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Abstract

We consider a convex combination of matrices that arise in the study of communication networks

and the corresponding convex combination of Kronecker squares of these matrices. We show that the

spectrum of the first convex combination is contained in the spectrum of the second set and that the

second largest eigenvalues coincide.

Key Words : Second eigenvalue of column stochastic matrices; Network congestion control;

Communication networks; Kronecker products

1 Introduction

Let α1, ..., αn, and β1, ..., βn, be positive numbers smaller than 1. In studying non-negative matrix models

for TCP one considers the following sets of matrices [SWL05]:

A(k) =



β1(k) 0 · · · 0

0 β2(k) 0 0
... 0

. . . 0

0 0 · · · βn(k)


+



α1

α2

· · ·

αn


[(1− β1(k)), . . . , (1− βn(k))],
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where βi(k) is either 1 or βi and
∑n

i=1 αi = 1. The non-negative matrices A2, .., Am are constructed by

taking the matrix A1,

A1 =



β1 0 · · · 0

0 β2 0 0
... 0

. . . 0

0 0 · · · βn


+



α1

α2

· · ·

αn


[

(1− β1), . . . , (1− βn)
]

and setting some, but not all, of the βi to 1. This gives rise to m = 2n− 1 matrices. We denote the set of

these matrices by A, refer to matrices of the form of A1 as TCP matrices, and say that the other Ai ∈ A

are generated from A1. In the context of TCP one also considers the following convex combination of

these matrices:

M =
m∑

i=1

ρiAi; (1)

M̂ =
( m∑

i=1

ρiAi

⊗
Ai;

)
, (2)

where Ai ∈ A. Under certain statistical assumptions Equation (1) arises when studying the first

moment of the stochastic process underlying communication networks employing the TCP algorithm, and

Equation(2) arises when studying the second moments of this process. From a practical perspective, one

is interested in the Perron eigenvectors of both of these matrices and in their second largest eigenvalues.

The Perron eigenvectors of these matrices give the asymptotic values of the first and second moments,

and the second largest eigenvalues determine the rate of convergence to these asymptotes. In this paper

we show that the second largest eigenvalues of these matrices coincide and provide a necessary condition

for a positive column stochastic matrix to be a TCP matrix.

2 Inclusion and equality

We start with the following result.

Theorem 2.1 Let B1, ..., Bm be a family of n× n real matrices of the form:

Bi = Di + vtTi , (3)

where v is a common left eigenvector of all the Bi with

BT
i v = λiv. (4)
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Then, there exists an orthogonal matrix U such that UT BiU are block triangular matrices,

UT BiU =



λi | 0 ... 0

− − − − −

|

ci | Si

|

|


, (5)

where all of the Si are symmetric.

Proof : Let U be an orthogonal matrix whose first column is v
‖v‖ . Then, it follows that all the matrices

UT BiU are block triangular. To show that the matrices Si are symmetric we observe that UT DiU are

symmetric, and that all the entries of UT vtTi U , except in the first row, are zero. �

Corollary 2.1 Let A1, .., Am be a family of matrices generated by a TCP matrix. Then there exists a

non-singular matrix P such that P−1AiP is of the form (5) with λi = 1 where the matrices Si are positive

definite and ρ(Si) ≤ 1.

Proof : Suppose that A1 is a TCP matrix. Then, Ai = Di + bcT
i , AT

i e = e, for all i, where Di is a

diagonal matrix, and b, ci are strictly positive vectors. To prove the assertion it is enough to show that

the matrices Ai are simultaneously similar to
{

Ã1, ...Ãn

}
where Ãi = D̃i + b̃c̃T

i , where D̃i is again a

diagonal matrix, and b̃, c̃i, are vectors. To see that, let E = diag
{√

b1, ...,
√

bn

}
. Note that E is well

defined as the vector b is positive. It is easily seen that the matrices E−1AiE are of the form in the

previous theorem. We can therefore choose P = EU . The fact that the Si have positive real eigenvalues

that are not greater than one follows from a slight variation of Theorem 3.2 in [BSL04] (by allowing some

of the βi’s to be equal to 1). �

Theorem 2.2 Consider the matrices M and M̂ defined in Equations (1) and (2). Then:

(i) the eigenvalues of M are eigenvalues of M̂ ;

(ii) all the eigenvalues of M which are different from 1 have multiplicity at least two;

(iii) the second eigenvalue of M is equal to the second eigenvalue of M̂ .
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Proof : We use some properties of the Kronecker product [LT85]. First note that the matrix M is similar

to

m∑
i=1

ρi

 1 0

ci Si

 , (6)

and that matrix M̂ = Σm
i=1ρiAi

⊗
Ai is similar to



 1 0∑m
1=1 ρici

∑m
1=1 ρiSi

 0

∑m
1=1 ρici

⊗  1 0

ci Si

 ∑m
1=1 ρiSi

⊗  1 0

ci Si




. (7)

Note also that the latter matrix is permutationally similar to a block triangular matrix with diagonal

blocks 1, Σm
i=1ρiSi, Σm

i=1ρiSi, and Σm
i=1ρiSi

⊗
Si. The assertions of part (i) and (ii) of the theorem follow

from this observation. To prove (iii) we need to show that the maximum eigenvalue of Σm
i=1ρiSi

⊗
Si is

less than or equal to the maximum eigenvalue Σm
i=1ρiSi.

Let µ be the largest eigenvalue of Σm
i=1ρiSi (i.e. the second largest eigenvalue of M) and ν be the largest

eigenvalue of Σm
i=1ρiSi

⊗
Si. To prove (iii) we have to show that µ ≥ ν. To this end we make use of the

fact that the spectrum of Σm
i=1ρiSi is the same as the spectrum of I

⊗ {
Σm

i=1ρiSi

}
=

{
Σm

i=1ρiI
⊗

Si

}
.

For every z ∈ IRn2
we have that

zT
{ m∑

i=1

ρiI
⊗

Si −
m∑

i=1

ρiSi

⊗
Si

}
z = zT

{ m∑
i=1

ρi(I − Si)
⊗

Si

}
z (8)

≥ 0. (9)

since the Si are positive definite and the (I −Si) positive semi-definite. In particular, by Rayleigh - Ritz

theorem [HJ85],

µ = max‖z‖=1 zT
{ m∑

i=1

ρiI
⊗

Si

}
z (10)

ν = max‖z‖=1 zT
{ m∑

i=1

ρiSi

⊗
Si

}
z (11)

and µ ≥ ν which completes the proof. �

Remark 2.1: If the matrices {B1, ..., Bm} in Theorem 2.2 satisfy (4) but not (3), then (5) holds but the

matrices Si need not be symmetric. This implies that parts (i) and (ii) of Theorem 2.2 hold for convex

combinations of any column stochastic matrices. However, for part (iii) of the theorem the symmetry

and the positive definiteness of the S′is is important.
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Remark 2.2: One may extend the above theorem to consider convex combinations of higher order

Kronecker products.

3 TCP matrices

One can generate the family A1, .., Am from any column stochastic matrix by replacing some of its columns

by the corresponding columns of the identity. A natural question is whether Theorem 2.2 remains true

also in this case. Parts (i) and (ii) of Theorem 2.2 follow immediately from Remark 2.1 follow. However,

part (iii) is not true as the following example demonstrates.

Example 3.1 Let

A =

 0.1 0.9

0.9 0.1

 .

With ρ1 = ρ2 = ρ3 = 1
3 the second largest eigenvalue of M is −0.2 and of M̂ is 0.22.

Remark 3.1 : The fact that the eigenvalues of the matrix A1 are real and positive plays a central role in

the proof of Theorem 2.2. Given this fact, it is natural to ask whether this condition alone is enough to

prove the assertions of our theorem. Unfortunately, this is not the case as the following example shows.

Example 3.2 Let

A1 =


0.5799 0.3093 0.0858

0.0569 0.3515 0.4635

0.3632 0.3393 0.4507

 .

and

A2 =


0.5799 0.0000 0.0000

0.0569 1.0000 0.0000

0.3632 0.0000 1.0000

 .

A2 is generated from A1. It is readily shown that the second eigenvalues of M = 0.4450A1 + 0.5550A2

and M̂ = 0.4450(A1

⊗
A1)+0.5550(A2

⊗
A2) do not coincide. In fact the non-Perron eigenvalues of M

are complex.

A TCP matrix is a column stochastic matrix. However, as the previous examples show, not every column

stochastic matrix is a TCP matrix. In this section we characterise the matrices that are. We begin with

the case of 2× 2 matrices.
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Theorem 3.1 The following conditions on a 2× 2 column stochastic matrix A are equivalent.

(a) A is a TCP.

(b) The eigenvalues of A are positive.

(c) Trace(A) > 1.

Proof : (a) implies (b) by Theorem 3.2 in [BSL04]. (b) implies (c) since A has two positive eigenvalues

and one of them is 1. (c) implies (a) as follows. Let

A =

 a 1− b

1− a b


where a, b ∈ (0, 1) and a + b > 1. We have to find α, β1, β2 such that the matrix A is TCP. Since

Trace(A) > 1 it follows that a > 1− b. Choose α ∈ (1− b, a). This interval is a subinterval of (0, 1) and

it follows that α ∈ (0, 1). One may choose β1 and β2 that satisfy β1 = a−α
1−α and β2 = b−(1−α)

α . It is easily

verified that β1 and β2 are both in the interval (0, 1). �

We continue with necessary conditions when n ≥ 3. Since a TCP matrix is the sum of a diagonal matrix

and a rank-1 matrix, it follows that for every i 6= j,

rankA
[
{i; j};< n > 6 {i; j}

]
= 1, (12)

where A
[
α, β

]
denotes the submatrix of A based on the rows indexed by α and positive columns indexed

by β, and < n >= {1, 2, ..., n}. This means that for all k /∈ {i, j}, the ratios rij = aik

ajk
are the same.

Observe also that

aik = αi(1− βk)

ajk = αj(1− βk)

where the α’s and the β’s are as in A1 in Section 1. It therefore follows that

αi = rijαj . (13)

Define rii = 1; i = 1, ..., n, and observe that αi = rikαk = rikrkjαj . Let R = < rij >. From this we get

another necessary condition for the matrix A to be TCP:

rij = rikrkj , ∀i, j, k ∈ < n >

This corresponds to

Rank(R) = 1. (14)
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To obtain another necessary condition we denote by mi the maximal non-diagonal entry in the i’th row

of A and define

m =
n∑

i=1

mi.

From aij = αi(1 − βj), i 6= j, and the fact that αi and (1 − βj) are between 0 and 1 it follows that

αi > mi; i = 1, .., n. We now use the fact that
∑n

i=1 αi = 1 to obtain,

αi < 1−m + mi.

Hence,

mi < αi < 1−m + mi. (15)

In particular, a necessary condition for a positive column stochastic matrix A to be TCP is

m < 1. (16)

Remark 3.2: Observe that this implies that Trace(A) > 1. This also follows from the fact that all

eigenvalues of A are positive.

We summarise the above discussion with the following proposition.

Proposition 3.1 If a positive column stochastic matrix is TCP, then it must satisfy conditions (12),

(14) and (16).

Theorem 3.2 A positive column stochastic matrix A is TCP if and only if it satisfies (12), (14) and

(16), and in addition it satisfies

mk <
rk1∑n
i=1 ri1

< 1−m + mk, k = 1, ..., n. (17)

Proof : Given the matrix A we want to find α’s and β’s in (0, 1) such that
∑n

i=1 αi = 1 and

A =



β1 0 · · · 0

0 β2 0 0
... 0

. . . 0

0 0 · · · βn


+



α1

α2

· · ·

αn


[(1− β1), . . . , (1− βn],

It follows from (13) that αk = rk1α1; k = 1, ..., n. Since the sum of the αi’s is 1 it follows that

αk =
rk1∑n
i=1 ri1

.
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Such αi’s exist if (15) holds for i = 1, ..., n. But this is precisely condition (17). In this case we can

choose βj = ajj−αj

1−αj
< 1, so βj ∈ (0, 1) as is needed. �

The following example shows that the necessity conditions (12), (14) and (16) are not sufficient.

Example 3.3 Let

A =


0.7 0.4 0.3

0.2 0.4 0.3

0.1 0.2 0.4

 .

Here (12), (14) and (16) all hold. However, r11
r11+r21+r31

= 0.4 /∈ (0.4, 0.5). Hence, A cannot be TCP.

The following example shows that a Kronecker product of TCP matrices need not be TCP.

Example 3.4 Let

A =

 0.9 0.8

0.2 0.2

 ,

A is a TCP matrix since its trace is greater than one; However, A
⊗

A is

B =



0.800 0.7200 0.7200 0.6400

0.0900 0.1800 0.0800 0.1600

0.0900 0.0800 0.1800 0.1600

0.0100 0.0200 0.0200 0.0400


.

Since b14 + b24 + b34 > 1 it follows that B cannot be TCP.

Remark 3.3 : The matrices in Examples 3.2 and 3.4 (the matrix B) have a positive spectrum but are

not TCP since they do not satisfy the condition (16). The matrix in Example 3.3 has a positive spectrum

and satisfies (16) but is not TCP.

4 Equality for general column stochastic matrices

In the previous sections we showed that µ(M̂) = µ(M) when M and M̂ are generated from a TCP

matrix and where µ(X) is the absolute value of the second largest eigenvalue of a matrix X, and also saw

examples of matrices M and M̂ that are generated from a positive stochastic matrix where µ(M̂) > µ(M).
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In this section we study the question of when does µ(M̂) = µ(M) where M is a convex combination

Σm
i=1ρiAi of general column stochastic matrices {A1, ..., Am}, and M̂ is the corresponding convex com-

bination Σm
i=1ρiAi

⊗
Ai. Recall that by Remark 2.1, the spectrum of M is contained in the spectrum of

M̂ .

The matrix M̂ represents a linear operator on Cn×n, Φ(X) = Σm
i=1ρiAiXAT

i , so we want to relate the

spectrum of M to the spectrum of Φ.

Lemma 4.1 For every X in Cn×n,

Φ(X)e = MXe.

Proof: Φ(X)e = Σm
i=1ρiAiXAT

i e = Σm
i=1ρiAie, since AT

i is stochastic. Hence,

Φ(X)e = MXe.

Corollary 4.1: The n2 − n dimensional subspace Z of all the matrices in Cn×n whose row sums are

zero, Z is all X ∈ Cn×n : Xe = 0. This is Φ-invariant.

Theorem 4.1 : Let X1, X2, ..., Xn2−n, Xn2−n+1, ..., Xn2 be linearly independent generalized eigenvectors

of Φ corresponding to the (not necessarily distinct) eigenvalues λ1, ..., λn2 , where X1, ..., Xn2−n are in Z

(and thus are a basis of Z). Then:

(a). λn2−n+1, ..., λn2 are the eigenvalues of M ;

(b). µ(M̂) = µ(M) iff µ(M) ≥ ρ(Φz) where ρ(X) denotes the spectral radius of X and ΦZ is the reduction

of Φ to Z.

Proof : For k > n2 − n, Xke 6= 0, and since Xk is a generalized eigenvector of Φ, Φ(Xk) = λkXk or

λkXk + Xl, l > n2 − n or

λkXk + Xl, l ≤ n2 − n.

By the lemma, MXke = Φ(Xk)e = λXke, or

λkXke + Xle, l > n2 − n, or,

λkXke if l ≤ n2 − n.

In the first and third cases Xke is an eigenvector of M corresponding to λk and in all cases it is a

generalized eigenvector corresponding to λk. Thus λn2−n+1, ..., λn2 are all the eigenvalues of M and

µ(M) = µ(Φ) iff no eiganvalue of ΦZ is greater than µ(M).

We conclude the paper with a 2× 2 example demonstrating the theorem. Consider the convex combina-
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tions M and M̂ generated from a column stochastic matrix

A1 =

 a 1− b

1− a b

 (18)

The eigenvalues of M are 1 and µ = µ(M) = Trace(M)− 1 = ρ1(a + b− 1) + ρ2b + ρ3a. Computing the

restriction of Φ to Z we find that the eienvalues of ΦZ are µ and µ1 = ρ1(a + b− 1)2 + ρ2b
2 + ρ3a

2. This

also follows from the facts that Trace(M̂) = ρ1(a + b)2 + ρ2(1 + b)2 + ρ3(1 + a)2, that 1 is an eigenvalue

of M̂ and that µ is a multiple eigenvalue of M̂ . Thus ρ(ΦZ) = max{µ, µ1} so µ(M) = µ(M̂) iff µ ≥ µ1.

Thus we have the following necessary and sufficient condition for µ(M̂) = µ(M).

Theorem 4.2 :

(a). If Trace(A) ≥ 1 then the second eigenvalues of M and M̂ are equal.

(b). If Trace(A) = 0 then the second eigenvalues have the same absolute values and their sum is 0.

(c). If 0 < trace(A) < 1 then for some convex combinations µ(M̂) = µ(M) and for other combinations

µ(M̂) > µ(M).

Final remark : Recall that the matrix (18) is TCP iff its trace is greater than 1.
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