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Abstract

Climate change has resulted in extreme events becoming more frequent, intense, and

destructive. It is essential to understand the behaviour of extreme weather processes

for societal preparedness. This thesis focuses on the development of spatio-temporal

statistical models for extremely hot summer and cold winter temperature events in

Ireland, in the context of climate change. To provide reliable estimates of extreme

temperatures of unobserved magnitudes, we rely on asymptotically justified extrap-

olations provided by extreme value theory.

Modelling observational weather records is problematic for several reasons. Firstly,

these data tend to have low spatial resolution and contain spatial bias. This the-

sis presents a framework to unify information about spatial extreme events using

both historical temperature observations and output from climate models to en-

rich the statistical model’s topographic information while addressing spatial bias.

Secondly, observational weather records are incomplete, with sites having different

record lengths as well as missing values. To deal with this issue we develop a spatial

extreme value model which allows for an estimation of the full dependence structure

without imputing or removing spatial observations that are not fully observed.

We identify a lack of a unified measure of extremity in the spatio-temporal context.

Such tools are critical for practitioners to summarise and present risks associated

with non-stationary spatio-temporal extremal processes. To address this gap in

the literature, we develop several novel summary tools to synthesise and visually

communicate non-stationarity in the extreme values of spatio-temporal processes.

We apply our methodology to analyse the extremal behaviour of both summer

vii



maximum and winter minimum daily temperatures in Ireland. We characterise

changes on a marginal level (i.e., the behaviour at any location in Ireland) as well

as on a spatial level. For the marginal model, we use spatial covariates derived

from climate model outputs and explore several potential temporal covariates. To

model the spatial extremal dependence, we use an r-Pareto process with Hüsler-

Reiss margins in order to incorporate incomplete spatial observations and apply our

measures of spatio-temporal non-stationarity to simulations from our fitted model

of summer and winter extreme temperatures.
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1
Introduction

In this chapter we define, in general terms, what are the extreme events we are interested in

modelling. We highlight the impacts of extreme weather events and the motivation behind

the development of extreme value theory to describe them. We discuss the motivation

behind the research in this PhD and our research questions.
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1.1. Extreme climate events

1.1 Extreme climate events

Extreme climate events are observed with very low probability and although infre-

quent, can be incredibly impactful. While there is no unified definition of extremes,

they commonly comprise unusually hot summers, cold winters, strong windstorms,

or heavy rains. Unusual weather events can be devastating, impacting many facets

of our environment. It is imperative to understand the mechanisms driving extreme

climate activity. In this thesis, we focus primarily on understanding the spatial and

temporal changes in extreme temperature events over the island of Ireland.

1.1.1 Trends in global extreme temperatures

Humans have caused an increased concentration of greenhouse gases in our atmo-

sphere, such as carbon dioxide (CO2), a long-lived gas that absorbs and radiates

heat (Friedlingstein et al. 2022). This has resulted in the warming of our planet

over the last century (see Figure 1.1 left panel, with temperature anomalies derived

from HadCRUT5, Morice et al. 2021). Feedback loops exacerbate this increase in

warming, most notably polar amplification. Polar amplification is the tendency for

the earth’s poles to warm faster than the global average (England et al. 2021). As

Arctic ice melts, it reflects less heat away from the planet, which increases warming,

and so on. Increasing temperatures cause permafrost (ground that remains frozen

for two or more years) to thaw, resulting in increased bio-activity, and contributing

to atmospheric greenhouse gasses. The Arctic has warmed almost four times as

fast as the global average, leading to changes in temperature gradients over the

globe (Rantanen et al. 2022). The changing temperature gradient affects air pres-

sure, resulting in “wavier” jet streams (EASAC 2018), allowing for the formation

of extreme weather systems such as persistent rains and increased frequency and

magnitude of extreme heat events (Dosio et al. 2018, Moon et al. 2022) and cold

winters (Francis & Vavrus 2015, Hallam et al. 2022).
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Figure 1.1: Global (left) and Irish (right) mean temperature anomalies from
1850–2023 derived from HadCRUT5.

The Intergovernmental Panel on Climate Change reports an observable change in

extreme weather and climate events since about 1950 (IPCC 2021). It is gener-

ally accepted that the occurrence of heatwaves has increased in almost all regions

around the globe (Brown et al. 2008, Orlowsky & Seneviratne 2012, The Royal

Society 2014) and that this increase can be attributed to human activities (Fischer

& Knutti 2015, Otto et al. 2017, Gan et al. 2023). Similarly, there are fewer cold

days observed around the globe, and an increase in deadly extreme temperatures.

Heatwaves kill thousands of people annually, accounting for some of the highest-

casualty disasters of recent years (IFRC 2022). Some of the highest temperatures in

recorded history have happened very recently. In 2022 alone, record-breaking high

temperatures were observed in Europe, South America, South Asia (White et al.

2023), Antarctica, the North and Southwestern Pacific Ocean, the Atlantic, and the

Southeastern Pacific Oceans (Cheng et al. 2023). Without a significant reduction

of atmospheric greenhouse gas concentrations (which currently continue to rise),

the Earth’s capacity to support large populations will be significantly reduced in

many areas (Lyon et al. 2022) and some parts of the Earth will potentially become

uninhabitable (IPCC 2023).

1.1.2 Trends in Irish extreme temperatures

The increase in mean annual temperature in Ireland reflects global trends (Sweeney

et al. 2002, McElwain & Sweeney 2003, Walsh 2017, Mateus & Coonan 2022), which
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have increased by around 0.9°C over the period 1900-2020 (Garćıa et al. 2022), with

a rapid increase observed from the 1990s (McElwain & Sweeney 2003). Ireland’s

mean annual temperature has been higher than average over the past 12 years (2010-

2022) with 2022 seeing the warmest mean annual temperature since 1990 (NOAA

2023). This increase is shown in the right-hand panel of Figure 1.1. The strong

collinear relationship between global and Irish warming is shown in Figure 1.2.

The increase in mean temperatures results in more frequent extreme observations

(van der Wiel & Bintanja 2021). McElwain & Sweeney (2007) note that from 1961

to 2005 an “alteration of the temperature distribution” in Ireland has occurred,

resulting in a warming of both maximum and minimum temperatures for all sites

they considered. Garćıa et al. (2022) report an increase in the number of “warm

spell” days and a decrease in the number of cold spells from 1961–2018. McElwain

& Sweeney (2003) suggest, through exploratory analysis, that both winter and

summer temperatures are increasing, with the most significant warming occurring

in the winter months. There was a significant decrease in the number of frost days

and an increasing number of “hot days” (where the maximum daily temperature

exceeds 18◦C). O’Sullivan et al. (2020) have shown that the frequency of extreme

temperature events over Dublin has increased over the period 1981–2010. Recent

summers have been the driest on record (Sweeney 2020). The summer of 2022

saw the hottest temperature recorded in Irish history; a temperature of 33◦C was

observed at Phoenix Park on 18 July 2022a. The evidence of changing temperatures

over Ireland is unanimous. It is vital to understand trends and their consequences

of unprecedented extreme temperatures heralded by a changing climate.

aNote that some historic records dispute this record, stating that the hottest temperature
recorded in Ireland is 33.3◦C at Kilkenny Castle, 26 June 1887; however, this record has recently
been shown to be theoretically implausible (Dooley et al. 2023).
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Figure 1.2: Irish against global mean temperature anomalies, derived from
HadCRUT5, over the period 1950–2022. The diagonal line is the line of equal-
ity. There is a strong relationship between the variables with a correlation
coefficient of 0.66.

1.2 Impacts of extreme climate events

“Extreme” is a contextual adjective that can only be interpretable in the context

of the climate of a given region. Extreme temperatures in Ireland can be very de-

structive when considering the infrastructure’s inability to deal with them. Ireland

has experienced extreme flooding, drought, and snowfall, though the scale of these

events is much less than those experienced elsewhere around the world (Government

of Ireland 2019). Changes in our environment impact all aspects of society. The

immediate and most devastating results of climate change are caused by extreme

weather events (Otto et al. 2017). Here we cover a selection of facets of society

negatively impacted by extreme climate events caused by a changing climate.

1.2.1 Increased mortality

Extreme weather can, and does, lead directly to increased mortality (The Royal So-

ciety 2014). High temperatures accelerate respiratory and cardiovascular diseases,

while cold temperatures adversely affect the respiratory and cardiovascular system,

increasing heart rate and blood pressure (Schneider & Breitner 2016). The elderly

population is at increased risk for health complications caused by extreme weather.

Furthermore, an ageing population (Sheehan & O’Sullivan 2020) means that the
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proportion of the population at risk is increasing (Cullen 2007). Ireland was found

to be the country with the highest rate of excess winter mortality in Europe be-

tween 1984 and 2007, with 2,800 excess deaths each winter (Zeka et al. 2014). An

excess of 294 deaths was attributed to heatwaves in Ireland during the years 1983,

1984, 1995, and 2006 (Pascal et al. 2013). The risk associated with extremely hot

weather in Ireland is moderate, but not insignificant, and is expected to increase

(Sweeney et al. 2002).

1.2.2 Disproportionate effects of extreme weather

The negative effects of extreme weather are not equally distributed and densely

populated areas are at a disproportionately higher risk (Monteiro et al. 2022). The

population of Ireland has increased to 5.6 million (an increase of 7.6%) since 2016

(CSO 2022), recording the highest population since 1841. Urban centres are be-

coming more densely populated, For example, the population of Saggart, County

Dublin has increased by 261% from 2006-2016 (CSO 2017). Rapid urbanisation

places resources under increasing pressure (e.g., insufficient Irish health services,

lack of housing, water demands; Irish Medical Organisation 2020). Globally, as

regions are made uninhabitable by extreme weather events and climate disasters,

people move to more opportunistic areas, which are most typically urban centres

(Adger et al. 2020). Urbanisation is expected to intensify as the climate continues

to change, driving more extreme weather events, and forcing people to find livable

areas.

1.2.3 Loss of biodiversity

Changes in weather lead to changes in biodiversity (Sweeney 2020). Species rich-

ness is largely driven by climatic factors (Harrison 2014). Warming in Irish spring

temperatures has advanced phenological phases (Wingler et al. 2022) for many

organisms, potentially disturbing symbioses (Gleeson et al. 2013). Globally, sev-

eral species have been observed migrating towards the poles over the last century

due to increasing temperatures (Hawkins et al. 2009). Increasing extreme weather

events, including extreme temperatures, will negatively affect the abundance of Irish

species, as well as their spatial distribution, most dramatically in coastal and up-

land areas (Gorman et al. 2023). These vulnerable Irish habitats are placed under
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threat by increasing extreme temperatures (NPWS 2019), placing the inhabiting

species at risk. For example, extreme temperature can have a negative impact on

species habiting intertidal zones, resulting in premature death (Hiscock et al. 2004).

Sabater et al. (2023) show that extreme weather events dramatically affect the bio-

diversity of rivers, substantially reducing species. Garrabou et al. (2009) link a heat

wave in 2003 resulting in the highest sea temperature in recorded history with the

mass mortality of several sea organisms.

1.2.4 Econometric effects

The global estimated cost of extreme weather events between 1980 and 2004 is

1.3 trillion euro (The Royal Society 2014). The size of this figure underscores the

unpreparedness of our infrastructure to face extreme weather. Heatwaves resulting

in drought have a major influence on water supply. For example, in 2018 and

2020, extreme temperatures saw water conservation efforts calling for restrictions

on irrigation, which caused widespread crop failure (Antwi et al. 2022). Annual

losses from drought in the EU and the UK are estimated to be around 9 billion

euro (Cammalleri et al. 2020). Ireland imports the majority of its energy (67%

in 2018; Ó Cléirigh 2020) and so is vulnerable to supply interruptions caused by

extreme weather globally. For example, recently, due to increased energy costs and

extreme cold temperatures in Spain, Ireland was affected by an interrupted supply

of fresh produce (Kelleher 2023).

1.3 Extreme value theory

Extreme value theory concerns itself with extrapolation, i.e., assigning probabilities

to events that are outside the range of observations. It is incredibly valuable to

make predictions about the behaviour of observations that are more extreme than

previously observed. Classical methods fall short here since they are concerned

with describing the body of the data; thus, a model of the entire process will be

biased toward the centre of the data (Davison et al. 2013). The use of these classical

methods can lead to underestimating and under-predicting the severity of extreme

events. Empirical methods are also insufficient since they limit the analysis to the

data range. We can achieve extrapolation through modelling extreme observations
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with theoretically justified asymptotic limits described by extreme value theory.

1.3.1 Univariate extreme value theory

Kotz & Nadarajah (2000) and David & Edwards (2001) have traced the origin of

extreme value theory to 1709, when Bernoulli considered the longest lifespan of

a group of individuals as the expected value of the maximum in a sample. The

theory was not of much practical use until a formal extreme value theory frame-

work was developed in the early 20th century by Fréchet (1927), Fisher & Tippett

(1928), Von Mises (1936), and later by Gnedenko (1943) and Gumbel (1958). This

rapid succession of publications quickly led to the development of the foundational

Fisher–Tippett–Gnedenko theorem, often referred to as the Extremal Types theorem

(covered in Chapter 2). This theorem eventually led to the block maxima modelling

technique. Todorovic & Zelenhasic (1970), Todorovic & Rousselle (1971), and Nat-

ural Environment Research Council (1975) were concerned with the loss of informa-

tion when modelling hydrological processes in the block maxima regime. This led to

Balkema & de Haan (1974), Pickands (1975), and Leadbetter (1991) describing the

asymptotic behaviour of a random variable exceeding some high threshold. Statis-

tical inference procedures were then set out by Davison (1984), Smith (1984), and

Davison & Smith (1990), leading to the development of the threshold exceedance

modelling framework.

The approximate behaviour of a random process can be assumed to follow a family

of known distributions; namely, the generalised extreme value (GEV) distribution

in the block maxima setting or the generalised Pareto (GP) distribution in the

threshold exceedance setting. Both results were critical in providing a theoretical

framework to understand and describe the stochastic patterns governing extremal

processes.

1.3.2 Multivariate extreme value theory

It is often useful to consider extreme events in more than one dimension. Extreme

value theory is widely applied to environmental processes which are inherently mul-

tivariate and/or spatial processes. For example, extreme sea level and sea surge at

one location (Coles & Tawn 1994) or river flooding at different locations (Gumbel

1958); both early examples in the multivariate literature. Modelling these processes
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in a multivariate way gives a more robust, holistic, and informative analysis. Cer-

tainly, modelling a collection of covariates and their relationship with a predictor

gives a more complete view of the process.

Properties of bi-variate extreme value processes were initially characterised by

Finkelshteyn (1953), de Oliveira (1958), Geffroy (1958), Gumbel (1960), Sibuya

(1960), Berman (1961), and de Oliveira (1962). It was known from early on that,

unlike the univariate case, there is no given parametric family of distributions to

model multivariate extreme observations. Specifically, there is no ubiquitous distri-

bution for the dependence structure between extremal variables. We must choose

an appropriate model for the dependence between the tails of the variables, with

potentially “infinitely many types of limit distributions” (Sibuya 1960). Initially,

empirical and theoretical properties of extremal bi-variate processes were explored.

Eventually, parametric models for bi-variate extremal dependence structures were

proposed (Tawn 1988). Seminal results by de Haan & Resnick (1977) made mod-

elling multivariate extremal processes (beyond bi-variate) possible. Multivariate

extreme value theory subsequently allowed for the analysis of spatial extreme value

processes.

The infinite-dimensional analogue to the univariate block maxima approach is the

max-stable process (de Haan 1984, Davison et al. 2012). Construction of a max-

stable process involves analysis of the limiting behaviour of the multivariate distri-

bution of component-wise maxima over a set of observation sites (when considering

a spatial setting). The max-stable process provided a framework to analyse multi-

variate extreme value processes, however one disadvantage of these methods is their

computational cost, with even moderate dimensions being infeasible (Wadsworth &

Tawn 2022). Furthermore, the construction of component-wise maxima can disrupt

temporal information in the data. Entire spatial observations are conflated and an

amalgam of observations make up a single “component-wise event”.

Similar to the univariate setting, a multivariate threshold exceedance approach was

developed to address concerns of loss of data in the component-wise maxima set-

ting. As a step towards multivariate threshold exceedance modelling, Coles & Tawn

(1994) summarise and project multivariate observations onto a univariate process.

However, this approach discards spatial information. Analogous to the univariate

case, we can consider the distribution of observations that exceed some high thresh-
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old. The multivariate generalised Pareto distribution results as the distribution of

multivariate observations exceeding a threshold in at least one margin (Falk et al.

2010, Tajvidi 1996, Rootzén & Tajvidi 2006). This approach was extended to the

functional setting, with early exploration by Buishand et al. (2008) and later, the-

oretical development by Ferreira & de Haan (2014) who defined the generalised

Pareto process. The authors show that multivariate observations, whose supremum

exceeds a threshold, converge to a multivariate generalised Pareto distribution. This

was generalised further by Dombry & Ribatet (2015) and de Fondeville & Davison

(2018), replacing the supremum with a prescribed function, allowing for a range of

functions to define the magnitude of multivariate observations. Choosing a func-

tion to measure the magnitude of an event provides greater flexibility in model

specification and allows the practitioner to isolate processes of interest. Recently,

Palacios-Rodŕıguez et al. (2020) illustrate a space-time modelling framework, while

de Fondeville et al. (2021) and de Fondeville & Davison (2022) have extended fur-

ther the class of functionals available to measure events while also alleviating some

restrictions of the Pareto process.

1.3.3 Recent advances

Extreme value theory is a rapidly developing field. One growing area of research

focuses on high dimensional extreme value analysis. Multivariate extreme value

models involve complex likelihoods. The computation of these likelihoods can be-

come infeasible as dimensions increase. Methods to reduce computation complex-

ity through approximations have proved very powerful for applying extreme value

models to high dimensional problems (Opitz et al. 2018, Simpson et al. 2023).

When modelling multivariate extreme events, accurately capturing the dependence

between the variables is challenging. Recent developments allow models to cap-

ture a wider range of dependence regimes. These include asymptotic independence

(Wadsworth & Tawn 2022) and sub-asymptotic models (transitioning from one de-

pendence structure to another; Lugrin et al. 2021). Capturing non-stationarities

in extremal data allows us to model the underlying process, which is particularly

important in the analysis of extreme weather in a changing climate (Rohmer et al.

2021). More recent developments allow for the extremal dependence structures to

vary over time and space (Zhong, Huser & Opitz 2022). An individual variable

in and of itself need not be extreme, however the compounding effect of variables
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can result in an extreme event (Leonard et al. 2014). The challenging paradigm of

concurrent and compound extreme events has received increased attention in recent

years (Vignotto et al. 2021, Wazneh et al. 2020).

1.3.4 Thesis overview

The overarching aim of this thesis is to better understand the behaviour of extreme

temperatures in Ireland. To date, extreme temperature events in Ireland have been

modelled at the marginal level. There is limited knowledge about the behaviour of

spatial extreme temperature events in the Irish context. Environmental processes

are spatial by nature and so much of their complexity is lost when we consider

them in the univariate setting. This thesis presents a novel modelling methodology

which captures the temporal and spatial nature of extreme events. We apply this

methodology to describe recent changes in both hot summer temperatures and

cold winter temperatures in Ireland. Contributions to the literature to achieve this

analysis are highlighted below.

1.4 Thesis outline and contributions

Here we provide a brief summary of the contents of each chapter in this thesis, with

key contributions highlighted.

In Chapter 2, “Extreme value theory”, we give an overview of the necessary litera-

ture for the work presented in this thesis. We cover existing modelling methodolo-

gies starting from univariate theory, and extending to multivariate spatial analysis.

We discuss some limitations of extreme value theory in practice. We derive some

foundational results in order to motivate extensions presented later in the thesis.

In Chapter 3, “Extremal vectors of unequal dimensions with the Hüsler-Reiss dis-

tribution”, we explore properties of the finite-marginal distributions of the Brown-

Resnick process, which are Hüsler-Reiss distributed (HRD). The Brown-Resnick

process is the basis of a popular parametric model for fitting r-Pareto processes

in spatial extreme value theory. This HRD describes the asymptotic behaviour of

suitably normalised Gaussian vectors. We provide some theoretical background and

illustrate its adaptability to describe the asymptotic behaviour of vectors which are
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not necessarily of equal dimension. We are motivated by the temporal inconsis-

tencies in environmental synoptic observations. Typically, modelling a multivariate

process across a number of sites requires observations mutual to each site at each

time point. Such restrictions result in the practitioner disregarding time spans of

data which are not present at all sites. Since extremal observations are typically

few, omitting data is clearly not desirable. Our method enables us to develop a

parametric r-Pareto process which can make use of all available extremal data.

In Chapter 4, “Inference for extreme spatial temperature events in a changing cli-

mate with application to Ireland”, we perform an analysis of the extreme max daily

summer temperature in Ireland. We investigate the changing nature of the fre-

quency, magnitude and spatial extent of extreme temperatures in Ireland from 1942

to 2020. We develop an extreme value model that captures spatial and temporal

non-stationarity in extreme daily maximum temperature data. We use weather

station observations for modelling extreme events data while leveraging climate

model data to overcome issues linked to the sparse and biased sampling of the ob-

servations. Our analysis identifies a temporal change in the marginal behaviour of

extreme temperature events over the study domain, which is much larger than the

change in mean temperature levels over this time window. We illustrate how these

characteristics result in increased spatial coverage of events that exceed critical

temperatures.

In Chapter 5, “Unusual winter events in Ireland”, we extend the methodology

developed in Chapter 4 to analyse extreme daily minimum temperatures in win-

ter months. We model the marginal distributions of extreme winter minima us-

ing a generalised Pareto distribution (GPD), capturing temporal and spatial non-

stationarities in the parameters of the GPD. We investigate two independent tem-

poral non-stationarities in extreme winter minima. We model the long-term trend

in magnitude of extreme winter minima as well as the short-term, large fluctuations

in magnitude caused by anomalous behaviour of the jet stream. We measure mag-

nitudes of spatial events with a carefully chosen risk function and fit an r-Pareto

process to extreme events exceeding a high-risk threshold. Our analysis is based on

synoptic data observations courtesy of Met Éireann and MIDAS. We show that the

frequency of extreme cold winter events is decreasing over the study period. The

magnitude of extreme winter events is also decreasing, indicating that winters are

warming, and apparently warming at a faster rate than maximum daily summer

12
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temperatures. We find that a climate model output which was informative as a

covariate for modelling extremely warm summer temperatures is less informative

as a covariate for extremely cold winter temperatures. However, we show that the

climate model output is useful for informing our non-extreme temperature model.

Finally, in Chapter 6, “Discussion and Conclusion”, we review and summarise the

work and contributions of this thesis. We highlight some areas of further work and

recommend possible extensions to our research.

1.5 Software

All analysis in the thesis was done throughout the R programming language. The

software presented in Chapter 3 is available at github.com/dairer/hrd. Code asso-

ciated with analysis in Chapter 4 is available at github.com/dairer/Extreme-Irish-

Summer-Temperatures. Code associated with the analysis carried out in Chapter 5

is available at github.com/dairer/Extreme-Irish-Winter-Temperatures.
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2
Extreme value theory

In this chapter we set out the relevant and necessary theoretical results for this thesis.

In Section 2.1 we define and summarise results on extreme value theory in the univariate

setting. In Section 2.2 we cover multivariate results followed by recent developments

in the literature We provide an overview of standard multivariate modelling approaches

to date, highlighting cases of their appropriate use, and giving examples and critiques

throughout. In Section 2.3 we provide a guide to extending multivariate extreme value

models to the spatial setting.
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2.1. Univariate extremes

2.1 Univariate extremes

There are two widely applied definitions of univariate extremes with both resulting

in different analysis procedures. We will cover both methods and give outlines of

their derivations here. The block maxima approach is covered in Section 2.1.1 and

the threshold exceedance approach in Section 2.1.2.

2.1.1 Block maxima

Consider n independent and identically distributed (iid) continuous random vari-

ables from a distribution function F , X1, X2, . . . , Xn
iid∼ F . We are interested in the

behaviour of the sample maxima, which is defined as

Mn = max{X1, X2, . . . , Xn}.

We can straightforwardly derive the distribution of sample maxima as

Pr(Mn ⩽ x) = Pr(X1 ⩽ x, X2 ⩽ x, . . . , Xn ⩽ x)

= Pr(X1 ⩽ x)× Pr(X2 ⩽ x)× · · · × Pr(Xn ⩽ x)

= F n(x).

As we are interested in the distribution of the sample maxima as we collect more

extreme observations, we consider the distribution of Mn as n→ ∞, i.e.,

lim
n→∞

Pr(Mn ⩽ x) = lim
n→∞

F n(x).

Since we are taking the sample maxima of increasingly larger samples, the distri-

bution of Mn will have its mass entirely on the upper-end point of F as n → ∞.

Furthermore, if F (x) < 1, then limn→∞ Pr(Mn ⩽ x) = 0 and if F (x) = 1, then

limn→∞ Pr(Mn ⩽ x) = 1.

To avoid the distribution of the sample maxima collapsing upon a single point, we

apply a general linear scaling that adjusts the sample maxima with respect to the
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2.1. Univariate extremes

sample size. Specifically, we consider

lim
n→∞

Pr

(
Mn − bn
an

⩽ x

)
= lim

n→∞
Pr (Mn ⩽ anx+ bn)

= lim
n→∞

F n(anx+ bn).

(2.1)

The Fisher–Tippett–Gnedenko theorem (Fisher & Tippett 1928, Gnedenko 1943), a

foundational result in extreme value statistics, tells us that if there exist sequences

an > 0, bn ∈ R, such that (2.1) has a non-degenerate limiting distribution function,

Pr

(
Mn − bn
an

⩽ x

)
→ G(x) as n→ ∞, (2.2)

then G is one of only three possibilities. The three possible limiting distributions

are the Gumbel

G(x) = exp {− exp(−x)} , for x ∈ (−∞,∞) ,

Fréchet

G(x) =

{
0, for x ≤ 0,

exp (−x−α) , for x > 0,

and reversed Weibull

G(x) =

{
exp {−(−x)α} , for x < 0,

1, for x ≥ 0,

distributions, where α > 0. This is quite a remarkable and surprising result. Es-

sentially, without knowing anything about a distribution function F , we can know

the distribution of its sample maxima. Each distribution describes three potential

extremal behaviours of the sample maxima, with three potential rates of upper tail

decay. The Fréchet distribution has a very heavy tail with polynomial decay. The

Gumbel distribution has a lighter, exponentially decaying tail while the reversed

Weibull distribution has an upper bound. Figure 2.1 shows an example of each of

the three distributions.
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Figure 2.1: Density function (left) and distribution function (right) of the
Generalised Extreme Value distribution (2.3) with a location parameter of 0
(µ = 0), a scale parameter of 1 (σ = 1) and all three possible distribution
classes determined by the shape parameter: the Gumbel distribution (green),
with a shape parameter of 0 (ξ = 0) and exponential tail decay; the reversed
Weibull distribution (blue) with a negative shape parameter (ξ = −0.4) and a
finite upper endpoint; the Fréchet distribution (orange), with a positive shape
parameter (ξ = 0.4) and polynomial tail decay.

The Gumbel, Fréchet, and reversed Weibull distributions can be generalised and

expressed as one distribution function, the General Extreme Value (GEV) distribu-

tion

G(x) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ

+

}
, (2.3)

parameterised by the location parameter µ, the scale parameter σ > 0, and the

shape parameter, ξ. The three distributions are recovered by specifying ξ, the shape

parameter, i.e., ξ = 0 gives the Gumbel distribution, ξ > 0 gives the Fréchet dis-

tribution and ξ < 0 gives the reversed Weibull distribution. This parameterisation

alleviates the onus on the practitioner to decide which extreme value distribution

best describes their data set as the fit will provide evidence for ξ being positive,

negative or zero.

2.1.1.1 The GEV in practice

We say that an arbitrary distribution function F is in the max-domain of attraction

of a particular extreme value distribution G, if G is the asymptotically limiting

distribution of the scaled sample maxima of F . If a collection of random variables
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2.1. Univariate extremes

X1, X2, . . . , Xn are in the max-domain of attraction of an extreme value distribution

G, we know that limit (2.2) holds so, in practice, it is reasonable to assume that

for large n

Pr

(
Mn − bn
an

⩽ x

)
= G(x),

which implies that,

Pr (Mn ⩽ x) = G

(
x− bn
an

)
= G∗(x),

where G∗ is also a GEV distribution with different location and scale parameter

values than G. The scaling series an and bn are absorbed into the parameters of

the GEV distribution G∗. This means that we can fit a GEV distribution directly

to a set of sample maxima and estimate G∗. Construction of sample maxima can

be achieved by dividing a series of observations into blocks of equal size and taking

each block maximum. We interpret the constructed block maxima as samples from

a GEV distribution. Figure 2.2 gives an example block maxima analysis using

simulated iid standard Gaussian data, in the left plot we partition the data into

blocks of equal size, take the maximum observation in each block, and model the

distribution of their magnitudes using the GEV. The right figure shows the QQ plot

of the data’s sample maxima against the quantiles of the fitted GEV distribution.
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Figure 2.2: Simulated time series, constructed with iid samples from a Gaus-
sian distribution (left). Vertical lines show the block partitions, where the
maxima in each block (circled in magenta) are assumed to follow a GEV dis-
tribution. QQ-plot of the maxima in each block against the quantiles of the
fitted GEV distribution (right), the diagonal magenta line shows the line of
equality.
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2.1. Univariate extremes

In many applications, blocking the data can be intuitive and instinctive, for exam-

ple, taking the yearly maxima of some observed climate variable. However, from a

statistical perspective, it is challenging to specify block length. Simply taking nat-

ural time blocks can lead to poor use of data. Taking only one value per block can

lead to inefficient usage of extreme observations. For example, looking at the simu-

lated time series in Figure 2.2, we can see several extreme data points that are not

classified as extreme since they are not the largest in their respective block. In gen-

eral, the block maxima approach is wasteful of extremal data. We will now cover

the threshold exceedance approach, which tends to be more frugal with extreme

observations.

2.1.2 Threshold exceedances

An alternative definition of univariate extremes with its own asymptotically lim-

iting distribution was developed by Balkema & de Haan (1974), Pickands (1975),

and Leadbetter (1991). Rather than taking only the largest value in a time span,

the authors considered the properties of all observations that exceeded some high

threshold. The following section presents work originally from Smith (1984), for a

textbook treatment see Coles (2001).

Consider a set of n, iid variables, X1, X2, . . . , Xn
iid∼ F . We define a point process,

denoted Qn ∈ R2, as

Qn =

{
i

n+ 1
,
Xi − bn
an

}
, for i = 1, . . . , n,

for some an, bn ∈ R and an > 0. The first coordinate of Qn is scaled by n + 1 to

ensure it lies within the range (0, 1). The second coordinate is linearly scaled in a

similar manner as described in Section 2.1.1 to avoid the distribution degenerating

upon a single mass, i.e., we assume there exists some appropriate linear scaling

of sample maxima such that Pr {(Mn − bn)/an ⩽ x} → G(x) as n → ∞ where

G is a non-degenerate. The point process Qn converges to a non-homogeneous

Poisson point process (NHPP) Q on any set A ⊆ [0, 1]× (xG,∞) as n→ ∞, where

xG = limn→∞(xF − bn)/an and xF and is the lower end point of the distribution F .

The point process Q has intensity measure on A, defined as Λ(A), which we will

next derive.
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2.1. Univariate extremes

For point process Qn in R2, we define the number of points in any subset of that

space A ⊂ R2, as Nn (A), and the expected number of these points as n → ∞
is Λ (A) := limn→∞ E{Nn(A)}. We restrict the subset A to be a subset of the

Cartesian product A = [t1, t2]×
[
u, xG

)
⊂ R2, where 0 ⩽ t1 < t2 ⩽ 1 and xG < u <

xG, where xG = limn→∞(xF − bn)/an and xF is the upper end point of F . Figure

2.3 illustrates the set A; intuitively, u will act as a threshold, with points exceeding

it considered as extreme.

𝑢

𝑡1 𝑡2 1

Figure 2.3: The set A = [t1, t2]×
[
u, xG

)
⊆ R2 is shaded.

The probability of observing Nn points of Qn exceeding a level u between times nt1

and nt2 can be described by a Binomial distribution, i.e.,

Nn([t1, t2]×
[
u, xG

)
) ∼ Bin (⌊(t2 − t1)n⌋,Pr {(Xi − bn)/an > u}) , (2.4)

where ⌊·⌋ is the floor operator. The number of observations in (2.4) is calculated

as ⌊(t2 − t1)n⌋ since data are independent and uniformly distributed on [0, 1] and

so the expected number of points in [t1, t2] is t2 − t1.

As the number of observations grows, a binomial distribution can be approximated

by a Poisson, with the rate parameter of the Poisson, or the expected value, being

equal to the number of observations times the probability of success in the binomial

distribution (Blitzstein & Hwang 2014, Theorem 4.8.3). So, as n→ ∞,

Nn([t1, t2]×
[
u, xG

)
) ∼ Poisson {(t2 − t1)nPr {(Xi − bn)/an > u}} ,
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2.1. Univariate extremes

with the expected number of points exceeding u being

Λ
(
[t1, t2]×

[
u, xG

))
= lim

n→∞
(t2 − t1)nPr {(Xi − bn)/an > u}

= (t2 − t1)

[
1 + ξ

(
u− µ

σ

)]−1/ξ

+

.

Therefore, we have that for A = [t1, t2]×
[
x, xG

)
Λ(A) = (t2 − t1)

[
1 + ξ

(
x− µ

σ

)]−1/ξ

+

,

Assuming there exists an intensity function λ : R2 → R+ whose integral over the

set A describes the expected number of points in A, we can define the intensity

measure of the process Q as

Λ(A) =

∫
A
λ(x)dx. (2.5)

Specifically, if we define A = [0, t]×
[
x, xG

)
, the intensity function is calculated as

λ(t, x) = −∂
2Λ (A)

∂t∂x
=

1

σ

[
1 + ξ

(
x− µ

σ

)]−1/ξ

+

,

for t < 1 and u < x < xG.

We are interested in calculating the conditional distribution of observations that

exceed a high threshold. Taking any x > u, we have that

Pr

(
Xi − bn
an

> x

∣∣∣∣ Xi − bn
an

> u

)
=

Λ
(
[t1, t2]×

[
x, xG

))
Λ ([t1, t2]× [u, xG))

=
(t2 − t1) [1 + ξ(x− µ)/σ]−1/ξ

(t2 − t1) [1 + ξ(u− µ)/σ]−1/ξ

=

[
1 +

ξ(x− u)

σ∗

]−1/ξ

+

,

(2.6)

where σ∗ = σ + ξ(u− µ). So, we have the generalised Pareto distribution (GPD),
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2.1. Univariate extremes

which we will denote as H,

H(x) = 1− [1 + ξx/σ∗]−1/ξ
+ , (2.7)

where x ⩾ 0 and (1 + ξx/σ∗) > 0.

The shape parameters of the GEV and the GPD are equivalent. For ξ = 0, (as

ξ → 0) we have the exponential distribution. If ξ < 0, the GPD is bounded at

u− σ∗/ξ. If ξ > 0, the distribution has a heavy tail, polynomial rate of decay. An

example of each distribution class can be seen in Figure 2.4.
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Figure 2.4: Density function (left) and distribution function (right) of the gen-
eralised Pareto distribution (2.7) with a location parameter of 0 (µ = 0), a scale
parameter of 1 (σ = 1) and all three possible distribution classes determined
by the shape parameter. A shape parameter of 0 (ξ = 0) with exponential
tail decay (green). A negative shape parameter (ξ = −0.4) with a finite upper
endpoint (blue). A positive shape parameter (ξ = 0.4) with polynomial tail
decay (orange).

2.1.2.1 The GPD in practice

Similar to Section 2.1.1, we do not need to know the scaling series an and bn in

practice. This is because the parameters of the GPD can absorb the scaling con-

stants, so the distribution of the standardised maxima can itself be approximated

by the GPD. Let un = anv + bn, for some v, then for x > 0

Pr

(
Xi − bn
an

⩽ x+ v

∣∣∣∣ Xi − bn
an

> v

)
= Pr (Xi ⩽ anx+ un | Xi > un) .
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As n→ ∞, applying (2.6), we can see that

Pr (Xi ⩽ anx+ un | Xi > un) → 1−
[
1 +

ξx

σ∗

]−1/ξ

+

. (2.8)

For large n, we consider (2.8) as an equality letting u = un, that is, for y > 0,

Pr (X ⩽ y + u | X > u) = 1−
[
1 +

ξy

σ̃∗

]−1/ξ

= H(y),

where σ̃∗ = anσ
∗. The unconditional probability for x > u is then

Pr(X ⩽ x) = (1− λu) + λuH(x− u)

= 1− λu

[
1 +

ξ(x− u)

σ̃∗

]−1/ξ

+

where

λu = Pr(X > u) (2.9)

is the threshold exceedance probability.

In practice, we pick u to be a high quantile of the data since it arises as u =

un = anv + bn, so as n → ∞ this term would tend to xF . With careful checks on

the selection of u, observations above that threshold can be assumed to follow a

generalised Pareto distribution, H.

Figure 2.5 presents an example analysis of simulated iid standard Gaussian data.

In the left-hand plot of this figure, we have the identical simulated time series as

presented in Figure 2.2. Here, the horizontal line corresponds to the threshold, u,

(chosen as the 95th percentile of the data). The data exceeding it are classified as

extreme and the distribution of their magnitudes is assumed to follow the GPD.

The right-hand plot shows a QQ-plot of the extremal data quantiles against the

fitted GPD.

The GPD satisfies a threshold stability property (Davison & Smith 1990). Once a

sufficiently high threshold is chosen, say ua, the distribution of exceedances of that

threshold are assumed to be a GPD. A consequence of this assumption is that the

distribution of excesses of any higher threshold, ub > ua will also be described by a

GPD, with a deterministic shift in the scale parameter. For example, suppose that
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2.1. Univariate extremes

(X − ua|X > ua) ∼ GPD(σ∗
a, ξ). Choosing a higher threshold, ub > ua, we have

(X − ub|X > ub) ∼ GPD(σ∗
b , ξ) where σ∗

b = σ∗
a + ξ(ub − ua) with the same shape

parameter, ξ.

This raises the issue of how to choose an appropriate threshold, u. There is extensive

literature on the issue of threshold selection and validation with a review given by

Scarrott & MacDonald (2012). Of course, the higher the value for the threshold,

the more accurate the assumption of the GPD, however the higher the threshold,

the fewer exceedances. There is ultimately an application-specific, bias–variance

tradeoff which requires consideration by the practitioner when choosing a threshold.

Standard procedures to assess the fit of the GPD help determine if the threshold

is appropriate, for example, parameter stability and mean residual life plots (Coles

2001).
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Figure 2.5: Simulated time series, constructed with iid samples from a Gaus-
sian distribution (left). The horizontal line shows the threshold, u, and points
exceeding u are assumed to follow a GPD distribution. QQ-plot of the thresh-
old exceedances against the quantiles of the fitted GPD distribution (right),
the diagonal magenta line shows the line of equality.

2.1.3 Typical modelling challenges

2.1.3.1 Extreme minima

Modelling extreme minima is readily achievable through modelling the maxima of

the negated data. Given X1, X2, . . . , Xn ∼ F , we are interested in modelling the

extreme minima of these variables. This is equivalent to analysing the extreme
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2.1. Univariate extremes

maxima of −X1,−X2, . . . ,−Xn.

min (X1, X2, . . . , Xn) = −max (−X1,−X2, . . . ,−Xn) .

In this way, all theoretical results in Sections 2.1.1 and 2.1.2 hold for extreme

minima.

2.1.3.2 Model validation

As in any statistical modelling, assessment of a model’s performance is a critical

task. We can generate a QQ plot of data quantiles against model quantiles for

a visual indicator of a model’s performance. Given data x1, x2, . . . , xn, we wish

to check the quality of the fit of a distribution F with estimated parameters θ̂.

The {i/(n + 1)}-th empirical quantile is, x(i) where x(1) < · · · < x(i) < x(i+1) <

· · · < x(n) are the ordered values of x1, x2, . . . , xn. The predicted values of the fitted

distribution at those quantiles are

x̂(i) = F−1

(
i

n+ 1
; θ̂

)
. (2.10)

Plotting the model’s quantiles x̂(i) against the data x(i), for i = 1, . . . , n, gives a

visual diagnostic QQ-plot of the accuracy of the fitted distribution. Ideally, all

points would lie along the diagonal and x(i) = x̂(i), for each i = 1, . . . , n. The closer

the points to the diagonal the more accurate the fitted distribution.

In reality, observed values xi for i = 1, 2, . . . , n, are generated from some true,

unknown, high-dimensional process, F ∗. In natural processes, there are typically

complex and high-dimensional dependencies contained within the observations from

F ∗ and so the data are not independently distributed. The true likelihood function

of the entire process is often difficult or infeasible to specify. However, the lower

dimensional, univariate marginal distributions can be assumed and modelled (Cox

& Reid 2004). An approximation of the likelihood can be achieved by intentionally,

falsely assuming independence in the data. Then, the resulting so-called pseudo-
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likelihood is given by,

Lp (θ;x) =
n∏

i=1

f(xi;θ),

where f is the density function of the assumed univariate marginal distributions,

parameterised by θ.

When using a pseudo-likelihoods, classic likelihood comparisons such as AIC or BIC

between models are no longer accurate (Claeskens & Hjort 2008). If the true model,

F ∗, which captures the full dependence structure, is considered, the information cri-

terion will select it as the best model. However, if the model assumes independence,

dependence in the data causes a steeper gradient of the likelihood, biasing the in-

formation criteria and potentially choosing an over-parameterised model. Note that

the block maxima approach described in Section 2.1.1 disrupts the temporal and

spatial information in the data, removing dependence and alleviating this issue to

some degree. Similar alleviation can be achieved within the threshold exceedance

paradigm by temporally declustering threshold exceedances.

We generally see strong spatio-temporal dependence within climatological data

which can bias information criteria, potentially choosing an over-parameterised

model, hence alternative methods of model selection are preferable. There exist

adjustments of the likelihood to account for this, e.g., CLIC (composite likelihood

information criterion) which adjusts likelihood based on the gradient (Davis et al.

2013), however these are asymptotically motivated adjustments so may not be ideal

in the extreme value context given small samples.

If sufficient data are available, out-of-sample model validation such as k-fold cross-

validation can potentially be used as a non-biased model comparator. Empirical

comparisons can then be performed between the out-of-sample data and the model’s

predictions in terms of, for example, root mean squared error (RMSE). For RMSE,

the error is taken as the difference between out-of-sample observations and the

predicted values at the corresponding quantiles of the model, as in (2.10). To

calculate RMSE, we must define the quantiles of our observations. Alternatively,

we can use metrics such as continuous ranked probability score (CRPS) which avoid

specifying the quantile of the data (Zamo & Naveau 2018). The CRPS measures

the difference between the distribution function F and a step distribution function

26



2.1. Univariate extremes

at the observed value y,

CRPS(F, y) =

∫ (
F (x)− 1{x≥y}

)2
dx,

where 1{·} denotes the indicator function. The CRPS can be calculated iteratively

for each out-of-sample data point. Finally, an average score over all data points can

be used as a model performance metric.

2.1.4 Return levels and return periods

Return periods and return levels are often reported in the extreme value literature as

they are readily interpretable statistics to a non-statistical audience. For example,

say X is observed daily, let xt be the return level with return period t of the random

variable X. We expect to observe a level xt, on average, once every t days. That is,

Pr(X > xt) = 1/t.

In other words, the average time between events of magnitude xt is t days.

Clearly, we can derive a return period/level from any distribution function. How-

ever, if we are interested in making inferences about return levels beyond the time

span of historical records, or estimating return periods associated with magnitudes

rarely or not yet observed, it is most sensible to derive them from distributions

which accurately describe the upper-most tail of the distribution. That is, from the

GEV or GP distributions. Given a distribution function F , a return level with re-

turn period t is calculated by solving F (xt) = 1− 1/t for xt, i.e., xt = F−1(1− 1/t),

where F−1 is the inverse of the distribution function. The return value associated

with return period t of the GEV is

xt =

{
µ− σ/ξ

{
1− [− log (1− 1/t)]−ξ

}
, for ξ ̸= 0,

µ− σ log [− log (1− 1/t)] , otherwise.

The return value associated with return period t of the GPD with threshold ex-
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ceedance probability λu, as defined in (2.9), is

xt =

{
u+ σ/ξ

[
(tλu)

ξ − 1
]
, for ξ ̸= 0,

u+ σ log(tλu), otherwise.

Calculating return levels assumes that the probability of occurrence of extreme

events is constant over time, so reporting return levels in a non-stationary setting

is clearly not ideal. However, a powerful insight into the level of non-stationarity

is the change in return level over time. For example, in climate change analysis we

can estimate the 100-year return level of a process. A 100-year event corresponds

to an event with a 0.01 probability of occurrence in a given year. We can report the

change in return level over time, and highlight, in an interpretable way, the rate of

change of the process.

2.2 Multivariate extremes

In the multivariate setting, unlike in the univariate case, there is no ubiquitous

distribution to rely on once you have defined your extreme observations. Care-

ful consideration of the dependence between the tails of the marginal variables is

required and determines which modelling techniques are appropriate. This has re-

sulted in a challenging modelling framework. However, this also affords quite a lot

of modelling approaches and has resulted in some very interesting theory. In this

section, we will cover some of the main theoretical frameworks used in multivariate

extreme value theory and which are appropriate in different dependence settings.

2.2.1 Multivariate ordering

The first challenge a practitioner is faced with when performing multivariate ex-

treme value analysis is the issue of ordering multivariate observations. How do

we decide that one observation is more extreme than another? There are sev-

eral possible orderings, each with different theoretical consequences (Barnett 1976).

We will focus on two classes of orderings which have found wide applicability in

the literature, and which are analogous to those used in the univariate theory de-

scribed in Section 2.1 (see Figure 2.6). Namely, a block maxima approach, resulting
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in max-stable distributions, and a threshold exceedance approach resulting in the

multivariate Pareto distribution. Respectively, these two approaches lead to the

max-stable process and the generalised Pareto process in the continuous spatial

context.
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Figure 2.6: Alternative definitions of multivariate extremes, a component-
wise maxima approach (left), and a threshold exceedance approach (right).
Extreme observations are highlighted in both cases.

2.2.2 Marginal standardisation

To meaningfully discuss the dependence between two variables, it is convenient to

assume they have equivalent marginal distributions. This is not an unreasonable

assumption since it is easily constructed. For example, suppose X ∼ F with X a

continuous random variable; applying probability integral transform we can map

this random variable to a uniform distribution, i.e., F (X) is uniformly distributed

(Angus 1994). Following this, we can transform the variable to have any distribution

with cumulative distribution function F∗, via the transformation: F−1
∗ {F (X)}.

For example, to transform variable X with distribution F to be Fréchet or Pareto

distributed we have

XFréchet = −1/logF (X), XPareto = 1/ (1− F (X)) (2.11)

respectively, both of which are commonly used standardisations in the multivariate

extreme value literature. The choice of standardisation is mostly arbitrary, however

some distributions have attractive features which make them useful in studying

multivariate extremes. For example, consider the Fréchet distribution; it has the

majority of its mass near 0 with heavy polynomial upper tails. This accentuates
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the data in the very tails of the distribution. Transforming data to be Fréchet

distributed can highlight and focus attention on extremal patterns in the data. The

same can be said of any heavy-tailed distribution, such as the Pareto distribution.

2.2.3 Extremal dependence

With early characterisation by Sibuya (1960), there are two possible dependence

regimes in the multivariate setting; asymptotic dependence and asymptotic inde-

pendence. The class of extremal dependence exhibited by the data determines the

appropriate modelling strategies a practitioner should use. Standardising data to

have a common marginal distribution allows us to focus solely on the dependence

between the random variables.

Consider a pair of random variables X1 ∼ F1 and X2 ∼ F2. We are interested in

characterising the upper dependence of the tails of these random variables; that

is, when X1 is extreme, how likely is it for X2 to be similarly extreme, and vice

versa. The upper tail dependence coefficient describes this asymptotic dependence

between two random vectors and is defined as

χ(X1, X2) = lim
z→1−

Pr [F1(X1) > z | F2(X2) > z] .

Note that the lower tail dependence can be characterised by the upper tail depen-

dence of the negated data, as in Section 2.1.3.1. In practice, to get an estimate of

χ, we pick z = u to be a high quantile and denote the conditional probability as,

χu(X1, X2) = Pr [F1(X1) > u | F2(X2) > u] ,

which can be estimated empirically for 0 < u < 1. Calculating χu over a sequence

of high quantiles gives the practitioner an indication of the extremal dependence

regime. If χ(X1, X2) > 0, or in practice, if χu(X1, X2) → c as u → 1 and c >

0, the variables are judged to be asymptotically dependent. If χ(X1, X2) = 0,

or in practice, if χu(X1, X2) → 0 as u → 1−, the variables are interpreted as

asymptotically independent (Coles et al. 1999). Note that χ(X1, X2) = χ(X2, X1)

as the margins of X1 and X2 are equal.

Historically, models describing asymptotically-dependent data have received dis-

proportionate attention and development in the literature. However, in reality,
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extremal data is quite often asymptotically independent. See Coles et al. (1999) for

a discussion of the measure χ̄, an analogous measure to χ, which instead describes

the degree of asymptotic independence between random variables. Incorrectly as-

suming asymptotic dependence can lead to overestimation of joint extreme events

(Coles et al. 1999). The data analysed in this thesis exhibit asymptotic dependence

so we won’t cover a great deal of asymptotic independence theory. Suffice to say,

numerous models have been proposed that can capture a wide range of dependence

regimes. Models describing asymptotically independent spatial data (Wadsworth &

Tawn 2022) and sub-asymptotic data (transitioning from one dependence structure

to another at further distances; Lugrin et al. 2021, Wadsworth & Tawn 2012, Huser

& Wadsworth 2022) reflect many natural processes. Huser & Wadsworth (2022)

give a thorough review of recent advances in modelling a wide range of dependence

regimes in the spatial context.

2.2.4 Component-wise maxima

The component-wise maxima approach is the multivariate analogue to the uni-

variate block maxima approach as described in Section 2.1.1. Consider a set of

n, independent d-dimensional random vectors X1,X2, . . . ,Xn from a distribution

function F , where X i = (Xi,1, Xi,2, . . . , Xi,d) for i = 1, 2, . . . , n. Define the vector

of component-wise maxima of these vectors as

Mn = {Mn,1,Mn,2, . . . ,Mn,d} ,

where Mn,k is the maximum observation in the k-th position across the n vectors.

We can derive the d-dimensional distribution of component-wise maxima Mn as

Pr(Mn ⩽ x) = Pr(Mn,1 ⩽ x1,Mn,2 ⩽ x2, . . . ,Mn,d ⩽ xd)

= Pr

(
max
1⩽i⩽n

Xi,1 ⩽ x1, max
1⩽i⩽n

Xi,2 ⩽ x2, . . . , max
1⩽i⩽n

Xi,d ⩽ xd

)
= Pr (X1,1 ⩽ x1, . . . , Xn,1 ⩽ x1, . . . , X1,d ⩽ xd, . . . , Xn,d ⩽ xd) ,
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where here and subsequently we use component-wise vector algebra. Reordering,

we see that

Pr (Mn ⩽ x) = Pr (X1,1 ⩽ x1, . . . , X1,d ⩽ xd, . . . , Xn,1 ⩽ x1, . . . , Xn,d ⩽ xd)

= Pr (X1 ⩽ x, . . . ,Xn ⩽ x) .

Recall that X1,X2, . . .Xn
iid∼ F , so we have

Pr (Mn ⩽ x) = Pr (X1 ⩽ x, . . . ,Xn ⩽ x)

= Pr (X1 ⩽ x)× · · · × Pr (Xn ⩽ x)

= F n(x).

Since we are interested in the extremal behaviour of the component-wise maxima

Mn as n→ ∞, we consider

lim
n→∞

Pr(Mn ⩽ x) = lim
n→∞

F n(x). (2.12)

Due to similar arguments presented in the univariate case (Section 2.1.1), it is clear

that the R.H.S. of the expression (2.12) will collapse upon a single mass as n→ ∞.

To avoid this, we apply a general linear scaling to each element of Mn. So, we have

lim
n→∞

Pr

(
Mn − bn

an

⩽ x

)
= lim

n→∞
Pr (Mn ⩽ anx+ bn)

= lim
n→∞

F n(anx+ bn).

(2.13)

If there exists a sequence of linear scaling constants an > 0, bn ∈ Rd, such that

(2.13) has a limiting distribution function

F n(anx+ bn) → G(x), as n→ ∞, (2.14)

which is non-degenerate in each margin, then G is called a multivariate extreme

value distribution function. Furthermore, since the X i are independently dis-

tributed, univariate extreme value results presented in Section 2.1.1 apply to each

element of Mn in turn and so the margins of G must belong to the GEV (2.3)

distribution family. We say that the distribution F in (2.14) is in the maximum

domain of attraction of G.
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Without loss of generality, we can assume that the marginal distributions of F are

standard Fréchet distributed (if they belong to a different distribution within the

GEV they can be transformed to Fréchet through probability integral transform

as in Section 2.2.2). The appropriate linear scaling of a Fréchet random variable

such that its sample maxima are non-degenerate as n → ∞ is found by setting

an = n1 ∈ Rd and bn = 0 ∈ Rd (see example 3.2, Coles 2001). Assuming standard

Fréchet margins gives a convenient expression of (2.14), that is,

Pr
(
n−1Mn ⩽ x

)
= F n(nx) → G(x), as n→ ∞,

and the multivariate extreme value distribution G has the form

G(x) = exp {−V (x)}, (2.15)

where V is typically referred to as the exponent measure of G (a derivation of this

expression will be given in Section 2.2.6). Since marginal distributions are standard

Fréchet distributed, for all i = 1, . . . , d we have,

G (∞, . . . ,∞, xi,∞, . . . ,∞) = exp

(
− 1

xi

)
, (2.16)

so Λ(∞, . . . ,∞, xi,∞, . . . ,∞) = x−1
i . Furthermore, G is max-stable by its deriva-

tion, i.e., Gm(mx) = G(x) for all x ∈ Rd
+ and all m > 0. Max-stability of G implies

that V is homogeneous of order −1, that means, for any m ∈ R, with m > 0,

V (mx) = m−1V (x) ,

for all x ∈ Rd
+. A distribution is max-stable if it is in its own max-domain of

attraction. That is, if G is max-stable, the appropriately scaled sample maxima

from G also have distribution G with a deterministic linear adjustment.

The exponent measure V has the form

V (y) = d

∫
Sd

{
max

i=1,...,d

(
ωi

yi

)}
dH (ω1, . . . , ωd) (2.17)

for y = (y1, . . . , yd) ∈ Rd
+, where H is called the spectral measure and is a distribu-
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tion function defined on the (d− 1)-dimensional simplex Sd,

Sd =

{
[w1, w2, . . . , wd] ∈ [0, 1]d :

d∑
i=1

wi = 1

}
.

Illustrations of Sd are given in Figure 2.7.

Figure 2.7: Diagrams of the simplexes S2, S3, and S4

To ensure that H is a valid distribution function, it must satisfy∫
Sd

dH (ω) = 1 (2.18)

and from the marginal condition (2.16) it follows that∫
Sd

ωidH (ω) = 1/d, (2.19)

for i = 1, 2, . . . , d (Pickands 1981). Consequently, (2.19) implies that the univariate

marginals of H all have a mean measure of 1/d. We use the notation dH to include

the cases where H is not differentiable, i.e., in the case of complete dependence

or independence. In the case of complete independence, H will have all its mass

on the nodes of the simplex, in the case of complete dependence all mass will be

placed on the centre of the simplex and V is a discrete measure. If the variables are

strongly dependent then H will have a lot of mass on the interior of the simplex. If

the variables are weakly dependent H will have a lot of mass in the boundaries of

the simplex (Coles & Tawn 1991). If H is differentiable with density h, then (2.17),
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becomes

V (y) = d

∫
Sd

{
max

i=1,...,d

(
ωi

yi

)}
h (ω1, . . . , ωd) dω1, . . . , dωd.

In the following sections, we will discuss derivations and the development of para-

metric forms of the exponent measure V and subsequently the spectral density

h.

2.2.5 Parametric forms for G

There are uncountably infinite possible distribution functions which satisfy (2.18)

and (2.19). This means, as mentioned above, there is no prescribed set of distri-

butions as is the case in univariate extreme value modelling. However, there is a

collection of popular extreme value distribution functions. Coles & Tawn (1991)

give further links between the density H and exponent measure V , allowing for the

development of parametric models. Specifically, they show that

∂dV (x)

∂x1, . . . , ∂xd
= − d

∥x∥d+1
h (x/∥x∥) , (2.20)

where ∥x∥ =
∑d

i=1 xi for x ∈ Rd
+. Using (2.20), and through the specification of

h, satisfying (2.18) and (2.19), we can derive parametric models for V and in turn,

multivariate extreme value models G.

An early example of a parametric bivariate extreme value distribution is the logistic

model (Gumbel 1960), which has, for a parameter 0 < α ⩽ 1, the form

G(x1, x2) = exp
{
−
(
x
−1/α
1 + x

−1/α
2

)α}
with the associated spectral density function recovered using (2.20),

h(ω) =
1

2

(
α−1 − 1

)
{ω(1− ω)}−1−1/α

{
ω−1/α + (1− ω)−1/α

}α−2
.

where 0 ⩽ ω ⩽ 1. The logistic model is flexible in that, complete dependence and

independence are special cases as α → 0+ and α → 1− respectively (Tawn 1988).

Another example of a popular bivariate extreme value model is given by Hüsler &
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Reiss (1989) which arises as the maxima of linearly normalised Gaussian vectors

where the correlation in pair n tends to 1 as n → ∞ at a suitable rate to avoid

independence or perfect dependence. The bivariate distribution function with pa-

rameter λ ∈ [0,∞) is given by

G(x1, x2) = exp

{
− 1

x1
Φ

(
λ+

1

2λ
log

x2
x1

)
− 1

x2
Φ

(
λ+

1

2λ
log

x1
x2

)}
, (2.21)

for (x1, x2) ∈ R2
+, with spectral density function

h(ω) =
λ

2ω(1− ω)2
ϕ

(
1

λ
+
λ

2
ln

[
ω

1− ω

])
,

where Φ(·) and ϕ(·) are the standard Gaussian distribution and density functions

respectively. The dependence structure of the bivariate Hüsler-Reiss distribution is

determined entirely by the parameter λ. Complete dependence corresponds to the

case where λ→ 0, and complete independence where λ→ ∞.

Note that, in the copula literature, it is conventional to use an alternative parame-

terisation to the original distribution described by Hüsler & Reiss (1989) in (2.21)

which instead takes the inverse of the dependence parameter (Joe 1994). Adopting

this convention, we subsequently use λ = 1/λ hereafter. In this case, complete

dependence corresponds to the case where λ → ∞, and complete independence

where λ → 0. Figure 2.8 shows a sample of points from a bivariate Hüsler-Reiss

distribution at increasing levels of dependence from left to right, with the associated

spectral density function below. We provide further discussion of the Hüsler-Reiss

distribution, including treatment of the higher dimensional cases, in Chapter 3.
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Figure 2.8: Sample of points from a bivariate Hüsler-Reiss extreme value dis-
tribution (top row) at increasing levels of extremal dependence from left to
right with λ = 0.25, 1, 2, 5, 100. The marginal distributions are GEV(0,1,0).
Spectral density of the Hüsler-Reiss distribution (bottom row) from which the
points in the respective plots above of the same colour are sampled.

2.2.6 Point process representation

To see the expression of the exponent measure, V in (2.17), we first define the

pseudo-polar decomposition of a vector x = (x1, . . . , xd) using the function T :

Rd
+ → (0,∞)× Sd,

T (x1, . . . , xd) =

{
d∑

j=1

xj,

(
x1∑d
j=1 xj

, . . . ,
xd−1∑d
j=1 xj

)}
. (2.22)

Suppose that X has standard Fréchet or Pareto(1) margins, we take T (X) =

(∥X∥,X/∥X∥) = (R,W ) where the variable R describes the radial measure or

magnitude of an observation and W represents the angular or dependence com-

ponent of an event. This decomposition is illustrated in the bivariate case in the

left-hand panel of Figure 2.9.

37



2.2. Multivariate extremes

Figure 2.9: Pseudo-polar decomposition (left) of a point (x1, x2) ∈ R2 into
radial components (r, ω) = T (x1, x2) where T is defined in expression (2.22).
Illustration of the set Ax (right).

As in the univariate case, the point process setting allows for a convenient and in-

tuitive derivation of multivariate extreme value models. Without loss of generality

assume that X1, . . . ,Xn
iid∼ F , where F has standard Fréchet marginal distribu-

tions. Consider the d-dimensional point process

Pn =

{(
Xi,1

n
, . . . ,

Xi,d

n

)
, i = 1, . . . , n

}
.

The point process Pn converges to a non-homogeneous Poisson process (NHPP) P
on Rd

+\{0} as n → ∞, with intensity measure λ(dr × dω) = dr−2drdH(ω) (Coles

& Tawn 1991).

Reusing the notation set out in Section 2.1.2, define the number of points in any

subset A ⊂ Rd, as Nn (A), the expected number of these points in A as E {Nn (A)},
and Λ (A) := limn→∞ E{Nn(A)}. The probability of observing j points in A is

lim
n→∞

Pr {Nn(A) = j} =
{Λ(A)}j

j!
e−Λ(A). (2.23)

Now consider restricting the set A to be the positive orthant bounded away from

the origin, i.e., consider the set Ax = (0,∞)d\{(0, x1)×(0, x2)×· · ·×(0, xd)}, where
xi > 0 for i = 1, . . . , d. See the right-hand panel in Figure 2.9 for an illustrated

bivariate example of the set Ax. We can consider the number of points in this set,

Nn(Ax), as n → ∞. As the sample size gets larger, the values of x1, x2, . . . , xd
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correspond to increasing values of X1, . . . , Xd as each is only exceeded if Xi/n > xi.

That means

Pr(n−1Mn ⩽ x) = Pr(n−1Mn,1 ⩽ x1, n
−1Mn,2 ⩽ x2, . . . , n

−1Mn,d ⩽ xd)

= Pr {Nn(Ax) = 0} ,
(2.24)

whereMn is the vector of component-wise maxima (Mn,k; k = 1, . . . , d). Combining

(2.23) and (2.24) we see that, as n→ ∞

Pr {Nn(Ax) = 0} =
{Λ(Ax)}0

0!
e−Λ(Ax) = exp{−Λ(Ax)} = G(x).

To arrive at our earlier definition of the multivariate extreme value distributions in

(2.15) we now need to derive the form of Λ(Ax). Taking the integrated intensity

function of the NHPP (derived in Appendix A.1)

λ(r,ω)drdω = d
dr

r2
dH(ω)

and applying relation (2.5), we see that for an arbitrary set A ∈ Rd
+\{0}, the

integrated intensity over A is given by

Λ(A) = d

∫
A

dr

r2
dH(ω). (2.25)

So, in our bivariate illustration, d = 2 and ω = ω.

Integrating over the set Ax can be achieved by integrating over the dashed green

line for r, where it intersects the set Ax for all angles ω ∈ [0, 1]. We have that

r = x1 + x2 and so x1 = rω and x2 = r(1 − ω). For ω ⩽ ω∗, we have that

r = x2/(1− ω) and for ω > ω∗, r = x1/ω. The appropriate form is easily found by

taking min {x2/(1− ω), x1/ω}. Formally, this means,
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Λ(Ax) =2

∫ 1

0

∫ ∞

min( x2
1−ω

,
x1
ω )
r−2drdH(ω)

=2

∫ 1

0

1

min
(

x2

1−ω
, x1

ω

)dH(ω)

=2

∫ 1

0

max

(
1− ω

x2
,
ω

x1

)
dH(ω).

Extended to the d-dimensional setting, this becomes

Λ(Ax) = d

∫
Sd

{
max

i=1,...,d

(
ωi

xi

)}
dH(ω),

which gives the exponent measure V (x) as defined in (2.17).

2.2.7 Multivariate regular variation

From Resnick (1987), given a measurable subset of the unit simplex, B ⊆ Sd, and

spectral measure H defined on Sd (as in expression (2.17)), multivariate regular

variation for random variables with unit Fréchet marginals tells us that for r ⩾ 1

and u > 0,

lim
n→∞

Pr(n−1R > ur,W ∈ B | n−1R > u) = r−1H(B). (2.26)

If X is regularly varying, then X is in the maximum domain of attraction of a

multivariate extreme value distribution (de Haan 1984). Limit (2.26) tells us that

R (the magnitude of an observation X) and W (the extremal dependence structure

of the observation X) are independent as the radial variable tends to infinity, i.e.,

as n → ∞. Notice how this parallels the factorisation of λ in Section 2.2.6. It is

reasonable to assume that, for the most extreme events (R/n > u), the magnitude

of the event and the extremal dependence structure are independent if u is taken to

be large enough. In practice, this allows the practitioner to separate the statistical

modelling of the dependence structure (W ) and the magnitude (R) of extremal

observations, and most critically, justifiably extrapolate to higher magnitudes.

To see how the limit (2.26) arises, let Au be the set bounded away from the origin
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by the hyperplane n−1R = ∥X∥ = u. The set Au in the bivariate setting is

illustrated in the left-hand panel of Figure 2.10 and corresponds to the conditioning

set of expression (2.26) (i.e., {n−1R > u}). Let Aur,B be the set bounded away

from the origin by the hyperplane n−1R = ∥X∥ = ru, where r > 1, and with

B = {X : X/∥X∥ ⩽ ω∗} for 0 < ω∗ < 1 as illustrated in the right-hand sketch

in Figure 2.10 for the bivariate setting, i.e., B is the set of W ∈ [0, ω∗]. We can

see that the set Aur,B corresponds to the conditioned set in expression (2.26), (i.e.,

{n−1R > ur,W ∈ B}). We then have, as n→ ∞,

Pr(n−1R > ur,W ∈ B | n−1R > u) = Pr(n−1X ∈ Aur,B|n−1X ∈ Au)

→ Λ(Aur,B)/Λ(Au).
(2.27)

Figure 2.10: Sketch of extremal set Au shaded (left) and extremal set Aur,B

shaded (right).

We calculate both Λ(Au) and Λ(Aur,B) using expression (2.25), while again making

use of the pseudo-polar decomposition described in expression (2.22). Similar to

the derivation of the exponent measure V (x) = Λ(Ax), in Section 2.2.6, we achieve

integration over the sets Au and Aur,B by integrating over the radial r (shown as

the dashed green line in Figure 2.10), where it intersects the extremal sets for all

ω ∈ [0, 1]. We therefore have,

Λ(Au) = 2

∫ 1

0

∫ ∞

u

dr

r2
dH(ω) = 2

∫ 1

0

1

u
dH(ω) =

2

u
, (2.28)
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and

Λ(Aur,B) = 2

∫ ω∗

0

∫ ∞

ur

dr

r2
dH(ω) = 2

∫ ω∗

0

1

ur
dH(ω) =

2

ur
H(B), (2.29)

since B = [0, ω∗]. Finally, plugging (2.28) and (2.29) into expression (2.27), we get

lim
n→∞

Pr(R/n > ur,W ∈ B | R/n > u) = lim
u→∞

2(ur)−1H(B)

2u−1
= r−1H(B),

arriving at the expression for multivariate regular variation stated in (2.26). Finally

notice that as the limit does not depend on u, we can combine n and u as t = nu

and get

lim
t→∞

Pr(R > tr,W ∈ B | R > t) = r−1H(B),

the usual form of how multivariate regular variation is expressed.

Figure 2.11 demonstrates the behaviour of the angular density or spectral density

h of H, of bivariate extreme observations when transformed to Fréchet margins

at different levels of extremal dependence. The top row shows three illustrative

data sets and the middle row shows the same data transformed to Fréchet margins.

Considering each column, from left to right we see increasing extremal dependence

in the data. Notice that after standardising the margins to a heavy-tailed distribu-

tion, only the extremal observations “survive” away from the origin (for illustrative

purposes in the figures presented here, we take the empirical 90-th percentile of

L1-norms of observations as the threshold for an observation being extreme (i.e.,

R > r0.9), a theoretical justification of choosing such a threshold is later given in

Section 2.2.7). Only points that are not extreme in both dimensions are pulled

towards the axis. The estimated spectral density (bottom row), given as a kernel

density estimate, on S1 of the observations of W | R > r0.9 has increasing mass in

the centre of the simplex at (1/2) and less at the boundaries as we move to stronger

dependence cases.
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Figure 2.11: The three columns in the figure from left to right showcase three
different dependence levels; independence (ρ = 0), strong dependence (ρ =
0.95) and perfect dependence (ρ = 1). Simulations from a bivariate Gaussian
distribution (top row). Events with extreme magnitude (above the empirical
90-th percentile of L1-norms) are highlighted. Data from the respective plots
above transformed to have (scaled) standard Fréchet margins (middle row).
Kernel density estimate of the angular density of the extremal points in the
plot above (bottom row).

An empirical, illustrative example of the spectral density extended to tri-variate

random variables (X1, X2, X3) is given in Figure 2.12. This figure can be interpreted

as the equivalent of the density in the bottom row of Figure 2.11 where now we

take the angular density from a 3-dimensional distribution. The distribution on

the simplex is representative of the pairwise extremal dependence of three random

variables, X1, X2, and X3. Mass at the lower left node indicates extremal behaviour

of variable X1; mass at the upper left and lower right nodes indicate the equivalent

forX2 andX3, respectively. Mass between two nodes indicates extremal dependence

between those nodes. The first plot in this figure represents data with low extremal
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dependence, notice that spectral density has most mass at the nodes of the simplex

and very little between nodes. The second plot shows high extremal dependence

among all three random variables, resulting in most density being at the centre of the

simplex. The third plot shows an asymmetric spectral density depicting unequal

extremal pairwise dependence among the random variable, with strong extremal

dependence between variables X1 and X3 and low extremal dependence between

X2 and both X1 and X3. Notice that, in general, the observations of W | R > r0.9

have increasing mass towards the centre of the simplex at (1/d, . . . , 1/d) where d = 3

and less at the boundaries as we move to stronger dependence cases. In general, if

two variables are asymptotically independent all mass in the simplex between their

respective nodes will be on those nodes. If there is any mass between the two nodes,

then the variables are asymptotically dependent.

Figure 2.12: Spectral density of simulated random variables X1, X2 and X3

from 3-dimensional Hüsler-Reiss distribution. In each simplex, the lower left
corner corresponds to X1, the upper left corner corresponds to X2 and the
lower right, X3. Lighter colours correspond to higher density.

2.2.8 Copulae

A copula is simply a multivariate distribution function with uniform marginal dis-

tributions on [0, 1]. The copula function, C : [0, 1]d → [0, 1], of the variables

(X1, X2, . . . , Xd) is the multivariate distribution of these variables after being trans-

formed to a uniform distribution,

C(u1, u2, . . . , ud) = Pr {F1(X1) ⩽ u1, F2(X2) ⩽ u2, . . . , Fn(Xd) ⩽ ud} (2.30)

where Fi is the distribution function of Xi. From Sklar (1959), if the random

variables (X1, X2, . . . , Xd) have a joint distribution F , with continuous marginal
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distributions Fi, then the copula function in (2.30) is unique. Since the copula

function is unique, it is invariant to marginal transformations. That means we

can transform the margins to any convenient distribution without disrupting the

dependence structure between them. For example, using (2.11) we can transform

the copula to have standard Fréchet margins,

C [−1/ logF1(x1), . . . ,−1/ logFd(xd)]

to focus attention on the dependence in the tails of the distribution.

Copulas offer a convenient way to describe the relationship between any set of

random variables whose marginal distributions are known since any random variable

can be transformed to have uniform distribution through the probability integral

transform. Any copula function that satisfies max-stability is a valid multivariate

extreme value distribution (Gudendorf & Segers 2010). Copulas are a very popular

modelling tool in multivariate extreme value theory as they allow the practitioner to

deal with the modelling of the marginal and multivariate components of a collection

of variables separately.

Joint parameter estimation of the marginal distributions and dependence structure

is also possible. Suppose we have a collection of iid bivariate continuous random

vectors X1,X2, . . . from a distribution F and copula function C. Suppose the

margins have distribution functions F1 and F2. The bivariate density f of F can

then be expressed as

f(x1, x2) = c [F1(x1), F2(x2)]× f1(x1)× f2(x2)

where c is the density function of the copula C and f1 and f2 are the densities

of the marginal distributions F1 and F2 respectively. Following this we can derive

the likelihood function of any parametric model which can be used for parameter

estimation.
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2.3 Spatial extremes

Extreme value processes are widely applied to spatial environmental applications.

In this section, we discuss the extension of multivariate extreme value theory to an

infinite-dimensional process setting.

2.3.1 Model-based geostatistics

The field of model-based geostatistics is concerned with modelling random variables

that have some inherent spatial information. We define a spatial domain S ⊂ Rd,

where for the majority of environmental applications d = 2. The domain S is made

up of a set of locations, s1, s2, · · · ∈ S, where typically si describes the spatial

coordinate of a point, i.e., si = (longi, lati). We define a spatial process Y : S → R,
which maps the spatial domain to some variable we are interested in understanding.

For example, Y (si) could describe the altitude at location si = (longi, lati). We

define a spatio-temporal process as Y : R×S → R, where Y in the spatial domain

S takes different values over time t ∈ R. Let t1, t2, · · · ∈ R be a set of time points at

which observations on Y are made. Then Y (ti, sj) describes the process at location

sj and time ti. For example, Y (ti, sj) could describe the temperature at location sj

and time ti. If the process Y (t, s) is stationary in space (Diggle et al. 1998) then its

statistical properties (e.g., expected value and variance) are identical at all locations

over the spatial domain and the inter-site covariance depends only on the separation

between the two locations. Furthermore, if the process is stationary in time, the

statistical properties such as the variance and expected value of the process are equal

at every time point t. A spatial process is isotropic if the relationship between the

process at any two sites is a function of only the distance between them, i.e., not

determined by this angle or the direction between them (Diggle et al. 1998).

2.3.1.1 Variogram

To reflect natural processes, we typically assume that the relationship between

two locations is a function of the separation between them. A classic statistical

tool for describing this feature of spatial processes is the variogram, γ : R2 →
R. A variogram describes the correlation of two sites given their separation. For

simplicity, we will assume isotropy throughout the remainder of this review, and so,
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the variogram becomes a function of the distance between two sites. Given a pair

of sites si, sj ∈ S, we denote the distance between them as hij = ∥si − sj∥. The

variogram for stationary isotropic processes is defined as

2γ(h) = E
[
{Y (s2)− Y (s1)}2

]
or,

γ(h) =
1

2
var {Y (s2)− Y (s1)} , (2.31)

where ∥s2 − s1∥ = h (Diggle et al. 1998). Calculating γ(h) for a range of distances

provides valuable information on the level of spatial auto-correlation of the process

Y over the domain.

There are many parametric forms of (2.31). One such example is the Matérn vari-

ogram,

γ(h) = α
{
1− (2

√
νh/ϕ)ν21−νΓ(ν)−1Kν(2

√
νh/ϕ)

}
, (2.32)

where Kν is a modified Bessel function of the second kind and the parameters

α > 0, ϕ > 0, and ν > 0 determine the sill/variance, scale/range, and smoothness,

respectively (Banerjee et al. 2014). The sill, α, represents the maximum variability

of the process and is approached asymptotically by the variogram as h → ∞. The

range, ϕ, characterises the distance at which the spatial auto-correlation becomes

negligible or the distance at which the variance levels out to α. The smoothness

parameter, ν, controls the rate of decay of spatial auto-correlation as the distance

between locations increases. Different combinations of parameter values allow the

Mátern variogram to capture both short-range and long-range spatial dependence.

Figure 2.13 shows a Matérn variogram with α = 0.75, ϕ = 1, and increasing values

of the smoothness parameter ν = {0.1, 1, 2} corresponding to slower convergence to

α resulting in smoother spatial processes.
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Figure 2.13: The Matérn variogram with α = 0.75 (horizontal dashed line),
ϕ = 1, and different values of ν = {0.1, 0.5, 2} the smoothness parameter in
red, blue, and green, respectively, corresponding to slower convergence to α,
resulting in smoother spatial processes.

2.3.2 Max-stable process

A max-stable process extends the multivariate extreme value distributions to the

spatial setting. Let X(t, s) be iid observations from a stochastic process X, at

discrete times t = 1, 2, . . . , n and over locations s ∈ S, where X is continuous in

space and time. We take the component-wise maxima of the process, scaled to

avoid margins collapsing, giving

Zn(s) = max
t=1,...,n

X(t, s)− bn(s)

an(s)
, s ∈ S, (2.33)

where an(s) > 0 and bn(s) ∈ R. The spatio-temporal component-wise maxi-

mum corresponds to the maximum observed value over time at each site. In Fig-

ure 2.14 we give a sample of simulated events, with the process Zn(s) (consisting

of component-wise maxima) highlighted. Notice that the component-wise maxima

consist of more than one spatial observation.
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Figure 2.14: Illustrative simulated observations X i(s) for s ∈ [0, 500] from a
1-dimensional spatial process at 500 locations. The component-wise maxima
are highlighted.

To examine the extremal behaviour of this process we define,

Z(s) = lim
n→∞

Zn(s).

If sequences bn(s) and an(s) exist, such that Z(s) has non-degenerate marginal

distributions for all s ∈ S, then Z(s) is called a max-stable process (Smith 1990).

The marginal distributions of Z(s) are max-stable and must belong to the GEV

distribution family. Using equivalent arguments, as in Section 2.2.4, assuming that

X(t, s) has standard Fréchet marginal distributions, we take bn(s) = 0 and an(s) =

n. It follows that, given a collection of sites s1, s2, . . . , sk ∈ S, we can describe the

finite-dimensional joint distribution of Z(s) at those sites as

Pr {Z (s1) ⩽ z1, . . . , Z (sk) ⩽ zk} = G(z),

where G is a multivariate extreme value distribution, describing the extremal de-

pendence between the process at sites s1, s2, . . . , sk.

Parametric models for max-stable processes are typically derived through the point

process representation as described in Section 2.2.6. Let {Ri}i≥1 be the points of a

Poisson process on [0,∞) with intensity r−2dr and {Wi(·)}i be iid replicates of a

process on S with truncated mean 1 (i.e., E[max{0,W (s)}] = 1). Then

Z(s) = sup
i≥1

{RiWi(s)} , s ∈ S
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is a stationary max-stable process with unit Fréchet margins (Smith 1990). As

discussed previously, the point process provides a physically interpretable repre-

sentation of extreme environmental processes. Recall that R corresponds to the

magnitude of events and W describes the spatial structure of the extremal de-

pendence. Furthermore, max{0,W (s)} describes the contribution of site s to the

extreme event. Through the appropriate specification of the random processW , we

can derive parametric max-stable processes. For example, taking a probability den-

sity function f as any non-negative function such that
∫
Rd f(s)ds = 1 and {Y i}i≥1

to be the points of a homogeneous Poisson process in Rd, we get the max-stable

process, {Z(S) : s ∈ Rd}, where

Z(s) = max
i≥1

Rif(s− Y i).

This construction allows for a more meaningful interpretation where now f describes

the spatial distribution or the profile of the extreme event and Y i is the spatial

“location” of the extreme event. As an illustrative example, suppose Z(s) describes

rain storms or heatwaves centred at Y i and the function f captures the spatial

extent of the event and how it falls off with increasing distance, while R describes

the intensity of the storm or heatwave. Smith (1990) chooses f to be a multivariate

normal distribution (MVN). The resulting model is called the Smith max-stable

model or the “storm profile model”, and has a bivariate distribution function for

the process at sites s1 and s2 as

G(z1, z2) = exp

{
− 1

z1
Φ

(
λ

2
+

1

λ
log

z2
z1

)
− 1

z2
Φ

(
λ

2
+

1

λ
log

z1
z2

)}
, (2.34)

where Φ(·) is the standard normal distribution function. The Smith max-stable

model is parameterised by λ =
√
hTΣ−1h, where h is the vector separation from

site s1 to s2 and Σ is the covariance matrix of the Gaussian distribution controlling

the level of extremal dependence between the two sites.

The assumption that extreme events are Gaussian (i.e., elliptical and smooth) is

often restrictive and unrepresentative of natural processes. There have been several

alternative model parameterisations to alleviate the determinism of the shape of

the extreme event (e.g. Schlather 2002). One such popular model is the Brown-

Resnick max-stable process. Taking W (s) = exp (ϵ(s)− γ(s)) for s ∈ S, where ϵ is
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a stationary Gaussian process and the variogram, γ has the form

γ(h) =
1

2
var {W (s)−W (0)} .

where here, h = ∥s− 0∥. Then W is called a Brown-Resnick process, as described

by Brown & Resnick (1977), which has a bivariate distribution function identical

to the joint distribution in expression (2.34), where now λ =
√
2γ(h). Engelke &

Hitz (2020) show that the marginal distributions of the Brown-Resnick process are

Hüsler-Reiss distributed, which can be seen in expression (2.21).

Figures 2.15 and 2.16 compare the general characteristics between the Smith and

the Brown-Resnick max-stable processes. The left-hand panel in both figures give

simulations in R1 (Fig. 2.15) and R2 (Fig. 2.16) respectively of the Smith max-

stable process with characteristic Gaussian features. The right-hand panel of both

figures shows the equivalent from the Brown-Resnick process, which has much more

intricate, and less prescriptive features.
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Figure 2.15: Collection of 10 simulations from a 1-dimensional Smith max-
stable process with Σ having 1 on the diagonal and 0.5 on the off-diagonals
(left), and simulations from a Brown-Resnick process with variogram γ(h) =
0.5h1.5 (right).
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Figure 2.16: Simulations from a 2-dimensional max-stable process on a grid
of 10, 000 locations over [0, 10]2 with Σ having [1, 2] on the diagonal and 0.1
on the off-diagonals (left), simulations from a Brown-Resnick process on the
same grid with variogram, γ(h) = 0.5h1.5 (right).

Analytical likelihood functions for max-stable processes are practically infeasible to

write down for processes observed on even a moderate number of spatial locations.

To deal with this, a composite likelihood consisting of bivariate pairwise likelihood

functions is used (Padoan et al. 2010). Even so, calculating the composite likelihood

is computationally expensive and quantifying parameter uncertainty is difficult.

2.3.3 Functional exceedances

Analogous issues arise between the univariate block maxima and the max-stable pro-

cess modelling procedures (see Section 2.1.1.1). Namely, nuances of the extremal

process being analysed are missed when the component-wise maxima is an amalgam

of several independent extreme events. Summarising spatio-temporal data through

block maxima is clearly not ideal as it can disrupt valuable physical information

embedded in the data, as is often the case in environmental data. de Fondeville &

Davison (2018) provide the example of modelling flood events resulting from differ-

ent precipitation processes. Taking site-wise maxima may result in only modelling

local and intense rain storms while disregarding widespread, cyclonic storms that

appear less intense at a single site but of critical importance for widespread flood

risk.

An alternative definition of extreme multivariate events was proposed by Coles &

Tawn (1994), wherein d-dimensional observations are summarised and projected
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onto a one-dimensional variable via a risk functional r : Rd → R. The function

r can be chosen to capture the combined effects of several variables that lead to

an extreme event of interest, for example, the sum of rainfall over a collection of

sites, r(X) =
∑

sX(s), where a large enough accumulation may lead to flooding.

Projecting a series of multivariate observations onto a so-called “structure variable”

immediately establishes a meaningful ordering. This approach transforms data to

the univariate setting where well-established extreme value modelling techniques

are available. For example, taking the risk of events that exceed a high enough

threshold, i.e., the events X | r(X) > v, then r(X) − v, for large enough v, can

be assumed to follow a generalised Pareto distribution (see Section 2.1.2). An

appealing feature of this classification of events is the flexibility afforded to the

practitioner of defining what extremal behaviours are of interest, i.e., to be able to

choose the function r.

2.3.4 Generalised Pareto process

The method of Coles & Tawn (1994) described above does not tell us how individual

variables of a process contribute to extreme events. To achieve this, Buishand et al.

(2008) and Ferreira & de Haan (2014) consider the behaviour of the original process

X conditioning on supsX(s) being large. The authors show that, for an(s) and

bn(s) as in (2.33), the process[
1 + ξ(s)

{
X(s)− bn(s)

an(s)

}]1/ξ(s)
+

∣∣∣∣ (sup
s∈S

{
X(s)− bn(s)

an(s)

}
> 0

)
converges to a generalised Pareto process as n→ ∞, where ξ(s) is the scale param-

eter of the process at site s, describing the tail decay at that site. Transforming

X(s) to standardised margins X∗(s), specifically Pareto(1), we see that{
u−1X∗(s)

∣∣∣∣ sup
s∈S

X∗(s) > u

}
→ Y ∗(s) as u→ ∞, (2.35)

where Y ∗ is a generalised Pareto process with standardised margins. Recall that,

by construction of the max-stable process we have that the margins are GEV dis-

tributed. Since now we are taking the entire random field, and not component-wise

maxima, the margins of the Pareto process do not necessarily belong to an ex-

treme value distribution. However, we know that exceedances above a suitably
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high threshold at each site s will follow the GPD.

Figure 2.17 shows a sample of simulated events over 1-dimensional space. In the

left-hand panel, the highlighted simulation has the largest value over the observed

domain, whereas the right-hand panel highlights the simulation with the largest

mean value over the domain. This figure can be examined in contrast to Figure

2.14 to see how the generalised Pareto process retains the physical interpretation of

an extreme event. By modelling functional exceedances we capture spatial patterns

that one could expect to observe from the original process. Such a feature is incred-

ibly valuable when working with climate data as a lot of information is embedded

in the spatial behaviour of the phenomenon being studied. Since simulations from

the resulting model are potentially physically realisable events they are immediately

interpretable and can be used to inform impact models to detect possible damage

to infrastructure (de Fondeville & Davison 2022).
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Figure 2.17: Simulation of one-dimensional spatial event, extreme observation
highlighted. In the left-hand plot, the event with the largest observation is
highlighted. In the right-hand plot, the event with the largest mean value is
highlighted.

2.3.5 r-Pareto Processes

One disadvantage of conditioning on the level of the supremum of the process is that

it requires the process to be observed over the entirety of the domain S. Clearly,

this is not always possible in certain applications, for example, weather observation

stations which are located non-uniformly and not continuously throughout space

and time. A relaxation of this restriction was introduced via the ℓ-Pareto processes

(Dombry & Ribatet 2015), later called the r-Pareto processes (de Fondeville &

Davison 2018); we will adopt the latter notation here. Akin to the approach of Coles

& Tawn (1994) described above, the r-Pareto processes allow specification of a risk
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function through which events are ordered. Effectively providing a generalisation

of (2.35), allowing for a more flexible conditioning event by allowing a wider range

of functions in place of the sup(·) risk function, giving{
u−1X∗

∣∣∣∣ r (X∗) > u

}
→ {Y ∗(s) : s ∈ S} as u→ ∞, (2.36)

where X∗ = {X(s) : s ∈ S}. The limiting process is called the generalised r-

Pareto process. Dombry & Ribatet (2015) show, under weak conditions on the

process X∗, that {Y ∗(s) : s ∈ S} is marginally non-degenerate in all margins. The

level of the extremity of the stochastic process X∗ is determined by a risk function

r(X∗) ∈ [0,∞), where the only other constraint on r is that it is homogeneous of

order 1, i.e., for any constant c > 0, then r(cx) = cr(x) for any x with non-negative

components. Specification of the risk function r allows modelling tailored to the

specific spatial nature of the process under consideration. Some useful functions

which satisfy this restriction are the spatial maximum (or supremum), sum, mean,

minimum over S, or the cost at a particular site of interest. For example, in Figure

2.17, the right-hand side highlights the extreme event with the largest mean value

over the observed events.

As in Section 2.2.7, Y ∗ = {Y (s) : s ∈ S} can be decomposed into two independent

stochastic components as follows:

Y (s) = RW (s) ∀ s ∈ S,

where R ∼ Pareto(1) and, r(W ) = 1 where W = {W (s) : s ∈ S}. From (2.36),

given an extremal set A which is a subset of {X∗
i : r(X∗) > 1},

Pr
{
u−1X∗ ∈ A | r(X∗ > u)

}
→ Pr{Y ∗ ∈ A}

as u→ ∞, where Y ∗ is an r-Pareto process. This result is analogous to the threshold

stability property of the generalised Pareto distribution. This feature of threshold

stability officiates extrapolation to yet unobserved extreme events.

If the limit provided in equation (2.36) is a good approximation for large u, then

those spatial events with a risk function exceeding u will be well-approximated by an

r-Pareto process. Similar to the construction of max-stable models in Section 2.3.2,
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the choice of process W leads to many possible models. A popular choice is to

take W to be a Brown-Resnick process, where inter-site extremal dependence is

characterised entirely by a variogram γ(h) (Engelke et al. 2015).
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A
Appendix to Chapter 2

A.1 Deriving of intensity measure λ

We recall the fundamental theorem of calculus. Define f(x) to be continuous

function on the interval [x1, x2] and F (X) to be the anti-derivative of f , i.e.,

F ′(x) = f(x), then, ∫ x2

x1

f(x)dx = F (x2)− F (x1).

We have the integrated intensity function r−1H(ω) and we wish to find λ(r, ω). So,

we know that,

r−1H(w) =

∫ ∞

r

∫ w

0

λ(r′, w′)dw′dr′.

First, take the derivative of the left-hand side

∂r−1H(ω)

∂r∂ω
=
∂r−1h(ω)

∂r
= −r−2h(ω).

Then, take the derivative of the right-hand side

∂

∂r∂ω

∫ ∞

r

∫ ω

0

λ(r′, ω′)dw′dr′ =
∂

∂r

∫ ∞

r

λ(r′, ω)dr′ = −λ(r, ω).

Now, equating the R.H.S. and L.H.S. we get

λ(r, ω) = r−2h(ω).
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A.1. Deriving of intensity measure λ

We express h as dH to highlight the fact that the derivative does not always exist

for all 0 ⩽ ω ⩽ 1 in special cases. For example, in the case of complete dependence

(dH(1/2) = 1), the intensity function is

λ(r, ω) = r−2dH(ω),

or equivalently,

λ(r, ω)drdω =
dr

r2
dH(ω).

58



3
Extremal vectors of unequal dimensions

with the Hüsler-Reiss distribution

In this chapter we explore properties of the finite-marginal distributions of the Brown-

Resnick process, which which follow the Hüsler-Reiss distribution (HRD). The Brown-

Resnick process is the basis of a popular parametric model for fitting r-Pareto processes

in spatial extreme value theory. The HRD describes the asymptotic behaviour of suitably

normalised normal vectors. We provide some theoretical background and illustrate its

adaptability to describe the asymptotic behaviour of vectors which are not necessarily

of equal dimension. We are motivated by the temporal inconsistencis in environmental

synoptic observations. Typically, modelling a multivariate process across a number of

sites requires observations mutual to each site at each time point. Such restrictions result

in the practitioner disregarding time spans of data which are not present at all sites.

Since extremal observations are typically few, omitting data is clearly not desirable. Our

method enables us to develop a parametric r-Pareto process which can make use of all

available extremal data.
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3.1. Introduction

3.1 Introduction

The default approach in standard spatial modelling is to standardise the marginal

distributions of a process to be Gaussian and assume it is a realisation of a Gaussian

process (Cressie 1993). This approach is not applicable in many extremal settings

since the Gaussian process is asymptotically independent at spatial lags (Hüsler &

Reiss 1989). The data analysed in this thesis exhibit a strong form of extremal

dependence, called asymptotic dependence (see Section 2.2.3) which cannot be cap-

tured by Gaussian processes. Davison et al. (2012) provide thorough reviews of

available approaches for the statistical modelling of spatial extreme events. Most

notably, these include the copula (see Section 2.2.8) and max-stable process (see

Section 2.3.2) modelling approaches. However, we are interested in modelling spatial

threshold exceedances, which is made possible via the r-Pareto process modelling

approach.

The r-Pareto process over the spatial domain S ⊂ R2 is the limiting process of suit-

ably normalised processes, X∗ = {X(s) : s ∈ S}, with Pareto distributed marginal

variables, whose risk (calculated by a suitable homogeneous order 1 function r)

exceeds a high threshold, u. Specifically,{
u−1X∗

∣∣∣∣ r (X∗) > u

}
→ {Y (s) : s ∈ S} as u→ ∞,

where Y is the limiting r-Pareto process (Dombry & Ribatet 2015). In practice,

spatial events whose risk, r, exceeds a sufficiently high threshold, u, will be well-

approximated by an r-Pareto process. A restriction of this modelling approach is

that it assumes asymptotic dependence over the entire domain, however for many

environmental processes over a small region, this is often a sound assumption. A full

treatment of r-Pareto theory will be provided in Chapter 4. Suffice to say, Y can be

expressed as two stochastically independent components; that is Y (s) = RW (s) for

s ∈ S. The component R is simply a univariate heavy-tailed random variable (e.g.,

Pareto). However, W ∗ := {W (s); s ∈ S} is a stochastic process which describes the

extremal dependence between sites, or the contribution of site s to an extreme event

for all s ∈ S. A popular parametric model for W ∗ is the Brown-Resnick process

(Brown & Resnick 1977), whose joint finite-dimensional marginal distributions for

component-wise maxima of X∗ are known to follow the HRD (Huser & Davison
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3.1. Introduction

2013).

The HRD has been extensively studied and applied within the extreme value lit-

erature and can be viewed as the extremal analogue of the multivariate normal

distribution, characterising the asymptotic behaviour of suitably normalised nor-

mal vectors (Hüsler & Reiss 1989), in particular, the multivariate joint distribution

is entirely determined by the complete set of bivariate distributions. The distri-

bution was originally considered in the context of component-wise maxima and so

is a max-stable distribution by derivation. The spatial extension to the HRD led

to the popular Brown-Resnick max-stable process which has found wide applicabil-

ity in environmental extreme value statistics (Engelke et al. 2011). More recently,

the Brown-Resnick process has found application outside of the max-stable process

and can be used to model the spatial component of the r-Pareto process. In this

chapter, we examine in detail the features of the HRD, highlighting its versatility

in adapting to typical practical issues of observational environmental data, and in

turn, extending the applicability of the r-Pareto process.

The motivation behind this investigation arises from the temporal inconsistencies

observed in environmental observations. In extreme spatio-temporal statistics, miss-

ing data poses a significant challenge. A time series at any site will likely have miss-

ing observations within its observed period for numerous possible reasons, and it is

reasonable to assume they are missing at random. In many multivariate or spatial

statistical analyses, gap-free data sets are a fundamental prerequisite. No existing

spatial extremes approach deals with the issue of missingness, all implicitly assume

no data are missing. Missing data imputation is often a necessary procedure when

deletion is the only alternative. Many methods of missing data imputation are

available, see (Enders 2022). However, the task of imputation is highly non-trivial,

especially in data with a large proportion of missingness. As noted by Mishra &

Khare (2014) the proportion of missingness significantly impacts the reliability of

imputation methods. Yozgatligil et al. (2013) caution that imputation methods

become increasingly unreliable and many algorithms, e.g., the EM-MCMC method

(or the popular MICE algorithm Wu et al. 2022) become unsuitable beyond 50%

missingness.

Furthermore, imputation methods that do not account for the uncertainty in the

imputed values will introduce a level of artificial reduction in uncertainties in model
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3.1. Introduction

estimates (Glasbey 1995, Griffith & Liau 2021), and incorrect imputations may in-

troduce bias, with both giving misleading results. This issue is again exacerbated

by the proportion of missingness. In our analysis of maximum daily summer tem-

perature (Chapter 4), our observed time series comprises approximately 33% of the

complete data set. Imputing such a huge proportion of the data set would require

significant effort which is beyond the scope of our research goals.

The use of multiple imputation (MI) is suggested when dealing with extensive miss-

ingness (Madley-Dowda et al. 2019). MI generates a range of plausible values for

each missing observation. This alleviates false precision associated with single impu-

tation methods. The increase in computational cost is manifold as the practitioner

is required to perform the statistical analysis on each imputed data set. Our anal-

ysis of extreme temperatures is already computationally burdensome and so MI is

not practical. Furthermore, the success of MI in the case of large missingness is

owed to the use of information borrowed from auxiliary variables. In our analysis,

there are no appropriate covariates available, making MI an infeasible solution.

Finally, imputing missing values in spatio-temporal data can be challenging due to

the intricate spatial and temporal dependencies, particularly in the extremal set-

ting. In general, the imputation of extreme values is difficult (Clavel et al. 2014, Wu

et al. 2022, Chapon et al. 2023). The goal of imputation is to heavily rely on the

observed data and minimally on theoretical assumptions (Jean-Baptiste & Jean-Luc

2014, Gao et al. 2018). However, accurate imputation of missing extreme obser-

vations must rely on an extreme value theory-based model, and so is typically not

helpful. We are therefore motivated to describe a spatio-temporal extreme model

that can handle the inconsistent dimensionality of spatial observations caused by

missing values without the need for imputation. Our simulation study in Section 3.7

illustrates that our parameter estimation method, which avoids data imputation,

gives more accurate parameter estimates of an r-Pareto process than a model fit to

only complete spatial observations, which is the standard approach.

In environmental statistics, a typical analysis involves modelling the spatial be-

haviour of a process given a set of observations at different locations over time.

Consider the usual case in weather observation data where a small subset of loca-

tions have long-term historical records extending back several decades with a larger

subset having observations over a more recent time period. We wish to fit a full
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spatio-temporal model which describes the dependence between all sites over time.

To include the longer-term historical records in this model, the practitioner can

choose to model only those sites with the longest records, likely leading to a spa-

tially sparse data set. Alternatively, the practitioner could disregard events that are

not observed at every site in the analysis. This practice of large data omittance leads

to several issues including biased and unrepresentative inference as well as weaker

inference with more uncertainty (Graham 2009). Disregarding available data from

historical time periods removes a lot of information about the long-term behaviour of

that process. We risk overlooking important historical contexts and potentially los-

ing valuable information about wider spatio-temporal domains. In spatial extreme

value theory, as observations of rare events are of utmost importance, omitting data

can lead to the exclusion of crucial extreme observations. Leaving out extreme ob-

servations, which are already scarce and valuable for understanding rare events can

greatly impact inference and prediction of extreme events potentially leading to

underestimation of their associated risks. We propose a method that enables us to

utilise all available data, allowing practitioners to make informed inferences based

on the complete data set, leading to a more robust and accurate spatio-temporal

description of extreme events.

In this chapter, we explore the properties and characteristics of the Hüsler-Reiss

distribution, exploring its adaptability in describing the asymptotic behaviour of

vectors with unequal dimensions. Throughout, we aim to provide a comprehensive

understanding of the theoretical background of the HRD, ensuring that researchers

and practitioners can effectively apply such a model. The layout of this chapter

is as follows. In Section 3.2 we describe the definition of the HRD along with an

outline of its derivation. In Section 3.3 we derive the spectral density of the HRD

and prove that it is closed under marginalisation in Section 3.4. In Section 3.5, we

derive estimators for the HRD in an r-Pareto process setting, accounting for missing

data. In Section 3.6 we present software that can be used to readily apply the HRD

in different scenarios followed by a simulation study comparing an r-Pareto process

model (parameterised by the spatial HRD, i.e., the Brown-Resnick process) that

accounts for missingness with a model that only deals with complete observations

in Section 3.7.
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3.2. The Hüsler-Reiss distribution

3.2 The Hüsler-Reiss distribution

Given a collection of iid d-dimensional random vectors X1,X2, . . . ,Xn, where

X i = (Xi,1, Xi,2, . . . , Xi,d) for i = 1, 2, . . . , n which are standard Fréchet distributed

(achievable through probability integral transformation), we define the vector of

suitably normalised component-wise maxima as

Mn =

{
max

i=1,...,n
Xi,1, max

i=1,...,n
Xi,2, . . . , max

i=1,...,n
Xi,d

}
.

We know that if

Pr
(
n−1Mn ⩽ x

)
→ G(x), as n→ ∞,

where G is non-degenerate in each margin, then G is a multivariate extreme value

distribution. Furthermore, G has the form

G(x) = exp {−V (x)} , (3.1)

where V is called the exponent measure, and has the form

V (x) = d

∫
Sd

{
max

i=1,...,d

(
ωi

xi

)}
dH (ω1, . . . , ωd) (3.2)

for x = (x1, . . . , xd) ∈ Rd
+, where H is called the spectral measure and is a distri-

bution function defined on the (d− 1)-dimensional simplex Sd,

Sd =

{
[w1, w2, . . . , wd] ∈ [0, 1]d :

d∑
i=1

wi = 1

}
,

with H satisfying an equal marginal moment constraint. A detailed introduction

and derivation of the multivariate extreme value distribution are discussed in detail

in Chapter 2 (Section 2.2).

For modelling extreme dependence between a collection of Fréchet marginal random

variables, it is useful and indeed typically necessary to specify a parametric form

for the multivariate extreme value distribution, G. The HRD is one such valid

parametric form of G and has enjoyed significant application across diverse domains
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3.2. The Hüsler-Reiss distribution

such as finance (Tian et al. 2023), engineering (Fu & Sayed 2022) and environmental

science (Bargaoui & Bardossy 2015). Hüsler & Reiss (1989) derived the HRD

through consideration of the asymptotic behaviour of component-wise multivariate

sample maxima of normal random vectors.

If X i are iid with a multivariate normal copula (with no correlation parameter

equal to 1) then it is well-known that the associated multivariate extreme value dis-

tribution G as defined in (3.1) is a mutually independent distribution. To achieve

asymptotic dependence, Hüsler & Reiss (1989) circumvented this issue by consid-

ering a triangular array where the n-th row contains n samples from a multivariate

normal distribution with correlation matrix being a function of n, with these cor-

relations tending to 1 as n → ∞. So, they remove the identically distributed

assumption of the above.

For simplicity, firstly consider X i with bivariate normal copula whose correlation

coefficient, ρ(n), is a function of the sample size n. Hüsler & Reiss (1989) show

that if ρ(n) = ρ < 1 for all n then the component-wise maxima are independent in

the limit as n→ ∞. In contrast, if ρ(n) = ρ = 1 for all n then the component-wise

maxima are completely dependent in the limit as n→ ∞. However, if ρ(n) → 1 as

n→ ∞ such that

[1− ρ(n)] log n→ λ2 as n→ ∞, (3.3)

and λ ∈ (0,∞), then the limiting component-wise maxima are neither independent

nor completely dependent but are asymptotically dependent and non-degenerate.

Since we can normalise the margins through probability integral transform, in prac-

tice data does not need to have standard normal margins or the limiting Gumbel

or Fréchet forms. The bivariate Hüsler-Reiss copula is given by

C(u, v;λ) = exp

{
−ũΦ

(
λ−1 +

λ

2
log

ũ

ṽ

)
− ṽΦ

(
λ−1 +

λ

2
log

ṽ

ũ

)}
, (3.4)

for 0 ⩽ u, v ⩽ 1, where ũ = − log u, ṽ = − log v, and Φ(·) is the standard normal

distribution (Joe 1997). Notice that if λ→ 0, we would have that

lim
λ→0

C(u, v;λ) = exp{−ũ− ṽ} = exp{log u+ log v} = exp{log(uv)} = uv,
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3.2. The Hüsler-Reiss distribution

which shows independence between the marginals. If u > v, and so log(ũ/ṽ) < 0,

then we have limλ→∞C(u, v;λ) = exp{−ṽ} = exp{log v} = v. Conversely, if u < v,

and so log(ṽ/ũ) < 0, we have limλ→∞C(u, v;λ) = u. So, in general, if λ → ∞ we

have

lim
λ→∞

C(u, v;λ) = min(u, v),

which is the copula of a completely dependent distribution.

The Hüsler-Reiss copula can readily be transformed to have any marginal distri-

bution through probability integral transform. The top row of Figure 3.1 shows

samples from a Hülser-Reiss copula, with increasing values of dependence parame-

ter, λ, from left to right. The bottom row of the same figure shows the data from

the respective copula above, transformed to have standard Gumbel margins i.e.,

GEV(0,1,0), so the bottom row shows samples from a bivariate HRD with Gumbel

margins. We can see with larger values of the dependence parameter λ we capture

stronger dependence.

Figure 3.1: Simulations from a bivariate Hüsler-Reiss copula with increasing
dependence parameter λ = 0.1, 1, 2, 10 from left to right (top row). Data from
the respective plot above, transformed to have GEV margins with parameters
µ = 0, σ = 1 and ξ = 0 (bottom row).
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3.2. The Hüsler-Reiss distribution

Now we outline the d-dimensional case. Consider the triangular array Qn, where

row n consists of n-samples from a d-dimensional multivariate normal distribution,

Qn =



X1,1

X2,1 X2,2

X3,1 X3,2 X3,3

Xn,1 Xn,2 Xn,3 Xn,n


.

All multivariate variables in the triangular array are independent. The n-th row of

Qn follows a MVN distribution with correlation matrix Pd(n) ∈ Rd×d given by

Pd(n) =


ρ1,1(n) ρ1,1(n) ρ1,d(n)

ρ2,1(n) ρ2,2(n) ρ2,d(n)

ρd,1(n) ρd,2(n) ρd,d(n)

,

which is a function of the sample size, n, with correlation coefficient elements ρi,j(n)

where 1 ⩽ i < j ⩽ d and with ρij(n) = ρji(n) when j < i. The condition (3.3)

extends naturally to the d > 2 dimensional case. If Pd(n) satisfies

Λ = lim
n→∞

log(n).


1− ρ1,1(n) 1− ρ1,1(n) 1− ρ1,d(n)

1− ρ2,1(n) 1− ρ2,2(n) 1− ρ2,d(n)

1− ρd,1(n) 1− ρd,2(n) 1− ρd,d(n)

,

where Λ ∈ (0,∞)d×d belongs to the set of symmetric, strictly conditionally negative

definite matrices, the normalised row maxima of Qn converge to the d-dimensional

HRD, which is completely characterised by the matrix

Λ =


λ21,1 λ21,1 λ21,i

λ22,1 λ22,2 λ22,i

λ2i,1 λ2i,2 λ2i,i

,

where λ2i,j ∈ [0,∞), with λ2i,j = limn→∞(log n)[1− ρi,j(n)].
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3.2. The Hüsler-Reiss distribution

Explicit derivation of any higher dimensional (d > 2) HRD is complex and re-

quires the following notation setup. Given the motivating example of incomplete

weather observations, we adopt environmental statistics nomenclature. Suppose

we have observations x = (x0, x1, . . . , xk) ∈ Rk+1 at a set of sites S ∈ Rk+1,

where S = {0, . . . , k} denotes the indices of all observable sites in the region

S. We are ultimately interested in describing the d = k + 1 variate HRD of

an extremal process over these sites. We let Mr denote all ordered subsets of

S of size r. That is, Mr = {m0, . . . ,mr−1} ⊆ S such that |Mr| = r and

0 = m0 < m1 < · · · < mr−1 ⩽ k. Following the definition of the HRD as de-

scribed in the original article by Hüsler & Reiss (1989), for Λ =
(
λ2i,j
)
0⩽i,j⩽k

and

m ∈ Mℓ+1, we define the matrix

Ψℓ,m(Λ) = 2
(
λ2mi,m0

+ λ2mj ,m0
− λ2mi,mj

)
1⩽i,j⩽ℓ

∈ Rℓ×ℓ,

where ℓ = 1, . . . , k, where for ease of notation, if ℓ = k we denote Ψk,Mk+1(Λ)

as Σ ∈ Rk×k. The matrix Ψ is simply a function of a sub-matrix of Λ and

site m0. Then, we denote the ℓ-dimensional survivor function of a normal ran-

dom vector with mean 0 and covariance matrix Ψ as ςℓ( · ;Ψ), i.e., ςℓ( · ;Ψ) =∫∞
· · · ·

∫∞
· ϕℓ(uℓ ;Ψ)du1du2 . . . dul, where uℓ = (u1, u2, . . . , uℓ) ∈ Rℓ and ϕℓ(·) is the

ℓ-dimensional normal density function. Then we have that the (k + 1)-dimensional

HRD with standard Gumbel margins, for x = (x0, x1, . . . , xk) ∈ Rk+1 is

HΛ(x) = exp

(
k∑

ℓ=0

(−1)ℓ+1
∑

m∈Mℓ+1

fℓ,m,Λ(xm0 , xm1 , . . . , xmℓ
)

)
,

where

fℓ,m,Λ(y0, . . . , yℓ) =

∫ ∞

y0

ςℓ

((
yi − z + 2λ2mi,m0

)
i=1,...,ℓ

;Ψℓ,m(Λ)
)
e−zdz,

where y = (y0, y1, . . . , yl) ∈ Rℓ+1, 1 ⩽ ℓ ⩽ k, and f0,m,Λ(ym0) = e−ym0 when

m = m0. Hence, for m ∈ Mℓ+1,

ςℓ

((
yi − z + 2λ2mi,m0

)
i=1,...,ℓ

;Ψl,m(Λ)
)
=∫ ∞

y1−z+2λ2
m1,m0

· · ·
∫ ∞

yl−z+2λ2
ml,m0

ϕl(uℓ ;Ψℓ,m(Λ))duℓ . . . du1.
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3.3. Spectral Density of HRD

An explicit expression for the d > 2 dimensional HRD can be derived. However,

given the complexity of the distribution it quickly becomes very difficult to write

down. An explicit expression for the 3-dimensional HRD can be found in Genton

et al. (2011). Note that the HRD is a limiting distribution of normalised component-

wise maxima and so is a max-stable distribution. In the following section, we give a

detailed treatment of the spectral density of the HRD which we later use to derive

an estimator for the distribution’s parameters.

3.3 Spectral Density of HRD

In practice, the estimation of the parameters of G is most effectively achieved by

estimating the distribution’s associated spectral density (Ballani & Schlather 2011).

For the purpose of deriving an expression for the spectral density function hΛ of the

HRD, it is more convenient to consider standard Fréchet margins, so we define GΛ

as the HRD parameterised by dependence matrix Λ, with standard Fréchet margins

GΛ(x) = HΛ(logx),

GΛ(x) = exp

(
k∑

ℓ=0

(−1)ℓ+1
∑

m∈Mℓ+1

fl,m,Λ(log xm0 , log xm1 , . . . , log xmℓ
)

)
.

Using (3.2) and (3.2) for m ∈ Mℓ+1 we can rewrite fℓ,m,Λ as

fℓ,m,Λ(log y0, . . . , log yℓ) =∫ ∞

log y0

∫ ∞

log y1−z+2λ2
m1,m0

· · ·
∫ ∞

log yℓ−z+2λ2
ml,m0

ϕl(uℓ ;Ψℓ,m(Λ))duℓ . . . du1.e
−zdz.

Let VS,Λ(x) denote the exponent measure and hS,Λ(x) the spectral density at x,

both parameterised by the matrix Λ. From Coles & Tawn (1991, Theorem 1) we

can calculate the spectral density hS,Λ by taking partial derivatives of the exponent

measure VS,Λ. That is,

hS,Λ(x) = − ∂VS,Λ(x)

∂x0∂x1 . . . ∂xk
. (3.5)

Hereafter, we drop the subscript Λ from the function f , the spectral density h, the
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3.3. Spectral Density of HRD

exponent measure V , and the HRD G. However, they remain parameterised by

the matrix Λ unless stated otherwise. Furthermore, for ease of notation, we define

αi = log xi−z+2λ2i,0 for i = 1, . . . , k. From expression (3.1), the exponent measure

VS(x) is defined as − logG(x). We get a more convenient expression for G(x) by

substituting the expression for fℓ,m in (3.3) into (3.3) which gives us

G(x) = exp

(
k∑

ℓ=0

(−1)ℓ+1
∑

m∈Mℓ+1

∫ ∞

log xm0

∫ ∞

α1

· · ·
∫ ∞

αℓ

ϕℓ(uℓ ;Ψℓ,m(Λ))duℓ . . . du1e
−zdz

)
,

with exponent measure,

VS(x) =
k∑

ℓ=0

(−1)ℓ
∑

m∈Mℓ+1

∫ ∞

log xm0

∫ ∞

α1

· · ·
∫ ∞

αℓ

ϕℓ(uℓ ;Ψℓ,m(Λ))duℓ . . . du1e
−zdz.

Expanding this, we have,

VS(x) =(−1)0
∑

m∈M1

f0,m(xm0) + (−1)1
∑

m∈M2

f1,m(xm0 , xm1)

+ (−1)2
∑

m∈M3

f2,m(xm0 , xm1 , xm2) + · · ·+ (−1)kfk,Mk+1(xm0 , . . . xmk
),

where we drop the summation in the last term since Mk+1 = S, which simplifies

the expression further to,

VS(x) =
k∑

i=0

e−xi −
∑

m∈M2

f1,m(xm0 , xm1) +
∑

m∈M3

f2,m(xm0 , xm1 , xm2)

+ · · ·+ (−1)kfk,Mk+1(x0, . . . xk).

(3.6)

Considering the fact that we will be using (3.5) to derive an expression from the

spectral density, we see that all terms in (3.6) will differentiate to 0 (when we

jointly differentiate with respect to x0, . . . , xk) except for the final term. So, we

only consider this term, and by (3.5) we have that

hS(x) =
∂

∂x0∂x1 . . . ∂xk
(−1)k+1

∫ ∞

log x0

∫ ∞

α1

· · ·
∫ ∞

αk

ϕk(uk ; Σ)duk . . . du1e
−zdz.
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In general (by the chain rule), when F (x) :=
∫ x

a
f(t)df , we have that

d

dx

∫ g(x)

a

f(t)dt = [F (g(x))]′ = F ′(g(x))g′(x) = f(g(x)) · g′(x).

Applying this to each partial derivative/integral pair in (3.3) we get

hS(x) =
∂

∂x0
(−1)k+1

∫ ∞

log x0

(−1)k

x1 . . . xk
ϕk(ũk ; Σ)e

−zdz

=
−1

x1 . . . xk

∂

∂x0

∫ ∞

log x0

ϕk(ũk ; Σ)e
−zdz,

where ũk = (ũ1, . . . ũk), with i
th component ũi = log xi − z + 2λ2i,0 for i = 1, . . . , k,

so

−1

x1 . . . xk

∂

∂x0

∫ ∞

log x0

ϕk(ũk ; Σ)e
−zdz =

1

x1 . . . xk
ϕk(ũk ; Σ)e

− log x0
1

x0

=
1

x20x1 . . . xk
ϕk(ũk ; Σ),

where now, we can see that ũk = (ũ1, . . . ũk) with i
th component ũi = log(xi/x0) +

2λ2i,0, i = 1, . . . , k. Finally, we have that,

hS(x0, x1, . . . , xk) =
1

x20x1 . . . xk
ϕk(ũk ; Σ),

which we can write as

hS(x0, x1, . . . , xk) =
1

x20x1 · · ·xk(2π)k/2| detΣ|1/2
exp

(
−1

2
x̃⊤Σ−1x̃

)
,

where x̃ = (x̃1, . . . , x̃k) with ith component x̃i = log(xi/x0) + 2λ2i,0, i = 1, . . . , k

and recall that Σ = Ψk,{0,...,k}(Λ) ∈ Rk×k. Methods for estimating the dependence

matrix Λ based on the spectral density hS are given later in Section 3.5.

3.3.1 Spectral density on the simplex

It is often useful to transform data to pseudo-polar coordinates to show how we can

define the spectral density on the unit simplex. Let xi = rwi where r = x0+ · · ·+xk
for i = 1 . . . , k and x0 = r [1− (w1 + · · ·+ wk)]. Rearranging, we get that wi = xi/r
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for i = 0, . . . , k, where 0 ⩽ w1 + · · ·+ wk ⩽ 1 and w0 = 1− (w1 + · · ·+ wk). From

this transformation, we can express the spectral density as,

hS(w) =
1

w2
0w1 · · ·wk(2π)k/2| detΣ|1/2

exp

(
−1

2
w̃⊤Σ−1w̃

)
,

with w = (w0, w1, . . . , wk) ∈ Sk+1 and w̃ = (w̃1, . . . , w̃k) with i
th component w̃i =

log(wi/w0) + 2λ2i,0, i = 1, . . . , k, and Σ = Ψk,{0,...,k}(Λ) ∈ Rk×k. This highlights the

connection of the HRD to expression (3.2).

3.4 Marginalising the HRD

In this section, we illustrate that the HRD is closed under marginalisation. We do

this in two ways. Firstly, in Section 3.4.1, considering that the HRD is parame-

terised in terms of the exponent measure which describes the probability of being

in an extremal set bounded away from the origin, we show that marginalisation can

be achieved by taking the limit of the exponent measure wrt the missing elements.

Secondly, in Section 3.4.2, through a change of variables, we express the HRD as a

MVN distribution. This allows for a mapping of properties of the MVN distribution

(which is trivially closed under marginalisation) to the HRD setting. This transfor-

mation is useful as it provides a framework for any feature of the MVN distribution

to be mapped back to the HRD.

We begin by setting up some notation to allow us to describe spatially incomplete

observations. Recall that S = {0, . . . , k} denotes the indices of all sites. Suppose

we have a collection of observations x1,x2, . . . ,xn, with x = (x0, x1, . . . , xk), where

xs, for s ∈ S, corresponds to an observation at site s. Ideally, in each xi, for

i = 1, . . . , n, we observe the entire spatial domain, S (i.e., |xi| = |S|). We are

interested in the case where this is not true. Let D ⊂ N denote the set of indices of

sites that are missing for a given spatial event and let E = (S\D). The observation

over sites E is denoted as xE , i.e., xE = {xj}j∈E and let xD denote the missing

observations in the given spatial event. We denote the spectral density in this case

as hE .
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3.4.1 Marginalising HRD with limit argument

The exponent measure of the HRD is given by

VS(xS) =(−1)0
k∑

i=0

e−xi + (−1)1
∑

m∈M2

f1,m(x0, x1) + · · ·+ (−1)kfk,Mk+1(xS),

which we can expand to

VS(xS) =
k∑

i=0

e−xi −
∑

m∈M2

∫ ∞

log xm0

∫ ∞

αm1

ϕ1(u1;Ψ1,m(Λ))du1e
−zdz

+ · · ·+ (−1)k
∫ ∞

log xm0

∫ ∞

αm1

· · ·
∫ ∞

αmk

ϕk(uk;Ψk,Mk+1(Λ))duk . . . du1e
−zdz.

Recall that GS(xS) = exp{−VS(xS)}, and so to marginalise out the variables xD =

{xi}i∈D we consider GE(xE) = limxD→∞GS(xS) = limxD→∞ exp{−VS(xS)} =

exp{− limxD→∞ VS(xS)}. To get an expression for VE(xE), the exponent measure

where only sites indexed by E are observed, we take the limit

VE(xE) = lim
xD→∞

VS(xS).

So,

VE(xE) = lim
xD→∞

(
k∑

i=0

e−xi +
∑

m∈M2

∫ ∞

log xm0

∫ ∞

αm1

ϕ1(u1;Ψ1,m(Λ))du1e
−zdz

+ · · ·+ (−1)k
∫ ∞

log xm0

∫ ∞

αm1

· · ·
∫ ∞

αmk

ϕk(uk;Ψk,Mk+1(Λ))duk . . . du1.e
−zdz

)
.

(3.7)

Consider the limit of integrals in (3.7) which contain a missing observation, i.e.,

which have αj in the lower limit, where j ∈ D, that is, expressions of the form

lim
xj→∞
j∈D

∫ ∞

log xm0

∫ ∞

αm1

· · ·
∫ ∞

αj

· · ·
∫ ∞

αmℓ

ϕℓ(uℓ;Ψℓ,{m0,...,j,...,mℓ}(Λ))duℓ . . . du1e
−zdz, (3.8)

where ℓ ⩽ k. In order to make the integrals in (3.8) independent of z in the limit,

we take the substitution qi = ui + z for i = 1, . . . , ℓ, then the limits of the integral,
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αmi
for i = 1, . . . , ℓ become αmi

+ z = log(xmi
) − z + 2λ2i,0 + z = log(xmi

) + 2λ2i,0.

Now, the limit in expression (3.7) equals expression (3.8) where all lower limits

αj + z become limxj→∞(αj + z) = limxj→∞(log(xj) + 2λ2j,0) = log(∞) + 2λ2j,0 = ∞
for j ∈ D. That means, the limit in (3.8) becomes∫ ∞

log xm0

· · ·
∫ ∞

∞
· · ·
∫ ∞

αmℓ
+z

ϕℓ

(
q − 1z;Ψℓ,{m0,...,j,...,mℓ}(Λ)

)
dqℓ . . . dq1e

−zdz = 0.

So, after undoing the substitution, expression (3.7) becomes

VE(xE) =
k∑

i=0

e−xi −
∑

m∈M2
E

∫ ∞

log xm0

∫ ∞

αm1

ϕ1(u1;Ψ1,m(Λ))du1e
−zdz

+ · · ·+ (−1)(j)
∫ ∞

log xm0

· · ·
∫ ∞

αmj

ϕ|E|(u|E|;Ψ|E|−1,M|E|
E
(Λ))duj . . . duie

−zdz,

where Mr
E denote all ordered subsets of E of size r and u|E| = (u0, ui, . . . , uj) where

0 < i ⩽ j ⩽ k, (i, j) ∈ E .

From expression (3.5), we get an expression of the spectral density hE by taking the

partial derivative of the corresponding exponent measure, i.e., we have that

hE(xE) =−
∂|E|

∂x0∂xi . . . ∂xj
VE(xE)

=
(−1)(j+1)∂|E|

∂x0∂xi . . . ∂xj

∫ ∞

log x0

∫ ∞

αi

· · ·
∫ ∞

αj

ϕ|E|(ũ|E|;Ψ|E|−1,M|E|
E
(Λ))duj . . . duie

−zdz

=
1

x20xi . . . xj
ϕ|E|(ũ|E|;Ψ|E|−1,M|E|

E
(Λ)),

(3.9)

where ũ|E| = (ũi, . . . , ũj) and ũi = log(xi/x0) + 2λ2i,0 for 0 < i ⩽ j ⩽ k, (i, j) ∈ E .
We can see that the last line of (3.9) is exactly the spectral density of the HRD

as seen in (3.3), without margins associated with D. Therefore, the HRD is closed

under marginalisation.

3.4.2 Marginalisation of the HRD using symmetry

In this section, we provide an alternative and more fruitful method to arrive at

the result above. From (3.3), we have the spectral density h in terms of x =
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(x0, x1, . . . , xk) ∈ Rk+1
+ ,

hX(x) = x−2
0

(
k∏

i=1

x−1
i

)
ϕk (x̃k; Σ)

and where x̃k = (x̃1, . . . , x̃k) with component x̃i = log(xi/x0) + 2λ2i,0, for i =

1, . . . , k. Notice that this expression of the spectral density misleadingly appears

asymmetric and conditional on the element x0. We perform a change of vari-

ables to illustrate the symmetry of the components of x in spectral density h.

Let y = (y0, y1, . . . , yk), where yi = log xi − log x0 + 2λ2i,0, for i = 1, . . . , k and

y0 = 1/x0. We express hY (y) as hX(x)/|det J(x)| with x expressed in terms of y

and J(x) is the Jacobian matrix of the transformation from x to y. The Jacobian

matrix has (i, j)-th element

{J(x)}i,j =
∂yj
∂xi

, for i, j = 0, . . . , k.

So,

J(x) =


∂y0/∂x0 ∂y0/∂x1 ∂y0/∂xk

∂y1/∂x0 ∂y1/∂x1 ∂y1/∂xk

∂yk/∂x0 ∂yk/∂x1 ∂yk/∂xk

 =



−x−2
0 0 0

x−1
0 x−1

1

x−1
0 0 x−1

2

0

x−1
0 0 0 x−1

k



det J(x) =
−1

x20
.det


x−1
1 0 0

0

0

0 0 x−1
k

 =
−1

x20x1
.det


x−1
2 0 0

0

0

0 0 x−1
k


= · · · = −1

x20x1 . . . xk
.
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Then, |det J(x)| = 1/(x20x1 . . . xk). So,

hY (y) =
hX(x)

| det J(x)|
= x20x1 . . . xkh

X(x), (3.10)

Expanding the RHS of (3.10) we have

hY (y) = ������
x20x1 . . . xk .

1

������
x20x1 . . . xk (2π)

k/2| detΣ|1/2
exp

(
−1

2
y⊤Σ−1y

)
,

and finally,

hY (y) =
1√

(2π)k detΣ
exp

(
−1

2
y⊤Σ−1y

)
= ϕk(y; Σ) .

Hence, Y ∼ MVN(0,Σ).

Since hYS (y) is multivariate normal density, it is closed under marginalisation. This

means

hYE (yE) =

∫
hYS (y)dyD = ϕ|E| (yE ; ΣE) ,

where ΣE = Ψ|E|−1,M|E|
E
(Λ), i.e., the matrix of Σ, after removing all rows and

columns that correspond with sites in D. Recall the change of variables hYS (y) =

hXS (x)/|det J(x)|. Then,

hXE (xE) = hYE (yE)|det J(xE)|

det J(xE) = det



−x−2
0 0 0

x−1
0 x−1

s1

x−1
0 0 x−1

s2

0

x−1
0 0 0 x−1

s|E|


= −x−2

0

∏
i∈E

x−1
i ,

where s1, s2, . . . , s|E| ∈ E . Therefore,

hXE (xE) = x−2
0

(∏
i∈E

x−1
i

)
ϕ|E| (yE ; ΣE)

= x−2
0

(∏
i∈E

x−1
i

)
ϕ|E| (x̃E ; ΣE) ,

(3.11)
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where x̃E = {x̃i}i∈E and x̃i = log(xi/x0) + 2λ2i,0. Notice that (3.11) is similar to

expression (3.9), which is exactly the spectral density of the HRD without marginal

distributions associated with missing components in D, which again shows that the

HRD is closed under marginalisation.

3.5 Inference

In this section, we provide detail about how we can estimate the parameter matrix

of the HRD for the underlying spatial isotropic Brown-Resnick process. Recall that

ΣS = Ψk,Mk+1(Λ) = 2
(
λ2i,0 + λ2j,0 − λ2i,j

)
1⩽i,j⩽k

∈ Rk×k

and that Λ =
(
λ2i,j
)
0⩽i,j⩽k

. Now, take the variogram of the normal process compo-

nent to be γΘ, with parameter set Θ, and re-parameterise the matrix Λ as

Λ = {γ(|si − sj|; Θ)/2}0⩽i,j⩽k .

Then,

ΣS =

(
γΘ(|si − s0|) + γΘ(|sj − s0|)− γΘ(|si − sj|)

)
1⩽i,j∈S

.

Let t ∈ T = {1, 2, . . . , n} denote the indices of observed events, i.e., xt is observed

at time t from the random variable X. Suppose each event is observed at each

measurement site in the spatial domain, i.e., |xt| = |S| = k + 1 for each event t.

Let xt,i denote the ith element in event t of random variable X. Let L(Θ) be the

likelihood of iid observations xt for t = 1, 2, . . . , n over sites S given the parameter

matrix ΣS parameterised via a variogram function,

L(Θ) =
n∏

t=1

hS(xn ; ΣS).
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Let logL(Θ) denote the corresponding log-likelihood, which gives,

logL(Θ) = log
n∏

t=1

hS(xt ; ΣS) =
n∑

t=1

log hS(xt ; ΣS)

=
n∑

t=1

log

{
x−2
t,0

(
k∏

i=1

x−1
t,i

)
ϕk (x̃t ; ΣS)

}

=
n∑

t=1

log

{
x−2
t,0

(
k∏

i=1

x−1
t,i

)
1

(2π)k/2| detΣS |1/2
exp

(
−1

2
x̃⊤
t Σ

−1
S x̃t

)}

=
n∑

t=1

[
log

{
x−2
t,0

(
k∏

i=1

x−1
t,i

)}
− log

{
(2π)k/2| detΣS |1/2

}
− 1

2
x̃⊤
t Σ

−1
S x̃t

]

=
n∑

t=1

[
log

{
x−2
t,0

(
k∏

i=1

x−1
t,i

)}
− k

2
log {2π} − 1

2
log {| detΣS |} −

1

2
x̃⊤
t Σ

−1
S x̃t

]
,

where x̃t = log(xt,i/xt,0)+2λ2i,0. Since we are interested in determining argmaxΘh(X |
ΣS) which corresponds to maximising logL(Θ), we can disregard the terms which

are constant with respect to ΣS . So, we estimate Σ̂S as

Θ̂ = argmax
Θ

{
−n
2
log (| detΣS |)−

1

2

n∑
t=1

(
x̃⊤
t Σ

−1
S x̃t

)}
, (3.12)

which we optimise numerically to estimate the parameters Θ of the variogram γ.

3.5.1 The case of missing data

Now suppose that events are not necessarily observed over the entire spatial do-

main, S, and that instead, event t is missing observations over sites Dt and has

observations over sites Et, i.e., |xt| = |Et| ⩽ k + 1, where Et = S\Dt. Let L(Θ) be

the likelihood of iid observations xt for t = 1, 2, . . . , n. The log-likelihood of the
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parameters Θ is,

logL(Θ) = log
n∏

t=1

hEt(xt ; ΣEt) =
n∑

t=1

log hEt(xt ; ΣEt)

=
n∑

t=1

log

{
x−2
t,0

(∏
i∈Et

x−1
t,i

)
1

(2π)|Et|/2| detΣEt |1/2
exp

(
−1

2
x̃⊤
t Σ

−1
Et x̃t

)}

=
n∑

t=1

[
log

{
x−2
t,0

(∏
i∈Et

x−1
t,i

)}
− |Et|

2
log {2π} − 1

2
log {| detΣEt |} −

1

2
x̃⊤
t Σ

−1
Et x̃t

]
.

We can derive an estimator of the parameters of the variogram as,

Θ̂ =argmax
Θ

[
n∑

t=1

{
−|Et|

2
log (2π)− 1

2
log (| detΣEt |)−

1

2
x̃⊤
t Σ

−1
Et x̃t

}]

=argmax
Θ

(
−1

2

n∑
t=1

log | detΣEt| −
1

2

t∑
t=1

x̃⊤
t Σ

−1
Et x̃t

)

which we estimate through numerical optimisation.

3.6 hrd software package in R

In this section, we present a new software package, named hrd, implemented in R

to allow practitioners to readily implement several Hüsler-Reiss based models as

described above. Firstly, we provide some functions for exploratory analysis as well

as functions to fit the bivariate Hüsler-Reiss copula in two scenarios; where the

margins are known a priori (or estimated separately), and a framework to estimate

the margins and copula jointly in the component-wise maxima setting. Following

this, we provide an extension to the software in mvPot (de Fondeville & Davison

2018) where we estimate the r-Pareto process parameterised by the Brown-Resnick

process in the case of incomplete data records. The package along with installation

instructions can be found at github.com/dairer/hrd.

To illustrate the functions provided in the hrd package, we look at daily maximum

reanalysis sea surge data from the ERA5 data set (Hersbach et al. 2020). We take

23 sites across Ireland and the UK as shown in Figure 3.2, where we have a time

series of maximum daily sea surge values from 1979 to 2019 for each site. This data
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set is complete with no missing observations.
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Figure 3.2: ERA5 data locations with maximum daily storm surge data from
1979–2019.

In the following sections, we demonstrate how a practitioner may employ the soft-

ware provided in hrd to easily assess and analyse the extremal dependence of these

spatio-temporal data.

3.6.1 Exploratory analysis

We provide exploratory functions to gauge the structure of pairwise asymptotic de-

pendence between of a collection of variables. The function explore lambda() plots

an estimate of the dependence matrix Λ. By default the function plots the lower

diagonal matrix, however the full matrix can be visualised by using the argument

lower diag = FALSE. The variables are plotted in alphabetical order by default,

however, a specific order can be supplied to the argument ord. Alternatively, by set-

ting the argument use seriate = TRUE, the function uses the R package seriation

to order the variables, using the method specified by the method, argument. The

default ordering method when use seriate = TRUE is method="Spectral" (see

Hahsler et al. 2008 for details on the seriation package and ordering methods).
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The matrix Λ is estimated by standardising the marginal variables to a uniform

distribution using an empirical ranking followed by calculating the dependence pa-

rameter of the Hüsler-Reiss copula fit to every pair of variables. The copula is

fit using the provided function fit hrd() which we discuss separately later. The

estimates of the dependence parameters can be translated into the extremal depen-

dence coefficient χ using the relation χ = 2 (1− Φ(1/λ)) where Φ(·) is the standard
normal density function. The matrix of estimates of the pairwise dependence coeffi-

cient can be calculated and plotted using the function explore chi(). The output

of both explore lambda() and explore chi() can be seen in the left and right-

hand plot of Figure 3.3 respectively. The variables are plotted in order of longitude,

i.e., from most northerly to most southerly.

Estimates of parametrically derived χ from the estimated dependence matrix of the

HRD can be compared to empirical estimates of extremal dependence coefficients

corresponding to a high quantile u, which we denote as χu. Estimates of χu serve

as an empirical estimator of χ. We can estimate χu for two random vectors X and

Y as

χ̂u(X, Y ) =
|{x ∈ X : x > X(u)} ∩ {y ∈ Y : y > Y (u)}|

|{x ∈ X : x > X(u)}|

where X(u) and Y (u) denotes the u-th quantile of X and Y respectively. The func-

tion explore emp chi() plots χ̂u. For each of the three exploratory functions, the

practitioner is required to supply a matrix or data frame with d columns correspond-

ing to the d sites being analysed, where each row corresponds to an observation at

each site. The matrix supplied to explore lambda() and explore chi() should

contain bivariate component-wise maxima in each row whereas the matrix supplied

to explore emp chi() should contain all observations. The data can have any

marginal distribution. However, for the function explore emp chi(), the practi-

tioner must also specify the quantile level u for which to estimate extremal depen-

dence. The matrix of χ̂u where u = 0.8 (the default value) is shown in Figure 3.4,

where again the variables are plotted in order of longitude. We see a similar pattern

between empirical estimates from the HRD (right-hand plot of Figure 3.3) and em-

pirical estimates (Figure 3.4). However, a comparison of these plots suggests that

the HRD is overestimating the extremal dependence between some sites. This is

evidenced by the much lower level of extremal dependence estimated empirically as
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compared to parametrically in many sites.
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Figure 3.3: Output of the function explore lambda() which gives the esti-
mated lower dependence matrix of the HRD (left). Output of the function
explore chi() which gives χ derived from respective estimates in the left-
hand plot (right).
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Figure 3.4: Lower diagonal matrix of pairwise empirical estimates of χu for
u = 0.8.

We focus on three sites along the north coast of Ireland, to illustrate how a prac-

titioner could carry out a more rigorous pairwise analysis. These sites are shown

in the left-hand plot of Figure 3.5. A subsection of the time series from one of the
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sites (Malin Head) is shown in the right-hand plot of Figure 3.5. To assess the

class of extremal dependence and to ascertain if the pairwise combinations of these

sites exhibit asymptotic dependence, we provide a simple function, emp chi() to

empirically calculate the pairwise extremal dependence coefficient χ over a range of

quantiles u ∈ R.
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Figure 3.5: Three sites along the north coast of Ireland with maximum daily
storm surge data from 1979 – 2019 (left). Time series of storm surge from
Malin Head from 2016 – 2019 (right).

The practitioner again supplies a matrix or data frame with two columns corre-

sponding to two sites being analysed, where each row corresponds to an observa-

tion at both sites. However, here the user also supplies a vector of quantiles over

which to estimate χ. Plotting estimates of χu over a range of u provides evidence

to determine whether the data exhibit asymptotic dependence or not and hence

whether an asymptotic dependent model such as the Hüsler-Reiss distribution is

appropriate. Plotting χu against u for a range of high quantiles for each pair of

sites along the north of Ireland we can see that it is reasonable to assume that

each are asymptotically dependent. This is seen in Figure 3.6, since χ̂u doesn’t

asymptotically decay to 0 as we move to higher quantiles. This means that the

practitioner may be interested in applying a Hüsler-Reiss based model which we

illustrate next.
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Figure 3.6: Extremal dependence coefficient of three pairs of sites over a range
of high quantiles. Plots left-right correspond to pairs of sites Portrush - Malin
Head, Bangor - Portrush and Bangor - Malin Head. The shaded green areas
show the 95% confidence intervals of the extremal dependence coefficient esti-
mates.

3.6.2 Bivariate modelling

Suppose initially we are interested in applying a component-wise maxima-based

analysis of these three sites in Figure 3.2. The functions fit hrc() and fit hrc gev()

can be used to fit a bivariate Hüsler-Reiss copula using maximum likelihood esti-

mation. The first function, fit hrc(), takes data that have been transformed

to uniform margins, i.e., the practitioner knows the marginal distributions a pri-

ori and uses probability integral transformation to standardise both variables to

be uniformly distributed. The second function, fit hrc gev(), assumes that the

data are block maxima and on the original data scale. The function estimates

the marginal distributions which are assumed to follow a GEV distribution jointly

with the dependence parameter of the Hüsler-Reiss copula. For maximum like-

lihood estimation, the function fit hrc() uses the Brent optimisation algorithm

(Brent 1973) implemented in the function optim() provided by base R. The func-

tion fit hrc gev() uses the Nelder-Mead algorithm (Nelder & Mead 1965), which

is better suited to multivariate optimisation and is also implemented in optim().

Uncertainties in the parameters are estimated using the estimated Hessian matrix.

For our data, we construct component-wise maxima taking monthly maxima sea

surge values at each site. In Figure 3.7, for each pair of sites we plot the component-

wise maxima which are assumed to follow a max-stable distribution (e.g., the HRD)

with margins following generalised extreme value distributions.
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Figure 3.7: Component-wise monthly block maxima of sea surge data for all
pairs of three sites along the north coast of Ireland.

We denote any two vectors of block maxima for two asymptotically dependent

random variables as X and Y . To estimate the margins and copula separately for

X and Y , the practitioner first uses the provided function fit gevd() to estimate

the parameters of the GEV of both vectors. The maximum likelihood estimator of

the GEV is

Θ̂X = argmax
ΘX

n∑
i=1

log fGEV (xi;ΘX),

where fGEV is the density function of the GEV and the vector ΘX are the pa-

rameters of the GEV distribution for variables X. Using the estimated parameters

of the GEV, we can standardise X and Y to have uniform margins as Xunif =

FGEV (X;ΘX) and Y
unif = FGEV (Y ;ΘY ), where F

X
GEV and F Y

GEV are the distribu-

tion functions of the GEV. The maximum likelihood estimator of the HR copula in

the function fit hrd() is then

λ̂ = argmax
λ

n∑
i=1

log c
(
xunifi , yunifi ;λ

)
,

where c is the density function of the bivariate Hüsler-Reiss copula, given as

c(u, v ;λ) =
1

uv
C(u, v ;λ)

[
Φ

(
1

λ
+

1

2
λ log z−1

)
Φ

(
1

λ
+

1

2
λ log z

)
+
1

2
λv−1ϕ

(
1

λ
+

1

2
λ log z

)]
,

where C is the corresponding distribution function, as in expression (3.4).
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To estimate the margins and copula jointly for X and Y , the practitioner can use

the function fit hrd gev(), which has maximum likelihood estimator

{
λ̂, Θ̂X , Θ̂Y

}
= argmax

{λ,ΘX ,ΘY }

n∑
i=1

log[fX
GEV (xi;ΘX)f

Y
GEV (yi;ΘY )

c
{
FX
GEV (xi;ΘX), F

Y
GEV (yi;ΘY );λ

}
],

(3.13)

where c is the density function of the bivariate Hüsler-Reiss copula, FX
GEV and F Y

GEV

are the estimated distribution functions of the GEV for X and Y respectively and

fX
GEV and fY

GEV are the density function of the GEV for X and Y respectively. The

vectors ΘX and ΘY are the parameters of the GEV distribution for variables X

and Y respectively.

To compare both methods described above, we estimate the margins and copula of

monthly maxima sea surge data at Malin Head and Portrush. In Figure 3.8, we plot

estimates for ΘX = (µ1, σ1, ξ1) and ΘY = (µ2, σ2, ξ2), which are the location, scale

and shape parameters of the two marginal distributions Malin Head and Portrush

respectively as well as the dependence parameter λ. The black points represent

estimates from the two-step, marginal (using fit gevd()) followed by dependence

estimate (using fit hrd()) procedure. The magenta points are estimates from the

joint marginal and dependence estimate (using fit hrd gev()). As can be seen in

Figure 3.8, the two fitting procedures give comparable results. However, we note

that the likelihood in fit hrd gev(), as in expression (3.13) is trickier to optimise.

Specifically, the estimator is sensitive to initial conditions. This joint marginal

and dependence modelling procedure seems to give a more certain estimate of λ,

the dependence parameter. However, the estimates of the shape parameter of the

marginal distributions, in particular, are more uncertain. Where computationally

feasible, the joint fitting procedure provided in fit hrd gev() may be a more de-

sirable method, giving a more realistic model, irrespective of the uncertainty values.
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Figure 3.8: Comparison of GEV and bivariate HRD parameter estimates from
two-step modelling procedure, consisting of marginal estimates followed by
copula estimate (black) and full joint marginal and copula estimate (magenta).
In each case, the vertical line segments show 95% confidence interval of their
respective point estimates.

We note that due to closure to marginalisation of the HRD, all information about

the dependence matrix of higher dimensional HRD (d > 2) is contained in the

set of all bivariate pairs. That means higher dimensional analysis can be achieved

by estimating the bivariate HRD between all pairs. However, in the case of miss-

ing data, the construction of matrix Λ from pairwise λ estimates may not give a

strictly conditionally negative definite matrix and so care is needed to satisfy this

constraint. We estimate the bivariate HRD between all pairs of sites along the north

of Ireland as shown in Figure 3.7 using the two-step estimation method. Using the

function rhr(), we can generate bivariate simulations from the HRD on uniform

margins. The practitioner supplies the number of desired simulations n along with

the estimated dependence parameter lambda. The simulations can then be trans-

formed to a data scale using the inverse of the marginal distribution function. We

implement the inverse of the generalised extreme value distribution in the function

qgev(). The simulations can be used to answer probabilistic questions about ex-

treme events of the process. We plot a collection of 100 simulations in red over the

component-wise maxima in Figure 3.9.
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Figure 3.9: Simulations of component-wise monthly block maxima from the
HRD transformed to data scale margins through the inverse of GEV distribu-
tion fitted to each series of block maxima.

We provide code for the bivariate copula as it proves very useful in many settings.

For example, we can model the dependence between two variables at a single site.

For example, we could model the dependence between max daily temperature and

min daily temperature on extremely hot days. This is an important topic since heat

relief is a critical covariate in heat-related mortality. We highlight this as future

work and give a more detailed discussion of this topic in Chapter 6.

3.6.3 Fitting a Brown-Resnick process

The mvPot package developed by de Fondeville & Davison (2018) provides soft-

ware to estimate an r-Pareto process parameterised by a Brown-Resnick process

following the method of Engelke et al. (2015). We extend our software to allow for

changing dimensions. We implement the estimator as described in Section 3.5.1 in

the function fit rpareto br().

To fit this model, the user must specify a variogram function. The variogram

function must accept two arguments, firstly a numeric value h ∈ R+ which is the

distance between two sites (calculated within the function fit rpareto br()) and

secondly, a numeric vector which stores the parameters of the variogram being

estimated. For example, to use the power law variogram the practitioner can define

the function as follows

> my_vario <- function(dist, pars) pars[1] * dist^pars[2]

which will be used internally by the function fit rpareto br().
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The practitioner supplies two lists dt and locs in addition to the variogram func-

tion, vr to the function fit rpareto br(), each with a length equal to the number

of observed spatial events. The first list, dt, should contain vectors of observed

values on standardised margins. The second list, locs, should contain data frames

with two columns corresponding to longitude and latitude, and each row describing

the location of the observation in the respective position of the vector in the cor-

responding element of the list dt. Note that if the function is passed a data frame

instead of a list for locs, the function assumes there are no missing data and uses

the estimator described in expression (3.12). Simulations can be generated using

the mvPot package.

3.7 Simulation study of Brown-Resnick process pa-

rameter estimation with missing data

We present a simulation study to highlight the potential benefits of incorporating

all available data to model incomplete spatio-temporal records rather than only

modelling fully observed spatial observations. The left-hand plot of Figure 3.10

shows the simulated site locations with point size and colour indicating the record

length at each site. Our data simulation procedure is as follows. We sample 10

random locations uniformly in [0, 1] × [0, 1]. We sample the number of records

(or number of days observed) at each site from an exponential distribution with

a rate parameter of 1/5000 which gives an average of 5, 000 simulated ‘days’ or

approximately 13.7 ‘years’ per site. We increment each duration by 365× 5 to have

at least 5 ‘years’ of data at each site. The right-hand plot of Figure 3.10 further

highlights and compares the duration of simulated data at each site.
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Figure 3.10: Uniformly random sampled locations in [0, 1] × [0, 1] ∈ R2, with
size and colour of points indicating the amount of data observed at that site
(left). Time span of records at each site, presented in years (right).

Using the R package mvPot, we simulate from the multivariate Pareto distribution

associated to the Brown-Resnick process over the sites shown in the left-hand plot of

Figure 3.10 using a power law variogram γ(h) = α|h|β with scale parameter α = 0.8

and range parameter β = 1. We simulate 12, 754 spatial events, corresponding to

the length of the longest simulated record (in site indexed 1). We remove values

from those sites marked as not observed in accordance with the missingness pattern

shown in the right-hand plot of Figure 3.10. Since the simulations are iid we do not

have to account for the “temporal” ordering of events when removing observations.

We now compare estimates of the variogram parameters using only complete spatial

observations to estimates using all spatial observations with at least two observed

sites. We have 2, 620 fully spatially observed events each and 9, 425 events with

at least two sites observed. Recall that, spatial events whose risk, r, exceeds a

sufficiently high threshold, u, will be well-approximated by an r-Pareto process.

We denote by u(τ) the τ -th quantile of risks for all simulated spatial events being

modelled. We take risk functional r to be the mean of observations in an event. For

both modelling approaches, we take extreme events as those whose risk (calculated

as the average value in an event) is in the top 20-th, 10-th and 5-th percentile, i.e.,

we take τ = 0.8, 0.9, 0.95 and estimate the spatial/angular component (W ) of the

r-Pareto process (Y = RW ) using the Brown-Resnick process. Table 3.7 presents

the number of extreme spatial events and total marginal level observations we are

left with in each case.
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Fully observed events All records (d > 2)

τ # extreme events # observations # extreme events # observations

0.8 524 5,240 1,885 12,721

0.9 262 2,620 943 6,382

0.95 131 1,310 472 3,150

Table 3.1: Number of extreme spatial observations and marginal level obser-
vations above the v = 0.8, 0.9 and 0.95 quantiles when considering only fully
observed records and when considering all records with at least two sites ob-
served.

The estimates of the parameters of the variogram from both modelling approaches

can be seen in Figure 3.11. Both methods give reliable estimates of the true values

for extreme events about the 20-th and 10-th quantiles of risk, with the true value

within the 95% uncertainty bounds. However, unsurprisingly, incorporating more

data gives less uncertain estimates throughout. As we move to the highest threshold

of u(0.95), we see that using only the complete records is poor as the true values

lie outside the parameter’s 95% uncertainty estimates. This is in contrast to our

proposed method which avails of much more data, achieving more reliable and

robust estimates estimation of parameters. This is evident in the estimated value’s

proximity to the true values as well as the low uncertainty as compared to the

complete cases method, which gives weaker inference with more uncertainty even

at lower threshold levels.
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Figure 3.11: Variogram parameter estimates for r-Pareto process simulation in
the top 20-th (left), 10-th (centre) and 5-th (right) percentiles. The blue centre
point in each plot represents the true parameter values, scale α = 0.8 and
range β = 1. The points and vertical segments represent maximum likelihood
estimates of parameters along with 95% uncertainties. The orange points
represent estimates using all spatial events that have at least two sites observed
while the green points represent estimates using only complete spatial records.

3.8 Conclusion

In this chapter, we have presented a modelling framework that allows us to fit an r-

Pareto process, parameterised by a Brown-Resnick process, to spatial observations

with incomplete and inconsistent dimensionality. Our framework avoids the need for

data imputation as well as the omittance of events that are not fully observed over

sites being analysed. Our approach allows for the inclusion of much more data in

typical observational environmental data settings where data records have differing

lengths over sites. Our simulation study reveals that the presented methodology

allows for more accurate and precise parameter estimation as compared to estimates

based on the subset of fully observed events. We also provide a software package,

hrd in R which is publicly available on GitHub to allow applied scientists to avail of

this modelling methodology. The method is applied to observational temperature

records over Ireland in the following Chapters 4 & 5.
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4
Inference for extreme spatial temperature

events in a changing climate with

application to Ireland

We investigate the changing nature of the frequency, magnitude, and spatial extent of

extreme temperatures in Ireland from 1942 to 2020. We develop an extreme value model

that captures spatial and temporal non-stationarity in extreme daily maximum temper-

ature data. We model the tails of the marginal variables using the generalised Pareto

distribution and the spatial dependence of extreme events by a semi-parametric Brown-

Resnick r-Pareto process, with parameters of each model allowed to change over time.

We use weather station observations for modelling extreme events since data from climate

models (not conditioned on observational data) can over-smooth these events and have

trends determined by the specific climate model configuration. However, climate models

do provide valuable information about the detailed physiography over Ireland and the

associated climate response. We propose novel methods which exploit the climate model

data to overcome issues linked to the sparse and biased sampling of the observations. Our

analysis identifies a temporal change in the marginal behaviour of extreme temperature

events over the study domain, which is much larger than the change in mean temperature

levels over this time window. We illustrate how these characteristics result in increased

spatial coverage of the events that exceed critical temperatures.
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4.1 Introduction

The Intergovernmental Panel on Climate Change (IPCC 2021, Chapter 11) reports

an observable change in extreme weather and climate events since around 1950.

Characterisation of extreme temperature events is crucial for societal development,

for estimating risks, and to enable the mitigation of their effects for many sec-

tors, e.g., healthcare, economic growth, agricultural disruption, and infrastructure.

Brown et al. (2008) observed a warming of both maximum and minimum temper-

atures since 1950 for most regions indicating an increasing number of warm days,

longer heatwaves, and fewer cold extremes.

In Ireland, changing extreme temperature behaviour has also been observed. McEl-

wain & Sweeney (2007) found that a warming of both maximum and minimum

temperature observations occurred for all sites over 1961–2005. O’Sullivan et al.

(2020) showed that the frequency of extreme temperature events for County Dublin

has increased over the period 1981–2010. Both these approaches considered only

the marginal behaviour of extremes. To the best of our knowledge, the only mod-

elling of spatial extreme temperature events in Ireland is by Huser & Wadsworth

(2022). They used a gridded Irish temperature data set, which has the potential to

be over-smooth relative to the observed process, and fitted their model to these data

under the assumption of stationarity over time and space. Under similar stationar-

ity assumptions, Fuentes et al. (2013) and Cebrián et al. (2022) present analyses of

extreme spatial temperatures for other locations.

We are interested in developing a model which captures the temporal evolution of

spatial extreme temperature events over Ireland. This involves modelling how the

marginal distributions vary over space, accounting for spatial dependence within

extreme events, and modelling how these two elements vary over time. Our focus

is on modelling extreme-value data. However for a spatial process, an extreme

event can consist of abnormally high values in part of the region and typical values

elsewhere (Davison et al. 2012).

Observational extreme event data are sparse and so they need to be used effi-

ciently. The traditional statistical approach is to model these data with powerful

probabilistic characterisations from extreme value theory. This theory provides a

parsimonious asymptotic justification for extrapolation which enables us to describe
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the properties and behaviour of events which are more extreme than those previ-

ously observed. However, the theory by itself will not provide information on how

to spatially interpolate over heterogeneous geography or how to account for when

the characteristics of complex spatial events change over time. Here we propose a

novel approach to address these issues which exploits the physical knowledge of the

climate processes from information given by fine-scale climate model data. We re-

view existing extreme value methods for spatial and temporal processes and outline

our strategies for using climate model data.

The theory of univariate extreme values for stationary processes (Leadbetter et al.

1983), and the associated statistical models (Coles 2001), fully determine a simple

parametric distributional family, namely the generalised Pareto distribution (GPD),

as the non-degenerate limit distribution for the normalised excesses of a threshold,

as that threshold tends to the upper endpoint of the marginal distribution. The

GPD has been very widely used in diverse applications since the exposition of Davi-

son & Smith (1990). To deal with non-stationarity, the GPD parameters have been

allowed to change smoothly with covariates, initially using fully parametric regres-

sion models and more recently with a range of different non-parametric smoothing

methods (Chavez-Demoulin & Davison 2005, Youngman 2022). We model the up-

per tails of the marginal distribution of the temperature process using the GPD,

with covariates selected from space, time, information from climate models, and

established measures/causes of climate change.

The most established approach to spatial extreme modelling uses max-stable process

models (de Haan & Ferreira 2006). These processes are the class of non-degenerate

limiting distributions of linearly normalised site-wise maxima, typically fitted to

annual maxima data observed at each site in a set of locations over years. They

are a natural extension of univariate block maximum limit theory, and so have

generalised extreme value distributions for their margins. Brown & Resnick (1977)

introduced a widely used subclass of these models, derived from Gaussian random

fields, known as Brown-Resnick processes, with Davis et al. (2013) applying this

model to spatio-temporal data.

The major problem with max-stable models is that they do not model, and so cannot

capture, spatial patterns of observed extreme events. Inference using these models

can lead to biased estimation of dependence (Huser & Wadsworth 2022). A recent
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development in the modelling of spatial threshold exceedances is the generalised

r-Pareto process (Thibaud & Opitz 2015, de Fondeville & Davison 2018, 2022).

Generalised r-Pareto processes, like max-stable processes, exhibit a strong form of

dependence, known as asymptotic dependence (defined in Section 4.4.2) between

all sites. This implies that for an event which is extreme at any location in space,

there is a positive probability that this event will be extreme everywhere else in

the spatial domain. For processes over spatial domains that are large relative to

the scale of the spatial dependence of the process, this is an unrealistic assumption.

More flexible spatial models, building from those in Wadsworth & Tawn (2022) are

discussed in Appendix B.7.1.

In Section 4.4 we define these extremal dependence properties precisely and provide

evidence that generalised r-Pareto processes are suitable for daily maximum tem-

peratures over Ireland. We identify extreme spatial fields, based on observations

at d sites, as those which exceed a sufficiently high threshold for a risk function

r : Rd → R+. We model these fields as realisations of a Brown-Resnick Pareto pro-

cess, which is closed under marginalisation (Engelke & Hitz 2020), an important

property given the time-varying level of missing temperature data in our applica-

tion.

We have observational daily maximum data for a network of 182 Irish temperature

stations, with only 38% of these having more than 30 years of data due to differential

operational periods and quality controls, which is further compounded by spatial

selection bias in the station locations. We also have a rich spatio-temporally com-

plete data set generated from a climate model, giving daily maximum temperatures

over 56 years on a fine grid over the island of Ireland. These climate model data are

not conditioned on the observed weather, so their values on any given day have no

correlation to the observed data, but they have similar probability distributions to

the observed data at the associated sites and time of the year. The climate model

data have no missing values or location biases; they are on a dense regular grid

and incorporate the impact of known geophysical structures on the temperature

process.

Although it may be tempting to analyse the simpler climate model data than the

observed station data, climate models involve some abstraction of the physical pro-

cesses they model and so tend to under-predict extreme events in magnitude and to
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over-estimate dependence owing to the climate model’s smoothness over space and

time, see Section 4.3 and Section 4.4. So direct analysis of the climate data is not

ideal but clearly, they offer vital additional information to the observational data.

Various attempts have been made to downscale the climate model data to produce

a proxy for the observed data which gives a spatial and temporally complete data

set, e.g., Maraun et al. (2017), with the focus to date being on assessing marginal

features. We prefer to let the observational data stand for themselves, particularly

in relation to the information they provide about temporal non-stationarity as the

climate model data have trends determined by the climate model configuration that

is an imperfect representation of the real-world processes.

The novelty of our method is achieved through the use of state-of-the-art extreme

value methods for marginal distributions, spatial dependence, and temporal non-

stationarity which collectively exploit knowledge from climate science and through

the use of appropriate metrics for describing changes in spatial extreme events.

Our use of climate science relies heavily on how our inference for the observational

temperature data leverages core information from the climate model data, i.e.,

parameter estimates (within sample quantiles and GPD parameters) over space,

and through our careful assessment of, and sensitivity to, the effects of the inclusion

of various climate-based covariates.

The chapter is organised as follows. Section 4.2 details the observational and climate

model data used. Section 4.3 and Section 4.4 describe the marginal and dependence

modelling of the process respectively, in each case accounting for their changing be-

haviour over time. In Section 4.5 we use the model to explore how the properties

of spatial extreme events have changed over time. Conclusions and a broader dis-

cussion are given in Section 4.6 and Section 4.7. All our code and instructions on

how to access the data are available on GitHuba.

4.2 Data

We start with a note on nomenclature since we use multiple data sets which differ

in their structure and use. We use the term ‘station data’ to refer to data taken

ahttps://github.com/dairer/Extreme-Irish-Summer-Temperatures.
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directly from weather stations. These are irregularly located and suffer from missing

values. The term ‘climate model data’ refers to physics-based simulations of the

weather system which are run on high-resolution grids and do not aim to match

individual weather events, rather they model the spatio-temporal dynamics of the

weather system. Finally, ‘observation-based data products’ are gridded data sets

which arise from some form of statistical or physical interpolation of station data.

4.2.1 Station data

Our daily maximum temperature data comprise 182 Irish temperature stations

compiled from two sources, the locations of which are shown in Figure 4.1. For

the Republic of Ireland, data for 151 stations came from Met Éireann’s archiveb.

Data for 31 Northern Ireland sites were obtained through the CEDA archive (Met

Office 2012). Collectively, these data have many missing values, with the availability

of data decreasing further back in time. We have more than twice the data from the

1950s than the 1940s, with all stations pre-1950 (except one) being coastal. We have

56% of daily values observed in the last 30 years and only 0.53% observed before

1942. We present and contrast results hereafter for the years 1942 and 2020 and

focus our discussion on this period. No single day has data for every station. The

average span of data for each station is about 30 years, with observations ranging

from 1931 to 2022. The sites with the most data tend to be located near the coast

reflecting historical and present-day observational priorities.

Our interest is in extreme warm temperatures in Ireland, so we restrict our analysis

to data from the summer months June, July, and August (JJA). This choice is

supported by the finding that 93% of all the days with temperatures above the 99%

site-wise marginal quantile occur in summer, with this proportion increasing with

the level of marginal quantile. Furthermore, we assume that within each summer the

process is temporally stationary, with exceedances being reasonably spread across

the summer. Exploratory analysis supporting both of these choices is reported in

Appendix B.2.3.

bCopyright Met Éireann. Source: https://met.ie/climate/available-data/historical-data.
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4.2.2 Climate model data

Climate models are mathematical representations of the physical processes driving

weather and climate and represent our best understanding of these natural phe-

nomena (Giorgi 2019). Climate models are broadly run on two scales; large-scale

global climate models (GCMs) and finer-scale regional climate models (RCMs). An

RCM is informed by the GCM at its boundary. Crucially, climate model data do

not correlate with the observed time-evolution of weather, rather they have proba-

bilistic structures that reflect plausible weather sequences which could occur. They

are typically designed to investigate the effect of potential external forcing on the

climate system by, e.g., increases in greenhouse gas concentrations arising from an-

thropogenic activities. We identify and exploit physical and topographical features

in the output of these models and use them to adjust for spatial and temporal bias

in the observed data set.

We use RCMs for their detailed topographical information and their physical de-

scription of temperature processes. When relying only on climate models to under-

stand extreme weather it is common to consider several GCM/RCM combinations,

each with different initial conditions and future climate scenarios. This choice

will have limited impact for us as we use station data to describe the magnitude

and frequency of temperature events, and the climate model data only to inform

non-temporal features. We use data from the CLMcom-CLM-CCLM4-8-17 RCM

combined with the ICHEC-EC-EARTH GCM. Specifically, we have daily maximum

temperatures over a 56-year period (created using the atmospheric climate drivers

from 1950 to 2005) on a regular grid of 558 points over Ireland (corresponding to

a 0.112 degree resolution). Figure 4.1 (right) shows the values for the day with the

largest average temperature over Ireland in this data set. This plot illustrates two

features which we exploit in Section 4.3 and Section 4.4 respectively. Firstly, the

RCM provides much greater spatial coverage in the interior of Ireland than the sta-

tions in Figure 4.1 (left). Secondly, extreme temperature events can be very widely

spread across Ireland, since even the sites with the lowest values on this day have

temperatures in their marginal distributions’ upper tails.
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Figure 4.1: Ireland data locations: station data sites, with the amount of data
indicated by colour and size (left). Sites marked with an ‘×’ correspond to
Malin Head (North), Roches Point (South), Phoenix Park (East), Claremorris
(West) and Mullingar (Centre); climate model data from MOHC-HadREM3-
GA7-05 showing a generated extreme temperature event (right).

4.2.3 Covariates: observation-based data products

To model temporal non-stationarity of extreme temperature data it is common to

use time as the sole covariate, although this will have severe limitations outside

the range of the data as potential emission scenarios diverge. Instead, we use the

time-varying covariates that climate scientists believe best represent changes in

observed mean temperatures. These are predictable into the future under different

emission scenarios. We use two covariates; smoothed monthly average temperature

anomalies for the global averageMG(t) and for the grid box over IrelandM I(t), from

the observation-based data product HadCRUT5, over time t. See Appendix B.2.1

for details and plots of the covariates. Over 1942–2022, both covariates increase by

≈ 1◦C, with the change accelerating.

Our exploratory analysis, using spline-based models, identified that the shortest

distance to the coast, for each site, was a potential descriptor of the change of

temporal trends. We define this covariate by C(s), for each site s. To estimate

the coastal distance C(s), we use the st distance() function from the R package

sf (Pebesma et al. 2023), to calculating the shortest euclidean distance between
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each synoptic weather station and the Irish coastline. Data for the Irish coastline

was downloaded using the R package rnaturalearth (Massicotte et al. 2023). We

consider the covariate of the annual CO2 emissions (CO2(t)) for Ireland; see plot

and details in Appendix B.2.2. Since there is strong collinearity present in the

collective covariates zt := {t,MG(t),M I(t),CO2(t), C(s)} we only use one of these

at a time in each model.

4.3 Marginal models

4.3.1 Overview and strategy

Let Xo(t, s) denote the observed station data comprising summer maximum daily

temperature at time t and site s, and let Xc(t, s) be the equivalent process from

the climate model data. We assume temporal stationarity within each year for each

site and each process. Here t ∈ N indexes summer days within and across years

and s ∈ S ⊂ R2, where S denotes Ireland, with s corresponding to the vector of

latitude and longitude. We have data on the two processes at So ⊂ S and Sc ⊂ S
and at times To and Tc respectively. For To we also have missing data for some of

the stations as discussed in Section 4.2. We use the subscripts to identify the type

of process throughout, though the indexing is dropped when discussing methods

which apply similarly to both processes.

In Section 4.3.2, we propose a spatial and temporal quantile regression model for

the data to derive an estimate of the distribution function of X(t, s). As the tails

of this distribution are particularly important to model well, we introduce a thresh-

old u(s) which is fixed over time but varies in space, above which we replace the

quantile model with the generalised Pareto distribution (GPD) parametric model

with temporal and spatial covariates. The justification for our choice of a constant

threshold over time is discussed in Section 4.7.2. Novelty in our approach comes

from using estimates from the Xc process to infer features of the Xo process, which

is appealing as |So| ≪ |Sc| and |To| ≪ |Tc| for most sites. Given all these considera-

tions, we need to estimate thresholds, the temporally varying marginal distributions

over S for below the thresholds, the GPD parameters for above the thresholds, and

to do this for both the Xc and Xo processes.
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When analysing the climate model data we need to account for the following issues.

First, our use of these data is to improve our spatial mapping and to overcome issues

of missing data in the analysis of the observational data. Second, climate model

data can show different time dynamics from that of the observed process since they

are based on incomplete physics and forcing detail. We want our analysis to be

robust to temporal non-stationary aspects of the climate model data, so we assume

that Xc(t, s) are temporally stationary in our analyses. As the trend in the climate

model data is 4% of the variation in the data at each site, this is not too restrictive

an assumption.

4.3.2 Modelling the body of the distribution

Given the issues raised in Section 4.3.1 about Xc(t, s), we take the following sim-

ple approach for the inference of its distribution. For site s we estimate the τth

quantile of Xc by using the empirical sample quantile for the climate model data

at that site alone; we denote this estimator by q
(τ)
c (s). We use this approach for all

τ over the range [0.01, 0.99]. This estimator is reliable as we have sufficient data

(5152 days with none missing) and, due to the climate model data being numerical

model output, their spatial variation is very smooth, so statistical spatial smooth-

ing methods are more likely to induce bias than to enhance the analysis through

information sharing.

For the analysis of Xo(t, s), the issues of spatial sparsity of stations, limited data,

varying periods of records of stations, and the need to account for temporal vari-

ations, lead to a different approach than for Xc(t, s). We follow the approach of

Yu & Moyeed (2001) and that of the R package evgam (Youngman 2022) by using

the asymmetric Laplacian distribution (ALD) for quantile regression to estimate

a range of spatially and temporally varying τth quantiles, q
(τ)
o (t, s), for a grid of

τ ∈ [0.01, 0.99], for all t ∈ T and s ∈ S. The density function of the ALDτ is

fALDτ (y; q, ψ) = τ(1− τ)ψ−1 exp
{
−ρτ (y − q)ψ−1

}
, y ∈ R, (4.1)

where ρτ (z) = {τ − I(z < 0)}z is the check function, q ∈ R is a location parameter,

corresponding to the τth quantile of interest, and ψ > 0 is a scale parameter. We

assume that q and ψ vary smoothly over So and To.
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For estimating q
(τ)
o (t, s) and log{ψ(τ)

o } we consider not just t and s as covariates

but also incorporate as potential covariates the associated quantile from the climate

model data q
(τ)
c (s) and each of the climate-based covariates of Section 4.2.3. The

former provides richer spatial information that is not captured in the observational

data set, and the latter gives a causal set of time-varying covariates. Details of the

analysis using these models are presented in Section 4.3.5.

To provide estimates for all τ , we fit this model separately for a grid of τ values

and use a cubic interpolation spline for each s to give a continuous estimate over

0.01 ≤ τ ≤ 0.99 for q̂
(τ)
o (t, s). We keep the grid of τ values relatively coarse to avoid

issues of quantile estimates crossing. This gives us an estimate of the distribution

function of Xo(t, s) as

Fo,t,s(q̂
(τ)
o (t, s)) := Pr{Xo(t, s) < q̂(τ)o (t, s)} ≈ τ ∀ τ, ∀ s ∈ S. (4.2)

This model provides estimates for all quantiles for any s ∈ Sc, not just So, and at

all times where we have the covariates, e.g., not just for t ∈ To. At each site s,

below the threshold u(s) (defined in Section 4.3.3) we use this distributional model

Fo,t,s.

4.3.3 Modelling the tails of the distribution

It is well known that quantile regression, and hence the ALD model, is unreliable

for estimating quantiles in the tails of the distribution and provides no means to

extrapolate beyond the observed data. As the upper extremes of the distribution

of Xo(t, s) are important to us, we chose to use a different model based on extreme

value methods. This enabled us to produce a model that is continuous over all t

and s, with the extreme value model being used above a high threshold, and the

ALD model describing data below.

One option is to have a threshold, u(t, s), that varies over time and space computed

for a given quantile, e.g., u(t, s) = q̂(τ)(t, s), for a choice of τ . However, in extreme

value inference, it is well-known that it is difficult to objectively select a threshold

and/or to account for the uncertainty in that choice (Northrop et al. 2017). Here it

is the temporal change in extreme events which is of most interest, and this trend

is small relative to other sources of variations in the data. We do not select a time-
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varying threshold using information from the body of the distribution, as this may

bias results for the extremes. Instead, we choose the threshold to be constant over

time but varying over space, i.e., u(s). Our choice is discussed further in Section 4.7.

To reduce subjectivity, for each site and for both Xc and Xo processes, we use a

common exceedance probability for the fixed-over-time threshold. Based on the

use of standard extreme value threshold selection methods for stationary processes

(Coles 2001) which we applied at each site/process separately, we identified that

the 90% quantile was suitable. For the reasons discussed in Section 4.3.1 and

Section 4.3.2 we use the site-specific 90% empirical sample quantile for uc(s) but a

model-based estimate for uo(s). Specifically, we fit the model for density (4.1) with

τ = 0.9 with the location parameter structured as uo(s) := q
(0.9)
o (s) = β0+β1uc(s),

with (β0, β1) parameters. Thus the climate model data provides a means by which

the spatially varying threshold uo for the observed data Xo can be estimated. This

routine aims to overcome the data quality limitations and to provide estimates for

all s ∈ Sc.

For a given threshold there are two remaining elements required to model the ex-

tremes, namely the threshold exceedance probability λo(t, s) and the distribution

H of the excesses of the threshold (Chavez-Demoulin & Davison 2005). We consider

these in turn. We estimate λo(t, s) from the model for the body of the distribution,

using the set of estimated distribution functions (4.2). Specifically,

λo(t, s) = 1− τuo(t, s),

where τuo(t, s) is the value of τ , at time t, which makes q̂
(τ)
o (t, s) = uo(s). If there

is no temporal non-stationarity in Xo(t, s) then by construction of the threshold

uo(s), we would have λo(t, s) = 1− τ = 0.1 across t ∈ To and s ∈ So.

For each site s we assume that excesses of the threshold u(s) follow a generalised

Pareto distribution (GPD); see Pickands (1975) and Davison & Smith (1990) for the

probabilistic justification and properties. The GPD(σ, ξ) has distribution function

H(y;σ, ξ) = 1− (1 + ξy/σ)
−1/ξ
+

for y > 0, with a shape parameter ξ ∈ R and a scale parameter σ > 0, with the

notation x+ = max(x, 0), and ξ = 0 is obtained by taking the limit as ξ → 0.
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When X(t, s) > u(s) the threshold excess, Y (t, s) = X(t, s)− u(s), is taken to be

distributed as

Y (t, s) ∼ GPD(σ(t, s), ξ),

where we discuss the choice of models for σ(t, s) below, and where the shape pa-

rameter is taken to be constant over time and space. This choice of homogeneity

for the shape parameter for both Xo and Xc (i.e., values ξo and ξc respectively) is

supported by exploratory analysis in Appendix B.3.2, but it is typical in GPD mod-

elling as there is limited evidence against this in almost all applications, and for the

pragmatic reason that even a homogeneous value is difficult to estimate well. Fur-

thermore, this choice reduces the risk of parameter identifiability problems (Davison

et al. 2012).

Combining λo(t, s) with the model for H gives our overall marginal distributional

model Fo;t,s for the upper tail of Xo(t, s). Specifically for y > uo(s) we have

Fo;t,s(y) = 1− λo(t, s)[1−H(y − uo(s);σo(t, s), ξo)]. (4.3)

As with the estimation of the quantiles below uo(s) for Xo, we use information

from Xc to provide a spatial covariate for σo(t, s). We aim to learn about temporal

non-stationarity exclusively from the observational data, so only information about

the spatial variation of the marginal tail distribution is taken from Xc. We fit a

model of the form

Yc(t, s) ∼ GPD{σc(s), ξc}, (4.4)

for the excesses of uc(s) = q
(0.9)
c (s). When modelling the climate model data we be-

lieve we have sufficient observations and spatial consistency, from their generation,

to treat σc(s) as site-specific, i.e., not imposing any spatial smoothness on the GPD

scale parameters over s ∈ S. Clearly, it would be wrong to smooth well-estimated

parameters spatially if we want to capture the relevant geophysical features of the

climate system. As discussed in Section 4.3.1 we do not allow the temporal vari-

ation in the climate model to be informative about the observational data so we

keep σc constant over t.

Full likelihood inference is not possible as any realistic model for the station data is

likely to be highly complex, requiring spatial and temporal dependence of the data
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to be modelled. Instead, we use a pseudo-log-likelihood

pℓc (σc(s) : s ∈ Sc; ξc) =
∑
s∈Sc

[∑
t∈Tc

log h(yc,t,s;σc(s), ξc)

]
, (4.5)

constructed under the false assumption of spatial and temporal independence, with

h being the density function of the GPD. This inference approach is commonly used,

e.g., by Davison et al. (2012). The maximisation of this function can be broken down

into a series of 1-dimensional optimisations by alternating the maximisation over ξc

with the scale parameters fixed, and then exploiting the partition of the function

pℓc with respect to s when maximising over each σc(s) in turn whilst treating ξc as

constant. Iterating in this way until convergence is achieved gives estimated values

{σ̂c(s}; s ∈ Sc} and ξ̂c.

Next, we model the extreme observational data excess above the threshold, uo(s),

denoted by Yo(t, s). The generic form of each of the models we consider is

Yo(t, s) ∼ GPD(σo{zt, σ̂c(s)}, ξo),

where we model log σo{zt, σ̂c(s)} as either a parametric linear model of log σ̂c(s)

and the covariates zt (defined in Section 4.2.3) or via a generalized additive model

(GAM) formulation. We denote the parameters of σo by θ. As with the inference for

the climate model data we have to use a pseudo-log-likelihood, constructed under

the false assumption of spatial and temporal independence. For the fully parametric

model, the pseudo-log-likelihood is

pℓo (θ; ξc) =
∑
s∈So

[∑
t∈To

log h(yo,t,s;σo, ξo)

]
,

whereas in the GAM setting pℓo is adapted by incorporating an additive spline

smoothing penalty term (Wood 2006). Given the use of a pseudo-penalised likeli-

hood, we cannot use standard methods for the evaluation of parameter uncertainty

and model selection. Instead, the approaches we use are discussed in Section 4.3.4,

with our marginal tail inference for the data being presented in Section 4.3.5.
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4.3.4 Model uncertainty quantification and selection

In cases where a pseudo-likelihood is used, as in Section 4.3.3, the most widely

adopted method for model selection is to adapt standard information criteria to ac-

count for model/likelihood mis-specification to greater penalise complexity relative

to a better pseudo-likelihood fit. For spatial extremes, the composite likelihood in-

formation criterion (CLIC, Davison et al. 2012) is sometimes used, which includes a

first-order asymptotically motivated additive adjustment factor. However, despite

being used in many pseudo-likelihood approaches, we have chosen not to use CLIC

for model selection. This is because the likelihoods for extremes are far from the

asymptotic elliptical forms around the mode, yet CLIC relies on such asymptotic

theory; CLIC measures only goodness of fit in the sample yet we have rich enough

data to exploit out-of-sample model assessment; and for determining the param-

eter uncertainty we are not relying on asymptotic theory. Below we outline the

alternative approaches we use.

4.3.4.1 Bootstrap methods

For both model selection and parameter uncertainty evaluation we generate boot-

strapped samples X∗
o of {Xo(t, s) : t ∈ To, s ∈ So} for a given marginal distribution

model. These bootstrap samples need to preserve all spatial dependencies, short-

range temporal dependence consistent with the passage of weather systems, missing

data patterns of the observational data, and to exhibit the temporal non-stationarity

of the fitted model.

For a given marginal model, the bootstrap takes the set of transformed observed

data {xUo (t, s) = Fo,t,s(xo(t, s)) : t ∈ To, s ∈ So} where Fo,t,s is given by the two

model components of Section 4.3.2 and Section 4.3.3. The xUo (t, s) values are realisa-

tions of Uniform(0, 1) random variables that are identically distributed over time for

each s ∈ So, but with the temporal and spatial dependence structure of the Xo(t, s)

process retained. To these data, we apply a vector temporal block bootstrap, with

details of block structure and adaptions to account for the missing data described in

Appendix B.3.4. For each bootstrapped data set XU∗ = {XU∗
o (t, s) : t ∈ To, s ∈ So}

we use the inverse of the distribution function Fo,t,s to create the bootstrapped sam-

ple X∗
o with elements

X∗
o (t, s) = F−1

o,t,s{XU∗
o (t, s)}. (4.6)
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Applying this raw bootstrap method induces bias in parameter estimates, and hence

in sampling distribution estimates. The bias stems from ties in the extreme boot-

strapped data that this method produces. As the very largest observations in a

data set are known to be the most influential on the GPD model fit (Davison &

Smith 1990) this is particularly problematic. There is negative bias in the esti-

mate of the shape parameter of the GPD. Since the shape and scale parameters

are negatively correlated, there is also a positive bias in the scale parameter esti-

mator. To adjust for these biases we use a bootstrap error correction, as described

in Appendix B.3.5. This is a two-step procedure with a location adjustment to the

bootstrapped shape parameter estimate, then the scale parameter is re-estimated

after fixing the adjusted shape parameter.

4.3.4.2 Cross-validation

For model fit diagnostics, we use two types of cross-validation (CV) to evaluate

the performance of our models on out-of-sample data (Hastie et al. 2001, Ch 7.).

We use standard 15-fold CV (15-CV) so that the data are divided into 15 groups

(folds), where each fold is removed in turn and the model is fitted to the remaining

folds. Since standard CV can perform poorly when the data have spatial or temporal

correlation (Roberts et al. 2017), we also use a spatio-temporal CV (ST-CV) with 15

folds, corresponding to 5 spatial clusters of station data (i.e., divided spatially into 5

contiguous groups) and 3 temporal folds. Each temporal fold consists of every third

week in the summer months, preserving long-term temporal non-stationarity. We

choose 5 spatial partitions of our 182 sites as being low enough to help account for,

and reduce, bias introduced via spatial auto-correlations as well as being sufficiently

large that it reduces variance in our performance metrics across folds (Schratz et al.

2019). We define the 15 ST-CV folds as all combinations of spatial and temporal

clusters, taking the intersection as a fold. We also investigated higher number of

spatial clusters (up to 30) and higher number of random folds (up to 90) and found

equivalent model performance rankings as those presented here.

For each left out fold, we compute two different goodness-of-fit measures to evaluate

out-of-sample performance, the root mean square error (RMSE) and the continuous

ranked probability score (CRPS, Gneiting & Katzfuss 2014). The RMSE evaluates

the general closeness between the empirically estimated and predicted quantiles,

108



4.3. Marginal models

whilst the CRPS aims to match both the calibration and the sharpness of these

extremes quantiles (Zamo & Naveau 2018). Here the empirical quantile, x
(τ)
o (t, s)

is evaluated using the ordered data at site s and the year which contains time t,

whereas the predicted quantiles are estimated as x̂
(τ)
o (t, s) = F−1

o,t,s(τ) for quantile τ

from the appropriate model. The comparisons between x
(τ)
o and x̂

(τ)
o , for the same t,

s, and τ , are averaged across the folds. Lower values of RMSE and CPRS generally

indicate a superior fit.

4.3.5 Marginal data analysis

4.3.5.1 Body of distribution

Following exploratory analysis, we identified three potential models for the body of

the distribution, which we present in Table 4.1 along with their CV RMSE. The

first model serves as a base, in which the location parameter is constant over space

and time for each quantile τ . In the second model we allow the quantile regression

to vary spatially by using the corresponding climate model data quantiles q
(τ)
c (s)

as a covariate. The third model also includes the temporal Irish mean temperature

covariate M I(t). The inclusion of the climate model covariate reduces the RMSE

for both types of CV, whereas M I(t) improves the CV scores further, though not

as much. We fitted a number of other covariate combinations for zt, as well as

using the principal components of zt to avoid issues of collinearity. Overall, we

found the third model provides the best balance of simplicity and fit, so use this

for subsequent analysis.

Table 4.1: Cross-validation (RMSE) on the quantile regression analysis for the
body of the distribution.

Model structure for q̂
(τ)
o (t, s) ST-CV 15-CV

β
(τ)
0 1.442 1.455

β
(τ)
0 + β

(τ)
1 q

(τ)
c (s) 1.350 1.347

β
(τ)
0 + β

(τ)
1 q

(τ)
c (s) + β

(τ)
2 M I(t) 1.322 1.319

Appendix B.3.1 provides estimates of β
(τ)
2 , which show a slight decrease with τ al-

though the confidence intervals widen. For all τ , β
(τ)
2 = 1 appears consistent with

the data, indicating that mean summer temperatures in Ireland are a good repre-

sentation of the temporal change for all the body of the distribution. The estimates
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of β
(τ)
1 (not plotted) decrease, approximately linearly, from 0.75 to around 0.65 with

0 < τ < 1, showing that the climate model is not giving identical descriptions to

the station data, as the estimates differ from 1 significantly and change with τ .

4.3.5.2 Tails of the distribution

For selecting the threshold uo(s), we use the second model in Table 4.1 with τ =

0.9, providing a threshold that varies in space but not time. Figure 4.2 (left)

shows the threshold uo(s) over Ireland, with cooler temperature values on the west

of Ireland and coastal regions on the south and north coasts. For this uo(s) we

estimate the threshold exceedance probability λo(t, s) and its spatial average λo(t) =∫
s∈Sc

λo(t, s)ds/|Sc|. Estimates of the latter are shown in Appendix B.3.1. The

λo(t) estimates show an increasing exceedance rate, with the average rate over time

of 0.1 reflecting the choice of the threshold, increasing by around 35% with 95%

confidence interval 28-44% from 1942–2020. We see the same features at individual

sites, but with wider confidence intervals.
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Figure 4.2: Estimated values of threshold uo(s) (left), GPD scale parameter
according to M2 in 2020, (centre), and the estimated change in the scale pa-
rameter since 1942, ∇σo(s) (right).

Table 4.2 presents a subset of the models that we explored for the GPD scale

parameter: incorporating climate model data via σc, defined by expression (4.4)

and constant over time in model M0; allowing for temporal non-stationarity via

M I(t) in M1; allowing also temporal non-stationarity via M I(t) in M2 as both a

constant rate of change and as an interaction with coastal distance C(s). Other

models were attempted with differing covariates and spline structures included but

these failed to improve over modelsM0–M2. However, over a range of spline models
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we noticed that they were consistently suggesting evidence for different temporal

trends on the coast relative to inland, hence our introduction of the C(s) covariate.

Table 4.2: ModelsM0–M2 for GPD log-scale parameter, log σo(t, s), along with
cross-validation results and estimated shape parameter, ξo, with bootstrapped
95% confidence intervals. Numbers in bold font show the lowest CV values.

ST-CV 15-CV ξo

RMSE CRPS RMSE CRPS

M0 β0 + β1 log σc(s) 0.945 0.895 0.928 0.882 −0.152(−0.237,−0.092)

M1 β0 + β1 log σc(s) + β2M
I(t) 0.938 0.894 0.918 0.880 −0.156(−0.204,−0.110)

M2 β0+β1 log σc(s)+β2 log C(s)+

β3M
I(t) + β4 log C(s)M

I(t)

0.934 0.893 0.908 0.878 −0.158(−0.194,−0.110)

Table 4.2 presents our model selection diagnostics based on CV metrics (CRPS and

RMSE). All four approaches favour model M2, with M0 and M1 having similar,

slightly inferior performance, and we find that M0 is too simplistic. Models M0–

M2 estimate the coefficient of log σc as close to 1 in all cases, showing that the

climate model is providing very helpful information as a spatial covariate. The

estimates of the shape parameter ξo are also given in Table 4.2. As the GPD scale

parameter model is made increasingly flexible (from model M0 to M2), the value of

ξo decreases, lightening the tail decay, indicating that each model is progressively

reducing sources of variation in the tail. Since there is some uncertainty in the

marginal model choice, we take M0, M1, and M2 through the spatial dependence

analysis to assess the sensitivity of the risk measures, with details for model M2

reported here and for M0 and M1 in Appendix B.

ModelM2 shows that the most variable excess distribution is on the west coast (see

centre plot in Figure 4.2), with a decay in values from west to east, so almost the

opposite of the behaviour of uo(s). We also investigated the estimated change in

the scale parameter over the observation period, denoted ∇σo(s) = σo(2020, s) −
σo(1942, s), see Figure 4.2 (right), and found it to be largest in the centre of Ireland,

with the change there being close to double that on the coast. The scale parameter

is increasing over time everywhere, leading to warmer extreme temperatures.

The model selection diagnostics in Table 4.2 show primarily the relative quality of

the three model fits. To assess the absolute quality of the fitted model M2 we use
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pooled QQ plots in Figure 4.3, pooling over all sites and years. Due to the spatio-

temporal non-stationarity of the marginal model, we transform the data through

our fitted model into a common uniform scale and to a common exponential scale

(for the conditional distribution of threshold excesses). The choice of scales helps

identify key departures of fit in the body and tails of the distribution respectively.

We see evidence of an exceptionally strong fit in both components of the distri-

bution, with values near the lines of equality, and in the far upper tail, all values

falling within the pointwise tolerance bounds which were derived assuming inde-

pendence of time and space (so are much narrower than necessary). Examples of

similar site-specific QQ plots are shown in the appendix, Figure B.13 for the five

stations identified in Figure 4.1 and for five other randomly selected stations. These

show a slightly more varied quality of fit, with the least good fits occurring on the

coastlines, e.g., Malin Head, but with very good fits at most stations.

Figure 4.3: Spatially and temporally pooled QQ-plots for model M2: all data
on uniform margins, threshold shown as vertical line (left); tail model (GPD)
on exponential margins. The shaded region shows pointwise 95% tolerance
intervals (right). The lines of equality are in red.

4.4 Spatial models

4.4.1 Standardising data

When modelling dependence between variables with differing marginal distributions

and covariates, it is common to first standardise the marginal variables so that they

have an identical distribution over variables and covariates (Coles 2001, de Haan
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& Ferreira 2006). Here we transform the data to (unit) Pareto distributions, XP ,

XP
c , and XP

o , using the same subscript notation as in Section 4.3. The choice of

Pareto marginal scale is ideal for studying asymptotically dependent variables, a

property defined in Section 4.4.2, such as r-Pareto processes (de Haan & Ferreira

2006), but less ideal for asymptotically independent variables, where shorter-tailed

Exponential or Laplace distributions are favoured (Wadsworth & Tawn 2022). We

make use of the probability integral transform, i.e.,

XP (t, s) = 1/ [1− Ft,s{X(t, s)}] , for all s ∈ S and all t, (4.7)

where the marginal distribution function Ft,s takes a different estimated form below

and above u(s), see Section 4.3.2 and Section 4.3.3. Thus, if the marginal model

is perfectly estimated, we have Pr(XP (t, s) > y) = y−1 for all y > 1, t, and

s. In our uncertainty assessment in the subsequent inference, the marginal model

uncertainty is accounted for through our bootstrap procedures. To transform from

standard Pareto margins to the original distribution at s and t, the inverse of the

transformation (4.7) is used.

4.4.2 Classification of extremal dependence type

We now explore the nature of the extremal spatial dependence structure in the

processes XP
c and XP

o . To simplify notation we omit the temporal dimension of

these spatial processes but always consider the process on the same day at different

locations. Following Coles et al. (1999), we estimate the pairwise coefficient of

asymptotic dependence, χ. Specifically, for the process XP at sites si and sj,

χ = χP (si, sj) is defined by

χP (si, sj) = lim
v→∞

Pr(XP (sj) > v
∣∣XP (si) > v).

If χP (si, sj) > 0 (or equals 0) then XP is said to be asymptotically dependent (or

asymptotically independent) respectively for these sites. The larger the value of χ

(0 < χ ≤ 1) the stronger the asymptotic dependence.

The selection of the appropriate extremal dependence model for the data depends

on whether or not the process is better approximated as being asymptotically de-

pendent for all si, sj ∈ S or not. The base quantity that is typically used to identify
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asymptotic dependence for a pair of sites is χP (·, ·; p), where

χP (si, sj; p) = Pr(XP (sj) > vp
∣∣XP (si) > vp), (4.8)

with vp = 1/(1− p) being the pth marginal quantile of XP . An empirical estimate

of χP (si, sj; p) exploits the replication over t by assuming spatial dependence does

not change with t. We denote this estimator by χ̃P (si, sj; p). We expect approxi-

mate spatial stationarity and isotropy of the spatial extreme process. Plotting (not

shown) the cloud of χ̃P (si, sj; p) against the Euclidean distance between the sites

(hij = ∥si − sj∥), reveals a decay with distance that is somewhat hidden by the

sampling variation of the points, with the variation depending on the overlap in time

of samples at the pairs of sites. A better empirical estimate of χP (h; p), the pairwise

extremal dependence at separation distance h, exploits the property that it changes

smoothly over h and that we can obtain the sampling distribution of χ̃P (si, sj; p)

through the bootstrap. Together these enable us to construct a weighted estimate

χ̃P (h; p) from the cloud of points (using pairs with hij close to h) and obtain its

sampling distribution. We used 300 bootstraps and 30 binned distances, each with

an equal number of pairs of sites.

Figure 4.4 shows the behaviour of χ̃P (h; p), for both XP
c and XP

o processes. It shows

estimates and intervals that account for 95% of the marginal estimation uncertainty,

which for Xo we used model M2. These estimates are shown for p ∈ (0.8, 0.85, 0.9),

the latter corresponding to only 9 days per summer. Despite the climate model

having a much richer set of pairs of sites and longer simultaneous data, both pro-

cesses provide very similar qualitative findings. Naturally, χP (h; p) decreases with

distance but it is far from zero, in all cases, even at the longest distances of pairs

of sites from S. For short distances, the estimates of χc(h; p), exhibit less variation

than in the estimated values for χo(h; p). We have that χ̂P
o (h; p) ≤ χ̂P

c (h; p) for all

distances, suggesting that the Xc data are overestimating the extremal dependence

in Xo. This difference is important when looking at extreme events spatially, as it

suggests using the climate model data alone (or when down-scaled) will lead to an

overestimate of the risk of widespread heatwaves in Ireland.

Most critical for our modelling of the observed process is to assess whether, as

p increases to 1, the χ̂P
o (h; p) values decay to zero or stabilise at a non-zero limit

indicating asymptotic independence and asymptotic dependence respectively. There
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is a small decline, at all distances, however even when p = 0.9 these estimates are

far from zero for both XP
c and XP

o . So we conclude that it seems reasonable that

maximum daily temperature data are consistent with asymptotic dependence over

Ireland.
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Figure 4.4: Empirical estimates χ̃P (h; p) plotted against inter-site distance h
for the climate model (χP

c ) (orange) and station data (χP
o ) (blue). Plots use the

marginal modelM2 for p = 0.8, 0.85 and 0.9 (left to right) with 95% confidence
intervals shown as vertical lines.

4.4.3 r-Pareto Processes

We now model the extreme values of the process XP (t, s) over s ∈ S, with unit

Pareto distributed marginal variables. We look at spatial fields separately for each

t and simplify notation by dropping the argument t. First, we define what we mean

by a spatially extreme event as there is no natural ordering of multivariate or spatial

processes. Here the level of extremity of the stochastic process XP := {XP (s) : s ∈
S} is determined by a risk function r(XP ) ∈ [0,∞), where the only constraint on

r is that it is homogeneous of order 1, i.e., r(cx) = cr(x) for any constant c > 0

and with min(x) > 0. de Fondeville & Davison (2018, 2022) suggest taking r as the

magnitude at one particular site of interest, or the spatial mean, median, maximum,

or minimum over S.

Under weak conditions on XP , de Fondeville & Davison (2018) report that

Pr
{[
v−1XP (s) : s ∈ S

]
∈ · | r(XP ) > v

}
→ Pr

{[
Y P
r (s) : s ∈ S

]
∈ ·
}

(4.9)
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as v → ∞, where
{
Y P
r (s) : s ∈ S

}
:= Y P

r is marginally non-degenerate for all

s ∈ S, with Y P
r a r-Pareto process. Limit (4.9) implies that scaled events of the

XP process with risk exceeding a threshold of v are increasingly well-approximated

by an r-Pareto process, as the risk threshold increases to infinity. The limit (4.9) is

used for statistical modelling by taking it as an equality for a suitably large value

for v, denoted by vr with vr > 1, then those spatial events with a risk function

exceeding vr are treated as realisations from an r-Pareto process. Specifically, taking

an extreme set B ⊆ {x : r(x) > 1} leads to the modelling assumption that

Pr
{
XP ∈ vrB | r(XP ) > vr

}
= Pr

(
Y P
r ∈ B

)
. (4.10)

Hence, defining the set A = vrB and un-doing the conditioning on the left-hand

side of equality (4.10), for any A ⊆ Ar := {x : r(x) > vr} we obtain that

Pr
{
XP ∈ A

}
= Pr{r(XP ) > vr}Pr

(
vrY

P
r ∈ A

)
. (4.11)

The r-Pareto process exhibits properties which can be exploited for efficient eval-

uation of Pr
(
XP ∈ A

)
. Specifically, Y P

r decomposes into two independent compo-

nents:

Y P
r (s) = RWr(s) for all s ∈ S, (4.12)

where R is unit Pareto distributed and is interpreted as the risk of the process, and

Wr := {Wr(s) : s ∈ S} is a stochastic process which describes the spatial profile of

the extreme event, i.e., the proportion of the risk function r contributed by each site.

The limiting dependence structure of XP is entirely determined by the stochastic

properties ofWr. By construction R = r(Y P
r ) and r(Wr) = 1. A consequence of the

limiting approximation (4.10) holding above vr and R having a Pareto distribution

is that expression (4.11) simplifies as we have Pr{r(XP ) > vr} = crv
−1
r where, in

general, cr ∈ (0, 1] depends only on the choice of risk functional and the dependence

structure of Y . However, for our choice of r, given by expression (4.15), cr = 1

always, see Coles & Tawn (1994).

The characterisation (4.12) is powerful for the extrapolation to larger events than

those observed due to R having a known distribution and the independence property

ensuring that the spatial profiles of larger events have exactly the same stochastic

properties for any event with a risk greater than 1. For any r-Pareto process and
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a set A ⊆ Ar, there exists a constant bA ∈ [1,∞) such that for any b ∈ [1, bA] we

have that

Pr
(
vrY

P
r ∈ A

)
= b−1 Pr

(
bvrY

P
r ∈ A

)
. (4.13)

Although the two sides of this expression are equal, the two probabilities are not,

with Opitz et al. (2021) noting that the latter is much more efficient to estimate

using Monte Carlo methods. Taking b > bA will give bias, as some smaller outcomes

in A will be missed by simulations of bvrY
P
r while b < bA leads to unnecessary

variability in the empirical estimator. So we look to scale by bA in Section 4.4.4,

where we discuss how to obtain bA and illustrate its usage in estimating the right-

hand side of expression (4.11).

The above shows that inference for any extreme events is relatively straightforward

once we have a model for the process Wr. We follow Engelke et al. (2015) and

de Fondeville & Davison (2018) by modelling Wr as a spatial stationary isotropic

log-Gaussian stochastic process which is determined solely by a variogram γ(h), for

inter-site distance h ≥ 0. We use the Matérn variogram family

γmat(h; t) = α
{
1− (2

√
νh/ϕ)ν21−νΓ(ν)−1Kν(2

√
νh/ϕ)

}
, (4.14)

where Kν is a modified Bessel function of the second kind and the positive pa-

rameters (α = αt, ϕ = ϕt, ν = νt) determine the variance, range, and smoothness

respectively at time t. Our choice of a bounded variogram was based on the evidence

from Figure 4.4 which suggested that the summer temperature process is asymp-

totically dependent, even at the longest distances in Ireland. See Appendix B.7 for

additional discussion on the choice of variogram function including the support for

isotropy.

The issue of missing data in spatial extremes applications seems to be rarely dis-

cussed. A possible reason for this is that with composite likelihood fitting methods

for max-stable processes (Padoan et al. 2010) the implications are restricted as only

pairwise joint likelihood contributions are used so the impact of missing data is

limited. This is not the case for r-Pareto processes, which model jointly across all

sites, and the issue of missing data in this context does not seem to have been dis-

cussed. When encountering missing data it is tempting to remove all observations

at that time point from all sites in the network. However, we observed in Section 4.2

that this tactic would leave us with no data. Fortunately, thanks to the properties
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of the log-Gaussian process, it is possible to show that the model is closed under

marginalisation (Engelke & Hitz 2020).

With missing data, we need to be careful in selecting a suitable risk function r.

The choice of risk function needs to be invariant to the changing dimension of

partially observed events, whatever their missing patterns. Hence, in our statistical

inference at time t, for all t ∈ To, we take the risk function rt to be the average of

the standardised variables over the stations which were observed at time t, i.e.,

rt(X
P
o (t, s) : s ∈ S) =

∑
XP

o (t, si)Io(t, si)
/∑

Io(t, si), (4.15)

where Io(t, si) is the indicator variable for whether Xo(t, si) is observed or not, and

the sums are from i = 1, . . . , |So|. For evaluating rt we would have liked to use a

subset of stations that are observed for all t and reasonably evenly spread across

Ireland, but this was not possible. However the data from Aldergrove (north) are

used as this site has very little missing data over the period 1942–2020.

We set the risk threshold vr, used in expression (4.10) to define extreme spatial

events, at the 80% sample quantile of the risk values calculated from all observed

events, i.e., we use the empirical estimate P̃r{r(XP
r ) > vr} = 0.2. We explored

different threshold choices and selected the lowest level we could whilst making the

usual bias/variance trade-off for tail selection. Figure B.16 and Figure B.17 in the

appendix show that the parametric estimate of χP
o , derived from the variogram,

agrees well with empirical estimates for each marginal model M0,M1, and M2.

We explored the effect of a time-changing dependence model. We allowed for the

variance and range parameters of the Matérn variogram (5.7) to vary over time t,

while keeping ν constant. We considered a range of constant and log-linear models

using each of the marginal models M0 to M2. For M0 we find some evidence, at the

5% level, for αt increasing with M I(t) (weakening dependence over time), but not

for the improved marginal models M1 or M2. Evidence for a change in extremal

dependence was not statistically significant and so we keep a temporally stationary

r-Pareto process.
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4.4.4 Simulation and efficient inference for spatial extreme

events

We simulate spatial extreme events on the observational scale in year t by first

simulating an event from the r-Pareto process and then map this pointwise to the

data scale using the inverse of transform (4.7) for the required t. For each step

of this process we use the selected statistical model and the simulated values are

generated using the fitted parameters of that model, or for assessing uncertainty in

the point estimates, using the bootstrapped realisations of these parameters. As

the estimated r-Pareto process in our application is found to be well-approximated

by a stationary process over time, we can generate identically distributed events

of the r-Pareto process to transform for each location and time t using the time-

varying marginal model. The r-Pareto process simulations are generated using

the R package mvPot (de Fondeville et al. 2021). We denote these simulations by

yP
1 ,y

P
2 , . . . ,y

P
m, for m simulations, with the ith simulation consisting of the spatial

realisation yP
i = {yPi (s) : s ∈ S}. For the ith realisation of the r-Pareto process,

yP
i , we define , ri = r(yP

i ) > 1 as the risk, wi = yP
i /ri as the spatial profile, and

wi(s) = yPi (s)/ri as the value of the r-Pareto process at site s ∈ S.

Appendix B.5, Figure B.21 shows five simulated extreme events, transformed to

observational scale under 2020 conditions and the exact same events in 1942 con-

ditions (presented as a difference in temperatures at each site, for each event). A

positive difference shows the equivalent event in the two years to be hotter in 2020

than 1942, with that difference found to be largest for the hotter events. As the

r-Pareto process realisations can have marginal values in the range (0, 1) at some

sites, i.e., outside the domain of the Pareto variable, we follow de Fondeville &

Davison (2018) and use Fréchet marginals rather than Pareto for transformation to

the observational space.

Although expression (4.11) provides a basis for inference for the probability of

occurrence in any extreme event A ⊆ Ar by the process XP , we are most interested

in making inference about spatial events of the observational process which exceed

a critical temperature of T ◦C somewhere over Ireland at time t. We denote these

events by

At,S(T ) = {Xo(t, s), s ∈ S : ∃ s0 ∈ S with Xo(t, s0) > T}. (4.16)
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After the marginal transformation to Pareto margins, this event is equal to

At,S(T ) = {XP
o (t, s), s ∈ S : ∃ s0 ∈ S with XP

o (t, s0) > T P (t, s0)},

where T P (t, s) is the mapping of T through the transformation (4.7) at time t and

for site s. To use the r-Pareto approximation, all elements of At,S(T ) must have

a risk exceeding vr; this imposes a lower bound T > 20.6◦C across all t. We also

focus on marginal extreme events, which further restricts T ≥ maxi∈S ui = 22.9◦C.

As all the results we present in Section 4.5 are for T ≥ 26◦C this lower bound is

not restrictive for our purposes.

To estimate Pr {At,S(T )}, there have been a set of possibilities proposed, see Ap-

pendix B.6.1. We focus on the most efficient of these estimators, which exploits the

independence property (4.12), and the scaling property (4.13). Specifically, wi and

rj are independent realisations for all i, j, and there is no reason to restrict ourselves

to the observed rj as we know they are unit Pareto realisations. So we supplement

the information to have {rPj ; j = 1, . . . , L}, which are iid realisations of a unit Pareto

variable, where L is taken as large as possible to improve computational efficiency.

To find the optimal scaling factor bT (t) we first define component-wise maxima of the

simulated Pareto processes scaled to have unit cost, i.e., ω(m)(s) = maxi=1,...,mwi(s),

for each s ∈ S. At time t, we want to scale these component-wise maxima by as

much as possible without producing a scaled event with an exceedance of T P (t, s)

for some s ∈ S. The appropriate scaling is then bT (t) = mins∈S
{
T P (t, s)/ω(m)(s)

}
.

Here bT (t) = vrbA in expression (4.13). Combined together, these give a form of

importance sampling estimator

P̂rimp {At,S(T )} =
1

bT (t)mL

m∑
i=1

L∑
j=1

I

{
∃s0 ∈ S : rPj bT (t)

yPi (s0)

ri
> T P (t, s0)

}
,

(4.17)

see Appendix B.5, Algorithm 2. With this scaling choice, and the extrapolation

from the rPj > max(r1, . . . rm), we are guaranteed to have at least L out of the mL

simulated fields which achieve at least temperature T ◦C somewhere in S in year t.
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4.5 Temporal changes in spatial extreme events

We present a range of summaries detailing how spatial daily maximum temperature

extreme events in Ireland are changing over the period 1942–2020. First, we look

at the changes in the marginal quantiles. Figure 4.5 shows estimates of the level

exceeded by daily values with probability 1/9200, i.e., that of a 100-year return

level if the process was stationary in time. For simplicity, we refer to these as the

100-year levels changing over time. For modelM2, we show these estimates for 2020

and also present the estimated difference between them for 2020 and 1942. In the

latter, a positive value represents a warming of temperatures. The 100-year return

level has increased between 1.2 − 2.2◦C across Ireland, with the larger increases

away from the south and east coasts. These changes in extreme temperatures over

the observed record are substantially larger than the 1◦C change of M I and MG

over this period, illustrating that climate change is more radically affecting summer

temperature extreme events than mean levels.
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Figure 4.5: Estimated 100-year marginal return level for the year 2020 (1st
plot); estimated change in 100-year marginal return level from 1942 to 2020
(3rd plot); lower and upper 95% CI limits respectively for the change in 100-
year return level from 1942 to 2020 (2nd and 4th plots respectively).

In Figure 4.5 we also report the change in the upper and lower 2.5% quantile of

change in return level from 1942 - 2020 across all bootstrap samples. In both cases,

and at all sites, these changes are positive, with the rate of change in these features

being greater than that of the point estimates. Although we present the results

for the 100-year return levels, similar results hold for all high quantiles and for the

finite upper endpoints of the marginal distribution; the latter as the GPD shape

parameter being negative (see Table 4.2). Figures B.14 and B.15 give equivalent

figures for M0 and M1.
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Next, we consider summaries that also reflect the dependence structure of extreme

events. There are no established analytical closed-form expressions of such changes.

Instead, we revert to using simulated fields of extreme events and presenting risk

measures based on empirical summaries using large samples of these fields. The sim-

ulation strategy set out in Section 4.4.4 gives replicated independent spatial fields.

In particular, we focus on the occurrence of events At,S(T ), i.e., an extreme tem-

perature of at least T ◦C somewhere in Ireland (determined by the set of locations

as required), and then summaries of the properties of such events. We estimate

Pr (At,S(T )) using the estimator P̂rimp, with m = 25, 000 and L = 300. Figure 4.6

shows this estimated probability (expressed as a return period) for a range of tem-

peratures T ∈ [26, 36] for years 1942 and 2020 separately for So and Sc. For So, the

plot reveals a marked change with estimated return periods being shorter in 2020

compared to 1942 for the same T . To illustrate this, consider the event with the

hottest temperature observed anywhere at the station network, a temperature of

33◦C at Phoenix Park, Dublin, July 2022. The spatial event At,S(33) changes from

being a 1 in 182-year event in 1942 to a 1 in 8.7-year event in 2020. Furthermore,

the model estimates that a temperature in excess of 34◦C, i.e., a value not yet

recorded in Ireland, changes from a 1 in 1,588-year event to a 1 in 27.5 year event

over this time window.

26°C

28°C

30°C

32°C

34°C

36°C

0.01 0.1 1 10 100 1000
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Figure 4.6: Return period of the event At,S(T ) where an extreme temperature
exceeding T ◦C occurs somewhere on the Irish station network, So. Blue dashed
(solid orange) lines correspond to t = 2020 (1942). Shaded regions show
pointwise 95% confidence intervals for the return periods. The higher bold
curves show the corresponding point estimates for the climate model grid Sc.
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4.5. Temporal changes in spatial extreme events

Figure 4.6 shows that, for a given return period, hotter temperatures are expected

somewhere in Sc than on So, as the former is denser and with better coverage

than the station network. The difference between the results for the two collections

of sites is very small. This slight change shows that the station network, when

all gauges are working, has the ability to fully capture all extreme temperature

events over Ireland. Such information has not been available previously given the

complexity of addressing spatial dependence, marginal non-stationary, and missing

data in the station network.

We now propose risk metrics to summarise the features of events satisfying At,S(T ).

First consider a measure of pairwise dependence, which extends the idea behind

χP but applied to the data scale, so it combines the effects of changes over time

in the marginal distributions and the estimated extremal dependence structure.

Specifically, we define

χo(h;At,S(T )) = Pr{Xo(t, s
h) > T

∣∣ At,S(T )},

where sh is a randomly selected site in S with
∥∥sh − s0

∥∥ = h, i.e., the conditional

probability of the observational process exceeding temperature T on day t at a site

which is a distance h away from a site s0 that has a temperature exceeding T on

that day. We also investigate the associated unconditional risk measure

χo(h;T, t) = Pr(∃ s0 ∈ S : min[Xo(t, s0), Xo(t, s
h)] > T ).

Figure 4.7 presents estimates of each of these two risk measures for a range of h and

T , between 1942 and 2020. On the observed data scale, we find that extremal spatial

dependence decreases with distance as would be expected, but beyond this, there

are quite different findings from the two measures. Risk measure χo(h;At,S(T ))

is broadly stable over the presented range of T and t whilst the unconditional

χo(h;T, t) is substantially different. The former is perhaps not too surprising given

that the model is asymptotically dependent (the dependence structure is invariant

to any change in the extremity of an event) and the extremal dependence structure

is estimated to be stationary over time. However, as the event is on the marginal

scale and the marginal distributions are changing with time, this finding was not

anticipated. For χo(h;T, t) we do see that the joint probability of temperature being
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4.5. Temporal changes in spatial extreme events

above T at sites h apart changes notably with time, e.g., taking h = 100 km, we

find that χo(h;T, t) has increased by a factor of 2.8, 3.5, and 4.7 for T = 28, 29, and

30◦C respectively.
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Figure 4.7: Estimates of χo(h;At,S(T )) (top row) and χo(h;T, t) (bottom row)
against h (in km) for T = 28, 29, and 30◦C for 1942 (solid, orange line) and
for 2020 (dashed, blue line) for model M2. Confidence intervals are based on
10,000 simulations for each 300 bootstrap sample data sets.

Finally, we look at a spatial risk measure based on the proportion, C, of a spatial

field over the network that exceeds T ◦C at time t. Specifically, we consider the ex-

pected value of C, denoted Eo(C; t, T ). We also consider the conditional expected

value of C, given by Eo (C | At,S(T )), i.e., given that we have observed a temper-

ature somewhere on the station network. This conditional expectation is closely

related to a functional used in characterising heatwave events (Cebrián et al. 2022).

Specifically, these functionals and their relationships are given as follows:

Eo(C; t, T ) = E

(
1

|S|

∫
S
I (Xo(t, s) > T ) ds

)
= E

(
1

|S|

∫
S
I (Xo(t, s) > T ) ds

∣∣∣ At,S(T )

)
× Pr (At,S(T ))

= Eo (C | At,S(T ))× Pr (At,S(T )) ,
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4.5. Temporal changes in spatial extreme events

where I(B) is the indicator function of event B.

Figure 4.8 shows that estimates of both of these measures for the station network

over Ireland have increased from 1942 to 2020. The changes are highly significant,

a factor of 90 larger for T = 34◦C when considering the unconditional expectation

Eo(C; t, T ). However, when conditioning on the event At,S(T ) this expected cov-

erage proportion exhibits more limited changes with the largest difference being a

doubling of the expected area affected when T = 34◦C. In this latter case, the

estimated change is small by comparison with its associated uncertainties.
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Figure 4.8: Expected proportion, Eo (C | At,S(T )), of Ireland that exceeds a
temperature of T ◦C in an extreme event given that at least one site in Ireland
(at the station network) exceeds T ◦C according to M2 (left). The equivalent
unconditioned estimates, i.e., estimates of Eo(C; t, T ) (right). Estimates are
plotted against T for 1942 (solid, orange line) and for 2020 (dashed, blue line).
The shaded regions give associated pointwise 95% confidence intervals, based
on 10, 000 simulated fields for each 300 bootstrap sample data sets.

We finish by reporting on our investigation of the sensitivity of our risk measure

analyses to our marginal modelling choices for temporal non-stationarity. The re-

sults for the models M0 and M1, i.e., the less well-fitting models, are given in

Appendix B.6.2, with these being given for the same features shown for model M2

in Section 4.5. Unsurprisingly, the inclusion of temporal non-stationarity in the

tail model gives markedly different conclusions for all risk measures compared to

those derived from the stationary model M0. The inclusion of a coastal proximity

covariate in model M2 leads to larger scale parameter estimates inland and lower

estimates in coastal regions than M1. See Appendix B.3.3, Figure B.7. This is
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reflected in the estimates of Pr (At,S(T )) and Eo(C; t, T ), with M0 being lower than

bothM1 andM2, and inM1 giving slightly higher estimates thanM2 on the station

network. This change results in the probability of observing 33◦C somewhere in So

increasing by a factor of 1.5, 25, and 21 between 1942 and 2020 for models M0,M1,

and M2 respectively, showing that the difference in key conclusions is not too large

between models M1 and M2.

4.6 Conclusions

We have presented some novel candidate approaches to merge information from

spatially and temporally complete climate models into the spatial extreme value

analysis of sparse and temporally incomplete observed temperatures from available

meteorological stations. New methodological features include using outputs from

an extreme value analysis of the climate model data to provide a covariate for the

equivalent analysis of observational data, and dealing with r-Pareto processes in a

missing data framework. We also presented novel metrics, combining both marginal

and dependence features, to describe changes in spatial risk over time.

Our analysis was for daily maximum summer temperatures over Ireland. We found

that the climate model data were more helpful for marginal modelling of the obser-

vational data than for dependence modelling, as they have the potential to overes-

timate extremal spatial dependence relative to the observational data. We pooled

data from across stations to fit our model and found evidence that the Irish sum-

mer temperature anomalies were the best-fitting covariate, appearing to mostly

affect marginal behaviour with minimal effect on spatial extremal dependence, see

Appedix B.2 and Appendix B.7.2. We found that from 1942 to 2020 the occurrence

rates of high threshold exceedances have increased by 35%, with 95% confidence

interval 28-44%, and extreme quantiles have increased by 1.2 – 2.2◦C, the latter

≈ 1◦C greater than the change of mean summer temperature anomalies for Ireland

and globally. Finally, we found that spatial heatwave events over thresholds that

are critical for society have become much larger, having at least doubled in spatial

extent for 28°C, with this change increasing at more extreme temperatures.
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4.7 Discussion

4.7.1 Use of climate models

In the analysis of climate extremes, practitioners tend to make use of some combi-

nation of observations and climate models, but without necessarily recognising the

inherent trade-offs between them and the respective limitations in the data sources.

Perhaps more critically we believe further thought could be given to the synergies

which might enable a better set of tools for practitioners. Downscaling from cli-

mate models to match observational properties is a major area in statistical climate

science, but it risks introducing biases in spatial dependence from climate models

given its focus on the marginal agreement. Here we have illustrated what appears to

be an effective new approach aiming instead to enhance the observational analysis

by exploiting the strong information about the physical properties of the climate

system and the greater spatial coverage of information embedded in the climate

model data.

As a proof of concept, we have restricted the information we extract from the cli-

mate models to that arising from one climate model output. There exists a broad

ensemble of global and regional models that could be used. Each combination of

such models encapsulates different modelling assumptions and therefore would pro-

vide a distinct estimate of the behaviour of maximum temperatures over Ireland. To

fully quantify the uncertainty in our estimates would require an adequate sampling

strategy to select global-regional model combinations from the available ensemble.

Our analysis looks only at the change in extreme temperature events over the his-

torical record. We do not have observations of the future. Climate models are

our only reliable tool for predicting future temporally non-stationary extremal be-

haviour under different scenarios, so being able to link the temporal non-stationarity

of observational and climate data is essential to understanding model strengths and

weaknesses. This is particularly important for the consideration of highly non-

linear change linked to instabilities such as the possible effects of any change in

the strength of the Atlantic meridional overturning circulation (AMOC) which has

a profound modulating effect on Irish climate. Most global models suggest some

weakening of the AMOC through to 2100, and a complete shutdown cannot be

ruled out (IPCC 2021). Some work in this area has been carried out by Zhong,
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Brunner, Opitz & Huser (2022), where the authors examine future time evolution

of precipitation extremes using r-Pareto processes applied to future climate model

simulations.

Finally, although we focus on temperature, many other variables (e.g., wind, rain-

fall) are important for assessing climate change for extreme meteorological events

marginally, jointly, and integrated over different time windows. Climate model data

are likely to provide improvements in extremal inference of such joint distributions

under the assumption that they better capture the physical interactions between

processes. This can be used to enhance the equivalent empirical information from

the observational data.

4.7.2 Choice of threshold in non-stationary analysis

Threshold choice for the GPD and other tail models for identically distributed

univariate extremes has been a major area of research for much of the last 40 years.

Therefore, it is not surprising that there are a number of different perspectives for

picking a systematic threshold selection criteria in our temporally non-stationary

spatial context.

For univariate temporally non-stationary problems Eastoe & Tawn (2009) propose

pre-processing the data using models fitted to the body of the distribution before

modelling the extremes of the residuals with a constant threshold. Another ap-

proach is to use a conditional quantile (Northrop & Jonathan 2011). As noted in

Section 4.3.3 it is difficult to account for the uncertainty in the threshold selection,

so incorporating a temporal trend into the threshold undermines our ability to ac-

count for the uncertainty in estimating the temporal change in extreme data, which

is our primary focus. We are pleased to see that even with our constant threshold

at each station we found a simple model for how the GPD scale parameter changes

over time and that the GPD is a good fit globally. More generally, the signal-to-

noise ratio is critical in determining whether non-stationarity is accounted for in

selecting the set of “extreme data” to analyse.

We had an additional threshold to select for the extreme spatial dependence mod-

elling via the risk function r. We had to face issues of missing data, with our

approach presenting the first methods, we are aware of, for this. Climate mod-
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els may help here either through exploring the sensitivity of different missing data

patterns or through the use of reanalyses (weather forecast models conditioned on

the observed values) to replace missing data, as these will help identify the largest

events over space correctly.

4.7.3 Choice of spatial extremes dependence model

The scale of Ireland relative to the physical systems that drive temperature extremes

has also played a key role in our choice of extreme value approach for modelling

spatial dependence. This enabled us to take a simple model which is asymptotically

dependent at the largest required spatial separation, which we achieved via an r-

Pareto process coupled to a log-Gaussian latent process with a bounded variogram.

We do not believe our approach would be applicable at much broader scales.

Even over the scale of Ireland, the asymptotic dependence property will not nec-

essarily hold for other climatic variables, e.g., precipitation, which are manifest on

smaller scales and with higher variability. In such cases, the modelling approaches

need to incorporate asymptotic independence and to address issues about the scale

over which asymptotic dependence holds (Wadsworth & Tawn 2022, Zhong, Huser

& Opitz 2022) or even whether the spatial process is stationary over different mix-

ture type events, e.g., convective or frontal precipitation (Richards et al. 2023). Any

application of this method to different regions or processes should certainly involve

an assessment of the evidence for asymptotic dependence, as our impression is that

this assumption is made too readily. We find that, as a good approximation, we can

assume spatial stationarity and isotropy. Ireland has, relatively speaking, simple

topography with few ranges of hills of significant altitude. It does not follow that

the method would be readily applicable to more complex alpine regions without, at

a minimum, considerable additional validation.

4.7.4 Choice of metrics for assessing change

Section 4.5 illustrates the challenge of finding effective metrics to illustrate temporal

change when considering extremes of spatial fields. Metrics for marginal variables,

e.g., high quantiles, are well-established and parsimonious. We see the development

of spatial risk measures which enable the simple assessment of changing risk over

time as an important avenue for further research. Spatial extreme value model
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inference also lacks well-established diagnostic methods for assessing the fit with

observed events. Pairwise, and potentially higher order versions of the measure χ,

used in Section 4.4.2 and Section 4.5, can be helpful but these may not be sufficient

in practice. Winter et al. (2016) used severity-area frequency curves as a basis of

comparison, but these focused only on assessing the performance of the model for

the dependence structure. Picking metrics that directly link to risk assessment from

heatwaves, such as health factors (Winter & Tawn 2016) or crop failures or forest

fires (Zhang et al. 2022), is likely to be valuable for planners.

We focused on the spatial properties of the extreme events. Models for spatio-

temporal extremal dependence of the process are needed to capture the evolution

over time of spatial extreme events. This is an area where greater focus is required.

For processes that are asymptotically dependent in space and time, some methods

have been developed (Davis et al. 2013, Huser & Davison 2014), and it is pleas-

ing to see recent extensions to incorporate asymptotic independence (Simpson &

Wadsworth 2021).
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B
Supplementary material to Chapter 4

B.1 Introduction

In this supplementary material, we provide extra details that support our main

analysis in Chapter 4. We considered three marginal models for the data, namedM0,

M1, and M2, each of which has a structure as described in Table 4.2 in Chapter 4.

The latter model (M2) was selected as the superior model and forms the basis

for our spatial analysis. However, we carry M0 and M1 throughout the entire

analysis procedure to explore the sensitivity of our model choices. In each case,

we provide additional comparisons to the model M2 for completeness. We begin

in Section B.2 with details on the covariates used in our analysis, we detail the

use of different temporal covariates in the marginal models and give justification

for our choice of using only temperatures from summer months for our primary

analysis. In Section B.3, we present supplementary results from our modelling of

the body of the distribution. We explore the effect of our model choice on the GPD

parameters in our marginal models, as well as estimate uncertainties through our

bias-corrected bootstrap resampling, along with a simulation study to justify this

method. We also present diagnostic plots of marginal model fits. In Section B.4,

we provide additional information about the spatial results derived from modelsM0

and M1. In Section B.5, we describe, in algorithmic terms, our method to simulate

extreme spatial events. In Section B.6, we present alternative methods to calculate

the probability of observing extreme events from a set of simulations from the r-

Pareto process along with summaries of simulations of extreme events based on M0
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and M1. Finally, in Section B.7 we discuss possible modelling choices where the

assumption of asymptotic dependence is not appropriate and we also give a possible

extension to our distance metric.

B.2 Additional detail on data

B.2.1 Covariates

As discussed in Section 4.2.3, we use smoothed temperature anomalies for the global

average MG(t), and for the grid box over Ireland M I(t) (see right panel of Figure

B.1) to model temporal non-stationarity. These covariates are derived from the

observation-based data product HadCRUT5 (Morice et al. 2021). These data are a

set of gridded temperature anomalies, aiming to represent observed data, produced

as a combination of a land temperature anomaly data set (CRUTEM5; Osborn

et al. 2021) merged with a sea-surface temperature anomaly data set (HadSST4;

Kennedy et al. 2019). The merging of these data sets is achieved via weighting as

a function of land area fraction (Morice et al. 2021).

The HadCRUT5 data set is provided at a monthly resolution on a global 52 degree

grid. It is produced by taking 200 samples from the observed anomalies (with

added modelled noise) and subsequently taking the average at each time point. An

attractive feature of this procedure is that it accounts for, e.g., the state of the

North Atlantic Oscillation (NAO), a major influence on European climate. We

perform LOESS temporal smoothing on the summer monthly average temperature

anomalies for both the global average MG(t), and for the grid box over Ireland

M I(t), to decrease bias (Clarke & Richardson 2021) and use these as covariates.

Using the R language implementation, LOESS smoothing was performed with the

default settings of a span of 0.75 and a degree of 2 (R Core Team 2023). Figure B.1

(left) shows the LOESS-smoothedMG(t) andM I(t), with respective 95% confidence

intervals, while Figure B.1 (right) shows the HadCRUT5 grid over Europe. Over

the period of our observations, both Ireland and global mean temperatures are

increasing by approximately 1◦C.
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Figure B.1: LOESS smoothed Irish (global) summer temperature anomalies
shown by solid-blue (dashed-orange) lines respectively, with shaded regions
showing their 95% confidence intervals (left); an event from the HadCRUT5
grid over Europe in July 1991 (right). The grid box for Ireland is marked by
a red ×.

B.2.2 Alternative covariates

We explore the use of several alternative temporal covariates to those used in Chap-

ter 4. The alternative covariates included time, global temperature anomalies, and

both local and global CO2 emissions. We consider the covariate of the annual CO2

emissions (CO2(t)) for Ireland (Ritchie et al. 2020) since carbon dioxide is well

mixed and national emissions continue to be a small overall fraction of global emis-

sions, the national emissions can be seen as a proxy for local climatic effects of

atmospheric particulates co-emitted with fossil fuel combustion and which crucially

have lifetimes of days to weeks. Local CO2 emissions are plotted in Figure B.2.

In an earlier version of the study, the best-performing model used time, local CO2

emissions, and global mean temperature anomalies as covariates. Reviewers of

this manuscript rightly highlighted issues with collinearity between the temporal

covariates included. Model structures with collinear covariates are certainly not

ideal both for inference and interpretation reasons. To address this, we performed

an eigen-decomposition of these covariates. The newer model addressed the issue

of collinearity while preserving model performance, however it greatly restricted

our interpretation of the model. Finally, as presented in Chapter 4, we decided

to use the HadCRUT5 mean temperature anomalies over Ireland as a temporal
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covariate in lieu of others discussed here. The parsimony, performance and ease of

interpretation of this covariate in the model made it an effective formulation.

10

20

30

40

50

1940 1960 1980 2000 2020
Year

C
O

2 
E

m
is

si
on

s 
(M

ill
io

n 
to

nn
es

)

Figure B.2: CO2 emissions in Ireland from 1940 to 2022, explored as an alter-
native temporal covariate in our model.

B.2.3 Seasonality

We justify our restriction of using only the summer months (June – August inclu-

sive) in our selected data set. We start by investigating the period of the year in

which the hottest temperatures arise. Figure B.3 shows that taking thresholds at

the 95th and 99th quantiles across the year separately at each site, 85% and 93%

respectively of threshold exceedances occur in these summer months. Furthermore,

the domination of these months in containing extreme temperatures continues to

increase with higher threshold magnitudes. The high temperatures are reasonably

spread across the three summer months, with most extremes in July. Thus, con-

sidering only these months in the analysis largely avoids the need for modelling

seasonality within a year, although there may be some benefit in modelling within-

summer non-stationarity. We leave this as a task for future research.
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Figure B.3: Proportion of threshold exceedances per month where the thresh-
old corresponds to 95th (left) and 99th (right) site-wise quantiles. Months
labelled 1–12 correspond to January–December, respectively.

B.3 Marginal models

B.3.1 Body of distribution model

In this section, we present supplementary figures for the body of the distribution

model fit. Figure B.4 (left) shows the estimated β
(τ)
2 values against τ for our chosen

model, M2. Figure B.4 (right) shows the spatial average threshold exceedance

probability (defined in Section 4.3.5.2) for model M2.

B.3.2 Justification for constant shape parameter over space

Here we expand on our decision to keep the shape parameter, ξ, constant over space

in the GPD model while allowing the scale parameter to vary over space, for both

the climate model output and the observed data. Take the null hypothesis, MN ,

as the simpler model, with the shape parameter held constant over space. The

alternative model, MA, then allows for a different shape parameter for the available

sites, s, for the respective data sets. We perform a log-likelihood ratio test at each

site to determine whether allowing the shape parameter to vary over space provides

a significant improvement in the model fit.

To estimate constant shape parameters ξo and ξc over Ireland (for the purpose

of the log-likelihood ratio test), we use the same approach set out in Chapter 4
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Figure B.4: Estimates of coefficient β
(τ)
2 ofM I(t) over a range of τ (left) and the

threshold exceedance probability λo(t) for t from 1942 to 2020 (right). In each
case, the shaded region indicates bootstrap-based pointwise 95% confidence
intervals.

for estimating ξc, i.e., using the pseudo-log-likelihood (4.5) with a separate scale

parameter at each site, which is constant over time, but here for the observational

and climate model data respectively. Under the null model, MN , the estimated

parameter valuesa were ξ̂o = −0.174 and ξ̂c = −0.189. For the alternative model,

MA, we fit a GPD distribution at each site independently, estimating both the shape

and scale parameters specific to that site with the scale parameter constant over

time.

For each site s, for both the climate model output and observational data, we

find the maximised pseudo-likelihood of both null and alternative models giving

pL{MN(s)} and pL{MA(s)} respectively. At each site, the pseudo-likelihood ratio

test statistic is 2 ln [pL{MA(s)} /pL{MN(s)}], which is plotted in Figure B.5 for

both data sets. All the values of the test statistics are very close to zerob for all sites.

Thus, there is insufficient evidence to reject the null hypothesis, so we subsequently

fix the respective shape parameter estimators of ξo and ξc to be constant over space.

aThis estimate for ξo is not the final estimate used in Chapter 4, as that comes from a model
with spatially and temporally varying scale parameters.

bIf this was a standard likelihood test, the 95% critical value would be 3.84, and all values are
an order of magnitude smaller than that.
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Figure B.5: Log-Likelihood ratio test statistic for constant shape parameter in
the GPD model on climate output (left) and observational data (right) over
Ireland.

B.3.3 Scale parameter estimates

Here we detail the parameter estimates of the marginal models,M0 andM1, defined

in Table 4.2. Since the shape parameter is taken to be constant over space and

time, all marginal non-stationarity is captured by the scale parameter, σ, in the

generalised Pareto distribution part of the marginal models. In Figure B.6 we

compare the scale parameter estimated using models M0 and M1. The marginal

models M0 and M1 have identical spatial structures since they each use the same

spatial covariate derived from climate model outputs (σc). The first two subplots

in Figure B.6 show the estimate of the scale parameter according to model M0 and

model M1 (in 2020) respectively. Model M1 estimates a lower scale parameter than

M0. Model M0 estimates the scale parameter as constant in time (which gives a

poorer description of the data than a temporally varying model). This difference

could possibly be the cause of the increase in the overall variance in the model fit,

inflating the point estimate of the scale parameter overall. It is also important to

note that these models have different shape parameters (ξ) associated with them

and these parameters tend to be negatively correlated with the associated scale

parameter estimates in practice. The shape parameter of models M0 and M1 are

−0.152 and −0.156 respectively, so this difference will have a limited effect on the

scale parameters.
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The third plot in Figure B.6 shows that the estimate for the scale parameter for

model M1 increases by around 0.4 in most regions of the island from 1942 to 2020.

This increase is largely comparable in magnitude to that estimated using modelM2

(see Figure 4.2), although the inclusion of the coastal proximity covariate in model

M2 results in a different spatial structure from both models M0 and M1. The

difference in these estimated scale parameters is shown in Figure B.7 here. In both

comparisons, model M2 estimates a higher scale parameter inland and decreasing

estimates towards coastal regions with lower estimates than modelM1 on the coast.

1.6

1.8

2.0

2.2

2.4

2.6
σo

1.6

1.8

2.0

2.2

2.4

2.6
σo

0.35

0.40

0.45

∇ σo

Figure B.6: Estimated values of scale parameter according to M0 (left), scale
parameter according to M1 in 2020 (middle), and change in scale parameter
in the period 1942–2020 according to M1 (right).
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Figure B.7: Estimates of scale parameter according to model M0 subtracted
from estimates according to model M2 in 2020 (Left). Estimates of scale pa-
rameter according to model M1 subtracted from estimates according to model
M2 in 2020 (right). A positive value indicates a higher scale parameter esti-
mated in M2.

138



B.3. Marginal models

B.3.4 Additional details of the bootstrap methods

As stated in Section 4.3.4.1, we apply a standard vector temporal block bootstrap to

xUo (t, s), the observed data transformed to uniform margins, with the temporal and

spatial dependence structure of the process (Xo(t, s)) retained. Here, we describe

the bootstrap procedure. We apply a standard vector temporal block bootstrap

to data (Politis & Romano 1994). Here temporal blocks of the spatial vectors are

sampled throughout the observation period, with block lengths randomly generated

from a geometric distribution. This fully retains the empirical spatial dependence

whilst recognising that temporally the data exhibit short-term dependence only.

We selected the geometric distribution mean to be 5 as the empirically estimated

probability of an extreme temperature at a site on day t + 5 given that a site

experienced an extreme temperature on day t is 0.2 (where extreme here refers to

exceeding the 0.9 marginal quantile), so the majority of extreme events finish within

5 days. Finally, by retaining the covariates zt in this selected block we also retain

the links to the covariates and their joint distribution.

If there were no missing data, we can simply repeat this block selection at random

until the size of the bootstrapped data set matches the actual data. However,

for the station data, the bootstrap sample needs to exhibit the same missingness

pattern as the actual data. Hence, when sampling to find a bootstrapped block of

data of a specified length, to correspond to the station data missingness pattern

at that time, we restrict the search to include only those blocks of the required

length with patterns of recorded values which match or exceed the actual data.

Thus, if the station series has any pair (t, s) missing, and the associated bootstrap

block has that pair as recorded, then these data values are discarded. We found

this to work well, although as there are less data in the early years containing the

observation pattern of recent years we obtain bootstrapped samples with greater

across-sample variation in the early years than the later years. We then transform

the bootstrapped data setXU∗ = {XU∗
o (t, s) : t ∈ To, s ∈ So} to the data scale using

the inverse of the distribution function Fo,t,s to create the bootstrapped sample X∗
o

as shown in expression (4.6).
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B.3.5 Details of bias correction of marginal model parameter

estimates

To calculate uncertainties in the parameters of any given marginal model we re-

peatedly fit the same model to 300 spatio-temporal bootstrap samples. An issue

encountered with bootstrapping extreme values is the occurrence of ties in the most

extreme observations in the bootstrapped data set. In extreme value theory, the

very largest observations in a data set are known to be the most influential on the

GPD model fit (Davison & Smith 1990), this issue is exacerbated with bootstrap-

ping since cannot sample values larger than those observed and risk sampling the

largest few observations several times in a bootstrap sample. When this repeated

sampling occurs it can lead to bias in the estimate of the shape parameter of the

GPD causing it to be smaller than what would be expected. The bias arises be-

cause the ties in the largest values indicate it is very unlikely to obtain much larger

values than that already observed. Since the shape and scale parameters are neg-

atively correlated, this bias in the shape parameter estimator is inherited by the

scale parameter estimator, with a positive bias. To solve the problem we use a

bootstrap error correction factor which we have found works well in simulations.

Specifically, we apply Algorithm 1 to each bootstrap, X∗
o , for each GPD model,

Mk, where k = {0, 1, 2}. This procedure involves fitting the GPD model Mk to

all bootstrap data sets X∗
o , finding the average shape parameter value from these

fits, and comparing this with the actual point estimate from the model fitted to

the observed data. The difference between the mean of the bootstrapped shape

parameter estimates and the actual estimate acts as our bias correction term. To

correct for the bias in any bootstrap fit, we take the estimated shape parameter,

add the bias correction term, ∆ξ, and fix this parameter while re-estimating the

scale parameter for that bootstrap sample. We repeat this for all bootstraps to get

a corrected uncertainty estimate (for the corrected bootstrap sampling distribution)

for the GPD parameters.
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Algorithm 1 Correcting bias in GPD fits to bootstrap samples for model Mk

Let b be the number of bootstrap samples.

Let ξ̂ be the estimate of the shape parameter from fitting Mk to all observed

data.

for all bootstrap samples X
∗(i)
o , where i = {1, 2, . . . , b}

Estimate ξ∗(i) by fitting Mk to X
∗(i)
o .

end for

Calculate bias correction term for shape parameter, ∆ξ = (
∑b

i ξ
∗(i))/b− ξ̂.

for all bootstrap samples X
∗(i)
o , where i = {1, 2, . . . , b}

Re-fit Mk to X∗
o while fixing shape parameter to be ξ∗(i) +∆ξ.

end for

To illustrate the performance of Algorithm 1 in correcting for bootstrap bias, Fig-

ure B.8, Figure B.9, and Figure B.10 show plots of the sampling density of each

parameter of models M0 and M1 fitted to 200 bootstrap samples and M2 fitted

to 300 bootstrap samples. The top row of each plot corresponds to the estimates

with shape parameters ξ̂ using the raw bootstrap samples. The sampling densities

are estimated using the default settings of the density() function in R (R Core

Team 2023). This row of plots (in each figure) shows a clear negative mean bias

in the sampling density of ξ relative to ξ̂, and the resultant clear positive bias in

the scale parameter through the sampling density for β0. The bottom rows show

the parameter estimates after applying Algorithm 1. In each model, we can see

the bias-corrected bootstrap has corrected for bias in the shape parameter (ξ) by

construction. This correction has reduced bias in the intercept term, β0 of the scale

parameter, and slightly reduced bias in the bootstrapped uncertainty estimate of

other terms.
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Figure B.8: Sampling density of raw (top) and bias-corrected (bottom) boot-
strapped parameter estimates of model M0 with a value estimated from the
original data shown as a vertical line.

Figure B.9: Sampling density of raw (top) and bias-corrected (bottom) boot-
strapped parameter estimates of model M1 with a value estimated from the
original data shown as a vertical line.

142



B.3. Marginal models

Figure B.10: Sampling density of raw (top) and bias-corrected (bottom) boot-
strapped parameter estimates of model M2 with a value estimated from the
original data shown as a vertical line.

B.3.6 Simulation study to assess the performance of the bias

correction method

In Section B.3.5, we showed that the bias correction in the bootstrapping better cen-

tres the resulting sampling distribution on the point estimates and in Section 3.4.1

of the main paper we suggested that the bias arose due to the ties in the data. In

this section, we perform simple investigations of both these aspects. Specifically, in

Section B.3.6.1 we show that rounding GPD data to induce ties does in fact produce

a bias similar to that found for our data and we show that correcting for the bias in

the shape parameter, similarly to the bias-correction method of Section B.3.5, helps

account for, and reduce, the associated bias in the scale parameter. Furthermore, in

Section B.3.6.2 we illustrate that for the key parameters, the bias correction process

in the bootstrap produces confidence intervals with notably better coverage (i.e.,

closer to the nominal coverage) than the raw bootstrap method.

B.3.6.1 The impact of rounded data on bootstrap sampling

distribution

Rather than using the full generality of the spatial likelihood, here we illustrate

the effect of ties within the data on the bootstrap procedures of Section B.3.5

simply through a data analysis of univariate GPD simulated data. Specifically,
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we have GPD scale parameter σ = 1.5 and shape parameter ξ = −0.15, with these

parameters of a similar order of magnitude to our threshold exceedance temperature

data. We generate a random sample x of size 500 from this distribution. We then

round the data in x to give data xr, inducing ties in the data, including potentially

also for the largest observed values. We choose one decimal place for the rounding

as this is the resolution of our temperature data in the main paper.

We study the sampling distributions of the maximum likelihood estimators of the

GPD scale and shape parameters using 1000 independent replicated data sets of

xr, as generated above. In these fits, we do not account for ties within the data.

First, we fit the GPD for each of these 1000 data sets, giving 1000 values, denoted

(σ̂raw
i , ξ̂rawi ) for i = 1, . . . , 1000, from the sampling distribution of the scale and

shape parameters. We term these the raw maximum likelihood estimates and use

these replicates to derive an estimate of the associated sampling distributions for

σ̂raw and ξ̂raw.

We then attempt to capture the key feature of the bias-correction bootstrap methods

of Section B.3.5, to improve these raw sampling distributions. Specifically, as here

we know the true shape parameter ξtrue for each sample, we correct the ith raw

maximum likelihood estimate ξ̂rawi to a bias-corrected value ξ̂corri via

ξ̂corri = ξ̂rawi +

(
1

1000

1000∑
j=1

ξ̂rawj − ξtrue

)
for i = 1, . . . , 1000.

Thus, the sampling distribution of the {ξ̂corri } values has mean at ξtrue, so ξ̂
corr is

unbiased. As with the methods in Section B.3.5, for each of the data samples, we

then fix the shape parameter value at the corrected values, i.e., for the ith sample

at ξ̂corri , and estimate the GPD scale parameter using the associated maximum like-

lihood estimator for this constrained likelihood. We denote the resulting estimates

by {σ̂corr
i }.

Figure B.11 shows the estimated sampling distributions in terms of density esti-

mates. The raw estimates (top row) produce densities with the modes not aligned

to the true values for either parameter. We conclude that the presence of ties in the

data risks artificially re-enforcing the upper-end point of the data, creating a nega-

tive bias in the shape parameter of the GPD. Since the shape and scale parameters

144



B.3. Marginal models

of the GPD are negatively correlated, we see this bias reflected in a positive bias in

the scale parameter. In contrast, the bias-corrected sampling densities method (bot-

tom row) are centred on the truth, with the bias correction for the shape parameter

in turn reducing the bias in the scale parameter estimate.

In summary, we believe this small study shows that the rounding/ties in the ob-

served data is a likely cause for bias in the marginal data analysis in the main

paper. Furthermore, it shows that our bias reduction approaches, used in the cor-

rected bootstrap in Section B.3.5, appears to suitably address this bias and produce

viable unbiased estimates.
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Figure B.11: Inference for rounded GPD data: sampling density of raw (top)
and bias-corrected (bottom) bootstrapped GPD parameter estimates with
known values shown as vertical lines.

B.3.6.2 Assessment of coverage for bootstrap confidence in-

tervals

To illustrate that the proposed bias-corrected bootstrap method of Section B.3.5

gives improved confidence intervals, we show that the coverage properties of these

intervals are both close to their nominal values and much better than the raw

bootstrap-based methods. Specifically, we generate a number of replicate data

sets, where the truth is known, with the same spatial-temporal varying marginal
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distributional structure as in the fitted modelM2 and the same extremal dependence

structure as for the fitted r-Pareto process as in the main paper. We also imposed

that the simulated data are recorded at an identical network of 182 stations as for

the observational data, and that they have the same amount of data over time,

i.e., 8, 464 days, with an identical missing pattern as for the observed station data.

Details of this simulation model are given in Section B.3.6.3.

We generated 200 replicated data sets from this joint spatial-temporal model. We

apply both the raw and the bias-corrected bootstrap methods for each simulated

data set, each giving nominal 95% confidence intervals for the GPD parameters and

associated quantiles (return levels) for each site. From these estimated intervals

the coverage probabilities, produced by the two proposed bootstrap methods, are

evaluated as the proportion of the replicated intervals which contain the truth.

For nominal 95% confidence intervals, the coverage percentage for the shape pa-

rameter, ξ, increased substantially from a coverage of 45% to 81% from the raw

bootstrap to the bias-corrected bootstrap, whereas for the intercept term of the

log-scale parameter, i.e., β0, it is decreased slightly from 68% to 65%. Given the

strong trade-off between the estimates of the GPD parameters, we also assess the

coverage for return level confidence intervals across return periods, sites, and time.

Here we find much-improved coverage with the use of the bias-corrected bootstrap

in all cases.

In Table B.1, we present these coverage probabilities for 10-, 100-, and 1, 000-

year return levels at points in space and time corresponding to the mean spatial

location in Ireland, as determined by the spatial covariates in modelM2, and for the

median and both the lower and upper quartiles of the temporal covariate, denoted

by M I
(0.5), M

I
(0.25), and M

I
(0.75) respectively. Here we see a very similar improvement

in coverage to that found for the shape parameter, which is not too unexpected

given the importance of the shape parameter for high quantile estimation.
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Table B.1: Coverage probabilities (reported as rounded percentages) from raw
and bias-corrected bootstrapped nominal 95% confidence interval estimates of
return levels (RL). Results are for the marginal model M2 and are based on
200 simulated data sets.

10-year RL 100-year RL 1,000-year RL

Temporal covariate Raw Corrected Raw Corrected Raw Corrected

M I
(0.25) 54 77 50 79 50 81

M I
(0.5) 47 71 46 74 46 75

M I
(0.75) 44 65 44 68 40 71

So, although the coverage of the bias-corrected bootstrap is still underestimating

the nominal value, it is a substantial improvement over the raw bootstrap method

which is the current standard approach in this type of context in spatial extreme

value modelling.

B.3.6.3 Simulation model for confidence interval coverage in-

vestigation

For our simulation model, we generate spatially dependent data that is temporally

independent over days. As we are only interested in realisations on the observational

scale that are above the marginal threshold, corresponding to the 1 − τ quantile,

we can simplify the generation process without making any critical differences from

the station data characteristics.

For a simulation for a given day, we firstly generate data from our fitted r-Pareto

process, XP , for a risk function, corresponding to the average realisation over sites,

exceeding a chosen cost of c = 0.01. We select this value of c so that this reproduces

values marginally in the observational data after transformation of the margins. We

remove components of XP corresponding to the observational missingness pattern

for that day in the station data. The resulting marginal distributions of this process

are only Pareto when conditional on exceeding the level uPm = 182c, with lower

marginal values following a more complex distribution depending on the r-Pareto

dependence structure.

Secondly, we transform, marginally, the simulated r-Pareto process to a set of de-
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pendent uniform random variables {XU
i : i = 1, . . . , 182}, via a componentwise

probability integral transform. Specifically, for the ith marginal of XP we use the

empirical rank transformation of the i component of theXP data below uPm, whereas

above uPm we use the Pareto tail model.

Thirdly, we transform the uniform variables to the required GPD tail model M2 for

that day for each site with observations on that day. In practice, we only need to

transform values with XU
i > 1 − τ as the likelihood we use for inference of model

M2 only uses threshold exceedances. Finally, we round the simulated GPD data to

one decimal place to replicate the nature of the network station data.

B.3.7 Marginal model fit diagnostic plots

We now present a broader assessment of model fit than that given in Chapter 4.

Figure 4.3 in Chapter 4 presented a QQ-plot, pooled over all sites, showing that

the model fits very well over Ireland when assessed globally over all sites. Here we

look in more detail at the fits for each site individually, which we illustrate for 10

selected stations: the five named sites in Figure 4.1, and five other sites selected to

be away from the coast. At each site, we assess the fit slightly differently for the

body and tail models. To give the modelled quantile temperature, we use a different

formulation for below and above the threshold exceedance probability: the inverse

of expressions (4.2) and (4.3) for below and above the threshold respectively, with

the numbering of these expressions being for Chapter 4.

Figure B.12 shows the estimated quantiles for the model for the body of the distri-

bution. As we have sufficient data to assess the fit on a year-by-year basis below the

threshold, we present a QQ curve for each year of observed data. Generally, there

is a strong similarity in the curves over years, indicating that in the body of the

distribution, there is limited change over the 1942–2020 time window. The model

appears to perform well at most sites, possibly least well in the very lower tail,

but also rather poorly at two of these sites, namely Malin Head and Roches Point.

These two sites are located on the coast, at the very north and south respectively

(see Figure 4.1) and so it is not too surprising that they are less well modelled, as

temperatures change markedly at the land-sea interface.

For assessing the model fit above the threshold, we do not have sufficient data to
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follow the strategy used in Figure B.12 of looking at the fit for each year separately.

Instead, we pool data over years at each site above the threshold. As the mod-

elled distribution changes over time, we standardise the excess of threshold data at

each site to be identically exponentially distributed using the probability integral

transform, and we also show the pointwise tolerance bounds in Figure B.13 to give

bounds on natural variation in such a plot. Similar findings are obtained in the

tails as in the body of the distribution; again some caution is required for estimates

for some coastal locations but otherwise, the model fits well. As noted above, the

model fit is very strong globally, so there will be only a very few coastal stations

with limited quality fits.
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Figure B.12: QQ-plot of bulk model fits at a selection of sites. In each plot,
lines join predictions within a year at their respective site. The lines of equality
are in red.
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Markree Mullingar Phoenix Park Roches Point Valentia Observatory
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Figure B.13: QQ-plot of GPD model fits at a selection of sites on exponential
margins. The shaded region shows pointwise 95% tolerance intervals. The
lines of equality are in red.

B.3.8 Return level estimates

Figures B.14 and B.15 contain the return level estimates derived from models M0

andM1 respectively, with these providing similar plots to Figure 5 in Section 4.5 for

model M2. The left-hand panel in each figure corresponds to the 100-year return

levels in 2020. The estimate according to model M1 is slightly higher than that

of model M0. The estimate of the 100-year return level according to both M0 and

M1 is comparable to that of model M2 presented in Figure 4.5 with a magnitude of

around 32◦C over the island. The third plot in both figures shows the change of the

100-year return level from 1942 to 2020. The change in the return level estimated

by model M0 is very small since the only non-stationarity in this model comes from

a time-varying threshold exceedance rate. The estimated change in model M1 is

quite similar to that estimated by modelM2 presented in Chapter 4 with respect to

magnitude although quite dissimilar with respect to spatial structure. This is due

to the inclusion of a coastal proximity covariate inM2. ModelM2 suggests that the

change in scale parameter from 1942–2020 is lowest in coastal regions and highest

inland (see Figure 4.5).
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Figure B.14: Features of the 100-year return level obtained using model M0:
estimated 100-year return level for the year 2020 (1st plot); change in lower
95% CI for change in 100-year return level from 1942 to 2020 (2nd plot);
estimated difference between the 100-year return level estimated for the years
2020 and 1942 (3rd plot); (4th plot) change in upper 95% CI for change in
100-year return level in the period 1942–2020 (4th plot).
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Figure B.15: Features of the 100-year return level obtained using model M1:
estimated 100-year return level for the year 2020 (1st plot); change in lower 95%
CI for change in 100-year return level from 1942 to 2020 (2nd plot); estimated
difference between the 100-year return level estimated for the years 2020 and
1942 (3rd plot); change in upper 95% CI for change in 100-year return level in
the period 1942–2020 (4th plot).
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B.4 Spatial models

B.4.1 Parameter estimates of spatial models

Here we present details on the fitting of the r-Pareto process to data standardised

the marginal models. For computational efficiency, we opt for a faster and less

memory-intensive algorithm on fewer bootstrap samples to illustrate uncertainties

for the r-Pareto model fits for models not presented in Chapter 4. To estimate

the uncertainty associated with r-Pareto fits for models M0 and M1, we use the

limited-memory modification of the BFGS quasi-Newton method (Byrd et al. 1995)

optimisation algorithm on 200 spatiotemporal bootstrap samples. This is unlike

the 300 bootstrap samples modelled with the Nelder–Mead optimisation algorithm

which we used in Chapter 4, and which we found to be more reliable (but with

the cost of greater computational effort, approximately twice as slow). Figure B.16

shows the estimated χP
o with uncertainty for models M0 and M1. The equivalent

for model M2 can be seen in Figure B.17. No major discernible features can be

distinguished between the models based on this visualisation, suggesting that the

choice between M0, M1, and M2 has a very limited effect on the estimated depen-

dence structure, a feature identified more broadly in copula modelling by Genest

et al. (1995).
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Figure B.16: Estimates of χP
o for model M0 (left) and M1 (right) against

inter-site distance h (in km): The vertical line segments show the pairwise
empirical estimator described expression (4.8), Section 4.4.2, with p = 0.95;
the smooth lines display limiting values for χP

o estimated using the r-Pareto
process with Matérn variogram when fitted above a risk threshold of 80%.
Confidence intervals are estimated based on 200 bootstrapped r-Pareto fits
using the limited-memory BFGS optimisation algorithm.

152



B.5. Scaling simulations

0.4

0.6

0.8

0 100 200 300 400
Distance (km)

χo
P

Figure B.17: Estimates of χP
o against inter-site distance h for model M2: the

pairwise empirical estimator with p = 0.95 shown as vertical line segments
reflecting the bootstrap uncertainty in the marginal distribution estimates; the
smooth lines display the limiting value for χP

o , estimated using the r-Pareto
process with a Matérn variogram when fitted above an 80% risk threshold, with
95% confidence intervals, capturing both marginal and extremal dependence
bootstrap uncertainties.

B.5 Scaling simulations

In Section 4.4.4, we lay out an importance sampling procedure to re-scale a set of

simulated events to reduce Monte Carlo noise on estimated probabilities of extreme

events, and to generate a sample of spatial events which exceed the critical temper-

ature level T ◦C somewhere on the simulated field. Here we present the method in

detail, in Algorithm 2.

Figure B.18 presents a bivariate illustrative example of our scaling methodology,

with At,S(T ) as in Equation (4.16). Here, for illustrative purposes we take S =

{1, 2} and T = 30◦C. As defined in Chapter 4, yP
i is a simulation on the standard-

ised scale, the values of these are shown in Figure B.18 (i) for m = 10, 000. The

associated sample from the r-Pareto process’ spatial profileWr is denoted by ωi, for

i = 1, . . . ,m. These are equivalent to simulations with cost 1, i.e., ωi = yP
i /r(y

P
i ),

as shown in Figure B.18 (ii). Figure B.18 (iii) illustrates this set of ωi values being

scaled to have a cost of at most temperature T P (t, s), i.e., bT (t)y
P
i /r(y

P
i ), accord-

ing to two different time periods, 1942 (red) and 2020 (blue), with bT (t) is defined

in Chapter 4. Finally, Figure B.18 (iv) shows the scaled fields with costs sampled

from a standard Pareto distribution, which gives us rPj bT (t)y
P
i /r(y

P
i ), used in Equa-
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tion (4.17), where rPj ∼ Pareto(1). The scaling of the points gives multiple points

corresponding to a realisation of the event At,S(T ), from which the importance sam-

pling estimator P̂rimp derives its estimate. Again, different coloured points show

samples corresponding to different time periods.

Figure B.18: Illustration of the simulation scaling procedure for a bivariate
process. In each figure, the magenta line shows the threshold for extreme
costs, the shaded red region is an extreme event of interest in 1942 and the
blue shaded region is an equivalent event in 2020. The extreme event is taken
to be 30◦C at either site: (i) scatter plot of 10,000 simulated events from r-
Pareto process of two sites, plotted on a log scale; (ii) events standardised to
have a cost of 1; (iii) events scaled for each year; (iv) new cost sampled.

The top rows of Figure B.19 and Figure B.20 show a sample of spatial simulations,

over So, transformed to data scale for the marginal modelsM0 andM1 respectively.

The bottom rows in these figures correspond to the change in magnitude of those

actual simulations from 1942 to 2020 (a positive value corresponding to an increase

over time). The equivalent plots, according to modelM2, are shown in Figure B.21.
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Figure B.19: Extreme events simulated from M0 on the data scale according
to 2020 (top row) and the difference in magnitude from the same simulations
in the context of 1942 (bottom row).
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Figure B.20: Extreme events simulated from M1 on the data scale according
to 2020 (top row) and the difference in magnitude from the same simulations
in the context of 1942 (bottom row).
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Figure B.21: Simulated extreme events from M2 on the data scale according
to 2020 (top row) and the difference in magnitude from the same simulations
in the context of 1942 (bottom row).
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Algorithm 2 Calculating the probability of observing an extreme temperature on
S
1: Input: Fitted angular model, Wr.
2:

3: Choose m ∈ R // Number of simulations
4: Choose t // Year of interest
5: Choose T // Extreme temperature of interest in year t
6: Choose L // Number of importance samples
7: Calculate T P (t, s) // T on standardised scale, e.g. Pareto or Fréchet
8:

9: for i = 1,2, ..., m do
10: Sample wi ∼ Ŵ // wi ∈ R|S|×1, r(wi) = 1
11: end for
12:

13: for each site s = {s1, s2, . . . } ∈ S do
14: Calculate ω(m)(s) = maxi=1,...,m wi(s) // Largest value simulated at location s
15: Calculate π(s) = T P (s, t)/ω(m)(s) // Scaling factor at location s
16: end for
17:

18: Calculate bT (t) = min{π(s1), π(s2), . . . } // Minimum scaling factor
19:

20: Initialise exSimCount = 0 // Counts number of extreme simulations
21:

22: for j = 1,2, ..., L do
23: Sample rj ∼ Pareto(1) // Sample a new magnitude
24: end for
25:

26: for i = 1,2, ..., m do
27: for j = 1,2, ..., L do
28: Let yP

i,j = rj×bT (t)×wi // Scale magnitude
29: Transform to data scale, yD

i,j

30: end for
31:

32: if yD
i,j > T somewhere then

33: Increment exSimCount
34: end if
35: end for
36:

37: Return exSimCount/
(
bT (t) ×m× L

)
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B.6 Summary of spatial extremes

B.6.1 Various estimators of Pr (At,S(T ))

To estimate Pr {At,S(T )}, defined in Section 4.4.4, there are a set of possibilities.

The empirical estimate from the observed data is the most basic estimator, i.e.,

P̂remp {At,S(T )} =
1

n

n∑
i=1

I
{
∃s0 ∈ S : xPi (s0) > T P (t, s0)

}
,

where xPi (s) is a realisation of XP
o (ti, s) for observed field at time ti and where

n is the number of observed fields. For small T , the estimator P̂remp can give

useful values for testing the model fit, but for T larger than any observed event

the estimate will be 0. This is where the r-Pareto process is valuable. Specifically,

based on limiting approximation (Equation (4.11)), with the latter term estimated

using Monte Carlo integration based on the simulated sample yP
1 ,y

P
2 , . . . ,y

P
m, our

raw estimator is

P̂rraw {At,S(T )} =
1

vrm

m∑
i=1

I
{
∃s0 ∈ S : vry

P
i (s0) > T P (t, s0)

}
.

Although P̂rraw improves on P̂remp for moderate T , we find that P̂rraw is quite

variable for large T , even for big m, and will be zero when no simulated fields

exceed T ◦C.

Figure B.22 compares the different estimators of Pr (At,S(T )) for t = 2020, for the

station network, based on estimates P̂remp, P̂rraw, and P̂rimp (P̂rimp is described in

Section 4.4.4). Estimates based on P̂remp do not extend beyond the range of the

data. Estimates based on P̂rraw and P̂rimp extend to much higher temperatures.

However, P̂rimp gives much less variable estimates as we extrapolate further from

the data. Only the estimates from P̂rimp are presented in Chapter 4.
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Figure B.22: Estimates of Pr (At,S(T )) for t = 2020, for the station network,

based on P̂remp (red), P̂rraw (green), and P̂rimp (blue).

B.6.2 Summary of Spatial Extremes for model M0 and M1

Figure B.23 shows the return period of the event where an extreme temperature

can occur anywhere on the observational network in both 2020 (dashed blue line)

and 1942 (solid orange line) for model M0 and M1. The equivalent plot for model

M2 is presented in Figure 4.6. We can see a very slight increase in return level from

1942 to 2020 according to M0. However, this increase is not statistically significant

relative to other inference uncertainties and comes entirely from the time-changing

threshold exceedance probabilities. Model M1 estimates a substantial and much

greater increase in return level from 1942 to 2020 as compared toM0. Furthermore,

return levels are much higher in 2020 according to model M1 than M0. These

increases in return level are due to the GPD scale parameter in M1 being allowed

to vary with time. However, model M1 suggests a longer estimated return period

for each temperature level compared to M2. This is due to M2 having a larger scale

parameter thanM1 and thus higher probabilities of associated extreme observations

in the period 1942–2020.
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Figure B.23: Return period of an extreme temperature anywhere on the Irish
observational grid. Blue dashed line corresponds to 2020 and solid orange,
1942 according to M0 (left) and M1 (right). Darker shaded regions correspond
to overlapping uncertainties.

Figures B.24 and B.25 show the expected proportion of sites in Ireland which exceed

an extreme temperature, given that one site exceeds that temperature according to

model M0 and M1 on the observational network, the equivalent analysis for M2 can

be seen in Figure 4.8. Estimates in the left-hand panel of each plot are based on

simulations under the respective model being at least T , for T ∈ [26, 36]◦C, some-

where on the observational network; the right-hand panel shows the unconditioned

equivalent. Model M0 shows small levels of temporal non-stationarity (again inher-

ited from non-constant threshold exceedance rates) while model M1 shows levels of

non-stationarity which are quite similar in magnitude to those of model M2.

Figure B.26 and Figure B.27 show the data scale pairwise extremal coefficient, χo

(as described in Section 4.5) for models M0 and M1 respectively at a selection of

critical temperatures. Since model M0 only has temporal non-stationarity repre-

sented in its marginal threshold exceedance rate and not in the actual model of the

extreme temperatures, there is quite a small difference between extremal tempera-

ture dependence in 1942 and 2020. ModelM1 has very similar extremal dependence

structures on the data scale to that of M2.
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Figure B.24: Expected proportion Eo(T ; t) of Ireland that exceeds a tempera-
ture of T ◦C in an extreme event given that at least one site in Ireland exceeds
T ◦C according to M0. Estimates are plotted against T for 1942 (solid, orange
line) and for 2020 (dashed, blue line). The left panel corresponds to estimates
based on simulations scaled to be at least T ◦C, right panel corresponds to the
unconditioned estimates.
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Figure B.25: Expected proportion Eo(T ; t) of Ireland that exceeds a tempera-
ture of T ◦C in an extreme event given that at least one site in Ireland exceeds
T ◦C according to M1. Estimates are plotted against T for 1942 (solid, orange
line) and for 2020 (dashed, blue line). The left panel corresponds to estimates
based on simulations scaled to be at least T ◦C, right panel corresponds to the
unconditional estimates.

161



B.6. Summary of spatial extremes

28°C 29°C 30°C

0 100 200 300 0 100 200 300 0 100 200 300

0.3

0.4

0.5

0.6

0.7

0.01

0.02

Distance (km)

χo

Figure B.26: Estimates of χo(h;T, t) against h (in km) for T = 28, 29, and
30◦C for 1942 (solid, orange line) and for 2020 (dashed, blue line) for model
M0. Confidence intervals are based on 10, 000 simulations for each of 200
bootstrapped data sets. The top row corresponds to estimates conditioned
on simulations being at least 27◦C, bottom row corresponds to unconditioned
estimates.
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Figure B.27: Estimates of χo(h;T, t) against h (in km) for T = 28, 29, and
30◦C for 1942 (solid, orange line) and for 2020 (dashed, blue line) for modelM1.
Confidence intervals are based on 10, 000 simulations for each 200 bootstrapped
data set. The top row corresponds to estimates conditioned on simulations
being at least T ◦C, bottom row corresponds to unconditioned estimates.
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B.7 Models for alternative dependence structures

B.7.1 Asymptotic independence

Max-stable processes and r-Pareto processes exhibit a strong form of dependence,

known as asymptotic dependence. Wadsworth & Tawn (2012, 2022) were the first

to develop pairwise and conditional extreme value dependence models respectively

which overcome this restriction, using models that also capture processes known as

asymptotic independence, which for spatial processes leads to extreme events (when

marginal distributions are identical) becoming more localised as they increase in

marginal magnitude, see also max-infinite divisible processes which possess some

similar features (Zhong, Huser & Opitz 2022). Shooter et al. (2021) and Richards

et al. (2022) provide illustrations of conditional extreme value methods for inference

for extreme waves at short- and long-ranges and extremes of spatially aggregated

rainfall over different spatial scales respectively. Simpson & Wadsworth (2021) pro-

vides such an approach for spatio-temporal modelling of sea surface temperatures.

The above examples focus on processes with a dependence structure which only de-

pends on distance, with Huser & Genton (2016) and Richards & Wadsworth (2021)

presenting extensions for when this is an unrealistic assumption.

We appreciate that for other regions and different environmental processes, this may

not be a valid choice, as this variogram model cannot capture full independence be-

tween sites. More critically, the r-Pareto process fails to describe adequately any

process exhibiting asymptotic independence at any distance (other than distances

where the process is fully independent). For such processes, different modelling ap-

proaches such as conditional extremal (Wadsworth & Tawn 2022) or max-infinitely

divisible (Bopp et al. 2021) processes need to be considered.

B.7.2 Spatially non-stationary dependence modelling

Our analysis has shown that the change in spatial extreme temperature events over

Ireland in 1942–2020 has been in the marginal variables and not in the dependence

structure. We have explored several potential covariates for this change, finding

Ireland’s mean temperature anomalies as the best descriptor, but the statistical

attribution for a different rate of change in extreme temperatures remains unclear.
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Climate models, run under different scenarios, using a designed experiment, could

provide insights. Also, exploration of temporally lagged extremal dependence could

reveal a more complex dependence structure.

We assume spatial stationarity and isotropy. Our use of the climate model data has

helped identify that this may be too simplistic, with the distance of sites from the

coast being a potentially useful descriptor of dependence. In exploratory work we

have had reasonable success with the distance metric h̃ij between si, sj ∈ S of

h̃ij = hij + (δ0 + δ1hij) exp{−δ2min(C(si), C(sj))}, (B.1)

where hij is the Euclidean distance between the sites, C(s) is the shortest Euclidean

distances to the coastline from s, and δ0, δ1, and δ2 are non-negative parameters.

However, any measure of distance can be used, such as the Haversine distance,

which is more appropriate when analysing processes over larger spatial domains

where the Euclidean distance is no longer accurate. Future work should incor-

porate this separation metric, with the likely consequence being the creation of

extreme events which are more localised along the coast. Additionally, alternative

topographical descriptors, such as altitude, could be explored in place of coastal

distance in Equation (B.1).
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5
Unusually cold winter events in Ireland

In this chapter we extend the methodology developed in Chapter 4 to analyse extreme

daily minimum temperatures in winter months. We model the marginal distributions of

extreme winter minima using a generalised Pareto distribution (GPD), capturing temporal

and spatial non-stationarities in the parameters of the GPD. We investigate two indepen-

dent temporal non-stationarities in extreme winter minima. We model the long-term

trend in magnitude of extreme winter minima as well as the short-term, large fluctuations

in magnitude caused by anomalous behaviour of the jet stream. We measure magni-

tudes of spatial events with a carefully chosen risk function and fit an r-Pareto process to

extreme events exceeding a high-risk threshold. Our analysis is based on synoptic data

observations courtesy of Met Éireann and MIDAS. We show that the frequency of extreme

cold winter events is decreasing over the study period. The magnitude of extreme winter

events is also decreasing, indicating that winters are warming, and apparently warm-

ing at a faster rate than maximum daily summer temperatures. We find that a climate

model output which was informative as a covariate for modelling extremely warm summer

temperatures is less informative as a covariate for extremely cold winter temperatures.

However, we show that the climate model output is useful for informing a non-extreme

temperature model.
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5.1 Introduction

The frequency and intensity of extremely cold temperatures have decreased globally

since 1950 with this trend expected to continue as global mean temperatures rise

(IPCC 2021, Chapter 11). Winter temperatures have been particularly warming in

the northern mid-latitudes (Matthes et al. 2015, Van Oldenborgh et al. 2019). In

Ireland, significant warming of minimum air temperatures has been observed with

decreasing frequency of cold events over the period 1885–2018 and are in line with

global trends (Nolan & Flanagan 2020, Mateus & Coonan 2022, Garćıa et al. 2022).

Extreme minimum temperatures are increasing faster than maxima, both globally

(Dunn et al. 2020) and in Ireland, where the rate of change of temperature minima

is twice that of maxima over the period 1950–2003 (McElwain & Sweeney 2003).

Extremely high temperatures receive a substantially disproportionate amount of

analysis in the literature given their direct and immediate link to loss of life (Ballester

et al. 2023), crop failure (He et al. 2022), etc. Furthermore, the intensity, duration

and extent of heatwaves are expected to increase with global temperatures (see

Chapter 4), exacerbating impacts and demanding immediate attention. While the

warming of winter temperatures is less immediately disruptive, it nonetheless har-

bours many potentially devastating consequences. Changes in winter extremes are

having an effect on many facets of our environment and society, from mortality

and morbidity rates (Conlon et al. 2011), to agricultural activity (Bindi & Olesen

2011, Hooker et al. 2008) and ecosystems (Osland et al. 2021). For example, many

regions rely on cold winters to control pathogens and pest populations (Skendžić

et al. 2021). It has been argued that the consequences of warming winters have

been understudied (Boucek et al. 2016).

Irish winters are generally less severe compared to many countries at similar lat-

itudes due to the regulating effect of the North Atlantic Ocean and the Irish Sea

surrounding the island. The winter of 2019 was the warmest on record for Ireland at

0.9°C above the 1961–1990 average winter temperature (Met Éireann 2019). How-

ever, in northern Europe, warming trends are contrasted with occasional, extreme

cold events associated with variability in climatic oscillations, i.e., Arctic Oscilla-

tion (AO) and the North Atlantic Oscillation (NAO) (Vihma et al. 2020). The

coldest temperatures in some parts of Ireland were observed as recently as 2010, for
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example, a record low of -17.5°C was observed in Co. Mayo, Straide (Christiansen

et al. 2018). The extremely cold winter of 2009/10 was caused by an anomalously

persistent negative phase of the North-Atlantic Oscillation (Cattiaux et al. 2010).

Figure 5.1 shows that globally (left-hand plot), the winter months of December, Jan-

uary, and February (DJF) of 2010 were anomalously warm, despite large variations

locally, for example in Ireland (right-hand plot). Disentangling these juxtaposing

trends in winter extremes is important to fully ascertain the overall trend of win-

ter extreme temperatures. Christiansen et al. (2018) show that the cold winter of

2009/10 was in fact warmer than expected, in the context of the climate conditions

at the time. The authors estimate that the occurrence probability of extremely cold

winter temperatures such as those seen in 2009/10 has reduced by a factor of 2 due

to anthropogenic-induced climate change, and so were in line with global warming

winter trends.
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Figure 5.1: Global (left) and Irish (right) mean winter (DJF) temperature
anomalies with 2010 highlighted. Calculated from HadCRUT5 (Morice et al.
2021).

Our analysis aims to test for and identify non-stationarities in winter temperature

extremes to give a more thorough picture of the impact of climate change on winter

temperatures in Ireland. To avoid underestimating the severity of extreme weather

events, we rely on asymptotically justified statistical models provided by extreme

value theory. Advances in the extreme value literature enable us to model the

spatial dependence of extreme observations, which allows the simulation of spa-

tially realistic winter temperature events. We use the generalised r-Pareto process

(Dombry & Ribatet 2015) to model extremal dependence since this approach in-

volves fitting the model to full spatial observations. The r-Pareto process more
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accurately captures realistic spatial patterns of extreme events as opposed to the

max-stable process, which models constructed componentwise maxima, which typ-

ically do not correspond to the actual observed spatial events. We generate high

dimensional, spatially realistic extreme temperature events over Ireland and make

inferences about future spatial events, which have higher magnitudes than previ-

ously observed. It is generally accepted that winter temperatures are warming but

to our knowledge, no analysis has been done on spatio-temporal non-stationary

winter extremes in Ireland. An analysis of trends in unusually cold winter temper-

atures is vital for characterising expected changes in the future. Furthermore, a

local analysis allows for the development of bespoke policy and the circumvention

of potential impacts.

In our analysis of extreme minimum winter temperatures, we largely follow the

modelling methodology developed in Chapter 4. In order to focus on the exten-

sions and novelty of the method here, the reader is referred to the corresponding

subsections in Chapter 4 where a detailed discussion of the modelling procedure

is given and further technical detail is provided. This chapter is organised as fol-

lows. Section 5.2 details the observational and climate model data used as well as

additional covariates explored. Section 5.3 and Section 5.4 describe the marginal

and dependence modelling of the process respectively. In Section 5.5, we use the

model to explore how the properties of spatial extreme events have changed over

time. Conclusions and a broader discussion are given in Section 5.6. All our code

and instructions on how to access the data are available on GitHuba.

5.2 Data

Modelling extreme minima of a series of iid observations is practically equivalent

to modelling extreme maxima (see Section 2.1.3.1). This is achieved through an

inverse transformation of the data, that is,

min(X) = −max(−X). (5.1)

ahttps://github.com/dairer/Extreme-Irish-Winter-Temperatures.
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For our analysis, we apply transformation (5.1) to our series of minimum daily

temperatures and analyse them as maxima. Finally, we report all results on the

original scale, after applying the inverse of (5.1). For ease of interpretation, we

discuss temperatures on the original scale throughout. We use several data sources

to achieve a full spatial and temporally non-stationary model of extremely cold

winter temperatures. These data sources are discussed below.

5.2.1 Station data

For the purpose of this study, we focus on modelling the extremal behaviour of ob-

servational temperature data. We consider temperature data to avoid pre-processed

data products which may influence or smooth out extremal behaviour (Donat et al.

2014). This can include omittance of extreme values incorrectly classified as outliers

and smoothing of spatial patterns which can have a great impact on the magnitude

of unusually large/small events.

Our daily minimum temperature data comprise Irish temperature stations compiled

from two sources. The data sources are equivalent to those described in Section 4.2,

with observational data for the Republic of Ireland provided by Met Éireann’s data

archiveb, while Northern Ireland sites were obtained through the CEDA archive

(Met Office 2012). The data exhibits the same missingness complications as dis-

cussed in Section 4.2.1, with data availability greatly decreasing as we go back in

time. Although we have some data prior to 1950, for the purpose of comparing

different climatic covariates (discussed in Section 5.2.3.1), which are only available

mutually since 1950, we further restrict our analysis to data from the period 1950–

2022. The data set contains some outliers that were not physically realistic, though

we took a conservative approach to remove these values to avoid discarding any

true, extreme observations. Thus, we only removed any temperatures that were

greater than 4 (empirically estimated) standard deviations away from the mean

minimum temperature on a given day. This procedure removed 93 unrealistic ob-

servations from the data set. Keeping sites that had at least 5 years of data, we

have a collection of 125 sites with a total number of approximately 330, 000 daily

minimum winter (DJF) temperature records over Ireland.

Our interest is in extreme cold temperatures in Ireland, so we restrict our analysis

bhttps://www.met.ie/climate/available-data/historical-data.
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to data from the winter months (DJF). In Figure 5.2, we look at the number of

exceedances per month when we take high site-wise quantiles as thresholds. The

majority of extreme cold events occur in the winter months December, January, and

February. Specifically, we find that more than 80% of all the days with temperatures

below the 1% site-wise marginal quantile occur in winter (DJF). However, there is

a non-negligible number of extreme events in March (12% of events below the site-

wise 1% quantile). We initially modelled the winter months (DJF) including March

in our analysis, however we found that the weather processes governing extremely

low temperatures in the month of March were not captured well by our modelling

procedure. The inclusion of March requires careful modelling of seasonality which

is beyond the scope of this work and so we leave this as future research. We thus

model only the winter months (DJF) which contain the majority of temperature

extremes.
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Figure 5.2: Proportion of threshold exceedances per month where the threshold
corresponds to 5th (left) and 1st (right) site-wise percentile. Months labelled
1–12 correspond to January–December, respectively.

5.2.2 Spatial covariates

5.2.2.1 Climate model output

We explore the efficacy of exploiting physical information from climate model out-

puts as a spatial covariate. Climate models are mathematical representations of

the physical processes driving weather and climate and represent our best under-

standing of these natural phenomena (Giorgi 2019). They are computationally

expensive, and so to model the climate on a fine scale requires limiting ourselves to
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specific regions. Climate models are broadly run on two scales, global climate mod-

els (GCMs) and regional climate models (RCMs). We use the output from RCMs

to incorporate more detailed descriptions of the physics and spatial characteristics

into the modelling of temperature extremes. We take data from the CLMcom-

CLM-CCLM4-8-17 RCM (see Figure 5.3) combined with the ICHEC-EC-EARTH

GCM (Copernicus Climate Change Service 2019), which was used in Chapter 4 and

proved useful for informing extreme summer temperature models. From the mod-

els we have daily minimum temperature values over a 56-year period, on a regular

grid of 558 points over Ireland (corresponding to a 0.112 degree resolution). For a

given ensemble we are required to select a so-called “experimental configuration”.

Historical experiments are climate simulations for a period in which observational

data exists. They reflect observed changes in climate. For our chosen ensemble this

period covers 1951–2005. To simulate data beyond this period it is necessary to

make some assumptions about climate change. However, our analysis does require

climate model output for informing temporal non-stationarity so we rely solely on

the historical experiment.

Figure 5.3: Full spatial extent of the RCM CLMcom-CLM-CCLM4-8-17, show-
ing a generated temperature event for a randomly chosen day.

5.2.2.2 Coastal distance

Our analysis in Chapter 4 found coastal distance to be a useful covariate for de-

scribing the spatial variation in extremely hot summer temperatures. Furthermore,

there is an evident difference in temperature levels between coastal and inland areas

in Ireland, especially so in winter (Mateus & Coonan 2022). This spatial effect is

due to the strong influence of the Irish Sea and the Atlantic Ocean on Irish air
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temperatures. We are thus motivated to employ coastal proximity as a covariate

to examine its efficacy in explaining the spatial distribution of cold extremes. We

denote coastal proximity at site s as C(s).

5.2.3 Long-term temporal trend covariate

For modelling the long-term temporal trend in winter extremes, we use temperature

anomalies as a temporal covariate in order to ascertain how extreme cold temper-

atures are changing with respect to mean temperature levels. We perform LOESS

smoothing on temperature anomalies during winter months, over the grid point

containing Ireland from the HadCRUT5 data set (Morice et al. 2021). We use the

R language implementation of LOESS smoothing, taking the default span of 0.75

and degree of 2 (R Core Team 2023). We denote this smoothed temporal covariate

as M I(t) and use it to account for the large-scale temporal trend in the data. The

covariate M I(t) is plotted in Figure 5.4, illustrating an increase of approximately

0.9◦C in mean winter temperature anomalies over the period 1950–2022.
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Figure 5.4: LOESS smoothed Irish winter temperature anomalies from Had-
CRUT5 with shaded regions showing 95% confidence intervals.

5.2.3.1 Climatic oscillation covariates

In our analysis, we aim to disentangle the general, long-term trend of extremely

cold winter temperatures from the large variations caused by extremal climatic

processes. To this end, we explore numerous climatic variables to help explain
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extreme, sudden cold snaps, which can misleadingly be interpreted as contradicting

warming winters.

It is well understood that the behaviour of the jet stream can lead to shifts in

weather patterns, including the occurrence of extreme events such as cold spells

(Stendel et al. 2021). The jet stream is a high-altitude, fast-flowing air current that

circumvents the northern hemisphere in the upper troposphere and lower strato-

sphere. The jet stream plays a crucial role in shaping weather patterns and con-

trolling the movement of storms and weather systems (Hoskins & James 2014).

The jet stream meanders in a wave-like pattern as it circumnavigates the globe.

These waves form and change in response to several climatic conditions and are

characterised by northward or southward oscillations. When these waves become

amplified, we see a greater north-south displacement of air masses, resulting in the

transport of air masses from different latitudes. When a deep southward dip forms

in the jet stream, it can allow cold air to spill southward from the polar regions into

lower latitudes causing extremely cold temperatures (Thompson & Wallace 2001,

Francis & Vavrus 2012).

There is a strong link between the behaviour of the jet stream and extratropical

teleconnections such as the North Atlantic Oscillation (NAO) and Arctic Oscillation

(AO) (Hall et al. 2015). Both the NAO and AO have the greatest variability in

winter months (Sen Gupta & McNeil 2012) which is when they have a substantial

influence on weather patterns in the northern hemisphere (Thompson & Wallace

1998). Furthermore, persistent and strong negative phases of the AO and the NAO

have been linked with extremely low minimum air temperatures in Ireland (Mateus

& Coonan 2022). Thus, we are motivated to consider the efficacy of using NAO or

AO as a covariate for anomalous jet stream behaviour and subsequently extreme

cold winter temperatures in Ireland.

The NAO is a climatic phenomenon that describes the state of the atmospheric

pressure difference between the Icelandic Low and the Azores High in the North At-

lantic. The NAO is known to influence the behaviour and position of the jet stream

(Gerber & Vallis 2009). In the positive phase, the pressure difference between the

Icelandic Low and the Azores High is stronger than average. The stronger pressure

difference confines the jet stream to higher altitudes, with a steady eastward flow.

Conversely, during the negative phase of the NAO, the pressure difference weakens,
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allowing for a more meandering and meridional path of the jet stream. This allows

the jet stream to dip southwards, pouring cold air masses onto northern Europe,

leading to extremely cold temperatures. As a result, the jet stream may meander or

become more amplified. A wavier jet stream generally leads to slower progression

of weather systems, and subsequently more persistent weather regimes, such as per-

sistent cold air in a cold spell (Sousa et al. 2018). The NAO can be interpreted as

the North Atlantic sector manifestation of the AO (IPCC 2021, Annex IV: Modes

of Variability) and so, the two variables are highly correlated (with a correlation

coefficient of approximately 0.77) and can be seen in Figure 5.5.

The AO characterises changes in atmospheric pressure over the Arctic region (Thomp-

son & Wallace 1998). Analogous to the NAO, during the positive phase of the AO,

the pressure difference between the Arctic and mid-latitudes is weaker and the jet

stream is confined to higher latitudes. This means that weather systems and air

masses tend to move more smoothly and quickly across the mid-latitudes (Deser

2000). Conversely, during the negative phase of the AO, the pressure difference

between the Arctic and mid-latitudes increases with elevated air pressure over the

Arctic region and lower air pressure over the northern Pacific and Atlantic Oceans.

Lower air pressure over the northern Pacific and Atlantic Oceans allows for an am-

plified meandering of the jet stream with a higher probability of extremely cold,

polar air outbreaks in the mid-latitudes during winters.

We retrieve data for the NAO and AO from the National Weather Service, Climate

Prediction Centerc, taking monthly and yearly mean AO and NAO values from 1950

onwards. The climatic oscillation covariates are shown in Figure 5.5. Notice that in

both plots, we see a large deviation from the mean around the year 2009/10, which

appears more pronounced in the AO series.

cAvailable at: https://www.cpc.ncep.noaa.gov.
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Figure 5.5: Yearly North Atlantic Oscillation (NAO) index over the period
1950–2022 (left). Yearly Arctic Oscillation (AO) index over the period 1950–
2022 (right).

NAO and AO indices are not a perfect proxy for the behaviour of the jet stream.

Other atmospheric and oceanic patterns, such as high-pressure systems and sea

surface temperatures, can also interact with the jet stream and influence the occur-

rence of cold weather events (Screen & Simmonds 2014). Overall, the interaction

between the jet stream, atmospheric, and oceanic patterns is a complex and dy-

namic process (Hall et al. 2015). The interplay of these factors can lead to changes

in the jet stream’s behaviour, which in turn affects weather patterns, including the

occurrence of cold spells (Kidston et al. 2015).

5.2.4 Short-term temporal trend covariate

The HadCRUT5 data set which we use to derive our long-term temporal covariate

(see Section 5.2.3) seems an attractive candidate to describe processes governing

cold temperatures since HadCRUT5 (Morice et al. 2021) is an observation-based

data product of temperatures produced as a combination of a land temperature

anomaly data set (CRUTEM5; Osborn et al. 2021) merged with a sea-surface tem-

perature anomaly data set (HadSST4; Kennedy et al. 2019). An appealing feature

of this procedure is that it accounts for and encapsulates the effects of all climate

processes that affect temperature, e.g., including the NAO and AO, and therefore

the behaviour of the jet stream. We wish to capture large temperature deviations

which are encoded in the HadCRUT5 data set. To achieve this, we use the residuals

from the LOESS smoothing (see Section 5.2.3) as a covariate to explain the effect

of large-scale climatic oscillatory patterns on winter extremes. In this way, we con-

175



5.2. Data

struct two independent covariates from the HadCRUT5 data set. We explore the

efficacy of taking residuals from the LOESS smoothing of temperature anomalies

during winter months (M I(t)) on a monthly (denotedM I
r,m(t)) and yearly averaged

(denotedM I
r (t)) basis, both of which can be seen in Figure 5.6. Notice in these time

series, the large positive deviation around the year 2009/10, as the LOESS smooth-

ing under-represents these extremely cold winters. This deviation corresponds to

a large, negative temperature anomaly over Ireland described in the HadCRUT5

data set.

Furthermore, we explore the efficacy of using temperature residuals from grid boxes

surrounding Ireland, as well as the grid box directly above Ireland, after removing

the smoothed temperature M I(t) trend. Both time series as well as their asso-

ciated HadCRUT5 grid box(es) can be seen in Figure 5.7. In both time series,

we can clearly see large deviations in mean temperatures, for example in the year

2009/10. Since we are taking the residual temperature anomalies after removing

the smoothed temperature trend M I(t), positive values correspond to anomalously

cold temperatures not captured by M I(t).
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Figure 5.6: Residuals from HadCRUT5 temperature values over Ireland after
LOESS smoothing (left). Average yearly residuals from HadCRUT5 winter
temperature values over Ireland after LOESS smoothing (right).
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Figure 5.7: Illustration of gridding of the HadCRUT5 data set over northwest
Europe centred on Ireland, with grid boxes surrounding Ireland lightly shaded
and the grid box north of Ireland heavily shaded (left). Time series of residual
yearly temperature anomalies averaged from all shaded grid boxes surrounding
Ireland after removing the smoothed temperature M I(t) trend (centre). Time
series of yearly residual temperature anomalies from grid box north of Ireland
after removing the smoothed temperature M I(t) trend (right).

5.3 Marginal models

5.3.1 Overview and strategy

Extreme minimum daily temperature data presented some unique challenges which

required adaptations and extensions to the methodology set out in Chapter 4.

Namely, our methodology is adapted here to account for high levels of autocor-

relation within cold temperature extremes, and high variability of extreme temper-

atures governed by external large-scale climatic patterns. We carry the notation

set out by Chapter 4, where instead now let Xo(t, s) denote the station data com-

prising winter minimum daily temperature at time t and site s, and let Xc(t, s) be

the equivalent process from the climate model data. The subscripts o and c are

used throughout, referring to observation and climate model processes respectively,

the subscripts are dropped when discussing methods mutual to both. Here t ∈ N
indexes winter days within and across years and s ∈ S ⊂ R2, where S denotes Ire-

land, with s corresponding to the vector of latitude and longitude. We have data

on the two processes at So ⊂ S and Sc ⊂ S and at times To and Tc respectively.

Throughout the analysis we investigate the effect of monthly covariates; these will

be indicated by a subscript m. Covariates without subscript m can be assumed to
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be yearly.

For modelling Xo(t, s), we account separately for the behaviour below and above

a threshold uo(s), which is fixed over time. In Section 5.3.3.1, we use interpolated

quantiles estimated via spatial quantile regression for the data below the threshold.

We also derive our estimate of the threshold and threshold exceedance parameter

in Section 5.3.3.3, allowing for a smooth and continuous transition from the bulk

to the tail model. In Section 5.3.3.4, we present the parameterisations of the gener-

alised Pareto distribution we explored. We discuss the efficacy of using the climate

model output to inform the spatial behaviour of extreme winter temperatures. In

Section 5.3.3.6, we highlight our bootstrapping procedure for uncertainty estima-

tions. We detail a novel, relaxed bootstrapping algorithm that deals with highly

auto-correlated extremal data with increased missing data.

5.3.2 Cross-validation

For characterising marginal model fit performance and model selection, we use cross-

validation (Hastie et al. 2001, Ch 7.). We use both standard 45-fold CV (45-CV)

and spatio-temporal CV (ST-CV) with 45 folds. For 45-CV the data are divided

into 45 groups (folds), where each fold is removed in turn and the model is fitted

to the remaining folds. For ST-CV, observational sites are divided spatially into 15

contiguous groups and 3 temporal folds. Each temporal fold consists of every third

week in the winter months in order to preserve long-term temporal non-stationarity.

We define the 45 ST-CV folds as all combinations of spatial and temporal clusters,

taking the intersection as a fold.

We iteratively excluded one fold from the data set and fit the model to the remaining

data. We test the model’s predictive ability on the out-of-sample data using the root

mean square error (RMSE) and the continuous ranked probability score (CRPS,

Gneiting & Katzfuss 2014). The empirical quantile x
(τ)
o (t, s) is evaluated using the

ordered data at site s and the year which contains time t, whereas the predicted

quantiles are estimated as x̂
(τ)
o (t, s) = F−1

o,t,s(τ) for quantile τ from the appropriate

model F . This process is repeated for each fold, with final performance metrics

reported as the average across folds.

178



5.3. Marginal models

5.3.3 Marginal data analysis

5.3.3.1 A model for the body of the distribution

Following the method described in Section 4.3.2, to estimate the distribution func-

tion of Xo(t, s), we use the asymmetric Laplacian distribution (ALD) for quantile

regression. We estimate a range of spatially and temporally varying τth quantiles

of Xo(t, s) (denoted as q
(τ)
o (t, s)) for a grid of τ ∈ {0.01, 0.02, . . . , 0.99}, for all t ∈ T

and s ∈ S. Following this, we use a cubic interpolation spline for each t and s to

give a continuous estimate over τ ∈ [0.01, 0.99].

We explored several potential parameterisations for the ALD, which we present in

Table 5.1, along with their cross-validation metrics (calculated as in Section 5.3.2).

The first four models are similar to those explored in Section 4.3.5.2. The first model

in Table 5.1, a., can be considered as the base model where a constant quantile is

estimated over space and time for each τ . The second model, b., includes the

smoothed temperature anomalies over Ireland, M I(t), as a covariate to allow for

temporal non-stationarity in the model of the body of the distribution. The third

model, c., allows the quantile estimates to vary spatially using the corresponding

climate model output quantiles q
(τ)
c (s) as a covariate. The fourth model d. combines

the coefficients of models b. and c., allowing for both spatial and temporal non-

stationarity.

Model d. was the best-performing model for describing maximum daily summer

temperatures found in Chapter 4. However, for modelling minimum winter tem-

peratures, we found the performance of the bulk model greatly improved when

incorporating a coastal proximity covariate C(s). This is shown in the reduction

of RMSE values achieved by model e. over d. in Table 5.1. We found a further

substantial improvement in RMSE with the inclusion of a covariate to account for

unusually cold weather events caused by large-scale climate oscillation. We chose

the covariate that was best performing in the tail model (discussed in detail in

Section 5.3.3.4) for the sake of parsimony, continuity, and interpretability from the

bulk-to-tail model. That is, we use the residuals from the LOESS smoothing of

temperature anomalies during winter months, M I
r,m(t) as a covariate in the bulk

model. We use bulk model f. for the remainder of the analysis.
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Table 5.1: Cross-validation (RMSE) on the quantile regression analysis for the
body of the distribution.

Model structure for q̂
(τ)
o (t, s) ST-CV 90-CV

a. β
(τ)
0 2.019 2.028

b. β
(τ)
0 + β

(τ)
1 M I(t) 1.991 2.028

c. β
(τ)
0 + β

(τ)
1 q

(τ)
c (s) 1.898 1.912

d. β
(τ)
0 + β

(τ)
1 q

(τ)
c (s) + β

(τ)
2 M I(t) 1.864 1.891

e. β
(τ)
0 + β

(τ)
1 q

(τ)
c (s) + β

(τ)
2 M I(t) + β

(τ)
3 C(s) 1.764 1.756

f. β
(τ)
0 + β

(τ)
1 q

(τ)
c (s) + β

(τ)
2 M I(t) + β

(τ)
3 C(s) + β

(τ)
4 M I

r,m(t) 1.218 1.221

The coefficients of model f. are shown in Figure 5.8 along with 95% uncertainty

intervals based on 200 spatio-temporal bootstrap samples, described later in Sec-

tion 5.3.3.6. Since we are modelling negated temperatures, higher quantiles corre-

spond to colder temperatures. The estimates of β
(τ)
1 show that the climate model

does not provide a perfect description of the station data, as the estimates differ

from 1 significantly and change with τ . This suggests that the chosen climate model

output is not sufficient in and of itself in representing daily winter minima. How-

ever, the climate model is still informative here, especially at quantiles near the

median of the data (0.4 < τ < 0.6), where it is significantly different from zero.

However, the climate model covariate appears to become less informative towards

the extremes of the process as we see the effect of the qτc falling off at both tails

of the distribution (τ < 0.2 and τ > 0.8). For the majority of the body of the

distribution, we see that β
(τ)
2 ≈ −1. This indicates that mean winter temperatures

in Ireland are a good representation of the temporal change for the majority of the

body of the distribution. However, we see the effect of M I(t) increasing at higher

quantiles (τ > 0.75), suggesting extremely cold daily winter temperatures events

are changing faster than mean minimum daily winter temperatures. We see that

the effect of coastal proximity increases almost linearly with quantiles τ , giving a

sufficient spatial description of the process not provided by the climate model out-

put. Finally, β
(τ)
4 suggests, unsurprisingly, that large-scale oscillations are useful for

explaining the most extreme cold events, for example, seen as the increase in the

uppermost quantiles (τ > 0.75).
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Figure 5.8: Estimates of bulk model f. coefficients β
(τ)
1 , β

(τ)
2 , β

(τ)
3 , and β

(τ)
4

of q
(τ)
c (corresponding climate output quantile), M I(t) (smoothed temperature

anomalies over Ireland), C(s) (coastal distance), andM I
r,m(t) (monthly residu-

als of M I(t)) respectively over a range of quantiles τ . In each case, the shaded
region indicates bootstrap-based pointwise 95% confidence intervals. Higher
quantiles correspond to colder temperatures.

5.3.3.2 Phases of short-term climate variability (SCV)

Since we use a highly-variable covariate, M I
r,m(t), in the bulk model parameteri-

sation f. (and in the tail model), every result derived using this covariate will be

similarly highly variable and not smooth. For the sake of interpretability, we report

results at three different quantile levels of the variable M I
r,m(t). That is, we present

results associated with the 0.1, 0.5 and 0.9 quantiles of the covariate M I
r,m(t), and

denote these levels as M
(τ),I
r,m (t) where τ ∈ {0.1, 0.5, 0.9}. Throughout this analy-

sis, we will refer to these as low, median, and high phases of short-term climate

variability (SCV) respectively. Reporting results associated with quantiles of the

covariate alleviates any findings associated with the variability of any specific co-

variate. Instead, this method provides a general interpretation of different levels of

extremity in the context of different phases of large-scale climatic processes. Note

that the high phase of SCV in M I
r,m(t), (i.e., M

(0.9),I
r,m (t)) corresponds to a large neg-

ative phase of NAO and AO and subsequently a pronounced meandering of the jet

stream which we know is linked to more extreme cold spells in Northern Europe,

as well as Ireland (as discussed in Section 5.2.3.1)

5.3.3.3 Threshold selection

For threshold selection, we examine the stability of the parameters of the generalised

Pareto distribution over a range of thresholds as shown in Figure 5.9. For a sequence
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of 200 quantiles, τ , between 0.8 and 0.999 we empirically estimate the temperature

at that quantile for each site (s) separately. We treat this quantile as a threshold and

fit a generalised Pareto distribution to the excesses above each threshold, pooled

over space. The estimates of the generalised Pareto distribution parameters lnσ

and ξ are plotted, along with associated 95% confidence intervals for each quantile.

Since the generalised Pareto has a threshold stability property (Davison & Smith

1990), we know that once a sufficiently high threshold is chosen, the exceedance of

any higher threshold will be similarly generalised Pareto distributed with the same

shape parameter and a deterministic shift in the scale parameter. In Figure 5.9,

we can see this appears to happen around the 0.96 quantile. We are conscious of

the fact that this is quite a high threshold (given only three months of data per

year) and so to ascertain the sensitivity of this choice, we perform analysis based on

the three quantiles marked as vertical lines in the figure, i.e., we use the 0.95, 0.96,

and 0.97 quantiles as thresholds. Our primary analysis is performed using the 0.96

quantile, however we calculate results at all three quantiles (where computationally

feasible) to establish threshold selection sensitivity.
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Figure 5.9: Parameter stability plot of the GPD parameters, σ and ξ over a
range of quantiles used to calculate a site-wise threshold. Three vertical dashed
lines represent the 0.95, 0.96, and 0.97 quantiles. The shape parameter, ξ,
appears to stabilise around the 0.96 quantile.

The winter of 2009/10 represents a disproportionately large percentage of all ex-

treme events. We have over 73 years of data, with almost 17% of extreme hourly

observations occurring in the winter of 2009/10, while, on average, each year has

1.36% of all extreme events. It is clear the behaviour of extremes are different
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in 2009/10 from those in other years. For example, the temperature at the 0.9

quantile of minimum daily temperatures in 2009/10 is approximately twice as cold

(in the Celsius scale) as the average yearly temperature at the 0.9 quantile. This

anomalous period certainly has a substantial impact on the tail of the entire data

distribution. Despite this, extreme observations above the 0.96 quantile of temper-

atures are evenly spread across space and time, with the exclusion of the winter

2009/10. Even at this unusually high threshold, we believe we have sufficient ex-

treme observations to achieve our modelling goal of allowing the scale parameter to

capture the long-term non-stationarity in a parsimonious manner.

To alleviate the impact of the winter of 2009/10 on the estimation of the thresh-

old, we could use a different threshold estimate during 2009/10 from other years.

However, a step function at the threshold greatly reduces the interpretability and

parsimony of our model. Instead, we rely on more physically interpretable covariates

(described in Section 5.3.3.2, such as M I
r,m(t)) which capture SCV, and directly re-

flect the unusual behaviour of the especially extreme behaviour 2009/10. We could

incorporate this covariate into our threshold estimation. It is a non-trivial choice as

to whether to deal with this complex non-stationarity in the threshold or GPD pa-

rameters (see Section 4.7.2 for a discussion of this issue). Since we have data evenly

spread across all periods at our high threshold and to preserve the parsimony of

the model, we choose to keep a temporally constant threshold, and account for

the highly variable behaviour in the temperature process by incorporating the SCV

covariate into the scale parameter of the GPD.

An alternative approach to be explored in future work, is to use an extended gener-

alised Pareto distribution (eGPD) based models (Papastathopoulos & Tawn 2013).

The eGPD allows for a lower threshold selection, through the inclusion of an ad-

ditional shape parameter. In this way, we can include more extreme observations

in our analysis. Furthermore, recent developments by Naveau et al. (2016) extend

the methodology of (Papastathopoulos & Tawn 2013), to eliminate the specification

of a threshold, by allowing a smooth transition between the bulk and tail. These

methods maintain the generalised Pareto distribution in the tail of the distribution.

Regardless, we are conscious of the fact that this is quite a high threshold (given only

three months of data per year) and so to ascertain the sensitivity of this choice, we

perform analysis based on the three quantiles marked as vertical lines in Figure 5.9,
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i.e., we use the 0.95, 0.96, and 0.97 quantiles as thresholds.

Initially, following our best-performing analysis procedure for modelling maximum

daily summer temperatures found in Chapter 4, we chose model c. in Table 5.1

as the threshold model. Estimates of the spatial threshold, u
(τ)
o (s), for each τ ∈

{0.95, 0.96, 0.97} can be seen in the top row of Figure 5.10, where columns left

to right correspond to the increasing values of τ . However, we found that model

c. generally over-estimated lower quantiles and under-estimated higher quantiles.

Through exploratory analysis, we found this was largely due to coastal bias. The

inclusion of a coastal proximity covariate helped correct this bias. Finally, we chose

model c. with the inclusion of coastal proximity covariate C(s) as our threshold

model. Note that this is equivalent to model e. and f., with no temporal non-

stationarity. That is, the estimate of the spatial threshold is calculated as

u(τ)o (s) = β
(τ)
0 + β

(τ)
1 qc(s) + β

(τ)
2 C(s), (5.2)

where τ = 0.95, 0.96, or 0.97. Estimates of u
(τ)
o (s) using (5.2) for each τ ∈

{0.95, 0.96, 0.97} can be seen in the bottom row of Figure 5.10, where again, columns

left to right correspond to increasing values of τ . Figure 5.10 shows that inland areas

of Ireland experience cooler winter temperatures.
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Figure 5.10: Estimates of threshold u
(τ)
o (s) without accounting for coastal prox-

imity with values of τ = 0.95, 0.96, 0.97 from left to right (top row). Equivalent
to the corresponding figures above, with the inclusion of coastal proximity as
a covariate (bottom row).

In Figure 5.11, we calculate estimates of the threshold exceedance probability, λ,

associated with low, median, and high phases of SCV and present its spatial average

λo(t) =
∫
s∈So

λo(t, s)ds/|So|. The presented estimates of λo(t) show a decreasing

exceedance rate over the period 1950–2022, for each phase of SCV (low to high

from left to right). For the median phase of SCV, i.e., M
(0.5),I
r,m (t), in the centre plot,

the threshold exceedance rate over time of 0.04 − 0.015 reflects the choice of the

threshold as 0.96. During the low phase of SCV, i.e., M
(0.1),I
r,m (t), in the left-hand

plot, we have much smaller threshold exceedance probabilities, indicating a much

lower occurrence rate of extremely cold winter temperatures. In stark contrast,

during the high phase of SCV, i.e.,M
(0.9),I
r,m (t), in the right-hand plot, we see a much

higher occurrence of extremely cold winter temperatures. During these high phases,

we experience winters such as those in 2009/10.
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Figure 5.11: Threshold exceedance probability λo(t) for t from 1950 to 2022
for model E2 averaged over S, corresponding to low (left), median (centre)
and high phases (right) of SCV. In each case, the shaded region indicates
bootstrap-based pointwise 96% confidence intervals.

5.3.3.4 Tail model

For each site s, we assume that excesses of the threshold u(s) follow a generalised

Pareto distribution (GPD), with distribution function

H(y;σ, ξ) = 1− (1 + ξy/σ)
−1/ξ
+

for y > 0, with a shape parameter ξ ∈ R and a scale parameter σ > 0, with the

notation x+ = max(x, 0), and ξ = 0 is obtained by taking the limit as ξ → 0.

When X(t, s) > u(s) the threshold excess, Y (t, s) = X(t, s)− u(s), is taken to be

distributed as

Y (t, s) ∼ GPD(σ(t, s), ξ).

We investigated numerous choices of models for σ(t, s), broadly grouped into seven

as presented in Table 5.2. In all models, we take the shape parameter to be constant

over space and time for each model. We perform a log-likelihood ratio test at each

site to determine whether allowing the shape parameter to vary over space provides

a significant improvement in the model fit. We take MN , the null hypothesis, to be

the model with constant shape parameter and MA, the alternative, where each site

has a different shape parameter estimate. For each site we compare the maximised

pseudo-likelihood of MN (i.e., pL{MN(s)}) and MA, (i.e., pL{MA(s)}) and calcu-

late the pseudo-likelihood ratio test statistic as 2 ln [pL{MA(s)} /pL{MN(s)}]. We

found that over 91% of sites had a likelihood ratio below 0.05, with 95% of sites
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below 0.06. The total proportion of data in the sites with a test statistic greater

than 0.05 is about 2.5% of extremal observations substantially below the standard

likelihood ratio test statistic of 3.84. Furthermore, there was no clear spatial pat-

tern in those sites with a test statistic higher than 0.05. Thus, we choose to keep a

constant shape parameter.

As discussed in Section 5.1, extreme Irish winter minima are highly variable and

strongly associated with large-scale climatic oscillations. We explore a set of po-

tential covariates to explain the variability unaccounted for by M I(t). This extra

covariate is denoted as z(t) in Table 5.2.

Group Model structure for lnσo
A β0 + β1M

I(t) + β2z(t)
B β0 + β1σc(s) + β2M

I(t) + β3z(t)
C β0 + β1σc(s) + β2M

I(t) + β3C(s) + β4z(t)
D β0 + β1σc(s) + β2M

I(t) + β3M
I(t)C(s) + β4z(t)

E β0 + β1C(s) + β2M
I(t) + β3z(t)

F β0 + β1C(s) + β2M
I(t) + β3M

I(t)C(s) + β3z(t)
G β0 + β1M

I(t) + β2M
I(t)C(s) + β4z(t)

H {β0, β0 + β1σc(s), β0 + β1C(s)},

Table 5.2: GPD model groups.

The covariates z(t) capture short-term climatic variability (SCV) and are detailed

in Section 5.2.3.1. In each group in Table 5.2, z(t) can also be the empty-set ∅, so in

each model group, we excluded the covariate z(t) and explore the assumption that

there is no climate variability unaccounted for by a global trend. The set of covari-

ates we present cross-validation results for is z(t) = {0, M I
r,m(t), M

I
r (t), NAO(t),

NAOr(t), NAOm(t), NAOr,m(t), AO(t), AOr(t), AOm(t), AOr,m(t), M
G
r (t), M

N
r (t)},

totalling 94 models which can be seen in Table 5.3. The covariates NAO(t) and

AO(t), refer to the North Atlantic and Arctic oscillation values, respectively;MG
r (t)

refers to the average HadCRUT5 values over the grid points surrounding Ireland,

excluding the grid point over Ireland, and MN
r (t) refers to the average HadCRUT5

values over the grid points above Ireland. In each case, the subscript r refers to

the residuals of that covariate after the trend of M I(t) is removed. A subscript m

indicates monthly values, whereas no subscript m indicates that the average value

over the winter months was taken for each year. We also investigated monthly val-

ues of MN
r (t) and MG

r (t). However, as compared to M I
r (t), their performance was
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generally worse in each case, so we do not include them for brevity. The spatial

covariate σc(s) represents the scale parameter of the GPD, fitted to Xc(t, s), the

climate model from the grid point closest to site s. The covariate σc(s) for each

threshold u
(0.95)
c (s),u

(0.96)
c (s), and u

(0.97)
c (s) estimated using climate model data is

shown in Figure 5.12.
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Figure 5.12: Climate scale covariate σc(s) associated thresholds u
(0.95)
c (s) (left),

u
(0.96)
c (s) (centre) and u

(0.97)
c (s) (right) each with associated shape parameters

ξ = −0.12,−0.11, and −0.09 respectively.

5.3.3.5 Model selection

In Table 5.2, Group A assumes spatial stationarity in the scale parameter. Groups

B and C borrow spatial information from a climate model output similar to the pro-

cedure used in Chapter 4, where C also explores a coastal proximity effect. Group D

is equivalent to C but explores the interaction between the coast and long-term tem-

poral trends. Groups E and F do not borrow information from the climate model

output, instead relying on coastal proximity to describe all spatial non-stationarity.

Group G has no main spatial term, instead, it explores an interaction in space

and time. We also consider some miscellaneous “base” models, which we will call

group H. Group H consists of three models, model H1 has no spatial or temporal

non-stationarity. Model H2 incorporates σc(s) as a spatial covariate. Surprisingly,

this yields no improvement over the spatially stationary model H1, suggesting the

inefficacy of σc(s) for informing the spatial nature of extreme cold temperatures.
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However, the incorporation of the coastal proximity covariate C(s), in model H3,

achieves an improved cross-validation score over the spatially stationary model H1.

Surprisingly, the chosen climate model output is not as effective as a spatial covari-

ate for modelling extremely cold winter events as we found it to be for extremely

hot summer temperatures in Chapter 4.

For the cross-validation metrics presented in Table 5.3, empirical quantiles used for

calculating RMSE were estimated on yearly blocks of data for each site (in order

to have sufficient data for estimating reasonable empirical quantiles, as well as pre-

serving temporal non-stationarity). Therefore we do not report RMSE associated

with models that have monthly non-stationary as their interpretation is not help-

ful. The continuous ranked probability score (CRPS, Gneiting & Katzfuss 2014)

does not require the specification of an observation quantile to assess the model

performance. We thus use RMSE and CRPS jointly to identify the best-performing

covariate. Following this we use CRPS to choose whether to take a given covariate

on a monthly or yearly scale.

The best models (highlighted in Table 5.3) all favour using HadCRUT5 residuals,

M I
r (t), as a covariate for explaining SCV. This is perhaps unsurprising as all climatic

forcings are encoded within HadCRUT5, and most informatively, their direct impact

on temperature processes. The next most successful and informative covariates z(t)

were {AOr,NAOr and, M
G
r }. Furthermore, each of the best-performing models

used coastal proximity as a covariate.

In each pair of best-performing models, within each model group, CRPS prefers

the monthly covariate M I
r,m(t) (highlighted in red in Table 5.3) rather than the

yearly averaged M I
r (t) (highlighted in blue). This narrows the selection down to

models C2, E2, and F2. Models C2 and F2 are equivalent, only for their main

spatial covariate, with C2 using σc(s) and F2 using C(s). Model F2 outperforms

model C2 in n-fold CV, while model C2 outperforms model F2 in spatio-temporal

CV by the same very small margin. In both models F2 and C2, the coefficient β3

of the spatio-temporal interaction between C(s) and M I(t) was not statistically

significant with 95% confidence bounds containing 0. In this regard, we prefer

model E2 over F2, since E2 is a nested model of F2, simply without the spatio-

temporal interaction. We note that model F2 gives a very slight improvement in

n-fold CRPS CV yet no improvement in spatio-temporal CV. Comparing models C2
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and E2, both with very similar CV metrics and considering the earlier discussion of

base model H3 outperforming H2, we prefer model E2. Finally, we choose model E2

for its parsimony, predictive and modelling performance, and ease of interpretation.

To summarise, our chosen marginal GPD model E2 uses coastal proximity, C(s), as

a spatial covariate, smoothed temperature anomalies over Ireland,M I(t), as a long-

term temporal covariate, and monthly residuals from smoothed covariate, M I
r,m(t),

as a SVC covariate, capturing unusually cold winters. To assess the absolute quality

of the chosen model E2, we create a pooled QQ-plot in the right-hand panel of

Figure 5.13, pooling over all sites and years. We transform the data through our

fitted model into a common uniform scale and to a common exponential scale.

The exponential scale accentuates the upper tail of the data and highlights the

model’s performance in capturing the extreme values. We see evidence of a good

fit, with values near the lines of equality, and in the far upper tail, all values

falling within the pointwise tolerance bounds. The left-hand plot of the same figure

presents the equivalent plot, but using model E1 (equivalent to model E2 but with

no covariate z(t) to capture SCV). This clearly highlights how not accounting for

climate variability in extreme winter temperatures leads to a poor representation of

the data in the upper tail. This leads to model E1 having a heavier tail (ξ̂ = 0.011)

than our preferred model E2 (ξ̂ = −0.079) and thus, overestimates the heaviness of

the tail of the distribution.
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quantiles  

Figure 5.13: QQ-plot of two models on exponential margins to accentuate the
behaviour of the tail. Model E1 without climate oscillation covariate (left),
final chosen model E2 with climate oscillation covariate (right)
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Figure 5.14 plots the scale parameter, σ, estimated via model E2. This figure

shows that the most variable excess distribution is inland, with a decay in values

moving towards the coast, highlighting the ocean’s regulatory effect. Furthermore,

we see the largest estimated scale parameter at higher levels of SCV. The estimated

change in the scale parameter over the observation period, denoted ∇σo(s), during
low, median, and high phases of SCV, is plotted on the bottom row of the same

figure. The scale parameter has decreased overall levels of SCV with the largest

decrease during phases of high SCV. Recall that we are modelling the maximum

of negative minimum temperatures (see Equation (5.1)), so the decreasing scale

parameter suggests a warming of extreme minimum winter temperatures, with the

greatest warming observed during high levels of SCV.
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Figure 5.14: Estimated GPD scale parameter according to model E2 in 2022
during low, median, and high phases of SCV (top row, left to right respec-
tively). Estimated change in the scale parameter since 1950, ∇σo(s) with
respect to scale estimates during low, median, and high phases of SCV as plot-
ted above (bottom row, left to right respectively).
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Table 5.3: Cross-validation metrics for each GPD model.

Model Parameterisation of lnσo ST-CV n-CV

RMSE CRPS RMSE CRPS

A 1 β0 + β1M
I(t) 1.223 0.886 1.350 0.946

2 β0 + β1M
I(t) + β2M

I
r,m(t) - 0.824 - 0.880

3 β0 + β1M
I(t) + β2M

I
r (t) 1.106 0.836 1.198 0.895

4 β0 + β1M
I(t) + β2M

G
r (t) 1.122 0.842 1.221 0.901

5 β0 + β1M
I(t) + β2M

G
r (t) 1.128 0.848 1.224 0.906

6 β0 + β1M
I(t) + β2AO(t) 1.112 0.842 1.208 0.901

7 β0 + β1M
I(t) + β2AOr(t) 1.112 0.842 1.208 0.901

8 β0 + β1M
I(t) + β2AOm(t) - 0.862 - 0.918

9 β0 + β1M
I(t) + β2AOr,m(t) - 0.862 - 0.918

10 β0 + β1M
I(t) + β2NAO(t) 1.121 0.843 1.220 0.904

11 β0 + β1M
I(t) + β2NAOr(t) 1.121 0.843 1.220 0.904

12 β0 + β1M
I(t) + β2NAOm(t) - 0.845 - 0.902

13 β0 + β1M
I(t) + β2NAOr,m(t) - 0.845 - 0.902

B 1 β0 + β1σc(s) + β2M
I(t) 1.225 0.887 1.349 0.946

2 β0 + β1σc(s) + β2M
I(t) + β3M

I
r,m(t) - 0.823 - 0.880

3 β0 + β1σc(s) + β2M
I(t) + β3M

I
r (t) 1.110 0.836 1.199 0.895

4 β0 + β1σc(s) + β2M
I(t) + β3M

G
r (t) 1.126 0.843 1.222 0.901

5 β0 + β1σc(s) + β2M
I(t) + β3M

G
r (t) 1.130 0.848 1.224 0.906

6 β0 + β1σc(s) + β2M
I(t) + β3AO(t) 1.116 0.842 1.208 0.901

7 β0 + β1σc(s) + β2M
I(t) + β3AOr(t) 1.115 0.842 1.208 0.901

8 β0 + β1σc(s) + β2M
I(t) + β3AOm(t) - 0.862 - 0.918

9 β0 + β1σc(s) + β2M
I(t) + β3AOr,m(t) - 0.862 - 0.918

10 β0 + β1σc(s) + β2M
I(t) + β3NAO(t) 1.125 0.844 1.220 0.903

11 β0 + β1σc(s) + β2M
I(t) + β3NAOr(t) 1.125 0.843 1.220 0.903

12 β0 + β1σc(s) + β2M
I(t) + β3NAOm(t) - 0.845 - 0.902

13 β0 + β1σc(s) + β2M
I(t) + β3NAOr,m(t) - 0.845 - 0.902

C 1 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) 1.189 0.879 1.320 0.939

2 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4M
I
r,m(t) - 0.815 - 0.874

3 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4M
I
r (t) 1.064 0.828 1.166 0.889

4 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4M
G
r (t) 1.083 0.835 1.188 0.895

5 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4M
G
r (t) 1.087 0.840 1.191 0.899

6 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4AO(t) 1.075 0.834 1.176 0.895

7 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4AOr(t) 1.073 0.834 1.177 0.896

8 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4AOm(t) - 0.855 - 0.911

9 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4AOr,m(t) - 0.855 - 0.911

10 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4NAO(t) 1.085 0.838 1.186 0.898

11 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4NAOr(t) 1.077 0.835 1.187 0.898

12 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4NAOm(t) - 0.838 - 0.896
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13 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4NAOr,m(t) - 0.838 - 0.896

D 1 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) 1.225 0.887 1.349 0.945

2 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4M
I
r,m(t) - 0.824 - 0.880

3 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4M
I
r (t) 1.112 0.837 1.200 0.895

4 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4M
G
r (t) 1.125 0.844 1.222 0.902

5 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4M
G
r (t) 1.131 0.849 1.224 0.906

6 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4AO(t) 1.117 0.842 1.208 0.901

7 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4AOr(t) 1.116 0.842 1.208 0.901

8 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4AOm(t) - 0.863 - 0.918

9 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4AOr,m(t) - 0.863 - 0.918

10 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4NAO(t) 1.123 0.843 1.219 0.904

11 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4NAOr(t) 1.122 0.844 1.222 0.904

12 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4NAOm(t) - 0.845 - 0.902

13 β0 + β1σc(s) + β2M
I(t) + β3M

I(t)C(s) + β4NAOr,m(t) - 0.844 - 0.902

E 1 β0 + β1C(s) + β2M
I(t) 1.189 0.878 1.320 0.939

2 β0 + β1C(s) + β2M
I(t) + β3M

I
r,m(t) - 0.816 - 0.874

3 β0 + β1C(s) + β2M
I(t) + β3M

I
r (t) 1.065 0.829 1.163 0.888

4 β0 + β1C(s) + β2M
I(t) + β3M

G
r (t) 1.080 0.834 1.187 0.895

5 β0 + β1C(s) + β2M
I(t) + β3M

G
r (t) 1.086 0.840 1.190 0.899

6 β0 + β1C(s) + β2M
I(t) + β3AO(t) 1.073 0.834 1.176 0.895

7 β0 + β1C(s) + β2M
I(t) + β3AOr(t) 1.073 0.834 1.176 0.895

8 β0 + β1C(s) + β2M
I(t) + β3AOm(t) - 0.855 - 0.912

9 β0 + β1C(s) + β2M
I(t) + β3AOr,m(t) - 0.855 - 0.911

10 β0 + β1C(s) + β2M
I(t) + β3NAO(t) 1.081 0.836 1.187 0.898

11 β0 + β1C(s) + β2M
I(t) + β3NAOr(t) 1.081 0.836 1.187 0.898

12 β0 + β1C(s) + β2M
I(t) + β3NAOm(t) - 0.837 - 0.896

13 β0 + β1C(s) + β2M
I(t) + β3NAOr,m(t) - 0.837 - 0.896

F 1 β0 + β1C(s) + β2M
I(t) + β3M

I(t)C(s) 1.187 0.878 1.316 0.938

2 β0 + β1C(s) + β2M
I(t) + β3M

I(t)C(s) + β4M
I
r,m(t) - 0.816 - 0.873

3 β0 + β1C(s) + β2M
I(t) + β3M

I(t)C(s) + β4M
I
r (t) 1.063 0.828 1.159 0.888

4 β0 + β1C(s) + β2M
I(t) + β3M

I(t)C(s) + β4M
G
r (t) 1.079 0.835 1.181 0.894

5 β0 + β1C(s) + β2M
I(t) + β3M

I(t)C(s) + β4M
G
r (t) 1.083 0.840 1.183 0.898

6 β0 + β1C(s) + β2M
I(t) + β3M

I(t)C(s) + β4AO(t) 1.072 0.835 1.172 0.895

7 β0 + β1C(s) + β2M
I(t) + β3M

I(t)C(s) + β4AOr(t) 1.069 0.833 1.171 0.895

8 β0 + β1C(s) + β2M
I(t) + β3M

I(t)C(s) + β4AOm(t) - 0.854 - 0.911

9 β0 + β1C(s) + β2M
I(t) + β3M

I(t)C(s) + β4AOr,m(t) - 0.854 - 0.911

10 β0 + β1C(s) + β2M
I(t) + β3M

I(t)C(s) + β4NAO(t) 1.081 0.836 1.185 0.897

11 β0 + β1C(s) + β2M
I(t) + β3M

I(t)C(s) + β4NAOr(t) 1.082 0.836 1.184 0.897

12 β0 + β1C(s) + β2M
I(t) + β3M

I(t)C(s) + β4NAOm(t) - 0.837 - 0.895

13 β0 + β1C(s) + β2M
I(t) + β3M

I(t)C(s) + β4NAOr,m(t) - 0.837 - 0.895

G 1 β0 + β1M
I(t) + β2M

I(t)C(s) 1.224 0.886 1.349 0.945

2 β0 + β1M
I(t) + β2M

I(t)C(s) + β4M
I
r,m(t) - 0.824 - 0.880
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3 β0 + β1M
I(t) + β2M

I(t)C(s) + β4M
I
r (t) 1.107 0.836 1.198 0.895

4 β0 + β1M
I(t) + β2M

I(t)C(s) + β4M
G
r (t) 1.122 0.843 1.221 0.901

5 β0 + β1M
I(t) + β2M

I(t)C(s) + β4M
G
r (t) 1.129 0.849 1.224 0.906

6 β0 + β1M
I(t) + β2M

I(t)C(s) + β4AO(t) 1.113 0.842 1.208 0.901

7 β0 + β1M
I(t) + β2M

I(t)C(s) + β4AOr(t) 1.113 0.842 1.208 0.901

8 β0 + β1M
I(t) + β2M

I(t)C(s) + β4AOm(t) - 0.862 - 0.918

9 β0 + β1M
I(t) + β2M

I(t)C(s) + β4AOr,m(t) - 0.862 - 0.918

10 β0 + β1M
I(t) + β2M

I(t)C(s) + β4NAO(t) 1.124 0.844 1.220 0.904

11 β0 + β1M
I(t) + β2M

I(t)C(s) + β4NAOr(t) 1.122 0.844 1.221 0.904

12 β0 + β1M
I(t) + β2M

I(t)C(s) + β4NAOm(t) - 0.845 - 0.902

13 β0 + β1M
I(t) + β2M

I(t)C(s) + β4NAOr,m(t) - 0.845 - 0.902

H 1 β0 1.224 0.885 1.354 0.945

2 β0 + β1σc(s) 1.225 0.885 1.354 0.945

3 β0 + β1C(s) 1.189 0.878 1.322 0.939

5.3.3.6 Bootstrapping procedure

For our analysis, we rely on bootstrapping to characterise and carry uncertainty in

our modelling assumptions throughout the entire analysis, from the marginal bulk

and tail model to the r-Pareto simulations. In Section 4.3.4.1 we present a boot-

strapping algorithm designed to preserve spatial and short-term temporal depen-

dence in maximum daily summer temperature data, while also matching missingness

patterns in the observation data. This was achieved through vector temporal block

bootstrapping of the observed data after being transformed to be uniformly dis-

tributed, XU
o (t, s) = F {Xo(t, s)}. The resampled data are then transformed back

to the data scale, giving a bootstrapped sample data set, X∗
o (t, s), generated under

the chosen marginal model. This bootstrapping procedure was not immediately ap-

plicable to our winter data set for two reasons. Firstly, extremely cold winter events

have substantially stronger temporal dependence than hot summer temperatures.

Secondly, we found that temporal trends in cold winter extremes were much more

variable and more complex in terms of dependence on climate indicators than in hot

summer extremes. Here we describe modifications to our bootstrapping algorithm

to account for these features and capture them in our bootstrap samples.

Extreme cold winter events have much stronger temporal dependence compared to

hot summer events. Solar insolation is lowest in Ireland during winter months and so

factors such as clouds tend to have much lower local impact leading to more spatially
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and temporally smooth structures (Liou 2002). Through exploratory analysis, we

found that the expected duration of an extreme cold event at any site in our data

set is on average approximately 20 days, see Figure 5.15. Temporally de-clustering

extreme events at a single site would create independent observations and remove

the need to perform block bootstrapping. However, in a spatio-temporal setting, de-

clustering each site separately would greatly increase the permutations of observed

sites across each day, greatly reducing the number of possible spatial matches for

resampling.

0
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20

10 20 30
Length of extreme event (days)

Count

Figure 5.15: The mean across all sites of the length of extreme events in days.
The duration of a single extreme event is the number of consecutive extreme
observations that occur within a seven-day period of another at an individual
site.

Instead, we summarise all days in the data set by the minimum temperature ob-

served across sites on that day, creating a time series of mins∈S {X(t, s)}, as shown
in Figure 5.16. We considered two approaches using this series. By temporally de-

clustering this time series, taking local minima within a ±10 day range, and keeping

all data within the de-clustered dates gives approximately independent observations

without disrupting the spatial dimension. However, this risks under-representing

areas that experience less severe extremes while also being wasteful of data. Instead,

we create spatio-temporal blocks on the original data, centred on the de-clustered

local minima of mins∈S {X(t, s)}, extending to the midpoint between the previous

and subsequent local minima. These blocks are assumed to be independent and

capture the short-range temporal dependence in the data. We found the best re-

sults when we extended the range for declustering to a ±15 day range, allowing us

to capture the majority of the events with very strong autocorrelation while being

small enough to allow us to define a suitably large number of blocks for resampling.
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The de-clustered local minima are highlighted in red in Figure 5.16.
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Figure 5.16: Time series of mins∈S {X(t, s)} over the period 1950–2022 with
de-clustered local minima (in ±15 days) highlighted in red.

A key issue with the bootstrapping procedure presented in Chapter 4 is that it

assumes the model is correct and that F {Xo(t, s)} is uniformly distributed. As-

suming that the model captures all temporal non-stationarity within the data is

certainly unrealistic when the non-stationarity is complex, highly variable, and the

choice of the best-performing model is not obvious. Our aim is to capture and

accurately describe the overarching trend of winter extremes in Ireland, disentan-

gling the long-term trend from complex climatic variations. Furthermore, we found

that the most extreme events (such as winter 2009/10, as discussed in Section 5.1)

greatly affected extremal inference on that bootstrapped data set. Furthermore,

as is shown in Figure 5.2, the winter of 2009/2010 constitutes a disproportionately

large portion of extremal observations and hence is more likely to be resampled.

With the aim of preserving the global trend of the data, in the context of numerous

and highly variable models, while accurately representing expected large variation,

we restrict resampling within windows of ±10 years. That is, we accept a resample

if it is within a 10-year window of the data being replaced.

When resampling, we initially only accepted resampled blocks if they had the exact

spatio-temporal pattern as the block being replaced as a subset of its data. However,

given our set of fixed and predefined blocks, this led to relatively few suitable choices

available to resample which in turn led to little variation in the bootstrapped data

sets. To deal with this, we experimented with a “relaxed” resampling algorithm

for spatial pattern matching. We accepted a resampled block if it had a high
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proportion of the sites in the block it was replacing. We found that we had sufficient

variation when accepting blocks that had 90% of the sites being replaced. To

preserve missingness patterns in the data we discarded observations from sites in

the resampled block that are not in the block that was being replaced. If the

resampled block was of a longer duration than the block being replaced we took a

subset of the resampled block, randomly.

5.4 Multivariate dependence models

5.4.1 Overview and strategy

We investigate the level of extremal dependence of extreme minimum daily win-

ter temperature data, following the process as described in Section 4.4.1. We first

standardise the marginal variables so that they have an identical distribution over

variables and covariates such that we can fairly investigate extremal dependence.

We first transform the data to uniform margins using the probability integral trans-

form, and following this, we transform to standard Pareto using

XP (t, s) =
1

1− Ft,s{X(t, s)}
, for all s ∈ S and all t, (5.3)

where F is the estimated distribution function of X(t, s) with quantile regression

bulk model below u(s) and GPD tail model above. Following this, we fit a gener-

alised r-Pareto process to extreme spatial observations as decided via a cost function

to model the extremal dependence. Asymptotic dependence is a prerequisite for fit-

ting the r-Pareto model and so we test if the data satisfies this requirement. A

discussion of the extremal dependence of the data is shown in Section 5.4.2. After

fitting the r-Pareto process (covered in Section 5.4.3) we generate spatial simula-

tions under different phases of SCV.

5.4.2 Evidence for asymptotic dependence

The pairwise coefficient of asymptotic dependence, χ, measures the probability of a

process at two sites being jointly extreme (Coles et al. 1999). Recall, for the process
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XP at sites si and sj, χ = χP (si, sj) is defined by

χP (si, sj) = lim
v→∞

Pr(XP (sj) > v
∣∣XP (si) > v)

If χP (si, sj) > 0 (or equals 0) then process XP is asymptotically dependent (or

asymptotically independent) at this pair of sites respectively. The value of χ (0 <

χ ≤ 1) determines the degree of asymptotic dependence, with χ increasing as this

dependence strengthens.

We define an empirical estimator of the tail coefficient of processes X1 and X2 at

quantile u as

χu(X1, X2) =
P [FX1(X1) > u, FX2(X2) > u]

P [FX2(X2) > u]
, (5.4)

where FXi
denotes the distribution function of process Xi. Empirical estimates of χ

are plotted against the distance between sites for all pairs of sites for both the obser-

vational data, XP
o , and climate model data XP

c in Figure 5.17. This figure suggests

that the climate model output overestimates extremal dependence in observational

winter temperatures. The empirically estimated coefficient of extremal dependence

for both processes remains non-zero, even at considerable distances and increasing

quantiles with the magnitude of χ changes minimally as quantiles increase. Our

analysis suggests that the assumption of asymptotic dependence in the minimum

daily temperature in Ireland is reasonable.

p = 0.8 p = 0.85 p = 0.9

0 100 200 300 0 100 200 300 0 100 200 300
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Figure 5.17: Estimates of χ plotted against inter-site distance for observational
data (blue), standardised using marginal model E2, and climate model output
(orange) for u = 0.8, 0.85, and 0.9 with 95% confidence intervals plotted as
vertical lines.
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5.4.3 r-Pareto process

After standardising the data to unit Pareto margins, we model the extreme depen-

dence of the process XP (t, s) over s ∈ S with an r-Pareto process. For a detailed

treatment of r-Pareto process theory see Section 4.4.3. To briefly recall, we define

a risk function to provide a measure and ordering to levels of extremity of spatial

observations, r(XP ) := r{XP (s) : s ∈ S} ∈ [0,∞), where r must be homogeneous

of order 1. Dombry & Ribatet (2015) show that under weak conditions on the

process XP that

Pr
{
v−1XP (s : s ∈ S) ∈ · | r(XP (s : s ∈ S)) > v

}
→ Pr{Y P

r (s : s ∈ S) ∈ ·},
(5.5)

as v → ∞, where {Y P
r (s) : s ∈ S} is marginally non-degenerate in any margins.

Here, Y P
r is called the r-Pareto process. If the limit provided in Equation (5.5) is

a good approximation for large v, then those spatial events with a risk function

exceeding v will be well-approximated by an r-Pareto process. Crucially, Y P
r can

be decomposed into two independent stochastic components as follows:

Y P
r (s) = RW (s) for all s ∈ S (5.6)

where R is Pareto distributed and can be interpreted as the risk of the process, and

{W (s) : s ∈ S} is a stochastic process which describes the spatial profile of the

extreme event, i.e., the proportion of the risk at each site. By construction, we have

that R = r(Y P
r (s : s ∈ S)) and r(W (s : s ∈ S)) = 1, where R ∼ Pareto(1) can

be interpreted as the magnitude or cost of the process, i.e., R = r(Y ). The spatial

process of Y is then W . This characterisation is powerful as it allows extrapolation

to events larger than those previously observed.

Similar to the analysis in Chapter 4, we take the cost function to be

rt(X
P
o (t, s) : s ∈ S) =

∑d
i=1X

P
o (t, si)Io(t, si)∑d
i=1 Io(t, si)

,

where Io(t, si) is the indicator variable for whether Xo(t, si) is observed or not, d

is the number of sampling locations selected for the risk function evaluation using

sites s1, . . . , sd. Thus, the risk function rt is the average of standardised variables

over the d sites which were observed at time t, and so is invariant to the changing
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dimension of the partially observed event.

Expression (5.6) allows us to model the spatial profile of extremal dependence sepa-

rately from the magnitude. Furthermore, the choice of a parametric spatial process

W also affords great flexibility. Following de Fondeville & Davison (2018) and

Palacios-Rodŕıguez et al. (2020), we choose to model W using the log-Gaussian

stochastic process (also referred to as the Brown–Resnick process in the max-

stable literature). Modelling the angular component W of the r-Pareto process

via log-Gaussian processes affords us the ability to make use of classical geosta-

tistical methods. Engelke et al. (2015) note that the finite-dimensional marginal

distribution of the log-Gaussian process at sites s0, s1, . . . , sk is the Hüsler-Reiss

distribution (Hüsler & Reiss 1989) with spectral density h and parameter matrix

Λ = (λ2i,j)0≤i,j≤k = (γ (si − sj) /2)0≤i,j≤k. So, we can express h in terms of this

variogram γ. We use the Matérn variogram family

γmat(h; t) = α
{
1− (2

√
νh/ϕ)ν21−νΓ(ν)−1Kν(2

√
νh/ϕ)

}
, (5.7)

for inter-site distance h ≥ 0, Kν a modified Bessel function of the second kind,

and the positive parameters (α, ϕ, ν) which determine the variance, range, and

smoothness, respectively (Banerjee et al. 2014).

In general, the estimation of the smoothness parameter, ν, is difficult in practice

(Bai et al. 2012). A popular approach to alleviate this issue is to estimate ν via

a grid search (H. L. Ip & W. K. 2017). We fit the r-Pareto process over a grid

of values for ν and found that ν = 0.1 maximised the likelihood function. We

found the risk threshold we used to model extreme extremal dependence for sum-

mer temperature data provided an accurate choice for modelling winter minima.

That is, we choose events whose risk is above the 80% quantile of the risks cal-

culated for all observed events. Figure 5.18 shows the estimated χP
o derived from

the fitted r-Pareto process with associated 95% uncertainty bounds based on 200

spatio-temporal bootstrap samples, along with the pairwise empirical estimator as

in expression (5.4), estimated for a high quantile (u = 0.92). The figure shows

a good fit to the data, suggesting the r-Pareto process is capturing the level of

asymptotic dependence well. We tested for linear non-stationarity in both the scale

parameter of the Mátern variogram, α, which controls the maximum variability of

the process and is approached asymptotically by the variogram. We use year, scaled
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between 0 and 1, as a temporal covariate. However, similar to extreme maximum

daily temperatures Chapter 4, we do not find any statistically significant evidence

for change in the variogram’s parameters.
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Figure 5.18: Estimates of χP
o against inter-site distance h for model E2: the

pairwise empirical estimator of χP
o for u = 0.92, calculated as in expres-

sion (5.4) is shown as vertical line segments reflecting the bootstrap uncertainty
in the marginal distribution estimates; the smooth lines display the limiting
value for χP

o , estimated using the r-Pareto process with a Matérn variogram
when fitted above an 80% risk threshold, with 95% confidence intervals, cap-
turing both marginal and extremal dependence bootstrap uncertainties.

5.5 Results

In this section, we present a range of summaries of how daily minimum winter tem-

perature extreme events in Ireland are changing over the period 1950–2022. Firstly,

we characterise how winter temperature extremes are changing on a marginal level

in Section 5.5.1. Following this, in Section 5.5.2, we summarise temporal non-

stationarities in the spatial context. We present a range of extremal simulation sum-

mary statistics detailing how spatial daily minimum temperature extreme events in

Ireland are changing over the period 1950–2022, parallel to those presented in Sec-

tion 4.5. Throughout this section, we present results in the context of low, median,

and high SCV.
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5.5.1 Marginal return level results

Figure 5.19 presents estimates of the 100-year return level in the context of the year

2022 for model E2. The 100-year level corresponds to an occurrence probability of

1/(100×90.25). In this figure, we see the return level associated with different phases

of SCV, i.e., M
(0.1,I)
r,m (t),M

(0.5,I)
r,m (t), and M

(0.9,I)
r,m (t), from left to right. The figure

clearly shows that, in lower phases of SCV, we see much less extreme temperatures.

We estimate a return level of −8.9◦C to −2.7◦C over Ireland associated with the

covariate levelM
(0.1,I)
r,m (t) corresponding to the low phase of SCV. At increasing levels

of SCV, we see more intense return levels, i.e., we estimate a return level of −10.9◦C

to −3.9◦C and −14.6◦C to −6.8◦C associated to the levelsM
(0.5,I)
r,m (t) andM

(0.9,I)
r,m (t),

respectively. The different return levels in each case have equivalent occurrence

probabilities in the context of their respective phases of climatic oscillations.
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Figure 5.19: Estimated 100-year marginal return level in 2022 for (left-right)
low, median, and high phases of SCV derived from model E2.

Figure 5.20 shows half the width of the 95% confidence interval for 100-year return

levels presented in the respective plots in Figure 5.19 based on 200 bootstrapped

data sets. For each phase of SCV, we can see the most uncertainty inland, where

we have the shortest records of data. Furthermore, among the three levels of SCV,

most uncertainty occurs during high levels, which correspond to unusually cold

events such as that of winter 2009/10.
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Figure 5.20: Half of the width of the 95% confidence interval of 100-year return
level in 2022 for low, median, and high phases (left-right) of SCV derived from
model E2 derived from 200 spatio-temporal bootstraps.

Figure 5.21 shows how the estimated 100-year level derived from model E2 has

changed since 1950 during different levels of SCV. In each case, we see that the

largest increases are inland. The 100-year return level during levels of median

SCV (centre plot; Figure 5.21) has increased between 2.1–3◦C. This increase in ex-

treme temperatures over the observed record is substantially larger than the approx

0.8–1◦C change of M I(t) over the same period (see Figure 5.4). This result reit-

erates that climate change is more radically affecting extreme temperatures than

mean temperatures. Furthermore, an increase of 2.1–3◦C of the 100-year level is

in contrast to the respectively lower increase of 1.2–2.2◦C estimated for maximum

summer 100-year levels over a similar period (1942–2020) in the analysis carried

out in Chapter 4. This indicates that winter extreme minimum temperatures are

warming faster than summer extreme maximum temperatures, corroborating Ire-

land’s reflection of global trends. We see the most substantial increase in 100-year

return levels is in the context of high SCV (right-hand plot; Figure 5.21) with an

estimated increase of 2.9–4◦C over the island. This suggests that climatic conditions

that would typically result in very cold temperatures in Ireland are now resulting

in much warmer temperatures. This aligns with the findings of Christiansen et al.

(2018), which suggest that the winter of 2009/10 was much milder than expected

given the climatic conditions at the time. We estimate the lowest levels of warming

during the low phase of SCV (left-hand plot; Figure 5.21) with an increase 1.9–

2.7◦C over the island. Figure 5.22 reports the 95% confidence interval of changes
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in 100-year return levels calculated using 200 bootstrapped data sets. The columns

in Figure 5.22 correspond to the respective column of Figure 5.21. The top row

corresponds to the lower bound while the bottom row corresponds to the upper

bound. At all three levels of SCV, and at all sites, the changes are positive.
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Figure 5.21: Estimated change in 100-year marginal return level over the period
1950–2022 for low, median, and high phases (left-right) of SCV derived from
model E2.
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Figure 5.22: The lower bound of 95% confidence interval of change in 100-
year return level according to model E2 for low, median, and high phases of
SCV (top row, left to right respectively). The upper bound of 95% confidence
interval of the corresponding plot in the top row (bottom row). Confidence
intervals are based on 200 bootstrapped data sets.

We investigate the sensitivity of our threshold choice as discussed in Section 5.3.3.3.

Figure 5.23 reports the difference between the 100-year level derived from our chosen

model, E2, using our chosen threshold, u(0.96)(s), with 100-year levels estimated

using a lower threshold (left-hand plot, with τ = 0.95) and higher threshold (right-

hand plot, with τ = 0.97). The differences between the return level estimates are

well within the 95% uncertainty interval of our chosen estimate. This suggests that

while there is a small difference in return levels estimated with slightly different

thresholds, these differences are captured by our bootstrapped uncertainties.
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Figure 5.23: The difference in the 100-year level during the median phase of
SCV in 2022 between model E2 fit to exceedances above the chosen threshold
of u(0.96)(s) and to exceedances above both a lower threshold of u(0.95)(s) (left)
and higher threshold of u(0.97)(s) (right).

5.5.2 Spatial results

To derive summary statistics of spatial extreme events, we first generate a database

of spatial extreme simulations and present empirically estimated risk measures using

these simulations. Our approach to simulation here is described in Section 4.4.4.

To recall, we first simulate an event from the r-Pareto process, on Pareto margins,

and then back transform this to the data scale using the inverse of expression (5.3).

As the r-Pareto process is stationary over time, we can generate identical events in

Pareto margins to transform to any specific time and any phase of SCV using the

time-varying model E2. The r-Pareto process simulations are generated using the R

package mvPot (de Fondeville et al. 2021), which exploits the decomposition in (5.6).

Point estimates of the spatial risk summaries are based on 100, 000 simulations, for

each phase of the SCV. Uncertainties are based on 10, 000 simulations for each

r-Pareto process fitted to each of the 200 spatio-temporal bootstrap data sets,

totalling an additional 200, 000 simulations for each phase of SCV.

We are most interested in making inferences about spatial events of the observa-

tional process that exceed a critical temperature of T ◦C somewhere over Ireland at

time t. We denote these events by

At,S(T ) = {XP
o (t, s), s ∈ S : ∃ s0 ∈ S with XP

o (t, s0) < T P (t, s0)}, (5.8)
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where T P (t, s) is the mapping of T through the transformation (5.3) at time t

and for site s. Recall that we are modelling negated minimum daily tempera-

tures, so the set At,S(T ) in (5.8), corresponds to extremely cold temperatures. To

estimate Pr {At,S(T )} we use the importance sampling procedure proposed in Equa-

tion (4.17), Section 4.4.4. Estimates of Pr {At,S(T )} for a range of extremal temper-

atures and for different phases of SCV are given in Figure 5.24. Figure 5.24 shows

this estimated probability (expressed as a return period) for a range of temperatures

T ∈ [−20,−5] for years 1950 and 2022 separately, for s ∈ So (due to computational

infeasibility we do not present estimated based on Sc, however based on the analysis

presented in Section 4.5, we can assume that estimates based on Sc will be only

slightly different and within uncertainty estimates based on So).

Low SCV Median SCV High SCV
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Figure 5.24: Return period of the event At,S(T ) where an extreme temperature
exceeding T ◦C occurs somewhere on the Irish station network, So. Blue dashed
(solid orange) lines correspond to t = 2022 (1950). Shaded regions show
pointwise 95% confidence intervals for the return periods at low, median, and
high SCV from left-right.

Rohan (1986) notes that a temperature of −10◦C is an extremely cold temperature

in Ireland and is in the coldest 1 percentile of daily temperature minima. Our

model finds that the spatial event At,S(−10) has increased from a 1 in 0.2-year to

a 1 in 0.7-year event in high phases of SCV, a 1 in 1.4-year to a 1 in 1-12 year

event in median phases of SCV and a 1 in 5-year to a 1 in 70-year event in low

phases of SCV. If we consider the coldest temperature in the republic of Ireland,

observed in the winter of 2009/10, which was −17.5◦C on the 25th of December

2010 in Co. Mayo, the spatial event At,S(−17.5) changed from approximately a 1

in 10-year event in 1950 to a 1 in 370-year event in 2022 in the context of a high

phase of SCV. Regarding the coldest temperature in recorded history on the island
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of Ireland of −19.4◦C recorded at Omagh, Co. Tyrone on the 23rd of January 1881

(Hickey 2011), the spatial event At,S(−19.4) changes from being a 1 in 38-year

event in 1950 to a 1 in 3,700-year event in 2022, in the context of a high phase of

SCV. However, note that a temperature of this extremity is not in our data set so

estimates are very uncertain.

The simulation strategy set out in Section 4.4.4 allows us to generate replicated in-

dependent spatial fields which exceed T ◦C for at least one s ∈ S. This is essentially
achieved by exploiting the decomposition in (5.6) to scale simulations by multiplying

R with a known change in probability of occurrence, i.e., Pr {At,S(T )} as estimated

above. We scale simulations to be below temperature T ◦C for at least one site.

Estimates of the following risk measures are calculated on the scaled simulations,

following this the estimates are rescaled to interpretable levels. Firstly, we inves-

tigate the behaviour of the “data scale χ”, which combines the effect of changes

in the marginal distributions over time with the estimated extremal dependence

structure,

χo(h;T, t) = Pr(∃ s0 ∈ S : min[Xo(t, s0), Xo(t, s
h)] > T ),

where sh is a randomly selected site in S with ∥sh−s0∥ = h. Since we are working

with negated temperatures, this corresponds to two sites, distance h apart both

being below a temperature T . Figure 5.25 presents estimates of this risk measure

for a range of h and T = {−8,−9,−10}, between 1950 and 2022. Our analysis

indicates a consistent pattern across the three phases of SCV. We observe a higher

likelihood of joint cold extreme temperatures occurring at greater distances during

earlier periods. As temperatures become increasingly extreme, there is a tendency

for them to become more localised. Additionally, the probability of joint extreme

temperature events is greater during periods of high phases of SCV, even at the

furthest distances. We note that the uncertainties associated with these findings

exhibit a high degree of noise. This is primarily due to the substantial computa-

tional resources required for generating and storing simulations for calculating this

statistic. The computational burden is increased as we are interested in making

inferences at different levels of climatic variability. We report uncertainty as the

95% quantiles of χo(h;T, t) in bins of 25km. For χo(h;T, t) we see that the joint

probability of temperature being below T at sites h apart changes notably with
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time, e.g., taking h = 100 km, we find that χo(h;T, t) has increased by a factor of

7.4, 13.7, and 24.2 for T = −8,−9, and −10◦C, respectively, during the low phase

of SCV. The respective equivalent estimates for median and high phases of SCV

are 4.7, 6.9, 11.9 and 2.8, 3.3, 3.9. Notice that we see the smallest increases during

the highest phase of SCV, this is due to the fact that extremely low temperatures

are much more likely to occur in these periods, and so these temperatures are much

farther into the tail of the GPD in phases of low SCV.
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Figure 5.25: Estimates of χo(h;T, t) against h (in km) for T = −8,−9,
and −10◦C (left-right respectively) for 1950 (solid, orange line) and for 2022
(dashed, blue line) for model E2 at low, median, and high levels of SCV (top
to bottom row respectively). Confidence intervals are based on 10,000 simula-
tions for each 200 bootstrap sample data set and each level of SCV.

Finally, in Figure 5.26 we look at a fully spatial risk measure on the station network

over Ireland from 1950 to 2022. This figure plots the expected proportion of a

temperature field on S, which exceeds T ◦C, i.e., it plots ED
o (T ; t) against T , defined
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as:

Eo(C; t, T ) = E

(
1

|S|

∫
S
I{Xo(t, s) > T}ds

)
where I(B) is the indicator function of event B. Again, since data is negated,

Eo(C; t, T ) corresponds to the expected proportion of sites that are colder than

temperature T . The figure shows that the relative change in spatial extent over

this period decreases with more extreme cold temperatures T . Figure 5.26 shows

that for T = −10◦C, estimates of Eo(C; t, T ) have decreased by a factor of 17.2,

10.2, and 4.68 in phases of low, median, and high SCV. This indicates that events

are becoming more localised at all phases of short-term climate variability.
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Figure 5.26: Expected proportion, Eo(C; t, T ), of Ireland that exceeds a tem-
perature of T ◦C in an extreme event given that at least one site in Ireland (at
the station network) exceeds T ◦C according to E2 for low, median, and high
levels of SCV (left to right, respectively) in 1950 (solid, orange line) and 2022
(dashed, blue line). Confidence intervals are based on 10,000 simulations for
each 200 bootstrap sample data set and each level of SCV.
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5.6 Conclusion & discussion

The aim of this research was to identify and characterise non-stationarities of ex-

tremely cold daily winter temperatures in Ireland. Given the complex and variable

nature of extreme minimum winter temperatures, we emphasise the importance

of considering the climatic context (i.e., the atmospheric and oceanic patterns) in

which they occur. Specifically, we discuss how shifts in the jet stream’s behaviour

can lead to the increased occurrence of extremely cold winter temperatures. We

have presented some novel candidate approaches to account for large variations in

cold extremes during different phases of large-scale climatic patterns. We explore

using NAO and AO indices as covariates to help explain the behaviour of the jet

stream and its impact on weather patterns. However, we find that using the Had-

CRUT5 data set, which combines land and sea surface temperature anomalies, best

captures and represents all climatic processes driving extremely cold temperatures.

Furthermore, we show that not accounting for this climatic variability conflates un-

usually cold winter events with the contrasting general trend of warming winters,

and underestimates long-term warming trends.

We have presented a method of characterising and visualising climate risk associ-

ated with different phases of what we define as “short-term climatic variability”

(SCV). We have developed a novel bootstrapping approach (used to account for

uncertainty throughout) to accommodate the stronger temporal dependence and

complex variability observed in extremely cold winter events, as compared to hot

summer events. We found that the climate model data were less helpful as a covari-

ate for the GPD as compared to the case for maximum daily summer temperatures.

However, for non-extreme minimum daily summer temperatures, the climate model

output proved informative and helpful.

Our study reveals that, across Ireland, there has been a decrease in the frequency

and intensity of extremely cold temperatures since 1950. Furthermore, the rate

of warming of extreme minimum temperatures is substantially greater than that

of maximum summer temperatures as found in Chapter 4. Overall, the analysis

reveals there has been a decrease in the frequency and intensity of extremely cold

temperatures since 1950 in Ireland, with the largest changes observed in regions

further inland, during all phases of SCV considered.
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We found that from 1950 to 2022 the occurrence rates of high threshold exceedances

have decreased for each phase of SCV. We found that extreme quantiles have in-

creased by 2–4◦C, over different phases of SCV. We describe changes in spatial risk

over time, combining both marginal and dependence features, to describe changes

in spatial risk over time. We found that spatial cold events have become more lo-

calised, with this change increasing at more extreme temperatures, and greatest for

low phases of SCV. Overall, spatial cold extreme events are becoming less frequent

and warmer over time.
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6
Discussion & Conclusion

In this chapter, we review and summarise the work and contributions of this thesis. We

highlight some areas of further work and recommend possible extensions to our research.
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6.1 Thesis Summary

The aim of this thesis is to present novel theoretical and methodological results

for modelling extreme spatio-temporal events, with the motivation of modelling

extreme temperatures over Ireland in the context of climate change. We briefly re-

examine the work presented in previous chapters, examining some model advantages

and limitations, providing final remarks, and discussing further work and possible

extensions in each case.

Chapter 3

In Chapter 3 we explore the theoretical and practical properties of the Hüsler-Reiss

multivariate extreme value distribution, which constitutes the finite-dimensional

joint distributions of the popular spatial max stable process (the Brown-Resnick

process) or the log-Gaussian process. We provide a derivation of the spectral den-

sity of the Hüsler-Reiss distribution, which leads us to two natural proofs that the

distribution is closed under marginalisation. We discuss how this allows a practi-

tioner to account for, and deal with, a common issue in spatio-temporal environ-

mental statistics; that is, time-series records of differing lengths as well as missing

data in general. We provide open-source software as well as a demonstration of that

software, to make this modelling procedure widely accessible to applied scientists.

Chapter 4

In Chapter 4 we examine spatio-temporal non-stationarities in extremely hot daily

summer temperatures in Ireland. We present novel candidate approaches to merge

information from spatially and temporally complete climate models into the spatial

extreme value analysis of sparse and temporally incomplete observed temperatures

from available meteorological stations. Methods introduced in this chapter allow us

to use climate model outputs to incorporate detailed topographical features on the

spatial extremal modelling of spatially-coarse meteorological observation stations.

The ability to account for detailed local spatial features in extremal inference gives

a more physically realistic model of the process and can help highlight areas of

particular risk or impact. We use the theoretical results presented in Chapter 3

to apply r-Pareto processes modelling in a missing data framework. We found
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a substantial and statistically significant increase in the occurrence rates of high

threshold exceedances as well as an increase in the 100-year return level from 1942-

2020. We found that in general, extremely hot summer temperatures in Ireland

have increased faster than the change in mean Ireland and global summer temper-

ature anomalies over the study period. In this chapter we present novel simulation

summarising metrics, combining marginal and spatial dependence features, to de-

scribe changes in spatial risk over time. Using visualisations of these metrics, we

show that spatial heatwave events over thresholds that are critical for society have

become much larger, with these changes increasing at more extreme temperatures.

In the appendix to this chapter, we consider alternative marginal modelling choices

compared to those taken in the main analysis. We use this as a means to ascertain

the sensitivity of our model choices.

Chapter 5

In Chapter 5 we identify and characterise spatio-temporal non-stationarities of ex-

tremely cold winter temperatures in Ireland. Given the complex nature of extreme

minimum winter temperatures, we emphasise the importance of considering the

climatic context (i.e., the atmospheric and oceanic patterns) in which they occur,

particularly the shifts in the jet stream’s behaviour, which has a strong influence

on the occurrence of extremely cold winters in northern Europe. We present some

novel candidate approaches to account for large variations in cold extremes dur-

ing different phases of large-scale climatic patterns. We examine winter extremes

at three phases of large-scale oscillations and build upon visualisation methods in

Chapter 4, introducing a method to characterise and visualise climate risk asso-

ciated with different phases of what we define as “short-term climatic variability”

(SCV). We found that the climate model data were less helpful as a covariate for

modelling the spatial pattern of extremely cold winter temperatures as compared

to the case for maximum daily summer temperatures in Chapter 4. However, we

still incorporate this physiographic information to inform the non-extreme model

as well as the spatial pattern of the threshold, used to define what temperatures are

extreme. Our analysis suggests coastal proximity is a sufficient spatial covariate for

extremely cold winter temperatures. Spatial cold extreme events are becoming less

frequent and warmer from 1950–2022. In Ireland, the occurrence rates of threshold

exceedances for extremely cold temperatures have decreased over the study period,
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with the most significant changes observed in inland regions. We found the oc-

currence rates of threshold exceedances have decreased, at a faster rate than hot

summer extremes have increased. We find that the rate of warming of extreme

minimum temperatures is substantially greater than that of the level of warming in

maximum summer temperatures analysed in Chapter 4.

6.2 Limitations of our methodology

In this section, we will highlight some drawbacks of our developed methodology as

well as give suggestions for improvements and extensions.

Our analysis relies on one climate model output. Any climate model will capture

different modelling assumptions and therefore would provide an alternate estimate

of the extremal process being modelled. An extension to our approach could involve

the comparison or combination of several climate model outputs as spatial covariates

of extreme temperatures over Ireland.

Since the r-Pareto process describes asymptotic dependent data, a limitation of

this modelling framework is its potential lack of adaptability to other, larger spatial

domains or regions of complex topography or different more localised extremal pro-

cesses (e.g., precipitation). In other applications, it is likely that the practitioners

will need to account for asymptotic independence and the decay of asymptotic in-

dependence at further distances. This requires an alternative modelling procedure

of extremal dependence that can capture these features, examples of such models

are discussed below in Section 6.3.2.

A major advantage of the r-Pareto process modelling procedure is the flexibility

afforded in defining the risk functional r, which can pull out extreme events of

particular interest. The only restriction of the risk function is that it must be

homogenous of order 1. In our methodology, an additional restriction is imposed,

that being that the risk function must be as close as possible to being invariant to the

changing dimension of partially observed events, whatever their missing patterns.

Future research could involve the investigation and demonstration of alternate risk

functions that satisfy these restrictions.

In both major analyses presented in this thesis, we focus on a specific season in
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order to capture the most impactful extreme events, i.e., summer for daily maxima

and winter for daily minima. In future work, to develop a year-round model, we

would include a non-stationary threshold, such that levels of extremity reflect the

context of the season in which an event occurs. This could initially be achieved by

taking a high/low quantile in each month as a threshold.

A limitation in extending our methodology to alternate climatic processes is the

necessary process of model selection. Given a set of potentially useful covariates, the

choice of which best represents the underlying phenomenon being modelled, as well

as how best to parameterise the model is non-trivial, tedious, and time-consuming.

In future, we suggest the exploration of non-parametric machine-learning methods,

such as BART (Chipman et al. 2010), which remove this onus from the practitioner,

especially if the model space is extensive. Specifically, an extension of the work

developed by Murray (2017) (which uses data augmentation to fit BART models to

non-Gaussian data) to allow the fitting of BART to GPD or GEV distributed data

could be explored.

Communicating risk in an interpretable way is essential to inspire action against

human-caused climate warming. However involved and theoretically complex any

such multivariate extreme analysis is, the results must be presented in an inter-

pretable way. The purpose of analyses such as those in Chapter 4 and Chapter 5

is to help our understanding of the impact of climate change. Climate change

is of global public concern and so our best and current understanding of climate

change should be globally and publicly understandable. Although we present some

potential methods for summarising our analyses here, additional work is required

to develop tools to effectively demonstrate and communicate risks associated with

processes that are inherently spatial and temporal.

6.3 Further work

In this section, we discuss several potential avenues for future work. In Section 6.3.1,

we discuss complications involved in extrapolating inference beyond the observed

time period, while in Section 6.3.2 we propose possible approaches for expanding the

analysis over larger spatial domains. In Section 6.3.3, we highlight an important and

impactful extremal process that is under-studied, requiring novel methodologies. In
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Section 6.3.4, we present a stepping stone towards a fully Bayesian model for the

spatial extremal analyses we have tackled via likelihood-based inference.

6.3.1 Temporal extrapolation

A clear extension to our research would be the quantification of future extreme Irish

temperature events, e.g., what will a 100-year event look like at a given point in the

future? One way to achieve this is to model data from simulations of future climate.

Potential future climate scenarios are categorised by a representative concentration

pathway (RCP) which is indicative of the level of radiative forcing caused by possible

concentrations of greenhouse gasses. Radiative forcing is a metric used to classify

potential future climate scenarios, and measures the “net change in the energy

balance of the Earth system due to some imposed perturbation” (Huang et al.

2013). In this case, uncertainty quantification is essential and it is achieved by

modelling outputs from several climate model ensembles. A multi-model ensemble

is made up of a collection of regional and global climate model pairs (Giorgi 2019).

A major challenge in climate model ensemble analysis is the computational cost

of storing and processing numerous climate model outputs. Furthermore, climate

models may provide a poor representation of extreme weather events (Li et al.

2018, Shin et al. 2019) and so it is important to consider the inherent limitations

of climate models when assessing extreme weather events.

In both analyses in Chapter 4 and Chapter 5, we use global mean temperature

as a covariate for temporal non-stationarity where we estimate the coefficient of

this covariate using observational data. An alternative approach to temporal ex-

trapolations may involve deriving the equivalent mean temperature covariates from

several different future simulations of climate allowing a projection of the estimated

GPD into future scenarios. Extrapolating covariates is less computationally expen-

sive and gives a more interpretable descriptor of climate change. Here we rely on

climate models’ description of mean temperature behaviour which is much more

successfully simulated.

6.3.1.1 Oceanic influences

Considering all potentialities of future climate change is practically impossible and

it is typically only feasible to analyse the most likely and impactful scenarios. One
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major potential climate event we wish to highlight here and consider in future

work is the overturning of Atlantic Meridional Overturning Circulation (AMOC).

In recent decades, the majority of the Earth’s surface has warmed except for a so-

called “cold blob” over the North Atlantic, south of Greenland and to the west of

Ireland. This cooling is caused by a slowing down of the AMOC (Rahmstorf et al.

2015, Caesar et al. 2018) which is currently at its weakest in the last millennium

(Caesar et al. 2021). The slowing of the AMOC has been linked to anthropogenic

forcings (Qasmi 2023) and under the current scenario of future emissions is expected

to halt by 2050 (Ditlevsen & Ditlevsen 2023). The AMOC (sometimes called the

“global ocean conveyor belt”) transports warm water from the Gulf Stream along

the surface of the Atlantic Ocean northward, where it eventually cools (warming

the atmosphere), sinks, and is pushed southward to the Antarctic. The cold water

travels along the bottom of the ocean to the Antarctic, rises due to local climatic

forces (e.g., upwelling), and gets pushed back into the Gulf Steam. The AMOC is

central to the Earth’s climate and has a major influence on weather systems in the

mid-latitude of the Northern Hemisphere. However, an influx of freshwater (melting

icecaps, increased rainfall) has lowered the salinity of surface water in the northern

Atlantic, making it less dense, and less likely to sink, thus weakening the AMOC.

It is important to consider the behaviour and influence of a slowing AMOC in the

projection and modelling of non-stationarities in extreme weather events over Ire-

land (and indeed globally) as a potentially important driver of extreme weather

events. For example, Yin & Zhao (2021) show that the AMOC moderates extreme

cold events in the United States, and a reduction in heat transfer by the AMOC

could cause more extremely cold winter temperatures. The climate works to sta-

bilise and compensate for heat differences between land and ocean (Yang et al.

2018), so a collapse of the AMOC could result in a significant cooling over the

northern hemisphere (Jackson et al. 2015). There is a huge amount of uncertainty

in estimates associated with the behaviour of the AMOC given the relatively course

and short observational records. Research in this area heavily relies upon proxy

records and climate models. Given recent estimates of a near-future collapse of the

AMOC, urgent research efforts and collaboration between statisticians or climate

scientists are required to understand what consequences this will have on extreme

weather events. An initial analysis could involve investigating the relationship be-

tween measures of the AMOC (including proxy records) and trends in extreme
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temperatures over Ireland, historically. Since records are few, climate model simu-

lations of different scenarios will likely be the most viable source of data.

Concurrently, we have recently seen the most extreme heatwaves over the Atlantic

Ocean from 1940 to present (the duration of ERA5 records, Hersbach et al. 2020).

June 2023 saw the highest average sea surface temperatures (SST) over the north-

eastern Atlantic with an average temperature of 1.36◦C above average for the en-

tire month (calculated using a 30-year reference period from 1991–2020, Copernicus

2023). The average temperature of the northern Atlantic for the same month was

around 0.5◦C higher than the previous record for June, set in 2010. NOAA’s Marine

Heatwave Watch classified the heatwave to the west of Ireland in June 2023 as “Be-

yond Extreme”, with max temperatures about 4–5◦C above average (Hobday et al.

2018). Further analysis is required to better understand the influence of extreme

SSTs and their effects on land surface temperatures. A possible avenue of future

work is the investigation and modelling of the extremal dependence between SST

and land temperature in order to accurately account for the influence of extreme

oceanic heatwaves or cooling.

6.3.2 Spatial extrapolation

A very valuable potential extension of our research would be to model extreme tem-

peratures over the European continent. By conducting a broader analysis of temper-

ature extremes over Europe, we can ascertain local levels of climate change within

the context of the entire continent and potentially discover trends and patterns

that are not observable at a local level. Specifically, a wider assessment of extreme

temperature events enables a more contextualised analysis of climate impacts in

Ireland, within the framework of global climatic variations. However, such an anal-

ysis presents major methodological challenges, from collating and pre-processing

observational data to managing the computational cost required to model such a

large data set. Moreover, the need to account for the likely low levels of extremal

dependence persisting over such a vast region raises questions about whether an

r-Pareto process approach is viable, and if not, how instead the phenomenon is

best modelled.

To ease the burden of data cleaning and management, we might rely on a grid-

ded observational-based data set, for example, the E-OBS data set illustrated in
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Figure 6.1. However, the computational complexity and dependence limitations

persist. Given Europe’s diverse climates, incorporating relevant covariates, such as

land type, coastal distance, and elevation, becomes vital for this analysis. While

our marginal modelling procedure is applicable to data sets over Europe with the

use of such covariates, implementing an extremal dependence model requires careful

consideration of extremal dependence. The assumption of asymptotic dependence

(a prerequisite for r-Pareto processes) over such a large domain is very likely to no

longer be valid.
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Figure 6.1: Average elevation (in metres) in each grid point of the E-OBS data
set over Europe (left) and Ireland (right).

There are some existing methodologies dealing with multiple dependence classes,

such as the “Gaussian scale mixtures” models proposed by Huser et al. (2017) and

Wadsworth & Tawn (2022). The authors develop a model which allows a smooth

transition between dependence classes. However, these methods are limited to mod-

erately sized applications as the computational cost required to fit them remains

a significant constraint. Zhang et al. (2022) alleviates the computation burden of

these approaches to circumvent the most onerous computations involved in fitting

the model while still maintaining the theoretical properties of the model. However,

they cannot capture complete independence even at infinite distance. Hazra et al.

(2023) develops a model based on the Gaussian scale mixture model, which can cap-

ture short-range asymptotic dependence, mid-range asymptotic independence, and
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long-range exact independence. The authors achieve this by replacing the univariate

random scale (representing the extremity of the event) with a spatial random pro-

cess, allowing local scaling of events rather than global over the domain. However,

this model has been applied to the rainfall data over the country of Bangladesh

(a data set of 195 grid cells), which is a small spatial domain compared to the

continent of Europe.

An alternative approach to handle weakly dependent extreme processes at large

distances was proposed by Wadsworth & Tawn (2022). They extend the multivari-

ate conditional extremal approach modelling approach, using a spatial conditional

extremes model combined with latent Gaussian models. Simpson et al. (2023)

showed that the modelling high dimensional data within the conditional extremal

modelling framework can be made possible with efficient estimation using INLA.

A major difficulty involved with this methodology is the choice of a conditioning

site. The authors note that a composite likelihood can be constructed using all

locations in the data set as the conditioning site. However, this is computationally

burdensome. While analysis of extreme temperature events over Europe is crucial

for climate change understanding, the challenges involved are non-trivial. Existing

methodologies offer potential solutions for an initial analysis and areas of exciting

research.

6.3.3 Multi-process extreme events

Globally, much research attention has been placed on the trends of unusually high

maximum daily temperature events with less attention placed on extremely warm

minimum night-time temperatures and even less (to our knowledge, none) on the

extremal dependence between daily max and min temperatures during hot events.

We wish to highlight this area as an important and impactful avenue of future

research. The combination of a low diurnal temperature range with an extremely

high maximum temperature can pose considerable risks to human health. Without

adequate relief from extreme heat, individuals are susceptible to potentially fatal

health consequences (Basu 2009, Murage et al. 2017, Kim et al. 2023). Extreme

heat during the summer of 2022 caused an estimated 61,000 deaths in Europe alone

(Ballester et al. 2023). The IPCC (2021) defines a compound extreme event as

“the combination of multiple drivers and/or hazards that contribute to societal or
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environmental risk”. We suggest that the diurnal features of temperature processes

can be considered as a compound extreme event.

Diurnal temperature ranges have generally decreased since the 1950s (Thorne et al.

2016, Sun et al. 2019), with daily minimum temperatures increasing at a rate nearly

double that of maximum temperatures around the same period (IPCC 2021). Anal-

ysis by Vose et al. (2017) supports that nights are warming faster than days on

average across the USA, demonstrating the asymmetry of warming between min-

imum and maximum daily temperatures. In light of this, we propose a separate

treatment of upper and lower extremes, followed by an analysis of dependence when

the processes are jointly extreme during hot events (i.e., extremely high maximum

temperature and extremely low diurnal range). A popular approach for examining

compound extreme events is that of copula-based approaches. For example, Wazneh

et al. (2020) look at the interdependence of extreme precipitation and temperature

in the south of Ontario, Canada using copula models. Critically, they found an

underestimation of concurrent extreme temperature and precipitation when they

ignored the relationship between the two variables. Similarly, Zhou & Liu (2018)

describe a method to estimate the likelihood of concurrent precipitation and tem-

perature extremes in China using copula-based models to estimate the occurrence

probability. The authors highlight the need to consider both spatial and temporal

non-stationarity in concurrent extreme modelling.

The challenging paradigm of concurrent and compound extreme events has received

increased attention in recent years. However, methods so far have lacked a natu-

ral spatial interpretation. More recently, Vignotto et al. (2021) provide a spatial

clustering of compound events, where they cluster the U.K. and Ireland into re-

gions of similar extremal dependence structures between of compound precipitation

and wind extremes. It is unlikely that asymptotic dependence would persist over

any sizeable areas between two variables, however by clustering the domain into

mutually asymptotically dependent sub-regions we could model them separately,

at the cost of a larger scale interpretation. An area of potential future research

involves the adaption of the r-Pareto process in order to capture the physical fea-

tures of compounding extreme events. In this case, the individual processes need to

be asymptotically dependent over the entire study region. An initial analysis may

involve summarising the bivariate process (max and min temperature) at each site

to a single variable at each site (e.g., diurnal range), where extremal dependence
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modelling methodologies are well developed.

6.3.4 Bayesian modelling in extreme value theory

One of the main advantages of Bayesian models is their ability to quantify uncer-

tainty. Instead of providing a single-point estimate, Bayesian models produce a

joint probability distribution over all the model parameters. This would alleviate

the onerous computational cost of creating full spatio-temporal bootstrapped data

sets for uncertainty estimation as we have done in Chapter 4 and Chapter 5.

As a step towards a fully Bayesian framework, we explored a hierarchical Bayesian

approach to estimate the parameters of the GPD. The use of Bayesian models for

univariate extreme value models is a popular and widely applied method in the

literature (Clancy et al. 2016, Sharkey & Winter 2019, Jiménez-Hernández et al.

2020). This framework is a potentially useful tool to address the spurious negative

correlation often found between the scale and shape parameters of the GPD (Cooley

& Sain 2010). Additionally, this framework is potentially useful for incorporating

information from climate model outputs in extreme value inference. We present

here an initial modelling framework with which we shall explore in future work.

Given a process X observed over the spatial domain S, i.e., {X(s) : s ∈ S}, our
Bayesian generalised Pareto model is defined as,

{X(s)− u(s) | X(s) > u(s)} ∼ GPD (σ(s), ξ(s)) ,

where, [
σ(s)

ξ(s)

]
∼ MVN

([
µσ(s)

µξ(s)

]
,Σ

)
,

and,

Σ =

(
ψ2
σ(s) ρψσ(s)ψξ(s)

ρψσ(s)ψξ(s) ψ2
ξ(s)

)

with prior distributions, on µσ(s), µξ(s), ψσ(s), ψξ(s), and ρ. In Bayesian analy-

sis, prior distributions reflect our prior knowledge of credible physical values while

allowing them to be flexible enough to allow the data to inform the posterior distri-

butions. Incorporation of this information about credible parameter values can be

incredibly beneficial when working with extreme data given that the observations
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are typically few. For example, we could place Gaussian priors on the mean vector

of the MVN for each site, corresponding to the mean σ parameter and mean ξ pa-

rameter at that site. One potential is to centre the priors on parameter estimates

from an MLE fitting of the GPD fitted to the climate model output. For restricting

the standard deviation away from very large values while allowing flexibility near 0,

Gelman (2006) recommends using a distribution from the half-t family. The Cauchy

distribution is a special case of the t-distribution with degree of freedom equaling 1

(Ghosh et al. 2018). Therefore, we suggest initial exploration using the truncated

Cauchy distribution for each of the of the standard deviations in the model. This

prior is well known to be a weakly informative prior due to it having much lower

tail decay as compared to the normal distribution. Finally, for the correlation co-

efficient ρ, we suggest either an uninformative uniform prior over [−1, 1], or a more

informative prior with most mass on zero, and very little mass on large values of

ρ (either negative or positive), for example a beta distribution with large shape

parameter values, re-scaled around zero.

To address the problematic correlation between scale and shape estimates we treat

the scale and shape parameters at each site as multivariate normally (MVN) dis-

tributed with correlation ρ. The mean vector of the MVN for each site corresponds

to the mean scale and shape parameter of the GPD at that site. In this way, we

can make direct inferences about the correlation between scale and shape and in-

corporate prior knowledge about what we believe to be a realistic correlation or to

restrict it.

Furthermore, we can incorporate hierarchy into the model by placing hyper-priors

on the hyper-parameters of the model’s prior distributions. Making this model

hierarchical allows the parameters at each site to borrow strength from each other

which allows for a more realistic estimation of the parameters.

We investigated an alternative implementation of Bayesian inference through the

use of the computationally efficient R-INLA package (Lindgren & H̊avard 2015).

However, a restriction of the current implementation of the GPD in INLA is that

the shape parameter must be positive. This restriction is not appropriate for tem-

perature extremes in Ireland. We note that the model proposed above could be

made temporally non-stationary in the same way as our GPD parameterisations in
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6.3. Further work

Chapter 4 and Chapter 5, that is, for example, instead of modelling µσ(s), let

µσ(t,s) = β0 + β1σc(s) + β2M
I(t)

describe the mean scale parameter at site s and time t where, we place prior dis-

tributions on the parameters β0, β1, and β2, where the covariates σc and M
I(t) are

those as described in Chapter 4 and Chapter 5.

6.3.5 Final remarks

In conclusion, there are many possible directions for future work based on the

research presented in this thesis. Fruitful avenues of further research range from

the modelling of alternate extremal processes in Ireland using improved techniques,

to extrapolation of inference into future climate scenarios and the modelling of

extremes on larger spatial domains.
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Ó Cléirigh, B. (2020), Energy Security in Ireland: 2020 Report, Technical report,

Sustainable Energy Authority of Ireland, Dublin.

Opitz, T., Allard, D. & Mariethoz, G. (2021), ‘Semi-parametric resampling with

extremes’, Spatial Statistics 42, 100445.

Opitz, T., Huser, R., Bakka, H. & Rue, H. (2018), ‘INLA goes extreme: Bayesian

tail regression for the estimation of high spatio-temporal quantiles’, Extremes

21(3), 441–462.

Orlowsky, B. & Seneviratne, S. I. (2012), ‘Global changes in extreme events: re-

gional and seasonal dimension’, Climatic Change 110(1), 669–696.

Osborn, T. J., Jones, P. D., Lister, D. H., Morice, C. P., Simpson, I. R., Winn, J. P.,

Hogan, E. & Harris, I. C. (2021), ‘Land surface air temperature variations across

the globe updated to 2019: the CRUTEM5 data set’, Journal of Geophysical

Research: Atmospheres 126(2), e2019JD032352.

Osland, M. J., Stevens, P. W., Lamont, M. M., Brusca, R. C., Hart, K. M., Waddle,

J. H., Langtimm, C. A., Williams, C. M., Keim, B. D., Terando, A. J., Reyier,

E. A., Marshall, K. E., Loik, M. E., Boucek, R. E., Lewis, A. B. & Seminoff,

244



BIBLIOGRAPHY

J. A. (2021), ‘Tropicalization of temperate ecosystems in North America: The

northward range expansion of tropical organisms in response to warming winter

temperatures’, Global Change Biology 27(13), 3009–3034.

O’Sullivan, J., Sweeney, C. & Parnell, A. C. (2020), ‘Bayesian spatial extreme value

analysis of maximum temperatures in County Dublin, Ireland’, Environmetrics

31(5), e2621.

Otto, F. E., Skeie, R. B., Fuglestvedt, J. S., Berntsen, T. & Allen, M. R. (2017),

‘Assigning historic responsibility for extreme weather events’, Nature Climate

Change 7(11), 757–759.

Padoan, S. A., Ribatet, M. & Sisson, S. A. (2010), ‘Likelihood-based infer-

ence for max-stable processes’, Journal of the American Statistical Association

105(489), 263–277.
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