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a b s t r a c t 

Numerical methods are essential to investigate and apply nonlinear continuous-time dy- 

namical systems in many fields of science and engineering and discretization schemes are 

required to obtain the solutions of such dynamical systems. Although computing power 

has been speedily growing in recent decades, embedded and large-scale problems have 

motivated significant research to improve the computational efficiency. Nevertheless, few 

studies have focused on finite precision limitation on discretization schemes due to round- 

off effects in floating-point number representation. In this paper, a computational effective 

discretization scheme for nonlinear dynamical systems is introduced. By means of a theo- 

rem, it is shown that high-order terms in the Runge-Kutta method can be neglected with 

no accuracy loss. The proposed approach is illustrated using three well-known systems, 

namely the Rössler systems, the Lorenz equations and the Sprott B system. The number of 

mathematical operations and simulation time have reduced up to 81.1% and 90.7%, respec- 

tively. Furthermore, as the step-size decreases, the number of neglected terms increases 

due to the precision of the computer. Yet, accuracy, observability of dynamical systems and 

the largest Lyapunov are preserved. The adapted scheme is effective, reliable and suitable 

for embedded and large-scale applications. 

© 2022 Elsevier Inc. All rights reserved. 

 

 

 

 

1. Introduction 

Numerical methods are of foremost importance for the study of nonlinear dynamic systems [8,10,26,41,50] . Since the 

renowned paper of Lorenz [25] , numerical computations have played a central part to display and analyse solutions of non-

linear dynamical systems [26] . From bifurcation diagrams to the discovery of hidden attractors, a great sort of analyses have

been carried out using digital computers. Additionally, application of nonlinear dynamical systems has been dramatically 

increased by exploring embedded platforms. For instance, chaotic systems have been successfully applied in optimization 

techniques [24] , encryption schemes [35] and pseudo-random number generators [46] . 

Many nonlinear dynamic systems are described by continuous differential equations and it is necessary to study and 

apply methods to simulate the equations that represent such systems in order to understand their behaviour [37,42] . It is

usually advisable to rewrite a set of differential equations with continuous dependence over time by a set of difference
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equations with a discrete time variable [22] to simulate continuous equations. Therefore, it is necessary to use discretiza- 

tion schemes, which have been extensively used in the literature such as the methods of Euler, Heunn and Runge-Kutta 

[5,38] which are based on the truncation of the Taylor series and therefore obtaining an approximation for the system un- 

der investigation. Other methods use information from the previous steps to obtain higher order approximations, such as the 

Adams Bashforth and Adams Bashforth Moulton methods [5,44] . There are also nonstandard techniques such as the Monaco 

and Normand-Cyrot method, which is based on representing the solution of the system in terms of exponential Lie expan- 

sion [28] ; the Mickens method [27] that uses finite differences in the construction of the discrete model that represents the

system, among others. Numerical methods for nonlinear dynamical systems are expected to be accurate and efficient for 

most, or preferable, all solutions [17] ; otherwise, a technique is unreliable and hence not likely to be used in applications,

even if any alternative is not as accurate and efficient [17] . In other words, a method should be robust. 

Although computing power has been speedily growing in recent decades, embedded and large-scale problems have mo- 

tivated significant research to improve computational efficiency of discretization schemes [23] . Dridi et al. [6] have imple- 

mented a secured chaos-based stream cipher in a FPGA-board using VHDL. The authors have shown that the obtained speed 

is competitive when compared with other works and the proposed technique is a suitable candidate for encrypting pri- 

vate data. With a crescent demand on secure for data flowing on the internet, pseudorandom number generators based 

on chaotic systems have received great attention. These systems should be fast enough to generate sets of pseudorandom 

numbers and avoid delays in communication or data storage. This feature becomes even more crucial for embedded sys- 

tems, where computer power is usually more restricted. An example of application in this line can be seen in [49] . The

authors applied a 5D hyperchaotic four-wing memristive system to implement a digital chaotic system in FPGA. According 

to those authors, experiments show that the design can be applied to various embedded password applications. Concern on 

computational cost does not only matter for embedded systems. Large-scale systems, such as the Internet of Things (IoT), 

poses a great challenge to simulate the dynamics of all entities and actors, which can be seen as dynamical systems [4] .

A significant number of works to tackle these problems are related to innovative discretization schemes [28] or the use of

parallel computer clusters [23] . 

There is no doubt that great progress has been observed in the simulation of nonlinear dynamical systems. However, con- 

cerns on finite precision effects are still present in literature [8,26] . Computers have properties and characteristics that result 

in non-exact numerical simulations. Nepomuceno [31] shows that the logistic map simulation may not converge to the ex- 

act fixed point due to the limitations of the computer. This limitation comes from the finite representation of real numbers,

since computers are not able to represent all real numbers. If an input number is represented, after some mathematical op-

erations, the result may no longer be representative, then the computer rounds each computational step, accumulating the 

error in the result [8] . Similar results can be found in [34] , where rounding errors are investigated in the simulations but us-

ing a method based on interval extension. Nepomuceno et al. [32] used the lower bound error to simulate a chaotic system

with lower and upper bounds. It has been shown that the widths of these bounds do not diverge, which is an advantage

compared with other techniques based on arithmetic intervals [29] . Several works have been dedicated to the investigation 

of the effects of the finite precision of the computer [7,8,12,14,26,31,33,48] . 

Investigation on discretization schemes has received significant attention. Nevertheless, effects of computer finite preci- 

sion onto discretization schemes for chaotic systems have received less attention. The normal practice is to implement the 

whole equation provided by a discretization scheme. Notwithstanding, round-off effects due in floating-point numbers have 

not yet changed the implementation of discretization schemes. In this paper, by means of a theorem, it is shown that high-

order monomials in the Runge-Kutta of fourth-order (RK4) method can be excluded without accuracy loss. The proposed 

approach is illustrated with three systems: Rössler [40] , Lorenz [25] and Sprott (B) [43] . Comparison between the number

of operations is carried out showing that a reduction of up to 81.1% was achieved. The quality of simulation is validated

by means of observability of dynamical systems, the plot of the attractors and the computation of the largest Lyapunov 

exponent. 

The rest of the paper is organised as follows. In Section 2 , a background for the manuscript is presented. A brief descrip-

tion on numerical computing, fourth-order Runge-Kutta discretization method and observability are reviewed. The proposed 

method based on exclusion of terms due to finite computer precision is presented in Section 3 . To illustrate this approach,

examples using the well-known Rössler equations, Lorenz equations and Sprott B are given in Section 4 . Section 6 presents

the conclusions. 

2. Background 

In this section, basic concepts of numerical computing, fourth-order Runge-Kutta discretization method and observability 

of dynamical systems are briefly described. 

2.1. Numerical computing 

The IEEE 754-2019 floating-point standard [13] aims at ensuring standards for the representation and operations with real 

numbers on computers. This standard specifies two essential formats: single format and double format. The investigation 

done here is based on the double format, whose bit layout is shown in Table 1 . 
2 
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Table 1 

Bits arrangement according 

to the IEEE standard for 64- 

bit systems. 

System Double 

Signal ( ±) 1 bit 

Exponent (E) 11 bits 

Mantissa (S) 52 bits 

 

 

 

 

 

The precision of a floating-point system is associated with the number of bits present by the format, given by the number

of bits of the mantissa, including the hidden bit [36] . A floating-point with precision ρ can be expressed by: 

x = ±(1 .b 1 b 2 . . . b ρ−2 b ρ−1 ) 2 × 2 

E . (1) 

Using this representation, the following definition about precision is presented. 

Definition 1. Precision ( ρ) denotes the number of bits of the mantissa. The double precision ( ρ = 53 ) corresponds to ap-

proximately ρ10 = log 10 (2 53 ) ≈ 16 decimal digits [36] . 

2.2. Fourth-order Runge-Kutta 

One of the most used and well-known methods of discretization is the fourth-order Runge-Kutta (RK4) [38,39,45] . Con- 

sider the boundary value problem determined by: 

˙ x = f (t, x ) , x (t 0 ) = x 0 , (2) 

where x is some state variable. Let integration step h > 0 , then RK4 can be expressed by Butcher and Goodwin [5] : 

x k +1 = x k + 

h 

6 

( k 1 + 2 k 2 + 2 k 3 + k 4 ) , (3) 

where 

k 1 = f k , 

k 2 = f (t k + 

h 

2 

, x k + 

h 

2 

k 1 ) , 

k 3 = f (t k + 

h 

2 

, x k + 

h 

2 

k 2 ) , (4) 

k 4 = f (t k +1 , x k + hk 3 ) , 

and f k is the differential equation. 

In order to apply for nonlinear dynamical systems, such as the Lorenz, the set of equations in (4) is rewritten as 

k 1 = f k , 

k 2 = f (x k + 

h 

2 

k 1 ) , 

k 3 = f (x k + 

h 

2 

k 2 ) , (5) 

k 4 = f (x k + hk 3 ) . 

Note that Eq. (5) does not depend on time explicitly (autonomous systems) and therefore a discrete model can be directly

written from the continuous counterpart. With that and instead of applying the Runge-Kutta method as it is, one can use

a specific discrete model for obtaining the numerical solutions (See Example 1 ). The advantage of this approach is that all

tools available for analysing the discrete (nonlinear) models are readily available for the analysis to be performed in the 

next sections. 

Example 1. Let the following nonlinear system represented by {
˙ x = y 

˙ y = x 2 + y 
(6) 
3 
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Applying Eqs. (3) to (6) yields to the following nonlinear discrete Runge-Kutta model ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x k +1 = 

( x 2 k 
+ y k ) 

2 
h 6 

96 
+ 

( 4 x 2 k 
y k +6 y 2 

k ) h 
5 

96 
+ 

( 8 y 2 k 
+ ( 16 x k +4 ) y k +8 x 3 

k 
+4 x 2 

k ) h 
4 

96 

+ 

( ( 32 x k +16 ) y k +16 x 2 
k ) h 

3 

96 
+ 

( 48 x 2 
k 
+48 y k ) h 2 
96 

+ hy k + x k 

y k +1 = 

h 9 y 4 
k 

384 
+ 

( ( 8 x k +4 ) y 3 k 
+4 x 2 

k 
y 2 

k ) h 
8 

384 

+ 

( 8 y 3 k 
+ ( 24 x 2 

k 
+16 x k +4 ) y 2 k 

+ ( 16 x 3 
k 
+8 x 2 

k ) y k +4 x 4 
k ) h 

7 

384 

+ 

( 16 y 3 
k 
+ ( 32 x k +20 ) y 2 k 

+ ( 32 x 3 
k 
+40 x 2 

k ) y k +20 x 4 
k ) h 

6 

384 

+ 

( ( 80 x k +80 ) y 2 k 
+96 x 2 

k 
y k +24 x 4 

k ) h 
5 

384 

+ 

( 128 y 2 
k 
+ ( 160 x 2 

k 
+96 x k +16 ) y k +64 x 3 

k 
+16 x 2 

k ) h 
4 

384 

+ 

( 128 y 2 
k 
+ ( 256 x k +64 ) y k +128 x 3 

k 
+64 x 2 

k ) h 
3 

384 

+ 

( ( 384 x k +192 ) y k +192 x 2 
k ) h 

2 

384 
+ 

( 384 x 2 
k 
+384 y k ) h 
384 

+ y k 

(7) 

By iterating Eq. (7) , the Runge-Kutta solution of the system in Eq. (6) is obtained. Note that the discrete model is rather

complex when compared to the continuous counterpart. That will be the case in all examples shown here. 

2.3. Observability of dynamical systems 

In this paper, our examples focus on systems with three dimensions, then the concept of observability will be developed 

for these systems. 

Let be the dynamical system 

˙ x = f (x ) , r = g(x ) , (8) 

where x ∈ R 

3 is the state vector, f is nonlinear vector field and r is the observable acquired through the measurement

function g : R 

3 �→ R . 

The portrait that is reproduced may be spanned by the derivative coordinates, such as 

X = r, Y = 

˙ r , W = r̈ . (9) 

It is possible to define a coordinate transformation �, when original states (x, y, w ) and derivative coordinates (X, Y, W )

are related. If r = x , then the transformation � is equivalent to 

X = r, Y = f r , W = 

∂ f r 

∂x 
f x + 

∂ f r 

∂y 
f y + 

∂ f r 

∂w 

f w 

, (10) 

where f x , f y , and f w 

are the components of f [19,20] . 

The system can be rewritten as an explicit system 

˙ X = Y, ˙ Y = W, ˙ W = F r (X, Y, W ) , (11) 

where F r (X, Y, W ) is the jerk equation [9,18,19] . For a given original system, the jerk equation F r can be analytically derived

using the coordinate transformation � [21] . 

3. Methodology 

In this section, the proposed technique is described. First, we present the following definition for monomial: 

Definition 2. Monomial is an algebraic expression formed by a real number, or a variable, or by a multiplication of numbers

(coefficients) and variables. 

Example 2. The algebraic expressions in (12) –(15) are examples of monomials 

2 , (12) 

4 . 7 × 10 

−3 , (13) 

5 x 2 y, (14) 

3 . 2 × 10 

2 xyz. (15) 

Addition and subtraction of numbers in scientific notation can only be performed when there are equal exponents. The 

monomial as in (13) can be represented by mantissa ( S = 4 . 7 ), base ( B = 10 ) and exponent ( E = −3 ). 
4 



P.F.S. Guedes, E.M.A.M. Mendes and E. Nepomuceno Applied Mathematics and Computation 428 (2022) 127207 

 

 

 

 

 

 

 

 

Example 3. Consider three monomials, 

x 1 = −1 . 2 × 10 

2 , (16) 

x 2 = 2 . 5 × 10 

3 , (17) 

x 3 = 3 . 3 × 10 

−1 . (18) 

To add them, it is necessary to convert to the same exponent. In this case, the conversion is performed for the highest value

exponent (E = 3). 

S = x 1 + x 2 + x 3 

= −0 . 12 × 10 

3 + 2 . 5 × 10 

3 + 0 . 0 0 033 × 10 

3 

= (−0 . 12 + 2 . 5 + 0 . 0 0 033) × 10 

3 

= 2 . 38033 × 10 

3 . 

The key point of this work is to analyse monomials of systems discretized by the fourth-order Runge-Kutta method ac- 

cording to the rules of rounding-off of the IEEE-754-2019. As some monomials can be of high-order, it can be noticed that

round-off operation may turn some of these monomials negligible. Thus, it is possible to safely determine that such mono- 

mials may be excluded or not. The result of excluding monomials, considering the double precision format, is presented in 

the following theorem. 

Theorem 1. Let γ be the set of monomials, that is, γ = { α1 10 β1 , α2 10 β2 , . . . , αn 10 βn } , with 1 ≤ αn ≤ 9 and with βn > βn −1 >

βn −2 > . . . > β1 . Let � be the set of difference between βn and other exponents, that is, � = { �1 , �2 , . . . , �n −1 } = { (βn −
β1 ) , (βn − β2 ) , . . . , (βn − βn −1 ) } . If �i > ρ , then the monomial γi may be excluded in the implementation of the discretization

scheme. 

Proof. Definition 1 shows that a number represented in the decimal base for double precision is approximately ρ ≈ 16 

decimal digits. Then, if the necessary adjustment to perform the sum (or subtraction) is greater than 16, the number will

be represented by zeros multiplied by 10 β , that is, 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 × 10 β , which confirms its exclusion. This rationale

can be applied for any number of bits or decimal digits. �

Example 4. Consider the following equation 

X = 0 . 05 + 6 . 5104 × 10 

−20 − 3 . 90625 × 10 

−10 

= 5 × 10 

−2 + 6 . 5104 × 10 

−20 − 3 . 90625 × 10 

−10 

According to Theorem 1 , the set of monomials are as follows: 

γ1 = α1 10 

β1 = 6 . 5104 × 10 

−20 

γ2 = α2 10 

β2 = −3 . 90625 × 10 

−10 

γ3 = α3 10 

β3 = 5 . 0 × 10 

−2 . 

The set � is given by 

�1 = β3 − β1 = −2 − (−20) = 18 

�2 = β3 − β2 = −2 − (−10) = 8 . 

Since �1 > 16 (for double precision), γ1 may be excluded without loss of accuracy. This is verified in Eq. (19) . Figure 1 a

and b present this operation using Matlab for long and hexadecimal format, respectively. As can seen, the hexadecimal 

remains the same after the exclusion of the monomial. 

X = 5 × 10 

−2 +0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 × 10 

−2 

−0 . 0 0 0 0 0 0 0390625 × 10 

−2 (19) 

= 4 . 9999999609375 × 10 

−2 

To show what happens when there are monomials with the same exponent value, an example is now given ( Example 5 ).

Example 5. Consider the following equation 

X = 0 . 04 + 6 . 5 × 10 

−20 − 3 . 9 × 10 

−10 + 0 . 02 

= 5 × 10 

−2 + 6 . 5 × 10 

−20 − 3 . 9 × 10 

−10 + 2 × 10 

−2 

According to Theorem 1 , the set of monomials are as follows: 

γ1 = α1 10 

β1 = 6 . 5 × 10 

−20 
5 
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Fig. 1. Example 4 was run on Matlab TM . The result is presented in long and hexadecimal formats, as described in Eq. (19) . The exclusion of monomial 

γ1 = 6 . 5104 × 10 −20 does not change the final result. 

 

 

 

 

 

 

γ2 = α2 10 

β2 = −3 . 9 × 10 

−10 

γ3 = α3 10 

β3 = 2 . 0 × 10 

−2 

γ4 = α4 10 

β4 = 5 . 0 × 10 

−2 . 

The set � is given by 

�1 = β4 − β1 = −2 − (−20) = 18 

�2 = β4 − β2 = −2 − (−10) = 8 

�3 = β4 − β3 = −2 − (−2) = 0 . 

Since �1 > 16 (for double precision), γ1 may be excluded without loss of accuracy. The monomial represented by �3 

will be kept in the representation, since only monomials where � > 16 will be excluded. 

4. Numerical experiments 

In this section, the proposed approach is illustrated for three systems: the Rössler system [40] , the Lorenz equa-

tions [25] and Sprott B [43] . For each system, the reduced RK4, here named as RRK4, according to Theorem 1 is calculated.

The quality of RRK4 is evaluated by means of the observability of the dynamical systems, plot of the projections on the xy

plane of the discretized systems and computation of the largest Lyapunov exponent. The step size h is chosen according to

the usual values found in the literature. 

4.1. The Rössler system 

Let the Rössler system be represented by Rössler [40] : { 

˙ x = −y − z, 
˙ y = x + ay, 
˙ z = b + z(x − c) , 

(20) 

where bifurcation parameters are described by (a, b, c) . Rössler equations were discretized by the Runge-Kutta scheme of 

fourth-order. Theorem 1 was applied considering initial condition (x 0 , y 0 , z 0 ) = (−1 . 0 , 1 . 0 , 1 . 0) , parameters a = 0 . 15 , b = 0 . 20

and c = 10 . 0 , and step-size of 10 −2 . The number of monomials for each equation of the Rössler system is shown in Table 2 .

RK4 represents the discretization performed by the fourth-order Runge-Kutta method, and RRK4 represents the fourth-order 

Runge-Kutta method when Theorem 1 is applied and some terms are excluded. 

To investigate the observability of each dynamical variable, it is necessary to begin with a measurement component so 

that r = g(x, y, z) = y . The coordinate transformation �y peruses at that point as 

�y = 

{ 

X = y, 
Y = ay + x, 

Z = −y − z + ax + a 2 y, 
(21) 
6 



P.F.S. Guedes, E.M.A.M. Mendes and E. Nepomuceno Applied Mathematics and Computation 428 (2022) 127207 

Table 2 

Number of monomials for each of the discretized equations for 

the systems Lorenz, Rössler and Sprott B. The comparison is 

made between conventional RK4 and Reduced RK4 (RRK4). Ini- 

tial conditions, parameters and step size for each system are 

as follows: 1) Rössler: (x 0 , y 0 , z 0 ) = (−1 . 0 , 1 . 0 , 1 . 0) , a = 0 . 15 , b = 

0 . 20 and c = 10 . 0 , and step-size of 10 −2 ; 2) Lorenz: (x 0 , y 0 , z 0 ) = 

(1 . 0 , 0 . 5 , 0 . 9) , σ = 16 . 0 , β = 4 . 0 , ρ = 45 . 92 , h = 10 −3 ; 3) Sprott 

B: (x 0 , y 0 , z 0 ) = (0 . 05 , 0 . 05 , 0 . 05) and h = 10 −2 . The highest re- 

duction in the number of monomials occurs for the Lorenz equa- 

tions, where the total is decreased in 75.5%. 

Equations Rössler Lorenz Sprott B 

RK4 RRK4 RK4 RRK4 RK4 RRK4 

x k +1 117 101 116 79 175 41 

y k +1 38 38 886 192 38 26 

z k +1 903 290 963 210 167 37 

 

 

 

 

 

 

 

 

 

 

 

and the equivalent jerk equation F y is 

F y = −b − cX + (ac − 1) Y + (a − c) Z − aX 

2 

+(a 2 + 1) X Y − aX Z − aY 2 + Y Z. (22) 

When the observable is variable x of the Rössler system, the coordinate transformation �x is as follows 

�x = 

{ 

X = x, 

Y = −y − z, 
Z = −x − ay − z(x − c) − b, 

(23) 

and the corresponding jerk equation F x is 

F x = ab − cX + X 

2 − aX Y + acY + X Z + (a − c) Z 

− (a + c + Z − aY + b) 

a + c − X 

. (24) 

For variable z of the Rössler system as the observable, the coordinate transformation �z is as follows 

�z = 

{ 

X = z, 
Y = z(x − c) + b, 

Z = (b + z(x − c))(x − c) + z(−y − z) , 
(25) 

and the associated jerk equation is 

F z = b − cX − Y + aZ + aX 

2 − X Y (26) 

+ 

(ab + 3 Z) Y − aY 2 − bZ 

Z 
+ 

2 bY 2 − 2 Y 3 

X 

2 
. 

Analysing Eqs. (22) , (24) and (26) it is possible to state that Eq. (26) is more complex than Eq. (24) and therefore is

more complex than Eq. (22) . Similar to [18] , we consider complexity associated with the number of monomials included in

the jerk equation, order of the nonlinearities and poles. Note that the jerk equation indicates the connections between the 

states of the original system “seen from one observable point of view”. 

Based on the complexity of F x , F y e F z , it can be said that variable y is more observable than variable x , which is more

observable than variable z, that is, y � x � z. From the results presented in Table 2 , it is conceivable to evaluate the observ-

ability and compare it with what has already been exposed before. Variable y is more observable than variable x , which is

more observable than the variable z. Since variable z is the one with the greatest exclusion of terms, it does not contribute

much to the description of the system. This statement corroborates the observability analysis carried out previously. 

Figures 2 a and b show the projections on the xy plane of the Rössler equations for the fourth-order Runge-Kutta method

and the reduced fourth-order Runge-Kutta method. The trajectories exhibit very close values in both cases, so Fig. 2 a and b

are practically the same, illustration Theorem 1 . 

As Fig. 2 a and b appear to be the same; it is difficult to visualise the small difference, let alone compare them. To

mitigate this problem, Fig. 3 a shows the difference between RK4 and RRK4 by using a logarithmic scale. Note that RK4 and

RRK4 represent two interval extensions of the same system. The distance between these two interval extensions is the lower 

bound error [30] . And for chaotic systems, the distance is exponentially divergent. 

As a final criterion, the largest Lyapunov exponent was calculated using the method proposed by Nepomuceno and 

Mendes [34] for both RK4 and RRK4, as shown in Table 3 . This method uses the interval extensions to calculate the lower

bound error which is a measure of the distance between the simulated dynamical systems (or pseudo-orbit) and the real 

orbit. When a system behaves chaotically the distance between these two orbits is exponentially divergent, and therefore a 
7
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Fig. 2. Projections on the xy plane of the attractors of the discretized systems. (a) and (b): Projections on the xy plane of the discretized Rössler equations, 

with initial condition (x 0 , y 0 , z 0 ) = (−1 . 0 , 1 . 0 , 1 . 0) , parameters a = 0 . 15 , b = 0 . 20 and c = 10 . 0 , and step-size h = 10 −2 . (c) and (d): Projections on the xy 

plane of the discretized Lorenz equations, with initial condition (x 0 , y 0 , z 0 ) = (1 . 0 , 0 . 5 , 0 . 9) , parameters σ = 16 . 0 , β = 4 . 0 and ρ = 45 . 92 , and step-size 

h = 10 −3 . (e) and (f): Projections on the xy plane of the Sprott B, with initial condition (x 0 , y 0 , z 0 ) = (0 . 05 , 0 . 05 , 0 . 05) and step-size h = 10 −2 . 

 

 

 

 

slope in a logarithm plot of the lower bound error captures the divergence and quantifies it as a number which is the posi-

tive Lyapunov exponent. The positive exponent was found to be 0.0897 and 0.0909 for RK4 and RRK4, respectively, which is

in a good agreement with the literature value of 0.090 nat/iter [47] . Table 4 shows the number of points needed to calculate

the Lyapunov exponent using the method proposed in [34] . It is possible to observe that RK4 uses a slightly larger number

for this estimation. 
8 
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Fig. 3. Exponentially growing of the difference between the two pseudo-orbits RK4 and RRK4. (a): Difference between the two pseudo-orbits of the dis- 

cretized Rössler equations, with initial condition (x 0 , y 0 , z 0 ) = (−1 . 0 , 1 . 0 , 1 . 0) , parameters a = 0 . 15 , b = 0 . 20 and c = 10 . 0 , and step-size h = 10 −2 . (b): Dif- 

ference between the two pseudo-orbits of the discretized Lorenz equations, with initial condition (x 0 , y 0 , z 0 ) = (1 . 0 , 0 . 5 , 0 . 9) , parameters σ = 16 . 0 , β = 4 . 0 

and ρ = 45 . 92 , and step-size h = 10 −3 . (c): Difference between the two pseudo-orbits of the Sprott B, with initial condition (x 0 , y 0 , z 0 ) = (0 . 05 , 0 . 05 , 0 . 05) 

and step-size h = 10 −2 . 

Table 3 

Calculation of Lyapunov exponent. The expected values are obtained in [47] for Rössler 

and Lorenz equations and in [43] for Sprott B. The unit of the Lyapunov exponent is 

indicated in nat/iter. 

System Literature λ Calculated λ for RK4 Calculated λ for reduced RK4 

Rössler 0.0900 0.0897 0.0909 

Lorenz 1.5000 1.4702 1.4778 

Sprott B 0.2100 0.1710 0.1854 

Table 4 

Number of points necessary to es- 

timate the Lyapunov exponent for 

each system. The following parameters 

were considered for each system: 1) 

Rössler: (x 0 , y 0 , z 0 ) = (−1 . 0 , 1 . 0 , 1 . 0) , 

a = 0 . 15 , b = 0 . 20 and c = 10 . 0 , 

and step-size of 10 −2 ; 2) Lorenz: 

(x 0 , y 0 , z 0 ) = (1 . 0 , 0 . 5 , 0 . 9) , σ = 16 . 0 , 

β = 4 . 0 , ρ = 45 . 92 , h = 10 −3 ; 3) Sprott 

B: (x 0 , y 0 , z 0 ) = (0 . 05 , 0 . 05 , 0 . 05) and 

h = 10 −2 . 

System λ RK4 reduced RK4 

Rössler 35218 33331 

Lorenz 21276 19678 

Sprott B 14893 12687 

9
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Table 5 

Mean and standard deviation for the estimation of the Lyapunov exponent using 50 

samples with different initial conditions. The expected values are obtained in [47] for 

Rössler and Lorenz equations and in [43] for Sprott B. The unit of the Lyapunov expo- 

nent is indicated in nat/iter. 

System Literature λ Calculated λ for RK4 Calculated λ for reduced RK4 

Rössler 0.0900 0 . 0899 ± 0 . 0091 0 . 0901 ± 0 . 0089 

Lorenz 1.5000 1 . 4847 ± 0 . 0451 1 . 4877 ± 0 . 0487 

Sprott B 0.2100 0 . 2183 ± 0 . 0229 0 . 2051 ± 0 . 0121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To emphasise the advantage in using the proposed method, the Lyapunov exponent was estimated for different initial 

conditions and the mean and standard deviation were calculated. For this calculation, 50 samples with different initial con- 

ditions were considered. The following parameters were considered for the Rössler system: (x 0 , y 0 , z 0 ) = (−15 . 0 : −1 . 0 , 1 . 0 :

15 . 0 , 1 . 0 : 15 . 0) , a = 0 . 15 , b = 0 . 20 and c = 10 . 0 , and step-size of 10 −2 . Table 5 shows the results and it is possible to verify

that they are in accordance with the literature. 

4.2. Lorenz equations 

Consider the Lorenz equations [25] { 

˙ x = σ (y − x ) , 
˙ y = x (ρ − z) − y, 
˙ z = xy − βz, 

(27) 

where σ , ρ and β are parameters. Lorenz equations were discretized by the fourth-order Runge-Kutta method. To apply 

Theorem 1 , initial condition (x 0 , y 0 , z 0 ) = (1 . 0 , 0 . 5 , 0 . 9) , parameters σ = 16 . 0 , β = 4 . 0 and ρ = 45 . 92 , and step-size of 10 −3

were considered. The number of monomials for each equation of the Lorenz equations is shown in Table 2 . As it occurred

to Rössler’s equations, the reduced RK4 varies as iterations of Lorenz equations occur. 

The observability of each dynamic variable was investigated, and the associated model for variable x is 

F x = X βρσ − X 

3 σ − X βσ − βσY − X 

2 Y − βY − βZ − σZ + 

σ Y 2 

X 

− Z + 

Y 2 

X 

+ 

Y Z 

X 

(28) 

whereas for the other coordinates the respective equations have a large number of monomials and, more importantly they 

are of the following implicit form 

˙ X = Y, ˙ Y = Z, F r (X, Y, Z, ˙ Z ) = 0 . (29) 

Equations relating to F x , F y , and F z have 12, 588, and 211 monomials, respectively. Based on the complexity of the jerk

equations, it can be concluded that variable x is more observable than variable z, which is more observable than variable y ,

that is, x � z � y . This is slightly different from the results in Table 2 , variable x is more observable than variable y , which

is more observable than variable z, that is, x � y � z. The result is in accordance with what is stated in [1,18] and indicates

that the variable z is the least observable, based on symmetry considerations. Nonetheless the result presented in Table 2 is

in accordance with the observability analysis performed previously using the jerk equations, which determines that the 

variable x is the most observable. 

Figure 2 c and d show the projections on the xy plane of the Lorenz equations. The trajectories exhibit very close values

in both cases. And Fig. 3 b shows the difference between RK4 and RRK4 orbits on a logarithmic scale. The Lyapunov exponent

was calculated as shown in Tables 3 and 4 shows the number of points needed to calculate the Lyapunov exponent. Values

obtained from RK4 and RRK4 are similar to the values found in the literature. Additionally, the Lyapunov exponent was 

calculated for 50 samples with different initial conditions, (x 0 , y 0 , z 0 ) = (1 . 0 : 35 . 0 , 0 . 5 : 35 . 0 , 0 . 9 : 35 . 0) , system parameters

set to σ = 16 . 0 , β = 4 . 0 , ρ = 45 . 92 and step size h = 10 −3 . The mean and standard deviation were calculated as shown in

Table 5 and the estimated Lyapunov exponent is in agreement with values found in the literature. 

4.3. Sprott B 

Consider the Sprott B system [43] : { 

˙ x = yz, 
˙ y = x − y, 
˙ z = 1 − xy. 

(30) 

The Sprott B system was discretized using the fourth-order Runge-Kutta method. In order to apply Theorem 1 , 

(x 0 , y 0 , z 0 ) = (0 . 05 , 0 . 05 , 0 . 05) and step-size of 10 −2 were considered as indicated in [15,16,43] . The number of monomi-

als for each equation of the Sprott B system is shown in Table 2 . RRK4, as shown in Table 2 , is achieved for some iterations
10 
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since, as the Sprott B equations are iterated, their values change. Thus, the values of the monomials are also changed, caus-

ing the number of monomials to vary for each equation. 

For the investigation of the observability of each dynamic variable, consider r = g(x, y, z) = y as and coordinate transfor-

mation �y such as 

�y = 

{ 

X = y, 
Y = x − y, 
Z = −x + (1 + z) y, 

(31) 

and the corresponding jerk equation F y is 

F y = −Z + (1 − X Y + X 

2 ) X − (Y + Z) 
Y 

X 

. (32) 

When the observable is variable z of the Sprott B, the coordinate transformation �z reads as 

�z = 

{ 

X = z, 
Y = 1 − xy, 

Z = xy − x 2 − y 2 z, 
(33) 

and the corresponding jerk equation F z is 

F z = 

1 

2 X 

{ 8 X 

2 Y − 8 X 

2 − 2 X Y − 4 X Z + Y 2 + Y Z 

+2 X − Y ± (2 X − Y )(−4 X Y 2 + 8 X Y + Y 2 

+2 Y Z + Z 2 − 4 X − 2 Y − 2 Z + 1) 
1 
2 } . (34) 

The final case is to consider the variable x of the Sprott B as the observable. The coordinate transformation �x reads as 

�x = 

{ 

X = x, 

Y = yz, 
Z = (x − y ) z + (1 − xy ) y, 

(35) 

and the associated jerk equation is 

F 3 x X 

3 + (4 X 

3 Y − 3 X 

4 + 7 X 

3 Z − 3 X 

2 Y 2 − 3 X 

2 Y Z − X 

2 + X Y ) F 2 x + (22 X 

3 Y 2 + 27 X 

6 Y + 9 X 

6 Z − 18 X 

4 Y 

−22 X 

4 Z + 28 X 

3 Y Z + 15 X 

3 Z 2 + 4 X 

3 − 8 X 

2 Y 3 − 22 X 

2 Y 2 Z − 14 X 

2 Y Z 2 − 5 X 

2 Y − Y 3 − 3 X 

2 Z + 3 X Y 4 

+6 X Y 3 Z + 3 X Y 2 Z 2 + 2 X Y 2 + 4 X Y Z − Y 2 Z) F x + 27 X 

9 Y − 45 X 

7 Y − 18 X 

7 Z + 4 X 

6 + 31 X 

6 Y 2 + 39 X 

6 Y Z 

+9 X 

6 Z 2 − 27 X 

5 Y 3 − 36 X 

5 Y 2 Z − 9 X 

5 Y Z 2 + 17 X 

5 Y + 16 X 

5 Z − 22 X 

4 Y 2 − 42 X 

4 Y Z − 27 X 

4 Z 2 − 4 X 

4 (36) 

+40 X 

3 Y Z 2 + 5 X 

3 Y + 9 X 

3 Z 3 + 6 X 

3 Z + 31 X 

3 Y 3 + 60 X 

3 Y 2 Z − 19 X 

2 Y 4 − 44 X 

2 Y 3 Z − 40 X 

2 Y 2 Z 2 − 5 X 

2 Y 2 

−15 X 

2 Y Z 3 − 9 X 

2 Y Z − 2 X 

2 Z 2 + 4 X Y 5 + 15 X Y 4 Z + 18 X Y 3 Z 2 + 4 X Y 3 + 7 X Y 2 Z 3 + 6 X Y 2 Z − 3 Y 5 Z 

−3 Y 4 Z 2 + 4 X Y Z 2 − Y 6 − Y 3 Z 3 − 3 Y 3 Z − 2 Y 2 Z 2 = 0 

It can be seen that Eq. (36) is more complex than Eq. (34) , just as this equation is more complex than Eq. (32) . Therefore,

one can guarantee that the variable y is more observable than the variable z, which is more observable than the variable

x , that is, y � z � x . According to the results presented in Table 2 , it is possible to assess the observability of the system.

Variable y is the most observable since there is a lesser exclusion of terms, followed by variables z and x . All this is in

conformity with the observability analysis carried out previously. 

Figure 2 shows the projections on the xy plane of the Sprott B for RK4 and RRK4. Note that Fig. 2 e and f appear to be

the same since their pseudo-orbits exhibit very close values. This highlights the concept of monomial exclusion. Figure 3 c

show the small difference between RK4 and RRK4. 

In addition, using both RK4 and RRK4, a Lyapunov exponent of 0.1710 nat/iter and 0.1854 nat/iter was found, respectively, 

as shown in Table 3 , which is also in good agreement with literature. Table 4 shows the number of points needed to

calculate the Lyapunov exponent. It is possible to observe again that RK4 needs a slightly larger number of iterations to

estimate the exponent. Table 5 shows the mean and standard deviation of the Lyapunov exponent considering 50 samples 

with different initial conditions within the range (x 0 , y 0 , z 0 ) = (0 . 05 : 15 . 0 , 0 . 05 : 15 . 0 , 0 . 05 : 15 . 0) and h = 10 −2 . 

4.4. Algorithm complexity analysis 

In order to analyse the computational complexity of the systems under study, the mathematical operations of each sys- 

tem were counted, the simulation time of each system has been calculated, the first three iterations for RK4 and RRK4 are

shown. Since it is known that the discretized system depends on the step-size ( h ), it will be shown that the number of

monomials varies with the chosen step. Table 6 shows the summary of the basic operations used in the calculations. The

number of operations is per iteration that outfits a computational complexity of O (n ) . 
11 
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Table 6 

Summary of computational complexity. The basic operations used throughout each system were analysed, that is, Sum/Subtraction, Multiplica- 

tion/Division and Power. For each system, all the operators for variables x, y, z are added and the reduction was calculated. The proposed method 

can reduce up to 81.1% of the required operations for the Lorenz equations. 

RK4 Reduced RK4 Reduction

Operations x k +1 y k +1 z k +1 x k +1 y k +1 z k +1 

Rössler Sum/Subtraction 116 37 902 100 37 289 

Multiplication/Division 527 141 4878 445 141 1269 

Power 192 47 2240 161 47 606 

Summation of operators 835 225 8020 706 225 2164 

Total 9080 3095 65.9% 

Lorenz Sum/Subtraction 115 885 962 78 191 209 

Multiplication/Division 605 5260 5739 325 877 980 

Power 289 2881 3190 172 425 514 

Summation of operators 1009 9026 9891 575 1493 1703 

Total 19926 3771 81.1% 

Sprott 

B 

Sum/Subtraction 174 37 166 40 25 36 

Multiplication/Division 726 139 710 118 64 115 

Power 404 60 393 62 33 64 

Summation of operators 1304 236 1269 220 122 215 

Total 2809 557 80.2% 

Table 7 

Average time of a thousand attempts to execute the proposed algorithm. We have also presented 

one standard deviation in order to consider the intrinsic fluctuation of time consumption in a com- 

puter. 1) Rössler: (x 0 , y 0 , z 0 ) = (−1 . 0 , 1 . 0 , 1 . 0) , a = 0 . 15 , b = 0 . 20 and c = 10 . 0 , and step-size of 10 −2 ; 

2) Lorenz: (x 0 , y 0 , z 0 ) = (1 . 0 , 0 . 5 , 0 . 9) , σ = 16 . 0 , β = 4 . 0 , ρ = 45 . 92 , h = 10 −3 ; 3) Sprott B: (x 0 , y 0 , z 0 ) = 

(0 . 05 , 0 . 05 , 0 . 05) and h = 10 −2 . 

System RK4 RRK4 Reduction 

Rössler 4 . 1729 ± 0 . 5054 1 . 4500 ± 0 . 0991 65 . 3% 

Lorenz 18 . 7971 ± 0 . 1078 1 . 7481 ± 0 . 0994 90 . 7% 

Sprott B 1 . 6427 ± 0 . 0567 0 . 2540 ± 0 . 0085 84 . 5% 

 

 

 

 

 

 

 

 

 

 

Rössler equations present a total of 9080 operations per iteration using RK4 whereas, using RRK4, the number of oper- 

ations was 3095, representing a reduction of approximately 65 . 9% of operations performed per iteration. The Lorenz equa- 

tions presented 19926 and 3771 mathematical operations per iteration, when discretized using RK4 and RRK4, respectively. 

The reduction in the number of mathematical operations was 81 . 1% . Likewise, the Sprott B system presented a total of 2809

operations when discretized using RK4 and 557 operations using RRK4. Therefore, there was a reduction of approximately 

80 . 2% in the number of mathematical operations when Theorem 1 was applied. 

The simulation time is shown in Table 7 . Each system was simulated a thousand times and the time shown in the table

is the average over the outcome of the simulations. For the reduced fourth-order Runge-Kutta it is evident that there was a

significant reduction in the simulation time, especially for the Lorenz equations. Since the decrease in time is directly related 

to the amount of operations performed, the contribution to the decrease in computational cost is worth considering. Such a 

decrease is specially important, as there is a desire to develop fast and light algorithms specially with ever increasing volume

of data created. In addition to that, it is necessary to guarantee the security for data that need to be kept confidential.

Security, combined with speed (short execution time) and low computational cost is discussed in several works [2,3,11] . 

Table 8 presents the three first values of each system for variable x . The Rössler equations and the Sprott B system

present the same values for both RK4 and RRK4. For the case of simulation of Lorenz equations, it is possible to observe

that from the second iteration on there is a divergence between the values of RK4 and of RRK4 (See Table 8 ). 

The accumulated truncation error for RK4 is O (h 4 ) and the error between RK4 and RRK4 for Lorenz equations is 1 . 0137 ×
10 −15 and 1 . 0199 × 10 −15 , in the second and third iteration, respectively. That is, this error is smaller than the accumulated

error validating the use of the proposed theorem, since the found error was smaller than the error of the discretization

scheme. 

The fourth-order Runge-Kutta discretization scheme depends on the step-size, as a consequence the proposed term ex- 

clusion method significantly depends on the chosen value of h . To illustrate this dependence, Table 9 shows the number

of monomials that is considered in the simulation for each selected step-size. As expected, the number of monomials that 

represent the systems decreases as the step-size decreases. 
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Table 8 

Simulation for the first three iterates: 1) Rössler: (x 0 , y 0 , z 0 ) = (−1 . 0 , 1 . 0 , 1 . 0) , 

a = 0 . 15 , b = 0 . 20 and c = 10 . 0 , and step-size of 10 −2 ; 2) Lorenz: (x 0 , y 0 , z 0 ) = 

(1 . 0 , 0 . 5 , 0 . 9) , σ = 16 . 0 , β = 4 . 0 , ρ = 45 . 92 , h = 10 −3 ; 3) Sprott B: (x 0 , y 0 , z 0 ) = 

(0 . 05 , 0 . 05 , 0 . 05) and h = 10 −2 . 

Rössler 

k x RK4 x RRK4 

0 −1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 −1 . 019436103095310 −1 . 019436103095310 

2 −1 . 037815068635247 −1 . 037815068635247 

3 −1 . 055234737344272 −1 . 055234737344272 

Lorenz 

k x RK4 x RRK4 

0 1.000000000000000 1.000000000000000 

1 0.992416886935038 0.992416886935038 

2 0.985654757485587 0.985654757485586 

3 0.979695097099713 0.979695097099712 

Sprott B 

k x RK4 x RRK4 

0 0.050000000000000 0.050000000000000 

1 0.050027493774038 0.050027493774038 

2 0.050059975228164 0.050059975228164 

3 0.050097444650059 0.050097444650059 

Table 9 

Number of monomials for each of the discretized equations for the systems Lorenz, Rössler and Sprott B. The 

comparison is made between conventional RK4 and Reduced RK4 (RRK4) for different values of step-size. Initial 

conditions, parameters and step size for each system are as follows: 1) Rössler: (x 0 , y 0 , z 0 ) = (−1 . 0 , 1 . 0 , 1 . 0) , 

a = 0 . 15 , b = 0 . 20 and c = 10 . 0 ; 2) Lorenz: (x 0 , y 0 , z 0 ) = (1 . 0 , 0 . 5 , 0 . 9) , σ = 16 . 0 , β = 4 . 0 , ρ = 45 . 92 ; 3) Sprott 

B: (x 0 , y 0 , z 0 ) = (0 . 05 , 0 . 05 , 0 . 05) . 

Rössler 

RK4 RRK4 RRK4 RRK4 RRK4 

( h = 10 −1 ) ( h = 10 −2 ) ( h = 10 −3 ) ( h = 10 −4 ) 

x k +1 117 117 101 47 24 

y k +1 38 38 38 33 16 

z k +1 903 896 290 87 38 

Lorenz 

RK4 RRK4 RRK4 RRK4 RRK4 

( h = 10 −2 ) ( h = 10 −3 ) ( h = 10 −4 ) ( h = 10 −5 ) 

x k +1 116 116 71 37 20 

y k +1 886 687 192 79 38 

z k +1 963 715 210 71 27 

Sprott B 

RK4 RRK4 RRK4 RRK4 RRK4 

( h = 10 −1 ) ( h = 10 −2 ) ( h = 10 −3 ) ( h = 10 −4 ) 

x k +1 175 102 41 22 13 

y k +1 38 38 26 16 10 

z k +1 167 100 37 18 11 

 

 

 

 

 

5. Discussion 

Theorem 1 was applied to a discretization scheme, namely the fourth-order Runge-Kutta scheme with fixed step-size. 

This method is still widely used in many applications. Additionally, Runge-Kutta has been shown to be a good example to

notice a significant amount of excluded (or neglected) terms (or monomials). 

It could be argued that the proposed computational discretization scheme does not improve the performance of classical 

Runge-Kutta numerical methods since the removal of the neglected terms in the method is automatically performed by the 

computer and therefore the advantage of not including them in the general scheme has no effect on the results. Unfortu-

nately that is not the case since the computer will perform the operations related to the neglected terms anyhow before

returning zero. That certainly has an impact on the overall performance as shown here. 

Stretching this argument a bit further, an advantage related to the number of operations performed by computers could 

be considered as not very important, if their current performance is taken into account. That is not entirely true, if a dis-

cretization scheme is to be implemented in a FPGA device for instance, the code length is certainly a factor to be taken into

consideration. A shorter algorithm will certainly have an appeal in this case. 
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Another criticism is the use of a fixed step size Runge-Kutta of low order (considered outdated) when a variety of dis-

cretization schemes with variable step size are currently available. The change in the step will aggravate the problem when 

its value becomes smaller. More terms will be neglected and the final operation will be performed by far less terms which

again shows the importance of the present study. 

Finally showing the chaotic attractor as was done here could be considered as a simplistic way of analysing a difficult

problem as no error control was used (and therefore could affect the simulation of the unstable invariant). Although a 

definite answer cannot be given before an exhaustive study, the idea that using a more elaborated discretization scheme 

(such as a variable step scheme) would guarantee such a simulation does not seem entirely possible as the user does not

known which terms will be neglected in the simulation and therefore the unstable invariant will be calculated differently 

from what is expected. 

6. Conclusion 

This paper has introduced an effective com putational discretization scheme for the solution of nonlinear dynamical sys- 

tems. Based on a theorem, it has been shown how to safely exclude monomials in an implemented Runge-Kutta of fourth-

order with almost no accuracy loss. The reduced Runge-Kutta of fourth-order (RRK4) has been successfully applied to the 

three classical nonlinear dynamical systems: Rössler equations, Lorenz equations and Sprott B. 

The quality of simulations has been verified by means of the concept of observability of nonlinear dynamical systems, 

projections on plane xy of the attractors and computation of the largest Lyapunov exponent. Figure 2 reinforces the effi-

ciency of RRK4 by showing trajectories practically identical. To demonstrate the computational effectiveness of the proposed 

technique the number of mathematical operations between RK4 and RRK4 was used for comparison. Table 6 shows that 

the achieved reduction is up to 81.8%. Consequently, simulation time has also significantly decreased, reaching 90.7% for 

the Lorenz case. Table 9 shows that decreasing the step-size, the number of neglected terms increases, further reducing the 

number of operations performed. This is a striking outcome that allows the user of such systems to speed up simulations

and save energy and time in many applications. We hope that this method can be continuously developed and expanded in

order to create novel algorithms for reducing the carbon footprint of scientific computation. 

The proposed technique can be applied to a wide range of simulation applications. This finding is promising and should 

be applied to other nonlinear dynamical systems and extended to different discretization schemes. It is also believed that 

RRK4 would be beneficial for embedded employments, such as image encryption. Furthermore, as a future work, we intend 

to evaluate the use of the theorem in variable step-size discretization and in other discretization schemes. 
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