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Introducing direction fields to students learning ordinary differential 

equations (ODEs) through guided inquiry 

This paper reports on an intervention as part of which direction fields were 

introduced to students learning ordinary differential equations (ODEs). The 

intervention was designed and implemented to address issues with students’ 

conceptions of the solutions of ODEs. These were identified by a diagnostic 

survey and through a review of the literature. The intervention comprised fifteen 

guided inquiry tutorials, one of which introduced students to direction fields in 

the context of first order ODEs. A combination of interviews and immediate and 

delayed post-testing was used to measure the impact of the tutorial. The design of 

the tutorial and the results of the interviews and post-test data are reported. A 

large majority of the students who completed the tutorial were able to 

successfully complete tasks linking direction fields to their study of ODEs. A 

significant improvement was also observed in relation to students’ conceptions of 

solutions to an ODE.  

Keywords: differential equations; direction fields; solutions to differential 

equations; guided inquiry. 
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Introduction and background 

This paper reports on a study of an intervention that comprises a guided inquiry tutorial 

on direction fields (also known as slope fields or quiver plots) designed and 

implemented as part of a service mathematics module on Ordinary Differential 

Equations (ODEs) taken by physics undergraduates and undergraduate prospective 

mathematics teachers in an Irish university. In a previous paper [1] we reported that, 

pre-intervention, students who had completed the module possessed fragmented concept 

images of ODEs. Particularly, important issues such as what defines an ODE and what 

is meant by a solution to an ODE were not well understood by students. These results 

have led us to develop an intervention that focuses less on procedural fluency and more 

on conceptual understanding, as advocated by various authors [2-6].  

Habre’s work [3,4] provides early examples of the study of using graphical or 

geometric approaches to solving differential equations in an educational context. 

Stephan and Rasmussen [7] describe a reform setting in which they engaged students in 

situations where they constructed graphical, numerical, and analytical techniques 

simultaneously and re-created the notion of direction fields in a bottom-up manner. By 

careful implementation, the introduction of graphs as one of a number of external 

representations may improve students’ conceptual understanding [8, 9], particularly 

with respect to their conception of solutions to ODEs, which has been the focus of much 

of the research on ODEs to date [10-15]. 

The effect of a change in pedagogy on conceptual understanding of ODEs has 

also been studied extensively [16-20]. Generally speaking, constructivist approaches 

have been shown to be potentially beneficial. The findings of our survey and the 

literature described above motivated us to develop an intervention for our students. The 

purpose of the intervention was to enrich students’ concept image of ODEs by focusing 

on several major themes. Among these themes was the notion of solutions of an ODE 

being functions, and emphasis on graphical approaches to solving ODEs. The mainstay 

of the intervention is a set of fifteen guided inquiry tutorials that students experienced in 

a small-group setting. In this paper we focus on one of these, concerning direction 

fields. Our research questions are as follows: 

(1) Can a fifty-minute guided inquiry tutorial help students understand direction fields? 

Specifically: 
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(a) Can students identify which direction field represents an ODE given in algebraic 

form? 

(b) Can students match a solution curve to the corresponding direction field? 

(2) To what extent does our extended guided inquiry intervention change students’ 

conceptual understanding of the solutions to ODEs? 

We now turn our attention to the intervention, with a focus on the worksheet on 

direction fields. 

The intervention 

The intervention in its entirety comprises a set of 15 worksheets, mostly accompanied 

by pre-tests and post-tests, given to students working in a small-group setting. In this 

section we describe the design of the intervention with a focus on the worksheet on 

direction fields.  

Design restrictions 

The ODE module is taken by physics undergraduates and prospective mathematics 

teachers in the third year of a four-year degree programme. The intervention was 

designed to replace weekly 50-minute recitation sessions, in which a problem sheet 

containing a number of mathematical tasks that allowed students to practice the 

procedures they saw during lectures was made available online at the beginning of each 

week. In line with custom and practice, attendance or completion of tutorial work was 

neither compulsory nor graded.  

Underlying theory of learning 

Gresalfi and Lester [21] explain that subscribing to an educational paradigm and 

allowing it to guide what happens in the classroom is necessary. In this project, a 

constructivist approach to teaching and learning is adopted, primarily because of the 

scale and usefulness of relevant research that incorporates it in their conceptual 

frameworks [22-27]. In particular, the theory has been well developed as it applies to 

mathematics [22, 28]. 

Constructivism says that students construct their own understanding by actively 

discussing and grappling with concepts. Social constructivism in particular prioritises 



 
5 

the role of community in learning. Crotty [29] has highlighted the link that exists 

between one’s worldview, theoretical lens, methodological approach, and methods of 

data collection, and explains how these elements should be consistent with one another. 

It follows then that our instructional design must build on constructivism and comprise 

activities that maximise the opportunity for students to construct their own knowledge 

and understanding in a classroom environment that supports argumentation and 

cooperation; see also [23,30-34]. 

Group work 

By subscribing to a social constructivist theory of learning, we are accepting that group 

work will play a significant role in student learning. A study of students’ attitudes to 

group work in undergraduate mathematics reported several favourable outcomes [35]. 

Group work helped students to consolidate and further explore material covered in 

lectures and retain their concentration levels. Peer discussions facilitated their 

understanding of the lecture material and made them feel more able to ask for 

clarification or help from their peers than from the lecturer [35, p.78]. We decided to 

use groups of no more than four students that are of mixed-ability and gender balanced 

where possible. This is line with the findings of Gillies [36], who adds that the 

facilitators need to be trained in how to implement this pedagogical strategy: ‘children 

in structured groups give more detailed and explanatory help to each other, ask deeper 

and more comprehensive questions, and achieve higher learning outcomes’ when these 

criteria are met; see also [37, 38]. 

Our reform setting is more guided than that described by Stephan and Rasmussen [7], 

because our goals are different. We focused on enriching students’ concept image of 

ODEs and were severely constrained by limited contact time, the broad course content, 

and number of teaching staff per student (1:34). 

Activities and questions on worksheets 

The worksheets were designed in a manner similar to that described by Doughty [34]. 

Our worksheets also include a significant number of mathematical tasks that allow 

students to develop their instrumental understanding of mathematical concepts relevant 

to the study of ODEs. 
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Each activity comprises several questions. Each activity, as Doughty [34] 

explains, guides students towards understanding a given concept. Krainer [39] describes 

this as seeing learners as producers of knowledge, not just consumers. In a guided 

inquiry approach, each question acts as a stepping stone [39, 40] towards understanding 

the given concept. The optimum ‘step size’ is that through which the group can navigate 

using a combination of argumentation and justification. An unnecessarily small ‘jump’ 

between questions, and students do not need to interact with each other (which is 

required to evoke the zone of proximal development (ZPD) [41] and for learning to 

occur). An oversized gap between questions is one that falls outside the ZPD of the 

individual with their peers (and even the tutor), and the destination is not reached. An 

increase in the number of scaffolded questions in a physics setting was requested by 

students who believed that questions of this nature would help them solve problems in 

physics [42].  

Each activity should end with some form of reflection to allow students to 

consolidate their learning [40,41] or to highlight any remaining difficulties at the 

earliest opportunity [40]. In the case of our worksheets, this is achieved through built-in 

instances where students are asked to discuss their answers with tutors before they 

progress. These conversations also offer students the opportunity to ‘articulate what 

they know’, something that Carpenter and Lehrer deem a necessary provision for 

students to engage with in order for ‘learning with understanding to occur on a 

widespread basis’ [30, p. 24]. Several studies on task design [39, 40, 43-45] were used 

during the design of the worksheets.  

Table 1 provides an overview of all fifteen tutorials. The worksheet on direction 

fields is the seventh worksheet of fifteen in the intervention.  

The Direction Fields tutorial 

Prior to the intervention, direction fields were not part of the course. We decided to 

include direction fields because they are an excellent way to incorporate graphical 

representations into the study of first order ODEs and are an important tool for 

motivating students to think about differential equations visually [46, p.150]. Graphical 

representations are one of three solution methods (along with numerical and analytical) 

mentioned by Stephan and Rasmussen [7], and as a form of visualization, are 

considered by Borrelli and Coleman [47, p.1] to be vital to understand the dynamical 
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aspect of ODEs in an introductory course. The direction field is the only concept that is 

being added to the curriculum, and the only concept not introduced in lectures.  

Unlike Stephan and Rasmussen [7], we do not let students re-create direction fields, but 

present them as a useful tool. Consequently the first of the six tasks in the worksheet 

(Appendix A) comprises an introduction, which is unusual in that the students read 

through our explanation of direction fields in the context of first order ODEs. In the 

remaining five tasks the students are active participants. 

The first two tasks require students to populate an x,y-grid with segments of tangents at 

various points for two ODEs of the form 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦). For the first ODE, the slope 

function f is independent of x. For the second, the slope function f depends on both x 

and y, but is undefined when 𝑦 = 0. This progression gives students practice 

constructing fields while also introducing key properties of functions in an attempt to 

strengthen the link between the function nature of solutions to ODEs and their graphical 

solution. The third task requires students to work in reverse, as they are asked to select 

the correct ODE when given a portion of the direction field. In the fourth task students 

use a Geogebra file to construct a direction field with certain properties, drawing all 

desired outcomes of the tutorial together in a final activity. The tutorial also contains an 

extension exercise for groups of students that progress quickly through the worksheet.  

Other tutorials focused on solutions to ODEs 

The worksheet on direction fields is one of four whose primary theme is developing 

conceptual understanding of solutions to an ODE (Table 1).  

Table 1 

Worksheet Order, Title, and Primary Theme 

 

Number  Name Primary theme 

1 Calculus review Instrumental understanding 

2 Meaning of the derivative The derivative 

3 ODEs and their solutions Solution to ODE 

4 Separable equations Instrumental understanding 

5 First order ODEs Instrumental understanding 

6 Practice solving first order ODEs Instrumental understanding 
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7 Direction fields Solution to ODE 

8 Modelling with first order ODEs I Modelling 

9 Modelling with first order 

ODEs II 

Solution to ODE 

10 Modelling with first order ODEs 

III 

Modelling 

11 Second order ODEs Instrumental understanding 

12 More second order ODEs Instrumental understanding 

13 Solutions to second order ODEs Solution to ODE 

14 Practice solving second order 

ODEs 

Instrumental understanding 

15 Modelling with second order 

ODEs 

Modelling 

We include an activity from each of the other worksheets (Figure 1) as an 

indication of how students encounter the concept in the other worksheets. All activities 

highlight that solutions to ODEs are collections of functions, approached from a number 

of separate, often complementary, directions. Worksheet 3 is primarily about what an 

ODE is, and what is meant by a solution to an ODE. Worksheet 9 introduces modelling 

using first order ODEs; the activity shown highlights the graphical representation of the 

solution to an ODE by giving students an initial condition and asking them to sketch 

how the solution curve evolves over time. The activity from Worksheet 14 draws 

together the algebraic and graphical solutions of five second order linear ODEs. 

Students are asked to match each ODE to its algebraic solution in algebraic and 

graphical form. 
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Figure 1. Activities from intervention on solution to an ODE. (a) Activity 3 from Worksheet 3 

 

Figure 1. Activities from intervention on solution to an ODE. (b) Activity 3 from Worksheet 9 
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Figure 1. Activities from intervention on solution to an ODE. (c) Activity 1 from Worksheet 14 

Methodology 

A combination of immediate and delayed post-testing and interviews was used to gather 

the data necessary to answer the research questions. Each post-test contained two 

questions, one corresponding to RQ1a and one to RQ1b. The immediate post-test 

provides data on the individual and group level simultaneously with minimal external 

influences. It was completed by all attendees which resulted in a large response rate that 

represented every member of the cohort. Data informing RQ1 was also gathered 

through a written delayed post-test that was given as a question on the terminal exam 

for the ODE module. This took place eleven weeks after the tutorial. Aligning the 

questions on both post-tests enabled us to evaluate the long-term impact of the tutorial, 

albeit influenced by further learning experiences such as Worksheet 14. From a teaching 

perspective, the delayed post-test question also serves to include more qualitative or 

conceptual questions in the assessment for the ODE module, as called for by Rowland 

and Jovanoski [5]. The data presented in this paper is extracted from two successive 

years’ worth of immediate post-test data. Seventy-six students completed the immediate 

post-test, seventy students completed the delayed post-test. 

We used semi-structured interviews to probe students’ conceptions of solution to 

an ODE in more detail. The interviews followed the design guidelines described by 

Jääskeläinen [48]. Interviews were chosen because of the richness of the data obtained. 

They can facilitate more open-ended questions than pen and paper tests, and allow for 

spontaneous lines of enquiry to be followed by the interviewer. We use the data 

obtained from the interviews to discuss students’ understandings of the function nature 

of solutions to ODEs. This data is used to shape the discussion around RQ2. The 
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interviews were conducted on a voluntary basis, six weeks after the tutorial took place. 

The twelve participants described in this paper represent a broad range of abilities and 

backgrounds with respect to the student cohort.  

Results and discussion 

To answer RQ1, we begin by reporting the students’ answers to the immediate 

post-test questions. Forty-two students completed the immediate post-test (Figure 2) and 

forty-six students completed the delayed post-test (Figure 3) in Cohort 1. Thirty-four 

students completed the immediate post-test in Cohort 2. 

 

Figure 2. Direction field immediate post-test 
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Figure 3. Direction field delayed post-test 

Immediate post-test  

RQ1a: Can students identify direction fields when given ODEs in algebraic form? 

Question 1 required students to match the ODE 
𝑑𝑦

𝑑𝑥
=

1

10
(𝑥2 + 𝑦2) to a picture of its 

direction field and explain how they arrived at their answer. The question was posed to 

both cohorts as shown in Figure 2, but the nature of one of the incorrect responses was 

changed. Upon analysing the student responses from Cohort 1, it became apparent that 

identifying the correct answer was possible by noticing that it was the only solution for 

which each slope is non-negative. This reasoning was used by the majority of students 

(55% of cohort, 66% of correct answers). We decided to require students to engage in 
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further reasoning to identify the correct answer by changing one of the incorrect 

responses to also have the property that the slope is positive at all points. This meant 

that students in Cohort 2 could not identify the correct answer by noticing only the sign 

of the slopes on the direction field.. 

A total of seventy-six students completed this question across both cohorts, 

sixty-six of whom (n=76, 87%) identified the correct direction field. Increasing the 

difficulty of the problem did not result in a reduction in success, in fact the success rate 

increased from 83% (n=42) in Cohort 1 to 91% (n=34) in Cohort 2. A breakdown of the 

responses is outlined in the following table. 

Table 2 

Responses to Immediate Post-Test Q1 

 

response 
Cohort 1 

(N=42) 
Cohort 2 

(N=34) all (N=76) 
correct direction field chosen 83% (35) 91% (31) 87% (66) 
incorrect field 14% (6) 9% (3) 12% (9) 
Correct but incomplete reasoning 14% (6) 3% (1) 9% (7) 
Combination of correct and incorrect reasoning 0% (0) 3% (1) 3% (1) 
No explanation 0% (0) 3% (1) 3% (1) 
no answer 2% (1) 0% (0) 1% (1) 
total 100% (42) 100% (34) 100% (76) 

Reasoning Given for Choosing the Correct Direction Field 
Explanation  Frequency     

Cohort 1 

(N=35) 
Cohort 2 

(N=28) 
Both 

Cohorts 

(N=63) 
The slope at all points must be positive 66% (23) 36% (10) 52% (33) 
Tested various points to see if slope matched the 

diagram 
26% (9) 32% (9) 29% (18) 

Blank 3% (1) 32% (9) 16% (10) 
Other (mentioned by one student) 6% (2) 0% (0) 3% (2) 

Given the change of options presented to students in this question we discuss the 

reasoning used by each cohort separately.  

(Cohort 1, n=42) 

Forty-two students completed the immediate post-test in Cohort 1. Thirty-five students 

(83%) identified the correct answer to Question 1, with the remaining seven students 

(17%) choosing an incorrect direction field (n=6) or leaving the question blank (n=1). 
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The frequencies of explanations given by students who answered correctly is recorded 

in Table 2. 

One common strategy (26%; n=9) was to substitute coordinate values into the ODE to 

calculate the slope of the solution curve at the corresponding points, and to compare the 

results with the options provided for the direction field. A second common strategy 

(66%; n=23) was to compare the sign of the slope (which is positive except at the origin 

where it is zero) with the slopes indicated by the direction fields. It is noteworthy that 

all six of the students who gave an incorrect solution used similar reasoning. The salient 

difference was that they either did not use this information (slope value, slope sign) to 

select the correct answer, or (in the case of those who tested points) did not exhaust this 

method to rule out all other options. An example of incorrectly using information is a 

student who reasoned that the slope will be positive at every point choosing an option 

where negative slopes are present. An example of a student who tested points in a non-

exhaustive manner is discussed below (Figure 4). 

(Cohort 2, n=34) 

Thirty-one students (91%) chose the correct direction field. Seven of these students 

(21%) tested various points to see if the slope matched the diagram, which is unchanged 

from the previous cohort. Twenty-one students (62%) used slope comparison reasoning 

when selecting their answer which is a slight increase from the prior year. Sixteen of 

these students (47%) supplemented this information by evaluating the slope at the 

origin, and comparing their value with the slope at the origin on the potentially correct 

direction fields. Every student who reasoned this way identified the correct direction 

field. The remaining five students (15%) also selected the correct option, though no 

further reasoning was indicated in their response. Seven students (21%) tested various 

points to see if the slopes matched the diagram, which is a slight reduction from the 

previous year. 

Three students answered Question 1 unsuccessfully. As in Cohort 1, two of 

these students displayed some elements of correct reasoning (the other gave no 

explanation). One used a combination of correct and incorrect reasoning, and the final 

student used correct, but incomplete reasoning to arrive at their answer. An example is 

shown (Figure 4) where the student correctly evaluated the slope at a variety of points 

but arrived at the incorrect answer because their method was not exhaustive. 
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Figure 4. Incomplete ‘evaluating points’ approach 

Across both cohorts, sixty-six students (87%) correctly identified the direction field of a 

given ODE. Furthermore, eight of the nine students who chose incorrectly used correct 

reasoning techniques but did not apply them extensively enough to rule out all of the 

incorrect options. We conclude that the tutorial is effective at instructing students on 

reading direction fields. 

RQ1b: Can students match a solution curve to the appropriate direction field? 

Question 2 on the immediate post-test required students to match the solution curve of 

an ODE to the correct direction field (Figure 2). The students were given five options. 

(Cohort 1, n=42) 

Thirty-nine of the students (93%) answered Q2 correctly. The most popular explanation 

(given by twenty-five students) was that the direction field chosen offered the ‘best fit’ 

for the solution curve. These students took a visual approach, superimposing the curve 

onto each potential direction field before picking the one where the line segments on the 

field acted as tangents to the solution curve. An exemplar for this technique is shown in 

Figure 5. The second most popular justification (given by four students) was to pick 

points that the curve passed through, calculate the slope of the tangent at these points 

and investigate them on each field, and choose the closest match. Two students 
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described the direction fields qualitatively and then examined the solution curve to see 

if they were consistent. 

 

Figure 5.  Superimposing the curves’ approach 

Of the three students who did not choose correctly, one used a visual approach but 

executed the strategy incorrectly to pick an incorrect graph. The remaining two chose 

“none of the above”. In one case the student said that the answer will be similar to the 

correct answer but will not have 
𝑑𝑦

𝑑𝑥
= 0 at (0,0), which, to them, ruled out the correct 

answer.  

(Cohort 2, n=34) 

The reasoning employed by students in Cohort 2 to select the correct answer are 

included in Table 2. 

An interesting answer (Figure 6) appears to have used a combination of the two 

most popular techniques in a unique way. It appears that the student drew tangent lines 

to the solution curve at various points and also extended the tangent lines at the same 
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point on the direction field to highlight the solution curve to arrive at their answer. This 

unique combination is indicative of a student who could reason with this task in both an 

analytical and graphical manner. 

 

Figure 6. Answer containing a combination of two approaches 

Four incorrect answers were given to this question. Three of these four students gave an 

explanation. One student chose “none of these” but reasoned correctly by attempting to 

join slope lines. They were unsuccessful because the lines they drew didn’t match the 

solution curve. One student’s qualitative approach resulted in them selecting the 

direction field on the bottom left of the page, writing that “negative slope for negative x-

values, positive slope for positive x-values”. The final student left the question 

unanswered. 

We conclude that the tutorial is effective at instructing students on the 

relationship between solution curves and direction fields. Across both cohorts, sixty-

seven students (88%) correctly matched a solution curve to its direction field. Similar to 

the previous question, a large portion of the incorrect solutions carried correct 
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reasoning. All of the students who chose incorrectly used reasoning that when applied 

correctly, would yield the correct answer. 

Delayed post-test  

(Cohort 1 only, n=46) 

To evaluate the long-term effectiveness of the direction field worksheet, a delayed post-

test was administered as part of the final exam for the ODE module eleven weeks after 

the tutorial was completed. The delayed post-test contained an isomorphic equivalent to 

Question 1, and a question similar to Question 2 asking students to draw the solution 

curve themselves having provided them with a point through which their curve must 

pass. Extending the task from the immediate pre-test in this manner allowed use to 

assess additional elements of students’ understanding of direction fields. 

Can students identify direction fields when given an ODE in algebraic form? 

Of the forty-six students who completed the delayed post-test, thirty-nine students 

(85%) identified the correct direction field. This reflects strongly on the effectiveness of 

the tutorial over time when compared to the immediate post-test success rate of 87%: 

the interval between the tutorial and delayed post-test was eleven weeks and students 

had not worked with direction fields during this time. 

Can students match a solution curve to the appropriate direction field? 

Fifteen students (33%) successfully answered the second question on the delayed post-

test which required them to draw the solution of the ODE that passed through the point 

(1,1) on the direction field they chose in Question 1. A further nine students (20%) drew 

a correct solution curve but only propagated to the right (𝑥 ≥ 1). The nature of the 

incorrect answers is outlined in Table 3. 

Table 3 

Category of Incorrect Responses to Delayed Post-Test Question 

 

Description of attempt  Number of students 

Drew a small segment of the correct tangent line at the point 

(1,1) 

6 

Didn’t submit the answer sheet with their exam 4 
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Drew inaccurate curves through (1,1) 3 

Other 3 

Drew multiple curves on the DF, one of which was the correct 

solution curve through (1,1) 

2 

Drew a tangent line through (1,1) 2 

Blank 1 

Total 21 

While it is clear that the students were less successful with the second delayed post-test 

question, we believe this is due at least in part to the difference in task between the 

immediate and delayed post-test. Specifically, we believe that drawing in a solution 

curve is more difficult than deciding which direction field a curve belongs to. We also 

note that 18 of the 21 incorrect responses described in Table 3 do not correspond to 

functions. In this way, the delayed post-test question highlights an area where the 

tutorial may be improved. 

Interview data on solutions to ODEs  

Semi-structured interviews were conducted to learn more about what students 

understand about solutions to ODEs. As stated above, helping students understand that 

functions are solutions to ODEs is one of our goals, pursued in four of the tutorials. We 

cannot ascribe any change to any single tutorial. 

Individual interviews were conducted with students lasting approximately 

twenty minutes. The students self-selected for interviews. The achievements of these 

students were representative of the range of abilities of the entire cohort. Questions 

varied across interviews, but students’ conceptions of solutions to ODEs were explored 

with twelve of the participants. We focused on two notions: solutions to ODEs are 

functions (of the correctly identified independent and dependent variables), and 

solutions can be verified by substituting them into the ODE (and obtaining an identity).  

All of the data gathered during interviews was analysed as described by Thomas 

[49], who details a general inductive approach to qualitative data analysis.  

RQ2: To what extent can an extended guided inquiry intervention change 

students’ conceptual understanding of the solutions to ODEs? 

The data discussed in this section was obtained in response to a variety of 

questions. We asked students what they knew about solutions to ODEs and what is 
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meant by a solution of an ODE. We also asked students about how they might know 

whether a given function was a solution to an ODE, though we only asked students who 

knew that a solution is a function. The ODE used during interviews (
𝑑𝑦

𝑑𝑥
=

(0.5+𝑦)

2
) was 

the same ODE used for the delayed post-test. Table 4 shows the success rate of students 

in response to both of these properties of solutions to ODEs. 

Table 4: Student responses to questions on solutions of ODEs. 

Category Solution is a 

function 

Function of 

correct 

variables 

Substitute in to 

ODE to verify 

0=0 iff solution 

Correct 11 12 10 9 

Incorrect 1 0 1 2 

Eleven of the twelve students knew that the solution would be a function, and that the 

function would have the form 𝑦 = 𝑓(𝑥) (or equivalently, 𝑦(𝑥)). The twelfth student 

stated that ‘𝑦(𝑥) = something’, indicating that they understood the importance of the 

variables in the derivative without stating explicitly that 𝑦(𝑥) is a function. 

We wanted students to explain that the solution to the ODE is verified by substituting 

the solution function into the ODE, and to do this. Ten of the eleven students were able 

to explain this, but one of these was unsure how to show this. They understood that if 

they differentiated their solution they would get 
𝑑𝑦

𝑑𝑥
=

(0.5+𝑦)

2
, but didn’t recognise the 

𝑦(𝑥) on the RHS of the ODE as the solution. Thus, this student failed to appreciate 

what we will call the dual role of 𝑦(𝑥) in verifying a solution: it is both the function 

whose derivative appears in the equation, and the function which appears in the 

equation in un-differentiated form. The final student, who didn’t know how to verify the 

solution, was the ‘twelfth student’ referred to above. 

Summary 

A question contained in the previous study [1] asked students to write down everything 

they knew about the solutions to differential equations. Although it is an open-ended 

question, the fact that only one student out of eighteen (6%) mentioned that solutions 

are functions is in stark contrast to the post-intervention results, where eleven of the 

twelve students (92%) that were interviewed on completion of the entire module stated 
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this. Further, all twelve students understood the variables of the function. A similar 

majority of students (90%, n=11) interviewed demonstrated an understanding of what is 

meant by a solution to an equation, with all except one of these students understanding 

the dual role of 𝑦(𝑥) in verifying the solution. We interpret this as an addition to the 

concept image of students resulting from the intervention. 

Conclusions 

Much of the literature on direction fields (and other graphical representations) 

recommends their inclusion in courses and assessments [7, 9, 50]. We introduced 

direction fields in a service course on ODEs, resulting in significant gains in the concept 

image of the students. The immediate post-test showed that students were able to 

identify direction fields when given the ODE in analytical form (88%) and to match a 

solution curve to the appropriate direction field (93%) with great success. The delayed 

post-test also showed that the instruction had a long-lasting impact, with the success of 

students’ ability to identify direction fields when given the ODE in analytical form 

remaining similar (85%). Interview data revealed improved understanding of the 

concept of a solution to an ODE as a result of the intervention. Specifically, the data 

showed that notions of ‘solution as a function’ and ‘verification of a solution’ are now 

known by most students in some contexts. 

However, in other contexts there appears to be a discontinuity between students’ 

responses to the delayed post-test question and their understanding of the function 

nature of solutions to ODEs. We reported in the previous section that eighteen of the 

thirty incorrect responses to Question 2 on the delayed post-test do not correspond to 

functions, as they failed the vertical line test. We think it is likely that insufficient 

understanding of the concept of a function here impedes a good understanding of the 

concept “solution is a function”. This warrants further investigation.  

Implications for teaching 

While the worksheet presented in this paper is part of a larger intervention, it can be 

implemented as a once-off interaction with students in courses where adopting the 

entire intervention is unfeasible. we suggest that courses that do not cover direction 

fields as part of their course can use the worksheet in isolation given its success with 

our students.  
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We plan to make two changes to this tutorial: (i) the link between graphical and 

analytical solution techniques needs to be a focus of conversation (particularly during 

introductory portion of the worksheet) and (ii) emphasizing the function nature of 

solutions to ODEs and how that links to a solution curve on an ODE. We encourage 

potential users to adapt the worksheet to suit their learners and welcome any feedback 

and experiences they have. 
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Introduction 

This tutorial focuses on direction fields and graphing solutions to differential equations. 

A direction field (also called slope field) is a graphical representation of the solutions of 

a first order ODE. It is useful because it can be created without solving the ODE 

analytically. 

 

Constructing a direction field 

Consider the first order ODE 
𝑑𝑦

𝑑𝑥
= 𝑥, and imagine that you do not know how to solve it. 

To get a feel for the behaviour of the solution, you may evaluate 
𝑑𝑦

𝑑𝑥
 at a variety of points 

(𝑥, 𝑦) and use each value as the slope of the tangent to the solution curve at (𝑥, 𝑦). 

Starting with a blank pair of axes, you may populate the graph by evaluating the slope at 

different points, and plotting the slopes as short line segments centred on each point. 

 

For example, let’s evaluate 
𝑑𝑦

𝑑𝑥
 at point (0,0). At this point 

𝑑𝑦

𝑑𝑥
|𝑥=0 = 𝑥|𝑥=0 = 0, so we 

draw a line segment with slope 0 at the point (0,0). At the point (1,1), 
𝑑𝑦

𝑑𝑥
|𝑥=1 =

𝑥|𝑥=1 = 1, so draw a line segment with slope 1 at the point (1,1).  When you evaluate 
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each of the points and draw in the line segments of appropriate slope you begin to see a 

picture of the behaviour of the solutions. 
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A large number of such line segments 

are shown at left. If you draw curves 

tangent to these segments, each curve 

satisfies the relation between the 

derivative and the function given by 

the ODE. Each curve therefore 

represents a particular solution to the 

ODE, and all curves together 

represent a family of functions that are 

the general solution to the ODE.  

 

 

 

As an example, starting at the point (0,0) 

you can work forwards and backwards to 

construct the graph of the solution to the 

differential equation 
𝑑𝑦

𝑑𝑥
= 𝑥 that passes 

through the point (0,0), as shown at right.  

 

 

 

Four particular solutions to the first order differential equation 
𝑑𝑦

𝑑𝑥
= 𝑥 are shown in the 

direction field below. 
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In this case, you could easily have solved the ODE, and obtained 𝑦(𝑥) =
𝑥2

2
+ 𝐶 as the 

general solution. The four graphs above show solutions for four different values of C. The 

direction field method is at its most useful when it is difficult or even impossible to find 

analytical solutions to a given ODE. In the remainder of the tutorial, you will work with 

direction fields in small groups. 
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Activity 1 

1. Consider the differential equation 
𝑑𝑦

𝑑𝑥
= 𝑦 + 2. 

a. Use the table and axes provided to draw a direction field for this ODE. You may 

divide the work among the members of your group but every student must complete 

the direction field on their tutorial. There are 121 points to consider (but it’s not as 

nasty as it looks!) 

 

 

 

b. How does the value of x affect the slope at each point? 

c. Draw the solution to the differential equation that passes through each of the 

following points: (0,0); (1, −3); and (−2,1) on the same diagram as your direction 

field. 

2. Now consider the differential equation 
𝑑𝑦

𝑑𝑥
= −

𝑥

𝑦
. 

a. Use the table and axes provided to draw a direction field for this ODE. When you 
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have finished your direction field compare it to that of others within your group and 

resolve any discrepancies. 

 

  
 

   

   

   

   

   

   

   

   

   

   

   

 

b. Describe the differences between this direction field and the direction field 

constructed in Question 1. 
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3. Which of these differential equations is described in the direction field below? 

 
𝑑𝑦

𝑑𝑥
= −

𝑥

𝑦
; 

 
𝑑𝑦

𝑑𝑥
= 𝑥 − 𝑦; 

 
𝑑𝑦

𝑑𝑥
= 𝑦 − 𝑥; 

 
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦; 

 
𝑑𝑦

𝑑𝑥
=

𝑥

𝑦
. 

 

 

 

 

 

 

Activity 2 

1. Using the Geogebra file on the MS225 Loop page, construct a direction field with the 

following properties: the solution curves whose tangents are represented by the direction field 

 depend on both 𝑥 and 𝑦; 

 are increasing for all 𝑥 > 5; 

 have a vertical asymptote at 𝑥 = 2. 

 

Extension Question 

1. Given that 𝑦′ =
−𝑦

𝑥2+𝑦2
: 

a. Sketch the direction field for −5 < 𝑥 < 5,−5 < 𝑦 < 5. 

2. Now consider the solution 𝑦(𝑥) through (𝑥, 𝑦) = (0,1) (i.e. the solution with initial value 

𝑦(0) = 1). 

a. Use the direction field plot to show that 𝑦(𝑥) > 0 for 𝑥 > 0. 

b. Use the analytical form of the ODE to explain that 𝑦(𝑥) is decreasing for all 𝑥. 

 

51.  


