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ABSTRACT
Turbidity is commonly monitored as an important water quality
index. Human activities, such as dredging and dumping operations,
can disrupt turbidity levels and should be monitored and anal-
ysed for possible effects. In this paper, we model the variations
of turbidity in Dublin Bay over space and time to investigate the
effects of dumping and dredging while controlling for the effect of
wind speed as a common atmospheric effect. We develop a Vector
Auto-Regressive Integrated Conditional Heteroskedasticity (VARICH)
approach tomodelling the dynamical behaviour of turbidity over dif-
ferent locations and at different water depths. We use daily values of
turbidity during the years 2017–2018 to fit the model. We show that
the results of our fitted model are in line with the observed data and
that the uncertainties,measured throughBayesian credible intervals,
are well calibrated. Furthermore, we show that the daily effects of
dredging and dumping on turbidity are negligible in comparison to
that of wind speed.

ARTICLE HISTORY
Received 6 March 2023
Accepted 17 January 2024

KEYWORDS
Bayesian; vector
autoregression; turbidity

1. Introduction

Studying the variables affecting turbidity is of importance in maintaining coastal ecosys-
tem health. Turbidity is an index for water clarity whichmeasures how suspended solids in
water hinder the transmission of light [6]. There are many sources of suspended solids
including: phytoplankton; particles from coastal erosion; re-suspended bed sediments;
organic detritus from streams; and excessive algae growth [4]. Variability in water tur-
bidity influences the transportation dynamics and distribution of nutrients, contaminants,
and biological production [7,11,12,17,24].Water turbidity is an important habitat factor in
many estuarine systems, and changes in it can have a significant impact on management
decisions such as the dredging of ports and canals [2].

Our goal in this paper is to evaluate the variations of turbidity in Dublin Bay explained
by dredging and dumping operations when controlling for the effect of wind speed, which
is an important atmospheric contributor. Dublin has a long history of difficult access for
ships to the port area due to sandbanks at the mouth of the port [8]. To solve this problem
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regular dredging operations have been carried over decades to remove unwanted waste as
well as dangerous accumulations of sediments from areas that ships use when entering the
port. The excavated materials from the dredging operations are dumped at a more remote
location in the bay.

There are relatively few studies focussing on water turbidity in Dublin bay. In one exam-
ple, [4] used frequentist statistical tests to show that turbidity can be strongly influenced
by vessel activity in Dublin bay using data collected from a single location. By contrast, we
take a broader approach and look at multiple measuring sites simultaneously correspond-
ing to both the sites where sediment is dumped and dredged, whilst considering issues of
turbidity down the water column. We develop a Vector Auto Regressive Integrated Con-
ditional Heteroskedasticity (VARICH) model to control for the spatio-temporal structure
using turbidity data measured by five buoys installed at different locations in the bay.

We fit and compare four different models using the turbidity data. The data has many
missing values and big gaps for some periods. To fit themodels we follow a Bayesian frame-
work to appropriately handle themissingness and infer the parameters of themodels using
Hamiltonian Monte Carlo (HMC). The purpose of our study is to estimate the effect of
covariates on turbidity rather than provide forecasts. The models we fit combine the well-
studied approaches Auto Regressive Conditional Heteroskedasticity (ARCH) and Vector
Autoregression (VAR). When combined they form a Vector ARCH (or VARCH) model,
which we adapt into an integrated model which we name VARICH. A full discussion of
these approaches is given below. We show that ARCH-type models perform better for
modelling turbidity compared to VAR models that do not account for the heteroscedas-
ticity, and in particular our extended model has the best performance of all. We also show
that the daily effects of dredging and dumping on turbidity are negligible in comparison to
that of wind speed.

We organise our paper as follows. In Section 2, we describe the data we use in our study.
In Section 3, we give a brief introduction to spatiotemporal modelling. In Section 4, we
explain our modelling framework. In Section 5, we discuss our findings including plots of
the model outputs. We summarise the paper in Section 6 by considering the strengths and
weaknesses of our approach and potential areas for future research.

2. Data description

Water turbidity levels are measured in Nephelometric Turbidity Units (NTU) which calcu-
late the amount of light reflected through a set of suspended particles. Our dataset contains
measurements of water turbidity inNTU at five different locations, four of which takemea-
surements at a single depth and are located throughout the channel from the River Liffey
towards Dublin Bay where dredging takes place. The fifth buoy takes measurements at
three different levels of the water column and is located approximately 10 km away from
Dublin port at the location where the sediments are dumped. Figure 1 shows the locations
of the buoys in the bay.

Turbidity measurements are recorded every 15min by the buoys, but for our analysis
we aggregated the raw data into daily averages. This allowed us to focus on the impact of
dredging whilst removed short term fluctuations (e.g. that of tides) or the instantaneous
impact of vessels arriving or leaving from the port. The aggregation resulted in a total of
488 daily observations per buoy from 31/08/2017 to 31/12/2018. However there are some
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Figure 1. Buoys measuring turbidity in Dublin Bay. We use the same numbering scheme when refer-
ring to each site throughout the paper. Buoys 4 to 7 are potential dredging sites, whilst the sediment is
dumped at the dumpsite.

periods withmissing data which seems to be due to equipment failure (e.g. discharged bat-
teries) and gives rise to data gaps whenworking with our sensor data. A plot of the raw data
withmissing values is provided in Figure 2. Additionally, we use wind speed datameasured
at Dublin Airport, provided by [9] for the same period as turbidity data, to control for its
effect on turbidity.

3. Spatio-temporal models

There are two common approaches to modelling the spatiotemporal structure of data [see
e.g. 27, for a review]. One approach involves building a full covariance matrix for each
point in space-time and using amultivariate distribution to account for the data generating
process. A second approach is to use a multivariate time series model to account for the
evolution of a spatial process. The first approach requires matrix operations to be run on a
large covariancematrix, and so the second is a useful simplification and commonly used in
the applied literature [21]. We similarly found the second approach more suitable for our
study in terms of computational efficiency and interpretability due to our data being time
rich and space poor. Thus we focus on separable space-time models.

As mentioned above, dynamic spatio-temporal models are a class that are used to
model the evolution of a spatial process. Such processes can be continuous in time,
but here we focus on cases where time is discrete and the process is given by {Yt(s) :
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Figure 2. Daily measurements of turbidity (NTU) at Tolka, Eastlink, Poolbeg, Northbank, and various
depthsof thedumpsite, alongsidewind speed (knots)measurements, from31August 2017 to31Decem-
ber 2018. The highlighted regions indicate the periods during which dredging and dumping operations
occurred.

s ∈ Ds; t = 0, 1, . . .}. The joint distribution is commonly decomposed using a Markov
assumption to give an auto-regressive likelihood of the form p(Yt(s)|Yt−1(s), . . . ,Y0(s)) =
p(Yt(s)|Yt−1(s)).When themodel error is assumed additive (and commonlyGaussian) the
model can be written as:

Yt = MYt−1 + ηt (1)

where Yt is a vector of the process values at time t, M is the evolution matrix, and ηt is
a vector of spatially white noise processes. Typically the noise processes are assumed to
be independent in time [27] and the evolution matrix is assumed to be stationary. Such
models are known as Vector Autoregressive (VAR) models, originally introduced by [22]
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and widely used in macroeconomics, causal inference, and forecasting [1,16,21]. One lim-
itation of the VAR models is their inability to model the heteroscedasticity of the data.
To overcome this limitation, it is possible to relax the independence assumption on the
noise processes and model their temporal dependence. A very well known approach to
model temporal dependence of the noise process is the autoregressive conditional het-
eroskedasticity (ARCH) model [10] in which the variance of the process is defined as
follows:

σ 2
t = α0 +

p∑
i=1

αiε
2
t−i (2)

where σt
2 represent the vector of a diagonal covariance matrix applied to ηt , α0, and αi

are the parameters of the model, and εt−i are the lagged residuals. The ARCH model is
further generalised as the GARCHmodel [3] which is widely used in finance to model the
volatility of financial time series [3]. Furthermore, they have been extended tomultivariate
time series by considering the covariance matrix of the noise processes and have been used
tomodel non-stationary heteroscedastic data in the spatiotemporal setting [see e.g. 15,19].
In the next section we explain some variations of these models, including the extended
model (VARICH) that we use in our study to model turbidity in Dublin bay and infer the
effects of dumping, dredging and wind speed on turbidity levels.

4. Modelling procedure

In this section we describe the general modelling framework that we follow to build a
dynamic spatio-temporal model that describes the response of turbidity to a variety of
environmental factors. We then provide specific variations on this template to create four
different models which we use for fitting on the data. We denote Yt as an S-vector of tur-
bidity measurements at time t where S is the number of locations (or equivalently buoys),
s = 1, 2, . . . , S represent the locations and times t (t = 1, 2, . . . ,T). We write the model
hierarchically in two main layers as:

Yt | Mt ,�t ∼ MVN (Mt ,�t) (3)

Mt = A +
P∑
j=1

Xjt ◦ βj + Ut (4)

where Mt is the process mean and �t is the variance-covariance matrix at time t. A is an
intercept vector,Xjt is an S-vector of covariate values associatedwith covariate j = 1, . . . ,P,
βj is an S-vector of fixed effects associated with covariate j, and Ut is a spatio-temporal
structured effect. We use ° to denote the Hadamard product.

The four different structures we consider for fitting the model involve specifying struc-
tures for the latent effects Ut and the covariance matrix �t . We specify prior distributions
associated with these models in the section below following their definition.

Model 1 An ARCH structure with varying �t = diag{σ 2
t,1, . . . , σ

2
t,s} and:

σ 2
t,s = θ1,s + θ2,sε

2
t−1,s (5)

Ut = 	εt−1 (6)
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with 	 = diag{φ1, . . . ,φs} being an S × S diagonal matrix of autocorrelation parameters.
Here, εt = Yt − A −∑P

j=1 Xj,t ◦ βj and εt = [εt,1, . . . , εt,s]. Model 2 A VAR model with a
fixed time-invariant covariance matrix given an inverse-Wishart IW prior:

� ∼ IW−1(� , ν) (7)

Ut = 	εt−1 (8)

with ν and� as fixed hyper-parameters (we use ν = 14 and� = I in our example), andwhere
now 	 is a full rank matrix:

	 =

⎡
⎢⎣

φ1,1 . . . φ1,s
...

. . .
...

φs,1 . . . φs,s

⎤
⎥⎦ .

Model 3 A VARCHmodel which has both the full rank	 frommodel 2 and the time-varying
error covariance matrix of model 1. Model 4 A VARICH integrated model that uses the
difference in the latent spatio-temporal effects as well as the time-varying error covariance
matrix:

Ut = 	(εt−1 − εt−2) (9)

where as above the matrix 	 is of full rank.

The posterior distribution for model 4 can be written out in full as follows:

p (A,β , θ ,	 | Y1:T) ∝
( T∏
t=3

p (Yt | Yt−1;A,β , θ ,	)

)
× p(A)p(β)p(θ)p(	) (10)

To complete the model we need to specify prior distributions for all parameters. We aim
to use informative priors for those where we have some degree of information, and use
weakly informative and non-informative priors for the remainder. In the below we outline
our prior specification for themost complex of themodels we fit, model 4, though identical
priors were used in the simplermodels which corresponds to setting some of the parameter
values to zero in a nested model structure.

Our covariates contained in Xj,t consist of values associated with dumping and dredg-
ing (binary yes/no knowing that the operations happened in the same day, dreding at the
dredging sites and dumping at the dumpsite), and wind speed (knots). It is helpful, for
prior specification, to consider the regression parameters β in terms of their individual
scalar components [βdredge/dump,s,βwind,s] at site s. The full set of priors we used for these
values is:

βdredge/dump,s ∼ N
(
0, 1002

)
βwind,s ∼ N

(
0, 102

)
For the 	 matrix we focus most of the prior mass in the range (-1,1) so that the model
selects for stationary behaviour, though non-stationarity can be found if the data are
indicative of such phenomena. We thus use:

φij ∼ N
(
0, 0.52

)
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For the remaining parameters we set:

As ∼ N(0, 1002)

y1,s ∼ N(0, 1002)

θ1,s ∼ TN0(0, 1)

θ2,s ∼ Beta(1, 5)

where TNa refers to the truncated normal distribution with minimum value a. All these
are expected to be weakly informative, guiding the model towards sensible values whilst
letting the data provide the majority of the information. Turbidity in our dataset ranges
between 0 and 130 (NTU), so the prior values chosen for A, βdredge, βdump, are considered
to be uninformative with respect to this range. The same is true for βwind knowing that
wind speed can reach as high as 70 knots during storms, and so a high value of 2 in units
of NTU per knot (the units of βwind) seems reasonable.

As a final remark on priors we note that many of the turbidity values across sites are
missing. We assume that these values are missing at random [MAR; 18] and impute them
as part of the model fitting step by treating them as parameters to be estimated. When
using the likelihood given above we found that we struggled to produce a posterior with
finite variance so we added the extra prior constraint ymissing ∼ TN100

0 (0, 502), a truncated
normal between 0 and 100, which seemed to stabilise the missing value estimates.

In summary, model 1 provides a baseline univariate autoregressive model with time
changing variance. A more basic constant variance model was also attempted but not
shown here due to poor performance. Model 2 tests whether a richer full rank vector mean
structure improves the fit at the expense of the changing variance. Model 3 combines both
the full vector autoregression with the time changing variance. Finally, model 4 introduces
a difference in the latent parameters to capture any potential non-stationarity in the mean.
Belowwe fit each of thesemodels to the data described in Section 2, and use a combination
of posterior predictive distributions, information criteria, and plots of the posterior distri-
butions of the parameters to determine the optimal models which we use for interpreting
our findings.

5. Results

In this section, we report the results of fitting the models described in Section 4 to the
turbidity data described in the previous section. We summarise the estimated effects of
dredging and dumping operations (recall these are binary variables) and account for the
wind speed effect by including the daily wind speed measured in knots. We compare the
different models according to their fit to the data, and interpret the best fitting model with
a view to obtaining a better understanding of turbidity behaviour in Dublin bay.

5.1. Model fitting and comparison

We fit themodels using R [20] and the Stanmodelling framework [23]. This approach uses
Hamiltonian Monte Carlo to update all parameters simultaneously and aims to rapidly
converge to the posterior distribution. Through repeated fitting of the models we found
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that using 1000 iterations, with a warm-up period of 200 iterations, produced acceptable
results. We used a MacBook Air equipped with an M1 chip, an 8-core CPU, 8GB of RAM,
and 256GB of SSD storage; the computation time was 12min. We checked convergence
using the R-hat diagnostic [5,13] whichwere all around the target value of 1 at convergence.
Details of the estimated parameters are provided in the Appendix 1.

To compare between the models, we use a combination of visual checks where we plot
posterior predictions from the model (defined via Mt) against the true data values, the
posterior predictive distribution from the model, and more formal methods. In particular
we use theWidely Applicable Information Criterion (WAIC, [26]) and the Leave-One-Out
Information Criterion (LOO-IC, [25]) which penalise the likelihood of the model fit based
on the complexity of the model. These two information criteria have the added advantage
of being easily implemented in R and providing an uncertainty estimate on the value itself.
In addition, we also compared VARICH to a frequentist VAR model, details of which are
provided in Appendix B.

Figure 3 shows the estimated WAIC and LOOIC values for the four models. The
VARICH and VARCH models have the lowest WAIC and LOOIC values indicating bet-
ter fits. However whilst the mean values ofWAIC for the VARICHmodel are slightly lower
there is no clear difference between them. The VARICH model has no extra complexity
compared to VARCH, i.e. there are no extra parameters to estimate. Furthermore we com-
puted the spectral radius of the posterior mean of 	 for both models; VARICH gave 0.33
compared to 0.98 for VARCH, which indicates that the VARICH model seems to have
removed some of the non-stationarity present in the VARCH formulation.We thus use the
VARICH model to create our further results.

Figure 4 shows the posterior prediction of turbidity from the VARICH model against
the true data values. The expected values of the fit and the observed values are shown with

Figure 3. WAIC and LOOIC values for the four fitted models with their associated standard errors.
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Figure 4. Posterior prediction from the VARICH model vs observed values of turbidity over time for the
7 buoys as labelled. Note the differing vertical axis heights. The shaded periods indicate 95% credible
intervals.

solid lines coloured in red and blue respectively and the 95% credible intervals are shown
with grey bands. As mentioned in Section 2, the dataset has missing periods which are
imputed for each location by the model during the fitting process. The vector autoregres-
sive part of the VARICH model allows for drawing information for each site using the
available information from the other sites which specifically helps regulate the uncertainty
for the missing periods. As expected, the uncertainty during high volatility periods grows
as expected through the dynamic structure applied to the variance.

Figure 5 shows the posterior predictive distributions from the VARICH model against
the true values with vertical lines indicating the 95% uncertainty intervals. On average the
posterior prediction intervals cover 94.6% of the data. The figure shows that the model
can successfully retrieve the true values of the turbidity in the dataset with well-calibrated
uncertainty estimation at the dumpsite and the dredging sites respectively.

5.2. Effects of covariates on turbidity

To determine the degree to which dumping and dredging operations affect turbidity, we
evaluate the posterior distribution of the fixed effects β . Figure 6 shows the expected value
of the dumping and dredging effects respectively with their 95% credible intervals for dif-
ferent locations. Most effects are observed to be close to zero. According to the figure,
dumping at the middle depth of the dumpsite has the most significant positive impact,
followed by the effect of dumping at the bottom of the dumpsite.
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Figure 5. Fitted values from the VARICHmodel versus observed values of turbidity at different sites. The
vertical bars indicate the 95% uncertainty intervals which provide evidence of the coverage properties
of the model.

Figure 6. Dumping anddredging effects (NTU/day) at different locationswith the 95%credible interval.
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Figure 7. Effect of wind speed (NTU/Knot) at different locations and depths with the 95% credible
interval.

Figure 7 shows the wind speed effects for the 7 buoys. These are measured in NTU per
knot and these wind effects can be more clearly identified than the effects of dredging and
dumping. The values are reasonably consistent but with greater uncertainty at the lower
positions in the dumping buoy, and a far smaller effect at Eastlink, again likely due to its
position in the bay. By contrast, the Tolka buoy seems most influenced by wind and is the
site that is most far out to sea. The Tolka buoy is situated within the confines of the estuary
walls, adjacent to North Bull wall. This area of the estuary is relatively shallow and at low
tide is exposed to the wind.

5.3. Influence of the autoregressive component

As a final part of the analysis, we examine the autoregressive coefficients from the VARICH
model. Figure 8 shows the posterior coefficients of	where we have separated out the diag-
onal values which indicate the influence of the time series on itself from the off-diagonal
elements which show the influence of one site on another. The numbering of the sites is as
shown in Figure 1.

Of the diagonal elements, the dumpsite (middle) seems to have the most dependence
after accounting for the integration component. The other sites have values close to zero
after accounting for uncertainty. Of the off-diagonal elements, some of these are well away
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Figure 8. Coefficients of the 	 matrix with their 95% credible interval. Diagonal values are shown in
the top panel (a) and off-diagonal values are shown in (b). The two subscripts indicate the parent and
child relationship respectively, so that	12 for example is the degree towhich buoy 2 influences the time
series of buoy 1. The numbers of the buoys follow the labelling defined in Figure 1.

from zero and provide for interesting, if not entirely straightforward, interpretation. 	34
is the largest, corresponding to the relationship between dumpsite (bottom) and buoy 4
(Tolka), which should perhaps be read in conjunctionwith their joint time series behaviour
as shown in Figure 4. Many of the other off-diagonal elements show similar clear non-zero
effect sizes though they are considerably smaller than 	34. These values provide evidence
of cross site learning in the time series model.

6. Conclusions

Wehave introduced a set of models for understanding the behaviour of turbidity in Dublin
bay. Both the VARCH and the VARICHmodels introduced in Section 4 allow for measur-
ing the effects of multivariate time series on each other, whilst taking account of the known
volatility changes in the time series. However, the VARICH model had slightly better per-
formance. The combination of Bayesian modelling, VAR and ARCH structures makes the
VARICH model a useful tool for flexible modelling of a wide range of real world random
processes in which spatial and temporal aspects are playing major roles. Furthermore, the
Bayesian approach allows for uncertainty quantification of both the fixed effects and the
posterior predictions of the time series, whilst simultaneously imputing the missing values
within the series.

Our main finding has been that the dumping and dredging operations have minimal
effect on the turbidity levels, which seem to be more affected by wind speed and previous
values of the series. We thus suggest that, at an aggregate daily level, there is minimal effect
of dredging on the turbidity levels in Dublin bay. The models we produced seem to fit the
data well and the results make physical sense according to the location of the buoys in the
bay. A longer time series and a more complete record would add further weight to our
conclusions.
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Ourmodel fitting technique of using HMC appeared to converge efficiently and quickly
on a standard laptop, taking around 10min to reach R-hat values below the common stan-
dard of 1.1whilst requiring only 4 chains of 1000 posterior draws (with 200 removed during
the warm-up phase). However, for larger data sets it may be that users need to increase
the number of draws. For very large data sets the HMC technique may prove infeasible
and so other methods such as MultiBUGS [14] might be more appropriate. Other com-
putational difficulties may be occur should the model structure be made more complex.
Interesting extensions of our approachmight involve looking at time-varying behaviour of
the coefficients, or multiple lags or long memory of the multivariate time series itself.
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Appendices

Appendix 1

Table A1. Summary statistics of estimated parameters, including their Mean, Median, Standard Devia-
tion, 5th percentile, 95th percentile, and the R-hat statistic.

Variable Mean Median SD q5 q95 Rhat

beta1[1] 0.07 0.07 0.02 0.04 0.1 1
beta1[2] 0.13 0.13 0.03 0.08 0.19 1
beta1[3] 0.07 0.07 0.03 0.02 0.11 1
beta1[4] 0.14 0.14 0.02 0.1 0.18 1
beta1[5] 0.05 0.05 0.02 0.02 0.08 1
beta1[6] 0.05 0.05 0.01 0.03 0.07 1
beta1[7] 0 0 0.01 –0.02 0.02 1
beta2[1] 0.26 0.27 0.33 –0.29 0.8 1
beta2[2] 1.99 1.98 0.56 1.08 2.94 1
beta2[3] 1.54 1.57 0.41 0.84 2.16 1
beta2[4] 0.04 0 0.48 –0.69 0.86 1
beta2[5] –1.08 –1.08 0.24 –1.46 –0.69 1
beta2[6] 0.68 0.71 0.26 0.22 1.04 1
beta2[7] –0.04 –0.04 0.19 –0.37 0.27 1
alpha[1] 2.78 2.85 0.54 1.87 3.52 1.01
alpha[2] 4.3 4.32 0.28 3.83 4.73 1
alpha[3] 3.8 3.79 0.16 3.55 4.08 1
alpha[4] 1.22 1.25 0.36 0.59 1.75 1.01
alpha[5] –1.46 –1.43 0.33 –2.05 –0.96 1
alpha[6] 0.42 0.43 0.13 0.21 0.64 1.01
alpha[7] –2.05 –2.01 0.52 –2.97 –1.26 1.01
gamma0[1] 0.69 0.68 0.1 0.53 0.87 1
gamma0[2] 2.09 2.08 0.33 1.56 2.67 1
gamma0[3] 1.14 1.02 0.52 0.53 2.17 1
gamma0[4] 1.65 1.64 0.21 1.33 2.01 1
gamma0[5] 0.09 0.06 0.09 0 0.27 1
gamma0[6] 0.2 0.2 0.03 0.15 0.26 1.01
gamma0[7] 0.07 0.05 0.06 0 0.19 1
gamma1[1] 0.07 0.07 0.02 0.05 0.1 1.01
gamma1[2] 0.38 0.38 0.05 0.3 0.47 1
gamma1[3] 0.62 0.63 0.09 0.45 0.76 1
gamma1[4] 0.44 0.44 0.07 0.33 0.57 1.01
gamma1[5] 0.13 0.13 0.03 0.1 0.18 1
gamma1[6] 0.55 0.55 0.05 0.47 0.64 1
gamma1[7] 0.05 0.05 0.01 0.03 0.07 1
phi[1,1] 0.08 0.07 0.04 0.01 0.15 1
phi[2,1] 0.15 0.14 0.08 0.03 0.3 1
phi[3,1] 0.08 0.07 0.06 0.01 0.19 1
phi[4,1] 0.06 0.06 0.04 0.01 0.15 1.01
phi[5,1] 0.1 0.1 0.04 0.03 0.16 1.03
phi[6,1] 0.06 0.06 0.02 0.02 0.1 1.03
phi[7,1] 0.02 0.02 0.02 0 0.06 1
phi[1,2] 0.01 0.01 0.01 0 0.02 1.01
phi[2,2] 0.08 0.08 0.06 0.01 0.19 1
phi[3,2] 0.02 0.02 0.01 0.01 0.04 1.01
phi[4,2] 0.05 0.05 0.02 0.02 0.08 1.02
phi[5,2] 0.01 0.01 0.01 0 0.03 1.01
phi[6,2] 0 0 0 0 0.01 1.01
phi[7,2] 0.01 0.01 0 0 0.02 1.01
phi[1,3] 0.02 0.01 0.01 0 0.03 1
phi[2,3] 0.02 0.02 0.01 0 0.04 1
phi[3,3] 0.01 0.01 0.01 0 0.03 1
phi[4,3] 0.01 0.01 0.01 0 0.04 1
phi[5,3] 0.01 0 0 0 0.01 1

(continued)
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Table A1. Continued.

Variable Mean Median SD q5 q95 Rhat

phi[6,3] 0 0 0 0 0.01 1
phi[7,3] 0 0 0 0 0.01 1
phi[1,4] 0.06 0.06 0.01 0.04 0.07 1
phi[2,4] 0.05 0.05 0.03 0.01 0.1 1
phi[3,4] 0.48 0.47 0.05 0.39 0.57 1
phi[4,4] 0.02 0.02 0.02 0 0.06 1
phi[5,4] 0.01 0.01 0.01 0 0.02 1
phi[6,4] 0.01 0.01 0 0 0.02 1
phi[7,4] 0.01 0.01 0 0 0.01 1
phi[1,5] 0.13 0.14 0.05 0.05 0.22 1
phi[2,5] 0.12 0.11 0.08 0.01 0.26 1
phi[3,5] 0.05 0.03 0.04 0 0.12 1
phi[4,5] 0.11 0.1 0.05 0.02 0.2 1.01
phi[5,5] 0.07 0.06 0.04 0.01 0.15 1
phi[6,5] 0.18 0.18 0.05 0.1 0.26 1
phi[7,5] 0.05 0.04 0.02 0.01 0.08 1
phi[1,6] 0.01 0.01 0.01 0 0.02 1
phi[2,6] 0.02 0.02 0.01 0 0.04 1
phi[3,6] 0.02 0.02 0.01 0 0.04 1
phi[4,6] 0.02 0.02 0.01 0.01 0.04 1
phi[5,6] 0.01 0 0 0 0.02 1
phi[6,6] 0.02 0.01 0.02 0 0.05 1
phi[7,6] 0 0 0 0 0.01 1
phi[1,7] 0.04 0.03 0.03 0 0.09 1
phi[2,7] 0.07 0.06 0.06 0 0.18 1
phi[3,7] 0.05 0.03 0.04 0 0.12 1
phi[4,7] 0.03 0.02 0.03 0 0.08 1
phi[5,7] 0.04 0.03 0.03 0 0.09 1
phi[6,7] 0.02 0.01 0.01 0 0.04 1
phi[7,7] 0.01 0.01 0.01 0 0.03 1

Appendix 2

To fit a frequentist VAR (Vector Autoregression) model to our data, we utilised the ‘vars‘ package in
R. This package does not accommodate missing values in the data, and to the best of our knowledge,
there is no package that can naturally handle missing data without resorting to imputation tech-
niques. Therefore, we first addressed this issue by imputing the missing values using the forward-fill
method,wherebywe carried the last observed values forward to replace anymissingness. After fitting
the model, we calculated the root mean squared error (RMSE) for one-step-ahead predictions. We
then compared these results with those obtained from the VARICH model, as detailed in Table A2.
Please note that calculating the WAIC and LOOIC criteria to compare the two models, as was done
in Figure 3, is not possible because these calculations require evaluating the log-likelihood over the
predictive posterior distribution, which is unavailable in the frequentist paradigm. As presented
in Table A2, the VARICH model’s RMSE values are lower for all sites except Poolbeg, where both
models performed the worst, possibly due to the highest volatility among the sites.

Table A2. Comparison of RMSE values: VARICH (Bayesian) vs VAR (Frequentist).

Variable VARICH VAR

Buoy 1 Top 1.89 2.08
Buoy 1 Middle 5.14 8.31
Buoy 1 Bottom 5.69 6.65
Tolka 4.26 4.30
Northbank 2.40 2.45
Poolbeg 8.94 8.36
Eastlink 1.19 1.22
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