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GP-net: Flexible Viewpoint Grasp Proposal
Anna Konrad, John McDonald and Rudi Villing

Abstract—We present the Grasp Proposal Network (GP-net), a
Convolutional Neural Network model which can generate 6-DoF
grasps from flexible viewpoints, e.g. as experienced by mobile ma-
nipulators. To train GP-net, we synthetically generate a dataset
containing depth-images and ground-truth grasp information. In
real-world experiments, we use the EGAD evaluation benchmark
to evaluate GP-net against two commonly used algorithms,
the Volumetric Grasping Network (VGN) and the Grasp Pose
Detection package (GPD), on a PAL TIAGo mobile manipulator.
In contrast to the state-of-the-art methods in robotic grasping,
GP-net can be used for grasping objects from flexible, unknown
viewpoints without the need to define the workspace and achieves
a grasp success of 54.4% compared to 51.6% for VGN and 44.2%
for GPD. We provide a ROS package along with our code and
pre-trained models at https://aucoroboticsmu.github.io/GP-net/.

Index Terms—grasping, robotics, neural networks, 6-DoF
grasps, mobile manipulator, ROS

I. INTRODUCTION

Manipulation is an ongoing and challenging problem in
robotics due to its complexity and variability. Grasping objects
is largely solved in industrial settings with known objects and
fixed, foreknown poses of the object and robot. However, more
complex, dynamic and unstructured environments are still an
active field of research. Before the era of machine learning,
analytical approaches were widely tested in simulation but
had limited applicability in real-world scenarios due to noisy
or partial data [1]. With the rise of computational power,
researchers have switched to data-driven approaches, which
are more robust to real-world conditions. To simplify the
problem, these solutions initially focused on fixed overhead
cameras and a reduced grasp space with 4 Degrees-of-Freedom
(DoF) grasps [2]–[7], i.e. top-grasps which can vary their pose
in 3D position and one rotational axis.

However, when grasping outside of a lab environment,
the restriction to top-grasps limits the applicability of the
algorithms, while 6-DoF grasps can enhance reachability for
the robots. Furthermore, if the camera position is not fixed,
camera pose changes must be handled. Finally, methods must
be robust to sensor noise in real-world environments. Efforts
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Fig. 1. a) A PAL TIAGo robot grasping an object. b) Visualisation of the
contact-based grasp representation with visible grasp contact coordinates in
the image (u, v), grasp orientation r and grasp width w.

are being made towards solutions for many of these problems,
for example with 6-DoF grasp proposal algorithms [8]–[12],
closed-loop grasping [5], [13], [14], or grasping transparent
objects [15].

Applying existing algorithms to mobile manipulators (robots
that have a mobile base) often proves difficult. Both the robot
and its camera can move, resulting in the need to operate
from a variety of viewpoints with respect to the environment
and objects to be grasped and manipulated. Furthermore,
the environment tends to be dynamic and uncertain and, in
particular, the robot’s workspace is not known in advance
as it is for fixed manipulators. While there exist algorithms
that can be used to propose grasps on mobile robots, they
typically require some sort of workspace definition to improve
the grasp proposals [11] or to run the algorithm itself [8]. Other
solutions require wrist-mounted depth cameras for visuomotor
control [14] or high-end GPUs to run inference [9].

We present the grasp proposal network (GP-net), a model
that can predict 6-DoF grasps on single objects. Unlike other
approaches, GP-net operates directly on the input depth image
without requiring a prior workspace definition and can thus
handle flexible and unknown camera viewpoints. GP-net can
be used to grasp novel objects from planar surfaces like
tables or furniture units with mobile manipulators. In real-
world experiments using the EGAD evaluation benchmark [16]
with a PAL TIAGo manipulator, GP-net achieves a grasp
success of 54.4%, performing slightly better than the Volu-
metric Grasping Network (VGN) with 51.6% and substantially
outperforming the Grasp Pose Detection package (GPD) with
44.2%.

The contributions of this work can be summarised as
follows:

• GP-net: a model to predict 6-DoF grasps for a parallel jaw
gripper from flexible viewpoints without specifying the
workspace or running table segmentation to filter grasp

https://aucoroboticsmu.github.io/GP-net/
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poses.
• A ROS package to run GP-net to produce grasp proposals

from a depth camera.
• A dataset to train GP-net or alternative network architec-

tures. We make our code available so it can be used to
train GP-net to adapt to different robots or grippers.

II. BACKGROUND AND RELATED WORK

Grasping objects in real-world settings involves a lot of
variation and uncertainty, including unknown object shapes,
unknown poses of the robot and objects, and noisy sensor in-
puts. To solve this high-dimensional problem, early analytical
approaches constrained and simplified the problem by making
assumptions about the contacts, friction, and the geometric and
physical model of the objects. Consequently, these approaches
were usually only tested in simulation with accurate knowl-
edge about the object, robot and environment and without the
need to contend with noisy sensor measurements [1].

With the surge of data-driven approaches, analytical meth-
ods have been surpassed by machine learning algorithms for
grasp synthesis [1]. Initially, these methods typically used 4-
DoF top-grasps, where the gripper approaches the object top-
down and can only rotate around the approach axis. Further-
more, the initial techniques were usually discriminative [17],
where grasp configurations are sampled and subsequently
ranked according to a quality metric [2], [3], [18], [19]. While
discriminative methods showed good grasping performance,
algorithms directly proposing suitable grasp configurations in
a generative manner can improve inference time significantly
and enable grasping in real-time [4]–[8].

To make robotic grasping usable in less constrained en-
vironments, the algorithms must be able to propose 6-DoF
grasp poses while coping with varying camera viewpoints and
object poses. These requirements increase the search space for
possible grasps and, therefore, the problem’s difficulty signifi-
cantly. While modern algorithms can find robust grasp poses in
this increased search space, they often suffer from issues such
as high latency [20], high computational requirements [9], or
limitations to the sampling workspace [8].

Generally, comparing the performance of different methods
proves difficult due to the different robots, grippers and objects
being used. Usually, algorithms are tested on household ob-
jects without the opportunity to reproduce the experiments or
compare performance [2], [8]–[11], [20]–[22]. More recently,
benchmarks like EGAD [16] using 3D-printed objects have
been proposed to generalise the testing of grasping algorithms
and improve the comparability and reproducibility of experi-
ments. For this reason, we use EGAD objects in our real-world
experiments (see Section V-A).

One of the first methods that could be directly applied to find
6-DoF grasp poses based on point-clouds is the Grasp Pose
Detection (GPD) package [11]. It identifies a region of interest,
samples grasp proposals, encodes them in a multi-channel
image, and finally uses a Convolutional Neural Network to
predict the grasp quality. While it is widely used due to its
availability in a ROS package, we find that it mainly suggests
grasps on the table plane if the table segmentation fails.

Further, the discriminative sampling nature of the algorithm
leads to high latencies, taking an average of 14.7s to propose
grasps in our experiments (see Section V-A).

Another family of approaches reconstructs the grasping
surface into meshes [10], [20], point clouds [22] or signed
distance functions [8], [21], [23] and uses the new represen-
tation to predict 6-DoF grasps. One of these approaches, the
Volumetric Grasping Network (VGN) [8], exhibits promising
results by predicting grasp proposals from a truncated signed
distance function (TSDF). Once the TSDF is built, grasp
proposals can be predicted in real-time within 10ms, opening
up possibilities for closed-loop control.

VGN achieves a grasp success of 80% using household
objects in the original paper. However, the acquisition of the
TSDF is achieved by integrating a stream of depth images
acquired by a wrist-mounted depth camera, where the cam-
era follows a pre-defined scan trajectory around a defined
workspace prior to computing the grasp. When applying VGN
to scenarios with an unknown camera-workspace transform,
the approximate position of the object has to be estimated in
advance to define the workspace around the object. Further-
more, if no wrist-mounted camera is available, the TSDF must
be built from the incoming depth images of the head-mounted
camera, which affects the quality of the TSDF.

Another recent method, Contact-GraspNet [9], proposes
6-DoF grasps from a single point cloud. The method achieves
a grasp success of more than 90% in real-world experiments
using a set of household objects. However, the model imple-
mentation requires a GPU with ≥ 8GB RAM for running
inference. Such requirements make Contact-GraspNet unsuit-
able for usage on mobile robotic platforms that do not have
access to high-end dedicated GPUs, as is the case for several
currently available mobile manipulators [24], [25].

From the literature, it is clear that few methods can be
used directly to identify 6-DoF grasps for unknown objects in
unknown poses. In particular, no methods can be run on mobile
manipulators without the need to run pre-processing, such
as plane segmentation to filter grasp proposals or 3D object
detection to identify the workspace, which can potentially lead
to erroneous grasp proposals. We propose GP-net to address
these issues and provide a ROS package that can be used
to generate 6-DoF grasp proposals on mobile manipulators
without any additional pre-processing.

III. GRASP PROPOSAL NETWORK

We consider the problem of proposing 6-DoF grasps for
a parallel-jaw gripper and using an RGB-D camera. The
environment consists of a single object o ∈ O placed in a
stable resting pose on a planar surface. The camera rests in
an unknown, versatile pose near the object facing the planar
surface. The goal is to propose a diverse set of 6-DoF grasps
g ∈ G for the object based on a depth image I.

Similar to Sundermeyer et al. [9], we represent grasps based
on the contact point between the gripper and the object. Each
pixel (u, v) in a depth image I describes a potential grasp con-
tact, i.e. the contact of a gripper plate during grasp execution.
The full ground-truth grasp is defined as g ∈ (u, v, q, r, w),



3

Fig. 2. Using a depth image as input, we apply a jet-colourscale, process the
image with GP-net and output pixel-wise grasp proposal predictions with a
quality q̂, orientation r̂ and grasp width ŵ.

with the grasp quality q, the orientation of the grasp in camera
coordinates r and the width of a grasp w. A visualisation of
the grasp representation is depicted in Figure 1 (b).

We base the network architecture for GP-net on a ResNet-50
model pre-trained on ImageNet. A description of the pipeline
and the output tensor of the model can be seen in Figure 2.
Since the rendered depth images consist of one channel and
the pre-trained ResNet-50 architecture uses 3 input channels,
we apply a jet-colourscale to the depth image as described
by Eiter et al. [26]. We set fixed normalisation boundaries of
0.4m and 1.4m to keep the relation to the real distance of
a given scene. Note that points further away than 1.4m are
outside the grasping range of the robot.

GP-net outputs a 6-channel tensor with the same spatial
resolution as the input image, W×H . Each pixel in the output
tensor represents a grasp whose visible contact point corre-
sponds to that pixel, with the channels containing predictions
of the width of the grasp ŵ, the grasp orientation r̂ in form of a
quaternion, and the quality of the grasp q̂. Similar to VGN [8],
we normalise the quaternions to unit quaternions and apply a
sigmoid function to the quality channel.

Loss function: Since creating ground-truth grasp proposals
for training at each pixel is computationally infeasible, we gen-
erate sparse maps containing grasp information at visible grasp
contacts for up to 100 pre-sampled grasps per object. The
training data generation process is described in Section IV. We
backpropagate the loss only through the output pixels at which
we have ground-truth grasp information, similar to VGN [8].
We define our loss function as:

L = Lq + 1PosGrasp(αLr + βLw) (1)

with Lq being the binary cross-entropy loss between the
ground truth and predicted binary quality values, q and q̂,
Lr = 1 − |r · r̂| the distance metric between the target and
predicted quaternions, r and r̂, as defined in [27] and Lw

the L1 loss between the ground-truth and predicted grasp
width, w and ŵ. Since unsuccessful grasps do not have
valid configurations for the model to learn, we include the
second part of the loss function only for ground-truth positive
grasps indicated as 1PosGrasp. We set α, β = 0.1, which we
experimentally found to give a good balance between Lq , Lr

and Lw.
In contrast to the loss function of VGN [8], we only

allow one valid configuration for the orientation loss Lr.

This change is rooted in the grasp contact representation,
which anchors grasps to the visible grasp contact. Since the
positive x-axis of the grasp coordinate frame points towards
the second grasp contact (see Figure 1b), there remains only
one valid orientation. This representation does not affect grasp
variability since the parallel-jaw gripper is symmetric.

Using the model output for robotic grasping: To use
the output of GP-net for grasping objects with a robot, it
must be transformed into grasp proposals. As a first step,
a maximum of j = 10 grasps are chosen from the output
tensor using non-maximum suppression with a peak distance
of 4 pixels and an acceptance threshold of γ = 0.4. Note
that the acceptance threshold γ for applying non-maximum
suppression defines the minimum predicted quality q̂ that will
result in a grasp proposal and is chosen based on our ablation
studies in Section V-B. Once the image coordinates (u, v) for
those grasp contacts are chosen, we re-project them into 3D
camera coordinates using the camera intrinsics K and the
depth value of (u, v) in the input depth image. Using the
predicted quaternion r̂ and the predicted width ŵ of each
grasp, we translate the grasp contact to the tool centre point by
moving them 0.5ŵ along the grasp x-axis between the gripper
plates. As a last step, the grasp is transformed from the camera
coordinate frame to the robot base coordinate frame.

Our ROS package provides this functionality by running
inference with a trained model, selecting the best grasps and
mapping them to the robot base transform. Further, we provide
example code to use the package with a pre-trained GP-net
model to plan grasps for a PAL TIAGo robot using a parallel
jaw gripper. Using other gripper configurations, our code can
generate an adjusted dataset, train a new model, and use it
with our ROS package to produce grasp proposals.

IV. TRAINING DATASET

To train GP-net, we render a synthetic depth-image-based
dataset with sparse ground-truth grasp information. Similar to
DexNet2.0 [2], we use the objects from the 3Dnet [28] and
KIT [29] mesh datasets. When loading the 3D meshes from the
mesh datasets, we re-scale them to fit into TIAGo’s gripper, a
parallel gripper manufactured by PAL robotics with an opening
width of 8cm [24]. Re-scaling 3D meshes is commonly used
to generate robotic grasping datasets. In contrast to the re-
scaling methods in [2], [16], [30], we re-scale objects to a
randomly chosen width, drawn uniformly from the range 6cm
to 10cm. In this way, our dataset includes objects which do
not fit in our robotic gripper, which is a situation that will
occur in real-world environments.

After re-scaling each object o, we calculate up to 25
stable resting poses S(o) and use the antipodal grasp sampler
proposed in [2] to generate up to 100 parallel-jaw grasps G(o).
Grasps are sampled by randomly choosing a surface point from
the mesh and then sampling the grasp x-axis (see Figure 1b)
based on the friction cone of the surface point. This procedure
does not necessarily yield the best grasp for a grasp contact
point. Our dataset should contain the best available grasps for
a contact since we use it to train a network for proposing
good grasps. Therefore, we modify the sampling procedure
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to generate k = 6 potential grasps for a given contact. We
calculate the robust force closure metric ϵ [31]–[33] for each
of the sampled grasps at one contact point and keep the grasp
with the highest ϵ. Using this method, we generate a total
of 148, 706 ground-truth grasps for the object meshes in our
dataset.

Since the robust force closure metric ϵ of a sampled ground-
truth grasp depends on the grasp contacts, it is defined by the
grasp x-axis and consistent for any grasp approach axis, i.e.
the direction of the z-axis in Figure 1. However, collisions
between the gripper, object and planar surface further influence
the success of a grasp. We define the quality q of a grasp in
our rendered dataset as

q(g) =

{
1 ϵ ≥ δ and coll free(g)

0 otherwise
(2)

with δ = 0.5 being the robustness threshold and coll free(g)
indicating if a grasp is collision free, similar to DexNet2.0 [2].

We aim to choose reproducible grasp orientations for a
given scene and ground-truth grasp. To achieve this, we apply
the following steps for selecting the grasp approach axis
orientation for a given grasp: To check for collisions, we
hinge-rotate the grasps in steps of ∆ω = 15deg around the
contact points and thereby the grasp x-axis (see Figure 1b). If
we have collision-free grasps within those orientations, we set
the ground-truth grasp orientation as the median collision-free
grasp. If we have multiple collision-free regions, we choose
the median collision-free grasp whose approach is most closely
aligned with the principal ray of the camera, e.g. approaching
from the front of the object rather than from behind the object.
With these steps, we fully define each grasp orientation in our
dataset in a reproducible way.

We render n = 20 images for each stable pose s ∈ S(o) of
each object o ∈ O from camera poses selected uniformly at
random as described in VGQ-CNN [34]. We then project the
grasp contacts into the image plane and calculate the image
coordinates of the visible contact (u, v). If multiple collision-
free grasp contacts are visible at one pixel, we choose the grasp
with the highest robust force closure value ϵ. In addition, we
store the binary segmentation mask of the object and use the
pixels not showing the object as ground-truth negative grasp
contacts during training. The full dataset consists of 260, 340
images with an average of 88.1 grasps per image, totalling
22, 944, 376 grasps.

V. EXPERIMENTS

We train GP-net for 20 epochs using an Adam optimiser
with a learning rate of 3e−4 and a batch size of 32. To
reduce the sim-to-real-gap for GP-net, we simulate depth-
camera noise on our depth images using the noise model
described in [35], [36]. We find that compared to the Gaussian
noise model suggested in DexNet2.0 [2], the added depth-
camera noise model substantially improves the robustness of
GP-net in real-world scenarios.

A. Results
We evaluate the performance of GP-net with simulation

and real-world experiments using objects from the EGAD

Fig. 3. Grasp success [%] in simulation using GP-net to grasp objects from
EGAD with a PAL parallel jaw gripper.

evaluation benchmark [16] not seen by the network during
training. The simulation analysis is used to validate our model
and conduct the ablation studies in Section V-B since it
requires less time and fewer resources than tests with a real
robot. For the real-world experiments, we use GP-net on a
PAL TIAGo mobile manipulator to grasp the 49 3D printed
objects from the EGAD evaluation benchmark [16]. We repeat
the real-world experiments with VGN [8] and GPD [37] and
compare them to the performance of GP-net.

Simulation experiments: We test the grasp success of the
grasps proposed by GP-net in simulation using the pybul-
let [38] physics engine based on the simulation environment
developed for VGN [8]. A parallel jaw gripper is simulated
to approach the grasp pose linearly along the grasp z-axis for
0.15m, close the gripper using a maximum force of 5N , and
lift the object. The grasp is labelled as successful if the gripper
can lift the object 0.1m above the planar surface. For each trial,
one of the 49 objects in the EGAD evaluation benchmark is
placed in a random position within the workspace within a
30 × 30cm2 workspace on a planar surface. Then, a depth
image is rendered from a camera pose sampled uniformly at
random from the spherical coordinates around the centre of
the workspace with the sampling bounds used for training in
Section IV. We run inference with GP-net on the depth image
with added depth-camera noise and map the output tensors to
grasp proposals as described in Section III.

We simulate the grasp with the highest predicted grasp
quality q̂ proposed by the model for one trial. Each experi-
mental run comprises 100 such trials for each object from the
EGAD [16] evaluation set. In the simulation, GP-net achieves
a mean grasp success of 74.6% across all objects of the
EGAD dataset. The grasp success on each object is depicted
in Figure 3. The shape complexity and grasp difficulty of
each object are defined in the EGAD evaluation set. Each
object is named according to its shape complexity and grasp
difficulty, e.g. object “A0” with grasp difficulty “A” and shape
complexity “0”. The grasp success decreases with increasing
grasp difficulty, while it is consistent across the levels of shape
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GP-net VGN GPD

Fig. 4. Grasp success [%] out of 10 grasp attempts per object on the EGAD benchmark using GP-net, VGN and GPD for grasp proposal.

complexity.
Real-world experiments: We test the grasp success in

real-world experiments with a PAL TIAGo mobile manipu-
lator [24]. We use an Intel Realsense D435 depth camera
mounted on TIAGo’s head since it has a lower minimum
depth distance, and we find it to give a better performance on
thin features than the Orbbec Astra used in the TIAGo mobile
manipulator by default. We average over ten consecutive depth
image frames for noise reduction for all tested methods.

We use the same 49 evaluation objects from the EGAD
dataset [16] as in our simulation analysis for the experiments.
For each object, a total of 10 grasp trials are executed,
resulting in 490 grasp attempts for each algorithm. We use two
different initial robot poses for grasp-planning, each having a
different head tilt and torso height and, thereby, a different
camera viewpoint of the scene. The object is dropped within
a 30×30cm2 square on the table by a human operator before
each grasp trial.

We choose VGN [8] and GPD [37] to compare to GP-net in
real-world experiments, given their use as points of compar-
ison by other researchers [21], [23]. To apply VGN to our
experiments, we define the pose of the 30 × 30 × 30cm3

workspace for grasp sampling in front of the robot manually
to sit on the table. Note that VGN was originally intended
to be used with a wrist-mounted depth camera performing a
grasp scan along a trajectory to build the TSDF. Since our
work focuses on proposing grasps from a single viewpoint,
we instead apply VGN by building the TSDF from a single,
noise-reduced depth image.

To apply GPD to our experiments, we re-project a point
cloud from a single, noise-reduced depth image and crop it to
reduce the number of points and improve run-time. Further, the
object points in the point cloud are indexed to indicate where
grasps should be sampled. The indexing of the point cloud is
achieved by fitting a plane to the point cloud and indexing
points with a distance ≥ 0.005m to the table plane. While the
approaches for setting the workspace for VGN and indexing

GP-net VGN [8] GPD [37]
Grasp success [%] 54.4 51.6 44.2

Inference time [s] 2.1 1.2 14.7

Grasp planning time [s] 2.7 4.9 19.1

TABLE I
GRASP SUCCESS, INFERENCE, AND GRASP PLANNING TIME FOR OUR

REAL-WORLD EXPERIMENTS. INFERENCE REFERS TO THE TIME BETWEEN
NETWORK INPUT AND OUTPUT, WHILE GRASP PLANNING ADDITIONALLY

INCLUDES PRE-PROCESSING AND POST-PROCESSING.

the point cloud for GPD work for our experimental setting,
more general applications would require more sophisticated
workarounds to prevent erroneous grasp proposals. GP-net
does not need any workspace definition and can be directly
applied to the depth image.

We run the algorithms for all methods on an Intel i7-
10750H CPU and NVIDIA RTX 2060 GPU. The results are
shown in Figure 4. GP-net performs slightly better than VGN
and substantially better than GPD with a grasp success of
54.4% compared to their 51.6% and 44.2%, respectively. We
report each network’s overall results and timings in Table I.
In our experiments, GP-net takes 2.1s for proposing grasps
on a given depth image, while VGN and GPD require 1.2s
and 14.7s, respectively. These times do not include additional
pre-processing steps like table segmentation and workspace
definition, which are necessary for VGN and GPD. Due to
this, for the overall grasp planning time, which includes pre-
processing, post-processing and sending data between different
ROS nodes, GP-net is faster than VGN and GPD with 2.7s
compared to 4.9s and 19.1s, respectively.

Note that experimental results are sensitive to the hardware
and software used and thereby make it difficult to compare
methods if not tested in the same setting. Further, real-world
experiments are expected to result in a lower grasp success
than our simulation results, which are simulated only with
the end-effector. These performance differences are rooted in
perception and actuation uncertainties, collision checking, and
the performance of the path planning algorithms.
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Fig. 5. Success and failure cases of using GP-net to propose grasps on objects
of the EGAD evaluation set with a PAL TIAGo mobile manipulator. We label
each figure according to the corresponding object in the dataset and indicate
success with ✓and failures with X.

We have encountered different failure cases when testing
GP-net in our real-world experiments. An overview of differ-
ent successful grasp attempts and failures is shown in Figure 5.
One type of failure occurs when the gripper can not close fully
due to obstructions by itself or the object, e.g. in the examples
of objects “G0” and “G6”. The object will lose contact with
the gripper once lifted, and the grasp attempt will fail.

In other failure cases, the gripper pushes the object away
when approaching due to perception and actuation uncer-
tainties, as seen in the example of objects “D4” and “D6”.
This type of failure is hardware-dependent and not necessarily
rooted in the grasp proposal algorithm. Further, it could be
prevented when using closed-loop control, e.g., using an RGB
camera mounted on the gripper and correcting the grasp
approach. The grasps shown with objects “E0” and “G1” fail
because the friction between the objects and the gripper is
too low to compensate for the slanted surfaces that are being
grasped. Note that grasping “E0” longitudinally is not an
option, as this side of the object is longer than the gripper
width, and therefore, “E0” fails to be grasped in most cases.

B. Ablation studies

We conduct a set of ablation studies to investigate the per-
formance of GP-netfurther. We investigate how an alternative
grasp representation defining the Tool Centre Point (TCP)
performs compared to the contact-based grasp representation
(see Figure 1b) used for GP-net. Further, we run simulation
experiments and investigate how different acceptance thresh-
olds γ for the non-maximum suppression influence the grasp
success and the final number of grasp proposals.

Grasp representation: The grasp representation used in
GP-net is contact-based, with each pixel representing a visible
grasp contact of a potential grasp, see Section III. This grasp
representation was first proposed in Contact-Graspnet [9],

suggesting it facilitates the learning process by reducing di-
mensionality. However, the grasp representation in [9] was not
compared to conventional, TCP-based grasp representations as
used in most of the related work [2]–[8], [10]–[12].

While the contact-based grasp representation can potentially
increase the model performance, using this grasp representa-
tion can lead to problems where no grasp contact is visible.
For example, if a robot is supposed to grasp a book but is
facing the spine of the book head-on. In this situation, the
areas for potential grasp contacts on the left and right sides
are not visible, and a contact-based method would not be able
to produce valid grasp configurations. Here, a repositioning of
the camera would be necessary.

For this reason, we compare the performance of a contact-
based grasp representation to a TCP-based grasp representa-
tion. We modify GP-net to use a TCP-based grasp represen-
tation as g ∈ (u, v, z, q, r, w) with (u, v) being the image
coordinates of the grasp centre and z being the distance
between the grasp centre and the visible surface depth at
(u, v). We train the model on our dataset as described in
Section V-A and compare performance to GP-net using the
simulation analysis. Due to the extra variable z in the grasp
representation, the model has seven output channels, and we
define the adapted loss function as:

L = Lq + 1PosGrasp(αLr + βLw + νLz) (3)

with Lz being the L1 loss between ground-truth z and pre-
dicted grasp distance ẑ. We set α, ν = 0.1 and β = 0.01 since
the width is not necessary to predict the grasp position for
the TCP-based grasp representation. After training the model
for 20 epochs, we achieve a mean grasp success of 27.2% in
simulation, substantially lower than GP-net’s 74.6% with the
contact-based grasp representation. We find that the orientation
loss Lr plateaus almost double that of GP-net’s loss with
0.24 for the TCP-based grasp representation and 0.13 with
the contact-based grasp representation.

We hypothesise that this difference is rooted in the reduction
of ambiguities when grasps are anchored to their grasp contact
points. Ground-truth positive grasps would have similar ori-
entations for neighbouring grasp contacts on an object, while
TCP-based grasps could approach the same TCP position from
various angles. This is especially apparent when looking at
cylindrical objects, where a TCP-based ground truth positive
grasp could rotate the grasp axis to any orientation around
the centre of the cylinder. In contrast, a contact-based ground
truth positive grasp only permits one orientation such that the
x-axis of the grasp passes through the centre of the cylinder
(see Figure 1b).

Acceptance threshold γ: The acceptance threshold γ de-
fines the minimum predicted grasp quality q̂ of output grasp
proposals for GP-net. Non-maximum suppression with γ as a
cut-off point applied to the predicted grasp quality q̂ yields
the output grasp proposals. As such, γ balances the number
of proposed grasps and the confidence the model has in
those grasps. Ideally, γ should be set to propose as many
grasps as possible while retaining good confidence in the
quality of those grasps. To investigate how this trade-off
affects GP-net, we apply a range of acceptance thresholds
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Fig. 6. Simulation results showing the influence of varying the acceptance
threshold γ on a) the predicted quality q̂ of grasp proposals, b) the grasp
success and c) the number of output grasp proposals per object with a 95%
confidence interval.

γ = [0.1, 0.2, . . . , 0.9] and investigate the influence on grasp
performance in simulation.

The results can be seen in Figure 6. Increasing γ increases
the predicted grasp quality q̂ in Figure 6a) and decreases the
number of output grasp proposals in Figure 6c). The number
of unsuccessful grasp proposals decreases non-linearly when
increasing γ. We show both the grasp success of all proposed
grasps and the grasp success for each object in Figure 6b).
Note that the grasp success for each object uses only the
output grasp proposal with the highest predicted quality q̂ and
reports an unsuccessful grasp if there is no grasp proposal, as
explained in Section V-A. The two curves show the trade-off
between not predicting any grasp and thereby failing to pick
up the object, i.e. a low grasp success for the object, and the
success of all grasps proposals, i.e. a lower grasp success on
all grasp proposals if many unsuccessful grasps are proposed.

To balance the number of grasps proposed with the success
of those grasps, we set γ = 0.4 for all of our other experi-
ments.

VI. DISCUSSION AND CONCLUSION

In this paper, we presented GP-net, a model to propose
6-DoF grasps based on depth images from flexible and un-
known viewpoints. In contrast to widely used algorithms for
robotic grasping like GPD [11] and VGN [8], the viewpoint
flexibility enables GP-net to be used without the need to pre-
define a workspace or filter grasps to produce good grasp
proposals. Hence, GP-net can be used on mobile robots
without additional pre-processing steps like plane-fitting, table
segmentation or 3D object detection. To train GP-net, we
created a synthetic dataset based on more than 1400 object
meshes with ground-truth grasp information.

We evaluated GP-net using a PAL TIAGo mobile manipu-
lator in real-world experiments and compared its performance
to GPD and VGN on the EGAD evaluation benchmark [16].
GP-net achieved a grasp success of 54.4%, slightly better than
VGN’s 51.6% and substantially higher than GPD’s 44.2% in
our setup while not requiring any of the pre-processing steps
for workspace definition and grasp filtering necessary for VGN
and GPD.

The contact-based grasp representation utilised in GP-net
can not represent grasps without a visible grasp contact. This

limitation is not existent in TCP-based grasp representations.
To weigh the benefits of a contact-based grasp representation
against these limitations, we compare it to a TCP-based grasp
representation in our ablation studies in Section V-B. We find
a significant performance advantage of a model trained with
the contact-based representation.

When using a mobile manipulator in real-world scenarios,
the robot is able to move the camera and view objects from dif-
ferent perspectives. In this process, previously invisible grasp
contacts can be made visible. Under these circumstances, we
think the benefits of a contact-based representation outweigh
its limitations.

Similar to most of the commonly used methods [8]–[10], a
limitation of GP-net is the gripper-dependence of our dataset
and hence the model. Since the quality of grasps depends
on the grasp being collision-free, the design of the gripper is
used implicitly during dataset generation when checking for
collisions, see Eq. 2. The resulting model learns the implicit
gripper design, and hence, the performance with alternative
gripper configurations cannot be guaranteed.

VGN and GPD work in cluttered environments, while GP-
net is trained for single objects. In this work, we proved
the method of our approach to propose 6-DoF grasps from
versatile, unknown viewpoints without workspace definition.
In future work, we plan to extend GP-net to cluttered scenes,
which has been shown to work for image-based grasp qual-
ity prediction algorithms [39]. Further, we aim to base this
extension of GP-net to be used in more diverse and realistic
scenarios with various furniture units, e.g. desks, sideboards
or shelves.
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