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Abstract. In the past years it has become evident that stochastic effects in regulatory networks play
an important role, leading to an increasing in stochastic modelling attempts. In contrast, metabolic
networks involving large numbers of molecules are most often modelled deterministically. Going to-
wards the integration of different model systems, gen-regulatory networks become part of a larger
model system including signalling pathways and metabolic networks. Thus, the question arises of how
to efficiently and accurately simulation such coupled or hybrid systems. We present an algorithmic
approach for the simulation of hybrid stochastic and deterministic reaction models that allows for
adaptive step-size integration of the deterministic equations while at the same time accurately tracing
the stochastic reaction events. We present a mathematical derivation of the hybrid system on the
stochastic process level, and present numerical examples that outline the power of hybrid simulations.

Résumé. Au cours des dernières années, il est devenu clair que les effets aléatoires jouaient un
rôle important dans les réseaux de régulation, et les modèles employés aujourd’hui pour décrire ces
réseaux sont de nature stochastique. En revanche, les réseaux métaboliques, qui mettent en jeu un
grand nombre de molécules, sont le plus souvent décrits par des modèles déterministes. Dans la
modélisation de systèmes complexes, réseaux régulateurs de gènes, chemins de signaux et réseaux
métaboliques sont intégrés dans un même modèle. Se pose alors la question de simuler efficacement et
avec précision de tels modèles couplés (on parle aussi de modèles hybrides). Nous présentons ici une
approche pour la simulation de modèles de réactions hybrides stochastiques/déterministes permettant à
la fois d’avoir recours à des pas de temps adaptatifs dans l’intégration des équations déterministes et de
simuler précisément les réactions décrites par des processus stochastiques. Des simulations numériques
illustrent la puissance de ces simulations hybrides.

Introduction

Stochastic models have gained considerable attention when experiments conducted at the level of single
cells showed the existence of a non-negligible level of noise in intracellular processes, like transcription and
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translation [10, 26, 27]. Although in most cases regulatory circuits use feedback loops, redundancy and other
mechanisms to be robust against inherent fluctuations and give a deterministic outcome nonetheless [3,28,35,40],
noise is, for instance, used as source of phenotypic variability, which is favorable in evolutionary terms [23, 31].
In the past few years, therefore, a great number of stochastic models have appeared to correctly deal with
extremely low number of molecules and large fluctuations in reaction kinetics [2, 18, 34, 36]. The dynamics of a
stochastic system is described by the chemical master equation which only seldom posses analytical solutions.
Fortunately, Gillespie, back in 1976, devised two exact algorithms to numerically simulate the stochastic time
evolution of coupled chemical reactions, which are equivalent to solving the chemical master equation [13,14,39].
Although a more efficient exact method has been proposed by Gibson and Bruck, based on reuse of random
numbers and intelligent data structures [12], purely stochastic simulation are very computationally expensive,
when there are many reactions, some molecular species are present in relative large amounts and/or reaction
rates are high. Only recently, modifications to the original chemical master equation have been proposed to
further speed up simulations. These involve application of quasi-steady-state theory [30], or grouping together
reactions that occur in fast succession (the so-called tau leaping methods) [4, 5, 17, 32]. Another strategy is to
model those processes that either involve large number of particles or have fast rates, in a continuous (stochastic
or deterministic) way, keeping discrete the remaining ones. These approaches are based on a partition of the
set of reactions into fast and slow ones. Haseltine and Rawlings [21] were the first proposing to model the fast
reactions by a continuous Markov process being coupled to the Markov jump process for the slow reactions. The
resulting coupling is equivalent to ours, however, their algorithmic realization requires to introduce artificial
”no reaction events” to ensure accuray and is thus inappropriate for adaptive integration. Very recently, two
algorithms to simulate biochemical systems in a hybrid framework have been proposed [22,37]. They are based
on a prediction correction type heuristics for the realization of the discrete stochastic part. However, since
the coupling of the discrete and continuous models is not stochastically exact, these algorithms only give good
results, if the time-step of the continuous solver is kept smal. In the following, we propose a mathematical ground
for a hybrid stochastic and deterministic modelling in a elegant and natural way. We also present three adaptive
algorithms for its implementation and finally show first intriguing numerical results for the bacteriophage T7
model system.

1. Stochastic and deterministic models

Consider a well-mixed system of volume V with N chemical species S1, . . . , SN involved in M reactions
R1, . . . , RM . The state of the system is modelled in terms of number of molecules X(t) = (X1(t), . . . , XN(t))
of the chemical species. The reaction probability for each reaction Rj is specified in terms of the propensity
function aj = aj(X(t), t), which is equal to the product of a rate constant cj and the number of possible com-
binations of reactant molecules involved in reaction Rj . For the most frequently used reaction types, Sa → ∗,
Sa + Sb → ∗ and Sa + Sa → ∗, we get aj = cjXa(t), aj = cjXa(t)Xb(t) and aj = cjXa(t)(Xa(t) − 1)/2,
respectively [13, 14]. Once a reaction Rj is performed, the number of molecules for each species is updated
according to the state change vector νj , i.e., X(t)← X(t) + νj .

The stochastic system. Based on physical laws and the idea that chemical reactions are essentially
random processes, the stochastic formulation of chemical reactions is given in terms of an N

N -valued Markov
jump process {X(t), t ≥ t0}, where t0 denotes the initial time [16, 39]. The probability that the reaction Rj

occurs in the next infinitesimal time interval [t, t + dt] is given in terms of the propensity function and equals
aj(X(t), t)dt. In order to state the time evolution equation for X(t), denote by {Nj(t), t ≥ t0} the stochastic
process counting the number of times that reaction Rj occurs in the time interval [t0, t] with N(t0) = 0. Then,
obviously, we obtain

dX(t) =
M∑

j=1

νj dNj(t) (1)
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with some initial value X(t0). In order to specify the law of Nj(t), we note that Nj(t) is an inhomogeneous
Poisson process specified by

P[Nj(t + dt)−Nj(t) = 1|X(t)] = aj(X(t), t)dt. (2)

Now, it is easy to show that the evolution equation (1) corresponds to the infinitesimal generator

Af(x) = lim
s→t+

d
ds

E[f(X(s)) |X(t) = x]

=
M∑

j=1

f(x + νj)aj(x, t)− aj(x, t)f(x).

The dual point of view (Chapman-Kolmogorov) leads to the well-known chemical master equation [15, 39]

d
dt

P[X(t) = x] =
M∑

j=1

aj(x− νj , t)P[X(t)− νj = x]− aj(x, t)P[X(t) = x]

holding for all x ∈ N
N .

For coupling stochastic and deterministic models, we exploit the fact that any time inhomogeneous Poisson
process can be transformed into a time homogeneous Poisson process with parameter 1 (e.g., [38, Chapt. 2.4], [7,
Thm. 7.4.I]). Denote by Tj(t) the time at which reaction Rj first occurs after t, then from eq. (2) follows

P[Tj(t) ∈ [t, t + dt] |X(t)] = aj(X(t), t) dt.

Note that it is usually assumed that reactions are locally independent implying that P[{Tj(t), Tk(t)} ∈ [t, t +
dt] |X(t)] = aj(X(t), t)ak(X(t), t) (dt)2.

In order to establish an evolution equation for X(t) as well as justifying hybrid stochastic and deterministic
models, the following time transformation

gj(s|t) =
∫ s

t

aj(X(τ), τ) dτ

is fundamental. The function s �→ gj(s|t) is non-decreasing for s > t, since the propensities aj are non-
negative by definition. Denote by Exp(1) the exponential random variable of parameter 1, i.e., ξ ∼ Exp(1) if
P[ξ ∈ [x, x + dx]] = e−xdx for all x ≥ 0 (here ∼ denotes equality in law between two random variables); ξ has
survival probability P[ξ ≥ x] = e−x. Now, let us consider a sequence (ξjk) of independent random variables
ξjk ∼ Exp(1), with j = 1, . . . , M and k ∈ N. Define the random variables Sj(n) =

∑n
k=1 ξjk for j = 1, . . . , M .

Then, we get the following representation

Nj(t) =
∞∑

n=1

1{Sj(n)≤gj(t|t0)}, (3)

which can be deduced from P[Nj(t + dt)−Nj(t) = 1|X(t)] = aj(X(t), t)dt.
The following consequence of the above derivation will be exploited. Given that the system is in state X(t)

at time t, the next reaction time Tj(k) equals the first (smallest) time s > t satisfying

gj(s|t) =
∫ s

t

aj(X(τ), τ)dτ = ξ, (4)
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where ξ is a random number exponentially distributed with parameter 1.

The deterministic system. Under certain conditions the mathematical description of the system can be
embedded into a deterministic framework given by the following evolution equation (ODE)

dx(t) =
M∑

j=1

νj aj(x(t), t)dt (5)

with initial value x0 ∈ R
N
+ . This approach can be justified by the system entering a specific region of its state

space or to a limiting process (so-called thermodynamic limit, [24, 25]).

2. Hybrid stochastic and deterministic models

Consider a partition of the reactions R1, . . . RM into those modelled stochastically (with index j ∈ S) and
those modelled deterministically (with index j ∈ D). For a given model, there are at least three options for
getting such a partition: (i) run a fully stochastic realization and analyze the frequencies/propensities of each
reaction (note that the major computational cost is in computing many realizations); (ii) use biological insight.
It seems reasonable, for instance, to model gene regulatory parts stochastically, while metabolic reactions
deterministically; (iii) for each reaction choose adaptively between the two approaches using a criterion based
on the number of molecules and its propensity function (see below). Based on a given partition, the evolution
equation for X(t) ∈ R

N is now given by the hybrid system

dX(t) =
∑

j∈D
νj aj(X(t), t) dt +

∑

j∈S
νj dNj(t) (6)

with initial value X(t0) ∈ R
N
+ . Due to the partition of the reactions, a species can belong to the stochastic

as well as the deterministic part of the hybrid system. The hybrid system (6) corresponds to the infinitesimal
generator

Af(x) = lim
s→t+

d
ds

E[f(X(s))|X(t) = x]

=
∑

j∈D
aj(x, t)

d
dx

f(x) +

∑

j∈S
f(x + νj)aj(x, t)− aj(x, t)f(x).

The dual point of view (Chapman-Kolmogorov) leads to the chemical master equation coupled to a Liouville
type equation (cf. [11, Chap. 3.4]).

Adaptive partitioning. Up to now, we assumed that the partition of the system was given a-priori, being
fixed for the entire evolution. However, in practice, the choice of the stochastic or deterministic description is
determined by whether the underlying assumptions of the models are satisfied, which are likely to change in
time. In addition, from the computational point of view, it is also more efficient to use the deterministic de-
scription as soon as it is appropriate. This motivates to consider a time-depending partitioning of the reactions
into the two classes.

Here, as was introduced previously [6, 21, 33], we use a criterion based on two conditions. A reaction is
modelled by the deterministic equation, if (1) the reaction occurs many times in an small time interval, and
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(2) the number of reactant molecules is sufficiently large. More quantitatively, the reaction Rj is modelled
deterministically, if

(1) the expected next reaction time τj is smaller than some specified time increment ∆t, i.e., for s > t ≥ t0
it is

E[τj |Tj = t] = 1/aj(X(t), t) < ∆t.

(2) the number of reactant molecules Xr(t) involved in reaction Rj are larger than some specified number
Λ, i.e.,

Xr(t) > Λ.

For our purpose, we set ∆t = 0.1 and Λ = 10, but, of course, these numbers might be system-dependent.

In the light of our presentation, the first of the two criteria can be justified as follows: The fully stochastic
simulations become quite slow when many molecules and/or fast reactions are involved, due to the fact that the
effort is proportional to the number of reactions performed. However, for each time-changed Poisson process
Nj(t) we have

E[Nj(t)] = E[(Nj(t)− gj(t|t0))2] =
∫ t

0

E[aj(X(s), s)]ds

for t > t0. Since the relative fluctuation between Nj(t) and gj(t|t0) is given by

E[(Nj(t)− gj(t|t0))2]1/2

E[Nj(t)]
=

1
E[Nj(t)]1/2

,

it is reasonable to neglect it and approximate the stochastic dynamics by its continuous counterpart

Nj(t) ≈ gj(t|t0) =
∫ t

t0

aj(X(s), s)ds (7)

when the propensity aj is large. This is the precisely what the first criterion states. The second criterion ensures
that the quantity

aj(X(t) + 1, t)− aj(X(t), t)
aj(X(t), t)

is small in modulus [17]. Although frequently used in practice, no complete studies on its practical relevance
are as yet available. In particular, examples exist where this criterion can be relaxed while still maintaining
good properties of the deterministic description.

3. Algorithmic realization of the hybrid models

At least three different algorithmic approaches for simulating the stochastic part in the hybrid model (6)
are available: (i) the first reaction method [13, 14], (ii) the direct method [13, 14] and (iii) the next reaction
method [12]. In the following, we will discuss algorithmic realizations of the hybrid model based on each of these.

To illustrate the basic idea, consider the hypothetical situation of a single chemical species S1 being involved
both in a reaction R1 modelled stochastically and a reaction R2 modelled deterministically. Set the initial
time τ = t0 and the number of molecules X(τ) = X1(t0). Draw a random number ξ1 ∼ Exp(1) and initialize
g1(τ |t) = 0. As long as g1(τ |t) < ξ1 no stochastic event occurs and the dynamics is simply given by the
deterministic part

dX

dτ
(τ) = ν2 a2(X(τ), τ) (8)
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(cf. eq. (6)). In the course of the (deterministic) evolution, however, the value of g1(τ |t) increases following the
differential equation

d
dτ

g1(τ |t) = a1(X(τ), τ). (9)

Hence, algorithmically, we simply simultaneously solve the system of ODEs (8) and (9). The numerical solution
of such ordinary differential equations is very well documented (e.g., [8,19,20,29]). We therefore suppose that we
are able to compute the solution of the ODEs up to any desired accuracy and neglect the discretization error in
what follows. Due to eq. (4), we know that the first stochastic reaction occurs according to the random variable
T1(t0). Consequently, we integrate the system of ODEs (8) and (9) until time τ = s such that g1(s|t) = ξ1.
Thus T1(t0) = s and the stochastic reaction is performed. The entire procedure is then repeated until a specified
final time.

The above algorithmic scheme requires the use of numerical integrators that allow to stop integration when
some so-called event function (in our case F (τ) = g1(τ |t) − ξ1) vanishes. A few numerical ODE integrators
already include event handling. However, the special nature of our event function makes it easy to implement
the event detection, since F (τ) increases in τ (it is negative before the event time and positive thereafter). Thus
one numerically integrates the system of ODEs until the first time τ+ when the event function F (τ+) becomes
positive, while it is still negative at the previous time τ− = τ+− δt (δt being the time step). Then, one applies,
e.g., the be-section method or the Newton method [9] to accurately determine the event time. For the Newton
method, the next reaction time s is approximated by a sequence of times {sk}k∈N defined iteratively by

sk+1 − sk = ∆sk = − F (sk)
F ′(sk)

= − F (sk)
a(X(sk), sk)

.

The iteration is stopped, if |∆sk| < TOL, where TOL is some predefined tolerance. Both approaches requires
the successive solution of the original system of ODEs. This, however, could be too computationally costly, if
there are many species involved in the system (large N). However, the dimension of the ODE to be solved for
the event detection can be reduced to a fixed, low dimension, if a special type of numerical integrator supplying
a so-called dense output is used (see, e.g., [19, Chapt. II.5], [20, Chapt. IV.6] for Dormand and Prince Runge-
Kutta (RK) type methods).

In what follows we present the algorithmic schemes for a fixed partition of the set of reactions. It is straight-
forward to include the time-dependent partitioning.

3.1. The direct hybrid method

The direct method explicitly calculates which reaction occurs next and when it occurs [13,14]. The reaction
time is given by the jump of the Poisson process Nσ(t) =

∑
j∈S Nj(t) with intensity given by the cumulative

time transformation gσ(τ |t) =
∑

j∈S gj(τ |t). Thus the algorithmic realization of the direct hybrid method is as
follows:

(1) Set initial time t = t0 and initial numbers of molecules X(t0);
(2) Generate a random variable ξ ∼ Exp(1);
(3) Set gσ(t|t) = 0 and solve the system of ODEs starting at time τ = t

dX

dτ
(τ) =

∑

j∈D
νjaj(X(τ), τ) (10)

dgσ

dτ
(τ |t) =

∑

j∈S
aj(X(τ), τ) (11)
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Table 1: T7 model equations.

No. reaction propensity rate ( day−1) state change
R1 gen c1−−→ tem a1 = c1 · gen c1 = 0.025 ν1=(1,-1,0)
R2 tem c2−−→ ∅ a2 = c2 · tem c2 = 0.25 ν2=(-1,0,0)
R3 tem c3−−→ tem+ gen a3 = c3 · tem c3 = 1.0 ν3= (0,1,0)
R4 gen+struc c4−−→ ”virus” a4 = c4 · gen · struc c4 = 7.5 · 10−6 ν4=(0,-1,-1)
R5 tem c5−−→ tem+struc a5 = c5 · tem c5 = 1000 ν5=(0,0,1)
R6 struc c6−−→ ∅ a6 = c6 · struc c6 = 1.99 ν6=(0,0,-1)

until time τ = s such that gσ(s|t) = ξ;
(4) Generate a discrete random variable with values in S and probabilities (aj(X(s), s))j∈S in order to

determine the reaction Rm to be performed;
(5) Update X(s) according to reaction Rm, hence set X(s)← X(s) + νm; set t← s and go to Step 2.

3.2. The first and next reaction hybrid methods

In the first reaction method, a putative reaction time is generated for each reaction; the reaction corresponding
to the smallest time is chosen to occur, the state vector X(t) is accordingly updated and the process repeated
[13, 14]. The next reaction method is an efficient and economic (from the point of view of use of random
variables) variant of the first reaction method. It is based on reuse of random variables and optimized data
structures [12]. This reuse allows us to sample only one random variable at each iteration (instead of two like
in the direct method). The algorithmic realizations of the first and the next reaction hybrid methods are very
similar, thus we state them in a compact form:

(1) Set initial time t = t0 and initial numbers of molecules X(t0);
(2) Generate independent random variables (ξj)j∈S , one for each reaction Rj in S, with ξj ∼ Exp(1);
(3) Set gj(t|t) = 0 for j ∈ S;
(4) Solve the system of ODEs starting at time τ = t

dX

dτ
(τ) =

∑

j∈D
νjaj(X(τ), τ) (12)

dgj

dτ
(τ |t) = aj(X(τ), τ); j ∈ S (13)

until time τ = s such that for the first time gm(s|t) = ξm for some m ∈ S;
(5) Update X(s) according to reaction Rm, hence set X(s)← X(s) + νm;
(6) Set t← s and

(i) First reaction hybrid method: go to Step 2.
(ii) Next reaction hybrid method: For reaction Rm generate a new random variable ξm ∼ Exp(1) and

set gm(t|t) = 0, while keeping all other values gj(t|t) for j 
= m as initial values for the system of
ODEs (12) and (13); go to Step 4.

For an alternative algorithmic realization of the hybrid next reaction method based on rescaling of the random
variables ξj , we simply replace Step 6 by

6’ (ii) For reaction Rm, generate a new random variable ξm ∼ Exp(1); for the remaining reactions Rj ,
with j ∈ S and j 
= m, rescale ξj according to ξj ← ξj − gj(s|t). Set t← s and go to Step 3.
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4. Numerical studies for the bacteriophage T7 model

We now wish to demonstrate the power of our hybrid method using a model derived by Srivastava et al. [34]
describing the intracellular growth of bacteriophage T7. We choose this model since it clearly shows the dif-
ference between deterministic and stochastic modelling (Figure 1) and thus allows to check whether the hybrid
method is able to speed up simulation without compromising the results.

The bacteriophage T7 test model comprises three chemical components: viral nucleic acids classified into
genomic (gen) and template (tem) and viral structural proteins (struc). The infection process is modelled by six
reactions (Table 1). In the sequel, we will focus on the low infection level corresponding to the initial numbers
of molecules tem = 1, gen = struc = 0.
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Figure 1: Comparison of the deterministic model with the means of the fully stochastic and different hybrid models (based on 104

realizations).

As was shown in [34], the deterministic model of the above system possesses two stationary points: (1) the
point tem = gen = struc = 0, which is unstable (the system will move away from it after small perturbations)
and (2) the point tem = 20, gen = 200 and struc = 10000, which is stable (the system will return to it
after small perturbations) and attractive (the system tends to reach this state, if possible). As an analysis
of the propensities (e.g., by running a single realization) reveals, reactions R5 and R6 happen much more
frequently than the others, suggesting that we model them deterministically, while treating the remaining ones
stochastically. For our T7 model, this can even be made more precise: The propensities at the stable steady
state are:

a1 = 5 a2 = 5 a3 = 20
a4 = 15 a5 = 20000 a6 = 19900 (14)

which clearly show a separation of time scale between the two sets of reactions. The results for 104 realizations
of the corresponding hybrid model are shown in Figure 2. As in [34], we display results related to the number of
tem molecules. It can be seen that the distributions obtained with the hybrid model are almost indistinguishable
from those obtained with the fully stochastic model. The advantage of the hybrid model is a considerable saving
of CPU time in numerical simulations. For the sake of comparison, we have simulated the fully stochastic and
the hybrid models based on either the direct method [13, 14] or the next reaction method [12]. The observed
CPU times are reported in Table 2. It appears that the hybrid simulations are about 100 times as fast as the
fully stochastic ones. The hybrid simulation is based on a Runge Kutta integrator of order 4 [8, 19, 20]. In
order to verify the accuracy of the event detection, we exploit the existence of an analytical solution for hybrid
equations for S = {1, 2, 3, 4}. Hence solving the event equations (11) or (13) can be accomplished by a few
Newton iterations [9]. The results obtained are very similar suggesting that the event detection is performed
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Figure 2: Hybrid kinetics for the bacteriophage T7 model (reactions R1, R2, R3 and R4 modelled stochastically, reactions R5, R6

modelled deterministically) compared to the reference fully stochastic model: post-infection distribution of tem molecules (based
on 104 realizations).

with sufficient accuracy.

Further speed up can be obtained by adaptively choosing the partition of the reactions into those modelled
stochastically and those approximated deterministically. We based our partitioning on the expected next re-
action time and thus on size of the propensity function (see Adaptive partitioning, p. 4). No restriction on
the number of reactant molecules was imposed. The approximation quality is as excellent as for the fixed
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Table 2: Computational savings. Comparison of fully stochastic and hybrid method in terms of CPU time (104 realizations,
Fortran 77 code run on a Pentium 1.4 GHz processor).

Model Direct method Next reaction method
Fully stochastic 15600 s 21200 s
Hybrid model:
S = {1, 2, 3, 4} 183 s 201 s

partitioning into S = {1, 2, 3, 4} and D = {5, 6} (cp. Fig. 2), while further saving CPU time. In our model, a
restriction on the number of molecules would drastically slow down the simulation, since, as a result, reaction
R5 would be simulated stochastically. However, due to its catalytic nature, approximating reaction R5 by the
deterministic model is no problem. While this seems obvious for the T7 model, less obvious situations exist,
where it is sufficient to base the partitioning on the size of the propensity only. On the other side, there are
also models, where the partitioning cannot be determined on the basis of the propensity only. Regarding the
criteria for adaptive partitioning, further investigation should be performed.

It is instructive to perform simulations under different choices of S and D in order to identify the reactions
whose stochastic effects contribute most to the overall dynamical behavior of the T7 model system (as was
also pointed out in [5]). As can be inferred from Figure 3 (left), reducing the number of reactions modelled
stochastically to S = {1, 2, 3} hardly changes the results in terms of distribution profiles. Interestingly, the
simulation times are somewhat longer, for the time step has to be reduced by a factor 10 to maintain the
desired accuracy. On the other hand, a further reduction of the number of reactions modelled stochastically
dramatically modifies the overall dynamical behavior of the system (see Figure 3). However, the mean values
are still closer to the fully stochastic than to the deterministic model (Figure 1). Hence, the interplay of the
three reactions R1, R2 and R3, and the order of their occurrence seems to be an important part of the regulatory
network. Neglecting these stochastic effects induces (large) deviations from the reference fully stochastic model.

5. Discussion

We presented a mathematical derivation for hybrid stochastic and deterministic modelling and three easy
to implement simulation algorithms. The power and applicability of the hybrid modelling approach has been
demonstrated on a model for bacteriophage T7 model [34] that was especially designed to analyze the influence
of stochastic fluctuations on the overall dynamical behavior. As a result, we gained a speed up of the simulations
by two orders of magnitude without compromising the statistics.

In the past years several approaches have been proposed to speed up stochastic simulations. Most of the
times, the starting point is an approximation of the stochastic process Nj(t) (see eq. (3)) counting the number
of times reaction Rj occurs. In the case of tau-leaping methods [4,5,17,32] Nj(t) is approximated by a Poisson
process, while in the case of [30] the quasi-steady state approximation is applied to those Nj(t) that correspond
to fast reactions. Very recently, two algorithms to simulate hybrid models have been proposed [22, 37]. The
main difference to our approach is that they lack a mathematical justification and that the coupling is not
statistically exact. They are based on a prediction correction heuristic for the realization of the stochastic part
that can be seen as an approximation to the simultaneous solution of the system of ODEs (10) and (11), or (12)
and (13) of our hybrid methods.

The first promising results of our hybrid approach indicate some further directions of research. It was explic-
itly not our aim to theoretically justify any partitioning of the set of reactions into stochastic and deterministic
ones. A mathematical analysis of the approximation error of the hybrid model compared to the fully stochastic
one is needed in order to better understand, under what circumstances the hybrid approach gives reliable re-
sults. Moreover, an application of the hybrid approach to a larger realistic biological systems is desirable. Only
after our work on the hybrid method has been completed (cmp. [1]), we got aware of the paper by Salis and



ADAPTIVE SIMULATION OF HYBRID STOCHASTIC AND DETERMINISTIC MODELS FOR BIOCHEMICAL SYSTEMS 11

number of tem molecules

re
la

ti
ve

 f
re

qu
en

ci
es

0 10 20 30 40
0

0.1

0.2

hybrid S={1,2,3} (dt=0.001 day)
fully stochastic              

200 days post-infection

number of tem molecules

re
la

ti
ve

 f
re

qu
en

ci
es

0 10 20 30 40
0

0.1

0.2

hybrid S={1,2}  
fully stochastic

200 days post-infection

number of tem molecules

re
la

ti
ve

 f
re

qu
en

ci
es

0 10 20 30 40
0

0.1

0.2

hybrid S={1,3}  
fully stochastic

200 days post-infection

Figure 3: Results for different hybrid systems for the bacteriophage T7 model (solid lines) compared to the reference fully stochastic
system (dotted line) based on 104 realizations.

Kaznessis [33], which also addresses the problem of coupling Markov jump processes with continuous stochastic
or deterministic processes with similar mathematical techniques.
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