((x − n1)(x − n2)(x − n3)) = 3νp(x − n1) is odd,
contradicting the fact νp((x − n1)(x − n2)(x − n3)) = νp(y2) = 2νp(y) is even. Therefore,
νp(x−n1) must be positive i.e. p | x−n1. A corollary of this is that νp(x−n2) and νp(x−n3)
must be non-negative too.
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Next, suppose for the sake of contradiction that p ∤ (n1 − n2)(n2 − n3)(n3 − n1). Then
p ∤ (x−n2) and p ∤ (x−n3) since x−ni = x−n1+n1−ni. Thus, νp(x−n2) = νp(x−n3) = 0
and

νp(y2) = νp((x − n1)(x − n2)(x − n3)) = νp(x − n1)

which is a contradiction as νp(x − n1) is odd.

Therefore, every prime that divides a must also divide (n1−n2)(n2−n3)(n3−n1). However,
because (n1 − n2)(n2 − n3)(n3 − n1) is constant and a is squarefree, there are only finitely
many choices for such an a among the integers. The same idea works for b and c, proving
the image of ψ is finite.

□

With these four lemmas in mind, the first isomorphism theorem yields

E(Q)/2E(Q) � Im(ψ).

Thus, E(Q)/2E(Q) is finite and the special case of the weak Mordell theorem has now
been proved.

To complete this section, a proof of Mordell’s theorem using properties 1-3 of the height
functions and the weak Mordell theorem is provided.

Mordell’s Theorem. Let E be an elliptic curve defined over Q, then

E(Q) � Zr × T

for some r ∈ N ∪ {0} and some finite group T .

Proof. Let P ∈ E(Q). Since E(Q)/2E(Q) is finite, there are only finitely many coset
representatives of 2E(Q) in E(Q). The set of representatives is denoted RE. Thus, P can
be written as

P = R1 + 2P1

where R1 ∈ RE and P1 is defined as a solution to this equation. Furthermore P1 can be
written as

P1 = R2 + 2P2

where R2 ∈ RE, P2 ∈ E(Q). These two equations can be combined into

P = R1 + 2R2 + 4P2.
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Continuing this process n times gives

Pn = Rn+1 + 2Pn+1,
P = R1 + 2R2 + · · · + 2n−1Rn + 2nPn.

If it can be shown for large enough n that Pn must be contained in some finite set, then
there can only be finitely many choices for Pn and hence only finitely many generators.
The theorem would then follow. The remainder of the proof is dedicated to showing this.

Property 1 says
h(Q − Ri) ≤ 2h(Q) +Ci for all Q ∈ E(Q)

where Ci denotes a constant depending on Ri ∈ RE. Let C be the maximum among these
Ci. Such a maximum exists since RE is finite.

Now use property 2 to get

4h(Pi) ≤ h(2Pi) + C̃ = h(Pi−1 − Ri) + C̃ ≤ 2h(Pi−1) +C + C̃

where C̃ only depends on E.

This implies

h(Pi) ≤
3
4

h(Pi−1) −
1
4

(h(Pi−1) −C − C̃).

If h(Pi−1) ≤ C + C̃ for some i ∈ N, then we are finished due to property 3. Suppose
then h(Pi−1) > C + C̃ for all i ∈ N. This means h(Pi) < 3

4h(Pi−1), so that therefore h(Pi)
is a strictly decreasing sequence and eventually h(Pn) ≤ C + C̃ for large enough n, a
contradiction. Hence there will always exist n ∈ N such that h(Pn) ≤ C + C̃. By property
3, such Pn must be finite in number and the proof is complete. □
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Chapter 3

The Tate-Shafarevich Group

The goal of this chapter is to introduce the Tate-Shafarevich group, a fundamental object
in algebraic geometry. It will prove useful later when discussing isomorphism classes and
the Birch and Swinnerton-Dyer conjecture. With this in mind, it will be necessary to in-
troduce several new concepts.

In the previous section, we concluded that one of the main problems about elliptic curves
is classifying the group E(Q) up to isomorphism. The first major step in resolving this
problem was Mordell’s theorem. As a result of Mordell’s theorem, the classification of
E(Q) reduces to determining the rank and torsion subgroup of E. This is easier said than
done, though major progress has been made in both cases. Indeed, the torsion case was
essentially solved by Mazur, [18], in 1978, when he proved a long-standing conjecture of
Levi:

Mazur’s Theorem. Suppose E is an elliptic curve defined over Q and T is the torsion
group of E(Q), then T must satisfy one of the following:

T � Zn, 1 ≤ n ≤ 10,
T � Z12,
T � Z2 × Z2n, 1 ≤ n ≤ 4.

Furthermore, every group in this list occurs as the torsion group of infinitely many elliptic
curves.
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The last part guarantees this theorem is necessary and sufficient for classifying torsion
groups, meaning it cannot be improved further without altering the hypotheses of the the-
orem.

Therefore, the most interesting case is determining, or at least bounding the rank of E. The
best approach to this problem is to focus on the quotient groups E(Q)/nE(Q) rather than
E(Q) itself.

Special attention is given to the case n = 2 due to the fact E(Q)/2E(Q) usually has the low-
est order among these quotient groups. Moreover, there is a simple but useful relationship
between the order of this group and the rank of E.

Proposition. Let E : y2 = x3 + Ax + B be an elliptic curve defined over Q and ρ be the
number of rational solutions to x3 + Ax + B = 0. Suppose that the rank of E is r. Then,

|E(Q)/2E(Q)| =


2r if ρ = 0
2r+1 if ρ = 1
2r+2 if ρ = 3

Note that ρ , 2 since otherwise the sum of the roots would be irrational and non-zero,
contradicting the definition of E.

This proposition is a straightforward corollary of Mordell’s theorem.

Hence the problem of bounding the rank of an elliptic curve can be reduced to bounding the
order of E(Q)/2E(Q), or more generally E(Q)/nE(Q). The most efficient way of solving
this problem involves first ascertaining the isomorphism classes of these quotient groups.
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For example, in the last section the isomorphism

E(Q)/2E(Q) � Im(ψ)

was established and provided essential information about the group E(Q)/2E(Q). The
proof of this fact implicitly used Galois cohomology, a useful framework for studying el-
liptic curves. The fundamentals of Galois cohomology are outlined in the next two sections
with the intention of generalising the above result and introducing the Tate-Shafarevich
group. To maintain a coherent exposition, several results in these sections will be stated
without proof.

3.1 Galois Cohomology
Group cohomology is the application of cohomological principles from algebraic topology
to the study of groups. Galois cohomology has the same premise but specialises in Galois
groups. This theory can be developed independently of topological spaces by considering
group modules instead.

To begin, several terms and definitions are introduced. The first one is particularly impor-
tant as it encapsulates what it means for two rational algebraic curves to be equivalent in
algebraic geometry.

Definition 3.1. Let D1 and D2 be two algebraic curves defined over Q and let F be a
subfield of Q. Then D1 and D2 are said to be birationally equivalent over F if there exists
a rational bijection Φ : D1 −→ D2 defined over F whose inverse is also rational i.e.

Φ(x, y) =
(
R1(x, y),R2(x, y)

)
Φ−1(x, y) =

(
R3(x, y),R4(x, y)

)
for some Ri(x, y) ∈ F(x, y). The map Φ is known as a birational map.

In the case where D1 = D2, the map Φ is commonly referred to as a birational auto-
morphism. Non-trivial automorphisms on a curve can be regarded as symmetries in its
structure. Such automorphisms can be constructed via group actions. The group primarily
used in this process is the absolute Galois group Gal(Q/Q), which shall be denoted Γ.

Suppose σ ∈ Γ and Φ : D1 −→ D2 is birational (assume it is defined over Q unless oth-
erwise stated). Define the function σΦ : D1 −→ D2 to be the map obtained by letting σ

33



CHAPTER 3. THE TATE-SHAFAREVICH GROUP

act on the coefficients of Φ. This map is also birational, which means the composite map
(σΦ)Φ−1 : D2 −→ D2 will be a birational automorphism of the curve D2.

Of course, σ may act trivially on Φ, making (σΦ)Φ−1 the identity function. However,
provided that Φ is defined over some proper field extension of Q, there will always exist
some σ ∈ Γ which acts non-trivially.

These automorphisms are particularly easy to characterise on elliptic curves due to the
underlying group structure. In fact, if E is an elliptic curve defined over Q then automor-
phisms of E(Q) can be written as

(σΦ)Φ−1 : E(Q) −→ E(Q) , P 7→ P + ΛΦ(σ) (3.1)

for some map ΛΦ : Γ −→ E(Q) dependent on the choice of Φ.

Thus, automorphisms of E(Q) are merely translations by group elements. A proof of this
fact can be found in [6], chapter 20.

To understand these automorphisms, it is necessary to focus on the family of functions{
ΛΦ

}
. They are examples of cocycles, an unilluminating term which has its roots in topol-

ogy. Cocycles are noteworthy for their functional identity, which in this case is,

ΛΦ(τσ) = τΛΦ(σ) + ΛΦ(τ) for all σ, τ ∈ Γ. (3.2)

Here τ ∈ Γ acts on points in E(Q) componentwise i.e. τ(x, y) = (τx, τy). This action
makes E(Q) a Γ-module. The identity (3.2) follows from composing the aforementioned
automorphisms in (3.1).

Note too that if Γ acts trivially on the image of ΛΦ, the cocycle identity (3.2) reduces to

ΛΦ(τσ) = ΛΦ(σ) + ΛΦ(τ),

making ΛΦ : Γ −→ E(Q) a homomorphism of groups. For this reason, cocycles are often
referred to as twisted homomorphisms as well.

An important property that cocycles share with homomorphisms is that they form groups.
In fact, given any abelian G-module (R,+), the set

Z(G,R) :=
{
f : G −→ R | f (gh) = g f (h) + f (g) for all g, h ∈ G

}

34



3.1. GALOIS COHOMOLOGY

will inherit a group structure from (R,+).

In order to translate what has been discussed so far into information about E(Q)/nE(Q), it
is necessary to introduce the following.

Definition 3.2. The Zeroth cohomology group of an abelian G-module (R,+), is defined
to be the subgroup of R fixed trivially by G,

H0(G,R) :=
{
r ∈ R | gr = r for all g ∈ G

}
.

This definition is introduced as a means of characterising E(Q) in terms of E(Q) and Γ as

E(Q) = H0(Γ, E(Q)). (3.3)

The advantage of this identity is that it allows E(Q) to be studied via E(Q), a group much
easier to work with. It is also what allows one to study elliptic curves through a cohomo-
logical viewpoint.

Now, the task at hand is to establish a relationship between H0(G,R) and Z(G,R).

To this end, consider the functions δr : G −→ R defined by δr(g) = gr− r, where as before,
(R,+) is an abelian G-module, r ∈ R and g ∈ G.

This function can be used as a means of ’detecting’ elements of H0(G,R), in the sense that
if δr is the identity for all g, then clearly r ∈ H0(G,R). The heuristic view is the more often
δr is trivial, the more likely r is in H0(G,R).

Another important property of the functions δr, which is proved below, is that they are
cocycles. They are also known as coboundaries. In a certain sense, coboundaries are the
’trivial’ cocycles since they arise naturally and are easily constructed. On the other hand,
coboundaries prevent G from acting trivially on Z(G,R). This makes the classification of
cocycles and birational automorphisms much more difficult, so removing coboundaries is
a priority.
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It shall now be proved that the set of all coboundaries, denoted B(G,R), forms a subgroup
of Z(G,R).

Proof. By definition,

B(G,R) :=
{
δr : G −→ R | r ∈ R, δr(g) = gr − r

}
Now suppose δr ∈ B(G,R), then for all g, h ∈ G,

δr(gh) = ghr − r.

However, one also has

ghr − r = (ghr − gr) + (gr − r) = g(δr(h)) + δr(g).

So B(G,R) is indeed a subset of Z(G,R). To prove B(G,R) is a subgroup it suffices to
prove closure and the existence of inverses.

Suppose then δr, δs ∈ B(G,R). We need to show δr + δs ∈ B(G,R). However, this is
immediate from the fact R is closed under + and

(δr + δs)(g) := δr(g) + δs(g) = gr − r + gs − s = g(r + s) − (r + s) = δr+s(g) for all g ∈ G.

Therefore, δr + δs = δr+s. This identity also makes it clear that δ−r is the inverse of δr.
□

The subgroup B(G,R) is automatically normal because Z(G,R) inherits the commutativity
of R. Since we want to remove coboundaries from future considerations, it is natural to
focus on the corresponding quotient group detailed below.

Definition 3.3. The First cohomology group of an abelian G-module (R,+), is defined to
be the quotient group

H1(G,R) := Z(G,R)/B(G,R).

In particular,
H1(Γ, E(Q)) := Z(Γ, E(Q))/B(Γ, E(Q)).
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By factoring out the coboundary subgroup, the difficulty mentioned earlier is removed. In
other words, the following lemma holds.

Lemma 3.1. The group G acts trivially on H1(G,R).

A proof of this lemma can be found in [6], chapter 21.

What makes cohomology groups particularly consequential is that they allow short exact
sequences to be extended. This is useful in so far as one can use this fact to re-characterise
E(Q)/nE(Q) from a cohomological viewpoint.

Consider the short exact sequence

0 −→ E(Q)[n]
ι
−→ E(Q)

n
−→ E(Q) −→ 0,

where E(Q)[n] denotes the elements of E(Q) with order dividing n. Also ι and n denote
the inclusion and multiplication-by-n homomorphisms respectively. Surjectivity of the ho-
momorphism n is proven in [30], chapter 2.

This short exact sequence can be used to induce the long exact sequence

0 −→ H0(Γ, E(Q)[n])
ι
−→ H0(Γ, E(Q))

n
−→ H0(Γ, E(Q))

δ
−→ H1(Γ, E(Q)[n])

ι
−→ H1(Γ, E(Q))

n
−→ H1(Γ, E(Q))

where δ is the connecting homomorphism. By (3.3), this short exact sequence is the same
as

0 −→ E(Q)[n]
ι
−→ E(Q)

n
−→ E(Q)

δ
−→ H1(Γ, E(Q)[n])

ι
−→ H1(Γ, E(Q))

n
−→ H1(Γ, E(Q)).

A proof that this induced sequence holds can be found in most texts on group cohomology
and homological algebra e.g. [4]. The most difficult part is determining the connecting
homomorphism δ, an account of which can be found in [22], appendix B.

A corollary of this long exact sequence is below.

Corollary. There exists a short exact sequence of the groups

0 −→ E(Q)/nE(Q) −→ H1(Γ, E(Q)[n]) −→ H1(Γ, E(Q))[n] −→ 0.
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This short exact sequence is crucial because it characterises E(Q)/nE(Q) from a cohomo-
logical viewpoint, something well suited for constructions. It also appears in considera-
tions about existence of rational points on elliptic curves, as well as measuring the failure
of Hasse’s local-global principle, something discussed in the next section.

3.2 Local Fields
The difficulty of classifying E(Q) is in large part due to the fact Q is not complete. In other
words, the field Q is not suited to analysis in the same way as R and C. To overcome this
obstacle, we can work with complete field extensions of Q instead.

Classifying complete field extensions of Q is not difficult. In fact, in 1916, Ostrowski es-
sentially proved that any completion of Q is either R or a p-adic field Qp. These are the
local fields we shall work with. A definition of p-adic fields is provided in the appendix.

The idea that the existence of solutions to algebraic curves in local fields implies the exis-
tence of rational solutions, is known as Hasse’s Local-Global principle. It has its roots in
the following theorem about quadratic forms.

The Hasse-Minkowski Theorem. A quadratic form defined over Q has a non-trivial ra-
tional solution if and only if it has a non-trivial solution in R and every p-adic field Qp.

Clearly, one direction of the theorem is obvious since R and any Qp are field extensions
of Q. However, the converse is much harder, but also much more useful. A proof can be
found in [6], chapter 3.

If an algebraic curve contains a solution in every local field, but not in Q, we say that the
local-global principle has failed for that curve. Otherwise, we say that the local global
principle holds.

By applying Hensel’s lemma1 from p-adic analysis, the Hasse-Minkowski theorem asserts
that determining the existence or non-existence of a rational point on a quadratic form
amounts to solving congruences.

Of course, one would hope that such a principle would work for algebraic curves that are
birationally equivalent to elliptic curves. Unfortunately, this is not always the case. Some-
times it works and sometimes it doesn’t. It depends on the elliptic curve in question. As

1See Appendix
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shall be seen later, the obstruction to the principle depends entirely on the non-triviality of
the Tate-Shafarevich group.

This group is inherently cohomological in nature, so it is necessary to reinterpret the exis-
tence of rational solutions through a cohomological point of view.

To begin, let E be an elliptic curve defined over Q and suppose Φ : D −→ E is a birational
equivalence. Every birational equivalence of E is uniquely determined by an algebraic
curve D and a birational map Φ. What’s more every such pair (D,Φ) can be associated to
a cocycle, namely ΛΦ. With this in mind, an equivalence relation ∼ can be induced on all
such birational equivalences of E by the canonical quotient homomorphism

q : Z(Γ, E(Q)) −→ H1(Γ, E(Q)) , f 7→ f + B(Γ, E(Q)).

Indeed, let
WE :=

{
(D,Φ) | Φ : D −→ E a birational equivalence

}
be the set of all birational equivalences of E. Then (D1,Φ1) ∼ (D2,Φ2) if and only if
ΛΦ1 − ΛΦ2 ∈ B(Γ, E(Q)). In this case, the two pairs are said to be cohomologous.

It follows that the equivalence classes [D,Φ] ∈ WE/∼ map injectively into the first coho-
mology group H1(Γ, E(Q)) via [D,Φ] −→ ΛΦ + B(Γ, E(Q)). This map is also surjective,
see [22], chapter 10, meaning that an isomorphic group law can be induced bijectively
on WE/∼. The resulting group is known as the Weil-Châtelet group and the identity of
this group is denoted [0]. Note that the Weil-Châtelet group can also be defined indepen-
dently of the first cohomology group via homogeneous spaces2 and the fact that they are
isomorphic is entirely non-trivial.

2Again, see [22], chapter 10 for more.
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An important property of the Weil-Châtelet group is summarised by the following lemma.

Lemma 3.2. [D,Φ] = [0] if and only if D contains a rational point.

Proof. By (3.3), it is clear that P ∈ E(Q) if and only if P ∈ E(Q) and σP = P for all σ ∈ Γ.
Now, suppose [D,Φ] = [0]. Since WE/∼ is naturally isomorphic to H1(Γ, E(Q)), this is
equivalent to saying the cocycle ΛΦ is a coboundary (trivial in H1). Thus,

ΛΦ(σ) = σP − P

for some P ∈ E(Q).

Re-arranging and using (3.1) this becomes;

(σΦ)Φ−1(P) = σP.

Now, since Φ is a bijection, P = Φ(R) for some R ∈ D, so the above equation can be
rewritten as

(σΦ)(R) = σ(Φ(R)) = (σΦ)(σR).

Hence σR = R. Since this holds for all σ ∈ Γ, R must be rational.

Conversely, let Q ∈ D be a rational point. Then there exists P ∈ E(Q) such that P = Φ(Q).
Since Q is rational, σQ = Q for all σ ∈ Γ. Hence,

σP = σ(Φ(Q)) = (σΦ)(Q) = (σΦ)Φ−1(P).

and thus, (3.1) gives
σP = P + ΛΦ(σ).

So ΛΦ is a coboundary. □

This lemma reduces proving rational solutions exist to cohomological considerations. Of
course, in this scenario, there is nothing particularly special about Q and everything dis-
cussed so far can be extended to local fields. In particular, using the fact that the first co-
homology group and the Weil-Châtelet group are isomorphic, the following lemma holds.

Lemma 3.3. Let F = R or some p-adic field Qp and let D be an algebraic curve as before.
Then D contains a solution in F if and only if there exists a cocycle (corresponding to D)
which becomes trivial in H1(Gal(F/F), E(F)). Here F denotes the algebraic closure of F.
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Lemmas 3.2 and 3.3 are foundational for the Tate-Shafarevich group and its interpretation
as an obstacle to a local-global principle.

Next, we will consider how different cohomology groups relate to each other.

By definition, every local field F is an extension of Q, so the algebraic closure F will be an
extension of Q. By the process of localisation, see [6], chapter 21, it is possible to prove
that the reverse inclusion holds for the corresponding Galois groups i.e. for every local
field F, there is an injective homomorphism

ιF : Gal(F/F) −→ Γ.

Thus, each Gal(F/F) can be considered a subgroup of Γ.

There also exists a homomorphism that restricts the domain3 of every element in H1(Γ, E(Q))
to Gal(F/F), making it an element of H1(Gal(F/F), E(F)). The restriction homomorphism
is denoted;

ΨF : H1(Γ, E(Q)) −→ H1(Gal(F/F), E(F)) (3.4)

and is defined by taking every element of H1(Γ, E(Q)) to its restriction;

ΨF( f ) = f |Gal(F/F).

With all this in mind, the Tate-Shafarevich group can now be defined.

Let E be an elliptic curve defined over Q and suppose Φ : D −→ E is a birational
equivalence, of the algebraic curve D, defined over Q. Furthermore, suppose D contains
a point in every local field. Then the corresponding cocycle, namely ΛΦ, is trivial in
H1(Gal(Qp/Qp), E(Qp)) for every prime p and in H1(Gal(C/R), E(C)).

3Technically, the restriction is to a subgroup of Γ isomorphic to Gal(F/F).
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Now, the local-global principle would fail for D if we could show that ΛΦ, considered
as an element of H1(Γ, E(Q)), was non-trivial in this group. More precisely, if it could
be shown that ΛΦ ∈ Ker(ΨF) for all local fields F and is non-trivial in each kernel. The
more curves D that share this property, the more the local-global principle fails. Hence,
the obstruction to the local-global principle can be measured by the size of the group

XE :=
⋂

Local fields F

Ker(ΨF).

This is the Tate-Shafarevich group of E. The dependence on E follows from (3.4).

Clearly, by the above discussion if XE is the trivial group, the local-global principle can-
not fail. On the other hand, the larger XE is, the more curves there are that violate the
principle. This group is one of the most studied groups in mathematics, but very little is
known about it. For most elliptic curves, it is not even known to be finite. It is fundamental
to the theory of elliptic curves, not only because it can be used to solve problems about
rational points, but also because it plays a vital role in understanding E(Q)/nE(Q).

An equivalent definition of the Tate-Shafarevich group is obtained by taking direct prod-
ucts. Define Ψ to be the product homomorphism obtained from extending each ΨF;

Ψ : H1(Γ, E(Q)) −→
∏

Local fields F

H1(Gal(F/F), E(F)).

Then XE = Ker(Ψ).

Although XE is not known to be finite, it is still possible to construct finite analogues of
this group. These prove essential in bounding the rank of an elliptic curve. For any n ∈ N,
let Ψn denote the restriction of Ψ to H1(Γ, E(Q)[n])

Ψn : H1(Γ, E(Q)[n]) −→
∏

Local fields F

H1(Gal(F/F), E(F)).

Then, an analogue of XE is S n := Ker(Ψn). This is known as the nth Selmer group of E
and is always finite. The usefulness of these groups comes from the fact they are easily
constructable extensions of E(Q)/nE(Q). See [30], chapter 8 for an example.

To conclude, consider the short exact sequence from the previous section

0 −→ E(Q)/nE(Q) −→ H1(Γ, E(Q)[n]) −→ H1(Γ, E(Q))[n] −→ 0.
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There is nothing special here about Q, so this sequence can be extended to local fields

0 −→ E(F)/nE(F) −→ H1(Gal(F/F), E(F)[n]) −→ H1(Gal(F/F), E(F))[n] −→ 0.

These exact sequences can be rephrased in terms of the Selmer and Tate-Shafarevich
groups. A full proof of this can be found in [22], chapter 10. However, the basic idea
is that the homomorphism H1(Γ, E(Q)[n]) −→ H1(Γ, E(Q))[n] in the exact sequence above
induces a surjective homomorphism between S n and XE[n]. From there, one can ap-
ply the snake lemma (a general result in category theory) to the following commutative
diagram4

0 E(Q)/nE(Q) H1(Γ, E(Q)[n]) H1(Γ, E(Q))[n] 0

0
∏
F E(F)/nE(F)

∏
F H1(Gal(F/F), E(F)[n])

∏
F H1(Gal(F/F), E(F))[n] 0

Ψn
Ψ

Ψn
Ψ

Ψn
Ψ

to prove that E(Q)/nE(Q) is isomorphic to the kernel of this homomorphism. In other
words, one has the following short exact sequence for each n ∈ N,

0 −→ E(Q)/nE(Q) −→ S n −→XE[n] −→ 0.

This is one of the most important results in this section and one of the key ideas used in
Birch and Swinnerton-Dyer’s work. It is commonly known as the nth descent sequence.

The existence of an injective homomorphism between E(Q)/nE(Q) and S n, which will be
denoted ψn, implies that

E(Q)/nE(Q) � Im(ψn) < S n.

With this, the desired isomorphism and generalisation of E(Q)/2E(Q) � Im(ψ) has been
established.

4Note that the bottom exact sequence of the commutative diagram follows from taking direct products
and product homomorphisms of the short exact local field sequence.
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Chapter 4

Birch and Swinnerton-Dyer’s 1st Paper

In this chapter, the first of two seminal papers Notes on elliptic curves I [26] and Notes
on elliptic curves II [27] by Bryan Birch and Peter Swinnerton-Dyer will be discussed.
Though the Birch and Swinnerton-Dyer conjecture does not appear until the second paper,
examining the first gives an insight into how the conjecture was developed.

The goal of the first paper was the development of an effective algorithm capable of bound-
ing the rank of an elliptic curve E defined over Q. This was accomplished by bounding
the corresponding 2-Selmer group S 2 instead, and using the fact that

|E(Q)/2E(Q)| ≤ |S 2|.

Remember that S 2 depends implicitly on the choice of elliptic curve E. It is not a fixed
group.
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To begin with, Birch and Swinnerton-Dyer reformulated the group S 2 in terms of 2-
coverings.

Definition 4.1. Suppose E is an elliptic curve defined over Q and let [2] denote the
multiplication-by-2 homomorphism. A 2-covering of E is a pair (D,Φ)2, where D is a
curve defined over Q and Φ : D −→ E is a birational map defined over C such that [2] ◦Φ
is a rational map defined over Q. We say D admits a 2-covering of E.

Furthemore, a 2-covering of E, (D1,Φ1)2, is equivalent to another, (D2,Φ2)2, if and only
if there is a birational map λ : D1 −→ D2 defined over Q and an element of order two in
E(Q), denoted T , such that the following diagram commutes

D1 E

D2 E

Φ1

Φ2

+Tλ

The definition of a 2-covering is due to Cassels. See [5].

In a similar manner that a group structure can be induced on birational equivalences to
form the Weil-Châtelet group, one can induce a group structure on all 2-coverings of E,
up to equivalence. Every non-trivial element of this group has order 2. The equivalence
class of (D,Φ)2 will be denoted [D,Φ]2.

The primary equivalence classes of interest are those [D,Φ]2 where a representative D
contains a solution in every complete field extension of Q i.e. every local field. Weil [31],
[32] has shown that these equivalence classes form a subgroup isomorphic to S 2. This
subgroup is denoted GE. The fact that this group is isomorphic to S 2 is not entirely sur-
prising. Both groups are finite 2-groups. Both groups depend implicitly on the birational
equivalences of elliptic curves. Furthermore, both are defined with reference to local fields.

It follows then from Weil’s result that by bounding |GE |, one can bound |S 2| and by exten-
sion, |E(Q)/2E(Q)|.
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Therefore, bounding |GE | becomes the primary goal. Birch and Swinnerton-Dyer’s ap-
proach to this was simple.

1. First, they found a canonical form for the curves D, which reduced the number of
equivalence class representatives to be considered in GE.

2. Next, they characterised the equivalence relation of 2-coverings in terms of the
canonical form. It followed that every class can be assigned a canonical representa-
tive.

3. Finally, they bounded the number of these class representatives. This last step is
partially algorithmic in nature.

The first step is resolved through the following lemma;

Lemma 4.1. If [D,Φ]2 ∈ GE, then it can be assumed without loss of generality that D is
of the form

y2 = g(x) = ax4 + bx3 + cx2 + dx + e (4.1)

where g(x) ∈ Z[x] and a , 0.

This lemma is essentially a corollary of the Riemann-Roch theorem. A full proof can be
found in the original paper [26] while a statement and proof of the Riemann-Roch theorem
can be found in [13], chapter 4.

Interestingly, a partial converse of this lemma also holds. Every curve of the form (4.1)
admits a 2-covering of some elliptic curve. In particular, if one defines

I := 12ae − 3bd + c2, J := 72ace + 9bcd − 27ad2 − 27eb2 − 2c3

then (4.1) admits a 2-covering (See Definition 4.1) of the elliptic curve

y2 = x3 − 27Ix − 27J.

For example, D : y2 = x4 + 64x3 + 6x2 + 1 admits a 2-covering of

y2 = x3 − 64x + 126.
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The variables I and J are known as the invariants of (4.1). This terminology comes from
the study of homogeneous polynomials (classically called quantics). Given a polynomial
ring F[x1, x2, . . . , xn], a polynomial f ∈ F[x1, x2, . . . , xn] is homogeneous if every mono-
mial term in f has the same degree. This implies

f (λx1, λx2, . . . , λxn) = λn f (x1, x2, . . . , xn) for all λ ∈ F.

Suppose k ∈ N∪{0}. An invariant of f is any function ϕ depending only on the coefficients
of f , that is invariant (up to a scalar multiple) under a linear transformation of the variables
of f. In other words, under the linear map M,

x1

x2
...

xn

 7→ M


x1

x2
...

xn

 =

x̃1

x̃2
...

x̃n

 , f 7→ f̃

one has
ϕ( f̃ ) = det(M)2kϕ( f ).

One can transform (4.1) into a unique homogeneous polynomial1 of degree 4 known as
its homogenisation. The variables I and J are invariants of homogeneous polynomials of
degree 4, hence their name. See [21], pg 104 and pg 187 - 192 for more on invariants.

A corollary of lemma 4.1 is the fact that every equivalence class in GE corresponds to a set
of quartic curves of the form (4.1). By the definition of 2-coverings, each of these curves
must be birationally equivalent over C to the elliptic curve E.

Our next goal is determining when quartic curves of the form (4.1) admit equivalent 2-
coverings. To this end, suppose (D1,Φ1)2 and (D2,Φ2)2 are 2-coverings of E where D1

and D2 are of the form (4.1).

For equivalence to occur, there must exist a birational map λ : D1 −→ D2 and this map
must satisfy the commutative diagram in definition 3.1 i.e.

Φ2 ◦ λ(P) = Φ1(P) + T (4.2)

for all P ∈ D1. Here T is an element of order two in E(Q).

1See Appendix for an example of how to homogenise a polynomial.
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Suppose then D1 is defined by y2 = g1(x) and D2 is defined by y2 = g2(x). An important
property that D1 and D2 share is that they are both branched coverings of the rational pro-
jective line P1(Q). This essentially means that there exist covering maps from D1 and D2

onto a dense subset of the rational projective line2.

Using this fact, one can induce a bijection λ∗ : P1(Q) −→ P1(Q) from the birational map
λ : D1 −→ D2. Birch and Swinnerton-Dyer prove that such a map induces the following
relation between the polynomials g1(x) and g2(x), see [26]. There exist α, β, γ, δ, µ ∈ Q
such that

g1(x) = µ2(γx + δ)4g2

(
αx + β
γx + δ

)
. (4.3)

This is a re-characterisation of 2-covering equivalence. If two rational quartics g1, g2 are
related by (4.3), then y2 = g1(x), y2 = g2(x) admit equivalent 2-coverings of E and vice
versa. This completes step two.

Therefore, if one can bound, up to equivalence by (4.3), the number of locally solvable
quartic curves y2 = g(x) that admit 2-coverings of E, this would bound the size of |GE |. To
accomplish this, Birch and Swinnerton-Dyer introduced reduced forms for these quartic
curves. These reduced forms, R, were defined in such a way that every equivalence class
of GE contained at least one representative of the form (R,Φ)2. However, reduced forms
are not necessarily unique to equivalence classes. It may happen that two distinct reduced
forms represent the same class. As Birch and Swinnerton-Dyer mention in their paper,
refining them to satisfy uniqueness was not practicable.

For the time being, elliptic curves will be written in the form

y2 = x3 − 27Ax − 27B. (4.4)

This is simply for convenience. Quartic curves that admit 2-coverings of (4.4) have easily
deducible invariants, and are therefore easier to work with. Every rational elliptic curve
can be written in this way by a suitable scaling of variables. Furthermore, it can be assumed
that A and B are integers and that there does not exist a natural number n > 1 such that
n4|A and n6|B. Again, these conditions are all a matter of scaling variables correctly.

2See Appendix A for more on projective geometry
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The first step in defining a reduced form is detailed in the following lemmas. These lem-
mas provide a partial answer to the question of which quartic curves can admit 2-coverings
of (4.4). In the original paper, the first lemma is proved on a case-by-case basis. Here, only
a proof of the most general case is provided instead.

Lemma 4.2. Let g(x) := ax4 + bx3 + cx2 + dx + e ∈ Z[x] with invariants I and J. Suppose
there exists a prime p > 4 such that p4|I, p6|J and y2 = g(x) has a solution in Qp. Then
g(x) is equivalent to some quartic h(x) ∈ Z[x] with invariants p−4I and p−6J.

Proof. Most general case: Assume p ∤ gcd(a, b, c, d, e) and p ∤ b.

Firstly, note that the solutions to a quartic polynomial ax4 + bx3 + cx2 + dx + e = 0 are

x1,2 =
−b
4a
− α ±

1
2

√
−4α2 − 2ρ +

q
α
,

x3,4 =
−b
4a
+ α ±

1
2

√
−4α2 − 2ρ −

q
α
,

where

ρ :=
c
a
−

3
8

(
b
a

)2

, q :=
d
a
+

1
8

(
b
a

)3

−
1
2

(
bc
a2

)
and

α2 =
−1
6
ρ +

1
12a

(
β +

I
β

)
, (2β3 − J)2 = J2 − 4I3.

Now, since p > 4 and deg(g) = 4, there must exist some m ∈ Z such that g(m) . 0 mod(p).
By using the fact that g(x) and g(x + m) are equivalent (see (4.3)), it can be assumed that
g(0) . 0 mod(p). In other words, p ∤ e. Then, using the fact g(x) and x4g(x−1) are equiva-
lent, this can be re-interpreted as p ∤ a. Note that it can no longer be assumed p ∤ e.

Next, using the general solution of a quartic polynomial above it can be shown, with some
work, that I ≡ J ≡ 0 mod(p) implies g(x) ≡ 0 mod(p) has a triple root. Using a suit-
able change in co-ordinates, it will be assumed g(x) ≡ 0 has a triple root at zero. What’s
more, it can also be shown that p4|c. Thus, g(x) ≡ x3(ax+b) mod(p). Hence p| gcd(c, d, e).

Because p2|J, p2|I and p| gcd(c, d, e), it can be deduced that p2|e and p2|d. Then, from
this one can deduce p4|d and p6|e since p4|I and p6|J. Finally, using the birational map
(x, y) −→ (p2x, p3y) it follows from (4.3) that the curve

y2 = h(x) := ap2x4 + bx3 + cp−2x2 + dp−4x + ep−6
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admits a 2-covering of y2 = x3 − 27Ix − 27J that is equivalent to the 2-covering y2 = g(x).
The invariants of y2 = h(x) are p−4I and p−6J. Thus, g(x) is equivalent to some h(x) ∈ Z[x],
which has invariants p−4I and p−6J. □

In the circumstances where p = 2 or p = 3, the following lemmas hold. The expression
pk ∥ n means pk | n but pk+1 ∤ n.

Lemma 4.3. Let g(x) := ax4 + bx3 + cx2 + dx + e ∈ Z[x] with invariants I and J. Suppose
26|I, 29|J and 210|(8I + J). If y2 = g(x) has a solution in Q2 then g(x) is equivalent to some
quartic h(x) ∈ Z[x] with invariants 2−4I and 2−6J.

Lemma 4.4. Let g(x) := ax4 + bx3 + cx2 + dx + e ∈ Z[x] with invariants I and J. Suppose
35|I and 39|J or 34 ∥ I, 36 ∥ J and 315|(4I3 − J2). If y2 = g(x) has a solution in Q3 then g(x)
is equivalent to some quartic h(x) ∈ Z[x] with invariants 3−4I and 3−6J.

The proofs of these lemmas are similar to lemma 4.2, but are much longer.

Given invariants I and J of a 2-covering y2 = g(x), an immediate consequence of these
three lemmas is that in a significant number of cases, it can be assumed that there does not
exist an integer n > 1 such that n4|I and n6|J. This reduces the work required in classifying
the 2-coverings of (4.4).

These lemmas conclude the first step toward defining reduced quartic curves. The second
(main) step involves concepts from the classical theory of invariants and late 19th century
algebra, see [21] for more.

To begin, several definitions from the theory of quadratic forms are provided.

Definition 4.2. A binary quadratic form is a polynomial of the form;

f (x, y) = ax2 + bxy + cy2

where a, b, c ∈ Z. Equivalently, a binary quadratic form is a homogeneous integral poly-
nomial of degree two.

As with quartic polynomials, there is a notion of equivalence amongst binary quadratic
forms. Notice the similarity to (4.3).

Definition 4.3. The quadratic forms f (x, y) = ax2+bxy+cy2 and g(x, y) = ãx2+ b̃xy+ c̃y2

are equivalent if and only if there exist integers α, β, γ, δ such that

f (x, y) = (γx + δy)2g
(
αx + βy
γx + δy

, 1
)
= g(αx + βy, γx + δy), where αδ − βγ = 1. (4.5)
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Particular attention is given to two special types of binary quadratic forms, which are
defined below.

Definition 4.4. A quadratic form f (x, y) = ax2 + bxy + cy2 is said to be positive definite if
a > 0 and b2 − 4ac < 0. These conditions are necessary and sufficient for f (x, y) to obtain
only positive values over the real numbers.

Definition 4.5. A form f (x, y) = ax2 + bxy + cy2 is said to be reduced if it is positive
definite, |b| ≤ a ≤ c and b ≥ 0 if a = |b| or a = c.

An interesting theorem that explains how the previous definitions relate to each other is
the following.

Theorem 4.1. Suppose f (x, y) = ax2 + bxy + cy2 is positive definite and (a, b, c) = 1, then
f (x, y) is equivalent to a unique reduced form.

Birch and Swinnerton-Dyer wanted to establish a similar but weaker result for quartic
curves and 2-coverings.

To accomplish this, they utilised ideas from Julia’s PhD thesis [16]. Part of Julia’s thesis
focused on the equivalence of binary quartic forms (degree 4 homogeneous polynomials)
under real linear transforms (similar to (4.5)). To each quartic form, Julia associated a pos-
itive definite quadratic form. He defined the quartic form to be reduced if the associated
quadratic form was, in which case the quartic form would act as a unique class represen-
tative under the equivalence mentioned above.

The positive definite quadratic form associated to the quartic form was a covariant, defined
below.
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Definition 4.6. Given a polynomial,

f (x1, x2, . . . , xn) =
∑

i1,...,in

αi1,...,in xi1
1 , . . . , x

in
n

a covariant of f is a polynomial Φ(α, x1, x2, . . . , xn) depending on the variables and coef-
ficients of f (collectively called α) such that under any linear transform M


x1

x2
...

xn

 7→ M


x1

x2
...

xn

 :=


x
′

1
x
′

2
...

x
′

n


one has

Φ(α′, x
′

1, x
′

2, . . . , x
′

n) = det(M)kΦ(α, x1, x2, . . . , xn)

for some k ∈ N ∪ {0}. The variable α′ denotes the coefficients of f (x
′

1, x
′

2, . . . , x
′

n).

Consider the quartic form

f (x, y) = ax4 + 4bx3y + 6cx2y2 + 4dxy3 + ey4.

An example of a covariant of f (x, y) is

Φ = (ax2 + 2bxy + cy2)(cx2 + 2dxy + ey2) − (bx2 + 2cxy + dy2)2.

The function Φ is also a multiple of the Hessian determinant of f (x, y). This description
might make it easier to see why Φ is a covariant. For more on covariants see [21], pg 107,
pg 126-129 and pg 169.

Birch and Swinnerton-Dyer defined reduced quartic curves y2 = g(x) in a weaker way
than Julia defined reduced quartic forms. The simplest way of defining a reduced quar-
tic curve would have been to follow Julia and define y2 = g(x) to be reduced if one
could find a quadratic covariant of g(x), say3 h(x) = αx2 + βx + γ, whose homogeneous
form/homogenisation h̃(x, y) = αx2 + βxy + γy2 is a reduced quadratic form. This, in
particular, would have implied

3The dependence of h on the coefficients of g(x) is implicit.
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1. There exists a covariant of g(x), αx2 + βx + γ, such that α2 ≤ 1
3

(
β2 − 4αγ

)
.

2. If g(x) = ax4 + bx3 + cx2 + dx + e, then one can assume −2|a| ≤ b ≤ 2|a|.

However, this is not the optimum way of defining a reduced quartic curve. A better ap-
proach involves using inequalities that are weaker than those mentioned above.

Consider the following: rewrite g(x) as

g(x) = a(x2 + px + q)(x2 + p′x + q′).

This can always be done by applying the conjugate roots theorem. It follows that

a(p + p′) = b, 3a(q + q′) = c + ϕ,
3a(pp′) = 2c − ϕ, a(qq′) = e,
a(pq′ + p′q) = d,

where ϕ is a real root of the cubic x3 − 3Ix+ J. This cubic has discriminant 4I3 − J2. Here
I and J are the invariants of g(x). In the case where x3 − 3Ix + J has three real distinct
roots (in other words, 4I3 − J2 > 0), they shall be labelled ϕ1 > ϕ2 > ϕ3 or ϕ1 < ϕ2 < ϕ3

according to whether a > 0 or a < 0. If g(x) has no real roots, it is assumed a > 0, other-
wise y2 = g(x) would have no solutions. If x3 − 3Ix + J has only one real root (implying
4I3 − J2 < 0), it shall simply be denoted ϕ.

With the above notation in mind, Birch and Swinnerton-Dyer construct covariants for as-
sumption 1 and prove that the inequalities in 1 and 2 above imply the following theorems.

Theorem 4.2. Suppose g(x) = ax4 + bx3 + cx2 + dx+ e ∈ Z[x] has no real roots and define
K := 1

3 (4I − ϕ2
1). Then under the inequalities in assumptions 1 and 2 above, one has

1. −2|a| ≤ b ≤ 2|a|,

2. 8ac − 3b2 ≤ 2K + 2
√

K(ϕ1 − 3a) − 2aϕ1.
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Theorem 4.3. Suppose g(x) = ax4 + bx3 + cx2 + dx + e ∈ Z[x] has two real roots. Then
under the inequalities in assumptions 1 and 2 above, one has

1. −2|a| ≤ b ≤ 2|a|,

2. 8ac − 3b2 ≥ 9a2 − 2aϕ + 1
3 (4I − ϕ2).

Theorem 4.4. Suppose g(x) = ax4 + bx3 + cx2 + dx + e ∈ Z[x] has four real roots. Then
under the inequalities in assumptions 1 and 2 above, one has

1. −2|a| ≤ b ≤ 2|a|,

2. 8ac − 3b2 ≥ 4aϕ2 −
4
3 (I − ϕ2

2).

The inequalities in theorems 4.2, 4.3 and 4.4 are not only weaker than the inequalities
in assumptions 1 and 2 above, but are still sufficiently strong for an analogous form of
theorem 4.1 to hold for quartic curves. As a result, these inequalities along with lem-
mas 4.2, 4.3 and 4.4 are the results that Birch and Swinnerton-Dyer based the following
definition of reduced quartic curves on.

Definition 4.7. The quartic curve y2 = g(x) := ax4 + bx3 + cx2 + dx + e ∈ Z[x] with a , 0
and invariants I, J is said to be reduced if both 1 and 2 below are satisfied and one of 3, 4
or 5 is also satisfied:

1. There is no prime p > 4 such that p4|I and p6|J.

2. It is not true that 35|I and 39|J, nor is it true that 34 ∥ I, 36 ∥ J and 315|(4I3 − J2),
nor that 26|I, 29|J and 210|(8I + J).

3. the quartic g(x) has no real roots, a > 0 and the inequalities in theorem 4.2 hold.

4. the quartic g(x) has two real roots and the inequalities in theorem 4.3 hold.

5. the quartic g(x) has four real roots and the inequalities in theorem 4.4 hold.

As already stated, this definition was chosen because it was sufficient for the following
theorem to hold.

Theorem 4.5. Let E be a rational elliptic curve and [D,Φ]2 ∈ GE. Then there exists a
reduced quartic curve R : y2 = g(x) such that R admits an equivalent4 2-covering as D.

Thus, every 2-covering in GE can be represented by a reduced quartic curve. This theorem
concludes the first half of the paper.

4See definition 4.1
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The second half of the paper is dedicated to proving the following

Theorem 4.6. The reduced quartic curves that admit 2-coverings of E are finite in number
and computable.

According to Birch and Swinnerton-Dyer, the finiteness of these reduced quartic curves is
implicit in the following algorithm they used to compute them.

Due to the relatively slow processing power available during the 1960s, developing an
effective algorithm for computing reduced quartic curves was difficult. Even with the
EDSAC-2, the advanced computer system that Birch and Swinnerton-Dyer used, they were
only able to compute several thousand cases.

The algorithm they developed for computing these reduced quartic curves can be sum-
marised by the following steps:

Step 1: Using the definition of reduced quartic curves, determine the permissible values
of the invariants I and J and then list all reduced curves with said invariants that
admit 2-coverings of E.

This part of the algorithm takes up most of the computer time needed for the entire
process, in large part due to the fact this step makes extensive use of the inequali-
ties in theorems 4.2, 4.3 and 4.4. Birch and Swinnerton-Dyer describe how some
leeway in solving these inequalities must be accounted for due to the fact that trial
values are generally not integers. Small round-off errors in the programming may
cause these inequalities to appear incorrect. In practise, this leeway leads to extra
reduced curves being listed.

Step 2: Reduced curves that are equivalent to a curve already obtained are rejected. Fur-
thermore, curves that are birational to E over Q are rejected. These admit trivial
2-coverings.

The first part of this step amounts to using (4.3) to determine whether two reduced
curves are equivalent. The second part of this step rejects a reduced curve y2 =

g(x) if g(x) has a rational root. Curves of this form are birationally equivalent to
E over Q, see [30], pg 37.
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Step 3: Reject the remaining reduced curves that have no solutions in some p-adic field
Qp.

This step requires the use of two lemmas

Lemma 4.5. Suppose y2 = g(x) is a reduced quartic curve with invariants I and
J where νp(4I3 − J2) > 0. For a given prime p > 2 and a given x0 ∈ Qp, define
λ := νp(g(x0)) and µ := νp(g′(x0)). Then y2 = g(x) has a p-adic solution (x1, y1),
where pη|(x1 − x0), if g(x0) = α2 for some α ∈ Qp or if λ − µ ≥ η > µ.

and

Lemma 4.6. Suppose y2 = g(x) is a reduced quartic curve with invariants I and
J where ν2(4I3 − J2) > 0. For a given x0 ∈ Q2, define λ := ν2(g(x0)) and µ :=
ν2(g′(x0)). Then y2 = g(x) has a 2-adic solution (x1, y1), where 2η|(x1− x0), if g(x0)
is a 2-adic square, or if λ − µ ≥ η > µ, or if η > µ and λ = µ + η − 1 is even, or if
η > µ, λ = µ + η − 2 is even and 2−λg(x0) ≡ 1 mod 4.

These lemmas, along with Hensel’s lemma provide a method by which a computer
can determine if p-adic solutions exist. This is accomplished by exhausting a list
of possible congruences. If a solution to one of these congruences exist, a p-adic
solution exists and the computation is finished. On the other hand, if the computer
exhausts all possible congruences and no solutions are found, we assume the curve
has no solution in Qp.

Finally, by computing the number of reduced curves that remain, one immediately obtains
a bound on the rank of E. From there, it is then possible to check whether this bound is
exact.

The next several pages include some of the results Birch and Swinnerton-Dyer obtained in
their paper.
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In the tables below, g denotes the rank of an elliptic curve E, while t is a power denoting
the cardinality ∣∣∣XE[2]

∣∣∣ := 2t.

Given elliptic curves of the form ED : y2 = x3 − Dx and E′D : y2 = x3 − D, the following
tables list values of D for which the rank g and the power t are fixed.
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Chapter 5

Preliminaries

Before continuing the discussion of Birch and Swinnerton-Dyer’s work, it is necessary
to introduce some preliminary notions. This chapter includes several definitions and re-
sults that will be needed later on to understand their conjecture. A complete account of
everything discussed in this chapter can also be found in [30].

5.1 Finite Fields
At its core, the Birch and Swinnerton-Dyer conjecture is a statement about the ranks of
rational elliptic curves. Heuristically, the conjecture asserts that the cardinalities of finite
field elliptic curves, E(Fq), determine the ranks of rational elliptic curves E(Q). In section
2.4 it was specified that an arbitrary finite field elliptic curve is not of much interest on its
own. However, what is interesting is how they behave in general.

Firstly, some definitions are necessary.

Definition 5.1. Let F be the algebraic closure of a field F and E be an elliptic curve defined
over this closure. An endomorphism of E is a homomorphism α : E(F) −→ E(F) given by
rational functions in F;

α(x, y) = (R1(x, y),R2(x, y))

where R1(x, y),R2(x, y) ∈ F(x, y).
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The trivial homomorphism, which sends every element to the identity is also considered
to be an endomorphism. It is denoted 0. Like homomorphisms, endomorphisms form a
ring under addition and composition.

It is not difficult to show that every endomorphism of an elliptic curve is of the form

α(x, y) =
(

p1(x)
q1(x)

,
p2(x)
q2(x)

y
)

where pi(x), qi(x) ∈ F[x] for i ∈ {1, 2} and it is assumed that α(x0, y0) = ∞ if q1(x0) = 0
(which implies q2(x0) = 0). This formula follows from cases 3 and 4 of the Addition Law.

The degree of an endomorphism α describes how complicated its rational components are.
It is defined as

deg(α) := max{deg(p1), deg(q1)}

When α = 0, the assumption is that deg(α) = 0.

An endomorphism α is defined to be separable if the formal derivative of p1(x)
q1(x) is not

identically zero. Analogous to separability in Galois theory, it indicates distinctness of
polynomial roots.

The usefulness of these definitions is exemplified by the following theorem.

Theorem 5.1. If α , 0 is a separable endomorphism of E, then

deg(α) = |Ker(α)|

and if α , 0 is not separable, then

deg(α) > |Ker(α)|

A proof of this theorem can be found in [30], chapter 2.

The particular endomorphism that we are interested in is known as the Frobenius endo-
morphism.

Definition 5.2. Given a finite field Fq and an elliptic curve E which is defined over Fq, the
Frobenius endomorphism is defined as the map

ϕq : E(Fq) −→ E(Fq), ϕq(x, y) 7→ (xq, yq)

By assumption, ϕq(∞) := ∞.
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Proving this map is an endomorphism is not difficult. It is simply a matter of using the Ad-
dition Law formulas and the fact x −→ xq is a ring homomorphism of Fq. It is immediate
from the definition of the Frobenius endomorphism that it is not separable and has degree
q.

The Frobenius endomorphism can be used to determine the elements of E(Fq) in the fol-
lowing way.

Lemma 5.1. Suppose (x, y) ∈ E(Fq), then (x, y) ∈ E(Fq) if and only if ϕq(x, y) = (x, y).
Therefore, Ker(ϕq − 1) = E(Fq), where 1 denotes the identity homomorphism.

This lemma is an immediate corollary of the fact a ∈ Fq if and only if a ∈ Fq and aq−a = 0.

If one could prove that the endomorphism ϕq − 1 was separable, it would be possible to
relate the degree of ϕq − 1 to the cardinality of E(Fq) by the use of theorem 5.1. To this
end, the following result is required.

Theorem 5.2. Suppose Fq is a finite field of characteristic p and E is an elliptic curve
defined over Fq. Furthermore, let a, b ∈ Z, not both zero, denote the multiplication-by-a
and multiplication-by-b homomorphisms respectively. Then aϕq + b is a separable endo-
morphism if and only if p ∤ b.

A proof can be found in [30], chapter 2.

By choosing a = 1 and b = −1, it is obvious from this theorem that ϕq − 1 is separable.
Thus,

|E(Fq)| = |Ker(ϕq − 1)| = deg(ϕq − 1). (5.1)

In order to determine (or at least estimate) the cardinality of E(Fq), the following theorem
about degrees is also necessary. A partial proof can be found in [30], chapter 3.

Theorem 5.3. Let α, β be two endomorphisms of E(Fq) and a, b ∈ Z denote the multiplication-
by-a and multiplication-by-b homomorphisms, then

deg(aα + bβ) = a2 deg(α) + b2 deg(β) + ab(deg(α + β) − deg(α) − deg(β)). (5.2)

By choosing α = ϕq and β = −1, (5.2) becomes

deg(aϕq − b) = a2q + b2 − ab(q + 1 − deg(ϕq − 1)).

Now, deg(aϕq − b) ≥ 0 by definition, thus,

a2q + b2 − ab(q + 1 − deg(ϕq − 1)) ≥ 0. (5.3)
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For any non-zero a, dividing across (5.3) by a2 gives(
b
a

)2

− (q + 1 − deg(ϕq − 1))
(
b
a

)
+ q ≥ 0

Since Q is dense in R and b
a can be an arbitrary rational, the polynomial

x2 − (q + 1 − deg(ϕq − 1))x + q must be non-negative for all x ∈ R. Thus, it must have a
non-positive discriminant

(q + 1 − deg(ϕq − 1))2 − 4q ≤ 0.

Applying (5.1), this is equivalent to

q + 1 − 2
√

q ≤ |E(Fq)| ≤ q + 1 + 2
√

q.

This is known as Hasse’s theorem. See [14]. A corollary of this result that is relevant to
the Birch and Swinnerton-Dyer conjecture is the following.

Corollary. lim
q→∞

(
|E(Fq)|

q

)
= 1.

The next result, which will also be relevant later, tells us how to relate the cardinality of
E(Fq) to its extension E(Fqn) for any n ∈ N. Firstly, it can be shown, see [30], that using
the Cayley-Hamilton theorem and the fact that endomorphisms form a ring under addition
and composition, that the following equation is true for a = q + 1 − deg(ϕq − 1), namely

ϕ2
q − aϕq + q = 0. (5.4)

Furthermore, a = q + 1 − deg(ϕq − 1) is the unique integer for which this equation holds.
Note that if x2 − ax+ q = (x−α)(x− β) ∈ Z[x], where α, β ∈ C, then clearly a = α+ β and
by (5.1), |E(Fq)| = q + 1 − α − β. This result can be generalised as follows.

Theorem 5.4. Let a = q + 1 − deg(ϕq − 1) and x2 − ax + q = (x − α)(x − β), then
|E(Fqn)| = qn + 1 − αn − βn.

Proof. Clearly, α, β ∈ C, so the first priority is showing αn + βn is indeed an integer.

Clearly, α0 + β0 = 2 and α1 + β1 = a are integers. Since α and β are roots of x2 − ax + q,
it’s easily seen that

αn+1 = aαn − qαn−1

βn+1 = aβn − qβn−1.
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Therefore,
αn+1 + βn+1 = a(αn + βn) − q(αn−1 + βn−1).

Hence, by induction, αn + βn is an integer for any n ∈ N.

Now consider the polynomial (xn − αn)(xn − βn) = x2n − (αn + βn)xn + qn ∈ Z[x]. Clearly,
(x−α)(x− β) = x2 − ax+ q divides this polynomial. Therefore, using (5.4) and evaluating
at ϕq one has

ϕ2n
q − (αn + βn)ϕn

q + qn = 0.

However, ϕq composed with itself n times is just ϕqn . In other words, ϕn
q = ϕqn . Thus,

ϕ2
qn − (αn + βn)ϕqn + qn = 0.

If we denote q′ = qn, then (5.4) says that ϕq′ must satisfy

ϕ2
q′ − a′ϕq′ + q′ = 0

where a′ = q′ + 1 − deg(ϕq′ − 1) is the unique integer for which this equation holds.

Therefore, αn + βn = a′ = q′ + 1 − deg(ϕq′ − 1) = qn + 1 − |E(Fqn)|.
□

In the following short section, aspects from the theory of reduction are discussed with a
view toward linking rational elliptic curves and finite field elliptic curves.
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5.2 Reduction
Suppose E : y2 = x3+Ax+B is an elliptic curve defined overQ. Without loss of generality,
it can be assumed that A, B ∈ Z by scaling variables correctly. For an arbitrary prime p,
this elliptic curve can be mapped into Zp[x, y] by reducing A and B modulo p. In other
words, if A and B are the residue classes of A and B in Zp, then E : y2 = x3 + Ax + B can
be reduced to Ep : y2 = x3 + Ax + B in Zp[x, y].

If p , 2, 3 and p ∤ 4A3 + 27B2, then Ep will be an elliptic curve defined over Zp, since
4A

3
+ 27B

2
, 0 in Zp and Char(Zp) , 2, 3. In this case we say E has good reduction

modulo p.

If the curve Ep has a multiple root (4A
3
+ 27B

2
= 0), then E is said to have bad reduction

modulo p.

Bad reduction comes in three different varieties;

1. If Ep has a triple root, then E has additive reduction modulo p.

2. If Ep has a double root and well-defined tangent line(s) everywhere, then E has split
multiplicative reduction modulo p.

3. If Ep has a double root but does not have well-defined tangent lines everywhere,
then E has nonsplit multiplicative reduction modulo p.

The necessity for making these distinctions will become clearer later.

5.3 Hecke L-Series and Hasse-Weil Zeta Functions
The goal of this section is to introduce two generalisations of the Riemann zeta function
ζ(s), known as Hecke L-series and Hasse-Weil zeta functions. For every elliptic curve
E : y2 = x3 +Ax+ B where A, B ∈ Z, one can associate a Hecke L-series and a Hasse-Weil
zeta function. The L-series, in particular, satisfy important functional relations and contain
vital information about the structure of elliptic curves.
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An L-series of E is constructed in a manner that preserves information about the cardi-
nality |E(Fpn)| where Fpn is an arbitrary finite field. From theorem 5.4, it is clear that the
cardinality of E(Fpn) is completely determined by the cardinality of E(Fp). It is possible
to construct a power series that respects this relation and has a simple closed form.

For any prime p > 4 not dividing ∆ = 4A3 + 27B2, define

ζp,E(s) := exp

 ∞∑
n=1

|E(Fpn)|
n

p−ns

 . (5.5)

Suppose that ap = p + 1 − |E(Fp)| and x2 − apx + p = (x − α)(x − β). Then using theorem
5.4, this becomes

ζp,E(s) = exp

 ∞∑
n=1

(pn + 1 − αn − βn)
n

p−ns

 .
Employing the series expansion

− log(1 − x) =
∞∑

n=1

xn

n
,

this can be rewritten as

ζp,E(s) = exp
(
− log(1 − p1−s) − log(1 − p−s) + log(1 − αp−s) + log(1 − βp−s)

)
.

Therefore,

ζp,E(s) =
(1 − αp−s)(1 − βp−s)
(1 − p−s)(1 − p1−s)

=
1 − ap p−s + p1−2s

(1 − p−s)(1 − p1−s)
. (5.6)

The product of this function can be taken over all suitable primes p to obtain a variant of
the Riemann zeta function

ζ∗E(s) :=
∏

p prime
p∤∆

ζp,E(s). (5.7)

This is a naive definition for the Hasse-Weil zeta function of E. The complete definition
will be outlined momentarily.

The term "zeta function" is indicative of the fact ζ∗E(s) and ζp,E(s) share many properties
with ζ(s). However, something interesting that sets them apart is the Riemann hypothesis.
Obviously, this is still an unsolved problem for ζ(s). However, in 1973, Deligne [8] proved
an analogous form of the hypothesis for generalised Hasse-Weil zeta functions. For elliptic
curves this is relatively easy to prove.
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Theorem 5.5. Suppose E : y2 = x3 + Ax + B is an elliptic curve where A, B ∈ Z, then
ζp,E(s) = 0 implies Re(s) = 1

2 .

Proof. Equation (5.6) guarantees that ζp,E(s) = 0 if and only if ps = α or ps = β.

By Hasse’s theorem, the polynomial x2 − apx + p is always non-negative over R, thus, the
roots α and β must be complex or equal. The polynomial also has real coefficients, so α
and β must be conjugates. In particular, this implies |α| = |β| = pRe(s). But αβ = p by
definition; therefore, |α||β| = p = p2Re(s) and Re(s) = 1

2 . □

Returning now to the naive Hasse-Weil zeta function, equations (5.6) and (5.7) imply that
the function may be rewritten as

ζ∗E(s) :=
∏

p prime
p∤∆

1 − ap p−s + p1−2s

(1 − p−s)(1 − p1−s)
.

The product ∏
p prime

p∤∆

1
(1 − p−s)(1 − p1−s)

is reasonably well understood due to its similarity to the Riemann zeta function. Thus, the
non-trivial component of the product is described by the function

L∗E(s) :=
∏

p prime
p∤∆

(
1

1 − ap p−s + p1−2s

)

Here the term 1 − ap p−s + p1−2s is inverted so that it may be expanded as a series. This
function is an approximation to the Hecke L-series of E. In order to define the full Hecke
L-series, it is necessary to include the primes that divide ∆ in the product.
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To accomplish this, the definition of ap can be extended in the following way. Suppose
p ∤ ∆, then define

ap :=


0 if E has additve reduction modulo p,
1 if E has split multiplicative reduction modulo p,
−1 if E has nonsplit multiplicative reduction modulo p.

The full Hecke L-series of E is then defined as

LE(s) :=
∏

p prime
p|∆

(
1

1 − ap p−s

) ∏
p prime

p∤∆

(
1

1 − ap p−s + p1−2s

)
.

The additional formulas for ap are defined in such a way as to allow automorphic forms1 to
be constructed from LE(s). This is related to the Taniyama-Shimura conjecture, famously
known for its use in Wiles’ proof of Fermats last theorem.

What’s more this extended definition of ap implies that LE(s) satisfies a functional equation
of the form

Γ(s)LE(s) = C1−sΓ(2 − s)LE(2 − s)

where Γ(s) is the gamma function and C is a constant dependent on E. This functional
relation is analogous to one satisfied by ζ(s)

√
π Γ

( s
2

)
ζ(s) = πs Γ

(
1 − s

2

)
ζ(1 − s).

Using Hecke L-series, it is not difficult to extend naive Hasse-Weil zeta functions to com-
plete Hasse-Weil zeta functions. The Hasse-Weil zeta function is defined as

ζE(s) :=
ζ(s)ζ(s − 1)

LE(s)
.

1See [1], chapter 4 for more information on automorphic forms.

69



CHAPTER 5. PRELIMINARIES

5.4 Complex Multiplication
Complex multiplication is the term given to a special property satisfied by certain elliptic
curves. In section 2.1, the connection between elliptic curves and complex lattices was
outlined. That connection was summarised by the Alegbraic Law on page 15.

Elliptic curves with complex multiplication correspond to lattices which have ’extra struc-
ture’ or are more ’symmetric’. One way of interpreting how symmetric a lattice L is, is
by considering its partial invariance under linear transformations. In particular, how L be-
haves under multiplication by elements of C. Formally, the set of all relevant symmetries
is

S L := {z ∈ C | zL ⊂ L}.

Clearly, lattices are abelian Z−modules, so they must be closed under multiplication by an
integer. In other words, the right coset nL is a subset of L for all n ∈ Z. Therefore, Z must
be a subset of S L. For most lattices, this inclusion will be an equality. Thus, any extra
structure a lattice L may have must correspond to the existence of a non-integer element
in S L i.e. α ∈ S L \Z. If such an element exists, L and the unique elliptic curve it gives rise
to are said to have/exhibit complex multiplication.

Complex multiplication for elliptic curves can also be defined in terms of endomorphism
rings. The following theorem highlights why.

Theorem 5.6. Let E be the complex elliptic curve corresponding to the lattice L and let
End(E) denote the ring of endomorphisms of E, then

End(E) � {z ∈ C | zL ⊂ L}.

A proof can be found in [30], chapter 10. Multiplication-by-n endomorphisms in End(E)
correspond uniquely to integers n ∈ S L. If the set of multiplication endomorphisms is
denoted Ẑ then E has complex multiplication if and only if S L \ Z is non-empty, or equiv-
alently, if and only if End(E) \ Ẑ is non-empty.

Complex multiplication is ubiquitous in the theory of elliptic curves. Generally, when a
conjecture is made the first course of action is to try and prove it for curves with complex
multiplication because they are much easier to work with. The prototypical example of an
elliptic curve with complex multiplication is

y2 = x3 + 4x.

This curve has a square lattice and an endomorphism ring containing the Gaussian integers,
so it is very symmetric by any reasonable definition of symmetry.
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5.5 Heights
In this section, we revise and extend what was discussed earlier in section 2.4 about
heights. As before H denotes the multiplicative height and h denotes the logarithmic
height of an elliptic curve E(Q).

Property 2 of the logarithmic height guarantees that there exists a constant CE, depending
only on E, such that

4h(P) − h(2P) ≤ CE

for all P ∈ E(Q).

This inequality can be extended to

|4h(P) − h(2P)| ≤ CE. (5.8)

Preferably, we would want an equality between 4h(P) and h(2P) rather than an inequality.
This can be accommodated by altering the definition of h somewhat.

Definition 5.3. The Néron–Tate height is the function ĥ : E(Q) −→ R+ defined as the limit

ĥ(P) :=
1
2

lim
n→∞

1
4n h(2nP).

The Néron–Tate height not only satisfies 4ĥ(P) = ĥ(2P), but also m2ĥ(P) = ĥ(mP) for all
m ∈ Z. More generally, when adding elements of E(Q) together, say P and Q, one has

ĥ(P + Q) + ĥ(P − Q) = 2ĥ(Q) + 2ĥ(P). (5.9)

By taking appropriate limits, this formula is essentially a corollary of the fact that there
exist c1, c2 ∈ R (only dependent on E) such that

2h(P) + 2h(Q) − c1 ≤ h(P + Q) + h(P − Q) ≤ 2h(P) + 2h(Q) + c2. (5.10)

In order to prove (5.10), we shall make use of the following lemmas. These will not be
proved here, however, full proofs can be found in [30], chapter 8.

Lemma 5.2. Suppose a1, a2, b1, b2 ∈ Z. Then

max{|a1|, |b1|}max{|a2|, |b2|} ≤ 2 max{|a1a2|, |b1b2|, |a1b2 + b1a2|}.

Lemma 5.3. Suppose a1, a2, b1, b2 ∈ Z and gcd(a1, b1) = gcd(a2, b2) = 1. Then

gcd(a1a2, b1b2, a1b2 + a2b1) = 1.
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Then, the proof of (5.10) is as follows.

Proof. Suppose E : y2 = x3+Ax+B is an elliptic curve and A, B ∈ Z. For any P,Q ∈ E(Q)
write

P =
(

p1
q1
, y1

)
, Q =

(
p2
q2
, y2

)
,

P + Q =
(

p3
q3
, y3

)
, P − Q =

(
p4
q4
, y4

)
,

where gcd(pi, qi) = 1 for all i ∈ {1, 2, 3, 4}.

The addition formulas for elliptic curves in section 2.2 can be used to determine that
p3
q3
+

p4
q4
=

r1
r3
,

p3 p4
q3q4

=
r2
r3

where
r1 = 2(p1q2 + q1 p2)(Aq1q2 + p1 p2) + 4Bq2

1q2
2,

r2 = (p1 p2 − Aq1q2)2 − 4B(p1q2 + q1 p2)q1q2,
r3 = (p1q2 − q1 p2)2.

Applying lemma 5.3 to p3, p4, q3, q4 it follows that gcd(p3 p4, q3q4, p3q4 + p4q3) = 1, and
consequently that there exist x, y, z ∈ Z such that

p3 p4x + q3q4y + (p3q4 + p4q3)z = 1.

Multiplying across this equation by r3 and using the above formulas, it can be rewritten as

r2(q3q4)x + r3(q3q4)y + r1(q3q4)z = r3.
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This implies (q3q4)|r3, from which it follows that (p3 p4)|r2 and (p3q4 + p4q3)|r1 as well.
Therefore,

|p3q4 + p4q3| ≤ |r1|, |p3 p4| ≤ |r2|, |q3q4| ≤ |r3|.

Now, by definition of the multiplicative height H,

H(P + Q)H(P − Q) = max{|p3|, |q3|}max{|p4|, |q4|}.

Which by lemma 5.2 and the above discussion satisfies

H(P + Q)H(P − Q) ≤ 2 max{|r1|, |r2|, |r3|}. (5.11)

The next step in the proof involves finding upper bounds for |r1|, |r2| and |r3|.

Clearly, H(P) = max{|p1|, |q1|} and H(Q) = max{|p2|, |q2|}. Consequently,

|r1| = |2(p1q2 + q1 p2)(Aq1q2 + p1 p2) + 4Bq2
1q2

2|

≤ 4(1 + |A| + |B|)H(P)2H(Q)2,

|r2| = |(p1 p2 − Aq1q2)2 − 4B(p1q2 + q1 p2)q1q2|

≤ ((1 − A)2 + 8B)H(P)2H(Q)2,

|r3| = |(p1q2 − q1 p2)|2 ≤ 4H(P)2H(Q)2.

Choose C = max{4(1 + |A| + |B|), 4, ((1 − A)2 + 8B)}. Then |ri| ≤ CH(P)2H(Q)2 for all
i ∈ {1, 2, 3}. Hence,

H(P + Q)H(P − Q) ≤ 2CH(P)2H(Q)2

by (5.11).

Taking logarithms yields

h(P + Q) + h(P − Q) ≤ 2h(P) + 2h(Q) + log(2C)

which proves the upper bound in (5.10).

To prove the lower bound, simply make the change of variables P −→ P + Q and Q −→
P − Q to get

h(2P) + h(2Q) ≤ 2h(P + Q) + 2h(P − Q) + log(2C).
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Equation (5.8) implies

4h(P) + 4h(Q) − 2CE ≤ h(2P) + h(2Q) ≤ 2h(P + Q) + 2h(P − Q) + log(2C).

Therefore,
2h(P) + 2h(Q) −CE − log(

√
2C) ≤ h(P + Q) + h(P − Q)

which completes the proof of (5.10) and in turn (5.9).
□

Part of the reason the Néron–Tate height is so important is because equation (5.9) can be
used to induce a bilinear mapping on E(Q).

Definition 5.4. The height pairing of E is the map ⟨∗, ∗⟩ : E(Q) × E(Q) −→ R defined by

⟨P,Q⟩ = ĥ(P + Q) − ĥ(P) − ĥ(Q).

Clearly ⟨∗, ∗⟩ is symmetric so proving bilinearity is equivalent to proving linearity in one
variable, i.e.

⟨P1 + P2,Q⟩ = ⟨P1,Q⟩ + ⟨P2,Q⟩.

Proof. Repeated use of (5.9) implies

ĥ(P1 + P2 + Q) + ĥ(P1 + P2 − Q) − 2ĥ(P1 + P2) − 2ĥ(Q) = 0,
ĥ(P1 + P2 + Q) + ĥ(P1 − P2 + Q) = 2ĥ(P1 + Q) + 2ĥ(P2),
−ĥ(P1 + P2 − Q) − ĥ(P1 − P2 + Q) = −2ĥ(P2 − Q) − 2ĥ(P1),

0 = 2ĥ(P2 − Q) + 2ĥ(P2 + Q) − 4ĥ(P2) − 2ĥ(Q).

Adding these four equations together yields

2
(
ĥ(P1 + P2 + Q) − ĥ(P1 + P2) − ĥ(Q)

)
=

2
(
ĥ(P1 + Q) − ĥ(P1) − ĥ(Q) + ĥ(P2 + Q) − ĥ(P2) − ĥ(Q)

)
.

Therefore,
2⟨P1 + P2,Q⟩ = 2⟨P1,Q⟩ + 2⟨P2,Q⟩.

Dividing by 2 gives the desired result.
□
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If P1, P2, . . . , Pn are points on E(Q), the height pairing can be used to determine whether
they are independent. In other words, whether or not there exist integers k1, k2, . . . , kn ∈ Z,
not all zero, such that

k1P1 + k2P2 + · · · + knPn = ∞.

Consider the matrix A whose i j-entry, Ai, j, is ⟨Pi, P j⟩. If the determinant of A is non-zero,
then P1, P2, . . . , Pn are independent. This follows from the fact that non-singular matrices
must have linearly independent rows and columns.

If P1, P2, . . . , Pn is a complete list of independent, infinite order generators for E(Q), then
the determinant RE = det(A) is known as the elliptic regulator of E. In the case where
E(Q) has no elements of infinite order, define RE := 1.

5.6 Modular Curves
This section provides a very brief introduction to modular curves.

Given a complex elliptic curve E, the Algebraic Law guarantees that E corresponds uniquely
to a lattice L in C. However, this does not imply that E corresponds uniquely to a basis for
L. It may happen that two distinct bases {ω1, ω2} and {ω′1, ω

′
2} generate the same lattice,

and thus, correspond to the same elliptic curve. For example, if a lattice L is generated
by {ω1, ω2}, then it is also generated by {ω1, ω1 + ω2}. The following theorem outlines the
necessary and sufficient conditions for two bases to generate the same lattice.

Theorem 5.7. Suppose ω1, ω2 ∈ C are linearly independent over R and ω′1, ω
′
2 ∈ C are

also linearly independent over R. Then {ω1, ω2} and {ω′1, ω
′
2} generate the same lattice in

C if and only if (
ω′1
ω′2

)
=

(
a b
c d

) (
ω1

ω2

)
(5.12)

for some integer matrix
(
a b
c d

)
with determinant ad − bc = ±1.
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It is possible to show (though it will not be done here) that scaling bases

{ω1, ω2} −→ {λω1, λω2}, λ ∈ C \ {0}

will scale the corresponding elliptic curve accordingly:

E : y2 = x3 + Ax + B −→ Eλ : y2 = x3 + λ4Ax + λ6B.

For all intents and purposes, E and Eλ can be thought of as the same elliptic curve (con-
sider the isomorphism introduced in lemma 2.1). Thus, by letting λ = ω−1

2 , it suffices to
work with bases of the form {ω1

ω2
, 1}. By relabelling ω1 and ω2 if necessary, it can always

be assumed ℑ(ω1
ω2

) > 0.

For notational convenience, ω1
ω2

is denoted τ. The upper half plane {z ∈ C | ℑ(z) > 0} is
denoted H. Thus, the above assumption says that τ ∈ H.

It follows from (5.12) that we have a certain degree of freedom for the choice of τ. More
specifically, if (5.12) holds, then {ω1, ω2}, {ω′1, ω

′
2} give rise to the same lattice and there

exist integers a, b, c, d with ad − bc = ±1 such that

τ′ :=
ω′1
ω′2
=

aω1 + bω2

cω1 + dω2
=

aτ + b
cτ + d

.

Therefore, to guarantee τ depends only on a choice of lattice, not basis, τ and τ′ =
(
aτ + b
cτ + d

)
should be regarded as equivalent.

Establishing an equivalence relation is not difficult, but does involve a couple of caveats.
Since our concern is only with elements of H, it is necessary that τ′ be an element of H
whenever τ is, and vice versa. By making the stronger assumption that ad − bc = 1, this
property will hold. As an example of why the assumption ad − bc = −1 is no longer
applicable, consider a = −1, d = 1 and b = c = 0. Then ad − bc = −1 and

τ′ =

(
aτ + b
cτ + d

)
= −τ.

Therefore, ℑ(τ) = −ℑ(τ′), so τ and τ′ cannot both lie in H.
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The assumption that ad − bc = 1 can be rephrased as saying we only consider matrices(
a b
c d

)
∈ SL2(Z)

where SL2(Z) is the matrix group defined as

SL2(Z) :=
{(

a b
c d

) ∣∣∣∣∣ a, b, c, d ∈ Z and ad − bc = 1
}
.

The second caveat comes from the fact

τ′ =
aτ + b
cτ + d

=
−aτ − b
−cτ − d

for all τ ∈ H.

Thus, there is a degeneracy when it comes to the choice of matrix in SL2(Z), in so far as(
a b
c d

)
and

(
−a −b
−c −d

)
give rise to the same τ′.

To overcome this problem, the quotient group

PSL2(Z) := SL2(Z)/{I,−I}

is used. This quotient group identifies every matrix M ∈ SL2(Z) with its additive inverse
−M. Usually PSL2(Z) is referred to as the modular group and denoted2 Γ.

The modular group induces a left group action on the upper half plane H via the map

ρ : Γ × H −→ H, ρ(M, τ) =
aτ + b
cτ + d

where

M =
(
a b
c d

)
.

2Not to be confused with the absolute Galois group Gal(Q/Q).
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The orbits of the group action ρ admit a partition of the upper half planeH. In other words,
given any two elements of H, say τ and τ′, the relation

τ ∼ τ′ if and only if τ′ = ρ(M, τ) for some M ∈ Γ,

is an equivalence relation.

Topologically, the set of all equivalence classesH/Γ can be realised as a Riemann surface.3

This is an example of a non-compact modular curve. More generally, a non-compact
modular curve is a Riemann surface that can be constructed as a quotient space H/Γ∗,
where Γ∗ must be a subgroup of Γ of finite index. A compact modular curve is a com-
pactification of H/Γ∗ obtained by adding finitely many points.

An important property that some modular curves have is that they can be used to parametrise
elliptic curves. An elliptic curve that can be parametrised in this way is known as a modu-
lar elliptic curve. These special elliptic curves have huge historical significance in math-
ematics, as shall be seen in the next and final chapter.

3A Riemann surface is a connected one dimensional complex manifold.
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Chapter 6

The Conjecture

In 1965, two years after the publication of Notes on elliptic curves I [26], Birch and
Swinnerton-Dyer completed their subsequent paper Notes on elliptic curves II [27]. Hav-
ing developed an algorithm for bounding the rank of elliptic curves, they were able to
substantiate the following conjecture for their second paper.

The Birch and Swinnerton-Dyer conjecture. Let r be the rank of a rational elliptic curve
E, then ζE(s) has a pole of order r + 1 at s = 1.

Equivalently,

The Birch and Swinnerton-Dyer conjecture. Let r be the rank of a rational elliptic curve
E, then LE(s) has a zero of order r at s = 1.

This was a remarkable conjecture, as it was not even known at that time whether LE(s)
could be defined at s = 1 for an arbitrary elliptic curve. In 1953, Deuring [9] proved that
if E had complex multiplication, then LE(s) could be analytically extended to the entire
complex plane. However, only after Wiles et al. proved the Taniyama-Shimura conjecture
was it established that LE(s) could be analytically continued for any elliptic curve E.

This conjecture arose from studying the formal definition of LE(s) at s = 1,

LE(1) :=
∏

p prime
p|∆

(
1

1 − ap p−1

) ∏
p prime

p∤∆

(
1

1 − ap p−1 + p−1

)
.
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This can also be written as

LE(1) :=
∏

p prime
p|∆

(
1

1 − ap p−1

) ∏
p prime

p∤∆

(
p

|E(Fp)|

)
.

For earlier work in the 1960s, Birch and Swinnerton-Dyer employed the use of the EDSAC-
2 computer system to calculate |E(Fp)| for large quantities of primes. Using this computer
system alongside the algorithm they developed in [26], they were also able to bound, and
in many cases explicitly determine, the rank r of any elliptic curve E. Comparing both sets
of data, they came to suspect that

f (x) :=
∏

p prime
p∤∆
p≤x

(
p

|E(Fp)|

)
−→ C log(x)−r as x −→ ∞ (6.1)

for some non-zero constant C, depending only on E. In other words, that the function
f (x), which is an approximation to LE(1), converges at a rate proportional to log(x)−r. The
Birch and Swinnerton-Dyer conjecture is a weaker form of this assertion.

The majority of the second paper revolves around determining LE(1) for rational elliptic
curves of the form

ED : y2 = x3 − Dx

where D is a non-zero integer. Elliptic curves of this form are particularly easy to deal with
because their corresponding lattices are square. In particular, this means they must admit
complex multiplication (due to the invariance of a square lattice under a 90◦ rotation), so
Deurings result mentioned earlier applies.

Birch and Swinnerton-Dyer were able to partially validate their conjecture for the curves
ED, in so far as they obtained a great deal of evidence to support the proposition

LD(1) = 0 if and only if r > 0 (6.2)

where as before, r denotes the rank of ED. For notational convenience, the subscript D
will often be used instead of ED from now on. This proposition is of course implied by the
Birch and Swinnerton-Dyer conjecture.
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This hypothesis is supported by the extensive tables Birch and Swinnerton-Dyer included
in their second paper. These tables include the ranks of hundreds of elliptic curves. The
method they originally developed in [26] for calculating/bounding ranks proved too inef-
ficient for large values of D, so they refined it to suit the curves ED specifically.

In the remaining case, when r = 0, Birch and Swinnerton-Dyer were unable to interpret
the value of LD(1) from computation alone. They were even unable to predict its sign. As a
result, they sought advice from Davenport, who suggested that LD(1) should be expressible
in a specific closed form. Along with suggestions from Kneser that this closed form should
contain an integer, they were able to deduce and prove that

LD(1) =


C′σ(D)

4√
D

if D > 0,

C′σ(D)
4√
−4D

if D < 0.

where C′ is a non-zero constant andσ(D) is an integer1 depending on ED. On the following
page is a table of values from [27] displaying D, the rank of ED and the corresponding
value of σ(D). Birch and Swinnerton-Dyer denote the rank of ED by g and shorten σ(D)
to σ.

1Technically, σ(D) is only an integer when |D| > 1 and D is not divisible by 4 or a fourth power.
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This figure includes 160 different values for D, σ and g. Studying the table, one notes that
σ is essentially always a positive integer whenever g = 0. This trend continues for every
value of D that Birch and Swinnerton-Dyer consider in their tables. Although it does not
prove it, the tendency for this relationship to occur does help substantiate (6.2), and in
turn, the Birch and Swinnerton-Dyer conjecture.
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6.1 Consequences
In this penultimate section, several consequences of the Birch and Swinnerton-Dyer con-
jecture (under the assumption it is true) are outlined.

One of the most famous corollaries of the Birch and Swinnerton-Dyer conjecture involves
the classical concept of a congruent number.

Definition 6.1. A natural number n ∈ N is said to be congruent if is the area of some
rational right angle triangle i.e. if there exists a, b, c ∈ Q such that

a2 + b2 = c2 and
1
2

ab = n.

A theorem due to Jerrold Tunnell, see [29], says that if n ∈ N is a congruent number, then
the cardinalities of the following sets are equal.

|{(x, y, z) ∈ Z3 | 2x2 + y2 + 8z2 = n, z even}| =
|{(x, y, z) ∈ Z3 | 2x2 + y2 + 8z2 = n, z odd}|

He also showed that the converse holds if the Birch and Swinnerton-Dyer conjecture is
true. In other words, the equality above is strong enough to imply that n is a congruent
number.

Another interesting theorem contingent on the conjecture involves a property of rational
dynamical systems. Michael Stoll, see [25], proved the following.

Theorem 6.1. If the Birch and Swinnerton-Dyer conjecture is true, then there does not
exist a, b ∈ Q such that the sequence defined by

x1 = a, xn+1 = x2
n + b

satisfies xn+6 = xn, for all large enough n ∈ N, unless it also satisfies xn+2 = xn or xn+3 = xn.
In other words, periodic 6-cycles of this sequence that are not also 2 or 3-cycles cannot
exist.
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A result that has already been superseded, but is still worth mentioning assumes the truth of
the Birch and Swinnerton-Dyer conjecture and a stronger form of the Riemann hypothesis,
see [15].

Theorem 6.2. If the Birch and Swinnerton-Dyer conjecture and the generalised Riemann
hypothesis are true, then the average rank of a rational elliptic curve is less than 2.

We shall see in the next section that in work by Manjul Bhargava and Arul Shankar a
stronger, unconditional version of this result has been proved.

Other applications of the conjecture are computational in nature. For example, it is well-
known that the truth of the conjecture would imply the existence of an effective algorithm
for calculating the rank of any rational elliptic curve E. This, in particular, would also
imply there exists an algorithm for computing E(Q), via Mordell’s theorem and Mazur’s
theorem.

Being able to compute the rank of an elliptic curve is essential for many areas of algebraic
number theory, particularly in relation to Gauss’ class number problem for quadratic field
extensions, see [10]. It is currently unknown whether elliptic curves can have arbitrarily
large ranks. To date the highest known rank is r = 20, which was discover by Elkies and
Zev Klagsbrun. It is hoped that the Birch and Swinnerton-Dyer conjecture may provide a
partial answer to this unsolved problem.
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6.2 Progress
Over the past several decades, the Birch and Swinnerton-Dyer conjecture has gone on to
become one of the most (in)famous problems in mathematics. So much so that it was cho-
sen by the Clay Mathematics Institute as one of only seven millennium prize problems,
for which there is a one million dollar reward for solving.

Although the conjecture has cemented itself as one of the most challenging problems in
modern mathematics, some progress has still been made.

First and foremost, the conjecture itself has been refined and strengthened many times
since its inception. The original form of the conjecture makes no reference to the leading
coefficient of LE(s) at s = 1, only the proposed order. However, the modern formulation
of the conjecture includes the suspected form of

lim
s→1

(
LE(s)

(s − 1)r

)
.

Explicitly, one has

The Strong Birch and Swinnerton-Dyer conjecture. Let r be the rank of a rational
elliptic curve E, then

LE(s) =

 |XE |REΩ∞

|τE |
2

∏
p|∆

Ωp

 (s − 1)r + O((s − 1)r+1)

where O((s − 1)r+1) denotes terms of higher order.

An explanation of some of the terms used above is required. Firstly, |XE | denotes the order
of the Tate-Shafarevich group defined in section 3.2 and RE denotes the elliptic regulator
defined at the end of section 5.5. The subgroup of E(Q) consisting of all points of finite
order is denoted τE and is known as the torsion subgroup of E(Q). The term |τE |

2 denotes
the square of this group’s order. As usual, ∆ denotes the discriminant of E and p denotes a
prime. The factorΩ∞ is defined below. A full definition of the factors {Ωp} is not included,
but can be found in [28].
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The Ω∞ term is simple to define. Consider the rational elliptic curve E with discriminant
∆, and suppose the associated lattice L is generated by {ω1, ω2}. Because E has coefficients
in Q and thus, in R, it can be assumed that either ω1 or ω2, but not both, is a real number,
see [30], chapter 9. By relabelling if necessary, assume that ω2 ∈ R. Then Ω∞ can be
defined as

Ω∞ :=

ω2 if ∆ < 0,
2ω2 if ∆ > 0.

On the other hand, the factorsΩp are much harder to define. They are known as Tamagawa
numbers. These factors are the orders of certain quotient groups of E(Qp). If E has good
reduction at p, then Ωp = 1. This is not necessarily true for primes at which E has bad
reduction. Thus, Ωp can be thought of as giving a rough measure to how ’close’ E is to
having good reduction at p, as per section 5.2.

Concerning the appearance of the Tate-Shafarevich group in the conjectures formulation,
John Tate famously remarked that "This remarkable conjecture relates the behaviour of a
function L at a point where it is not at present known to be defined to the order of a group
X which is not known to be finite"

One of the first breakthroughs in resolving the conjecture was accomplished in 1977 by
John Coates and Andrew Wiles (the same Andrew Wiles that proved Fermats last theorem).
Wiles was a doctoral student of Coates at the time. They proved the following in [7].

Coates-Wiles. Let E be a rational elliptic curves which exhibits complex multiplication
and suppose LE(1) , 0, then E has rank r = 0.

An important case where the above theorem applies is elliptic curves of the form ED : y2 =

x3 − Dx, D ∈ Z \ {0}. This is the same family of curves that Birch and Swinnerton-Dyer
considered in [27].

The proof of this theorem involves rewriting LE(1) as a product and showing that the exis-
tence of a point of infinite order in E(Q) forces one of the factors to be zero, contradicting
the assumption that LE(1) is non-zero. The techniques used to establish this contradiction
involve results from Galois theory and algebraic number theory, in particular, the theory
of cyclotomic fields.
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Six years later, in 1983, Ralph Greenberg proved a partial converse to the Coates-Wiles
theorem. In [11], he proved

Greenberg. If a rational elliptic curve E exhibits complex multiplication and LE(s) has
an odd order zero at s = 1, then either;

1. The rank of E is non-zero

or,

2. the group
⋃∞

n=1 XE[pn] is infinite for infinitely many primes p.

What makes this theorem particularly important is that the second condition is thought to
be highly unlikely. Therefore, if the second condition were to be disproved, there would
be strong evidence in favour of the Birch and Swinnerton-Dyer conjecture.

Several years after Greenberg’s result, Benedict Gross and Don Zagier [12] established a
special case of the conjecture for elliptic curves that do not necessarily exhibit complex
multiplication. Instead, they considered modular elliptic curves, see section 5.6

Gross-Zagier. Suppose E is a modular elliptic curve defined over Q and LE(s) has a zero
of order one at s = 1, then the rank of E(Q) is non-zero, i.e. E(Q) is infinite.

To prove this theorem Gross and Zagier utilised the idea of a Heegner point. A Heegner
point is a special type of point on modular curves that arises from quadratic number fields.
They were originally defined by Birch. Heegner points are used in [12] to explicitly con-
struct infinite order rational points on E(Q).

The next major breakthrough was established by Karl Rubin in 1987, the year after Gross
and Zagier’s result. He proved the following theorems in [20].

Rubin 1. Suppose E is a rational elliptic curve which exhibits complex multiplication and
LE(1) , 0, then XE is finite.

Rubin 2. Suppose E is a rational elliptic curve which exhibits complex multiplication and
has rank r ≥ 2, then LE(s) has a zero of order 2 or more at s = 1.
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The proofs of both theorems rely heavily on the work of Coates and Wiles. The second
theorem is also dependent on Gross and Zagier’s result.

The paper [20] is particularly famous in the history of mathematics as it provided the first
example of a finite Tate-Shafarevich group, which is shown below.

The elliptic curve E1 : y2 = x3 − x has a trivial Tate-Shafarevich group i.e.

XE1 � {e}.

An example of an elliptic curve that has a non-trivial, finite Tate-Shafarevich group is
E−17 : y2 = x3 + 17x. The order of this group is 4. In fact

XE−17 � Z2 × Z2.

As Rubin highlights in his paper, his second theorem along with the results of Coates,
Wiles, Gross and Zagier is strong enough to imply

Rubin et al. Suppose E is a rational elliptic curve which exhibits complex multiplication,
then the order of LE(s) at s = 1, denoted ρ, is equal to the rank of E(Q) when ρ ≤ 1.

In 1989, a stronger form of this theorem was proven by Victor Kolyvagin, see [17].

Kolyvagin. Suppose E is a modular elliptic curve defined over Q, then the order of LE(s)
at s = 1, denoted ρ, is equal to the rank of E(Q) when ρ ≤ 1. Furthermore, under the
hypothesis of this theorem, XE will also be finite when ρ ≤ 1.

Kolyvagin’s result was subsequently generalised a decade later when Taylor et al. [3]
proved that all rational elliptic curves are modular. In other words,

Kolyvagin et al. The Birch and Swinnerton-Dyer conjecture is true in the cases where
LE(s) has a zero of order 0 or order 1.

This is a strong result in support of the Birch and Swinnerton-Dyer conjecture.
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The final, incredible result that will be mentioned is due to Manjul Bhargava and Arul
Shankar, [2]. In 2015, they were able to prove that the ’average’ rank of a rational elliptic
curve E is bounded above by 7

6 . From this, they were also able to conclude that a positive
proportion (over 66%) of rational elliptic curves have LE(1) , 0 i.e. LE(s) has a zero of
order 0 at s = 1. Employing Kolyvagin’s result, this of course implies

Kolyvagin, Bhargava, Shankar et al. The majority of rational elliptic curves satisfy the
Birch and Swinnerton-Dyer conjecture.

As for the future of the Birch and Swinnerton-Dyer conjecture, there is still a ways to go.
Many special cases have been established, but as it stands elliptic curves with ranks greater
than one are completely elusive.
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Appendix A

Projective Geometry

In sections 2.2 and 2.3, the necessity of adding an identity element, ∞, to elliptic curve
groups was highlighted. In this appendix, this idea will be made rigorous.

Consider a rational elliptic curve E : y2 = x3 + Ax + B. By choosing an appropriate
denominator, any rational solution to this elliptic curve can be written in the form(

a
c
,

b
c

)
∈ E(Q) = {(x, y) ∈ Q × Q | y2 = x3 + Ax + B}.

where a, b, c ∈ Z.

This, in particular, implies that the triple (a, b, c) is a solution to the equation

Γ(x, y, z) := y2z − x3 − Axz2 − Bz3 = 0.

The polynomial Γ is known as the homogenisation of E with respect to the variable z.

Definition A.1. Let F be an arbitrary field. A polynomial f (x1, x2, . . . , xn) ∈ F[x1, x2, . . . , xn]
is homogeneous if every monomial term of f has the same degree.

90



For any λ ∈ F, a homogeneous polynomial f will satisfy

f (λx1, λx2, . . . , λxn) = λdeg( f ) f (x1, x2, . . . , xn).

Notably, if λ ∈ F \ {0}, this property implies (x1, x2, . . . , xn) is a solution to f = 0 if and
only (λx1, λx2, . . . , λxn) is too.

In relation to Γ, this makes sense since(
λa
λc
,
λb
λc

)
=

(
a
c
,

b
c

)
∈ E(Q), for all λ ∈ Z/{0}.

Thus, (a, b, c) is a solution to Γ whenever (λa, λb, λc) is.

Now, because (
a
c
,

b
c

)
and

(
λa
λc
,
λb
λc

)
represent the same solution of E : y2 = x3+Ax+B, we would want (a, b, c) and (λa, λb, λc)
to represent the ’same’ solution of Γ : y2z − x3 − Axz2 − Bz3 = 0. Otherwise, any point on
E would correspond to multiple points on Γ. To rectify this degeneracy, projective spaces
are used instead.

Definition A.2. Let n ∈ N and F be an arbitrary field. Denote the n-fold Cartesian product
F × F × · · · × F by An(F). This is known as the affine n-space of F.

On any affine n+ 1-space where the origin has been removed, say An+1(F) \ {(0, 0, . . . , 0)},
one can introduce the relation ∼ defined by

(x1, x2, . . . , xn+1) ∼ (y1, y2, . . . , yn+1) if and only if (λx1, λx2, . . . , λxn+1) = (y1, y2, . . . , yn+1)

for some non-zero λ ∈ F \ {0}.

It is not difficult to show that this is an equivalence relation on An+1(F) \ {(0, 0, . . . , 0)}.
Reflexivity follows from the fact F contains a multiplicative identity. Symmetry follows
from the fact every non-zero element of F has an inverse. Finally, transitivity follows
from the fact F is closed under multiplication. Therefore, An+1(F) \ {(0, 0, . . . , 0)} can be
partitioned into equivalence classes.

Definition A.3. The projective n-space of F, denoted Pn(F) is defined to be the set of all
equivalence classes of An+1(F) with respect to the equivalence relation ∼. The equivalence
class of (x1, x2, . . . , xn+1) is denoted [x1, x2, . . . , xn+1].
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As mentioned earlier, any solution to a homogeneous polynomial is independent of the
choice of class representative i.e. if (x1, x2, . . . , xn+1) is a solution, then for any λ ∈ F \
{0}, (λx1, λx2, . . . , λxn+1) is a solution too. This implies that solutions to a homogeneous
polynomial f are dependent only on the choice of equivalence class [x1, x2, . . . , xn+1]. In
other words, the set

Vn( f ) := {[x1, x2, . . . , xn+1] ∈ Pn(F) | f (x1, x2, . . . , xn+1) = 0}

is well-defined. The dependence of Vn( f ) on F is not made explicit.

Consider now the following lemma.

Lemma A.1. Let Hn be the subset of Pn(F) in which every element satisfies xn+1 = 0 i.e.

Hn := {[x1, x2, . . . , xn+1] ∈ Pn(F) | xn+1 = 0}.

Then there is a bijection between the affine n-space An(F) and the projective complement
Pn(F) \ Hn.

Proof. Define the map ψ : Pn(F) \ Hn −→ An(F) by

ψ([x1, x2, . . . , xn+1]) =
(

x1

xn+1
,

x2

xn+1
, . . . ,

xn

xn+1

)
.

Since [x1, x2, . . . , xn+1] < Hn, there is no issue in dividing by xn+1.

Firstly, it is necessary to prove this map is well-defined. By definition, any other represen-
tation of the class [x1, x2, . . . , xn+1] must be of the form [λx1, λx2, . . . , λxn+1] where λ , 0.
Therefore,

ψ([λx1, λx2, . . . , λxn+1]) =
(
λx1

λxn+1
,
λx2

λxn+1
, . . . ,

λxn

λxn+1

)
=

(
x1

xn+1
,

x2

xn+1
, . . . ,

xn

xn+1

)
.

Thus, ψ is independent of the choice of representative and is well-defined.

Next, assume ψ([x1, x2, . . . , xn+1]) = ψ([y1, y2, . . . , yn+1]). This implies(
x1

xn+1
,

x2

xn+1
, . . . ,

xn

xn+1

)
=

(
y1

yn+1
,

y2

yn+1
, . . . ,

yn

yn+1

)
.
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Consequently, xi =
xn+1
yn+1

yi for all i ∈ {1, 2, . . . , n + 1} and it follows that

(x1, x2, . . . , xn+1) ∼ (y1, y2, . . . , yn+1)

and
[x1, x2, . . . , xn+1] = [y1, y2, . . . , yn+1].

Hence, ψ is an injective map.

Finally, to prove surjectivity, suppose (x1, x2, . . . , xn) ∈ An(F). Then [x1, x2, . . . , xn, 1] ∈
Pn(F) \ Hn and

ψ([x1, x2, . . . , xn, 1]) = (x1, x2, . . . , xn).

Therefore, ψ is surjective, and thus, bijective. □

This result leads to the following corollary.

Corollary. Let
V2(Γ) := {[a, b, c] ∈ P2(Q) | Γ(a, b, c) = 0}

and
V∗2(Γ) := {[a, b, c] ∈ P2(Q) | Γ(a, b, c) = 0, c , 0} = V2(Γ) \ (V2(Γ) ∩ H2).

Then, there exists a bijection between V∗2(Γ) and E(Q).

Proof. Let ψ∗ : V∗2(Γ) −→ An(Q) be the restriction of ψ to V∗2(Γ). It is immediate from the
definition of Γ and the proof of lemma A.1 that ψ∗ is well-defined, injective and the image
of ψ∗ is contained in E(Q). Thus, it suffices to prove surjectivity. Suppose(

a
c
,

b
c

)
∈ E(Q).

Then, Γ(a, b, c) = 0 and c , 0. Hence [a, b, c] ∈ V∗2(Γ). However, by definition

ψ∗([a, b, c]) = ψ([a, b, c]) =
(
a
c
,

b
c

)
.

Therefore, E(Q) ⊂ Im(ψ∗), so ψ∗ is a bijection between V∗2(Γ) and E(Q). □
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Therefore, V∗2(Γ) can be identified as a copy of E(Q). Using this identification, the prob-
lem of extending E(Q) to E(Q) ∪ {∞} can be reinterpreted as adding a unique element to
V∗2(Γ). This is most naturally accomplished by extending V∗2(Γ) to V2(Γ) and introducing
the identification

V2(Γ)←→ E(Q) ∪ {∞}.

Of course, it remains to show that V∗2(Γ) can be extended to V2(Γ) by adding a single
element. To this end, consider the set

V2(Γ)/V∗2(Γ) = {[a, b, c] ∈ P2(Q) | Γ(a, b, c) = 0, c = 0}.

Any element in this set must be of the form [a, b, 0]. Now, because V2(Γ) ⊂ P2(Q) and
[0, 0, 0] < P2(Q), a and b cannot both be zero. Assume then, without loss of generality,
that b , 0. Then

(a, b, 0) =
(a
b

b, 1b, 0b
)
.

Hence,
[a, b, 0] ∼

[a
b
, 1, 0

]
.

However, since Γ(a, b, 0) = 0, this implies a3 = 0, so a = 0 too. Therefore,

[a, b, 0] ∼
[a
b
, 1, 0

]
∼ [0, 1, 0]

and V2(Γ)/V∗2(Γ) can contain at most one element i.e. [0, 1, 0]. It is easy to see that
V2(Γ)/V∗2(Γ) does indeed contain this element since

Γ(0, 1, 0) = 0 − 03 − 03 − 03 = 0.

It follows immediately that

V2(Γ) = V∗2(Γ) ∪ V2(Γ)/V∗2(Γ) = V∗2(Γ) ∪ {[0, 1, 0]}.

Thus, ∞ merely represents the element [0, 1, 0] added to the set V∗2(Γ) (interpreted as
E(Q)).
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P-adic Numbers

In this appendix, an account of p-adic numbers and a complete statement of Hensel’s
lemma are provided.

For an arbitrary prime p, the p-adic field Qp is a completion of Q with respect to an ab-
solute value depending only on p. The next few pages are dedicated to explaining these
notions.

Firstly, it is necessary to discuss absolute values.

Definition B.1. An absolute value of the field F is a map | · | : F −→ R≥0 satisfying the
following conditions

1. |x| = 0⇔ x = 0.

2. |xy| = |x||y|.

3. |x + y| ≤ |x| + |y|.

An absolute value always induces a metric on the underlying field. If | · | is the absolute
value in question, then

d(x, y) := |x − y|

will be the induced metric.

95



APPENDIX B. P-ADIC NUMBERS

Two distinct absolute values will induce equivalent metrics if they themselves are equiva-
lent.

Definition B.2. Two absolute values of the field F, | · | and | · |′, are said to be equivalent if
there exists an exponent e > 0 such that

|x|e = |x|′

for all x ∈ F.

Intuitively, a metric space (M, d) is complete if every sequence that could have a limit, does
have a limit. In other words, any sequence that does not diverge or fluctuate erratically
will converge to a point. Such sequences are called Cauchy sequences and are defined as
follows.

Definition B.3. A sequence {xi}
∞
i=1 in a metric space (M, d) is said to be Cauchy if for all

ε > 0, there exists N ∈ N such that

d(xi, x j) < ε, ∀i, j > N.

With this notion in mind, we can now define a complete field.

Definition B.4. Let | · | be an absolute value of the field F and d(x, y) = |x − y| be the
corresponding metric. Then F is complete with respect to | · | if every Cauchy sequence in
the metric space (F, d) converges to a limit in F.

Examples of complete fields are R and C which are complete with respect to the usual
Euclidean norms. A non-example is the field Q. Some rational Cauchy sequences do not
converge to rational limits, e.g.

1
1
,

2
1
,

3
2
,

5
3
,

8
5
,

13
8
,

21
13
· · · −→

1 +
√

5
2

.

The incompleteness of Q makes it virtually impossible to do any sort of analysis on this
field. To overcome this problem, it is common to work with completions/complete field
extensions of Q instead.
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Definition B.5. Let F be a field with absolute value | · | and K be a complete field with
absolute value | · |′. Then K is the completion of F with respect to | · | if there exists an
injective map

λ : F −→ K

such that

1. The absolute value is preserved i.e. |λ(x)|′ = |x| for all x ∈ F.

2. The field K is the closure of λ(F) with respect to the metric induced by | · |′. In
particular, λ(F) is dense in K.

The prototypical example of a completion is R, which is the completion of Q with respect
to the usual Euclidean norm. For an example of how completions are constructed, see [6],
pg 11.

In 1916, Alexander Ostrowski proved that, up to equivalence of absolute values, the only
completions of Q are the real numbers R and the p-adic numbers Qp. The p-adic absolute
value arises naturally from the study of prime divisors.

Definition B.6. Let p be a prime and n be an integer. The p-adic valuation of n is defined
to be

νp(n) :=

max{k ∈ N ∪ {0} | pk divides n} if n , 0
∞ if n = 0.

The domain of this function can be extended from Z to Q via the functional relation

νp

(a
b

)
:= νp(a) − νp(b).

It is easy to check this extended definition is well-defined.

The p-adic valuation satisfies the following properties for all x, y ∈ Q:

1. νp(xy) = νp(x) + νp(y);

2. νp(x + y) ≥ min{νp(x), νp(y)}.

Proof. Write x = pk1 a1
b1

and y = pk2 a2
b2

such that k1, k2 ∈ Z and gcd(ai, p) = gcd(bi, p) = 1
for i ∈ {1, 2}. This can always be accomplished by extracting prime powers from the
numerators and denominators of x and y.
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It follows immediately that νp(x) = k1 and νp(y) = k2. To prove the first property, multiply
x and y together to get

xy = pk1+k2
a1a2

b1b2
.

Since gcd(ai, p) = gcd(bi, p) = 1 for i ∈ {1, 2}, one must have gcd(a1a2, p) = gcd(b1b2, p) =
1. Therefore,

νp(xy) = k1 + k2 = νp(x) + νp(y).

To prove the second property, assume first that k1 ≤ k2 (by relabelling if necessary). Then

x + y = pk1

(
a1

b1
+ pk2−k1

a2

b2

)
= pk1

(
a1b2 + pk2−k1a2b1

b1b2

)
.

As before, we have gcd(b1b2, p) = 1. Therefore,

νp

(
a1b2 + pk2−k1a2b1

b1b2

)
≥ 0

and consequently,
νp(x + y) ≥ k1 = min{νp(x), νp(y)}.

□

In order to construct the p-adic absolute value from the p-adic valuation, it suffices to
exponentiate νp to the base p

νp(x) −→ |x|p := p−νp(x).

It follows immediately from the definition of the p-adic valuation that |x|p ≥ 0 for all
x ∈ Q and |x|p = 0 if and only if x = 0. Furthermore, exponentiating the first property of
the p-adic valuation guarantees that |xy|p = |x|p|y|p. Therefore, in order to prove | · |p is an
absolute value on Q, it suffices to prove

|x + y|p ≤ |x|p + |y|p.

Proof. Without loss of generality, assume νp(x) ≤ νp(y). Then

νp(x + y) ≥ νp(x) = min{νp(x), νp(y)}

by the second property of the p-adic valuation. Multiplying both sides by −1 gives

−νp(x + y) ≤ −νp(x).
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Next, exponentiate this inequality to get

p−νp(x+y) ≤ p−νp(x).

However,
p−νp(x) ≤ max{p−νp(x), p−νp(y)}.

Therefore, one has
p−νp(x+y) ≤ max{p−νp(x), p−νp(y)}

or equivalently,
|x + y|p ≤ max{|x|p, |y|p}.

Since |x|p and |y|p are non-negative, we can apply the trivial inequality

max{|x|p, |y|p} ≤ |x|p + |y|p

to conclude that
|x + y|p ≤ |x|p + |y|p.

□

Thus, | · |p is an absolute value of Q. This absolute value is non-archimedean because it
satisfies the ultra metric inequality.

We can now define the p-adic fields Qp.

Definition B.7. The p-adic field Qp is the completion of Q with respect to the p-adic
absolute value | · |p.

Using this definition, one can also construct p-adic integers. These are generalisations of
Z contained in Qp. They are defined as follows.
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Definition B.8. The ring of p-adic integers Zp is defined to be the subring ofQp containing
all elements with non-negative p-adic absolute values

Zp := {x ∈ Qp | |x|p ≤ 1}.

To complete this section, three equivalent forms of Hensel’s lemma are stated. A proof of
Hensel’s lemma may be found in [6], chapter 10.

The first version is the simplest to understand.

Hensel’s Lemma. Suppose f (x) ∈ Zp[x] has a formal derivative f ′(x) and that there
exists α ∈ Zp such that

f (α) ≡ 0 mod (p), f ′(α) . 0 mod (p).

Then there exists a unique α′ ∈ Zp satisfying

f (α′) = 0 and α′ ≡ α mod (p).

Equivalently,

Hensel’s Lemma. Suppose f (x) ∈ Zp[x] and that there exists α ∈ Zp such that

| f (α)|p < 1, | f ′(α)|p = 1.

Then there exists a unique α′ ∈ Zp such that

f (α′) = 0 and |α′ − α|p ≤ | f (α)|p.

This version of the lemma is the one proved in [6].

Finally,

Hensel’s Lemma. Suppose f (x) ∈ Zp[x] and that there exists α ∈ Zp such that

| f (α)|p < | f ′(α)|2p.

Then there exists a unique α′ ∈ Zp such that

f (α′) = 0 and |α′ − α|p < | f ′(α)|p.

Moreover,

|α′ − α|p =

∣∣∣∣∣ f (α)
f ′(α)

∣∣∣∣∣
p

and | f ′(α)|p = | f ′(α′)|p.
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The final version of Hensel’s lemma is particularly important as it tells us exactly how far
away the root α′ is from the ’approximate root’ α. The variable α′ is sometimes referred to
as the lift of α. Similar to Newton’s approximation method, the proof of Hensel’s lemma
involves constructing better and better approximations for the roots of f (x) ∈ Zp.
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