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Abstract

In this thesis, we will explore the world of hash functions. After a brief overview of the
construction and uses of cryptographic hashes, we will then focus almost exclusively on
non-cryptographic functions. We delve into the FNV family of hash functions in signif-
icant detail, examining their background, structure and motivation. We then introduce
some well-known peer functions, against which FNV can be tested. We lay out our test pa-
rameters, where we will utilise hash tables, a variety of input types, and explain our choice
of load factor, collision management and more. We run rigorous tests measuring distribu-
tion, collision resistance and avalanche effect which highlight some significant differences
in performance. The observed test results are examined in detail, with explanations pro-
vided for the varying performances of the functions. These results also provoked some
interesting questions around the accepted methodology for measuring the performance of
non-cryptographic hash functions, particularly the relevance of the avalanche effect. We
examine published works which reference this metric and discover that, perhaps, its use-
fulness has been overstated. We finally consider collision resistance in a more abstract
sense, examining how each function performs when tested with a more challenging input
size.
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Chapter 1

Introduction

This thesis will introduce the reader to the world of hash functions, with the main focus
being on non-cryptographic functions. We will compare four well-known algorithms using
the traditionally accepted suite of tests, sometimes with surprising conclusions. While
some of our results will reinforce commonly-held beliefs about the comparison of hash
functions, others will call into question their ongoing validity.

In Chapter 2, we introduce the idea of hash functions, starting with cryptographic
functions. Cryptographic hash functions are used where a high level of security is required,
such as data integrity and password protection. We will look at how these are typically
constructed, some of the most widely used functions and how their level of security is
measured. Non-cryptographic hash algorithms are used when efficient storage and search
functions are required. Hash tables are one of the most common uses of non-cryptographic
functions, and will be used in all of our subsequent tests. We explain how these are
structured and managed before briefly introducing the commonly accepted methodology
used to test and compare non-cryptographic hash functions.

Chapter 3 will then delve more deeply into one group of hash functions in particular:
the FNV hashes. These non-cryptographic hash functions are widely used in familiar
applications such as Twitter, video games, and major search engines. We examine their
structure in detail, and explain the rationale behind each step. From here, we will look
more generally at what mathematical operators are commonly used in hash functions and
why. To complete this chapter, we have words direct from one of the authors of FNV
himself — my supervisor and I were lucky enough to have a phone interview with Mr.
Landon Curt Noll, where we gained valuable insight into the motivation and ideas behind
the functions.

In Chapter 4, we will look at the widely accepted suite of tests using for comparing
various hash functions. We will set out our own test criteria, such as choosing relevant
data sets to be tested, load factor and hash table size. We will also introduce two other
functions which will be tested alongside FNV-1 and FNV-1a for comparison purposes:
Murmur2 and DJBX33A. Both of these functions are well known and widely used but
with very different priorities: Murmur2 is known for its impressive avalanche performance,
while DJBX33A is famous for simplicity and speed. Before starting to run the tests, we
will take a quick “mathematical sense-check” and ask ourselves how many collisions we
should expect to see, having previously (in Chapter 2) also examined why keeping empty
buckets to a minimum is so important for a good distribution of results.

In the next chapter, we will see the results of Avalanche, Distribution, and Collision
Resistance testing. Starting with Avalanche, and using FNV-1a as the recommended
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FNV hash, we work our way up from just one byte of input to four, while examining and
interpreting the patterns which appear. We then compare this to the avalanche matrices
created by FNV-1, Murmur2 and DJBX33A. We then compare all four functions across a
number of metrics to analyse their distribution and collision performance via the number
of empty buckets seen, the number of collisions, and the length of collision chains, along
with chi-squared distribution results.

Chapter 6 will analyse these results. There are six notable questions which arose out of
the tests, all of which will be examined in detail, sometimes with surprising conclusions.
We analyse why certain patterns appear and why some functions perform better than
others when combined with specific data input or hash table bucket size.

In Chapter 7 we use the findings from the previous chapter, plus some further research,
to question some of the long-held beliefs around hash testing. We question the validity of
Avalanche testing as a measure of the performance of non-cryptographic functions. We
also suggest that the long-standing question of bucket size being either a prime number of
power-of-two is neither restricted to just these two options, nor is it a unilateral decision.
We then examine the difference between collisions within hash tables and collisions which
are the result of two distinct inputs having the same hash outputs. When tested for
the latter type of collision, our chosen hash functions do reveal more weaknesses than
previously seen.

Finally, in chapter 8 we look back on the work done, what we have learned from it,
and where we could pursue further.

8



Chapter 2

Hash Functions

2.1 Introduction to Hash Functions

A hash function is an algorithm which takes input data of any size and converts it to a
deterministic output of specific length. Hashing is a one-way process; unlike encryption,
it is not intended to be reversed. The security level of the algorithm varies depending on
requirements. For data integrity purposes, digital signatures or password protection, a
cryptographic hash function should be used. Non-cryptographic hash functions are widely
used in the areas of data storage via hash tables, bloom filters, checksums and caches.
We take a brief look at cryptographic functions before delving into non-cryptographic
functions in more detail.

2.2 Cryptographic Hash Functions

The main properties of a cryptographic hash function are [1]:

1. Pre-Image Resistance: For a hash output of x, it should be infeasible to find a
message m, such that h(m) = x, i.e. it should be nearly impossible to reverse the
function to find m.

2. Second pre-image resistance: Given a message m1, it should be hard to find another
message m2 such that h(m1) = h(m2)

3. Collision Resistance: It must be hard to find any two messages m1 and m2 such that
h(m1) = h(m2)

In addition, it is important to attain a good avalanche effect. A good avalanche effect
implies that if so much as a comma is changed in the input, the entire hash output should
be different. A secure hash algorithm should aim for an avalanche effect of 50%, i.e. a one
bit change in the input will effect a change in each bit in the output with 50% probability.
The definition of avalanche according to Bret Mulvey [2] (whose code we will use later in
Section 5.1 to measure the effect) is as follows:

“A function is said to satisfy the strict avalanche criterion if, whenever a single
input bit is complemented (toggled between 0 and 1), each of the output bits
should change with a probability of one half for an arbitrary selection of the
remaining input bits.”

9



Figure 2.1: Merkle-Damgard Construction

Construction

The traditional construction for both cryptographic and non-cryptographic hash functions
was the Merkle Damgard Construction [3]. The Merkle Damgard Construction is
a method of building collision-resistant hash functions from collision-resistant one-way
compression functions. A one-way compression function takes two fixed-length inputs and
produces a single fixed-length output of the same size as one of the inputs. For example,
Input A of 128 bits and Input B of 256 bits are compressed together into one output of
128 bits.

The Merkle Damgard Construction takes an input, and breaks it into chunks of equal
size (usually 512 or 1024-bit blocks). Without loss of generality, let’s assume 512-bit
blocks. The message must then be “padded” to make sure each block is precisely 512 bits.
This is done by adding 1 plus however many zeros are necessary to bring the length of
the message to 64 bits fewer than a multiple of 512. Padding is always done, even if the
length of the message is already congruent to 448 modulo 512. Hence, at least one bit and
at most 512 bits are appended to the input. The final remaining part is filled with 64 bits
representing the length of the original message modulo 64.

The algorithm starts with a fixed initialization vector. It then takes the first block of
input data, and combines the two with a compression function, applying a combination
of XOR, shifts, modular addition, multiplication and rotation (see section on Operators
on page 26) . The resultant hash from the initialization vector and Block 1 then becomes
the initialization vector for Block 2, which then runs through each of these rounds of
operations again. After all blocks have been combined and mixed, the function produces
a final hash of fixed size, generally varying from 128 bits to 512 bits, depending on the
algorithm. See Figure 2.1.

Each of these one-way functions require all of the same criteria as cryptographic hash
functions (pre-image resistance, collision resistance etc.) so if the one-way compression
function is cryptographically secure, then the resultant hash function will be too, provided
the message is also correctly padded.

Common Hashing Algorithms

Hashing algorithms are constantly being developed as older versions are “broken” when
collisions start to appear, either by attack or investigation. Message Digest (MD) is one
family of hashes, starting with MD1, although MD5[4] (developed by Ronald Rivest in
1992) was the standard for many years until collisions were discovered in 2004. MD5 is a
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128 bit algorithm which computes 16 functions within the compression function on each
block, doing this 4 times before moving to the next block. This is referred to as running
64 rounds.

Secure Hashing Algorithm (SHA)[5] is another family, incorporating SHA-1 which has
now been defunct, and the family of SHA-2’s which includes the commonly used SHA-256,
a 256 bit algorithm, and more recently SHA-512. SHA 256 will run through 64 rounds of
these functions, while SHA 512 will compute 80 rounds.

The initialization vector (IV) is required to be an input of the same length as the
other block sizes. While traditional encryption systems may require a unique and/or
random IV to be used each time, this would not fit with the deterministic nature of hash
functions. Therefore, the IV used in hash functions should be somewhat randomly and
yet transparently chosen so that they are beyond manipulation by the algorithm designer,
and will be used each time that algorithm is run. For that reason, many are chosen based
on, for example, the digits of π or e; normally distributed digits and known to everyone.
These chosen numbers are known as “nothing-up-my-sleeve numbers” as they show that
the programmer did not choose a specific number which may allow them to break or
“backdoor” the system themselves; digits from well-known constants are above suspicion.
Looking at our two examples above, MD5 used the trigonometric sine function to generate
constants for the IV, while SHA-2 uses the square and cube roots of small prime numbers.

Uses of Cryptographic Hash Functions

The criteria for cryptographic hash functions (namely pre-image resistance and collision
resistance) make them vital in the area of data integrity. For example,

1. If data is exchanged between two people (for example via email) which has been
signed with a recognised hash algorithm, it will have produced a specific digest
(output). If the recipient of the email runs the received message through the same
algorithm and produces a different digest, they can immediately see that the message
contents have been altered and should not be trusted.

2. This can be expanded to include signing certificates, such as are used for programs
or code. In this instance, a software developer could produce a hash digest for a new
program, creating a digital signature. A user can then download the software safely,
once their operating system has generated a hash which matches that of the digital
signature.

3. There may sometimes be cases where one party has some sensitive information,
which cannot be revealed until a later date. In order to show that they possessed this
information at the time, they can hash the information and share the hash output
publicly. Based on the criteria defined on page 9, pre-image resistance says that
knowing the hash output h(x) should not give any clue to the value of the input x.
Additionally, second pre-image resistance means that the party in possession of the
information should not be able to find alternative information which would give the
same hash output. Finally, collision resistance means that no other party should be
able to find an alternative input which would produce the same hash output. When
the time comes for the information to be revealed, the hash of the information should
match what was shared initially, without ever having risked the information being
leaked.
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Websites also use hashing to protect passwords. A website obviously doesn’t want
to store a list of plaintext passwords for security reasons. Therefore, the passwords are
hashed, and when you type in your password, its hash is checked against the stored hash
digest. Password hashes are often “salted” to add additional security. Salting is where
a hard-to-predict, ideally unique, random number (the “salt”) is applied to the password
before it is hashed [6]. This is due to the nature of passwords – they are typically short
and can often be duplicated. For example, if the (unwise) password “Password123” is used
and then hacked by some means, the attacker now knows the hash digest related to the
input “Password123”. Therefore, everyone else who had used the same password would be
immediately identifiable by the same hash digest. Additionally, the attacker may be able
to use this input-output pair to ascertain which hash algorithm is being used, which could
be useful in breaking other common passwords. The salt adjusts the plaintext passwords
pre-hashing so they will no longer be identical. So when a user enters their username and
password, the salt is appended to the password and hashed again to check against the
stored hash. It is therefore very important that each salt is unique, as a system-wide salt
would be much less effective if even a small number of passwords were compromised.

A salt will usually be 32 or 64 bytes in size, depending on storage capacity and need
for additional protection. A longer salt will increase complexity of attempted attack, and
would also increase storage requirements for malicious rainbow tables.1 However, the
security of this scheme does not depend on hiding, splitting, or otherwise obscuring the
salt. In practice, the salt is stored with the username and hash. So although the salt may
be susceptible to discovery if a system were compromised, the fact that each password has
a unique salt still means that very little has been gleaned.

How Secure are Cryptographic Hash Functions?

The security level of each algorithm is assessed relative to a birthday problem style attack,
which is based on the “Birthday Problem” or “Birthday Paradox” from Probability [7].
As a reminder, the Birthday Problem asks us how many people you need in a room to
find that two people share the same birthday. If we assume k people in a room, ignore
leap years, and assume uniform distribution, we can say the following:

Pr(At Least One Shared Birthday) = 1− Pr(All People Having Distinct Birthdays)

Pr(All People Having Distinct Birthdays) =
365

365
× 364

365
× 363

365
× ...× 365− k + 1

365

=
365!

(365− k)!365k

If we replace this formula with a more generalised term, n, rather than 365 days, we get

1×
(
1− 1

n

)
×
(
1− 2

n

)
×
(
1− 3

n

)
× · · · ×

(
1− (k − 1)

n

)
(2.1)

Looking at the Maclaurin Series (which is a simplified Taylor Series around 0) for f(x) =
ex, we can see that

ex = 1 + x+
x2

2
+

x3

6
+ ...

1Rainbow tables are pre-prepared look-up data sets whereby a large number of commonly used pass-
words are hashed and stored
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Therefore, we can say that
ex ≈ 1 + x

We can use this to rewrite equation 2.1 above, and letting x = − 1
n this now becomes:

e
0
n × e

−1
n × e

−2
n × ...× e

−(k−1)
n

= e
0−1−2−3−....−(k−1)

n

= e
0−(1+2+3+....+(k−1))

n

We can simplify the numerator of the exponent by utilising the fact that
∑n

k=1 k = n(n+1)
2

which gives us

e
−(k−1)k

2n

So now, the probability of two people sharing a birthday (or n) is:

1− P(All People Having Distinct Birthdays) ≤ 1− e
−(k−1)k

2n

We want the left hand side to be at least 50%, so

0.5 ≤ 1− e
−(k−1)k

2n

⇒ 0.5 ≥ e
−(k−1)k

2n

⇒ ln 0.5 ≥ −(k − 1)k

2n

⇒ 2n(− ln 0.5) ≤ (k − 1)k

(k2 − k) can be considered close to k2 for large values of k. So

2n(− ln 0.5) ≤ k2

⇒ k ≥
√

2n(− ln 0.5)

This works out so that for k choices from n options, the probability of 2 values being is
same is approximately equal to

√
n.

Considering this in terms of hash functions, n is now equal to the number of bits in
the chosen hash. So a collision (i.e. two messages having the same hash, much like two
people having the same birthday) can be found in no more than

√
2n = 2

n
2 attempts. To

attack pre-image resistance, it is assumed that you have to test the entire sample space
and hence would require 2n attacks. As SHA-256 outputs a 256 bit hash, the number of
trials required to find a collision is 2

256
2 or 2128. For SHA 512, this increases to 2256 .

One might assume then that the larger the n, the more secure the hash. While this
may be the case, it also means that the hash function will be much slower to run and may
therefore not be desirable for practical use. Hash functions in general should be fast, for
verifying connections to internet sites, downloading software etc. However slower speeds
may be used for hashing passwords and other highly secure information in order to make
them more difficult to break. SHA2 is still considered to be generally secure, however it is
likely inevitable that it will eventually be broken, and so the next algorithm should always
be prepared and ready for implementation.
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Future Algorithms

There has been a move away from the traditional Merkle-Damgard construction as weak-
nesses continue to be exposed in algorithms which use it. In the SHA family of hashes,
the next is SHA3, which follows a very different construct.

The construction behind SHA3 comes from the Keccak family of cryptographic func-
tions, and is based on a “sponge construction” [8] [9]. BLAKE2 [10] was also a finalist in
the competition for the SHA3 construct. This algorithm has a Merkle tree construction 2

which increases speed by allowing parallelism.
Whirlpool [11] is a cryptographic algorithm which does still use a Merkle-Damgard

construction but combines it with the use of S-boxes. 3

There have been no known effective attacks on any of SHA-3, BLAKE2 or Whirlpool.

Random Oracle

A random oracle [12] is a theoretical system which produces a truly random result for
each input, and will give the same result each time the same input is queried. It is an
idealised model which assumes the existence of a public, random function H such that
all parties can obtain H(x), for any desired input value x, only by interacting with an
oracle computing H. There is a fun description in the Cryptography Stack Exchange [13]
comparing a random oracle to a gnome in a black box. When queried, the gnome checks
your input against a very large book to see if he has received this query before. If so, he
provides you with the matching output, otherwise he rolls some dice to obtain a random
uniform output and records the new input-output pair in the book.

Obviously this type of system cannot exist in reality, but the idea of “provable security”
when assuming a “random oracle model” is often used to test workable hash functions. If
we wish to prove the security of a cryptographic construction, it may be easiest to do so
with the assumption of a completely random, uniform and independent result whenever
the random oracle is called upon. Once the system is proven secure with this assumption,
a cryptographic hash function is then inserted in place of the random oracle. This results
in some mistrust of the Random Oracle Model, as there appears to be no clear definition
of what makes a hash function “sufficiently good” to replicate the performance of the
idealised random oracle.

2.3 Non-Cryptographic Hash Functions

Non-cryptographic hash functions are used in many instances where security is not the
main requirement, rather they focus on speed and collision resistance, usually combined
with real-life input data. Hash tables, bloom filters, checksums and caches are some
examples where non-cryptographic hash functions are extremely useful.

To see this in more detail, we look at the example of hash tables, whose structure is
represented in Figure 2.2.

2The Merkle tree construction takes in all input blocks simultaneously as “leaves” and applies a hash
function to each leaf. Each leaf is then combined with its neighbour and hashed again, this process
continuing until the top of the “tree” is reached, giving us the final hash output

3S-boxes or Substitution Boxes are similar to a look-up matrix where the input is split into columns
and rows to be used as a reference to find an unrelated output within the matrix.
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Figure 2.2: Hash Table Structure

2.3.1 Hash Tables

The hash table structure reads in any number of input keys, runs each through the chosen
hash function and then distributes the outputs among a pre-selected number of “buckets”.
A useful way to think of this is in terms of a library. Our library has a large number of
books, let’s say 1, 000, 000 books. Each of these books can be defined, for example, by
their name, author and year of publication. This information is now our input key. This
is run through a hash function, with the output telling us to which library shelf the book
has been assigned. If our library has 10, 000 shelves, each shelf should hold 100 books.
When someone wishes to borrow a book, we hash the input of their chosen book, see the
same output again and know exactly where to find it.

We know from the deterministic nature of hash functions that each of the keys in
Figure 2.2 should produce a different digest. However, with only 3 buckets to which to
map them, there needs to be a compression function to assign each digest to a bucket.
This is usually done by modulo arithmetic, whereby H(k) = Nmod M , where N is the
bit output of the hash function and M is the number of buckets.

Traditionally, M is calculated by considering either a prime number or a power of
two which is closest to the size of the hash table. The question of whether M should
be a prime number or a power of two is one which has divided opinion for years [14].
Supporters of the prime number argument say that a prime number will ensure greater
distribution in the output, whereas those who prefer to use a power of two argue for its
greater speed and efficiency; the operation mod 2x can be ignored and one would instead
just deal with the least significant x bits of the output. In the paper “Performance of
the most common non-cryptographic hash functions” by C.Estébanez, Y.Saez, G.Recio
and P. Isasi [15], a number of hash functions were tested with a variety of input types.
It was noted that for data sets which contained a high number of zeros or ones, certain
hash functions produced a significantly higher rate of collisions when using a power of 2
rather than a prime number to compute M . These specific functions tended to rely on

15



Figure 2.3: Separate Chaining

multiplication or XOR operations which are vulnerable to repeating patterns and could,
under certain circumstances, end up repeating values which are multiples of x. If the size
of the table M has a common divisor with x, the function will continue to return multiples
of this common divisor. We will come across this question again in our own tests in later
chapters.

2.3.2 Collision Management

We can see from the above example of hash tables how important it is to have a uniform
distribution of outputs along with strong collision resistance. If these qualities are poor,
we could end up with a high number of hash outputs being mapped to few buckets, while
a large number of buckets remain empty. Likewise, a good avalanche effect should ensure
that similar inputs are not mapped to similar outputs. However, if the number of buckets
available is of smaller size than the input key then, by the pigeon-hole principle, there
must be some buckets with multiple entries, or collisions.

The two most common methods used for collision resolution are separate chaining and
open addressing:

In separate chaining, any colliding entries are chained together into a single linked
list of key-value pairs which can then be searched. Figure 2.3 shows an example of this.
In this table, we have five buckets, so all outputs are assigned their bucket “mod 5”. For
example, Bucket 1 contains both 6 and 21 which are linked in a chain.

This is a simple method and means that we can keep adding to the hash table if the
number of input keys increases. However, especially if the output distribution or collision
resistance were poor, we could end up with a very long chain in one bucket, next to wasted
space of unused buckets. This would practically negate the benefit of using hashing in the
first place, as it reduces the process to one more closely resembling a lookup.

To add an output to a hash table, we have to “walk along” the chain of the bucket to
which it hashed, and either add it to an existing slot if it matches, or add a new slot at the
end. Likewise, if we wish to retrieve a result from the table, we also walk the chain until
we either find the required output (successful search) or reach the end without finding it
(unsuccessful search). If we assume a random output with uniform distribution, we would
expect all chains to be roughly the same length of N/M where N = number of inputs and
M = number of buckets. Therefore a successful search should take the average of this
chain length, N

2M , whereas an unsuccessful search would require you to check the whole
N
M length. Obviously the worst hashing performance would result in all outputs hashing
to one bucket, thereby creating a list of length N, and requiring O(N) work.

Open addressing can only be used in instances where the number of buckets required
is unlikely to exceed the total number of items hashed. In open addressing, if the hashed-
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to bucket is full, the next bucket is checked, continuing in sequence until an empty slot is
found and used. When searching to retrieve an entry, the same sequence is followed until
either the target record is found, or an empty slot is reached which means that there is
no entry in the table to reflect that input.

The Load Factor is defined as the ratio of the number of objects hosted by the hash
table, to the total number of available buckets (N/M). When using separate chaining, the
load factor can exceed 1 without impacting much on performance. For a load factor of
close to 1, you would hope that each output would hash to a different bucket and hence
there would be no collisions so that, when searching for an output, there would be no
chains to traverse. However, we then have to question if this is the best use of memory.
Depending on the speed of your search, it may be a more efficient system overall to have
a load factor > 1 and concentrate on good distribution. Your table will therefore take up
much less space, and search time will hopefully be limited to N

M at worst.
For open addressing, a load factor of 0.5 is preferred. As the load factor gets close to

1, the performance of the hash table worsens and resizing may be necessary. If the load
factor reaches 1 and the table is therefore completely full, a search using open addressing
would never find an empty slot, and would end up in an infinite loop.

Generally, when a hash table needs to be resized, a new hash table double the size of
the existing one is created, and all original entries are rehashed and adjusted with the new
modulo M .

2.3.3 The link between minimizing empty buckets and good distribution

While collisions are inevitable in a hash table with a load factor > 1, we know that we wish
to minimize them. Out target is to have our outputs as evenly distributed as possible,
which would mean keeping both collisions and empty buckets to a minimum. Below, we
look at how minimizing the number of empty buckets is analogous to obtaining a uniform
distribution.

Consider the case where Xi is a random variable which takes the value 0 if nothing is
in bucket i, and 1 otherwise. Let pi be the probability of an output landing in bucket i.
We know nothing about the uniformity or otherwise of output distribution so we have no
expectation for pi.

If n = the number of input keys, and m =number of buckets, the chance of bucket i
ending up empty after n inputs is (1− pi)

n.
Therefore,

E[Xi] = 0.(1− pi)
n + 1.(1− (1− pi)

n)

i.e. we see either zero outputs in bucket i, or at least one. 4

= 1− (1− pi)
n

E[X] = E[X1 +X2 + · · ·+Xm]to cover all m buckets

If we now search for empty buckets, and recall that Xi = 0 if bucket i is empty, then,

E[empty buckets] = E
[ m∑
i=1

(1−Xi)
]

4Recall that the expectation of a discrete random variable X is given by E[X] =
∑

i iPr(X = i)
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E
[ m∑
i=1

(1−Xi)
]
= m−E

[ m∑
i=1

Xi

]
= m−

m∑
i=1

1− (1− pi)
n

= m−m+

m∑
i=1

(1− pi)
n

=
m∑
i=1

(1− pi)
n

How do we then minimize this number of empty buckets?
We use the Lagrange Multiplier [16].

In general terms, if we have a function f(x, y) and a constraint whereby g(x, y) = c,
the maximum and minimum values of the function f subject to the constraint g are the
places where g is tangent to f . Therefore, their gradient is parallel at these points, and
therefore we can say that ∇f(x0, y0) = λ∇g(x0, y0)
The Lagrange Multiplier can then be written as follows

L(x, y, λ) = f(x, y)− λg(x, y)

To find the gradient, we take the differential of L with respect to each variable and let
each equal zero.

Coming back to our example above, pi is now our only variable. So we can say

f(pi) =
m∑
i=1

(1− pi)
n

We know that the sum of the probabilities of all possible outcomes must total 1, i.e.∑m
i=1 pi = 1

Hence we can say that our constraint, g(pi) =
∑m

i=1 pi − 1 = 0
So in this case, the Lagrange Multiplier says

L(pi, λ) =
m∑
i=1

(1− pi)
n − λ

m∑
i=1

(pi − 1)

and when we differentiate this with respect to both variables we see

δL
δλ

= 1−
m∑
i=1

pi

δL
δpi

= n(1− pi)
n−1 − λ , for each possible pi

Setting each of these to zero, we see first that

1−
m∑
i=1

pi = 0

⇒
m∑
i=1

pi = 1

which was our original constraint.
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And,
n(1− pi)

n−1 − λ = 0 ⇒ n(1− pi)
n−1 = λ

⇒ (1− pi)
n−1 =

λ

n

⇒ pi = 1−
(
λ

n

) 1
n−1

As both λ and n are constant, all pi must be the same, which implies uniform distribu-
tion, from our initial aim of minimizing both collisions and empty buckets.

A similar argument could be used in order to minimise the time taken to search chains.
In this case, we start from the assumption that if Yi represents the average length of our
chain, then the expected time taken to find the correct entry will be Yi

2 . We can then say
that

E[Time taken to find entry in chain]

=
m∑
i=1

E[Time required | item is in chain i]Pr(item is in chain i)

which is based on the probability rule which says that

E[X] =
∑
y

E[X|Y = y]Pr(Y = y)

As we have said that the average time taken to find the correct entry will be Yi
2 , and the

probability of an entry being in bucket i is represented by pi, then

E[Time taken to find entry in chain] =
m∑
i=1

E

[
Yi
2

]
.pi

=

m∑
i=1

npi
2

.pi

=
n

2

m∑
i=1

.pi
2

We then use the Lagrange Multiplier as above, with the same constraint that
∑m

i=1 pi = 1
and we come to the conclusion that pi =

λ
n which is again a constant, and again supports

uniform distribution.

2.3.4 General Testing Methodology

Based on a number of publications, [15][17][18], there are four standard tests generally
used to measure and compare performance of non-cryptographic hash functions:

Distribution of Output

This is measured as a comparison between the observed distribution of the algorithm and
the expected distribution of a uniform output. There are a number of options which can
measure this, such as Pearson’s chi-squared test, the Bhattacharyya Distance (which mea-
sures the similarity of two probability distributions), or the Kullback-Leibler Divergence
(which measures the divergence between two probability distributions).
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Collision Resistance

A simple ratio of the number of collisions observed as a percentage of the total number
of tests ran. When testing using hash tables, these collisions are defined as two outputs
being mapped to the same bucket, rather than two distinct inputs hashing to the same
output.

Avalanche Effect

A matrix is created for every (i, j) pair representing the effect on output bit j following a
change to input bit i. The ideal is a 50% probability that each output bit j will change
following a change to input bit i.

Speed

Usually measured in time taken (ms) to hash a database a specified number of times,
often 1,000,000. This can be dependent on several things such as the CPU, quality of
code, optimisation level of compiler etc.

2.4 Summary

Having initially introduced the basics of cryptographic hash functions in this chapter, we
are now thoroughly in the world of non-cryptographic functions and hash tables. We looked
briefly at collision management and the associated importance of uniform distribution,
which we will return to in more detail in Section 4.1 before testing these properties in
Section 5.2.

We will outline our chosen methodology for each test in more detail in Section 4.1.
It would appear, at first glance, that the requirements of a uniform distribution, min-
imal collisions and a good avalanche effect are in fact nearly the same thing. A good
avalanche effect should ensure that even very similar inputs will produce totally different
outputs, which one would expect to equate to good distribution. And a good distribution
should ensure that the outputs are spread evenly amongst all buckets, thereby minimising
collisions!

Will a uniformly distributed algorithm ever result in very high collisions? Would
there ever be a case whereby a nearly perfect avalanche effect corresponded to a poor
distribution? We shall find out in Chapter 5.
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Chapter 3

The FNV Hash Algorithm Family

3.1 The FNV Hash Functions

One example of a non-cryptographic hash function family is FNV, of which the current
versions are FNV-1 and FNV-1a. These algorithms were created by Glenn Fowler, Landon
Curt Noll and Kiem-Phong Vo. We will provide further background detail in Section 3.2.
They were designed to be fast, while keeping collision rates low. They have extensive real-
world uses including, according to their IETF Draft [19], DNS servers, the Twitter service,
database indexing hashes, major web search / indexing engines, anti-spam filters and more.
The hashes have their own website [20] which also lists further uses. This website, plus
many other sources, also distinguish this algorithm from others, where sometimes only
scant information is available on their creation, structure, and implementation. As an
additional indicator of the widespread use of these algorithms, the FNV Primes (see detail
under heading “FNV Primes” on page 22) are extensively referenced on Github, which
is a collaborative code hosting platform. A search for the 32-bit FNV prime number (in
decimal form) gave 30,800 code file results on Github. A search for the next prime after
this number (16777633) produces just 47 results. A search for the 64-bit prime in decimal
format produced 4,500 results. Hence we will use the highly popular 32-bit algorithms in
our calculations.

We will start with a general overview of the FNV structure before delving into more
detail in the coming pages:

FNV algorithms produce a hash of various bit sizes (32-, 64-, 128-, 256-, 512- or 1024-)
depending on the availability of FNV primes.

FNV-1 has a simple structure, which could be thought of as a Merkle-Damgard struc-
ture with just one round:

• Set the initial hash value, h, to the “FNV Offset Basis”(see below section for details
on Offset Bases). This acts like an Initialisation Vector as introduced in Section 2.2

• For each byte of input, bi, first multiply h by the “FNV Prime” and then XOR it
with the input byte bi.

FNV-1a uses the same operations, but with the multiplication and XOR steps reversed.
See Algorithm 1 below for the 32-bit FNV-1 and FNV-1a pseudocodes.

Multiplication for both is performed modulo 2n where n is the bit length of the hash.
The XOR is performed on the lower 8 bits of the hash.
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Algorithm 1 Pseudocode for 32-bit FNV-1 and FNV-1a algorithms

Prime := 0x01000193
2: B[i] := ith input byte

4: procedure FNV-1
hash := 0x811c9dc5

6: i := zero

for each i in B[i] do
8: hash := hash * Prime

hash := hash XOR B[i]

10: i++

end for
12: return hash

end procedure

14: Prime := 0x01000193
B[i] := ith input byte

16:

procedure FNV-1a
18: hash := 0x811c9dc5

i := zero

20: for each i in B[i] do
hash := hash XOR B[i]

22: hash := hash * Prime

i++

24: end for
return hash

26: end procedure

FNV Offset Basis

The original FNV-0 algorithm had zero as its initial value, which meant that all empty
messages hashed to zero. FNV-0 is therefore no longer used as a hash, but rather is now
used to compute the FNV offset bases for FNV-1 and FNV-1a.

The offset bases for FNV-1 and FNV-1a are the hash (using FNV-0) of the ASCII
values of the following characters:

chongo < Landon Curt Noll > ∧..∧

This is the email signature of Landon Curt Noll, one of the creators of the algorithms,
and acts somewhat like an initialisation vector. It can also be considered a “nothing-up-
my-sleeve number” as described on page 10.

Some examples of lower order FNV offset bases in decimal / hexadecimal form are shown
in Table 3.1.

Table 3.1: Offset Bases for FNV

Offset Bases

Decimal Hexadecimal

32 bit 2166136261 0x811c9dc5

64 bit 14695981039346656037 0xcbf29ce484222325

128 bit 144066263297769815596495629667062367629 0x6c62272e07bb014262b821756295c58d

FNV Primes

The FNV prime is determined as follows:
Start with an integer s, 4 < s < 11. Then let

n = 2s

t =
⌊(5 + n)

12

⌋
(3.1)
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The n-bit FNV prime is the smallest prime number p which is of the form:

256t + 28 + b

for 0 < b < 28 , where the number of 1 bits in b’s binary representation is either 4 or 5,
and where p mod (240 − 224 − 1) > (224 + 28 + 27).

The reason that s is restricted to this range is that the hash quality using a smaller s
would be too low, whereas there is little need for a hash of such large size that choosing
s > 11 would create. Additionally, primes would be more sparse at this size. This range
for s creates n-bit hashes, with n ranging from 32 to 1024

The authors claim that the above criteria for FNV Primes results in better dispersion
properties, while the specification for the prime mod (240 − 224 − 1) to be greater than
(224 + 28 + 27) is to harmonize the FNV Primes across the range of 4 < s < 11 (see
Section 3.2 for more detail).

See Table 3.2 for some lower-order FNV primes in decimal / hexadecimal form.

Table 3.2: FNV Primes

FNV Primes

Binary Decimal Hexadecimal

32 bit 224 + 28 + 0x93 16777619 0x01000193

64 bit 240 + 28 + 0xb3 1099511628211 0x00000100000001B3

128 bit 288 + 28 + 0x3b 309485009821345068724781371 0x0000000001000000000000000000013B

If a hash-output is required in a non-standard size, XOR folding can be used to create
it. When XOR folding, one shifts the excess high order bits down, and XORs them with
the lower x-bits. In general, if a hash of k bits is required and k is not one of the sizes
for which the constants are provided, one should select the smallest FNV hash of a size
larger than k and then utilise XOR folding. For example, if we needed a 24-bit hash, we
would calculate a 32 bit hash and XOR fold in.

3.2 Interview

With my supervisor, I interviewed Mr. Landon Curt Noll on 5th April 2022. Mr. Noll
has a groundbreaking background in the area of prime numbers, having been the youngest
person to find the largest known prime in 1978 at age 18. He later found a second Mersenne
prime while studying number theory and was furthermore one of the “Amdahl Six” who
found what was at that time the largest known prime, which was significant in that it was
a rare non-Mersenne prime.

He has worked for years in the areas of security consulting and architecture, system
management, cryptography, random number testing, and others. He is the founder of the
International Obfuscated C Code Contest and was a member of the working group that
developed the IEEE POSIX standard.

Outside of his contributions to mathematics, computer science and physics, Landon
also has a keen interest in astronomy and has made astronomical observations during total
solar eclipses from every continent.
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Mr. Noll very kindly gave us some interesting insight into the creation of the FNV
hashes.

In our original email contact with Landon, we were enquiring about the early days of
FNV, as we had read on the online IETF draft that it had been based on

“an idea sent as reviewer comments to the IEEE POSIX P1003.2 committee
by Glenn Fowler and Phong Vo back in 1991. In a subsequent ballot round:
Landon Curt Noll improved on their algorithm”

We learned that the original comments to the 1991 POSIX committee were actually in
relation to sum commands, so FNV initially arose out of finding a better solution to these.
As further background, Landon mentioned that patents were a controversial topic at this
time, following the attempt by AT&T/Bell Labs to patent SetUID. One of the aims of
the authors of FNV was therefore that their algorithm should be “unpatentable”, along
with providing very good dispersion at high speed. Initial discussions between the three
authors of FNV were notated only on restaurant paper napkins, as the details of the FNV
primes were originally worked out. While Landon Curt Noll was involved in networking at
the time and obviously had a strong background in primes, Phong Vo had a keen interest
in linguistics. Distribution was measured mainly using real data sets, such as dictionary
words (English and non-English), IP addresses, website URLs, social media content and
chemistry & biology publications. In addition to speed, the authors also wanted similar
strings to give widely varying results, which could be measured using the above data types.
In Mr. Noll’s own words, the main goal was to “fail to suck”. . . .

We also asked Landon to expand more on the intricacies of the design of FNV, having
assumed that the primes they had chosen would have bit patterns likely to give pleasing
mixing properties. Landon started by explaining that XOR and multiplication were chosen
as being “orthogonally different” operators. The mixing function of XOR is complemented
by multiplication by a prime. A prime is preferable to a power of 2, as it will not be a
multiple of word size or bit pattern and will therefore avoid repeating patterns. For the
same reason, they avoided multiplication by square or cube roots: obviously if we chose
our multiplier to be a square root of bit size n, two runs through the program will result
in

√
n.
√
n and bring us right back to multiples of bit size.

The choice of criteria for the FNV primes was to ensure better dispersion and to ensure
they “propagated carries”. The authors decided that the optimal prime numbers would
have a small number of non-zero bits: a 1 bit roughly two-thirds of the way up, one at
the eighth bit, and a small number of 1 bits in the bottom 8. The 1-bit which is roughly
two-thirds of the way up should not be a multiple of the program bit-size (n).

The formula 256t + 28 + b where t = ⌊ (5+n)
12 ⌋ is designed to ensure this distribution of

bits.
For the example where b contains 4 “1-bits”, this formula can be considered as follows:

28t + 28 + 2b0 + 2b1 + 2b2 + 2b3

As the value of t is dependent on n, the bit-size of the FNV function, the formula for
t first ensures we do not have a multiple of bit size. 28t then gives us the required 1-bit
about two-thirds of the way up our prime. Multiplying by this 28t shifts the intermediate
FNV hash value up by several bytes. This means that the bottom bits of the intermediate
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hash values are moved up to populate the high bits, and will have a big multiplicative
effect after the next byte is XOR-ed in. By multiplying by 28, the intermediate FNV hash
value is shifted up by 1 byte. This moves the bits which were previously XOR-ed in up
1 byte, where they impact their immediate neighbour of the new octet being XOR-ed in.
Multiplying by b, (where 0 < b < 28 and b has 4 1-bits) means that the intermediate FNV
hash value is shifted up 4 times by between 1 and 8 bits. These will then interact with
the new octet being input. We can see the pattern achieved reflected in the hexadecimal
expression of the FNV Primes in Table 3.2 on page 23.

The final criterion for the FNV Primes of p mod (240 − 224 − 1) > (224 + 28 + 27) was
added to harmonise the choice of primes. After following the above-described criteria,
there were two primes available for one of the lower order hashes. Testing showing one
superior to be to the other and hence this additional requirement ensures that the correct
prime is chosen in this case.

The authors had originally planned to work only on small sized functions, but demand
for hash outputs of 128-bit and larger grew, and they expanded as far as 1,024-bit functions.
However going any larger than this would run into issues due to prime gaps and so is not
feasible. In fact, it has been found that there are no “FNV Primes” occurring between
211 and 220.

Separately, there has recently been an interest in exploring non power-of-two “FNV-
Style” primes, where the constraint that n = 2s is removed, and n can be any integer. For
example, the FNV-Style prime generated by n = 44 would be 4, 294, 967, 597 and could
potentially be used in the place of taking the 64-bit FNV hash and XOR folding.

Convolution

An interesting angle presented by Mr. Noll was the idea of convolution, where multipli-
cation can be considered in terms of an integral. Further detail on this is provided in
Appendix A.

If we consider the intermediate hash value and the FNV prime as two polynomials in
base 2 then, as in a Cauchy product where the sequences are polynomials, the coefficients
of the ordinary product of the polynomials are actually the convolution of the original two
sequences, i.e. ( ∞∑

i=0

aix
i

)
·

 ∞∑
j=0

bjx
j

 =
∞∑
k=0

ckx
k,where ck =

k∑
l=0

albk−l

Therefore our multiplication within the hash function can be considered a convolution
and could also be represented by an integral.

Sticky State at Zero

As the FNV hashes are based primarily on multiplication and XOR functions, they are
sensitive to the number zero; if the intermediate hash value were to become zero at any
point and additional inputs were all zero, the hash would not change thereafter. Landon
referred to this as the “sticky state” at zero. This characteristic makes it possible to find
collisions if you focus on obtaining a zero step at some point in the algorithm. This is
referenced in the most recent internet draft [19] which also mentions the possibility of
using an unknown FNV Offset value to protect against malicious collisions.
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A potential solution is to monitor the hash and take steps only if it enters this “sticky
state”. In this case, if the intermediate hash value at any point matched the previous
value, a constant would be added to the intermediate value. Landon suggested the this
constant could possibly be the FNV prime which has already been assigned in the program,
as its value is already in the register and would therefore not require additional space or
memory. It could be an interesting area of future study to examine the regularity with
which the sticky state is an issue, versus the cost in speed required to rectify it.

The Zero Hash Challenges

The authors of FNV have an ongoing competition which asks for the shortest binary data
sets found which produce a FNV hash value of zero for the various sizes of both FNV-1 and
FNV-1a. It has been found, for example, that the shortest binary data set for which the
32-bit FNV-1 hash is zero is 5 bytes in length, while FNV1-a can produce a zero output
with an input of just 4 bytes.

3.3 Operators

We can see from FNV’s pseudocodes above that multiplication is used in conjunction
with XOR. It turns out that this is a very common combination of operations in hash
functions. Why are these particular operations chosen above others? In general, there
are two methods to calculate a hash value from an input: calculations which change /
disrupt the data, and calculations which mix the data.

We look first at which operations will effectively change the data while avoiding col-
lisions. Consider addition and subtraction, and assume we are working mod 232. If we
allow x to be our initial value at any point, and k the data being read in, is there any j,
j ̸= k s.t. (x+ k)mod 232 = (x+ j)mod 232? Considering we know that k is an input byte
(and hence is 8 bits long), there cannot be a j which satisfies this. Hence we know that
addition as an operation should not result in collisions. There is a similar argument for
subtraction.

Multiplication and division do not perform so well. It’s clear that it is possible to have
more than one input which will give the same answer when multiplied by x and considered
mod 232. Also, any zero input will always result in zero. Division sees similar difficulties,
with the additional worry of dividing by zero. Multiplication and division are actually
thought of in terms of bit shift operations. For example, if we wish to multiply an integer
by 17, or (10001)2, we would shift its binary form left by 5 places and then add in the
integer itself again. This shift left can obviously lead to the high bits of our function being
lost. If we multiply our data mod 32, any bits shifted higher than the 32nd bit will be
lost. Similar is true for division, albeit shifted to the right.

Next, we consider Bitwise operations. There are three main operators here: BitwiseAnd,
BitwiseOr and Bitwise XOR.

We can clearly see from Tables 3.3 and 3.4 that BitwiseAnd and BitwiseOr would both
result in biased calculations, as 75% of their output is consistent. However BitwiseXOR,
as seen in Table 3.5, is a good candidate for a mixing function.

In practice, BitXOR can be considered as “addition without carries” or addition
mod 2. So if we require the effect of the operation to be confined to the length of the
input byte, XOR will ensure no contagion outside of this. On the flip side, the effect of
XOR-ing a byte into the hash function will only ever have an effect on the bottom 8 bits
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Table 3.3: BitwiseAnd: Behaves like (a× b)mod 2
0 1

0 0 0
1 0 1

Table 3.4: BitwiseOr: Returns 1 when either one OR both inputs = 1
0 1

0 0 1
1 1 1

Table 3.5: BitwiseXOR: Returns 1 when inputs are different
0 1

0 0 1
1 1 0

of the output. Hence we need to introduce a further step, to distribute this effect further
up the output.

Shift and Rotate are two common mixing steps. A shift left command pushes the chosen
number of bits to the left. It adds a zero at the end for each bit moved up, and any bits
which “spillover” at the top are lost. While a rotate command also pushes the bits to the
left, rather than losing the bits from the top, they are rotated back to the bottom. See
figures 3.1 and 3.2 to compare.

Figure 3.1: Shift Operation on 8 bits

Finally multiplication is also used as a mixing step. However the choice of multiplier
is important. Multiplying by a power-of-two will just equate to a bit shift. And we know
from above that, when considered mod 32, multiplication can easily lead to collisions. It
is for this reason that a prime number is almost always chosen as the multiplier. However,
it could be shown that any odd number could also give equal success in avoiding collisions:
We wish to ensure that there is a one-to-one relationship between our input and the hash
output. All invertible functions are one-to-one, and if a function is invertible then we can
say that for every a, there exists a b such that ab ≡ mod n. This only occurs when
gcd(a, n) = 1. Obviously, for any odd number a, we can say that gcd(a, 2x) = 1

While the pseudocode for the FNVs shown in Algorithm 1 above shows how they com-
bine XOR and Multiplication, we will see further on how the Murmur2 hash (Algorithm 3
on page 32) uses a significantly higher number of mixing steps.
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Figure 3.2: Rotate Operation on 8 bits

3.4 Summary

This chapter has given us a strong understanding of the FNV algorithms, from the pub-
lished details on how the FNV Primes and Offsets were created, to the more nuanced
background of why these particular criteria were deemed best by the authors themselves.
We received some very valuable insight into the background of FNV direct from Mr. Noll,
along with some interesting ideas and concepts. Finally, we also examined why certain
operators are favoured by many hash functions and how they interact with each other.

In the next chapter, we shall start the process of testing and comparing these hash
functions, by setting up our test framework.
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Chapter 4

Design of our Test Framework

In this chapter, we will look first at what we intend to test, and then how we will do so.
We wish to evaluate the performance of the FNV hash functions when used to populate
hash tables. We will therefore need sets of input data to feed to the algorithms, which
will then be distributed into our hash table. We will need to decide on the size of the
hash table and the load factor it should have. We will also need to introduce some peer
non-cryptographic hash functions in order to compare FNV’s performance.

What then will we measure? We have assumed, partly based on Section 2.3.3, that
the optimal distribution will be a uniform distribution. We will therefore use this as our
baseline. We will also measure collision resistance by observing the number of collisions
which occur, and the avalanche effect will be shown in matrix format.

4.1 Our Chosen Test Methodology

In order to rigorously compare these hash functions, we need to choose inputs which
present a wide variety of potential real-world uses, an appropriate load factor and hash
table size, along with a methodology for obtaining clear and reliable results.

Data Sets

We selected 4 data sets to use which are representative of a wide variety of potential
inputs.

1. Real Text: “Baby Names”
The top 1,000 Irish baby names for 2021 (the top 500 boys’ names and top 500 girls’
names), as per the Central Statistics Office [21]. Each input is just one name. As
each character is read as one byte of input, this will test functions with a range from
just 3 bytes (names such as Mia and Leo) up to our longest name of Christopher
with 11 bytes.

2. Real Bitstring: “IP Addresses”
32-bit strings composed of IP addresses taken from the log file of the personal web
server maintained by my supervisor, Dr. David Malone. These are all unique IPv4
addresses which had accessed the server in chronological order during 2015.

3. Synthetic Text: “Common Words”
Distinct strings of varying length each composed of 20 of the most commonly used
1,000 English words [22]
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4. Synthetic Bitstring: “Bias”
Strings comprising 999 0xfe bytes (11111110 in binary) with one 0xff byte which
moves along the input string by one place each time. This results in 1000 distinct
inputs heavily biased towards 1-bits, with significant repeating patterns.

These four will cover a wide range of possible inputs, from very short text to repeating
patterns, which should test most aspects of our functions.

Load Factor

We chose a load factor of approximately 2. This load factor will offer us the chance to
study collisions. Using our baseline assumption of uniform distribution, we would expect
most buckets to contain two items each but know that this level of uniformity is unlikely.
This load factor also represents a good result for a hash table, whereby one would hope
that searching for an entry would reduce from O(N) lookups to O(1).

Collision Management

We will utilise separate chaining and will measure the average length of chain, plus the
longest chain observed, for each bucket of our hash table.

Hash Table Size

We decided to use 1000 inputs as our base case which, with a load factor of 2, would give
us 500 buckets in the hash table. However, that gives rise to the question posed above
regarding the most suitable number format for a hash table; should it be a prime number,
a power of two, or indeed simply the number which gives an exact load factor of 2.

To determine the relevance of this choice on our tests, we will distribute the output of
each algorithm into hash tables of size (a) 500 (exact), (b) 499 (prime) and (c) 512 (power
of two).

Algorithms to Test

1. We will test the FNV-1 and FNV-1a 32-bit algorithms as outlined in Chapter 3.

2. As a comparison, we will also test DJBX33A, one of the simplest hash functions
available (see pseudocode 2 below). This function was created by Daniel J. Bernstein
and the name stands for “Daniel J. Bernstein, Times 33 with Addition”. As the name
would suggest, the hash simply takes the previous hash value, multiplies it by 33
and then adds in the input string. In our version, the initial hash value = 0, in the
way the algorithm appeared when first mooted by Chris Torek. In later versions,
and as outlined by Dan Bernstein, this initial value is set to 5381 [23]. We would
not expect the use of a different constant as IV to significantly alter performance
and this is indeed supported by our findings.

3. The Murmur2 32-bit hash [24], created by Austin Appleby in 2008, is widely used
and well known for its avalanche properties. The Murmur2 structure was originally
created using a mixture of multiplication and rotation, hence the name. However,
Austin Appleby found that multiply+rotate had a few major weaknesses when used
in a hash function, so he switched to multiply+shift+xor. He thought Murmur2 was
a better name than Musxmusx, so kept it.
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Murmur2 starts with an initialisation vector, which is based on the length of the
input XORed with a 32-bit seed number. There are two constants defined: an
unsigned 32-bit number defined as m, and an integer, r. The algorithm pulls in 4
bytes of input at a time, multiplies this by m, XORs the result with a shift by r, and
then multiplies by m again. The initialisation vector is multiplied by m, and then
the two results are XORed together. Any leftover bytes at the end are then XORed
in, before being multiplied by m.

Finally, there is one more mixing step to ensure the last few bytes are well incorpo-
rated, with XOR, shifts and multiplication. See pseudocode 3.

Murmur2 has since been improved further with Murmur3 [25] which is available in
32- or 128-bit versions and is now more commonly used.

Algorithm 2 Pseudocode for DJBX33A

B[i] := ith input byte

procedure DJBX33A
hash := 0
i := 0

for each i in B[i] do
hash := hash * 33

hash := hash + B[i]

i++

end for
return hash

end procedure

31



Algorithm 3 Pseudocode for Murmur2 algorithm
seed := user chosen random input

data := our input

length := length of input

h := seed XOR length

m := 0x5bd1e995

r := 24

procedure Murmur2
while(length >=4)

k := 4 bytes data

k := k * m

k := k XOR (k >> r)

k := k * m

h := h * m

h := h XOR k

data := data + 4

length := length - 4

EndWhile

For remaining bytes;

B[i] = ith byte of remaining data

if (length%4 >= 3); h:= h XOR B[2] << 16

if (length%4 >= 2); h:= h XOR B[1] << 8

if (length%4 >= 1); h:= h XOR B[0]

h := h * m

Finalisation Step;

h := h XOR h >> 13

h := h * m

h := h XOR h >> 15

return h
end procedure
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Distribution

We target uniform distribution to ensure an even distribution of outputs among the avail-
able buckets. Distribution will be measured using the chi-squared test, comparing the
distribution of outputs amongst the buckets of a hash table to a uniform distribution.

χ2 =

∑
(Oi − Ei)

2

Ei
,

where Oi = observed number of outputs in bucket i and Ei = expected number of outputs
in bucket i
Uniform distribution would imply that pi, the probability of landing in bucket i, is 1/(No.
of buckets). Therefore if N = the total number of observations made, we can also say that
Ei = N.pi

Collisions

There are two types of collisions which could be observed. In the first instance, we have
collisions whereby two inputs have resulted in identical hash outputs. We will refer to
these as “pure collisions” and will examine them a little further in Section 7.3. We would
expect (and hope!) for these to be quite rare and it would require a large volume of inputs
to find them.

Because we are focusing on non-cryptographic hashes which are feeding a hash table,
our main concern will be with collisions within the hash table, i.e. collisions mod M , where
M = the size of our hash table. These collisions will be measured simply as the number
of collisions observed per bucket. We will also measure the length of collision chains.

Avalanche

A good avalanche effect means that for every change to an input bit i, every output bit j
should change with 50% probability. This is mooted as being important to create a more
random-looking output and also to ensure that similar inputs are not mapped to similar
outputs. We may question the importance of these qualities when all results are in. We
should also note that this idea of a change to an input bit resulting in 50% probability of
a change to an output bit could be achieved by using simple linear operators, and hence
would be useless for cryptographic purposes.

Based on the work done by Bret Mulvey[2], we will build an avalanche matrix. The
code we used to create the matrix entries is outlined in Algorithm 4. Each entry of this
(i× j) matrix will be defined by a colour:

• Green =⇒ toggling input bit i resulted in a change to output bit j approximately
50% of the time.

• Red =⇒ the effect of toggling input bit i was a change to output bit j either 0%
or 100% of the time.

• Yellow =⇒ a change of roughly 25% or 75%.

See Section 5.1 for precise details of how each matrix entry will be coloured.
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Speed

The speed of these (and other) algorithms have been measured by many previous studies,
for example [26] and [15]. We wished to focus more on the quality of the hash output, to
examine collisions, study why certain patterns are seen and whether a uniform distribu-
tion is a good approximation. Hence we did not attempt to measure the speed of these
functions.

Algorithm 4 Pseudocode for Avalanche Test
Trials:= 10000

INPUT SIZE:= 4

OUTPUT SIZE:= 4

hashfn: = our chosen hash function

procedure Avalanche 32 x 32
for(i = 0; i<INPUT SIZE*8; i++)

for(j = 0; j<OUTPUT SIZE*8; j++)

h[i][j] == 0

for(Numtrials = 0; Numtrials < Trials; Numtrials++)

input:= Character input array of size[INPUT SIZE]

for(i = 0; i<INPUT SIZE; i++)

input[i] == randomly generated byte of input data

hash:= hashfn(input)

for(int i = 0; i<INPUT SIZE*8; i++)

input[i/8] XOR (1<<i%8]

/* This flips one bit, the flipped bit shifting by 1 place each time */

newhash:= hashfn(input with bit flipped)

input[i/8] XOR (1<<i%8]

/* This flips the bit back */

Output:= hash XOR newhash

/* Compare the original hash output to the hash of the input with one bit flipped */

for(j = 0; j<OUTPUT SIZE*8; j++)

if Output !=0 then h[i][j]++

/* If the output bit has changed, the XOR will equal 1 and we add it to our h[i][j] count */

for(i=0; i<INPUT SIZE*8; i++)

for(j=0; j<OUTPUT SIZE*8; j++)

printf(h[i][j])

end procedure

4.2 How many collisions should we expect?

First, we do need to bear in mind that, for hash tables, a uniform distribution is impossible
to achieve unless either the load factor is less than one (and empty buckets are ignored)
or else the number of buckets exactly divides the number of inputs. Likewise, collisions
are inevitable once the load factor is higher than one.

As we are using separate chaining (see Figure 2.3 on page 16), any collisions will result
in the formation of a chain.

For the case where we distribute outcomes amongst 500 buckets, the average fill of
each bucket should be 2, based on 1000 trials and assuming a uniform distribution. This
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can be represented as a classic “balls and bins” problem as often seen in probability theory
[27].

Balls and Bins

Assume we have n balls which are thrown randomly and independently into m bins. Given
that the probability that a ball lands in any one bin is 1

m , then the probability of a bucket
containing r balls after all n balls have been thrown can be given as follows:(

n

r

)(
1

m

)r(
1− 1

m

)n−r

=
1

r!

(n(n− 1)(n− 2)...(n− r + 1)

mr

(
1− 1

m

)n−r

When n and m are large compared to r, this can be approximated to:

1

r!

(
n

m

)r

e−n/m (4.1)

Considering that we expected the average fill of any bucket to be equal to n
m , we can call

this our expected mean, and consider a Poisson Distribution [28].

A Poisson Distribution is a discrete probability distribution which expresses the prob-
ability of a given number of events occurring in a fixed interval if these events occur
independently, with a known constant mean rate.

The Poisson Distribution is represented as

P(X = k) =
λke−λ

k!

where k is the number of occurrences and λ equals the expected value of X.
This obviously has the same form as equation 4.1 above when λ = n

m . If we consider
that our expected mean when we distribute 1,000 outputs among 500 buckets is λ = 2,
we can use this to estimate the probability of each bucket ending up with k inputs, where
k = 0, 1, 2, ...

P(X = 0) = 0.135

P(X = 1) = 0.27

P(X = 2) = 0.27

P(X ≥ 2) = 1−P(X = 0)−P(X = 1) = 0.59

Therefore, based on 500 buckets, we expect 68 buckets (13.5%) to be empty, 135 buckets
(27%) to have one entry, and 297 buckets (59%) to have collisions of two or more entries.
We will compare these expectations to the results found later in Section 5.2.

4.3 Summary

In this chapter, we have chosen and justified our choices for our data inputs, the algorithms
we wish to compare, and the techniques we will use to do so. We will use three different
bucket sizes in order to judge the relevance of selecting a prime number vs a power of two,
or indeed if it matters at all. We have also laid the groundwork for the results we would
hope to see, assuming the Poisson Model. In the next chapter, we will see how closely the
actual results reflect the expectation.
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Chapter 5

Tests & Results

We can now use our chosen test methodology to examine each hash function in detail,
starting with Avalanche testing.

5.1 Avalanche

Avalanche effect differs from Distribution and Collision Resistance in that it is traditionally
measured independent of the underlying data. This makes sense as we do not particularly
care about the actual output, rather the focus is on how the output changes when input
bits are changed. We will therefore use a random 4-byte input when measuring this metric.
Out of interest, we did also run the tests using our chosen data sets; results are shown in
Appendix B.

In this section, we will measure the avalanche performance of FNV-1 and FNV-1a, with
comparisons to the other algorithms. The performance will be shown in the form of a
matrix, whereby

• A green square represents a change to output bit following a change to the input bit
with a probability of between 45% and 55%

• An orange square represents a change to output bit with a probability in the range
25% - 45% or 55% - 75%

• A red square represents changes which occur with either less than 25% or more than
75% probability

This was measured over 10,000 trials, using randomly generated 32-bit inputs.

5.1.1 The Mechanics

To measure the avalanche effect, we will toggle one bit of our input at a time and, for each
change, we will measure how many bits in our output hash changed from the original.

We will consider FNV-1a first, as it is the recommended version to use, and start with
the most basic input: one byte.

In Figure 5.1, each row represents one bit of our input byte. Each column shows how
the output bits (32-bit output as we are using FNV-1a 32-bit hash) changed when the
input bit was toggled.

As an example, the first (top left) entry shows the when input bit i7 was toggled, it
affected output bit j0 0% of the time, over 10,000 trials. Changing i7 invoked a change in
j7 100% of the time, while it caused a change in j8 50% of the time.
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Figure 5.1: FNV-1a One byte Avalanche

What is actually happening?

The FNV-1a hash starts with the offset basis, then reads in the byte of input, and XORs
them together. The offset basis in this case is 0x811c9dc5 and is 32 bits in length (recall
Table 3.1). However, as our input byte is only 8 bits in length, it is only the 8 lowest bits
of the offset basis which are affected at this stage. We then multiply by the FNV prime,
which has a cluster of 1’s in the lowest 8 bits, but then only has two further 1-bits in the
higher 24. (Recall: FNV 32-bit Prime = 224 + 28 + 10010011)

Now, we toggle one bit of the input, and XOR this new input byte with the offset basis,
again affecting only the lowest 8 bits. At this stage, the only difference to the output will
be the toggled bit, 2k, 0 ≤ k ≤ 7. After we then multiply by the FNV prime, the new
hash result will have higher order bits which are identical to the original hash, as the bit
toggle has not affected them. In fact, assuming some limited carries above the one-bit at
28, multiplication by the FNV prime should produce no differences to any bits in the top
half at all.

Let’s now consider the difference between the two hashes by subtraction (which is
similar to XOR). Without loss of generality, let’s say that we toggled bit 4, or 23. Hence
the total difference between the two hashes would be 23×p, where p = FNV Prime, which
could also be written as 227 + 211 + 210 + 10011000.

As the two hashes will always be identical for bits of lower significance than the toggled
bit, their difference will always be zero, hence they change 0% of the time. The toggled
input put will change the output bit 100% of the time. The section above this bit which
has a mixture of 0s and 1s will show a good mix of outputs, continuing beyond 211 due
to carries. However there is then a sizable gap until we reach 227 meaning that output
changes are minimal. When we reach 227, the output will change with 100% probability,
being just as bad as 0%. Likewise, the very topmost bits are never affected, meaning that
the top half of the output has very poor avalanche. This can clearly be seen in Figure 5.1

FNV-1a with larger input sizes

Performance will obviously improve for larger inputs. Even by just increasing to a 2 byte
input, it means that we have run the algorithm twice, and therefore the first byte to be
read in will have been multiplied twice by the FNV prime. Looking at p2, we can see
that the highest bit in p, 224, will become 248, which equates to 216 when we consider it
mod 232. Hence we now have a flipped bit at 219 (when we multiply by our toggled bit, 23)
where there was none previously. However, as we multiply by powers of 2, we do see a lot
of repeating patterns start to emerge. For example, while we saw 224 squared become 216,
28 squared will also become 216 which will then flip the bit back! So while the avalanche
is improved around the middle bits, the performance remains poor on the fringes.

Next we look at the standard 32× 32 matrix, by reading in 4 bytes of data.
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Figure 5.2: FNV-1a 32 x 32 Avalanche

In the 4-byte example (Figure 5.2), we can see how Byte 1 at the bottom, which has
now run through the algorithm four times, shows significantly more green squares than
Byte 4, the last byte to be read in.

Specifically for the low order bits, the issue remains that no bit lower than the toggled
bit will ever change, regardless of the number of input bytes, as the XOR between the
initial hash output and the toggled hash output will always produce only zeros below the
toggled bit. These zeros obviously won’t be changed when multiplied by the prime. This
is what gives us the distinctive “sawtooth” pattern seen in the low order bits.

Why do we read the matrix from the bottom?

You will notice that we measure avalanche from the end of the input, i.e. the first bit of
the first byte read in is the final row entry. This is in order to compare inputs of varying
length side-by-side. As can clearly be seen in Figure 5.2, after going through four rounds of
operations, the first byte entered is now quite well mixed and producing a good avalanche
matrix (apart from the lowest-order bits as discussed above), while Byte 4, which was the
last byte to be introduced, is still very poor. Measuring from the end allows us to compare
avalanche graphs of varying sizes (for examples of this, see Appendix B where we used our
various data sets as inputs). Figure 5.3 shows how performance improves from the last
byte in red, be it Byte 6 or Byte 3, in equal measure per byte.

Figure 5.3: Measuring matrices of varying length from the end
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Figure 5.4 shows how, if we measured from Byte 1, the comparison between outputs
of different length would not be so clear.

Figure 5.4: Measuring from Byte 1

Comparison to FNV-1

The performance of the FNV-1 hash is significantly worse in the special case of a one-byte
input. As the order of operations is the reverse of FNV-1a, the first step in this hash is to
multiply the offset basis by the prime. This is then XORed with the input byte. Obviously
then, when we toggle a bit in the input byte, the result from the first step (offset × prime)
remains identical, whereas the second step will differ only by that toggled bit. Hence we
see a sea of zeros apart from one 1-bit we toggled which changes with 100% probability,
giving us an entirely red 8× 32 matrix.

The pattern of the two byte input for FNV-1 closely resembles that of the one-byte
input for FNV-1a, as it’s only by the time we reach the second input byte that p × 2k is
the difference. In fact, the entire matrix for FNV-1 appears “one byte behind” that of
FNV-1a.

Figure 5.5: FNV-1 32 x 32 Avalanche

Comparison to DJBX33A

Why are these functions exhibiting poor avalanche behaviour, especially in the case where
multiplication is the first operation done? To compare, we looked at another hash function
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which relies heavily on multiplication: DJBX33A.
Similar to FNV-1, the first step in this hash is multiplication. However while FNV-1
starts from an initialisation vector multiplied by a prime, DJBX33A starts from zero and
multiplies by 33. Hence the first run of the algorithm actually just adds the input byte
to zero. So in our one-byte example (see Figure 5.6), the hash actually produces just the
input byte itself. So when we toggle one bit in the input, the resulting hash will reflect the
same, and the difference between the two will just be this toggled bit and zero everywhere
else.

Figure 5.6: DJBX33A One byte Avalanche

Likewise, regardless of the number of bytes of input, the difference between the original
hash and the toggled hash will always be zeros below the toggled bit, giving the same jagged
pattern as FNV in the lowest level bits. In relation to higher level bits, its performance
is significantly worse than both FNVs, as it multiplies by 33 (or 00100001) rather than a
32-bit prime. Hence, even with some carries, the impact of multiplication will take a very
long time to reach any bit in the top half.
Where this hash differs from the FNVs however is that when the input size increases, the
avalanche improves slightly for all bytes, including the final one to be read in. Why does
it differ in this way? This is due to the use of addition rather than XOR in conjunction
with multiplication. While XOR will only either flip the bit or leave it alone, addition can
result in a carry, which gives the distinctive red-green-orange pattern seen in Figure 5.7.
As with FNV, a toggled input bit ik will toggle the corresponding output bit jk with
100% probability. However, due to the addition carries, bit j(k+1) will switch with 50%
probability, and bit j(k+2) will switch with roughly 25% probability and so on.

Note: To be confident in proceeding with the version of DJBX33A which utilises zero
as the initial value, we examined how the avalanche behaviour would change if we used IV
= 5381 as suggested by D. Bernstein instead (see description in Subsection 4.1 on page
30. As we can see in Figure 5.8, the difference is minimal, so we use IV = 0 for all future
calculations.

Comparison to Murmur2

For contrast, we then ran the Murmur2 hash.
As seen in the pseudocode on page 32, Murmur2 involves a much more thorough mixing

step than any of the other algorithms. This creates a highly randomised looking function
which translates to a fairly perfect avalanche effect as seen in Figure 5.9.

We should note that Murmur2 differs from our other functions in that it pulls in four
bytes of data at a time. For inputs of less than 4 bytes, these mixing steps are bypassed
and essentially only the finalisation step is applied to the input. However, because even the
finalisation step involves XOR, shift and multiplication, the one-byte input still produces
an relatively acceptable avalanche performance — see Figure 5.10.
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Figure 5.7: DJBX33A 32 x 32 Avalanche

A quick look at FNV-1a 64-bit hash

As a final point of interest in this section, we examined the pattern displayed by using
FNV-1a 64-bit hash function. While we will only use 32-bit hashes in our testing, we
wished to check if the results seen so far would extrapolate to 64-bit hashes. As you
can see in Figure 5.11, the same patterns do repeat, almost looking just like the 32-bit
algorithm (Figure 5.2) run twice.
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Figure 5.8: DJBX33A 32 x 32 Avalanche with IV = 5381

Figure 5.9: Murmur2 32 x 32 Avalanche

Figure 5.10: Murmur2 One byte Avalanche
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Figure 5.11: FNV-1a 32 x 64 Avalanche
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5.2 Distribution and Collisions

To run these tests, we created a program which took each of our chosen data sets as input,
hashed the data using each of the four algorithms described above, and calculated the
result mod M , where M is the number of buckets. We tested for various choices of M :
M = 500 (load factor of exactly 2), M = 499 (a prime number close to 500) or M = 512
(a power of two close to 500).

For each data set, we noted how many outputs ended up in each bucket and we
counted the number of collisions (i.e. buckets with more than one item), the number of
empty buckets and also the length of the chains in buckets with two or more entries.

Distribution is assessed by the chi-squared p-value, which can be thought of as the
probability of obtaining a chi-square value as large as was found but with the data still
supporting the hypothesis, i.e. the probability of obtaining these results assuming the null
hypothesis (uniform distribution) is true.

The following tables show the results of these tests. Each input data set has a separate
table. Taking the Baby Names data set (Table 5.1) as an example, we can see that the
results are shown in three “panels”, the first using 500 buckets, then 499 buckets and finally
512 buckets. For each of these bucket sizes, we show first the number of collisions that
were observed. We then measure the chain length where collisions occurred, showing both
the average length of chain, and the longest chain observed. Next we counted the number
of buckets which received no outputs. Finally, to measure uniformity of distribution,
we show the chi-squared p-value. This value is a probability measure, so it will read
between zero and one. A high probability is supportive of the null hypothesis, which is
uniform distribution. For example, if we look at the results when the Baby Names data
set was hashed using FNV-1 and distributed among 500 buckets (highlighted in yellow),
we see that there were 69 empty buckets, alongside 297 collisions. Recall that the Poisson
Distribution (Subsection 4.2) suggested we should expect to see 68 empty buckets and 297
collisions, so our results for this particular test are very accurate. The longest chain was
7 outputs long, while the average chain length was 2.92. The chi-squared p-value of 55%
is supportive of the null hypothesis.

Any notable outlying results are highlighted in red across all tables.
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Table 5.1: Top 1000 Baby Names in Ireland, 2021: Distribution and Collision Resistance

500 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 309 297 277 290

Average Chain Length 2.86 2.92 3.04 2.96

Longest Chain 7 7 7 9

Empty Buckets 75 69 64 68

Chi-squared p-value 0.37 0.55 0.08 0.07

499 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 292 304 291 301
Average Chain Length 2.97 2.87 2.93 2.91
Longest Chain 8 7 9 7
Empty Buckets 74 66 62 73

Chi-squared p-value 0.04 0.75 0.52 0.45

512 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 297 304 294 294
Average Chain Length 2.83 2.85 2.94 2.94
Longest Chain 6 8 7 7
Empty Buckets 56 74 83 81
Chi-squared p-value 0.99 0.61 0.17 0.16
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Table 5.2: Permutations of the 1000 Most Common English Words: Distribution and
Collision Resistance

500 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 301 298 298 293
Average Chain Length 2.85 2.90 2.91 2.94
Longest Chain 6 6 6 9
Empty Buckets 57 66 69 69

Chi-squared p-value 0.94 0.73 0.47 0.04

499 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 300 304 294 302
Average Chain Length 2.91 2.86 2.92 2.88
Longest Chain 8 8 8 7
Empty Buckets 73 63 63 67
Chi-squared p-value 0.20 0.79 0.35 0.70

512 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 299 292 290 291
Average Chain Length 2.87 2.91 2.93 2.93
Longest Chain 6 7 7 7
Empty Buckets 71 70 73 74
Chi-squared p-value 0.94 0.65 0.14 0.46
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Table 5.3: Synthetic Bit String Biased (87.5%) Towards 1-bits: Distribution and Collision
Resistance

500 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 232 223 286 125

Average Chain Length 4.25 4.37 2.98 8.00

Longest Chain 10 11 7 17

Empty Buckets 254 251 65 375

Chi-squared p-value 0 0 0.25 0

499 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 293 298 293 292
Average Chain Length 2.97 2.91 2.97 2.94

Longest Chain 7 6 10 8
Empty Buckets 76 68 76 66

Chi-squared p-value 0.06 0.64 0.02 0.25

512 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 256 256 307 16

Average Chain Length 3.91 3.91 2.82 62.50

Longest Chain 4 4 8 63

Empty Buckets 256 256 71 496

Chi-squared p-value 0 0 0.58 0
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Table 5.4: IP addresses: Distribution and Collision Resistance

500 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 315 310 291 308
Average Chain Length 2.76 2.79 2.99 2.78
Longest Chain 6 8 9 6
Empty Buckets 53 54 79 49

Chi-squared p-value 1.00 0.99 0.01 1.00

499 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 306 311 303 314
Average Chain Length 2.84 2.77 2.83 2.77
Longest Chain 6 6 7 6
Empty Buckets 61 49 54 55
Chi-squared p-value 0.98 1.00 0.98 1.00

512 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 313 308 298 299
Average Chain Length 2.73 2.79 2.86 2.84
Longest Chain 6 7 7 7
Empty Buckets 54 62 66 61
Chi-squared p-value 1.00 1.00 0.82 0.95
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5.2.1 Are these results in line with expectations?

First, I think we can clearly see that the results from the Bias Data Set are problematic,
particularly when combined with a bucket size of 500 or 512. Leaving that data set aside
for now, and considering only Tables 5.1, 5.2 & 5.4 none of the hash functions appear
to have performed significantly better than the others. Murmur2, which had such good
avalanche results on page 42, seems to have performed on par with the other functions
when it comes to distribution and collisions. For example, taking the Baby Names data
set (Table 5.1) we can see that Murmur2 has the lowest number of empty buckets when
distributed among 500 in total, but has a worryingly low p-value in this section. By
contrast, when distributed among 512 buckets, Murmur2 actually has the highest number
of empty buckets but sees the lowest number of collisions (along with DJBX33A). So there
are no clear winners or losers when it comes to distribution and collisions.

Let’s briefly compare these results to the expectations from the Poisson Model we
outlined in Section 4.2 on page 34. To summarise the results above, Table 5.5 below
shows the maximum, minimum and average values for the number of Empty Buckets,
Collisions and Chain Length when distributed among 500 buckets (excluding the Bias
data set).

Table 5.5: Summary of results for 500 buckets

Empty
Buckets

Maximum 79
Average 64
Minimum 49

Collisions
Maximum 315
Average 299
Minimum 277

Longest
Chain

Maximum 9
Average 7.2
Minimum 6

Recall that expected values from the Poisson Distribution were that we should expect
to see 68 empty buckets, 135 buckets with one entry, and 297 buckets with collisions when
divided among 500 buckets 1 in total. Hence the average number of collisions and empty
buckets observed in Table 5.5 are in line with expectations.

Questions arising from these results

While we may be able to say that the averages of our results for three of our four data
sets are in line with expectations, that glosses over a number of more interesting outcomes
that we see when we look in more detail. We enumerate these below:

1. The most striking result is obviously the complete collapse of the multiplicative
hashes (FNV-1, FNV-1a and DJBX33A) when tested using the synthetic bit-string
Bias data set combined with a non-prime bucket size. See Table 5.3. Here we can
see that the every result for DJBX33A is very poor when combined with 500 or 512
buckets. Both of the FNV functions also struggled with 500 and 512 bucket sizes,

1Appendix C shows the results for 499 and 512 buckets, both of which also closely matched the approx-
imations.
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particularly showing high numbers of empty buckets and extremely low p-values.
Murmur2 performed significantly better for this data set.

2. The choice of a prime number seems to have little impact on results for all data sets
with the exception of the Bias set. Why did this data set struggle so much whereas
the others didn’t? And was it, in fact, the use of a prime number which made the
difference or was it more simply the fact that the number was odd?

3. Also of interest was the apparent disconnect between avalanche performance and
distribution, as outlined above. Despite the prowess of the Murmur2 algorithm in
avalanche testing, it generally performed no better than the other hashes when tested
for distribution and collisions, especially when using the text-based data sets.

4. Do our results imply a uniform distribution? We would expect the number of empty
buckets, for example, to follow a normal distribution. If we consider a confidence
level of 90%, all fields highlighted in red in the above tables would fail. Even at
a confidence level of 95%, not all results would support the null hypothesis. How
concerning is this?

5. It would appear that the results of FNV-1a and FNV-1 are identical when run using
the Bias data set and distributed among 512 buckets. Why is this?

6. In the data set of IP Addresses (Table 5.4), the p-values achieved by the “multiplica-
tive hashes” (FNV-1, FNV-1a and DJBX33A) seem suspiciously perfect, achieving
between 95% and 100% for all bucket sizes. Why do they perform so consistently
well with this data set?

We will explore each of these questions in detail in the following chapter.
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Chapter 6

Analysis of Results

In the previous chapter, we presented the results of our avalanche and distribution testing
alongside the collision resistance of four hash functions, across four different input types,
and three differing bucket sizes. Whilst we saw that the averaged results were roughly in
line with expectations, there were a number of interesting outcomes which warrant further
investigation. We will explore each of these in detail below.

6.1 Why do FNV-1, FNV-1a and DJBX33A perform so
poorly when using the Bias data set?

First, we need to consider the input. The code used to create this data set gives a string of
“fe” hexadecimal characters, apart from one “ff” entry which moves along by one place
for each line.

So the first input will start with the following 4 bytes: fffefefe, and will continue
with 0xfe bytes to the end of the 1, 000 byte string. The second input will then start with
fefffefe and will continue with 0xfe bytes to the end of the 1, 000 byte string. The very
last input string will consist of 999 0xfe’s before a 0xff as the final byte.

In binary form, 0xfe = 11111110 while 0xff = 11111111. So almost every byte taken
into the hash function is 11111110 in this case.

How does this behave when combined with the hash algorithm?
If we take FNV-1a initially, the algorithm starts with the FNV Offset, which is an odd
number. It then XORs this with the first byte. Assuming it starts from the end of
the string, this first byte will be 11111110 which will have the effect of flipping each of
the bottom 8 bits, except the last one. Hence we still have an odd number. This is
then multiplied by the FNV Prime, obviously another odd number. This result will be
XORed with the next byte, which is again 11111110 and multiplied by the prime again.
Hence, until we reach the 0xff byte somewhere in the string, all steps will result in an
odd number. We will then see this switch to an even number whenever the single 0xff

(or 11111111) is XORed in, which will then be maintained into the final result, giving us
an even output for every line of input. This means that, when we consider the results
mod 500 or mod 512, no odd numbered buckets will ever be filled. This is clear from the
results table, as roughly half of the buckets are always left empty.

DJBX33A will suffer from the same general repeating pattern, considering its multiplier
is also an odd number. However, the fact that the overall function is significantly more
simplistic means that the results are even worse. DJBX33A actually hits every 4th bucket
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when distributed among 500 in total. Unlike the FNVs, it is odd-numbered buckets which
are filled. However when we use 512 buckets, the outputs are hitting only 16 buckets in
total, sending 62/63 results to each, leaving gaps of 32 empty buckets between each filled
one and giving a total tally of 496 empty buckets!

What is causing this pattern?
When we consider the mechanics of DJBX33A, the main operation is multiplication

by 33. Multiplying a byte of input by 33 is the equivalent of shifting it 5 places to the left,
and adding the original byte. This is clear from the binary representation of 33: 00100001.

So, as each byte is read in, it is added to the intermediate hash value and then, when
multiplied by 33, everything is shifted left by 5 places and the new byte is added on again.
This means that the bottom 5 bits are preserved.

In the Bias data set, every byte is identical apart from one. So everything below the
shifted byte is simply the addition of the final 5 bits of 999 fe’s and 1 ff for every input
line. Hence the bottom 5 bits will be identical for each hash.

DJBX33A Hash = (((InitialV alue ∗ 33) +Byte0) ∗ 33 +Byte1) ∗ 33 + ...

To see the bottom 5 bits of this, we consider it mod 32:

= ((IV ∗ 33)mod 32 +Byte0(mod 32)) ∗ 33mod 32 +Byte1(mod 32)) ∗ 33mod 32 + ...

= ((IV ∗ 1)mod 32 +Byte0(mod 32)) ∗ 1mod 32 +Byte1mod 32)) ∗ 1mod 32 + ...

= (IV +Byte0 +Byte1 + ...)mod 32

In our case, the Initial Value is zero1, hence what we see is

= (Byte0 +Byte1 +Byte2 + ...)mod 32

Which is why only every 32nd bucket is filled. The bottom 5 bits are basically the sum of
the input bytes mod 32, which is constant for this data set.

The same argument holds for distribution among 500 buckets, however in this case we
know that gcd(500, 32) = 4, hence it’s every 4th bucket which is filled.

6.2 What effect does the use of a prime number have on
distribution and is the fact that it is prime actually the
pivotal factor?

First, we must point out that the use of a prime number of buckets appeared to have little
effect on the distribution seen in three of our four data sets. The Bias data set however
made clear that it can offer benefits in breaking the patterns caused by some input types.

In the point above, we investigated why the repeating pattern of the Bias data set
caused so many difficulties for the multiplicative hashes combined with even numbered
buckets. We can see that these hashes all performed better when combined with a bucket
size of 499. Is this due to the fact that 499 is a prime number or, in fact, it is simply that
it is odd?

To check, we looked at a sample set of all bucket sizes between 496 and 516. Using
the FNV-1a hash combined with the Bias data set, we examined the number of empty
buckets found, along with the p-values for each. See figure 6.1 for results.

1Although we used an IV of zero, the use of a different constant would not change the effect seen
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The number of empty buckets (grey line, axis on right hand side) bounces very regularly
between a minimum of 60 and a maximum of 263. The Poisson Model would suggest that
the number of empty buckets should range from 68 (for 496 total buckets) to 74 (for 516
total buckets). In general however, when the number of buckets is an even number, only
even-numbered buckets were filled, meaning that half of these were left empty as explained
in Section 6.1 above. Therefore using an even number of buckets results in between 227
and 263 buckets being left empty, while an odd number of buckets sees much better results
of 60 to 81 empty buckets.

P-values however tell a more interesting story.
What is fascinating is that the highest p-values (i.e. the most supportive of the null

hypothesis of uniform distribution) are observed when using 507 or 513 buckets, both of
which are composite numbers. Furthermore, the two lowest p-values are seen when using
bucket sizes of 499 and 509, both of which are prime numbers!

Although we had wondered if composite odd numbers might perform as well as primes,
we had not expected to see them outperform. Perhaps, after all this time, the debate over
prime number vs power-of-two could be reduced to a simple even vs odd question...
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Figure 6.1: FNV-1a P-values and Empty Buckets Obverved for 496 - 516 Buckets

Is there a reason why 507 had the highest p-value while 499 and 509 were so low? This
is an outstanding question which could warrant further investigation. One explanation we
considered was around the order of the group generated by 2 when considered mod 507
or mod 509. As a reminder, the order of a group is the number of elements contained in
that group. It can also be considered as the smallest positive integer m such that am = e
(where e denotes the identity element of the group).

For example, the order of the group generated by 2 is quite different when considered
mod 7 or mod 9:

20 = 1 (mod 7) 20 = 1 (mod 9)
21 = 2 (mod 7) 21 = 2 (mod 9)
22 = 4 (mod 7) 22 = 4 (mod 9)
23 = 1 (mod 7) 23 = 8 (mod 9)

24 = 7 (mod 9)
25 = 5 (mod 9)
26 = 1 (mod 9)

Order = 3 Order = 6

We had wondered if perhaps the group generated by 2 mod 509 would wrap around
to repeat values faster than the group generated by 2 mod 507. However that does not
appear to be the case, and both groups have unique values all the way to 232.

6.3 Why are we seeing a disconnect between avalanche per-
formance and distribution?

This was a very interesting result — we had expected that a good avalanche would imply
a good distribution. However, when we look into the structure of Murmur2, it becomes
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clearer why these are not actually equivalent. Looking at the pseudocode of Murmur2 on
page 32, we see that k is initially set to the 4 bytes of data which have been read in. The
following three lines of code are invertible mixing steps, which mix the data around to
create a more random looking input. It is not until the final two lines of the initial part of
the code that h is incorporated and when one looks at this part of the code, it looks very
familiar...Step 1: multiply an initialization vector by a prime, Step 2: XOR with the data.
It is, in fact, identical to FNV-1! So it could be said that, up to this point, Murmur2
is basically FNV-1 following an additional mixing of input data. How would Murmur2’s
performance compare if these mixing steps were removed? Graph 6.2 shows Murmur2’s
Avalanche results with the mixing step removed.

Figure 6.2: Murmur2 with Mixing Step Removed 32 x 32 Avalanche

The difference is quite striking when we compare to the original Murmur2 Avalanche
graph on page 42. There are now a significant number of red entries and some interesting
patterns emerging. The mixing step is therefore obviously crucial to Murmur2’s excellent
avalanche performance.

The above graph only considered the removal of the mixing steps at the start of the
Murmur2 algorithm. The finalisation step is now the interesting part: how important is
this step in Murmur2’s performance? As the Bias data set was the only one for which
Murmur2 produced significantly better distribution and collision results, we examined if
the addition of a finalisation step would have improved the performance of FNV-1 on this
data set.

Table 6.1 compares the original performance of FNV-1 with the new result of FNV-1
combined with Murmur2’s finalisation step, using the Bias data-set. We show the results
distributed over 500 and 512 buckets, both of which were challenging for FNV-1.

The adjustment immediately brings both the number of collisions and empty buckets
back to the levels we would expect for a normal distribution, and the p-values agree
with this. I think we can therefore be confident that the finalisation step produces a
significant improvement in performance and this could be what makes the difference in
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Table 6.1: FNV-1 with Murmur2’s Finalisation Step
500 Buckets

FNV-1 Original FNV-1 with Finalisation

Number of Collisions 223 308
Average Chain Length 4.37 2.82
Longest Chain 11 8
Empty Buckets 251 60
Chi-squared p-value 0.00 0.85

512 Buckets

FNV-1 Original FNV-1 with Finalisation

Number of Collisions 256 300
Average Chain Length 3.91 2.89
Longest Chain 4 6
Empty Buckets 256 80
Chi-squared p-value 0.00 0.67

giving Murmur2 those superior distribution and collision results when using the Bias data
set. However, it is the initial mixing step which creates the winning avalanche performance.
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6.4 Can we say with confidence that we see a normal dis-
tribution when we look at the distribution of empty
buckets?

As we can be quite confident that the Bias data set does NOT result in a normal distri-
bution, it is excluded for this analysis.

Why do we expect to see a normal distribution for the three remaining data sets? As
discussed briefly in Section 4.2 on Balls and Bins, we can say that, when outcomes are
considered to be random and independent, each bucket has the same probability, p, of
receiving an output and therefore the same probability of being left empty: q = 1 − p.
Assuming that each hash output is distributed independently, we can now think of the
number of empty buckets we see in terms of a binomial distribution. If we have M total
buckets, and q is the probability of an empty bucket, we can then say that

P[seeing k empty buckets] =

(
M

k

)
qk(1− q)(M−k)

In cases where the sample size is large enough, the Central Limit Theorem tells us that
the distribution of the binomial becomes approximately normal. We therefore considered
the Cumulative Distribution Function of the number of empty buckets, and compared it
to that of a normal distribution. The CDF measures the probability of seeing up to a
certain number of buckets:

P[X ≤ k] =

⌊k⌋∑
i=1

(
M

i

)
qi(1− q)(M−i)

Considering the Baby Names, Common Words and IP Addresses data sets, across
499, 500 and 512 buckets, Graph 6.3 shows the CDF of our observed results versus that
of a normal distribution. The chart measures the number of empty buckets on the x-axis,
starting from 39 (3 standard deviations below the mean) to 92 (3 standard deviations
above the mean) with a mean of 66.

As you can see, the distribution of our observed results (grey line) closely follows that
of the normal distribution (orange line).

6.4.1 Detailed Statistical Inspection

To give us more confidence than just a visual representation, I considered the Anderson-
Darling test for normality [29]. This test measures if a given sample of data is drawn from
a specific probability distribution, in our case the normal distribution.

AD = −n− 1

n

n∑
i=1

(2i− 1)[ln(F (Xi) + ln(1− F (Xn−i+1)]

where n = number of data points in the sample, Xi is the ith data sample when sorted
from smallest to largest, and F (X) is the cumulative distribution function for the specified
distribution.

The result showed an AD = 0.314 which is well inside critical values for all significance
levels. This statistic is generally used to compute a p-value which, in our case, was 0.53,
giving us no reason to doubt that we have a normal distribution.
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Figure 6.3: CDF: Observed results vs normal distribution

What about our outlier results?

If we review the results across the Baby Names, Common Words, and IP Addresses data
sets, we can see three p-values which would imply a rejection of the null hypothesis,
assuming a confidence level of 95%. Is this enough to make us believe that we do not have
a normal distribution?

When conducting a large number of tests simultaneously, there is an increased chance
of making a “Type I” error, i.e. rejecting the null hypothesis when you should not. In
other words, as the number of tests done increases, so too do the chances of coming across
a significant result purely by chance.

In our results above, we can apply a correction method to ascertain if the significant
results are still significant when considered in terms of the number of tests being performed.

The Bonferroni Correction [30] is used to reduce the chances of making a Type I
error. It does this by adjusting the “family-wise-error rate” across our “family” of tests to
bring it back to what the individual significance level would be for one test. The family-
wise error rate is the probability of making at least one Type I error among ALL the
hypothesis tests when performing multiple tests.

When using the Bonferroni Correction, each hypothesis is therefore evaluated at a
significance level adjusted for the number of tests, i.e. α

m , where α = significance level and
m = number of tests.

Considering the three relevant data sets above and using a confidence level of 95%, we
therefore need to compare the p-values to 5%

36 = 0.0014. It can immediately be seen that
none of our p-values would be considered significant when using this correction.

Bonferroni Correction is considered to be quite a conservative method, and may be
susceptible to Type II errors, i.e. failing to reject the null hypothesis when in fact there
are enough significant results to suggest that you should. We therefore also considered
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the Benjamini-Hochberg Procedure [31] which is used to control the False Discovery
Rate (FDR), i.e. the expected proportion of “discoveries” (significant results) which are
actually false positives.

With this method, we first choose a value for the FDR: 10% is the lowest which is
commonly used, often rates up to 25% are seen. We then find the largest k such that
p(k) ≤ k

m .Q, where p represents the observed p-values, m is the number of tests done, and
Q is our chosen FDR.

In practice, we rank the results by their p-value and then compare these p-values to
Rank
m .Q, which is referred to as the critical value. We find the largest p-value which is less

than its critical value and ALL p-values which are ranked above this (i.e. lower p-values
/ higher rank) are considered significant, regardless of whether their own p-value is less
than or greater than their critical value.

We can see in Table 6.2 below that none of our p-values are less than or equal to the
Benjamini-Hochberg critical value when using a FDR of 10%. In fact, this also holds true
when tested using a FDR of 25% and so we fail to reject the null hypothesis.
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Table 6.2: Benjamini-Hochberg Procedure Ranking

p-value Rank FDR BH Correction

0.01 1 10% 0.0028

0.04 2 10% 0.0056

0.04 3 10% 0.0083

0.07 4 10% 0.0111

0.08 5 10% 0.0139

0.14 6 10% 0.0167

0.16 7 10% 0.0194

0.17 8 10% 0.0222

0.20 9 10% 0.0250

0.35 10 10% 0.0278

0.37 11 10% 0.0306

0.45 12 10% 0.0333

0.46 13 10% 0.0361

0.47 14 10% 0.0389

0.52 15 10% 0.0417

0.55 16 10% 0.0444

0.61 17 10% 0.0472

0.65 18 10% 0.0500

0.70 19 10% 0.0528

0.73 20 10% 0.0556

0.75 21 10% 0.0583

0.79 22 10% 0.0611

0.81 23 10% 0.0639

0.94 24 10% 0.0667

0.94 25 10% 0.0694

0.96 26 10% 0.0722

0.98 27 10% 0.0750

0.98 28 10% 0.0778

0.99 29 10% 0.0806

0.99 30 10% 0.0833

1.00 31 10% 0.0861

1.00 32 10% 0.0889

1.00 33 10% 0.0917

1.00 34 10% 0.0944

1.00 35 10% 0.0972

1.00 36 10% 0.1000
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6.5 Why are the results for FNV-1 and FNV-1a identical
when using the Bias data-set combined with 512 buck-
ets?

As outlined in point 1 above, FNV-1a’s starting point is the FNV Offset, which is an odd
number. It then XORs this with the first byte, 11111110, the result of which will still
be an odd number. This is then multiplied by the FNV Prime, obviously another odd
number.

Although FNV-1 does these steps in different order, it still produces an odd number,
as the Offset × Prime will be odd, and then XORing with 11111110 will not change that.

Therefore, it follows the same pattern of only hitting every even-numbered bucket
when distributed among either 500 or 512 buckets, giving an identical distribution.

6.6 Why do all hashes except Murmur2 achieve nearly per-
fect p-values on the IP Addresses data set?

The first possible explanation we considered was that IP Addresses is the only data-set
which is exactly 4-bytes in length. This would not work quite so well for Murmur2, as this
hash takes in data 4 bytes at a time, meaning that the algorithm is only running once.
FNV-1, FNV-1a and DJBX33A take in one byte at a time, which means that they run
exactly 4 times with the IP addresses as input.

There is also the fact the IP addresses already appear quite random — perhaps this
negates the benefit of Murmur2’s mixing function? In fact, they appear as a 32-bit random-
looking sequence, almost like the output of a hash function! I wonder how these would be
distributed without being hashed?

Table 6.3: Distribution and Collision Resistance of UNHASHED IP Addresses

UNHASHED

500 buckets 499 buckets 512 buckets

Number of Collisions 280 303 122
Average Chain Length 2.99 2.87 7.57
Longest Chain 7 6 202
Empty Buckets 57 67 315
Chi-squared p-value 0.40 0.90 0.00

As we can see from Table 6.3, the results seen when we distribute the unhashed IP
addresses among 499 or 500 buckets are actually quite comparable to the distribution &
collision resistance of hashed outputs observed in Section 5.2. Likewise, the p-values seen
are very acceptable. However, when combined with 512 buckets, the performance falls
apart: not exactly surprising that it should struggle more with the power-of-two bucket
size. Perhaps the inputs are not as random as we first thought.

How does it compare to the hash of a Random 4-byte input?

Next, let us see if a truly randomly generated 4-byte input would produce similar results
to what we saw when we hashed the IP Addresses data set: see Table 6.4
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Table 6.4: Distribution and Collision Resistance of Random 4-byte Data

500 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 298 287 300 296
Average Chain Length 2.92 2.98 2.85 2.94
Longest Chain 8 8 8 6
Empty Buckets 73 69 54 73

Chi-squared p-value 0.43 0.04 0.93 0.49

499 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 296 296 284 291
Average Chain Length 2.90 2.88 3.05 2.92
Longest Chain 7 7 9 7
Empty Buckets 60 55 80 57

Chi-squared p-value 0.76 0.85 0.00 0.52

512 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 299 300 305 303
Average Chain Length 2.89 2.90 2.86 2.84
Longest Chain 7 7 7 7
Empty Buckets 78 83 78 70
Chi-squared p-value 0.54 0.33 0.61 0.73

The nearly perfect p-values we observed in the original analysis are not seen when
using randomly-generated 4-byte inputs, and the number of empty buckets has increased.
So what is it about the structure of IP addresses that makes them behave so well for
FNV-1, FNV-1a and DJBX33A?

Sequential Input Data

When examining the data set in more detail, we noticed quite a high frequency of sequential
inputs. See Table 6.5 for example. When examining these IP addresses, it became clear
that these accesses were in fact web crawlers, probably a cluster of machines. Could this
sequential nature of the input have an impact? Even without the example of web crawlers,
the structure of IP addresses would mean that it could indeed be common to have the
higher bits repeating regularly; in basic terms the most significant bits of the IP address
represent the assigned network, while the least significant bits the host identifier. It would
be quite conceivable for a website to often see a high number of hits from within the same
network. These inputs would represent a real-world example of where hash functions need
to deal with inputs differing by only a small number of bits.

It is clear that FNV-1a suffers from a number of repeating patterns for this sample of
inputs. For example, the third from left hexadecimal digit of the output is always 9, the
fourth is always a and, for all bar two of the results, the first character is e. Which shows
that the first three bytes of the input being identical has carried through to the top two
bytes of the output.
In fact, the pattern persists even as far as the fifth digit of the output, which is always
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Table 6.5: Example of Sequential Input lines from IP Addresses Data Set

IP Address Hexadecimal FNV-1a Hash Murmur2 Hash

220.181.108.80 0xdcb56c50 0xe49a38c6 0x162466a3

220.181.108.81 0xdcb56c51 0xe59a3a59 0x8e1d95f7

220.181.108.82 0xdcb56c52 0xe29a35a0 0x527f6193

220.181.108.83 0xdcb56c53 0xe39a3733 0x845d8035

220.181.108.84 0xdcb56c54 0xe89a3f12 0x5dc18a76

220.181.108.85 0xdcb56c55 0xe99a40a5 0x04774fe3

220.181.108.86 0xdcb56c56 0xe69a3bec 0xbc9bd96c

220.181.108.87 0xdcb56c57 0xe79a3d7f 0x98c35aa7

220.181.108.88 0xdcb56c58 0xec9a455e 0xffa835df

220.181.108.89 0xdcb56c59 0xed9a46f1 0x2f46efde

220.181.108.90 0xdcb56c5a 0xea9a4238 0x10e3332b

220.181.108.91 0xdcb56c5b 0xeb9a43cb 0x8c6beb04

220.181.108.92 0xdcb56c5c 0xf09a4baa 0x0cfb95d6

220.181.108.93 0xdcb56c5d 0xf19a4d3d 0x1b446648

220.181.108.94 0xdcb56c5e 0xee9a4884 0xcf9bf437

220.181.108.95 0xdcb56c5f 0xef9a4a17 0xb95ebde4

either 3 or 4. Also of note is that whenever the input is odd, the FNV-1a output is also
odd and the same for even inputs. So the final digit of output is influenced by the input
too.
When examining the full 1,000 line input to see if the patterns from this sample can be
extrapolated to the whole input, we found the following:

1. The data set contains 361 inputs which are part of a sequence, with the sequence
lengths ranging from 2 up to 25 lines.

2. The FNV-1a hash of every sequence sees repeating patterns similar to those above.
In all hashed sequences, the 3rd and 4th digit remain constant, while the first and
fifth digits are chosen from a restricted number of possibilities.
When we consider the pattern of the FNV prime (reminder: the FNV primes were
chosen to have a 1-bit roughly two-thirds of the way up, one at 28, and a small
number in the bottom 8) this pattern makes some sense. The third and fourth
hexadecimal digits appear to fall within the zeros below the topmost 1-bit, the same
bit which affects the second, and occasionally the first digit.

3. 81% of sequential inputs see even/even or odd/odd matching between the input and
FNV-1a hash. The non-sequenced part of the data set only sees this matching 47%
of the time, which is comparable to the result of 49% for the Random 4-byte data
set.

So it appears that the sequential inputs are affecting the performance of the FNV-1a
hash. To determine if it is definitely due to this pattern of sequences rather than any
other characteristic specific to IP addresses, we sourced a second data set, again of 1,000
IP addresses from the log file of the personal web server maintained by Dr. David Malone.
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This data set was from 2023 and contained only 124 sequenced inputs, the vast majority
of which were no more than 3 lines long.

The distribution of these IP addresses looked very different, see Table 6.6 below.

Table 6.6: Distribution and Collision Resistance for Data Set: New IP Addresses from
2023

500 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 300 289 294 295
Average Chain Length 2.91 2.97 2.95 2.87
Longest Chain 8 7 7 8
Empty Buckets 72 69 73 53
Chi-squared p-value 0.43 0.21 0.29 0.96

499 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 291 294 297 305
Average Chain Length 2.93 2.91 2.88 2.87
Longest Chain 7 8 9 8
Empty Buckets 61 61 57 69
Chi-squared p-value 0.70 0.839 0.48 0.30

512 Buckets

FNV-1a FNV-1 Murmur2 DBJX33A

Number of Collisions 290 284 294 291
Average Chain Length 2.91 2.95 2.88 2.96
Longest Chain 8 8 8 6
Empty Buckets 66 67 66 82
Chi-squared p-value 0.44 0.20 0.69 0.36

So I think we can be confident that the sequences are the cause of the above-average
p-values seen in Table 5.4. Why should it be the case that repeating patterns actually
improve the distribution?
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Why would sequential input improve hash performance?

Let’s first think about the format of our input.
The sequential entries have the following form, with each letter representing a byte of

data:
A.B.C.X0

A.B.C.X1

A.B.C.X2

A.B.C.X3

.

.

.
Now think about how the multiplicative hashes work in general. We’ll use FNV-1a as the
example but it can be applied to all.

hi+1 = (hi ∧ bi) ∗ p

where h = intermediate hash value, bi = the ith byte and p = FNV Prime.

Each of these operations are invertible, hence we could work out hi if needed as follows

hi = (hi+1 ∗ p−1) ∧ bi

Likewise, bi could be calculated if we knew hi and hi+1:

bi = (hi+1 ∗ p−1) ∧ hi

So, in general terms, we can say that the hash functions can be represented as follows

hi+1 = fbi(hi)

and because we have shown they are invertible, it must be possible to say that

hi = f−1
bi

(hi+1)

We know from set theory that a function is invertible iff it is bijective, and if a function f
is a bijection f : X → Y , then for each element of X there is exactly one element of Y .
Considering that h0 = FNV Offset, and assuming that we read b0, b1 and b2 in order as A,
B and C as described above, then h3 (as the intermediate hash value following the input
of the 3rd byte) will show identical output for each line of the sequential input.
From the above, we can also say that h3 = f−1

b3
(h4) where f is a bijection.

Therefore, if we know that h3 is identical for each line, the only way that h4 could also be
identical is if b3 were non-distinct.
As we know that each of b3 are distinct, each h4 as the final hash output must be too. Even
better, the fact that we know the final two hexadecimal digits in particular are distinct,
combined with the hash switching from even to odd with each input line, will also aid
distribution throughout the hash table. So we can say that the high number of sequences
in our original IP Addresses data set has actually improved its distribution performance.
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6.7 Summary

From a relatively short list of observations, we explored a lot in this chapter, with results
sometimes leading us in unexpected directions! Having dug into the mechanics behind the
hash functions, we could see why they would not combine well with the Bias data set or
similar, due to the repeating patterns. We learned why Avalanche and Distribution are not
necessarily related (and will explore this more in Section 7.1) and highlighted two points
which I had not seen referenced previously: the assertion that an odd number of buckets
can produce at least as good results as a prime number, and that highly correlated inputs
(sequential IP addresses) can, in fact, improve the uniformity of distribution of the hash
outputs. Some of these ideas could be expanded further, with the investigation around
odd vs prime buckets remaining an open question for now.

In the next chapter, we leave the specific test results behind and look at some more
general ideas which caught our interest while researching and testing.
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Chapter 7

Observations on Results,
Revelations and Arising Questions

7.1 Is Avalanche really a relevant metric?

The importance of a good avalanche effect is obvious for cryptographic hash functions.
As an example, refer to Table 6.5 on page 63 which shows some of the sequential input
lines from the IP Addresses data set along with their hash values using both FNV-1a and
Murmur2. The repeating patterns in the FNV-1a hash would make it relatively easy for
an attacker to gain some knowledge of the input, whereas the Murmur2 hash outputs are
much more random and so potentially more secure.
However, when we examined the distribution pattern of both hashes, there was very
little difference in performance for the majority of data sets. Is Avalanche actually a good
indicator of high quality non-cryptographic hash functions, or has it migrated from the
cryptographic world, and just been generally accepted? We looked at a number of papers
to see where references to Avalanche as a criterion for non-cryptographic hashes may have
originated.

1. The paper “Novel Non-cryptographic Hash Functions for Networking and Security
Applications on FPGA” [18] states that

“Non-cryptographic hashes for applications such as Bloom filters, hash
tables, and sketches must be fast, uniformly distributed and must have
excellent avalanche properties”

They cite two papers in support of this ([32] & [33]) but, strangely, neither paper
actually mentions Avalanche.

2. In a paper mentioned previously, “Performance of the most common non-cryptographic
hash functions” [15], the authors state that

“According to the hashing literature, the most important quality criteria
for NCHF are collision resistance, distribution of outputs, avalanche effect,
and speed”.

They go on to say that:

“Avalanche effect....is very important for NCHF. A hash with a good
avalanche level can dissipate the statistical patterns of the inputs into
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larger structures of the output, thus generating high levels of disorder and
preventing clustering problems.”

There are three sources cited for the latter statement.

(a) The first source is a book self-published by Valloud: “Hashing in Smalltalk:
Theory and Practice” [34]. Valloud says the following in relation to Avalanche.

“Although the avalanche test is quite popular, note that...it says noth-
ing of the distribution of the actual hash values. In particular, it is
quite possible to construct hash functions of horrific quality that nev-
ertheless effortlessly achieve general avalanche”

We referenced this point briefly on page 33 where we pointed out that perfect
avalanche could be achieved by using simple linear operators.

Valloud goes on to state that

“This leads to an extremely important conclusion: employing a scheme
which produces seemingly random bits does not necessarily imply nor
guarantee that such output will be of good quality when used as hash
values”

(b) The second source referenced is a paper called “Empirical Evaluation of Hash
Functions for Multipoint Measurements” [35]. While this paper does emphasise
the importance of a good avalanche effect, the paper itself is attempting to find
which hash functions are specifically suitable for hash-based packet selection.
The authors state that

“Random selection techniques have the advantage to select an unbiased
and representative subset of the population.”
“Hash-based selection is a deterministic selection based on the packet
content. Therefore it is by definition very likely that the selection is
biased”

The stated aim of the paper is as follows:

“The target quality is to emulate random packet selection with hash-
based packet selection”.

Hence it’s clear to see how the mixing property of avalanche would be important
to this specific target, i.e. emulating a random output.

(c) In the third paper, “Hashing Concepts and the Java Programming Language”
[36], it does state that

“Two criteria weed out most candidates for a satisfactory Java lan-
guage library hash function”

and the first of these is given as

“Adequate mixing test: The algorithm must guarantee that a change
in any single bit of a key should result in an equally probable change
to every bit of the hash value”.

However, the author goes on to make an important distinction and again comes
back to a search for a randomised result:

“A proposal for hash search was described by Hans Peter Luhn in an
IBM technical memorandum in 1953. What he wanted was a function
that would deliberately abuse keys producing practically the equivalent
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of the mathematical concept of uniformly distributed random variables.
Luhn’s goal for producing uniform randoms is one approach, but often
in computer science the goal of getting a completely even distribution
has been substituted for it. The change in goal is significant and leads
to two completely different lines of research both of which are com-
monly called ‘hashing’. Creating even distributions can only be done
by considering the structure of the keys, so the method can never be
‘general’. However creating random uniform distributions can be done
without respect to the structure of the key, and so it can be provided
as a standard part of a language library. The word ‘hashing’, as used
in this paper, refers only to the goal of producing a uniform random
distribution of a key set.”

This presents a very interesting view, albeit one from 1996. It differentiates
clearly between two separate aims which can be achieved by hashing: creating
a randomised output, or a well distributed output. Again, avalanche is vital
only for those in search of a random result.

Another publication from 1996 also references Avalanche: “Applied Cryptog-
raphy” by Bruce Schneier [37]. These early references to avalanche seem to
describe a slightly different effect to what we understand today. In Applied
Cryptography, when describing the DES (Data Encryption Standard) system,
Bruce Schneier references an “expansion permutation” which “expands the right
half of the data, Ri from 32 bits to 48 bits”. The cryptographic benefit of this
is described as follows:

“By allowing one bit to affect two substitutions, the dependency of the
output bits on the input bits spreads faster. This is called an avalanche
effect. DES is designed to reach the condition of having every bit of
the ciphertext depend on every bit of the plaintext and every bit of
the key as quickly as possible”

3. In the third paper we found, entitled “An Enhanced Non-Cryptographic Hash Func-
tion” [17], it says that

“The most essential features of non-cryptographic hash functions is its %
distribution, number of collisions, performance, % avalanche and quality”.

When stating that

“The criteria for optimization is based on the assertion that, with hash
functions, there should be equal probability with the generation of each
output and a little change in inputs, must result in a huge change in
outputs”

the paper referenced in support of this [38] is written by none other than the authors
of “Performance of the most common non-cryptographic hash functions” referenced
in point 2 above, with the same supporting sources.

Conclusion

Based on the above sample of evidence, it would seem that Avalanche is an important
criterion, but only for a very specific form of non-cryptographic hashing which targets
randomisation rather than distribution. The references which are cited in support of
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avalanche being an important metric for non-cryptographic hash analysis actually either
state the opposite (such as Valloud’s book [34]) or only apply to very specific requirements
(Robert Uzgalis’ paper [36]).

7.2 Choice of bucket size depends on algorithm used

Our investigation in Section 6.2 indicted that, when using FNV-1a with a small sample
size, any odd number of buckets would give distribution at least as good as a prime
number, while even numbers struggled. However, there may be a different view when it
comes to highly randomised algorithms, like Murmur2, or indeed if we somehow had a
working random oracle (see description on page 14).

Think of the random-style output of Murmur2, as seen in Avalanche Graph 5.9 on
page 42. We know that, as for all hash functions, the output size is always a power of
2 as CPU registers are almost always a power of two in size. (Our tests used the 32-bit
version of Murmur2 but 64-bit is also available). Therefore, logically, a highly randomised
power-of-two output should distribute nicely among a power-of-two number of buckets.
In fact, its distribution would be more uniform than trying to distribute among an odd /
prime number, into which it cannot divide evenly.

As an easy example, consider an output of every permutation of just 3 bits that
is uniformly distributed. Each bit can be either 0 or 1, so we have 23 combinations.
Every combination has an equal one-eighth probability of occurring, so our output is
totally random and would show perfect avalanche. Traditionally, a prime number would
be considered the best way to ensure good distribution. However, our 8 random outputs
obviously have no way to divide evenly into, for example, 5 buckets.

This also introduces an interesting concept called modulo bias [39]. This is easiest to
see when shown in an example:

Say we have 32 random outputs (represented by [0, 31]) and wish to distribute them
uniformly among 6 buckets. We would therefore consider each output mod 6. Let’s look
at how these will end up when distributed mod 6.

Table 7.1: Distribution of 32 Outputs mod 6

0 mod 6 0 6 12 18 24 30

1 mod 6 1 7 13 19 25 31
2 mod 6 2 8 14 20 26
3 mod 6 3 9 15 21 27
4 mod 6 4 10 16 22 28
5 mod 6 5 11 17 23 29

Bucket 0 and Bucket 1 have one more entry than the others, due to the modulo
distribution. This will always be the case, and will always affect the lower numbers,
unless the output divides evenly into the number of buckets. We can also say that the
probability of an entry being in Bucket 0 or Bucket 1 is 6

32 whereas the other 4 buckets
have a probability of 5

32 , which does not give us uniform distribution.

In general terms, if we have M buckets, k uniformly distributed outputs (which each
have a 1

2n chance of occurring), and ki outputs map to bucket i to achieve uniformity, we
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would like to be able to say that the probability of landing in a particular bucket is

1

M
=

ki
2n

which would imply that 2n = kiM However, if we know that M is not a power of two,
this creates a contradiction.

We can therefore conclude that the prime / odd number of buckets is only required in
cases where patterns need to be broken. For algorithms which already show no discernible
pattern, or are highly randomised, a bucket size which is a power-of-two may be the best
choice. Hence the choice of bucket size is not a unilateral one, it should be considered in
conjunction with the choice of algorithm, which in turn may need to be chosen based on
expected input type.

7.3 Generating Collisions for FNV

As previously discussed in Section 4.1 on Collisions (page 33), there are two types of
collision. While we have previously focused on collisions within a hash table, here we
consider collisions caused by two distinct inputs which produce the same hash output. We
asked ourselves how easy it would be generate such a collision and started by considering
very small inputs. FNV-1a showed zero collisions when tested using an input of every
possible 2-byte permutation (216 = 65, 536 inputs). How large an input would we need
before seeing collisions? Let’s look at it theoretically first.

7.3.1 Theory of Collisions

Start with a k-byte input, A, comprising bytes a1, a2, ..., ak. Assume we have hashed this
and produced a hash digest, called HA.
We now need to find if there exists a second input, B, made up of bytes b1, b2, ...bl which
could also produce the hash output HA.
Let’s assume first that we have hashed the first (l − 1) bytes of B and have produced an
output, x. Therefore, we hope to hash the final byte, bl and produce HA as the final hash
output, i.e.

fbl(x) = HA

Setting this function f to be FNV-1a, this becomes

(bl ∧ x)× p = HA

As discussed in in Section 6.6 (specifically page 65), each of the operations used in FNV-1a
are invertible. Therefore, this can be written as

bl = (HA × p−1) ∧ x

But here we run into a slight problem: We know that x, p and HA are all 32-bit numbers.
However, our byte, bl, is only 8 bits long. Therefore, we know that the first 24 bits of the
right hand side of the above equation must be zeros. If we are willing to assume that x is
uniformly distributed over all 232 values, the chance of the first 24 bits being zero is 1

224
.

We had the freedom to choose the previous b1, b2, ..., bl−1 bytes in any way we chose,
therefore there are 28(l−1) routes to get here. The chances that none of these combinations
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give us the collision we seek is (1− 1
224

)2
8(l−1)

and therefore the probability that we see at
least one collision is

1−
(
1− 1

224

)28(l−1)

It’s clear that this will vary significantly based on the value of l. Graph 7.1 below shows
how the probability of finding at least one collision moves in line with the number of bytes
hashed.

Figure 7.1: Probability of Finding Collisions

The graph shows that the probability of finding a collision when hashing three bytes
or less is effectively zero. Increasing to 4 bytes brings this up to approximately 63.212%
probability, while we have 100% probability of being able to find at least one collision
when we reach 5 bytes.

To get an approximation for where the transition in Figure 7.1 occurs, we could rewrite
the above result as

1−
(
1− 1

224

) 224

224
.28(l−1)

and when we compare it to the limit

lim
m→∞

(
1− 1

m

)mx

→ e−x

we can see that, taking m = 224 gives us

1−
(
1− 1

224

) 224

224
.28(l−1)

≈ 1− e−28(l−1)−24
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These formulae can also be extended to larger bit sizes.
If we take n to be the bit size of our hash function, the formulae are adjusted as follows

1−
(
1− 1

2(n−8)

)28(l−1)

≈ 1− e−28(l−1)−(n−8)

≈ 1− e−28l−n

This equates to (1− e−1) = 0.63212 at exactly the points where 8l = n. If you recall that
l is our number of input bytes, while n is the bit-size of the output hash, this means that
collisions can only occur where input and output size match.

When we look at the graph of the results for the 64-bit and 128-bit versions of FNV-1a,
we see the same pattern again.

Figure 7.2: Probability of collisions for 64-bit and 128-bit FNV-1a

If we summarise with a small table of results, the pattern is clear to see.

Table 7.2: Probabilities of collisions by input size

Probabilities of collisions by input size

Approximate
Probability

32-bit 64-bit 128-bit

0% 3 7 15
63% 4 8 16
100% 5 9 17

Based on this data, you would expect that the 256-bit hash would have a 63% prob-
ability of finding a collision with an input size of 32 bytes, and when checked using our
method, that proves to be true.
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Link to Zero Hash Challenges?

If we compare these results to what the “Zero-hash challenges” described on page 26 are
finding, we saw that the shortest binary data set for which the 32-bit FNV-1a hash is
zero has been found to be of length four, while the shortest binary data set for which the
64-bit FNV-1a hash is zero is of length 8. This clearly matches well with what we saw in
Figures 7.1 & 7.2 and Table 7.2 above.
When we think about it, if we can generate collisions by choosing the final byte to match an
existing hash output, why should this output not be set to zero using the same calculations?
i.e. finding a collision and finding a zero hash should take equal work.
No results have yet been found for the 128-bit FNV-1a hash zero challenge but, based on
our findings above, it seems likely that that the shortest data set to produce a zero result
would be 16 bytes in length.

7.3.2 Considering Collisions More Generally

In this section, we will look at the idealised scenario — almost as though we had a random
oracle (see Section 2.2). We can therefore employ the Poisson Model which we introduced
in Section 4.2 but a special case thereof: as we ascertained above that we only expect
collisions when the input size is the same as the output size, we can consider this a case
of the Poisson Distribution where the mean, λ, is set to 1.

Recall that the probability of a bucket containing k entries is given by:

P(X = k) =
λke−λ

k!

In this case, given that the mean, λ = 1, the results of the Poisson distribution would
look as follows

P(X = 0) = 0.37 (empty buckets)

P(X = 1) = 0.37 (one entry)

P(X ≥ 2) = 1−P(X = 0)−P(X = 1) = 0.26 (collisions)

Do our findings match the theory?

In a word, no.
In order to compare to the theory laid out above, we created inputs comprising every

possible permutation of 1-byte, 2-byte, 3-byte and 4-byte strings and ran these through
each of our algorithms. We measured how many distinct outputs were generated by each,
how many outputs were observed twice, three time, four times and so on. Where the
number of outputs generated was less than the number of inputs, we obviously see both
collisions and the equivalent of “empty buckets”. The size of our input sets grew large very
quickly; while all three-byte inputs total 16,777,216, when we increase to 4-byte inputs we
reach 4,294,967,296 possibilities.

FNV Collision Resistance

Based on our findings in Section 7.3.1, we would not expect to see any collisions generated
by FNV-1a before we reach 4 bytes of input. In practice, FNV-1 and FNV-1a both
performed perfectly up to 3-byte inputs, seeing zero collisions. However, when we increased
to a 4-byte input, we saw only 1,925,392,640 distinct outputs generated for both FNV-1
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and FNV-1a, meaning that 2,369,574,656 potential outputs had been not been hit (the
equivalent of seeing empty buckets). We also saw more collisions than expected, see
table 7.3 below.

Table 7.3: FNV-1 and FNV-1a: Distribution of all possible 4-byte inputs

Distribution of all possible 4-byte inputs
FNV-1 FNV-1a Poisson Indication

# Generated Outputs 1,925,392,640 (45%) 1,925,392,640 (45%) 2,714,937,127 (63%)
#“Empty Buckets” 2,369,574,656 (55%) 2,369,574,656 (55%) 1,580,030,169 (37%)
# “One entry bucket” 532,860,928 (12%) 532,860,928 (12%) 1,580,030,168 (37%)
# Collisions 1,392,531,712 (32%) 1,392,531,712 (32%) 1,134,906,959 (26%)

We see therefore that reality has given us significantly more empty buckets than Pois-
son would indicate, and slightly more collisions, whereas the number of outputs being
generated a single time is only 12% compared to our expectation of 37%. We can also
note that the results for FNV-1 and FNV-1a are identical, highlighting that there is no
“better” algorithm between the two, when it is not data-dependent.

Murmur Collision Resistance

While Murmur2 also performed perfectly up to three bytes with no collisions, it also saw
zero collisions when we reached the 4-byte inputs, which is in fact even further away from
our Poisson estimations! The fact that Murmur2 is the only function which reads inputs in
a 4-byte block means that it performs somewhat differently (recall pseudocode on page 32).
When running on a 4-byte input, the algorithm has therefore run an input step only once.
We know that each of the operations within Murmur2 are invertible meaning that the
algorithm is a bijection, giving one distinct output for each input. It does also mean that
Murmur2 could be susceptible to malicious attacks, as one can work backwards through
each step allowing a chosen hash function to be generated once we have the freedom to
choose the final 4 input bytes as described in Section 7.3.1.

In an interesting twist, we did find that Murmur2 recorded collisions between 1-byte
and 2-byte strings. Recall that when reading in less than 4 bytes, the entire mixing step
plus the introduction of the hash is skipped meaning that any input of less than 4 bytes
can rely on nothing more than the finalisation step. This highlights that Murmur2 may
be unsuitable for very short input lengths.

We wondered if perhaps Murmur3 had been adapted to solve for this issue. Murmur3
[25] does actually revert to its originally planned mix of multiplication and rotation in the
mixing step. However the overall structure remains broadly similar:

• Set Hash to Seed value

• Read in 4 bytes

• Mix these 4 bytes by a combination of multiplication and rotation

• XOR the mixed input bytes with Hash, then rotate, multiply and add to this.

• XOR in any remaining (< 4) bytes and run one more multiplication / rotation /
XOR step.
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• The finalisation step (see Table 7.4 below) comprises XOR and multiplication func-
tions on this Hash.

When testing Murmur3 with the same inputs as Murmur2, we noticed that it did not
result in the same collisions between different length input strings, and again all outputs
were distinct up to 4-byte inputs.

Therefore, for input lengths of less than 4 bytes which are only operated on by the
finalisation step, performance would be significantly improved by moving from Murmur2
to Murmur3, despite still relying on generally the same operations. See Table 7.4 below
for comparison of finalisation steps, and Table 7.5 for general performance comparison.

Table 7.4: Finalisation Step Comparisons
Finalisation Steps

Murmur2 Murmur3

hash:= hash XOR (hash >> 13) hash:= hash XOR (hash >> 16)
hash:= hash * 0x5bd1e995 hash:= hash * 0x85ebca6b
hash:= hash XOR (hash >> 15) hash:= hash XOR (hash >> 13)

hash:= hash * 0xc2b2ae35
hash:= hash XOR (hash >> 16)

Table 7.5: Murmur2 & Murmur3: Distribution of all possible 4-byte inputs

Distribution of all possible 4-byte inputs
Murmur2 Murmur3 Poisson Indication

# Generated Outputs 4,294,967,296 (100%) 4,294,967,296 (100%) 2,714,937,127 (63%)
#“Empty Buckets” 0 0 1,580,030,169 (37%)
# “One entry bucket” 4,294,967,296 (100%) 4,294,967,296 (100%) 1,580,030,168 (37%)
# Collisions 0 0 1,134,906,959 (26%)

DJBX33A Collision Resistance

As we have come to expect, DJBX33A showed a significantly worse performance than
its peers. Collisions appeared when hashing inputs of just 2-bytes in length, with only
66 outputs being generated once, and 8,671 outputs in collision, out of a total potential
number of outputs of 65,536. This number of 66 distinct outputs appearing only once also
carried through to 3-byte inputs AND 4-byte. See Table 7.7 below for details.

Table 7.6: DJBX33A: Distribution of all possible 4-byte inputs

Distribution of all possible 4-byte inputs
DJBX33A Poisson Indication

# Generated Outputs 9,450,301 (0.2%) 2,714,937,127 (63%)
#“Empty Buckets” 4,285,516,995 (99.8%) 1,580,030,169 (37%)
# “One entry bucket” 66 (0.000002%) 1,580,030,168 (37%)
# Collisions 9,450,235 (0.2%) 1,134,906,959 (26%)
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Table 7.7: Distribution of DJBX33A for all possible 2-,3-, and 4-byte inputs

Distribution of all possible 4-byte inputs

DJBX33A

2-byte # Generated Outputs 8,671
# Single Output 66
# Collisions 8,605

3-byte # Generated Outputs 286,366
# Single Output 66
# Collisions 286,300

4-byte # Generated Outputs 9,450,301
# Single Output 66
# Collisions 9,450,235

We explore the reasons behind this pattern in Appendix D.
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SHA Cryptographic Hash Collision Resistance

Before we start wondering if perhaps our Poisson assumptions were incorrect, we ran an
SHA cryptographic hash, truncated to 32-bits, to see how that would perform for our
4-byte input data:

Table 7.8: Distribution of SHA Compared to Poisson Estimates

Distribution of all possible 4-byte inputs

SHA 32-bit Poisson

# Generated Outputs 2,714,902,107 (63%) 2,714,937,127 (63%)
#“Empty Buckets” 1,580,065,189 (37%) 1,580,030,169 (37%)
# Distinct Output 1,579,979,621 (37%) 1,580,030,168 (37%)
# Collisions 1,134,922,486 (26%) 1,134,906,959 (26%)

So we can be quite confident that the ratios indicated by Poisson are correct. This
highlights the fact that, while all of our functions performed reasonably well with small
input sizes, more rigorous testing shows up the shortfalls of non-cryptographic functions
versus their cryptographic counterparts.

7.4 Summary

As a departure from the usual suite of tests applied to non-cryptographic hash functions,
I think this chapter has highlighted some really interesting points. The research quoted
on Avalanche seems supportive of our idea that perhaps this metric is not actually strictly
relevant to the non-cryptographic world — a debate on this point would be welcome.
We touched on the idea of modulo bias and how, in certain circumstances, a power-of-
two bucket size is in fact the best for uniform distribution. Finally, our work on “pure
collisions” unearthed some interesting results about when we should expect collisions to
appear. Our final tests on collision resistance showed the shortfalls of each of our hash
functions when compared to both the ideal (as measured by the Poisson model) and a
cryptographic hash function.
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Chapter 8

Conclusion

8.1 My personal conclusions

Considering that I started with a Google search for “what are hash functions?” I am very
excited by the interesting and unexpected results we have uncovered during this thesis.
But let’s start from the beginning.

The area of cryptographic hash functions and cryptography in general is fascinating.
Learning how this world interacts with so many daily tasks, from online shopping to
internet downloads made it very relevant. When I then included non-cryptographic hash
functions in my research, I was impressed by the deceptive simplicity of structures such as
hash tables, and the various ways to manage collisions. In this thesis, we only touched on
two methods: separate chaining and open addressing, but there are many versions of open
addressing available such as “cuckoo hashing” and “quadratic probing”, for example.

It was very exciting to speak with Mr. Landon Curt Noll to gain insight into the
creation of the FNV hashes, and understand why each constant / specification was chosen
as it was. For example, research alone would never have explained to us why the number
of 1 bits in the bottom byte of the FNV prime should be either 4 or 5, and why the
restriction of p mod (240 − 224 − 1) > (224 + 28 + 27) was necessary. His help and insight
really helped our understanding, not only of FNV, but hash structures in general.

After researching for a number of months, it was exciting to reach the testing phase.
Although it seems mundane, the choice of criteria was important and we took a while to
ensure we chose the right methods and input. Taking time to consider the maths behind
what we were testing was also important, such as Section 4.2 showing Poisson estimations
for the number of collisions we should see, and Section 2.3.3 where we examined the link
between empty buckets and distribution. We also looked at Avalanche results byte-by-
byte (see Subsection 5.1.1) in order to be able to understand why the patterns we saw
were appearing. Throughout the thesis as a whole, I enjoyed using various aspects of
mathematics such as probability theory and modular arithmetic which had previously
been much more theoretical.

Things got really interesting once we had the results of all the tests in. Considering
the widespread use of each of the hash functions we tested, I had expected all them to
perform quite well. And, overall, that does hold true.

The Avalanche testing, thanks to Bret Mulvey’s code [2], takes a large quantity of data
and very neatly puts it into an easily-read matrix format. Seeing these patterns emerge
so clearly gave us a “roadmap” of sorts to follow the function through and learn why
it produces these results. While FNV’s one-byte Avalanche graph was not particularly
inspiring, by the time we had 4 bytes of data it was actually looking quite impressive.
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DJBX33A’s relative lack of improvement when more input data was added gave us a
hint that the algorithm may be poor, whereas Murmur2’s perfect Avalanche performance
probably convinced me too strongly that this function would have fantastic results across
the board.

When restricted to real-world data sets, the distribution and collision resistance of
each of the four hash functions tested were perfectly adequate. That said, I was in for a
shock right away when Murmur2 saw such a low p-value on our very first test table on
page 45. It quickly became apparent that Murmur2’s collision resistance was no better
than FNV’s and, in fact, its distribution (as measured by p-value) was slightly worse.
Likewise, despite its obvious limitations in relation to Avalanche, DJBX33A’s distribution
and collision resistance results were in line with the others.

Obviously we wanted a more rigorous test and ideally some inputs / combinations
which would throw up problems, and we certainly saw this with the Bias data set. While
we had expected that the functions would struggle with what is, in fairness, a difficult
data set, I hadn’t expected the results to be quite so bad. It also highlighted to me
that the question of using a prime number or a power of two as a bucket size is relevant
only to specific cases. What really intrigued me were the results seen when using an
odd numbered bucket size versus a prime — that was a wholly unexpected outcome with
no real explanation yet . . . definitely one which merits further work. Another unexpected
tangential discovery was when we investigated the reason behind the “suspiciously perfect”
p-values seen for FNV and DJBX33A with the IP Addresses input data set. Upon first
noticing the sequential IP addresses, I did not expect to conclude that such an anomaly
can actually result in excellent distribution!

The final section of my thesis was a little sobering. It showed that the test results I
had spent so much time investigating were, in fact, such a small subset that it made life
“too easy” for the hash functions to perform well. I was becoming proud of my functions,
and how well they had performed, until I saw the reality of more rigorous testing (and
still on just 4-bytes of input) and the comparison to a cryptographic hash. However, we
must remember that they are specifically designed not to compete with such functions,
and their use is targeted more at the sort of work we considered.

8.2 Discoveries

1. Our first discovery must be to confirm that all four hash functions provide good
distribution and collision resistance when combined with real-world data input, and
so are very well suited to the job they were designed to do.

2. I believe we have made a solid case for the re-evaluation of Avalanche testing as
a tool for measuring non-cryptographic hash functions. We showed that, for the
majority of data input sets, an excellent avalanche performance is no indication of
good distribution or collision resistance. This can be clearly seen in the tables in
Section 5.2. We also investigated some sources of support for Avalanche as a relevant
metric in Section 7.1 and found very little evidence to support its use outside the
cryptographic world.

3. For inputs with poor distribution, rather than deciding that a chosen hash function
is not up to standard, its performance may be improved by combining with either
an odd / prime number of buckets (as evidenced by the superior performance of
499 buckets in our results for the Bias data set on page 47), or by the use of an
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additional finalisation step (see Table 6.1 showing the improvement in performance
of FNV-1 when combined with finalisation step in Section 6.3).

4. I believe that we have asked an important question in whether an odd number of
buckets may perform as well as a prime number, when combined with certain hash
functions (see Section 6.2)

5. Based on what we saw on “pure collisions” in Section 7.3, I believe our testing
actually portrays our four tested functions in a somewhat flattering light, thanks to
a relatively small input size. Considering the maximum size of our input data sets
was less than 210, which is then mapped to a domain space of size 232, it was quite
easy for collisions to be avoided, meaning that we only saw collisions due to bucket
distribution.

6. Certain patterns in the input data (see Section 6.6 for description of sequential inputs
and their effects) can actually work in your favour when using hash functions which
display repeating patterns and don’t prioritise randomisation.

8.3 Further Work

1. There is definitely scope for further work on the optimal choice of bucket size, ex-
amining the behaviour of “prime vs odd” numbers for varying input data sets and
functions, over a larger sample size.

2. Sample size itself is an interesting topic. As mentioned in point 4 above, the small
size of our input data sets means that we were able to avoid all collisions of outputs
(as opposed to bucket collisions). Referring back to Section 7.3.2, we saw a rate of
collisions for FNV-1 and FNV-1a of 32% when tested using all possible 4-byte com-
binations. However we saw zero collisions when input size was kept to permutations
of 3 bytes (16,744,574 input lines). If we continued to test larger input sizes, would
we reach a point where it becomes infeasible or impractical to use FNV hashes or
similar?

3. Having suggested in point 2 of Section 8.2 above that FNV-1 (for example) could
be improved by the addition of a finalisation step when using difficult data, at what
point is the data “difficult enough” to warrant this extra work? If we recall the
“sticky state at zero” mentioned by Landon Curt Noll during our interview (see
Section 3.2), could the addition of a finalisation step be an potential option to
overcome this?

8.4 Summary and farewell

I’m delighted to end this thesis having both answered some questions and found more to
pose. I learned a huge amount and not always in the areas I had anticipated — sometimes
the tangents are more fun than the main route! All that remains now is for me to thank
you, the reader, for having stayed with me until the end. I hope you too found something
to interest and excite you.
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Appendix A

Convolution

In general terms, a convolution is an operation done on two functions, f and g, which
measures the effect of one on the other. It is defined as an integral over the two functions,
after one of them has been reversed and shifted. It can be thought of as the effect of
moving the function g across the function f , and measuring what shape is formed as they
move along t; hence it is a type of integral transform.

It is denoted by (f ∗ g)(t) and is equal to∫ ∞

−∞
f(τ)g(t− τ)dτ

where τ acts as a dummy variable, allowing the function g to be reversed and then com-
bined with t to move along the τ -axis. As t goes from −∞ to +∞, the integral is measured
where f(τ) and g(t− τ) intersect.
In the case of discrete convolution, where f and g are sequences defined on the set Z of
integers, convolution can be rewritten as

(f ∗ g)[n] =
∞∑

m=−∞
f [m]g[n−m]

As in a Cauchy product, when the sequences are polynomials then the coefficients of
the ordinary product of the polynomials are actually the convolution of the original two
sequences, i.e. ( ∞∑

i=0

aix
i

)
·

 ∞∑
j=0

bjx
j

 =

∞∑
k=0

ckx
k,where ck =

k∑
l=0

albk−l

Fast convolution algorithms such as Fast Fourier Transforms (FFTs)1 can be used
for computation of discrete convolutions. These reduce the cost of the convolution from
O(N2) to O(N logN) complexity for periodic functions with period N .

1The circular convolution of two finite sequences can be found by taking an FFT of each, multiplying
pointwise and then performing an inverse FFT. A FFT computes the discrete Fourier transform (DFT) of
a sequence rapidly by factorizing the DFT matrix into a product of sparse factors.
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Appendix B

Avalanche Graphs using Data Set
Inputs

The following graphs show the Avalanche effect measured using our chosen input data
sets. As you can see, the patterns broadly mirror those seen when using random input
data. For example, FNV-1 still has the “red zone” across the top where the latest bytes
were read in (see Figure B.1). Both FNVs still show the saw-tooth pattern on the left.
Murmur still shows the strongest avalanche effect, but struggles with short inputs which is
particularly evident with the Baby Names data set (Figure B.9). DJBX33A continues to
struggle across the board, but shows a marked improvement in the longer real text input
of Common Words (Figure B.14).

The Baby Names data set has inputs ranging from 3 bytes in length to 11 bytes, hence
our matrix is an 88×32 output. Common Words stretches to 126 characters (or bytes) at
its longest, hence the matrix can only really be seen as a colour representation. The Bias
data set is our longest, with 1,000 bytes per input line, hence our matrices show only the
first 12 bytes, and the final 12 bytes. Finally, IP Addresses brings us back to a nice even
32× 32 matrix with its 4-byte pattern.

We can also see the benefit of reading data from the end of the input (see explanation
on page 38) when we compare inputs of varying length.
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Figure B.1: Avalanche Matrix: FNV-1 with Baby Names DataSet
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Figure B.2: Avalanche Matrix: FNV-1 with Common Words DataSet
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Figure B.3: Avalanche Matrix: FNV-1 with Bias DataSet

Figure B.4: Avalanche Matrix: FNV-1 with IP Addresses DataSet
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Figure B.5: Avalanche Matrix: FNV-1a with Baby Names DataSet
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Figure B.6: Avalanche Matrix: FNV-1a with Common Words DataSet
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Figure B.7: Avalanche Matrix: FNV-1a with Bias DataSet

Figure B.8: Avalanche Matrix: FNV-1a with IP Addresses DataSet
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Figure B.9: Avalanche Matrix: Murmur2 with Baby Names DataSet
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Figure B.10: Avalanche Matrix: Murmur2 with Common Words DataSet
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Figure B.11: Avalanche Matrix: Murmur2 with Bias DataSet

Figure B.12: Avalanche Matrix: Murmur2 with IP Addresses DataSet
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Figure B.13: Avalanche Matrix: DJBX33A with Baby Names DataSet
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Figure B.14: Avalanche Matrix: DJBX33A with Common Words DataSet
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Figure B.15: Avalanche Matrix: DJBX33A with Bias DataSet

Figure B.16: Avalanche Matrix: DJBX33A with IP Addresses DataSet
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Appendix C

Poisson Expectations vs Observed
Results for 499 and 512 buckets

As shown on page 49, the results observed for the number of empty buckets and collisions
when distributed among 500 buckets was roughly in line with what the Poisson Model had
indicated we should expect.

The same is true for when using both 499 and 512 buckets, results are shown in
Table C.1 and C.2 below. As before, we measure the results from the Baby Names,
Common Words and IP Addresses input data sets only, as the Bias data set has been
shown not to follow uniform distribution.

Table C.1: Summary of results for 499 buckets

Empty
Buckets

Maximum 74
Average 63
Minimum 49

Collisions
Maximum 314
Average 302
Minimum 291

Longest
Chain

Maximum 9
Average 7.3
Minimum 6

The Poisson Model (see details on page 35) would indicate that we should expect to
see 67 empty buckets and 297 collisions when using 499 buckets.
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Table C.2: Summary of results for 512 buckets

Empty
Buckets

Maximum 83
Average 69
Minimum 54

Collisions
Maximum 313
Average 298
Minimum 290

Longest
Chain

Maximum 8
Average 6.8
Minimum 6

The Poisson Model in this case would indicate that we should expect to see 73 empty
buckets and 298 collisions when using 512 buckets.
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Appendix D

DJBX33A Collision Resistance

As described in Section 7.3.2, DJBX33A exhibited some interesting patterns when tested
for collision resistance. See table D.1 below as a reminder.

Table D.1: Distribution of DJBX33A for all possible inputs

Distribution of all possible 4-byte inputs

DJBX33A

2-byte # Generated Outputs 8,671
# Single Output 66
# Collisions 8,605

3-byte # Generated Outputs 286,366
# Single Output 66
# Collisions 286,300

4-byte # Generated Outputs 9,450,301
# “Empty Buckets” 4,285,516,995
# Single Output 66
# Collisions 9,450,235

To understand this pattern of just 66 distinct hash outputs regardless of input size,
we consider the number of ways a particular output can be achieved. As we are looking
at every possible permutation, let’s sort them and look at the first three of the possible
two-byte inputs:

(00000000 00000000)

(00000000 00000001)

(00000000 00000010)

DJBX33A starts from zero, multiplies by 33 and then adds the next byte (recall pseu-
docode on page 31). So the above three inputs are treated as follows (ignoring the adjust-
ment required for 32-bit output for the sake of clarity and space):

(((0 ∗ 33) + 00000000) ∗ 33) + 00000000 = 0000000000000000

(((0 ∗ 33) + 00000000) ∗ 33) + 00000001 = 0000000000000001

(((0 ∗ 33) + 00000000) ∗ 33) + 00000010 = 0000000000000010
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This is the only possible route to achieve these specific outputs, and the same can be
said for each of the first 33 sorted inputs. However, once we go beyond the first 33, there
becomes more than one way to achieve each output, leading to collisions. For example,

(((0 ∗ 33) + 00000001) ∗ 33) + 00000000 = 0000000000100001

(((0 ∗ 33) + 00000000) ∗ 33) + 00100001 = 0000000000100001

So only the first 33 inputs will always result in distinct outputs, and the same logic
can be used for the final 33 inputs from our sorted list. Hence, in total, we will only ever
see 66 distinct outputs, regardless of input size.

When examining the pattern of collisions for all two-byte inputs, we saw (as above) that
the first 33 inputs each resulted in a distinct output. The next 33 inputs then each saw
2 colliding outputs. The following 33 inputs had 3 colliding outputs and so on, up to the
maximum of 8 matching outputs. After 33 inputs hitting the maximum chain length of 8,
we then dipped back to a chain length of 2 for the next 33 inputs, followed by 3 colliding
outputs and so on again up to 8. This pattern is mirrored at the other end of the sorted
input list, resulting in the pattern seen in Figure D.1

Figure D.1: Pattern of Chain Lengths for DJBX33A 2-byte inputs
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